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We propose a simple criterion to identify when Nambu–Goldstone bosons (NGBs) for different symmetries
are redundant. It solves an old mystery why crystals have phonons for spontaneously broken translations but
no gapless excitations for equally spontaneously broken rotations. Similarly for a superfluid, the NGB for
spontaneously broken Galilean symmetry is redundant with phonons. The most nontrivial example is Tkachenko
mode for a vortex lattice in a superfluid, where phonons are redundant to the Tkachenko mode which is identified
as the Boboliubov mode.
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Introduction. — In many areas of physics, it is important
to study consequences of microscopic physics on macroscopic
behaviors, sometimes called emergent phenomena. One of
the best examples in this category is the existence of gapless
excitations, called Nambu–Goldstone bosons (NGBs), when
global continuous symmetries are spontaneously broken [1].

For spontaneously broken internal symmetries in Lorentz-
invariant systems, the symmetries dictate the number (nNGB),
dispersion relation, and interactions of NGBs completely. The
present authors have generalized this well-known results to
systems without Lorentz invariance, and proved a general for-
mula [2]

nNGB = nBG −
1

2
rankρ, ρab = lim

V→∞

1

V
〈0|[Qa, Qb]|0〉.

(1)
Here, nBG ≡ dim(G/H) is the number of broken genera-
tors. Note that the symmetry breaking pattern itself is not
sufficient to fix the number of NGBs and the additional infor-
mation on the ground state, ρ, is required. Here and hereafter,
whenever we refer to broken generators Qa, we mean suit-
able large-volume limits limV→∞

∫
V
ddx j0

a(x), where j0(x)
is the Noether charge density.

In the case of spacetime symmetries, however, the count-
ing of NGBs is more subtle. Even for relativistic systems,
some examples elude the above rule for internal symmetries,
e.g., spontaneously broken conformal and scale invariance.
There is an empirical prescription called inverse Higgs mech-
anism that allows one to identify possible constraints that can
be imposed among NGBs [3], while it does not dictate if
they should be imposed. Little is known for theories without
Lorentz invariance.

In this Letter, we propose a simple criterion to determine
what redundancies exist among NGBs in a given system. Re-
dundancies can arise for two separate reasons: (1) special
property of the ground state annihilated by a linear combina-
tion of symmetry generators, and (2) identities among Noether
charge densities. It is complementary to the inverse Higgs
mechanism because our criterion requires redundancies.

This result was inspired by the work by Low and
Manohar [4], which pointed out that a local transformation

of different symmetries may lead to the same field config-
urations. But they did not clearly distinguish the classical
field configurations and quantum states and operators, and re-
stricted themselves to Lorentz-invariant systems. We need to
generalize their intuition and formulate it more concretely.

Noether constraints. — A symmetry is spontaneously
broken if its generator Qa has an order parameter
〈0|[Qa,Φ(y)]|0〉 6= 0. By inserting a complete set of states,
one finds the existence of a gapless state 〈πa(~pa)|j0

a(x)|0〉 6=
0 where lim~pa→0Eπa

(~pa) = 0.
We first point out that the above general theorem immedi-

ately tells us the NGBs are redundant if a linear combination
of Noether currents annihilate the ground state for non-zero
coefficients ca, ∫

ddx
∑
a

ca(x)j0
a(x)|0〉 = 0. (2)

We call them Noether constraints. In general, the coefficients
ca(x) are spacetime dependent. Since for each spontaneously
broken symmetry there must be a gapless NGB state |πa〉, let
us multiply

∑
a |πa〉〈πa| on the above equation. Then we find

that the would-be NGB states satisfy∫
ddx

∑
a

ca(x)|πa〉〈πa|j0
a(x)|0〉 = 0. (3)

Since 〈πa|j0
a(x)|0〉 6= 0 by definition, we find |πa〉 states are

linearly dependent. Therefore, the would-be NGB states have
redundancies by the number of Noether constraints Eq. (2).

The rest of the discussion is how such Noether constraints
arise in two general categories.

Internal Symmetries. — Let us first look at the well-
known example: Heisenberg ferromagnet. When all spins are
lined up along the positive z direction, the Noether charge
density of spin rotations around the x and y axes, sx,y(x),
cannot raise the spins anymore at any point in space. There-
fore, ∫

ddx(sx + isy)(x)|0〉 = 0. (4)
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The states created by two broken charges, sx and sy are hence
not independent. Indeed, it is known that there is only one
magnon (quantized spin wave) state, consistent with Eq. (1).
On the other hand, Eq. (4) is not satisfied in the case of antifer-
romagnets, and hence Sx and Sy excite independent NGBs.

In general, we consider Noether constraints caQa|0〉 = 0.
If ca is a real vector, it simply means this linear combination
is an unbroken generator. On the other hand, if ca cannot be
made real, it is straightforward to prove that the constraint can
be cast to the form (Qk + iQl)|0〉 = 0 after suitable change
of basis of generators. Then

0 = |(Qk + iQl)|0〉|2 = 〈0|(Q2
k +Q2

l )|0〉+ 〈0|i[Qk, Ql]|0〉.
(5)

For broken generators Qk,l, the first term is positive defi-
nite (and is proportional to the spatial volume), and hence
the latter commutator must have a non-vanishing expecta-
tion value. We have developed an effective Lagrangian [2]
that describes the number, dispersion relation, and interac-
tions in the most general case of internal symmetry break-
ing. If ρab ∝ 〈0|[Qa, Qb]|0〉 6= 0, some of broken generators
form canonically conjugate pairs we call Type-B, and hence
the number of NGBs is reduced as in Eq. (1).

Note, however, that not all cases of ρab 6= 0 can be brought
to the form of a Noether constraint. The constraint requires
the redundancy, while the redundancy occurs with a constraint
for each canonically conjugate pair in ρab.

Spacetime Symmetries. — Another reason for redundan-
cies is when the Noether charge densities are linearly depen-
dent. Namely

∑
a ca(x)j0

a(x) = 0 as an operator identity,
and the redundancy is obviously independent of the property
of the ground state.

To illustrate the point, let us consider a simple crystal. The
Lagrangian or Hamiltonian is both translationally and rota-
tionally invariant, with six generators in three spatial dimen-
sions. A crystal spontaneously breaks all six symmetries.
However, it is well-known that there are three gapless phonon
excitations (two transverse and one longitudinal), but no more.
We are not aware of satisfactory explanation for the lack of
NGBs for rotational symmetries in the literature.

The crucial observation is that the Noether charge densities
for translation T 0i and rotation R0i are related by

R0i = εijix
jT 0k. (6)

Therefore, what could have been NGBs for spontaneously
broken rotational symmetries are redundant with those for
spontaneously broken translational symmetries, hence only
three NGBs. Note that xi are parameters and not operators
in quantum field theories.

A more nontrivial example is a superfluid. The matter
field changes its phase under the particle-number symmetry
U(1) as ψ(~x, t) → eiθψ(~x, t), while changes both its argu-
ment and the phase under the Galilean boost by velocity ~v,
ψ(~x, t) → ei(m~v·~x−

1
2m~v

2)ψ(~x − ~vt, t) (we set ~ = 1). The
order parameter 〈0|ψ(~x, t)|0〉 = ψ0 hence breaks one phase
symmetry and three boost symmetries. However, there is only

one gapless excitation, namely the Bogoliubov mode. Recall
that consideration of the spontaneously broken Galilean in-
variance is crucial to the Landau’s criterion for superfluidity.

The lack of independent NGBs for Galilean symmetry
again can be seen in the operator identity that the Noether cur-
rent for the Galilean boost Biµ is related to the U(1) current
as

Biµ = tT iµ −mxijµ. (7)

Here and hereafter, the Greek index µ refers to the space-
time index, 0 = t, 1 = x, 2 = y, 3 = z. It is straight-
forward to derive this identity from the Lagrangian density
L = iψ†ψ̇ − 1

2m∇ψ
†∇ψ − V (ψ†ψ). Since the translational

invariance is not broken in the superfluid, T i0 does not create
a gapless excitation, while those created by Bi0 and j0 are
linearly dependent, hence redundant.

Vortex lattice. — Perhaps the most nontrivial example
of the redundancy among NGBs is the Tkachenko mode
in a vortex lattice in rotating BEC. Rotating superfluids
and atomic BEC form a triangular lattice of quantized vor-
tices [5], spontaneously breaking the translational symme-
try. It is known that the vortex lattice system supports a soft
collective oscillation with a quadratic dispersion, so-called
Tkachenko mode [6–9]. Since the Tkachenko mode is often
associated with an elliptically-polarized lattice vibration, one
may naively expect the existence of the usual (Bogoliubov)
phonon, which corresponds to the fluctuation of the superfluid
phase. Until today, all prior works on the collective modes
in the system have been based on the hydrodynamic theory.
Although they seem to imply the absence of such a gapless
mode, the reason for the missing has been left unclear.

To clarify the low-energy structure of the system, here we
construct an effective Lagrangian. In order to discuss collec-
tive modes from the symmetry-breaking point of view, we do
not take into account the inhomogeneity due to trapping po-
tential or the centrifugal potential. In other words, we focus on
the region where the trapping potential almost cancels the cen-
trifugal potential but still retains a finite particle density. Our
system thus can be rephrased as bosons which couple to an
effective uniform magnetic field Beff = 2mΩ/eeff as if they
have a charge eeff . The effective Lagrangian for vortices in
superfluids has been discussed in several papers [10], but they
did not discuss the vortex lattice configuration. They also in-
troduced several fields in addition to NG degrees of freedom,
which is not suitable for our purpose.

Let us start with the standard Lagrangian [11],

L =
i

2
(ψ†ψ̇ − ψ̇†ψ)− 1

2m
|∇ψ|2

−Vtrap(~x)ψ†ψ − 1

2
g(ψ†ψ)2. (8)

We restrict ourselves to 1+2D and the zero temperature. To go
to the corotating frame with the angular frequency ~Ω = Ωẑ,
one makes the substitution ∂t → ∂t − ~Ω× ~x · ∇. Assuming a
Bose–Einstein condensate, we substitute ψ =

√
ne−iθtot into
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the Lagrangian and obtain

L =
i

2
(ψ†ψ̇ − ψ̇†ψ)− 1

2m
|(∇− im~Ω× ~x)ψ|2

−Veff(~x)ψ†ψ − 1

2
g(ψ†ψ)2

= nµ− (∇n)2

8mn
− Veff(~x)n− 1

2
gn2

' 1

2g
[µ− Veff(~x)]2, (9)

where Veff(~x) ≡ Vtrap(~x)− m

2
Ω2x2 and

µ ≡ θ̇tot −
1

2m
(∇θtot +m~Ω× ~x)2.

In the third line (9), we integrated n out, keeping only the
leading term in the derivative expansion [12].

If we neglect the effective potential Veff(~x), as we do so for
the rest of the paper, the Lagrangian possesses the magnetic
translational symmetry,

~x′ = ~x+ ~a, (10)

ψ′(~x′, t) = ψ(~x, t)eim~x·
~Ω×~a. (11)

Because of the lack of Galilean invariance, the energy mo-
mentum tensor no longer satisfies T 0i = mji. Instead,

T 0i = mji − 2mΩεijxjj0. (12)

In the vortex lattice system, both P i ≡
∫
ddxT 0i and N ≡∫

ddx j0 are spontaneously broken. However, according to
our general criterion, the operator identity Eq. (12) suggests
that T 0i and j0 do not produce independent NGBs. We will
explicitly verify this claim in the following.

In the presence of vortices, the phase θtot contains singu-
larities. We decompose θtot into the regular part θreg and the
vortex part θsing; i.e., θtot = θreg + θsing. Since θsing is only
defined up to a smooth function, this decomposition is not
unique; we will fix the ambiguity later. Due to the singularity,
θsing does no longer satisfy d2θsing = 0. In fact, ∗d(dθsing) (∗
is the Hodge dual of 1 + 2D Minkowski space) can be iden-
tified as the vortex current jvortex (jµvortex = εµνλ∂ν∂λθsing)
that automatically satisfies the topological conservation law
d ∗ jvortex = ∂µj

µ
vortex = 0.

Now let us introduce a continuum description of the vor-
tex dynamics. Because the crystalline order breaks the mag-
netic translation, we introduce fields Xa that specify the
position of the vortices. Here, we follow the notation in
Ref. [13]: Xa is the Lagrangian coordinate frozen on the
lattice, while xi is the Eulerian coordinate. We fix the re-
lation between Xa and xi in such a way that ~u(~x, t) ≡
~x− ~X(~x, t) represents the displacement from the equilibrium
position ~x. The vortex current in the continuum description
can be expressed as jvortex = ∗ 1

2m0εabdX
a∧dXb (jµvortex =

1
2m0ε

µνλεab∂νX
a∂λX

b) [13] where m0

2π = −mΩ
π [11] is the

number density of the vortices in the equilibrium.

By equating these two expressions for the topological cur-
rent, we have d(dθsing) = −mΩεabdX

a ∧ dXb, which gives

dθsing = −mΩεabX
adXb + dχ. (13)

A smooth function χ corresponds to the ambiguity mentioned
above. We choose χ = mΩεjkx

jXk so that the explicit coor-
dinate dependence drops from the Lagrangian. Assuming the
triangular lattice and adding the corresponding elastic energy
Eel(∂~u) ≡ (2C1 +C2)(∇·~u)2 +C2(∇×~u)2 (in the notation
of Ref. [8]), we arrive at our effective Lagrangian,

Leff =
1

g
µ2 − Eel(∂~u), (14)

µ = θ̇reg −m~Ω · ~u× ~̇u

− 1

2m
(∇θreg + 2m~Ω× ~u−mΩεklu

k∇ul)2.(15)

The ground state of H −µ0N (N is the total number of parti-
cles) is characterized as θreg = µ0t and ~u = 0. Leff describes
the dynamics of fluctuation ϕ ≡ µ0t− θreg and ~u ≡ ~x− ~X .

As a nontrivial test, let us derive hydrodynamic equations
as the Euler-Lagrange equations of the effective Lagrangian.
Variation w.r.t θreg gives the continuity equation ∂µj

µ =
∂tn+∇ · (n~v) = 0, where n ≡ µ

g and

~v ≡ − 1

m
(∇θreg + 2mΩ× ~u−mΩεklu

k∇ul). (16)

Since we implicitly assumed that vortices are massless and
hence ~u does not have the kinetic term ∝ ~̇u2, the Equa-
tion of Motion (EOM) of the displacement vector requires
the balance between the Magnus force and the elastic force
~FMagnus + ~Fel = 0, where ~Fel ≡

δEel

δ~u
and ~FMagnus =

2mn~Ω× [~v− (∂t+~v ·∇)~u]. These equations agree with those
discussed in Refs. [7, 8] based on the linearized hydrodynamic
theory, which in turn verifies our effective Lagrangian. Note
that our expressions are fully non-linear, e.g., the third term in
Eq. (16), beyond the linearized expressions in their papers.

Let us analyze the low-energy collective mode in our ef-
fective Lagrangian. If we keep only quadratic terms in the
fluctuation ϕ and ~u, the Lagranigan becomes

Leff '
n0

2mc2s

[
ϕ̇2 − c2s(∂iϕ+ 2mΩεiju

j)2
]

−n0m~Ω · ~u× ~̇u− Eel(∂~u). (17)

In order to compare our expressions to those in the litera-
ture, we have eliminated g and µ0 in terms of the equilib-
rium density n0 and the superfluid velocity cs by g = µ0

n0

and µ0 = mc2s. The remarkable feature of the effective La-
grangian is the mass term −2mn0Ω2~u2. Combined with the
second term, which makes ux and uy canonically conjugate
to each other, it explains the gapped mode with a gap 2Ω in
the spectrum [7, 8].

Given the gap, one can safely integrate ~u out by using
EOM,

ui =
1

2mΩ
εij∂jϕ+O(∂0∂i, ∂i∂j∂k). (18)
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At the leading order in the derivative expansion, the remaining
Lagrangian is

Leff '
n0

2mc2s

[
ϕ̇2 − C2

2mn0

c2s
Ω2

(∇2ϕ)2

]
, (19)

which describes the Tkachenko mode with the dispersion re-

lation E(~p) =
√

C2

2mn0

cs
Ω p

2 + O(p4) [7, 8]. The Tkachenko
mode thus can be understood as the phase oscillation, and the
vortex lattice simply follows transverse to the motion of the
superfluid through Eq. (18).

After all, there is only one gapless mode in the vortex lat-
tice, as expected from our general criterion. In the derivation,
we introduced the redundant fields in our effective Lagrangian
and observed a mass term ∝ ~u2 for them. (In principle, we
should be able to write down the effective Lagrangian based
purely on the symmetry without introducing redundant fields.)
An effective Lagrangian of crystal phonons does not usually
contain ~u without any derivatives, because the invariance un-
der ~u′(x′) = ~u+~a prohibits it. This is why we usually expect
acoustic (gapless) phonons [14]. However, in the current ex-
ample, the appearance of the mass term does not contradict
with the symmetry — the original magnetic translation is still
exactly realized in our effective Lagrangian Eq. (14) in a non-
trivial manner,

~x′ = ~x+ ~a, (20)
~u′(~x′, t) = ~u(~x, t) + ~a, (21)

θ′(~x′, t) = θ(~x, t)−m~a · ~Ω× [~u(~x, t)− 2~x]. (22)

One can verify that the associated Noether current T 0i satis-
fies Eq. (12). This is expected, since the low-energy effective
theory must have the same symmetry structure as the micro-
scopic (high-energy) theory. This symmetry also protects the
quadratic dispersion relation of the Tkachenko mode; i.e., the
lower order term ∝ (∇ϕ)2 cannot be generated by renormal-
ization process in Eq. (19).

It is instructive to compare the vortex lattice with a super-
solid [13]. A supersolid exhibits a similar symmetry-breaking
pattern; namely, it breaks both (usual) translation and U(1)
phase rotation. In contrast to the vortex lattice case, each of
d momentum operators P i and the number operator N inde-
pendently produces a NGB, giving rise to d+ 1 NGBs in total
in d-space dimensions. This is consistent with our criterion,
since in the case of supersolid, the Galilean invariance [13]
(more precisely, the non-relativistic general-coordinate invari-
ance [15]) leads to T 0i = mji. Therefore phonons origi-
nated from the translational symmetry breaking and Bogoli-
ubov mode are not redundant.
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