
IPMU 13-0102

MINIFOLDS AND PHANTOMS

SERGEY GALKIN, LUDMIL KATZARKOV, ANTON MELLIT, EVGENY SHINDER

Abstract. A minifold is a smooth projective n-dimensional variety such that its bounded derived
category of coherent sheaves admits a semi-orthogonal decomposition into a collection of n + 1
exceptional objects. In this paper we classify minifolds of dimension n 6 4.

We conjecture that the derived category of fake projective spaces have a similar semi-orthogonal
decomposition into a collection of n+1 exceptional objects and a category with vanishing Hochschild
homology. We prove this for fake projective planes with non-abelian automorphism group (such as
Keum’s surface). Then by passing to equivariant categories we construct new examples of phantom
categories with both Hochschild homology and Grothendieck group vanishing.

1. Introduction.

The question of homological characterization of projective spaces goes back to Severi, and the
pioneering work of Hirzebruch–Kodaira [28]. Beautiful results have been obtained by Kobayashi–
Ochiai [41], Yau [62], Fujita [24], Libgober–Wood [49].

Among smooth projective varieties of given dimension projective spaces have the smallest coho-
mology groups. We call a smooth projective variety a Q-homology projective space if it has the same
Hodge numbers as a projective space. Any odd-dimensional quadric is an example of Q-homology
projective space. We call an n-dimensional Q-homology projective space X of general type a fake
projective space if in addition it has the same “Hilbert polynomial” as Pn: χ(X,ω⊗lX ) = χ(Pn, ω⊗lPn)
for all l ∈ Z. Any fake projective plane is simply a Q-homology plane of general type, since Hodge
numbers of a surface determine its Hilbert polynomial. On the level of realizations over C, e.g.
from the point of view of the Hodge structure, fake projective spaces are identical to projective
spaces, however the study of their K-theory, motive or derived category meets cohomological
subtleties.

The first example of a fake projective plane was constructed by Mumford [52] using p-adic
uniformization developed by Drinfeld [21] and Mustafin [53]. From the point of view of complex
geometry fake projective planes have been studied by Aubin [3] and Yau [62], who proved that
any such surface S is uniformized by a complex ball, hence by Mostow’s rigidity theorem S is
determined by its fundamental group π1(S) uniquely up to complex conjugation; Kharlamov–
Kulikov [39] shown that the conjugate surfaces are distinct (not biholomorphic). Further Klingler
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[40] and Yeung [63] proved that π1(S) is a torsion-free cocompact arithmetic subgroup of PU(2, 1).
Finally such groups have been classified by Cartwright–Steger [18] and Prasad–Yeung [57]: there
are 50 explicit subgroups and so all fake projective planes fit into 100 isomorphism classes.

Fake projective fourspaces were introduced and studied by Prasad and Yeung in [58].

In this paper we take a different perspective that started with a seminal discovery of full excep-
tional collections by Beilinson [6], Kapranov [32], Bondal and Orlov [15] with Bondal’s students
Kuznetsov, Razin, Samokhin (see [45]): they found out that all known to them examples of Fano
Q-homology projective spaces admit a full exceptional collection of vector bundles. They put a con-
jecture that gives a homological characterization of projective spaces based on derived categories,
and in this paper we prove it in Theorem 1.1(3).

We call an n-dimensional smooth complex projective variety a minifold if it has a full ex-
ceptional collection of minimal possible length n + 1 in its bounded derived category of coherent
sheaves. A minifold is necessarily a Q-homology projective space. Projective spaces and odd-
dimensional quadrics are examples of minifolds [6, 32].

It follows from work of Bondal, Bondal–Polishchuk and Positselski [12, 16, 56], that if a minifold
X is not Fano then all full exceptional collections on it are not strict and consist not of pure
sheaves. In fact it is expected that all minifolds are Fano.

The novelty of this paper is the following main theorem, which gives a classification of minifolds
in dimension less than or equal to 4 (with one-dimensional case being trivial).

Theorem 1.1. 1) The only two-dimensional minifold is P2.
2) The minifolds of dimension 3 are: the projective space P3 the quadric Q3, the del Pezzo

quintic threefold V5, and a six-dimensional family of Fano threefolds V22.
3) The only four-dimensional Fano minifold is P4.

In Section 2 we recall the necessary definitions and facts. In particular in Proposition 2.1 we recall
that varieties admitting full exceptional collections have Tate motives with rational coefficients [51]
and outline a straightforward proof of that fact. Section 2 finishes with the proof of Theorem 1.1.

We also show that except for P4 the only possible minifolds of dimension 4 are non-arithmetic
fake projective fourfolds, which presumably do not exist [65] (paragraph 4 and section 8.4).

In fact, study of minifolds is closely related to study of the fake projective spaces. The reason
is that fake projective spaces sometimes admit exceptional collections of the appropriate length
but these collections fail to be full. In this case the orthogonal to such a collection is a so-called
phantom.

More precisely, we call an admissible non-zero subcategory A of a derived category of coherent
sheaves an H-phantom if HH∗(A) = 0 and a K-phantom if K0(A) = 0.

In Section 3 we formulate a conjecture that under some mild conditions fake projective n-spaces
admit non-full exceptional collections of length n+ 1 and thus have H-phantoms in their derived
categories (Conjecture 3.1 and its Corollary 3.2). We prove this conjecture for fake projective
planes admitting an action of the non-abelian group G21 of order 21.

Theorem 1.2. Let S be one of the six fake projective planes with automorphism group of order
21. Then KS = O(3) for a unique line bundle O(1) on S. Furthermore O, O(−1), O(−2) is an
exceptional collection on S.

Most of Section 3 deals with the proof of this Theorem, which relies on the holomorphic Lefschetz
fixed point formula applied to the three fixed points of an element of order 7 as in [38].
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It follows from Theorem 1.2 that Db(S) has an H-phantom subcategory AS. We show that
this H-phantom descends to an H-phantom AGS in the equivariant derived categories DbG(S) for
any G ⊂ G21. In particular, when G = Z/3 this gives yet new examples of surfaces having an
H-phantom in their derived categories (fake cubic surfaces: see Remark 3.8).

Finally, in four cases G ⊃ Z/7 and surface S/G is simply-connected, then we show that the
H-phantom AGS is also a K-phantom (Proposition 3.10).

In the Appendix we give a table of arithmetic subgroups Π ⊂ PSU(2, 1) giving rise to fake
projective planes and the corresponding automorphism and first homology groups. These results
are taken from the computations of Steger and Cartwright [19].

It took a long way for the paper to take its present form. We would like to thank our friends
and colleagues with whom we had fruitful discussions on the topic.

We thank Denis Auroux, Alexey Bondal, Paul Bressler, Alessio Corti, Igor Dolgachev, Alexander
Efimov, Sergey Gorchinskiy, Jeremiah Heller, Daniel Huybrechts, Umut Isik, Yujiro Kawamata,
Maxim Kontsevich, Viktor Kulikov, Alexander Kuznetsov, Serge Lvovski, Dmitri Orlov, Dmitri
Panov, Tony Pantev, Yuri Prokhorov, Kyoji Saito, Konstantin Shramov, Duco van Straten, Misha
Verbitsky, Vadim Vologodsky, and Alexander Voronov for their useful suggestions, references and
careful proofreading. We thank Donald Cartwright, Philippe Eyssidieux and Bruno Klingler, Gopal
Prasad, Sai Kee Yeung, for answering our questions about fake projective planes and fourspaces.

While this paper was in preparation, Najmuddin Fakhruddin gave a proof of Conjecture 3.1
for those fake projective planes that admit 2-adic uniformization [23], in particular for Mumford’s
fake projective plane. These cases are disjoint from the ones that satisfy the assumptions of our
Theorem 1.2. An idea of a proof in the case of Mumford’s fake projective plane similar to that
of [23] was also hinted to us by Dolgachev. Independently it was sketched to us by van Straten
in June 2013: van Straten and Spandau has an unpublished work circa 2001, where based on
description of Ishida [29] they construct the reduction modulo two of the 2-canonical image of
Mumford’s fake projective plane as an image of P2(F2) by an explicit 10-dimensional linear system
of octics (plane curves of degree 8), one then checks that these octics are not divisible by 3 as
Weil divisors. Our proof of Theorem 1.2 is indebted to discussions with Panov in June 2012 (he
suggested us to exploit extra symmetries of Keum’s surface) and with Dolgachev in June 2013
(then we looked for higher-dimensional irreducible representations of non-abelian groups). The
rest of the ideas of the paper is from 2011.

2. Minifolds

An exceptional collection of length r on a smooth projective variety X/C is a sequence of objects
E1, . . . Er in the bounded derived category of coherent sheaves Db(X) such that Hom(Ej, Ei[k]) = 0
for all j > i and k ∈ Z, and moreover each object Ei is exceptional, that is spaces Hom(Ei, Ei[k])
vanish for all k except for one-dimensional spaces Hom(Ei, Ei). An exceptional collection is called
full if the smallest triangulated subcategory which contains it, coincides with Db(X).

Proposition 2.1. Assume that X admits a full exceptional collection of length r. Then:
(1) The Chow motive of X with rational coefficients is a direct sum of r Tate motives Lj. In

particular, all cohomology classes on X are algebraic. (For the definition and properties of Chow
motives see [50].)

(2) Hp,q(X) = 0 for p 6= q and χ(X) =
∑
hp,p(X) = r.

(3) Pic(X) is a free abelian group of finite rank. Moreover the first Chern class map gives an
isomorphism Pic(X) ∼= H2(X,Z).
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(4) H1(X,Z) = 0.
(5) The Grothendieck group K0(X) = K0(Db(X)) is free of rank r and the bilinear Euler pairing

χ(E,F ) =
∑
i

(−1)i dim Hom(E,F [i])

is non-degenerate and unimodular. Classes [Ei] of exceptional objects form a semi-orthonormal
basis in K0(X). (By a semiorthonormal basis we mean a basis (ei)

n
i=0 such that χ(ej, ei) = 0, j > i

and χ(ei, ei) = 1.)

Proof. Most of the claims are well-known. (1) is proved in [51] using the language of non-
commutative motives and in [27] using K-motives. We give a direct proof of (1) using the ideas
developed in [55] (see also [7]) for the sake of completeness.

First observe that the structure sheaf of the diagonal O∆ in the derived category Db(X×X) lies
in the full triangulated subcategory generated by the objects p∗1F1 ⊗ p∗2F2. This can be deduced
from the standard fact that if E1, . . . , Er is a full exceptional collection on X, then p∗1Ei ⊗ p∗2Ej
forms a full exceptional collection on X ×X [13](see Lemma 3.4.1 and note that for the category
generated by an exceptional collection the notions of generator and strong generator coincide, so
taking direct summands is not necessary), [9], [59].

It follows that the class of the diagonal [O∆] ∈ K0(X ×X) has a decomposition

(2.1) [O∆] =
∑
j

p∗1[Fj] · p∗2[Gj],

for some sheaves Fj,Gj on X.
Applying the Chern character to (2.1) and using the Grothendieck-Riemann-Roch formula

ch(O∆) = [∆] · p∗2td(X)

we obtain an analogous decomposition for the class of the diagonal [∆] ∈ CH∗(X ×X)Q:

(2.2) [∆] =
∑
j

p∗1αj · p∗2βj,

for some classes αj, βj ∈ CH∗(X)Q. We may assume that αj are homogenous, say αj ∈ CHaj(X)Q
and hence βj ∈ CHdim(X)−aj(X)Q.

We claim that the set {αj} spans CH∗(X)Q. Indeed for any α ∈ CH∗(X)Q we have

(2.3)

α = p1∗([∆] · p∗2α) =

= p1∗((
∑
j

p∗1αj · p∗2βj) · p∗2α) =

= p1∗(
∑
j

p∗1αj · p∗2(βj · α)) =

=
∑
j

αj · p1∗(p
∗
2(βj · α)) =

=
∑
j

〈βj, α〉αj.

Here we use the notation 〈α, β〉 for the bilinear form deg(α · β).
We may assume that {αj} are linearly independent, that is form a homogeneous basis of

CH∗(X)Q. From the formula (2.3) we see that {βj} is a dual basis.
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We now define an isomorphism M(X) ∼= ⊕jLaj . By definition of the morphisms in the category
of Chow motives we have

Hom(La,M(X)) = CHa(M)

Hom(M(X),La) = CHdim(X)−a(M)

Therefore the set {αj} determines a morphism of motives

Φ : ⊕jLaj →M(X)

and the {βj} determines a morphism in the opposite direction

Ψ : M(X)→ ⊕jLaj .
The composition Ψ ◦ Φ is equal to identity due to the fact that {αj} and {βj} are dual bases.

The composition Φ ◦Ψ is equal to identity because of the decomposition (2.2).
By taking Hodge realization (1) implies (2). Alternatively, we can deduce (2) from Hochschild–

Kostant–Rosenberg theorem
HHi(Db(X)) ∼= ⊕p−q=iHp,q(X)

and additivity of Hochschild homology for semiorthogonal decompositions [37, 46]: if C = 〈A,B〉
then HHi(C) = HHi(A)⊕HHi(B).

The fact that Pic(X) is free follows from (5) and Lemma 2.2 below. The isomorphism Pic(X) ∼=
H2(X,Z) comes from the exponential long exact sequence and (2). Pic(X) is of finite rank since
it is isomorphic to H2(X,Z).

To prove (4) note that the Universal Coefficient Theorem implies that we have a non-canonical
isomorphism

H2(X,Z) ∼= Zrk ⊕H1(X,Z)tors

which by (3) implies that H1(X,Z) must be torsion-free as well. On the other hand h1,0(X) = 0
and hence H1(X,Z) = 0.

(5) follows easily from definitions.
�

Lemma 2.2. Let X be a smooth algebraic variety such that K0(X) has no p-torsion. Then Pic(X)
has no p-torsion.

Proof. We prove that if Pic(X) has p-torsion, then the same is true for K0(X).
Let L be a line bundle on X such that L⊗p ∼= OX . Let N = [L] − 1 ∈ K0(X); then N

is nilpotent. Indeed N being of rank zero, sits in the first term F 1K0(X) of the topological
filtration on K0(X) ([25], Example 15.1.5). The topological filtration is multiplicative; therefore
Ndim(X)+1 ∈ F dim(X)+1K0(X) = 0.

Let k be the smallest positive integer such that Nk = 0. If k = 1, that is N = 0 and [L] = 1 ∈
K0(X), then L ∼= OX since to F 1X/F 2X ∼= Pic(X) by [25], Example 15.3.6.

We assume now that k > 2. We have

[L] = 1 +N.

Taking p-th tensor power of both sides we obtain

1 = 1 + pN +N2α, α ∈ K0(X)

0 = pN +N2α

and after multiplying by Nk−2:
pNk−1 = 0,
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so that Nk−1 is nontrivial p-torsion class in K0(X). �

Remark 2.3. In fact if we assume X to be a compact Kähler manifold with a full exceptional
collection in the analytic derived category Dban(X) of complexes of OX-modules with bounded
coherent cohomology, one can show that H2,0(X,C) = 0, so that the Kähler cone is open in

H2(X,R) = H1,1(X,C) ∩H1,1(X,C) hence it has non-trivial intersection with H2(X,Z).
Then the Kodaira embedding theorem implies that X is projective.

Definition 2.4. We call a smooth projective complex variety of dimension n admitting a full
exceptional collection of length n+ 1 a minifold.

It follows from Proposition 2.1 (2), that n + 1 is the minimal number of objects in such a
collection, and the term ”minifold” originates from here. Minifolds have the same Hodge numbers
as projective spaces. By results of Beilinson [6] and Kapranov [32], projective spaces and odd-
dimensional quadrics are minifolds.

Lemma 2.5. Let X be a minifold. Thenq either X is a Fano variety i.e. the anticanonical line bundle ω∨X = detTX is ampleq or canonical line bundle ωX = detT ∗X is ample

In particular, the variety X is uniquely determined by Db(X).

Proof. We first note that ωX is not trivial, since h0(ωX) = hn,0(X) = 0 by Proposition 2.1(2). By
Proposition 2.1(3), Pic(X) is torsion free; hence the class of ωX in Pic(X)Q ∼= H2(X,Q) = Q is
non-zero. Therefore either ωX or ω∨X is ample. Now the Bondal-Orlov [15] reconstruction theorem
implies the last statement. �

Remark 2.6. If we weaken the assumption from ”projective” to ”proper” in the definition of
a minifold, we still get the same class of varieties. Indeed, if X is a proper smooth variety of
dimension n with a full exceptional collection of length n + 1 we can still deduce that ωX or its
dual is ample, in particular that X is projective as follows.

From [49](Theorem 3) it follows that for a compact complex n-dimensional manifold, the Chern
number c1cn−1 is determined by Hirzebruch χ-genera χy and hence by the Hodge numbers.

Thus we have c1cn−1[X] = c1cn−1[Pn] = n(n+1)2

2
6= 0. Since the Kleiman-Mori cone of effective

one-cycles modulo numerical equivalence N1(X) ⊂ H2(X,R) is one dimensional (that is because
H2(X,R) itself is one dimensional by Proposition 2.1(2) which still holds under the assumption
that X is proper), Kleiman’s criterion for ampleness implies that either ωX or its dual is ample.

The rest of this section is devoted to proof of Theorem 1.1. In view of Lemma 2.5, the proof
consists of classifying Fano minifolds and showing that there is no minifolds among varieties of
general type.

We start in dimension 2. The only del Pezzo surface with Picard number one is a projective
plane.

On the other hand it is known that fake projective planes have non-vanishing torsion first
homology group [57], Theorem 10.1. Hence by Proposition 2.1(4) there is no minifold of general
type of dimension 2.

Let us consider Fano threefolds. By Proposition 2.1(2) conditions b2(X) = 1 and b3(X) = 0
are necessary for a minifold. Such Fano threefolds were classified by Iskovskikh [31] into four
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deformation types: the projective space P3, the quadric Q3, the del Pezzo quintic threefold V5,
and a family of Fano threefolds V22.

All these varieties are known to admit an exceptional collection of length 4 by results of Beilinson,
Kapranov, Orlov and Kuznetsov respectively [6], [32], [54], [44].

It is easy to see that 3-dimensional Q-homology varieties of general type do not exist. Indeed KX

ample implies that c1(X)3 is negative, but by Todd’s theorem c1(X)c2(X) = 24. This contradicts
to Yau’s inequality c1(X)3 > 8

3
c2(X)c1(X) [62].

According to Wilson [61] and Yeung [64] there are three alternatives for a Q-homology projective
fourspace X: either X is P4, or X is a fake projective fourspace, or X has Hilbert polynomial
χ(ω−lX ) = 1 + 25

8
l(l+ 1)(3l2 + 3l+ 2) and Chern numbers [c4

1, c2c
2
1, c

2
2, c1c3, c4] = [225, 150, 100, 50, 5].

In what follows the varieties of the latter type are named Wilson’s fourfolds.
There are some known examples of fake projective fourfolds, but it is not known whether any

Wilson’s fourfold actually exist.
In what follows we show that (possibly non-existent) Wilson’s fourfolds do not satisfy conditions

of Proposition 2.1(5), and hence do not admit a full exceptional collection. In order to do that we
relate the Grothendieck group of a minifold to its Hilbert polynomial.

We need a simple Lemma from linear algebra.

Lemma 2.7. Let P (x) =
∑n

j=0 pjx
j ∈ K[x] be a polynomial of degree 6 n with coefficients

in a field K of characteristic zero and let AP be the (n + 1) × (n + 1)-matrix with coefficients
ai,j = P (j − i). Then we have

det(AP ) = (n! pn)n+1.

In particular the matrix AP is non-degenerate if and only if degP = n.

Proof. It suffices to prove the statement for algberaic closure K̄ of K, we thus assume K to be
algebraically closed.

We first prove that

(2.4) det(AP ) = 0⇐⇒ pn = 0.

Indeed if deg(P (x)) < n, then n+1 polynomials P (x), P (x+1), . . . , P (x+n) are linearly dependent
which makes the columns of AP linearly dependent, thus det(AP ) = 0. On the other hand, it is
easy to see that if deg(P (x)) = n, then

P (x), P (x+ 1), . . . , P (x+ n)

form a basis of the space of polynomials of degree 6 n, and AP is a matrix of an invertible linear
transformation P 7→ (P (0), P (−1), . . . , P (−n)) ∈ Kn+1 in this basis, hence det(AP ) 6= 0.

Let F (p0, p1, . . . , pn) = det(AP ). Since the entries of the matrix AP are linear forms in
p0, p1, . . . , pn, it follows that F is homogeneous in pi’s of degree n + 1. Then (2.4) says that
the support of the degree n + 1 hypersurface F = 0 in Pn is contained in the hyperplane pn = 0.
Therefore

(2.5) F (p0, p1, . . . , pn) = Cn · pn+1
n

for some constant Cn ∈ K. In particular det(AP ) takes the same value Cn for any monic polynomial
P (x) of degree n.

Let P0(x) = (x + 1) · (x + 2) · · · · · (x + n). Then the matrix AP0 is uppertriangular with all
diagonal entries equal to n!:

(2.6) Cn = det(AP0) = (n!)n+1
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The result now is the combination of (2.5) and (2.6) �

Proposition 2.8. Let X be a minifold. Let O(1) = det(TX) be the anticanonical bundle, deg(X)
be the anticanonical degree c1(X)n and PX(k) = χ(O(k)) be the Hilbert polynomial. Consider a
sublattice Λ ⊂ K0(X) spanned by

[O], [O(1)], . . . , [O(n)].

Then the Euler pairing restricted to Λ is non-degenerate, that is classes [O], [O(1)], . . . , [O(n)]
are linearly independent in K0(X) and Λ is a sublattice in K0(X) of full rank. Furthermore, Λ
admits a semi-orthonormal basis over the ring Z[ 1

deg(X)
] and hence modulo any prime p that does

not divide deg(X).

Proof. Let AX denote the matrix of the pairing on Λ, that is a matrix with entries ai,j =
χ(O(i),O(j)) = PX(j − i).

We apply Lemma 2.7 to P = PX , the Hilbert polynomial. Its top coefficient is equal to pn =
deg(X)
n!

; therefore det(AX) = deg(X) 6= 0 is the anticanonical degree and the pairing on Λ is
non-degenerate.

The inclusion Λ ⊂ K0(X) becomes an isomorphism after inverting det(AX) = deg(X). Indeed
let ej, j = 0, . . . n be a basis in K0(X) and write

[O(i)] =
∑

Gj,iej, 0 6 i 6 n.

The matrix G−tAX G
−1 is unimodular, hence deg(X) = det(G)2, and after inverting deg(X), G

becomes invertible.
Since K0(X) admits a semiorthonormal basis by assumption and Proposition 2.1(5), the same

holds for Λ⊗ Z[ 1
deg(X)

] �

Let PX be the Hilbert polynomial of Wilson’s fourfolds and AX be the 5 × 5-matrix (AX)i,j =

PX(j − i). Consider their residues modulo two: AX = AX mod 2, (AX)i,j = PX(j − i).
In the Proof of Proposition 2.8 we showed that the determinant of matrix AX equals deg(X)n+1 =

2255 = 1510, hence the assumption that X is a minifold would imply that AX admits a
semiorthonormal basis modulo all primes p 6= 3, 5, in particular this would imply that AX has
a semiorthonormal basis.

Entries of AX and AX are determined by values P (n) for 0 6 n 6 4 (that we tabulate) and
Serre duality P (n) = P (−1− n):

n 0 1 2 3 4
P (n) 1 51 376 1426 3876
P (n) mod 2 1 1 0 0 0

AX =


1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
0 1 1 1 1
0 0 1 1 1

 .

The following Lemma gives a contradiction, from which we see that a Wilson fourfold X can
not be a minifold.

Lemma 2.9. Let (u, v) 7→ utAXv be the bilinear form on a vector space V = F5
2 given by the

matrix AX . There is no basis e1, e2, e3, e4, e5 of V such that (ei, ej) = 0 for i > j and (ei, ei) = 1.
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Proof. We begin by making a few remarks.

(1) Let S := A
−1

X A
t

X be an automorphism of V . In fact S is induced by the Serre functor
SX = ⊗ωX [dimX] on Db(X) [12, 14]. S satisfies (u, v) = (v, Su) for all u, v, so it preserves
AX , i.e. (u, v) = (Su, Sv), equivalently StAXS = AX . We have

S =


1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
1 0 0 0 0


and S has order 8 because the value of P (n) mod 2 depends only on n mod 8.

(2) There are precisely 12 vectors x such that (x, x) = 1. Indeed (x, x) = 1 if and only if
the point x does not lie on quadric Q = {x|(x, x) = 0}. The quadric Q has a unique
singular point in P(V ) so it has 19 points over F2 and its complement has 12 points. These
twelve points form two orbits under the action of S. One orbit of length 8 is generated by
a1 := (1, 0, 0, 0, 0)t, another orbit of length 4 is generated by b1 := (1, 0, 1, 0, 0)t.

(3) If a basis e1, e2, . . . , e5 is semi-orthonormal, then for each i (1 6 i 6 4) the basis obtained by
replacing ei, ei+1 with ei+1, ei + ei+1(ei, ei+1) is also semi-orthonormal. This transformation
corresponds to mutations of exceptional collections [12, 14].

Denote ai = Si−1a1, bi = Si−1b1 and c = (a1, . . . , a8, b1, . . . , b4). The following matrix has (ci, cj)
on position i, j: 

1 1 1 0 0 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0 1 1 0 0
0 1 1 1 1 0 0 0 0 1 1 0
0 0 1 1 1 1 0 0 0 0 1 1
0 0 0 1 1 1 1 0 1 0 0 1
0 0 0 0 1 1 1 1 1 1 0 0
1 0 0 0 0 1 1 1 0 1 1 0
1 1 0 0 0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1 1
1 0 0 1 1 0 0 1 1 1 1 1
1 1 0 0 1 1 0 0 1 1 1 1


Assume there exists a semi-orthonormal basis. Then all of its vectors must be from the set

{ai} ∪ {bi}. Since there are only 4 vectors in {bi}, at least one of the basis vectors must be from
{ai}. Applying S if necessary we may assume that this vector is a1. Applying the transformation
(3) we can obtain a semi-orthonormal basis with a1 on the first position.

Any remaining basis vector x must satisfy (x, a1) = 0. Looking at the first column of the matrix
of (ci, cj) we see that the remaining basis vectors must be from the set {a3, a4, a5, a6, b1, b2}. Let
x be the second basis vector. Then any vector y out of the remaining 3 basis vectors must satisfy
(y, x) = 0. However, trying for x each of the {a3, a4, a5, a6, b1, b2} we see that there are only 2
choices remaining for y. This is a contradiction. �

We also can prove that there is no minifolds among arithmetic fake projective fourspaces. This
goes similarly to dimension 2 case: Prasad and Yeung proved that for an arithmetic fake projective
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fourspace the first homology group H1(X,Z) is non-zero [58], Theorem 4. Therefore by Proposition
2.1(3) these fourfolds are not minifolds.

3. Phantoms in fake projective spaces

Fake projective spaces seem to be very similar and yet very different from ordinary projective
spaces. We propose the following conjecture.

Conjecture 3.1. Assume that X is an n-dimensional fake projective space with canonical class
divisible by (n+ 1). Then for some choice of O(1) such that ωX = O(n+ 1), the sequence

O,O(−1), . . . ,O(−n)

is an exceptional collection on X.

We call an non-zero admissible subcategory A ⊂ Db(X) an H-phantom if HH q(A) = 0 and a
K-phantom if K0(A) = 0.

Corollary 3.2. Fake projective spaces as in Conjecture admit an H-phantom admissible subcate-
gories in their derived categories Db(X).

Proof. Assume that O,O(−1), . . . ,O(−n) is an exceptional collection, and consider its right or-
thogonal A. By results of Bondal and Kapranov [12, 14] the category A is admissible, and thus
we have a semi-orthogonal decomposition:

Db(X) = 〈O,O(−1), . . . ,O(−n),A〉 .

Note that this exceptional collection could not be full at least for two reasons:q if O(i) would be a full collection then by [16](Theorem 3.4) or [56](see proof of main
theorem) manifold X would be Fano, which contradicts to general type assumption,q use Corollary 4.6 and Proposition 4.7 of [47]: by Kodaira vanishing for i < j space
Extk(O(−i),O(−j)) vanish unless k = n, so relative height of any two objects in a helix
O(i) equals n, thus pseudoheight of the collection coincides with its height and is equal to
n− 1, hence Hochschild cohomology HH0(A) = HH0(X) 6= 0 for n > 1.

Finally, Hochschild homology is additive for semi-orthogonal decompositions (cf the alternative
proof of 2.1(2)), so dimHH q(A) = 0 that is A is an H-phantom. �

Remark 3.3. 1. A statement analogous to Conjecture 3.1 holds for some fake del Pezzo surfaces
of degrees one [10, 11], six [1] and eight [26, 48]. Here we add degrees three (Remark 3.8) and nine
(Theorem 1.2).

2. Fake projective planes with properties as in Conjecture 3.1 are constructed in [57], 10.4.
Choose O(1) such that O(3) = ωX . Then by the Riemann-Roch theorem the Hilbert polynomial
is given by

χ(O(k)) =
(k − 1)(k − 2)

2
.

Therefore the collection E q = (O,O(−1),O(−2)) is at least numerically exceptional, that is

χ(Ej, Ei) = 0, j > i.

In addition we have

H0(S,O(1)) = H0(S,O(3)) = 0.
10



Furthermore it follows from Serre duality that a necessary and sufficient condition for E q to be
exceptional is vanishing of the space of the global sections H0(S,O(2)). It is not hard to see that
for all fake projective planes h0(S,O(2)) 6 2 (cf end of the Proof of Theorem 1.2).

3. More generally our definition of an n-dimensional fake projective space includes that its
Hilbert polynomial is the same as that of a Pn. It follows that if we assume ωX = O(n+ 1), then
we have

χ(O(k)) = (−1)n
(k − 1)(k − 2) . . . (k − n)

n!
,

so that k = 1, . . . , n are the roots of χ, and the collection

O,O(−1), . . . ,O(−n)

is numerically exceptional.
4. G.Prasad and S.-K. Yeung informed us that the assumption ωX = O(5) is known to be true

for the four arithmetic fake projective fourspaces constructed in [58].

We now prove Theorem 1.2, which shows that conjecture 3.1 holds for fake projective planes
admitting an action of the non-abelian group G21 of order 21.

According to the Table given in the Appendix there are 6 such surfaces: there are three relevant
groups in the table and there are two complex conjugate surfaces for each group [39].

We first prove a general fact about fake projective planes.

Lemma 3.4. Let S be a fake projective plane with no 3-torsion in H1(S,Z). Then there exists a
unique (ample) line bundle O(1) such that KS

∼= O(3).

Proof. First note that the torsion in Pic(S) = H2(S,Z) is isomorphic to H1(S,Z) (cf Proof of
Proposition 2.1), hence Pic(S) has no 3-torsion by assumption.

By Poincare duality Pic(S)/tors ∼= H2(S,Z)/tors is a unimodular lattice, therefore there exists
an ample line bundle L with c1(L)2 = 1. Now KS − 3c1(L) ∈ Pic(S) is torsion which can be
uniquely divided by 3. �

Proof of Theorem 1.2. As follows from the classification of the fake projective planes by Prasad-
Yeung and Cartwright–Steger, the order of the first homology group of the six fake projective
planes with automorphism group G21 is coprime to 3 (see the Table in the Appendix). Therefore
by Lemma 3.4 we have

KS = O(3).

for a unique line bundle O(1).

Recall that G21 = Aut(S) = N(Π)/Π where N(Π) is a normalizer of Π in PU(2, 1) and by [20]
the embedding

N(Π) ⊂ PU(2, 1)

lifts to an embedding
N(Π) ⊂ SU(2, 1)

in all cases with G21-action. ThereforeOB(−1) admits a N(Π)-linearization and henceO(1) admits
a G21-linearization, compatible with the natural G21-linearization of KS. We will consider vector
spaces H∗(S,O(k)) as G21-representations.

According to Remark 3.3(2), it suffices to show that H0(S,O(2)) = 0.

We now study the group G21 and its representation theory. By Sylow’s theorems G21 admits
a unique subgroup of order 7 and this subgroup is normal. We let σ denote a generator of
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this subgroup. Let τ denote an element of G21 of order 3. Conjugating by τ gives rise to an
automorphism of Z/7 = 〈σ〉 and we can choose τ so that

τ−1στ = σ2.

Thus G21 is a semi-direct product of Z/7 and Z/3 and has a presentation

G21 =
〈
σ, τ | σ7 = 1, τ 3 = 1, στ = τσ2

〉
.

Using this presentation it is easy to check that there are five conjugacy classes of elements in
G21:

{1}
{σ, σ2, σ4}
{σ3, σ5, σ6}

{τσk, k = 0, . . . , 6}
{τ 2σk, k = 0, . . . , 6}

and by basic representation theory there exist five irreducible representations of G21. Let d1, . . . , d5

be the dimensions of these representations. Basic representation theory also tells us that each di
divides 21 and that

d2
1 + d2

2 + d2
3 + d2

4 + d2
5 = 21.

Considering different possibilities one finds the only combination (d1, d2, d3, d4, d5) = (1, 1, 1, 3, 3)
satisfying the conditions above.

It is not hard to check that the character table of G21 is the following one:

1 [σ] [σ3] [τ ] [τ 2]
C 1 1 1 1 1
V1 1 1 1 ω ω

V1 1 1 1 ω ω

V3 3 b b 0 0

V3 3 b b 0 0

Here we use the notation:

ω = e
2πi
3

ξ = e
2πi
7

and

b = ξ + ξ2 + ξ4 =
−1 +

√
−7

2
.

Explicitly V1 and V1 are one-dimensional representations restricted from G21/ 〈σ〉 = Z/3. V3

and V3 are three-dimensional representations induced from Z/7: ρ : G21 → GL(V3) is given by
matrices

ρ(σ) =

 ξ
ξ2

ξ4

 ρ(τ) =

 0 0 1
1 0 0
0 1 0


and V3 is its complex conjugate.

Lemma 3.5. H0(S,O(4)) is a 3-dimensional irreducible representation of G21 (and thus is iso-
morphic to V3 or V3).
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Proof. We show that the trace of an element σ ∈ G21 of order 7 acting on H0(S,O(4)) is equal
to b or b. This is sufficient since if H0(S,O(4)) were reducible it would have to be a sum of three
one-dimensional representations and the character table of G21 shows that in this case the trace
of σ on H0(S,O(4)) would be equal to 3.

By [38], Proposition 2.4(4) σ has three fixed points P1, P2, P3. Let τ be an element of order
3. τ does not stabilize any of the Pi’s, since a tangent space of a fixed point of G21 would give
a faithful 2-dimensional representation of G21 which does not exist as is seen from its character
table.

Thus Pi’s are cyclically permuted by τ . We reorder Pi’s in such a way that

(3.1) τ(Pi) = Pi+1 mod 3.

We apply the so-called Holomorphic Lefschetz Fixed Point Formula (Theorem 2 in [2]) to σ and
line bundles O(k):

(3.2)
2∑
p=0

(−1)p Tr
(
σ
∣∣
Hp(S,O(k))

)
=

3∑
i=1

Tr(σ|O(k)Pi
)

(1− α1(Pi))(1− α2(Pi))

where α1(Pi), α2(Pi) are inverse eigenvalues of σ on TPi :

det(1− tσ∗|TPi ) = (1− tα1(Pi))(1− tα2(Pi)).

αj(Pi) are 7-th roots of unity. We let αj := αj(P1), j = 1, 2. Using (3.1) and commutation
relations in G21 we find that

αj(Pi+1) = αj(Pi)
2

so that
αj(P1) = αj

αj(P2) = α2
j

αj(P3) = α4
j .

To find the values of αj we apply (3.2) with k = 0:

(3.3) 1 =
1

(1− α1)(1− α2)
+

1

(1− α2
1)(1− α2

2)
+

1

(1− α4
1)(1− α4

2)
.

All αj(Pi) are 7-th roots of unity and it turns out that up to renumbering the only possible values
of αj(Pi) which satisfy (3.3) are

(α1(P1), α2(P1)) = (ξ, ξ3)

(α1(P2), α2(P2)) = (ξ2, ξ6)

(α1(P3), α2(P3)) = (ξ4, ξ5)

or their complex conjugate in which case we would get b instead of b for the trace below.
It follows that Tr(σ|KS,Pi ) = Tr(σ|O(3)Pi

) is equal to ξ4, ξ, ξ2 for i = 1, 2, 3 respectively. Dividing

by 3 modulo 7 we see that Tr(σ|O(k)Pi
) is equal to ξ6k, ξ5k, ξ3k for i = 1, 2, 3 respectively.

We use (3.2) for k = 4 (note that Hp(S,O(4)) = 0 for p > 0 by Kodaira vanishing):

Tr
(
σ
∣∣
H0(S,O(4))

)
=

ξ3

(1− ξ)(1− ξ3)
+

ξ6

(1− ξ2)(1− ξ6)
+

ξ5

(1− ξ4)(1− ξ5)
= b

�
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We are now ready to show that H0(S,O(2)) = 0. Let δ = h0(S,O(2)). We know that
h0(S,O(4)) = 3, hence it follows from Lemma 3.6 applied to L = L′ = O(2) that δ 6 2. Therefore
as a representation of G21 the space H0(S,O(2)) is a sum of 1-dimensional representations and the
same is true for H0(S,O(2))⊗2. Since H0(S,O(4)) is three-dimensional irreducible, this implies
that the natural morphism

H0(S,O(2))⊗2 → H0(S,O(4))

has to be zero by Schur’s Lemma. Now again by Lemma 3.6 H0(S,O(2)) = 0. This finishes the
proof of Theorem 1.2. �

Lemma 3.6 (see [43](Lemma 15.6.2)). Let X be a normal and proper variety, L,L′ effective line
bundles on X. Let

φ : H0(X,L)⊗H0(X,L′)→ H0(X,L⊗ L′)
denote the natural map induced by multiplication. Then

dim Im(φ) > h0(X,L) + h0(X,L′)− 1.

We now consider equivariant derived categories DbG(S) for various subgroups G ⊂ G21. A good
reference for equivariant derived categories and their semi-orthogonal decompositions is [22].

It is easy to see that

(3.4) {O(−j)⊗ V }j=0,1,2; V ∈IrrRep(G)

forms an exceptional collection in the equivariant derived category DbG(S). We denote by AGS the
right orthogonal to this collection.

It is easy to see that the category AGS is non-zero. This follows from the Kuznetsov’s criterion
(cf the second proof of Corollary 3.2) since the height of the exceptional collection equals n − 1.
We also notice that for any nonzero object A in AS the object⊕

g∈G

g∗A

will have a natural G-linearization so will be a non-zero object in AGS .

Proposition 3.7. Let S be a fake projective plane with automorphism group G21. For any G ⊂
G21, AGS is an H-phantom.

Proof. We denote by ZG the minimal resolution of S/G. The geometry of ZG has been carefully
studied by Keum [38]: if |G| = 7 or |G| = 21 then ZG is an elliptic surface of Kodaira dimension
κ(ZG) = 1 (Dolgachev surface), if |G| = 3 then ZG is a surface of general type κ(ZG) = 2. In each
case we compare the equivariant derived category DbG(S) to Db(ZG).

The stabilizers of the fixed points of G action are cyclic and we use [30] or [36] to obtain the
semi-orthogonal decomposition

DbG(S) '
〈
Db(ZG), E1, . . . , ErG

〉
where rG is the number of non-special characters of the stabilizers [30].

Note that pg(ZG) = q(ZG) = 0, therefore

dimHH∗(Db(ZG)) = dimH∗(ZG,C) = χ(ZG).
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We list χ(ZG) as well as other relevant invariants in the table:

G #IrrRep(G) Sing(S/G) rG χ(ZG) κ(ZG)
1 1 ∅ 0 3 2

Z/3 3 3× 1
3
(1, 2) 0 9 2

Z/7 7 3× 1
7
(1, 3) 9 12 1

G21 5 3× 1
3
(1, 2) + 1

7
(1, 3) 3 12 1

As already mentioned above rG is the sum of non-special characters of the stabilizers at fixed
points: 1

3
(1, 2) fixed points don’t contribute to rG whereas each 1

7
(1, 3) fixed point has 3 non-special

characters.

It follows from the table that in each case we have

3 ·#IrrRep(G) = χ(ZG) + rG

This implies that the number of exceptional objects in (3.4) matches dimHH∗(DbG), and therefore
in each case AGS is an H-phantom. �

Remark 3.8. When G = Z/3, rG = 0 means that

DbG(S) ' Db(ZG)

in agreement with the derived McKay correspondence [33, 17] which is applicable since S/G has
A2 singularities. ZG is a fake cubic surface (pg(ZG) = q(ZG) = 0, b2(ZG) = 7) and the image of
the exceptional collection (3.4) of 9 objects in Db(ZG) has an H-phantom orthogonal.

Remark 3.9. One can give an alternative proof of Proposition 3.7 using orbifold cohomology.
Baranovsky [4] proved an analogue of Hochschild–Kostant–Rosenberg isomorphism for orbifolds.
His result implies that (total) Hochschild homology HH∗(DbG(S)) is isomorphic as a non-graded
vector space to the (total) orbifold cohomology

H∗orb(S/G,C) =
(⊕
g∈G

H∗(Sg,C)
)
G

=
⊕

[g]∈G/G

H∗(Sg,C)Z(g).

Here Sg is the fixed locus of g ∈ G, Z(g) is the centralizer, [g] is the conjugacy class of g, and (·)G
denotes coinvariants. In our case the following two assumptions are satisfied:q group G acts trivially on H∗(S,C) (thanks to minimality of S),q for each element g 6= 1 its fixed locus Sg is a union of dimH∗(S,C) points (this is usually

derived from Hirzebruch proportionality principle, see e.g. [39, 38]).

For the so-called main sector [g] = {id} we have

H∗(S,C)G = H∗(S,C) = C3.

For each g 6= id the fixed locus Sg consists of three points, so H∗(Sg) = C3 and the action of
Z(g) = 〈g〉 on it is trivial, thus each twisted sector is also 3-dimensional.

Taking the sum over all conjugacy classes [g] we obtain

dimHH∗(DbG(S)) = dimH∗orb(S/G,C) = 3×#IrrRep(G),

which shows that HH∗(AGS ) = 0.
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Proposition 3.10. Let S be a fake projective plane with automorphism group G21. In the notations
of [57, 18] and the appendix assume that the class of S is either (Q(

√
−7), p = 2, T1 = {7}) or

C20. Let G = Z/7 ⊂ G21 or G = G21. Then the orthogonal to the collection (3.4) in DbG(S) is a
K-phantom.

Proof. Let ΠG ⊂ Γ be the group generated by π1(S) and G. By [5](0.4) the fundamental group
π1(S/G) equals to ΠG/E where E ⊂ ΠG is the subgroup generated by elliptic elements of ΠG

i.e. elements γ ∈ ΠG such that fixed locus Bγ 6= ∅ is non-empty. Cartwright and Steger in
[20] explicitly computed E and so π1(S/G) for various subgroups Π ⊂ ΠG ⊂ Γ and it turns out
that in the cases under consideration the quotients S/G are simply connected. By a standard
argument (e.g. using Van Kampen’s theorem as in [5](0.5) or [60](Section 4.1), or more generally
see [42](Theorem 7.8.1)) the resolutions ZG are also simply-connected, in particular H1(ZG,Z) = 0.

Then Pic(ZG) = H2(ZG,Z) is finitely generated free abelian group. Keum shows in [38] that
Kodaira dimension κ(ZG) = 1 (see also Ishida [29]). Thus Bloch conjecture for ZG is true by
Bloch–Kas–Lieberman [8], that is CH0(ZG) = Z. Now by Lemma 2.7 of [26] it follows that
K0(ZG) is a finitely generated free abelian group, and the same holds for KG

0 (S) = K0(DbG(S)).
The computation of Euler numbers shows that

(number of objects in (3.4)) = dimHH∗(DbG(S)) = rkK0(DbG(S)).

Finally, the additivity of the Grothendieck group implies that AGS is a K-phantom. �

Appendix: automorphisms and first homology groups of fake projective planes

Recall that all fake projective planes S are quotients of a complex ball B ⊂ CP2 by a cocompact
torsion-free arithmetic subgroup Π = π1(S) [57], [18], and each of the fifty possible groups Π
corresponds to a pair complex conjugate surfaces S and S which are not isomorphic to each other
[39]. The first homology group H1(S,Z) of S is isomorpic to the abelianisation of the Π/[Π,Π]
and the automorphism group equals Aut(S) = N(Π)/Π, where N(Π) is the normaliser of Π (in
maximal arithmetic group Γ and hence in any group that contains it, in particular in PU(2, 1)).

We enhance the classification table of the fake projective planes given in [18] which is based on
GAP and Magma computer code and its output [19] with the automorphism group Aut(S) and
the first homology group H1(S,Z), which we also take from [19].

In the table Γ is described using the following data: l is a totally complex quadractic extension
of a totally real field, p is a prime 2, 3 or 5, T1 is a set of prime numbers (possibly empty).
N is the index [Γ : Π] and suf. is the suffix (a, b, c, d, e or f) of each group in [19]. G21 is the

non-abelian group of order 21. In the last column symbol [n1, . . . , nk] denotes the abelian group
(Z/n1Z)× · · · × (Z/nkZ).

Consider the quotient-map f : N(Π) → N(Π)/Π = Aut(S) and for a subgroup G ⊂ Aut(S) =
N(Π)/Π let ΠG ⊂ N(Π) ⊂ Γ be the preimage ΠG = f−1G. Line bundle OS(1) is G-linearisable
⇐⇒ group ΠG lifts from PU(2, 1) to SU(2, 1). Computation of Cartwright and Steger [20] shows
that it holds for all S and G unless group Γ lies in classes C2 or C18. Fundamental group of
the quotient-surface π1(S/G) equals ΠG/E where E ⊂ ΠG is the subgroup generated by elliptic
elements (cf the proof of Proposition 3.10). All those groups for all S and G ⊂ Aut(S) were also
computed in [20]: surface S/G is simply-connected in twelve cases, including the four cases of
Proposition 3.10.
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l or C p T1 N #Π suf. Aut(S) H1(S,Z)

Q(
√
−1) 5 ∅ 3 2 a Z/3Z [2, 4, 31]

∅/{2I} b/b {1} [2, 3, 4, 4]

{2} 3 1 a Z/3Z [4, 31]

Q(
√
−2) 3 ∅ 3 2 a Z/3Z [2, 2, 13]

∅/{2I} b/b {1} [2, 2, 2, 2, 3]
{2} 3 1 a Z/3Z [2, 2, 13]

Q(
√
−7) 2 ∅ 21 3 a Z/3Z [2, 7]

b G21 [2, 2, 2, 2]

c {1} [2, 2, 3, 7]
{3} 3 2 a Z/3Z [2, 4, 7]

b {1} [2, 2, 3, 4]

{3, 7} 3 2 a Z/3Z [4, 7]
b {1} [2, 3, 4]

{7} 21 4 a G21 [2, 2, 2]
b Z/3Z [2, 7]

c Z/3Z [2, 2, 7]

d {1} [2, 2, 2, 3]
{5} 1 1 − {1} [2, 2, 9]

{5, 7} 1 1 − {1} [2, 9]

Q(
√
−15) 2 ∅ 3 2 a Z/3Z [2, 2, 7]

b {1} [2, 2, 2, 9]
{3} 3 3 a Z/3Z [2, 3, 7]

b Z/3Z [2, 2, 2, 3]
c Z/3Z [2, 3]

{3, 5} 3 3 a Z/3Z [3, 7]

b Z/3Z [2, 2, 3]
c Z/3Z [3]

{5} 3 2 a Z/3Z [2, 7]

b {1} [2, 2, 9]

Q(
√
−23) 2 ∅ 1 1 − {1} [2, 3, 7]

{23} 1 1 − {1} [3, 7]

C2 2 ∅ 9 6 a (Z/3Z)2 [2, 7]
b Z/3Z [2, 7, 9]
c Z/3Z [2, 9]

d Z/3Z [2, 9]
f 1 [2, 3, 3]
g 1 [2, 3, 3]

{3} 9 1 − (Z/3Z)2 [7]

C10 2 ∅ 3 1 − Z/3Z [2, 7]
{17−} 3 1 − Z/3Z [7]

C18 3 ∅ 9 1 a (Z/3Z)2 [2, 2, 13]
∅/{2I} 1 1 b/d 1 [2, 3, 3]
{2} 3 3 a Z/3Z [2, 3, 13]

b Z/3Z [2, 3]
c Z/3Z [2, 3]

C20 2 ∅ 21 1 − G21 [2, 2, 2, 2, 2, 2]

{3−} 3 2 a Z/3Z [4, 7]

b {1} [2, 3, 4]
{3+} 3 2 a Z/3Z [4, 7]

b {1} [2, 3, 4]
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