Brane Tilings, CS Theories, M2 Branes

Amihay Hanany

In collaboration with

Alberto Zaffaroni

Motivation

Motivation

- How many CFT's do we know in 2+1 dimensions?

Motivation

- How many CFT's do we know in 2+I dimensions?
- What is the world volume theory of a stack of M2 branes in M theory?

Motivation

- How many CFT's do we know in 2+I dimensions?
- What is the world volume theory of a stack of M2 branes in M theory?
- Understand Chern Simons (CS) theories better

Motivation:AdS/CFT

Motivation:AdS/CFT

- Long standing problem:

Motivation:AdS/CFT

- Long standing problem:
- What is the theory dual to $\mathrm{AdS}_{4} \times \mathrm{H}^{7}, \mathrm{H}^{7}$ Sasaki Einstein

Motivation:AdS/CFT

- Long standing problem:
- What is the theory dual to $\mathrm{AdS}_{4} \times \mathrm{H}^{7}, \mathrm{H}^{7}$ Sasaki Einstein
- M2 probing CY4 = Cone over H^{7}

What is special in $2+1 d ?$

What is special in $2+1 d ?$

- Gauge coupling of YM has dimension I/2

What is special in $2+1 \mathrm{~d}$?

- Gauge coupling of YM has dimension I/2
- All IR theories are strongly coupled

What is special in $2+1 \mathrm{~d}$?

- Gauge coupling of YM has dimension I/2
- All IR theories are strongly coupled
- CS terms exactly marginal

What is special in $2+1 \mathrm{~d}$?

- Gauge coupling of YM has dimension I/2
- All IR theories are strongly coupled
- CS terms exactly marginal
- CS levels have dimension 0

What is special in $2+1 \mathrm{~d}$?

- Gauge coupling of YM has dimension I/2
- All IR theories are strongly coupled
- CS terms exactly marginal
- CS levels have dimension 0
- Integer coefficients

What is special in $2+1 \mathrm{~d}$?

- Gauge coupling of YM has dimension I/2
- All IR theories are strongly coupled
- CS terms exactly marginal
- CS levels have dimension 0
- Integer coefficients
- Scale invariant

Simple observations in $2+1 \mathrm{~d}$ CS theories

Simple observations in 2+Id CS theories

- No beta function for CS levels

Simple observations in 2+Id CS theories

- No beta function for CS levels
- Finite renormalization - typically at I loop

Simple observations in 2+Id CS theories

- No beta function for CS levels
- Finite renormalization - typically at I loop
- $\mathcal{N}=2$ supersymmetry (4 supercharges): no corrections

Simple observations in $2+1 d C S$ theories

- No beta function for CS levels
- Finite renormalization - typically at I loop
- $\mathcal{N}=2$ supersymmetry (4 supercharges): no corrections
- Infinite family of SCFT's parametrized by CS terms

A lattice of SCFT's

A lattice of SCFT's

- For one gauge group - a Id lattice of SCFT's

A lattice of SCFT's

- For one gauge group - a Id lattice of SCFT's
- For a product of G gauge groups a G dimensional lattice of SCFT's

A lattice of SCFT's

- For one gauge group - a Id lattice of SCFT's
- For a product of G gauge groups a G dimensional lattice of SCFT's
- If put c conditions on CS levels G-c dimensional sub - lattice of SCFT's

Back to 3+| dimensions

AdS/CFT

AdS/CFT

- Have a good understanding for the case of D3 branes probing CY3

AdS/CFT

- Have a good understanding for the case of D3 branes probing CY3
- $\mathrm{AdS}_{5} \times \mathrm{H}^{5}, \mathrm{H}^{5}$ Sasaki Einstein base of CY3

AdS/CFT

- Have a good understanding for the case of D3 branes probing CY3
- $\mathrm{AdS}_{5} \times \mathrm{H}^{5}, \mathrm{H}^{5}$ Sasaki Einstein base of CY3
- Best description in terms of "Brane Tilings"

Periodic bipartite tiling

Tiling - Quiver dictionary

Tiling - Quiver dictionary

- $2 n$ sided face - U(N) Gauge group with nN flavors

Tiling - Quiver dictionary

- $2 n$ sided face - $\mathrm{U}(\mathrm{N})$ Gauge group with nN flavors
- Edge - A bi-fundamental chiral multiplet charged under the two gauge groups corresponding to the faces it separates.

Tiling - Quiver dictionary

- $2 n$ sided face - U(N) Gauge group with nN flavors
- Edge - A bi-fundamental chiral multiplet charged under the two gauge groups corresponding to the faces it separates.
- k valent node - A k-th order interaction term in the superpotential

$$
C Y_{6}=\text { conifold }
$$

quiver
brane tiling

$$
W=X_{12}^{(1)} X_{21}^{(1)} X_{12}^{(2)} X_{21}^{(2)}-X_{12}^{(1)} X_{21}^{(2)} X_{12}^{(2)} X_{21}^{(1)}
$$

pismg f!!!
Example: Conifold

Comments

Comments

- Arrows are oriented in an alternating fashion

Comments

- Arrows are oriented in an alternating fashion
- Graph is bi-partite: Nodes alternate between clockwise (white) and counterclockwise (black) orientations of arrows

Comments

- Arrows are oriented in an alternating fashion
- Graph is bi-partite: Nodes alternate between clockwise (white) and counterclockwise (black) orientations of arrows
- black (white) nodes connected to white (black) only

Comments

- odd sided faces are forbidden by anomaly cancellation condition

Comments

- odd sided faces are forbidden by anomaly cancellation condition
- white nodes with + sign in the superpotential

Comments

- odd sided faces are forbidden by anomaly cancellation condition
- white nodes with + sign in the superpotential
- black nodes with - sign in the superpotential

Comments

- odd sided faces are forbidden by anomaly cancellation condition
- white nodes with + sign in the superpotential
- black nodes with - sign in the superpotential
- These rules define a unique Lagrangian in 3+I dimensions

3+ld: we know how to

3+ld: we know how to

- Compute the moduli space of vacua

3+ld: we know how to

- Compute the moduli space of vacua
- Spectrum of scaling dimensions

3+ld: we know how to

- Compute the moduli space of vacua
- Spectrum of scaling dimensions
- Central charge and volume of SE manifold

3+ld: we know how to

- Compute the moduli space of vacua
- Spectrum of scaling dimensions
- Central charge and volume of SE manifold
- Master space - Baryonic \& mesonic moduli space of vacua

3+ld: we know how to

- Compute the moduli space of vacua
- Spectrum of scaling dimensions
- Central charge and volume of SE manifold
- Master space - Baryonic \& mesonic moduli space of vacua
- Hilbert Series - partition function to count the spectrum of the Chiral Ring

2+Id Lagrangians

2+Id Lagrangians

- Given a 2d periodic, bipartite tiling with G tiles, add G CS levels, I for each tile.

2+Id Lagrangians

- Given a 2d periodic, bipartite tiling with G tiles, add G CS levels, I for each tile.
- Largest known family of SCFT's in 2+Id!

2+ Id: current results

$2+1 \mathrm{~d}$: current results

- Mesonic moduli space of vacua - CY4

$2+1 \mathrm{~d}$: current results

- Mesonic moduli space of vacua - CY4
- interacting SCFT's in the IR

$2+1 \mathrm{~d}$: current results

- Mesonic moduli space of vacua - CY4
- interacting SCFT's in the IR
- Non-trivial scaling dimensions

$2+1 \mathrm{~d}$: current results

- Mesonic moduli space of vacua - CY4
- interacting SCFT's in the IR
- Non-trivial scaling dimensions
- Master space - partial baryonic \& mesonic moduli space

$2+1$ d: current results

- Mesonic moduli space of vacua - CY4
- interacting SCFT's in the IR
- Non-trivial scaling dimensions
- Master space - partial baryonic \& mesonic moduli space
- Hilbert Series

Summary

Summary

- All theories described are conjectured to live on the world volume of M2 branes probing the CY4 - mesonic moduli space

Summary

- All theories described are conjectured to live on the world volume of M2 branes probing the CY4 - mesonic moduli space
- Infinite families of SCFT's

Summary

- All theories described are conjectured to live on the world volume of M2 branes probing the CY4 - mesonic moduli space
- Infinite families of SCFT's
- Count how many?

Summary

- All theories described are conjectured to live on the world volume of M2 branes probing the CY4 - mesonic moduli space
- Infinite families of SCFT's
- Count how many?
- Know for 2 terms in W and arbitrary G

The 2+Id Lagrangian

$$
\begin{aligned}
& -\int d^{4} \theta \sum_{X_{a b}} X_{a b}^{\dagger} e^{-V_{a}} X_{a b} e^{V_{b}} \\
& +\quad i \int d^{4} \theta \sum_{a=1}^{G} k_{a} \int_{0}^{1} d t V_{a} \bar{D}^{\alpha}\left(e^{t V_{a}} D_{\alpha} e^{-t V_{a}}\right) \\
& +\int d^{2} \theta W\left(X_{a b}\right)+\text { c.c. }
\end{aligned}
$$

Choice of CS levels

Choice of CS levels

$$
\sum_{a=1}^{G} k_{a}=0, \quad \operatorname{gcd}\left(\left\{k_{a}\right\}\right)=1
$$

Choice of CS levels

$$
\begin{gathered}
\sum_{a=1}^{G} k_{a}=0, \\
\operatorname{gcd}\left(\left\{k_{a}\right\}\right)=1 \\
C=\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
k_{1} & k_{2} & k_{3} & \ldots & k_{G}
\end{array}\right) .
\end{gathered}
$$

Vacuum Equations

$$
\begin{aligned}
\partial_{X_{a b}} W & =0 \\
\mu_{a}(X):=\sum_{b=1}^{G} X_{a b} X_{a b}^{\dagger}-\sum_{c=1}^{G} X_{c a}^{\dagger} X_{c a}+\left[X_{a a}, X_{a a}^{\dagger}\right] & =4 k_{a} \sigma_{a} \\
\sigma_{a} X_{a b}-X_{a b} \sigma_{b} & =0
\end{aligned}
$$

Forward Algorithm

INPUT 1: Quiver
INPUT 2:
CS Levels

$\begin{aligned} & \text { INPUT 3: } \\ & \text { Superpotential }\end{aligned} \rightarrow P_{E \times c} \rightarrow\left(Q_{F}\right)_{(c-G-2) \times c}=[\operatorname{ker} P]^{t} ;$

$$
\left(Q_{t}\right)_{(c-4) \times c}=\binom{\left(Q_{D}\right)_{(G-2) \times c}}{\left(Q_{F}\right)_{(c-G-2) \times c}} \rightarrow \begin{gathered}
\text { OUTPUT: } \\
\left(G_{t}\right)_{4 \times c}=\left[\operatorname{Ker}\left(Q_{t}\right)\right]^{t}
\end{gathered}
$$

Classification of $2+$ Id theories

Classification of $2+$ Id theories

- "order parameters"

Classification of $2+$ Id theories

- "order parameters"
- Number of gauge groups G

Classification of $2+$ Id theories

- "order parameters"
- Number of gauge groups G
- Number of fields in the quiver E

4 fields in the quiver

5 fields in the Quiver

6 fields in the Quiver

$$
\begin{aligned}
& W_{(4)}=\operatorname{Tr}\left(X_{31} X_{14}^{1} X_{41} X_{14}^{2} X_{42} X_{23}-X_{31} X_{14}^{2} X_{41} X_{14}^{1} X_{42} X_{23}\right) ; \\
& W_{(6)}=\operatorname{Tr}\left(X_{42} X_{21}\left(X_{14}^{1} X_{43} X_{31} X_{14}^{2}-X_{14}^{2} X_{43} X_{31} X_{14}^{1}\right)\right) ; \\
& W_{(7)}=\operatorname{Tr}\left(X_{12} X_{21}\left(X_{14} X_{41} X_{13} X_{31}-X_{13} X_{31} X_{14} X_{41}\right)\right) ; \\
& W_{(10)}=\operatorname{Tr}\left(X_{42} X_{21} X_{14} X_{41} X_{13} X_{34}-X_{42} X_{21} X_{13} X_{34} X_{41} X_{14}\right) ; \\
& W_{(11)}=\operatorname{Tr}\left(X_{32} X_{21} \phi_{1} X_{14} X_{41} X_{13}-X_{32} X_{21} X_{14} X_{41} \phi_{1} X_{13}\right) ; \\
& W_{(16)}=\operatorname{Tr}\left(X_{42} X_{23} X_{31} X_{14}\left[\phi_{4}^{1}, \phi_{4}^{2}\right]\right)
\end{aligned}
$$

$\mathrm{G}=2, \mathrm{E}=4$, Model I

Figure 1: (i) Quiver diagram for the ABJM theory. (ii) Tiling for the ABJM theory.

G=2, E=4, Model II

$\mathrm{G}=3, \mathrm{E}=5$, Model I

Figure 7: (i) Quiver of phase 2 of the $\widetilde{\mathcal{C}} \times \mathbb{C}$ theory. (ii) Tiling of phase 2 of the $\widetilde{\mathcal{C}} \times \mathbb{C}$ theory.

G=4, E=6, Model IV

Figure 11: (i) Quiver diagram for phase 2 of the D_{3} theory. (ii) Tiling for phase 2 of the D_{3} theory.

Counting Quivers I Hexagon

$$
\begin{aligned}
f_{1}(t) & =\frac{1}{(1-t)\left(1-t^{2}\right)\left(1-t^{3}\right)} \\
& =1+t+2 t^{2}+3 t^{3}+\ldots
\end{aligned}
$$

Counting Quivers Chessboard Tiling

$$
\begin{aligned}
f_{2}(t) & =\frac{1-t^{6}}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)\left(1-t^{4}\right)} \\
& =1+t+3 t^{2}+4 t^{3}+8 t^{4}+\ldots
\end{aligned}
$$

Summary

Summary

- Infinitely many quivers

Summary

- Infinitely many quivers
- Each represents a lattice of SCFT's in 2+Id

Summary

- Infinitely many quivers
- Each represents a lattice of SCFT's in 2+ Id
- A variety of scaling dimensions

Summary

- Infinitely many quivers
- Each represents a lattice of SCFT's in 2+Id
- A variety of scaling dimensions
- Toric Duality

Summary

- Infinitely many quivers
- Each represents a lattice of SCFT's in 2+Id
- A variety of scaling dimensions
- Toric Duality

