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Abstract

We initiate the spectral analysis of pseudo-Riemannian locally symmetric spaces Γ\G/H, beyond
the classical cases where H is compact (automorphic forms) or Γ trivial (analysis on symmetric
spaces).

For any non-Riemannian reductive symmetric space X = G/H on which the discrete spec-
trum of the Laplacian is nonempty, and for any discrete group of isometries Γ whose action on X
is sufficiently proper, we construct L2-eigenfunctions of the Laplacian on XΓ := Γ\X for an infi-
nite set of eigenvalues. These eigenfunctions are obtained as generalized Poincaré series, i.e. as
projections to XΓ of sums, over the Γ-orbits, of eigenfunctions of the Laplacian on X.

We prove that the Poincaré series we construct still converge, and define nonzero L2-functions,
after any small deformation of Γ inside G, for a large class of groups Γ. Thus the infinite set of
eigenvalues we construct is stable under small deformations. This contrasts with the classical set-
ting where the nonzero discrete spectrum varies on the Teichmüller space of a compact Riemann
surface.

We actually construct joint L2-eigenfunctions for the whole commutative algebra of invariant
differential operators on XΓ.
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1. Introduction

The goal of this paper is to initiate the spectral study of the Laplacian on pseudo-Riemannian
locally symmetric spaces Γ\G/H, beyond the classical cases where H is compact (automorphic
forms) or Γ trivial (analysis on symmetric spaces). In the non-Riemannian case, the Laplacian
is not an elliptic operator, and the existence of discrete spectrum is not obvious even for com-
pact quotients. We obtain the first general results on the discrete spectrum of non-Riemannian
locally symmetric spaces Γ\G/H, under a rank condition on G/H. In particular, we construct
L2-eigenfunctions for an infinite set of eigenvalues on a large class of quotients (not necessarily
of finite volume) and prove some deformation results that have no analogue in the classical Rie-
mannian setting. We work not only with the Laplacian, but with the whole commutative algebra
of “intrinsic” differential operators on Γ\G/H, which includes the Laplacian.

Before describing our results in more detail, we first recall a few definitions.

1.1. The main objects

A pseudo-Riemannian metric on a manifold M is a smooth, nondegenerate, symmetric bilin-
ear tensor g of signature (p, q) for some p, q ∈ N. As in the Riemannian case (i.e. q = 0), the
metric g induces a second-order differential operator

�M = div grad (1.1)
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called the Laplacian or Laplace–Beltrami operator. For instance, for

(M, g) = Rp,q :=
(
Rp+q, dx2

1 + · · · + dx2
p − dx2

p+1 − · · · − dx2
p+q

)
the Laplacian is

�Rp,q =
∂2

∂x2
1

+ · · · +
∂2

∂x2
p
−

∂2

∂x2
p+1

− · · · −
∂2

∂x2
p+q

.

In general, �M is elliptic if g is Riemannian, hyperbolic if g is Lorentzian (i.e. q = 1), and
none of these otherwise. The discrete spectrum of �M is its set of eigenvalues corresponding to
L2-eigenfunctions:

Specd(�M) :=
{
t ∈ C : ∃ f ∈ L2(M), f , 0, s.t. �M f = t f

}
, (1.2)

where L2(M) is the Hilbert space of square-integrable functions on M with respect to the Radon
measure induced by the pseudo-Riemannian structure.

A reductive symmetric space is a homogeneous space X = G/H where G is a real reductive
Lie group and H an open subgroup of the group of fixed points of G under some involutive
automorphism σ. The manifold X naturally carries a pseudo-Riemannian metric, induced by the
Killing form of the Lie algebra g of G when G is semisimple; therefore, X has a Laplacian �X .
Alternatively, �X is induced by the Casimir element of the enveloping algebra U(g), acting on
C∞(X) by differentiation (see Section 3.2). Let D(X) be the C-algebra of differential operators
on X that are invariant under the natural G-action

g · D = (`∗g)−1 ◦ D ◦ `∗g =

(
f 7−→ D

(
f g)g−1

)
,

where we set `∗g( f ) = f g := f (g ·). The Laplacian �X belongs to D(X) and, since X is a symmetric
space, D(X) is commutative (see Section 3.1); we shall consider eigenfunctions for �X that are
in fact joint eigenfunctions for D(X).

A locally symmetric space is a quotient XΓ = Γ\X of a reductive symmetric space X = G/H
by a discrete subgroup Γ of G acting properly discontinuously and freely. Such a quotient is
also called a Clifford–Klein form of X. The proper discontinuity of the action of Γ ensures that
XΓ is Hausdorff, and it is in fact a manifold since the action is free. It is locally modeled on X
(it is a complete (G, X)-manifold in the sense of Ehresmann and Thurston), hence inherits a
pseudo-Riemannian structure from X and has a Laplacian �XΓ

. Any operator D ∈ D(X) induces
a differential operator DΓ on XΓ such that the following diagram commutes, where pΓ : X → XΓ

is the natural projection.

C∞(X) D // C∞(X)

C∞(XΓ)

p∗
Γ

OO

DΓ // C∞(XΓ)

p∗
Γ

OO

In particular, note that
�XΓ

= (�X)
Γ
.

The discrete spectrum Specd(XΓ) of XΓ is defined to be the set of C-algebra homomorphisms
χλ : D(X)→ C such that the space L2(XΓ,Mλ) of weak solutions f ∈ L2(XΓ) to the system

DΓ f = χλ(D) f for all D ∈ D(X) (Mλ)
3



is nonzero. (The notation χλ will be explained in Section 3.1.) It is the set of joint eigenvalues
for the commutative algebra D(XΓ) := {DΓ : D ∈ D(X)}, which we think of as the algebra of
“intrinsic” differential operators on XΓ. The discrete spectrum Specd(XΓ) refines the discrete
spectrum of the Laplacian �XΓ

from (1.2) (see Remark 3.3).

1.2. The main problems
Let XΓ = Γ\X be a locally symmetric space. We wish to initiate the following program

(see [33]):

A) Construct joint L2-eigenfunctions on XΓ corresponding to Specd(XΓ);

B) Understand the behavior of Specd(XΓ) under small deformations of Γ inside G.

By a small deformation we mean a homomorphism close enough to the natural inclusion in the
compact-open topology on Hom(Γ,G).

Problems A and B have been studied extensively in the following two cases.

• Assume that H is compact. Then X is Riemannian and the Laplacian �X is elliptic. If XΓ

is compact, then the discrete spectrum of �XΓ
is infinite. If furthermore Γ is irreducible,

then Weil’s local rigidity theorem [81] states that nontrivial deformations exist only when
X is the hyperbolic plane H2 = SL2(R)/SO(2), in which case compact Clifford–Klein
forms have an interesting deformation space modulo conjugation, namely their Teich-
müller space. Viewed as a “function” on the Teichmüller space, the discrete spectrum
varies analytically [9] and nonconstantly (Fact 1.2 below). On the other hand, for non-
compact XΓ the discrete spectrum Specd(XΓ) may be considerably different depending on
whether Γ is arithmetic or not (see Selberg [74], Phillips–Sarnak [62, 63], Wolpert [84],
etc.).

• Assume that Γ is trivial. Then the group G naturally acts on L2(XΓ) = L2(X) and so
representation-theoretic methods may be used. Spectral analysis on the reductive sym-
metric space X with respect to D(X) is essentially equivalent to finding a Plancherel-type
theorem for the irreducible decomposition of the regular representation of G on L2(X): see
van den Ban–Schlichtkrull [2], Delorme [16], and Oshima [59], as a far-reaching general-
ization of Harish-Chandra’s earlier work [23] on the regular representation L2(G) for group
manifolds. Flensted-Jensen [19] and Matsuki–Oshima [57] showed that Specd(X) , ∅ if
and only if the condition rank G/H = rank K/K ∩ H is satisfied (see Section 3.3), in
which case they gave an explicit description of Specd(X) (Fact 5.5). The rest of the spec-
trum (tempered representations for X, see [4]) is constructed from the discrete spectrum of
smaller symmetric spaces by induction.

On the other hand, Problems A and B have not been much studied when H is noncompact, Γ

is nontrivial, and Γ acts properly discontinuously on X = G/H, except in the group manifold case
when XΓ identifies with 8Γ\8G for some reductive Lie group 8G and some discrete subgroup 8Γ.
Here we give the first results that do not restrict to this case. The fact that H is noncompact and
Γ nontrivial implies new difficulties from several perspectives:

(1) Analysis: the Laplacian on XΓ is not an elliptic operator anymore;

(2) Geometry: an arbitrary discrete subgroup Γ of G does not necessarily act properly discontin-
uously on X;
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(3) Representation theory: a discrete subgroup Γ of G acting properly discontinuously on X
always has infinite covolume in G; moreover, G does not act on L2(XΓ), and L2(XΓ) ,
L2(Γ\G)H since H is noncompact.

In particular, point (1) makes Problem A nontrivial: we do not know a priori whether or not
Specd(XΓ) , ∅, even for compact XΓ.

Point (2) creates some underlying difficulty to Problem B: we need to consider Clifford–Klein
forms XΓ for which the proper discontinuity of the action of Γ on X is preserved under small de-
formations of Γ in G. Not all Clifford–Klein forms XΓ have this property (see Example 4.16),
but a large class does (see Example 4.13 and subsequent comments). The study of small de-
formations of Clifford–Klein forms in the general setting of reductive homogeneous spaces was
initiated in [45]; we refer to [12] for a recent survey in the case of compact Clifford–Klein forms.
An interesting aspect of the case of noncompact H is that there are more examples where non-
trivial deformations of compact Clifford–Klein forms exist than for compact H (see Sections 2.3
and 2.4).

1.3. One approach: constructing generalized Poincaré series

In this paper we investigate Problems A and B under the assumption (3.3) that X admits a
maximal compact subsymmetric space of full rank. This case is somehow orthogonal to the case
of Riemannian symmetric spaces of the noncompact type, where compact subsymmetric spaces
are reduced to points. Assuming that G is noncompact, the group H is thus noncompact and X
non-Riemannian.

By [19, 57], the assumption (3.3) is equivalent to the fact that Specd(X) is nonempty. Our
idea is then to construct joint eigenfunctions on XΓ as generalized Poincaré series

ϕΓ : Γx 7−→
∑
γ∈Γ

ϕ(γ·x), (1.3)

where the ϕ are well-behaved joint eigenfunctions on X. The convergence and nonvanishing
of the series are nontrivial since the behavior of ϕ needs to be controlled in relation to the dis-
tribution of Γ-orbits in the non-Riemannian space X, for which not much is known since Γ is
not a lattice in G (see Remark 4.8). From a representation-theoretic viewpoint, we build on
Flensted-Jensen’s discrete series representations [19] for X, whose underlying (g,K)-modules
are isomorphic to certain Zuckerman–Vogan derived functor modules Aq(λ). The summation
process (1.3) is different from that of Tong–Wang [77]: see Remark 6.2.

Our approach enables us to address Problem A for a large class of Clifford–Klein forms XΓ

of X, constructing eigenfunctions on XΓ for an explicit, infinite set of joint eigenvalues contained
in Specd(X). In particular, this proves that the discrete spectrum Specd(XΓ) is nonempty.

We also address Problem B for a large class of Clifford–Klein forms XΓ. We prove that
the infinite subset of Specd(XΓ) that we construct is stable under any small deformation of Γ

in G, by establishing that the generalized Poincaré series (1.3) still converges after such a small
deformation. This is achieved by carefully controlling the analytic parameters and using recent
results in the deformation theory of proper actions on homogeneous spaces.

One special example to which our results apply is the aforementioned classical quotients
Γ\G, regarded as (Γ × {e})\(G × G)/Diag(G) where Diag(G) is the diagonal of G × G. Our
geometric and analytic estimates in this case imply that all discrete series representations πλ
of G with sufficiently regular parameter λ appear in the regular representation L2(Γ\G), without
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replacing Γ by a deep enough finite-index subgroup (Proposition 10.5). When Γ is arithmetic, our
construction improves the non-vanishing results of HomG(πλ, L2(Γ\G)) that were known earlier
from the asymptotic multiplicity formulas of DeGeorge–Wallach [15], Clozel [11], and Rohlfs–
Speh [68] or the theta-lifting (see Kazhdan [36], Borel–Wallach [8], Li [53]) in automorphic
forms; these previous approaches required passing to a congruence subgroup that depended on
the discrete series representation. We refer to Remark 10.6 for more details.

We introduce three main ingredients:

(1) Uniform analytic estimates for eigenfunctions on X, including their asymptotic behavior at
infinity (Proposition 5.1) and the local behavior near the origin of specific eigenfunctions
(Proposition 7.1);

(2) A quantitative understanding of proper actions on reductive homogeneous spaces (notion of
sharpness — Definition 4.2);

(3) Counting estimates for points of a given Γ-orbit in X, both in large “pseudo-balls” (Lem-
ma 4.6) and near the origin (Proposition 8.9).

In (1), our estimates are uniform in the spectral parameter and refine results of Flensted-Jensen
[19] and Matsuki–Oshima [57]. In (2), the quantitative approach to properness that we develop
builds on the qualitative interpretation of Benoist [3] and Kobayashi [41, 44] in terms of a Cartan
decomposition G = KAK. In (3), we relate the natural “pseudo-distance from the origin” in the
non-Riemannian space X to the distance from the origin in the Riemannian symmetric space G/K
of G in order to use the growth rate of Γ, the Kazhdan–Margulis lemma, and the sharpness con-
stants of (2). Our counting results may be compared to those obtained by Eskin–McMullen [17]
in a different setting, where Γ is a lattice in G (see Remark 4.8).

We now state precise results, not on our construction of joint eigenfunctions (for this we refer
to Propositions 6.1 and 8.1), but on the corresponding eigenvalues, i.e. on the discrete spectrum
of our locally symmetric spaces. These results were partially announced in [33]. Before we state
them in full generality, we illustrate them with two simple examples of rank one (see Sections 9
and 10 for more details); in these two examples, the commutative C-algebra D(X) is generated
by the Laplacian �X and therefore Specd(XΓ) identifies with Specd(�XΓ

) for any Clifford–Klein
form XΓ.

1.4. Two examples

Our first example is the 3-dimensional anti-de Sitter space X = AdS3 = SO(2, 2)0/SO(1, 2)0,
which can be realized as the quadric of R4 of equation Q = 1, endowed with the Lorentzian
metric induced by −Q, where

Q(x) := x2
1 + x2

2 − x2
3 − x2

4.

It is a Lorentzian analogue of the real hyperbolic space H3, being a model space for all Lorentzian
3-manifolds of constant sectional curvature −1 (or anti-de Sitter 3-manifolds). The Lapla-
cian �AdS3 is a hyperbolic operator of signature (+ + −); it is given explicitly by

�AdS3 f = �R2,2

(
x 7−→ f

(
x

√
Q(x)

))
for all f ∈ C∞(AdS3), where f (x/

√
Q(x)) is defined on the neighborhood {Q(x) > 0} of the

quadric AdS3 in R4. It is equal to 4 times the Casimir operator of g = so(2, 2) with respect
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to the Killing form. We construct eigenfunctions of the Laplacian on all compact anti-de Sitter
3-manifolds, for an infinite set of eigenvalues, and prove that this infinite set of eigenvalues is
stable under any small deformation of the anti-de Sitter structure.

Theorem 1.1. The discrete spectrum of any compact anti-de Sitter 3-manifold is infinite. Explic-
itly, if M = Γ\AdS3 with −I < Γ, then

Specd(�M) ⊃
{
`(` − 2) : ` ∈ N, ` ≥ `0

}
(1.4)

for some integer `0; moreover, (1.4) still holds (with the same `0) after any small deformation of
the anti-de Sitter structure on M.

Here −I ∈ SO(2, 2)0 denotes the nontrivial element of the center of SO(2, 2)0, acting on AdS3 =

{x ∈ R4 : Q(x) = 1} by the antipodal map x 7→ −x. If −I ∈ Γ, then half of the spectrum survives:

Specd(�M) ⊃
{
`(` − 2) : ` ∈ 2N, ` ≥ `0

}
for some `0. We actually prove that (1.4) holds (for some explicit `0) for any complete anti-de
Sitter 3-manifold M = Γ\AdS3 with Γ finitely generated (Theorem 9.9). The stability of eigen-
values under small deformations in Theorem 1.1 contrasts with the situation in the Riemannian
case:

Fact 1.2 (see [84, Th. 5.14]). For a compact hyperbolic surface, no eigenvalue of the Laplacian
above 1/4 is constant on its Teichmüller space.

As we shall recall in Section 9, any compact anti-de Sitter 3-manifold M is a circle bundle over
some closed hyperbolic surface S (up to a finite covering); the deformation space of M contains
the Teichmüller space of S , and its dimension is actually twice as large. We shall also prove the
existence of an infinite stable spectrum for a large class of noncompact complete anti-de Sitter
3-manifolds (Corollary 9.10).

Our second example is the 3-dimensional complex manifold

X = SU(2, 2)/U(1, 2) ' SO(2, 4)0/U(1, 2),

which can be realized as the open subset of P3C of equation h > 0, where

h(z) := |z1|
2 + |z2|

2 − |z3|
2 − |z4|

2

on C4. The space X is naturally endowed with an indefinite Hermitian structure of signature
(2, 1) induced by −h. The imaginary part of −h endows X with a symplectic structure, making X
into an indefinite Kähler manifold. The real part of −h gives rise to a pseudo-Riemannian metric
of signature (4, 2). The Laplacian �X has signature (+ + + + −−) and is given by the following
commutative diagram:

C∞(C4
h>0

)

2h�C2,2

��

C∞(X)π∗oo

�X

��

C∞(C4
h>0

) C∞(X),π∗oo
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where
C4

h>0
:= {z ∈ C4 : h(z) > 0},

where π : C4
h>0
→ X is the natural projection, and where

�C2,2 := −
∂2

∂z1∂z1
−

∂2

∂z2∂z2
+

∂2

∂z3∂z3
+

∂2

∂z4∂z4

on C4. It is 8 times the Casimir operator of g = su(2, 2) with respect to the Killing form. A
natural way to construct Clifford–Klein forms of X is to notice that X fibers over the quaternionic
hyperbolic space H1

H = Sp(1, 1)/Sp(1) × Sp(1), with compact fiber:

{z ∈ C4 : h(z) = 1}
π

−−−−→
fiber U(1)

X =
{
[z] ∈ P3C : h(z) > 0

}

' yfiber Sp(1)/U(1){
u ∈ H2 : |u1|

2 − |u2|
2 = 1

}
−−−−→
fiber Sp(1)

H1
H =

{
[u] ∈ P1H : |u1|

2 − |u2|
2 > 0

}
,

where H is the ring of quaternions and P1H the quotient of H2 r {0} by the diagonal action of
H r {0} on the right. The isometry group Sp(1, 1) of the Riemannian symmetric space H1

H acts
transitively on X, and this action is proper since the fiber Sp(1)/U(1) ' S2 is compact. Any
torsion-free discrete subgroup Γ of Sp(1, 1) therefore acts properly discontinuously and freely
on X; we say that the corresponding Clifford–Klein form XΓ is standard (see Definition 1.4).

Theorem 1.3. The discrete spectrum of any standard Clifford–Klein form XΓ of X =

SU(2, 2)/U(1, 2) is infinite. Explicitly, there is an integer `0 such that for any torsion-free discrete
Γ ⊂ Sp(1, 1),

Specd(�XΓ
) ⊃

{
2(` − 2)(` + 1) : ` ∈ N, ` ≥ `0

}
; (1.5)

moreover, (1.5) still holds after any small deformation of Γ in SU(2, 2).

We will see in Section 10.3 that there exist interesting small deformations of standard Clifford–
Klein forms of X = SU(2, 2)/U(1, 2), both compact and noncompact. We will compute explicit
eigenfunctions. We refer to [46] for further global analysis on X in connection with branching
laws of unitary representations with respect to the restriction SU(2, 2) ↓ Sp(1, 1).

1.5. General results for standard Clifford–Klein forms

We now state our results in the general setting of reductive symmetric spaces X = G/H, as
defined in Section 1.1. For simplicity we shall assume G to be linear throughout the paper.

An important class of Clifford–Klein forms XΓ of X that we consider is the standard ones.

Definition 1.4. A Clifford–Klein form XΓ of X is standard if Γ is contained in some reductive
subgroup L of G acting properly on X.

By reductive subgroup of G we mean that L has finitely many connected components and is
stable under some Cartan involution of G (see Section 3.2). This notion of standard generalizes
the notion introduced above for X = SU(2, 2)/U(1, 2). When L acts cocompactly on X, we can
obtain compact (resp. finite-volume noncompact) standard Clifford–Klein forms XΓ by taking Γ

to be a uniform (resp. nonuniform) lattice in L. An open conjecture [49, Conj. 3.3.10] states that
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any reductive homogeneous space G/H admitting compact Clifford–Klein forms should admit
standard ones.

Our first main result in this general setting is the existence of an infinite discrete spectrum for
all standard Clifford–Klein forms of X when Specd(X) , ∅.

Theorem 1.5. Let X = G/H be a reductive symmetric space with Specd(X) , ∅, and L a
reductive subgroup of G acting properly on X. Then #Specd(XΓ) = +∞ for any standard Clifford–
Klein form XΓ with Γ ⊂ L. Moreover, if L is simple (resp. semisimple), then there is an infinite
subset of Specd(X) that is contained in Specd(XΓ) for any (resp. any torsion-free) Γ ⊂ L.

We wish to emphasize that when L is semisimple, the infinite subset of the discrete spectrum
that we find is universal, in the sense that it does not depend on Γ ⊂ L. A universal spectrum does
not exist in the Riemannian case (see Fact 1.2). Our proof is constructive; we shall explicitly
describe an infinite subset of Specd(XΓ) ∩ Specd(X), independent of Γ ⊂ L, in terms of the
geometry of X and of some quantitative estimate of the proper discontinuity of L acting on X
(see Theorem 3.8).

For Γ = {e}, the existence of an infinite discrete spectrum was established by Flensted-Jensen
[19]. As mentioned above, by [19, 57], the condition Specd(X) , ∅ is equivalent to the condition
rank G/H = rank K/K ∩ H (see Section 3.3), or in other words to the existence of a maximal
compact subsymmetric space of X of full rank.

Our second main result concerns the stability of the discrete spectrum of standard compact
Clifford–Klein forms XΓ of X under small deformations of Γ in G. The set Hom(Γ,G) of group
homomorphisms from Γ to G is endowed with the compact-open topology. In the following
definition, we assume that the group ϕ(Γ) acts properly discontinuously and freely on X for
all ϕ ∈ Hom(Γ,G) in some neighborhood U0 of the natural inclusion of Γ in G (we shall call
this property “stability for proper discontinuity”). Under this assumption, Xϕ(Γ) = ϕ(Γ)\X is a
manifold for all ϕ ∈ U0 and we can consider the discrete spectrum Specd(Xϕ(Γ)); recall that it is
contained in the set of C-algebra homomorphisms from D(X) to C.

Definition 1.6. We say that λ ∈ Specd(XΓ) is stable under small deformations if there exists a
neighborhood U ⊂ U0 ⊂ Hom(Γ,G) of the natural inclusion such that λ ∈ Specd(Xϕ(Γ)) for all
ϕ ∈ U.

We say that XΓ has an infinite stable discrete spectrum if there exists an infinite subset of
Specd(XΓ) that is contained in Specd(Xϕ(Γ)) for all ϕ in some neighborhoodU ⊂ U0 ⊂ Hom(Γ,G)
of the natural inclusion.

We address the existence of an infinite stable discrete spectrum for standard compact Clifford–
Klein forms XΓ, where Γ is a uniform lattice in some reductive subgroup L of G. First observe that
if L has real rank ≥ 2 and Γ is irreducible, then Γ is locally rigid in G by Margulis’s superrigid-
ity theorem [55, Cor. IX.5.9], i.e. all small deformations of Γ in G are obtained by conjugation;
consequently Specd(Xϕ(Γ)) = Specd(XΓ) for all small deformations ϕ, and thus XΓ has an infinite
stable discrete spectrum by Theorem 1.5. Consider the more interesting case when L has real
rank 1. Then nontrivial deformations of Γ inside G may exist (see Section 2.3). By [31], all
compact Clifford–Klein forms XΓ with Γ ⊂ L have the stability property for proper discontinuity;
more generally, so do all Clifford–Klein forms XΓ with Γ convex cocompact in L. We prove the
existence of an infinite stable discrete spectrum when Specd(X) , ∅.

Theorem 1.7. Let X = G/H be a reductive symmetric space with Specd(X) , ∅, and L a
reductive subgroup of G of real rank 1 acting properly on X. Then XΓ has an infinite stable
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discrete spectrum for any uniform lattice Γ of L, and more generally for any convex cocompact
subgroup Γ of L.

We recall that a discrete subgroup Γ of L is said to be convex cocompact if it acts cocompactly
on some nonempty convex subset of the Riemannian symmetric space of L. Convex cocompact
groups include uniform lattices, but also discrete groups of infinite covolume such as Schottky
groups, or for instance quasi-Fuchsian embeddings of surface groups for L = PSL2(C).

Let us emphasize that the small deformations of Γ that we consider in Theorem 1.7 are
arbitrary inside G; in particular, in the interesting cases Γ does not remain inside a conjugate
of L. A description of an infinite stable discrete spectrum as in Theorem 1.7 will be given in
Theorem 3.11.

In addition to this infinite stable discrete spectrum, standard Clifford–Klein forms XΓ may
also have infinitely many eigenvalues that vary under small deformations (see Remark 9.11).
Note that an explicit description of the full discrete spectrum is not known even in the Rieman-
nian case.

1.6. General results for sharp Clifford–Klein forms
The class of standard Clifford–Klein forms that we have just considered is itself contained in

a larger class of Clifford–Klein forms, namely those that we call sharp. Let us define this notion
(see Sections 4.2 and 4.4 for more details and examples).

Let G = KA+K be a Cartan decomposition of G, where K is a maximal compact subgroup
of G and A+ a closed Weyl chamber in a maximal split abelian subgroup A of G. Any element
g ∈ G may be written as g = k1ak2 for some k1, k2 ∈ K and a unique a ∈ A+; setting µ(g) = log a
defines a continuous, proper, and surjective map µ : G → log A+ ⊂ a := Lie(A), called the
Cartan projection associated with the Cartan decomposition G = KA+K (see Example 4.1 for
G = SLn(R)). Let ‖ · ‖ be a norm on a. We say that a discrete subgroup Γ of G is sharp for
X = G/H if there are constants c > 0 and C ≥ 0 such that

da(µ(γ), µ(H)) ≥ c ‖µ(γ)‖ −C (1.6)

for all γ ∈ Γ, where da is the metric on a induced by the norm ‖ · ‖. This means that the set µ(Γ)
“goes away linearly from µ(H) at infinity”. This notion does not depend on the choice of the
Cartan decomposition G = KA+K nor of the norm ‖ ·‖. By the properness criterion of Benoist [3]
and Kobayashi [44], any sharp discrete subgroup Γ of G acts properly discontinuously on X (see
Section 4.4); sharpness should be thought of as a form of strong proper discontinuity. When Γ is
sharp, we say that the corresponding Clifford–Klein form XΓ is sharp too.

Examples of sharp Clifford–Klein forms are plentiful, as explained in Section 4.4. For
instance, all standard Clifford–Klein forms are sharp. Also, all known examples of compact
Clifford–Klein forms of reductive homogeneous spaces are sharp, even when they are nonstan-
dard. We conjecture that all compact Clifford–Klein forms of reductive homogeneous spaces
should be sharp (Conjecture 4.12).

We generalize Theorem 1.5 from the standard to the sharp case and prove the following.

Theorem 1.8. Let X = G/H be a reductive symmetric space with Specd(X) , ∅. Then Specd(XΓ)
is infinite for any sharp Clifford–Klein form XΓ of X.

We give an explicit infinite subset of Specd(XΓ) contained in Specd(X) (see Theorem 3.8),
in terms of the geometry of X, of the “sharpness constants” c,C from (1.6), and of a “pseudo-
distance” from the origin x0 = eH of X = G/H to the other points of its Γ-orbit in X.

10



Recall that on a Riemannian symmetric space all eigenfunctions of the Laplacian are analytic
by the elliptic regularity theorem (see [28, Th. 3.4.4] for instance). Here X is non-Riemannian,
hence eigenfunctions are not automatically analytic. We still obtain some regularity result (see
Section 3.5).

1.7. Another approach in certain standard cases
The approach described in this paper is based on the existence of discrete series representa-

tion for the reductive symmetric space X — a phenomenon specific to the non-Riemannian case,
and equivalent to the rank condition (3.3) thanks to the work of Harish-Chandra, Flensted-Jensen,
and Matsuki–Oshima. In a forthcoming paper [34], we develop another approach for construct-
ing joint eigenfunctions on Clifford–Klein forms XΓ when the rank condition (3.3) does not
necessarily hold: namely, in the standard case that Γ is contained in some reductive subgroup L
of G acting properly and spherically on X, we use the spectral analysis of the Riemannian sym-
metric space of L and the restriction to L of irreducible unitary representations of G (branching
laws for the restriction G ↓ L) to understand the spectral analysis of XΓ. In particular, we treat
the following issues:

• Infiniteness of Specd(XΓ) r Specd(X) for compact XΓ;

• Extension of the Laplacian �XΓ
to a self-adjoint operator on L2(XΓ);

• Inclusion of analytic functions as a dense subspace of L2(XΓ,Mλ).

In [35], we shall also address the question whether the joint eigenfunctions constructed in the
current paper have finite multiplicity.

1.8. Organization of the paper
The paper is divided into four parts.
Part I is a complement to the introduction. In Section 2 we give an overview of various types

of examples that our main theorems cover. In Section 3 we introduce some basic notation and
give more precise statements of the theorems by means of the Harish-Chandra isomorphism for
the ring of invariant differential operators; in particular, we describe an explicit infinite set of
eigenvalues, which in the standard case of Theorem 1.7 is both universal and stable under small
deformations.

Part II is devoted to the proof that for all K-finite L2-eigenfunctions ϕ on X with sufficiently
regular spectral parameter, the generalized Poincaré series (1.3) converges and yields an L2-
eigenfunction on XΓ. The proof is carried out in Section 6, based on both geometric and analytic
estimates. The geometric estimates are established in Section 4, where we quantify proper dis-
continuity through the notion of sharpness and count points of Γ-orbits in the non-Riemannian
symmetric space X when Γ is a sharp discrete subgroup of G. The analytic estimates are given in
Section 5, where we reinterpret some asymptotic estimates of Oshima in terms of the regularity
of the spectral parameter and of a “pseudo-distance from the origin” in X.

Part III establishes that, as soon as the spectral parameter λ is regular enough and satisfies
some integrality and positivity condition, the generalized Poincaré series (1.3) is nonzero for
some good choice of ϕ; this completes the proof of the results stated in Sections 1 to 3. The
functions ϕ that we consider are G-translates of some K-finite L2-eigenfunctions ψλ on X intro-
duced by Flensted-Jensen. The proof is given in Section 8, and prepared in Section 7, where we
give a finer analytic estimate for ψλ that controls its behavior, not only at infinity, but also near
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the origin x0 := eH of X = G/H. To deduce the nonvanishing of the series (1.3), it is then enough
to control how the Γ-orbit through x0 approaches x0: this is done in Section 8, after conjugating Γ

by some appropriate element of G; for uniformity for standard Γ, we use the Kazhdan–Margulis
theorem. We complete the proof of the main theorems in Section 8.6.

Finally, Part IV provides a detailed discussion of some examples, designed to illustrate the
general theory in a more concrete way.

Notation

In the whole paper, we use the notation R+ = (0,+∞) and R≥0 = [0,+∞), as well as N+ =

Z ∩ R+ and N = Z ∩ R≥0.
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Part I

Precise description of the results
2. Lists of examples to which the results apply

There is a variety of locally symmetric spaces XΓ = Γ\G/H to which Theorems 1.5, 1.7,
and 1.8 can be applied. The aim of this section is to provide a brief overview, with an emphasis
on compact XΓ in the first three sections. Some of the examples mentioned here will be analyzed
in more detail in Sections 9 and 10.

2.1. Symmetric spaces with standard compact Clifford–Klein forms

We recall the following general construction from [41]. Assume that there exists a reductive
subgroup L of G acting properly and cocompactly on X. Then standard compact Clifford–Klein
forms XΓ = Γ\X can be obtained by taking Γ to be any torsion-free uniform lattice in L. Like-
wise, standard Clifford–Klein forms XΓ that are noncompact but of finite volume can be obtained
by taking Γ to be any torsion-free nonuniform lattice in L. Uniform lattices of L always exist
and nonuniform lattices exist for semisimple L, by work of Borel–Harish-Chandra, Mostow–
Tamagawa, and Borel [6]; they all admit torsion-free subgroups of finite index by the Selberg
lemma [75, Lem. 8].

Here is a list, taken from [49, Cor. 3.3.7], of some triples (G,H, L) where G is a simple Lie
group, X = G/H is a reductive symmetric space, and L is a reductive subgroup of G acting
properly and cocompactly on X, with the additional assumption here that Specd(X) , ∅, so that
Theorem 1.5 applies. We denote by m and n any integers ≥ 1 with m even.
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G H L
(i) SO(2, 2n) SO(1, 2n) U(1, n)
(ii) SO(2, 2m) U(1,m) SO(1, 2m)
(iii) SO(4, 4n) SO(3, 4n) Sp(1, n)
(iv) SU(2, 2n) U(1, 2n) Sp(1, n)
(v) SO(8, 8) SO(7, 8) Spin(1, 8)

Table 2.1: Some triples (G,H, L) to which Theorem 1.5 applies

2.2. Group manifolds with interesting standard compact Clifford–Klein forms
Any reductive group 8G may be regarded as a homogeneous space under the action of 8G×8G

by left and right multiplication; in this way, it identifies with the symmetric space X =

(8G×8G)/Diag(8G), where Diag(8G) denotes the diagonal of 8G× 8G. The condition Specd(X) , ∅,
or in other words rank G/H = rank K/K ∩ H (see Section 3.3), is equivalent to the condition

rank 8G = rank 8K, (2.1)

where 8K is any maximal compact subgroup of 8G; for 8G simple, this condition is satisfied if and
only if the Lie algebra of 8G belongs to the following list, where n, p, and q are any integers ≥ 1:

so(p, 2q), su(p, q), sp(p, q), sp(n,R), so∗(2n), (2.2)
e6(2), e6(−14), e7(7), e7(−5), e7(−25), e8(8), e8(−24), f4(4), f4(−20), g2(2).

Standard Clifford–Klein forms XΓ of X = (8G × 8G)/Diag(8G) can always be obtained by taking
Γ of the form 8Γ× {e} or {e} × 8Γ, where 8Γ is a discrete subgroup of 8G. Then XΓ identifies with a
usual quotient 8Γ\8G or 8G/8Γ of 8G by a discrete subgroup on one side; in particular, XΓ has finite
volume (resp. is compact) if and only if 8Γ is a lattice (resp. a uniform lattice) in 8G. Theorem 1.5
applies to such XΓ.

It is worth noting that for certain specific groups 8G of real rank ≥ 2, there is another
(more general) type of standard compact Clifford–Klein forms of X, namely double quotients
8Γ1\

8G/8Γ2 where 8Γ1 and 8Γ2 are discrete subgroups of 8G [42]. This happens when there ex-
ist two reductive subgroups 8G1 and 8G2 of 8G such that 8G1 acts properly and cocompactly
on 8G/8G2. In this case, the group L := 8G1 ×

8G2 acts properly and cocompactly on X =

(8G × 8G)/Diag(8G), and standard Clifford–Klein forms XΓ can be obtained by taking Γ of the
form Γ = 8Γ1 ×

8Γ2 ⊂ L, where 8Γi is a discrete subgroup of 8Gi. Such a Clifford–Klein form XΓ

identifies with the double quotient 8Γ1\
8G/8Γ2; it has finite volume (resp. is compact) if and only

if 8Γi is a lattice (resp. a uniform lattice) in 8Gi for all i ∈ {1, 2}. We would like to emphasize that
this “exotic” XΓ is locally modeled on the group manifold 8G and not on the homogeneous space
8G/8G2. The following table, obtained from [49, Cor. 3.3.7], gives some triples (8G, 8G1,

8G2)
such that 8G satisfies the rank condition (2.1) and 8G1 acts properly and cocompactly on 8G/8G2;
Theorem 1.5 applies to the corresponding double quotients 8Γ1\

8G/8Γ2. Here n is any integer
≥ 1; it does not need to be even in Example (ii), in contrast with Example (ii) of Table 2.1. We
note that neither (8G, 8G1) nor (8G, 8G2) has to be a symmetric pair, and that 8G1 and 8G2 play
symmetric roles.

2.3. Symmetric spaces with nontrivial deformations of standard compact Clifford–Klein forms
Theorem 1.7 applies to all the examples in Table 2.1. However, this theorem is relevant only

for standard Clifford–Klein forms XΓ such that Γ admits nontrivial small deformations inside G,
13



8G 8G1
8G2

(i) 8G with Lie algebra in (2.2) 8G {e}
(ii) SO(2, 2n) SO(1, 2n) U(1, n)
(iii) SO(4, 4n) SO(3, 4n) Sp(1, n)
(iv) SU(2, 2n) U(1, 2n) Sp(1, n)
(v) SO(8, 8) SO(7, 8) Spin(1, 8)
(vi) SO(4, 4) SO(4, 3) Spin(4, 1)
(vii) SO(4, 4) Spin(4, 3) SO(4, 1) × SO(3)
(viii) SO(4, 3) G2(2) SO(4, 1) × SO(2)
(ix) SO∗(8) U(3, 1) Spin(1, 6)
(x) SO∗(8) SO∗(6) × SO∗(2) Spin(1, 6)

Table 2.2: Some examples to which Theorem 1.5 applies with (G,H, L) = (8G ×8G,Diag(8G ×8G), 8G1 ×
8G2)

i.e. deformations that are not obtained by conjugation. Such deformations do not always exist
when XΓ is compact. We now point out a few examples where they do exist.

Consider Example (i) of Table 2.1, where X = SO(2, 2n)/SO(1, 2n) is the (2n+1)-dimensional
anti-de Sitter space AdS2n+1. The group L = U(1, n) has a nontrivial center Z(L), isomorphic to
U(1). For certain uniform lattices Γ of L, small nontrivial deformations of Γ inside G = SO(2, 2n)
can be obtained by considering homomorphisms of the form γ 7→ γψ(γ) with ψ ∈ Hom(Γ,Z(L))
(see [45]). By [65] and [82], any small deformation of Γ inside G is actually of this form, up
to conjugation. The Clifford–Klein forms corresponding to these nontrivial deformations remain
standard, but the existence of a stable discrete spectrum given by Theorem 1.7 is not obvious
even in this case. We examine this example in more detail in Section 10.1.

Consider Example (ii) of Table 2.1, where X = SO(2, 2m)/U(1,m) has the additional struc-
ture of an indefinite Kähler manifold (see Section 10.3). Here it is actually possible to deform
certain standard compact Clifford–Klein forms of X into nonstandard ones. Indeed, using a bend-
ing construction due to Johnson–Millson [27], one can obtain small Zariski-dense deformations
inside G = SO(2, 2m) of certain arithmetic uniform lattices Γ of L = SO(1, 2m) (see [31, § 6]):
this yields a continuous family of compact Clifford–Klein forms XΓ with Γ Zariski-dense in G.
(Recall that a group is said to be Zariski-dense in G if it is not contained in any proper algebraic
subgroup of G.) Here the C-algebra D(X) is a polynomial ring in [ m+1

2 ] generators; we discuss
the discrete spectrum of XΓ in Section 10.3.

Finally, consider the “exotic” standard compact Clifford–Klein forms 8Γ1\
8G/8Γ2 discussed in

Section 2.2, for which some examples are given in Table 2.2. Here is an analogue of Theorem 1.7
in this setting (see Proposition 2.2 below for noncompact Clifford–Klein forms): the novelty is
the stability of the discrete spectrum, whereas the fact that the quotient remains a manifold under
small deformations (i.e. stability for proper discontinuity, in the sense of Section 1.5) is a direct
consequence of [31]. We refer to Section 8.6 for a proof.

Proposition 2.1. Let 8G be a reductive linear Lie group and let 8G1 and 8G2 be two reductive
subgroups of 8G such that 8G1 acts properly on 8G/8G2. Any standard Clifford–Klein form

8Γ1\
8G/ 8Γ2 ' (8Γ1×

8Γ2)\(8G ×8G)/Diag(8G),

where 8Γi is an irreducible uniform lattice of 8Gi for all i ∈ {1, 2}, remains a manifold after any
small deformation of 8Γ1×

8Γ2 inside 8G × 8G, and it has an infinite stable discrete spectrum if
(2.1) is satisfied.
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In Examples (ii), (vii), and (viii) of Table 2.2, certain standard compact Clifford–Klein forms
8Γ1\

8G/8Γ2 admit small nonstandard deformations obtained by bending, similarly to Example (ii)
of Table 2.1 above. In Example (i) of Table 2.2, there exist standard compact Clifford–Klein
forms 8Γ1\

8G with nonstandard small deformations if and only if 8G has a simple factor that is
locally isomorphic to SO(1, 2n) or SU(1, n) [45, Th. A].

2.4. Clifford–Klein forms of infinite volume

Most examples of Clifford–Klein forms that we have given in Sections 2.1 to 2.3 were com-
pact. However, Theorems 1.5, 1.7, and 1.8 do not require any compactness assumption. In
particular, in Theorems 1.5 and 1.7 on the existence of an infinite (universal or stable) spectrum
for standard Clifford–Klein forms, we remark that

• the reductive group L does not need to act cocompactly on X (it could be quite “small”,
for instance locally isomorphic to SL2(R)),

• the discrete group Γ does not need to be cocompact (nor of finite covolume) in L.

Also, in Theorem 1.8, the sharp Clifford–Klein form XΓ does not need to be compact (nor of
finite volume). Therefore, our theorems apply to much wider settings than those of Tables 2.1
and 2.2; we now discuss some examples.

Firstly, as soon as rankR H < rankR G, there exist infinite cyclic discrete subgroups Γ of G
that are sharp for X = G/H [41]; Theorem 1.8 applies to the corresponding Clifford–Klein
forms XΓ. Even in this case, the existence of an infinite discrete spectrum for XΓ is new.

Secondly, for many X there exist discrete subgroups Γ of G that are nonvirtually abelian (i.e.
with no abelian subgroup of finite index) and sharp for X; we can again apply Theorem 1.8. This
is for instance the case for X = SO(p + 1, q)/SO(p, q) whenever 0 < p < q − 1 or p = q − 1 is
odd [3]. Recently, Okuda [58] gave a complete list of reductive symmetric spaces X = G/H with
G simple that admit Clifford–Klein forms XΓ with Γ nonvirtually abelian. For such symmetric
spaces, there always exist interesting sharp examples:

(1) on the one hand, sharp Clifford–Klein forms XΓ such that Γ is a free group, Zariski-dense
in G [3, Th. 1.1];

(2) on the other hand, standard Clifford–Klein forms XΓ with Γ ⊂ L for some subgroup L of G
isomorphic to SL2(R) or PSL2(R) [58].

In case (1), the group Γ is in some sense “as large as possible”, in contrast with case (2), where
it is contained in a proper algebraic subgroup L of G. In case (2), we can take Γ to be a surface
group embedded in L, therefore admitting nontrivial deformations inside L. Theorem 1.8 applies
to case (1) and Theorems 1.5 and 1.7 to case (2).

Thirdly, for group manifolds X = (8G × 8G)/Diag(8G) there are many examples of standard
Clifford–Klein forms of infinite volume that admit nontrivial deformations. As in Section 2.2,
we can take a pair of reductive subgroups 8G1,

8G2 of 8G such that 8G1 acts properly on 8G/8G2,
but now we do not require anymore that this action be cocompact. We consider XΓ = 8Γ1\

8G/8Γ2
where 8Γi is a discrete subgroup of 8Gi (not necessarily cocompact) and we deform Γ = 8Γ1×

8Γ2
inside 8G × 8G. Here is an analogue of Theorem 1.7 that applies in this setting; we refer to
Section 8.6 for a proof.
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Proposition 2.2. Let 8G be a reductive linear Lie group satisfying (2.1) and let 8G1 and 8G2
be two reductive subgroups of 8G such that 8G1 acts properly on 8G/8G2. Consider a standard
Clifford–Klein form

8Γ1\
8G/8Γ2 ' (8Γ1×

8Γ2)\(8G ×8G)/Diag(8G),

where 8Γi is a discrete subgroup of 8Gi for all i.

(1) If 8G1 has real rank 1 and 8Γ1 is convex cocompact in 8G1, then there exists an infinite
subset I of Specd(8Γ1\

8G/8Γ2) and a neighborhood 8U ⊂ Hom(8Γ1,
8G × Z8G(8Γ2)) of the

natural inclusion such that 8ϕ(8Γ1)\8G/8Γ2 is a manifold and I ⊂ Specd(8ϕ(8Γ1)\8G/8Γ2) for
all 8ϕ ∈ 8U.

(2) If 8Gi has real rank 1 and 8Γi is convex cocompact in 8Gi for all i ∈ {1, 2}, then the standard
Clifford–Klein form 8Γ1\

8G/8Γ2 remains a manifold after any small deformation of 8Γ1 ×
8Γ2

inside 8G ×8G and it has an infinite stable discrete spectrum in the sense of Definition 1.6.

3. Quantitative versions of the results

In this section, we give some quantitative estimates of Theorems 1.5, 1.7, and 1.8 (Sec-
tion 3.4) and discuss the regularity of our eigenfunctions (Section 3.5). We first fix some notation
that will be used throughout the paper and recall some useful classical facts (Sections 3.1 to 3.3).

3.1. Invariant differential operators

In the whole paper, G denotes a real reductive linear Lie group and H an open subgroup of
the group of fixed points of G under some involutive automorphism σ. We denote their respective
Lie algebras by g and h. Without loss of generality, we may and will assume that G is connected;
indeed, we only need to consider the discrete spectrum of one connected component of X = G/H.

In this paragraph, we recall some classical results on the structure of the algebra D(X) of
G-invariant differential operators on X. We refer the reader to [25, Ch. II] for proofs and more
details.

Let U(gC) be the enveloping algebra of the complexified Lie algebra gC := g ⊗R C and
U(gC)H the subalgebra of AdG(H)-invariant elements (it contains in particular the center Z(gC)
of U(gC)). Recall that U(gC) acts on C∞(G) by differentiation on the right, with

(
(Y1 · · · Ym) · f

)
(g) =

d
dt1

∣∣∣∣∣
t1=0
· · ·

d
dtm

∣∣∣∣∣
tm=0

f
(
g exp(t1Y1) · · · exp(tmYm)

)
for all Y1, . . . ,Ym ∈ g, all f ∈ C∞(G), and all g ∈ G. This gives an isomorphism between
U(gC) and the ring of left-invariant differential operators on G. By identifying the set of smooth
functions on X with the set of right-H-invariant smooth functions on G, we obtain a C-algebra
homomorphism

p : U(gC)H −→ D(X).

This homomorphism is surjective, with kernel U(gC)hC ∩ U(gC)H [25, Ch. II, Th. 4.6], hence it
induces an algebra isomorphism

U(gC)H/U(gC)hC ∩ U(gC)H ∼−−→ D(X). (3.1)
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Let g = h + q be the decomposition of g into eigenspaces of dσ, with respective eigenvalues
+1 and −1. In the whole paper, we fix a maximal semisimple abelian subspace j of

√
−1 q. The

integer
rank G/H := dimR j (3.2)

does not depend on the choice of j. Geometrically, if x0 denotes the image of H in X = G/H,
then exp(

√
−1 j) · x0 is a maximal flat totally geodesic submanifold of X, where “flat” means that

the induced pseudo-Riemannian metric is nondegenerate and that the curvature tensor vanishes
(see [40, Ch. XI, § 4]). Let W be the Weyl group of the restricted root system Σ(gC, jC) of jC
in gC, and let S (jC)W be the subalgebra of W-invariant elements in the symmetric algebra S (jC)
of jC. The important fact that we will use is the following.

Fact 3.1. The algebra D(X) of G-invariant differential operators on X is a polynomial alge-
bra in r := rank G/H generators. It naturally identifies with S (jC)W , and the set of C-algebra
homomorphisms from D(X) to C identifies with j∗C/W, where j∗C is the dual vector space of jC.

Let us explicit these identifications. Let Σ+(gC, jC) be a system of positive roots in Σ(gC, jC)
and let

nC =
⊕

α∈Σ+(gC,jC)

(gC)α

be the sum of the corresponding root spaces, where

(gC)α := {Y ∈ gC : [T,Y] = α(T )Y for all T ∈ j}.

The complexified Iwasawa decomposition gC = hC + jC + nC holds, implying that U(gC) is the
direct sum of U(jC) ' S (jC) and hCU(gC) + U(gC)nC. Let p′ : U(gC)→ S (jC) be the projection
onto S (jC) with respect to this direct sum and let p′′ : U(gC)→ S (jC) be the “shifted projection”
given by

〈p′′(u), λ〉 = 〈p′(u), λ − ρ〉

for all λ ∈ j∗C, where

ρ :=
1
2

∑
α∈Σ+(gC,jC)

dimC(gC)α α ∈ j∗C

is half the sum of the elements of Σ+(gC, jC), counted with root multiplicities. The restriction
of p′′ to U(gC)H is independent of the choice of Σ+(gC, jC) and induces an isomorphism

U(gC)hC/U(gC)hC ∩ U(gC)hC ∼−−→ S (jC)W

[25, Ch. II, Th. 5.17]. If H is connected, then U(gC)hC = U(gC)H and, using (3.1) above, we
obtain the following commutative diagram.

D(X) U(gC)Hpoo

��

p′′ // S (jC)W

U(gC)H/U(gC)hC ∩ U(gC)H

∼

ffLLLLLLLLLLL
∼

88qqqqqqqqqq

Thus we have a C-algebra isomorphism Ψ : D(X) ∼−→ S (jC)W (Harish-Chandra isomorphism). In
the general case when H is not necessarily connected, we still have an isomorphism
Ψ : D(X) ∼−→ S (jC)W by the following remark.
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Remark 3.2. The C-algebra D(X) is isomorphic to D(G/H0), where H0 denotes the identity
component of H.

Proof. There is a natural injective algebra homomorphism D(X) ↪→ D(G/H0) induced by the
natural projection G/H0 → X. To see that this homomorphism is surjective, it is sufficient to see
that H acts trivially on D(G/H0). This follows from the fact that the quotient field of D(G/H0)
is isomorphic to that of p(Z(gC)) [25, Ch. III, Th. 3.16] (where p : U(gC)H0 → D(G/H0) is
given by the diagram above for H0) and from the fact that H acts trivially on Z(gC) and p is
H-equivariant.

By the Harish-Chandra isomorphism Ψ : D(X) ∼−→ S (jC)W , the C-algebra D(X) is a com-
mutative algebra generated by r := dimR j = rank G/H homogeneous, algebraically independent
differential operators D1, . . . ,Dr. If we identify S (jC) with the ring of polynomial functions
on j∗C, then any homomorphism from D(X) to C is of the form

χλ : D 7−→ 〈Ψ(D), λ〉

for some λ ∈ j∗C, and χλ = χλ′ if and only if λ′ ∈ W · λ. By construction, any D ∈ D(X) acts on
the constant functions on X by multiplication by the scalar χρ(D). From now on, we identify the
set of C-algebra homomorphisms from D(X) to C with j∗C/W; in particular, we see Specd(X) (or
Specd(XΓ) for any Clifford–Klein form XΓ) as a subset of j∗C/W:

Specd(XΓ) =
{
λ ∈ j∗C/W : L2(XΓ,Mλ) , {0}

}
,

where L2(XΓ,Mλ) is the space of weak solutions f ∈ L2(XΓ) to the system

DΓ f = χλ(D) f for all D ∈ D(X) (Mλ).

Remark 3.3. When r = rank G/H > 1, the space L2(XΓ,Mλ) is in general strictly contained in
the space of L2-eigenfunctions of the Laplacian �XΓ

[34, Rem. 2.5].

3.2. The Laplacian

In the whole paper, we fix a Cartan involution θ of G commuting with σ and let K = Gθ

be the corresponding maximal compact subgroup of G, with Lie algebra k. Let g = k + p be
the corresponding Cartan decomposition, i.e. the decomposition of g into eigenspaces of dθ with
respective eigenvalues +1 and −1. We fix a G-invariant nondegenerate symmetric bilinear form
B on g with the following properties: B is positive definite on p, negative definite on k, and p
and k are orthogonal for B. If G is semisimple, we can take B to be the Killing form κ of g.

On the one hand, since the involution σ commutes with the Cartan involution θ, the form B
is nondegenerate on h × h, and induces an H-invariant nondegenerate symmetric bilinear form
on g/h. By identifying the tangent space Tx0 (G/H) at x0 = eH ∈ G/H with g/h and using left
translations, we obtain a G-invariant pseudo-Riemannian structure on X = G/H. We then define
the Laplacian �X as in (1.1) with respect to this pseudo-Riemannian structure.

On the other hand, the form B defines an isomorphism g∗ ' g, yielding a canonical element
in (g ⊗ g)G corresponding to the identity under the isomorphism (g∗ ⊗ g)G ' HomG(g, g). This
element projects to the Casimir element of U(gC), which lies in the center Z(gC). It gives a
differential operator of order two on X, the Casimir operator, whose actions by differentiation
on the left and on the right coincide. Since X is a symmetric space, the Casimir operator on X
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coincides with �X . (We refer to [25, Ch. II, Exer. A.4] for the case when H is a maximal compact
subgroup of G; a proof for the general case goes similarly.)

We now explicit the eigenvalues of �X . For this we note that B is nondegenerate on any
θ-stable subspace of g. In particular, if j is θ-stable (which will always be the case below), then
B induces a nondegenerate W-invariant bilinear form (·, ·) on j∗, which we extend to a complex
bilinear form (·, ·) on j∗C.

Fact 3.4. If f ∈ C∞(X) satisfies (Mλ) for some λ ∈ j∗C, then

�X f =
(
(λ, λ) − (ρ, ρ)

)
f .

Indeed, this follows from the above description of the Harish-Chandra isomorphism; one can also
use [25, Ch. II, Cor. 5.20] and the fact that D(X) ' D(Xd), where Xd is a Riemannian symmetric
space of the noncompact type with the same complexification as X (see Section 5.2).

3.3. Some further basic notation
We now fix some additional notation that will be used throughout the paper.
We first recall that the connected reductive group G is the almost product of its connected

center Z(G)0 and of its commutator subgroup Gs, which is semisimple. The group Gs itself
is the almost product of finitely many (nontrivial) connected simple normal subgroups, called
the simple factors of G. The connected center Z(G)0 is isomorphic to Ra × (S1)b for some
integers a, b ∈ N. Recall that G admits a unique maximal compact normal subgroup Gc, which
is generated by the compact simple factors of G, by the center Z(Gs) of Gs, and by the compact
part of Z(G)0. The group G is said to have no compact factor if Gc = Z(Gs).

Generalizing Harish-Chandra’s work on the group manifold case, Flensted-Jensen [19] and
Matsuki–Oshima [57] proved that Specd(X) is nonempty if and only if

rank G/H = rank K/H ∩ K, (3.3)

where the rank is defined as in (3.2). This is equivalent to the fact that X admits a maximal
compact subsymmetric space of full rank, namely K/H ∩ K. Under the rank condition (3.3), we
may and do assume that the maximal semisimple abelian subspace j of Section 3.1 is contained
in
√
−1(k ∩ q). Then j is θ-stable, all restricted roots α ∈ Σ(gC, jC) take real values on j, and the

W-invariant bilinear form (·, ·) on j∗ from Section 3.2 is positive definite.
We fix once and for all a positive system Σ+(kC, jC) of restricted roots of jC in kC, which we

will keep until the end of the paper; we denote by ρc half the sum of the elements of Σ+(kC, jC),
counted with root multiplicities. We now introduce some notation Λ+, Λ, and ΛJ that will be
used throughout the paper. We start by extending j to a maximal abelian subspace j̃ of

√
−1 k. Let

∆+(kC, j̃C) be a positive system of roots of j̃C in kC such that the restriction map α 7→ α|jC sends
∆+(kC, j̃C) to Σ+(kC, jC)∪{0}. We identify the set of irreducible finite-dimensional representations
of kC with the set of dominant integral weights with respect to the positive system ∆+(kC, j̃C). As
a subset, we denote by

Λ+ ≡ Λ+(K/H ∩ K) (3.4)

the set of irreducible representations of K with nonzero (H ∩ K)-fixed vectors; it is the support
of the regular representation of K on L2(K/H ∩ K) by Frobenius reciprocity.

Remark 3.5. By definition, Λ+ is a set of dominant integral elements in the dual of j̃ = j+(̃j∩hC).
However, we can regard it as a subset of j∗ by the Cartan–Helgason theorem [80, Th. 3.3.1.1].
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We set
Λ := Z-span(Λ+) ⊂ j∗. (3.5)

For any finite subgroup J of the center Z(K) of K, let K̂/J be the set of (highest weights of)
irreducible representations of K that factor through K/J and let

ΛJ := Z-span
(
Λ+ ∩ K̂/J

)
. (3.6)

We note that the Z-module ΛJ has finite index in Λ. Indeed, if J has cardinal m, then ΛJ contains
mΛ = {mλ : λ ∈ Λ} since (mλ)(z) = λ(zm) = 1 for all λ ∈ Λ+ and z ∈ J. If J ⊂ J′, then ΛJ ⊃ ΛJ′ ;
in particular, for any discrete subgroup Γ of G we have

Λ ⊃ ΛΓ∩Z(Gs) ⊃ ΛZ(Gs), (3.7)

where, as before, Z(Gs) is the center of the commutator subgroup Gs of G.

Remark 3.6. If J ⊂ H, then Λ = ΛJ . In particular, if Z(Gs) ⊂ H, then ΛΓ∩Z(Gs) = Λ for any
subgroup Γ of G.

Indeed, if J ⊂ H, then J acts trivially on K/H ∩ K, hence the regular representation of K on
L2(K/H ∩ K) factors through K/J.

Any choice of a positive system Σ+(gC, jC) of restricted roots of jC in gC containing Σ+(kC, jC)
will determine:

(1) a basis {α1, . . . , αr} of Σ(gC, jC),

(2) a positive Weyl chamber

j∗+ :=
{
λ ∈ HomR(j,R) : (λ, α) > 0 for all α ∈ Σ+(gC, jC)

}
,

with closure j∗+ in j∗,

(3) an element ρ ∈ j∗+, defined as half the sum of the elements of Σ+(gC, jC), counted with root
multiplicities,

(4) a function d : j∗+ → R+ measuring the “weighted distance” from λ to the walls of j∗+, given
by

d(λ) := min
1≤i≤r

(λ, αi)
(αi, αi)

≥ 0.

The function d does not depend on the choice of the W-invariant inner product (·, ·) that we made
in Section 3.2; we extend it as a W-invariant function on j∗. We note that any element of j∗ enters
the positive Weyl chamber j∗+ if we add tρ for some sufficiently large t > 0; conversely, d(λ)
measures to which extent λ − tρ remains in j∗+ for λ ∈ j∗+:

Observation 3.7. For all λ ∈ j∗+,

λ −
d(λ)
mρ

ρ ∈ j∗+,

where we set
mρ := max

1≤i≤r

(ρ, αi)
(αi, αi)

. (3.8)
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Proof. For any simple root αi (1 ≤ i ≤ r),(
λ − d(λ)

mρ
ρ, αi

)
(αi, αi)

≥ d(λ) −
d(λ)
mρ

mρ = 0.

We note that if jC is a Cartan subalgebra of gC, then d(ρ) = mρ = 1/2.

3.4. Precise statements of the main theorems
With the above notation, here is a more precise statement of Theorems 1.5 and 1.8 on the ex-

istence of an infinite discrete spectrum, which is “universal” for standard Clifford–Klein forms.
We choose a positive system Σ+(gC, jC) containing the fixed positive system Σ+(kC, jC) of Sec-
tion 3.3; this determines a positive Weyl chamber j∗+ and an element ρ ∈ j∗+.

Theorem 3.8. Suppose that G is connected, that H does not contain any simple factor of G, and
that the rank condition (3.3) holds.

(1) For any sharp Clifford–Klein form XΓ with Γ ∩ Gc ⊂ Z(Gs), there is a constant R ≥ 0 such
that {

λ ∈ j∗+ ∩
(
2ρc − ρ + ΛΓ∩Z(Gs)) : d(λ) > R

}
⊂ Specd(XΓ).

(2) The constant R can be taken uniformly for standard Clifford–Klein forms: given any reduc-
tive subgroup L of G, with a compact center and acting properly on X, there is a constant
R > 0 such that {

λ ∈ j∗+ ∩
(
2ρc − ρ + ΛΓ∩Z(Gs)) : d(λ) > R

}
⊂ Specd(XΓ)

for all discrete subgroups Γ of L with Γ ∩ Lc ⊂ Z(Gs) (this includes all torsion-free discrete
subgroups Γ of L); in particular, by (3.7),{

λ ∈ j∗+ ∩
(
2ρc − ρ + ΛZ(Gs)) : d(λ) > R

}
⊂ Specd(XΓ)

for all such Γ.

As in Section 3.3, we denote by Gc (resp. by Lc) the maximal compact normal subgroup
of G (resp. of L), and by Z(Gs) the center of the semisimple part of G. The Z-modules ΛΓ∩Z(Gs)

and ΛZ(Gs) have been defined in (3.6) and the term “sharp” in Section 1.6.
We note that the technical assumptions of Theorem 3.8 are not very restrictive:

Remarks 3.9. (a) The assumption Γ ∩ Gc ⊂ Z(Gs) is automatically satisfied if G has no com-
pact factor (i.e. if Gc = Z(Gs)) or if Γ is torsion-free. This assumption will be removed in
Section 8.6 in order to prove the theorems and propositions of Sections 1 and 2.

(b) The assumption Γ ∩ Lc ⊂ Z(Gs) is automatically satisfied if Γ is torsion-free, or if L has no
compact factor and Z(L) ⊂ Z(Gs). We note that for Γ ⊂ L, the condition Γ ∩ Lc ⊂ Z(Gs) is
stronger than Γ ∩Gc ⊂ Z(Gs).

Constants R as in Theorem 3.8.(1) and (2) can be expressed in terms of the geometry of X,
of the sharpness constants (c,C) of Γ, and of a “pseudo-distance” from the origin x0 = eH of
X = G/H to the other points of its Γ-orbit in X: see (8.9), (8.10), (8.11).

We note that our choice of a positive system Σ+(gC, jC) containing Σ+(kC, jC) could affect the
lattice condition λ ∈ 2ρc − ρ+ ΛΓ∩Z(Gs), since ρ depends on this choice. All elements λ satisfying
one of these lattice conditions appear in the discrete spectrum. We refer to (5.6) for a geometric
meaning of the choice of Σ+(gC, jC).
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Remark 3.10. In Theorem 3.8.(1), we can take R = 0 if Γ = {e}. This is the “C = 0” conjecture
of [19] on the precise condition of the parameter λ for the square integrability of certain joint
eigenfunctions on X; this conjecture was proved affirmatively in [57], and the main ingredient is
Fact 5.7 that we also use below.

The following theorem gives a description of an infinite stable discrete spectrum as in Theo-
rem 1.7: it states that the constant R of Theorem 3.8.(2) is stable under small deformations.

Theorem 3.11. Assume that G is connected, that H does not contain any simple factor of G, and
that the rank condition (3.3) holds. For any reductive subgroup L of G of real rank 1 and any
convex cocompact subgroup Γ of L (in particular, any uniform lattice Γ of L) with Γ∩Gc ⊂ Z(Gs),
there are a constant R > 0 and a neighborhood U ⊂ Hom(Γ,G) of the natural inclusion such
that Xϕ(Γ) = ϕ(Γ)\X is a Clifford–Klein form of X for all ϕ ∈ U and

{λ ∈ j∗+ ∩
(
2ρc − ρ + ΛΓ∩Z(Gs)) : d(λ) > R

}
⊂ Specd(Xϕ(Γ)).

In particular, for all ϕ ∈ U,

{λ ∈ j∗+ ∩
(
2ρc − ρ + ΛZ(Gs)) : d(λ) > R

}
⊂ Specd(Xϕ(Γ)).

If Γ ∩ Lc ⊂ Z(Gs) (for instance if Γ is torsion-free or if L is simple with Z(L) ⊂ Z(Gs)), then
we may take the same R (independent of Γ) as in Theorem 3.8.(2), up to replacing U by some
smaller neighborhood.

Theorems 3.8 and 3.11 will be proved in Section 8.

Remark 3.12. Our proofs depend on the rank condition (3.3). It is plausible that for a general
locally symmetric space, no nonzero eigenvalue is stable under nontrivial small deformations
unless (3.3) is satisfied. This is corroborated by Fact 1.2 (in the Riemannian case, (3.3) is not
satisfied). It is also plausible that there should be no “universal spectrum” as in Theorems 1.5
and 3.8 unless (3.3) is satisfied.

3.5. Regularity of the generalized Poincaré series
As explained in the introduction, Theorems 3.8 and 3.11 are proved by constructing general-

ized Poincaré series. Consider the action of G on L2(X,Mλ) by left translation

g · ϕ := ϕ(g−1 · ) (3.9)

and let L2(X,Mλ)K be the subspace of K-finite functions in L2(X,Mλ). We prove that for any
λ ∈ j∗+ with d(λ) large enough, the operator

S Γ : L2(X,Mλ)K −→ L2(XΓ,Mλ)

mapping ϕ to
ϕΓ :=

(
Γx 7−→

∑
γ∈Γ

(γ · ϕ)(x)
)

is well-defined (Proposition 6.1.(1)). We actually prove that S Γ is well-defined on g·L2(X,Mλ)K

for any g ∈ G and λ ∈ j∗+ with d(λ) large enough, and that there exists g ∈ G such that for
any λ ∈ j∗+ ∩ (2ρc − ρ + ΛΓ∩Z(Gs)) with d(λ) large enough, S Γ is nonzero on g · L2(X,Mλ)K

(Proposition 8.1 and Remark 8.2).
By using the fact that L2(X,Mλ)K is stable under the action of g by differentiation, we obtain

the following regularity result for the image of S Γ (Proposition 6.1.(2)).
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Theorem 3.13. Assume that G is connected and that the rank condition (3.3) holds. Let XΓ be
a sharp Clifford–Klein form with Γ ∩ Gc ⊂ Z(Gs) and let R > 0 be the corresponding constant
given by Theorem 3.8. For any λ ∈ j∗+ with d(λ) > R and any g ∈ G, the image of g·L2(X,Mλ)K

under the summation operator S Γ is contained in Lp(XΓ) for all 1 ≤ p ≤ ∞, and in Cm(XΓ)
whenever d(λ) > (m + 1)R.

In particular, if we take m to be the maximum degree of the generators D1, . . . ,Dr of the
C-algebra D(X), then for f ∈ S Γ(g·L2(X,Mλ)K) we have

(D j)Γ f = χλ(D j) f

for all 1 ≤ j ≤ r in the sense of functions, not only in the sense of distributions. For certain
standard Clifford–Klein forms XΓ, it is actually possible to prove that the image of L2(X,Mλ)K

under the summation operator S Γ consists of analytic functions (see [35]).

Part II

Construction of generalized Poincaré series
4. Sharpness and counting in non-Riemannian symmetric spaces

In this section we examine in detail the new notion of sharpness, which we have introduced
in Section 1.6. We then establish some counting results for the orbits of sharp discrete groups Γ

in the non-Riemannian symmetric space X = G/H (Lemma 4.6 and Corollary 4.7). We note that
these groups Γ can never be lattices of G: they have to be much “smaller” (Remark 4.8).

Counting is developed here in the perspective of spectral theory: our results will be useful,
together with the analytic estimates of Section 5, to prove the convergence of the generalized
Poincaré series (1.3). However, the counting results we obtain might also have some interest of
their own.

We first introduce some notation and briefly recall the notions of Cartan and polar projections
for noncompact, reductive G.

4.1. Preliminaries: Cartan and polar projections

We keep the notation of Section 3. In particular, θ is the Cartan involution and g = k + p
the Cartan decomposition introduced in Section 3.2. Let a be a maximal abelian subspace of p
and let A = exp a be the corresponding connected subgroup of G. We consider the logarithm
log : A ∼−→ a, which is the inverse of exp : a ∼−→ A. We choose a system Σ+(g, a) of positive
restricted roots and let a+ and A+ = exp a+ denote the corresponding closed positive Weyl cham-
bers in a and A, respectively. The Cartan decomposition G = KA+K holds [26]: any g ∈ G may
be written as g = kgagk′g for some kg, k′g ∈ K and a unique ag ∈ A+. Setting µ(g) = log ag defines
a map

µ : G −→ a+ := log A+

called the Cartan projection associated with the Cartan decomposition G = KA+K. This map is
continuous, proper, surjective, and bi-K-invariant; we will still denote by µ the induced map on
the Riemannian symmetric space G/K of G.
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Example 4.1. For G = SLn(R) and θ = (g 7→ tg−1), we have K = SO(n). We can take A to
be the group of diagonal matrices in SLn(R) with positive entries and its subset A+ to consist of
matrices with entries in nonincreasing order; then the Cartan decomposition G = KA+K follows
from the polar decomposition in SLn(R) and from the reduction of symmetric matrices. We have
µ(g) = ( 1

2 log ti)1≤i≤n where ti is the i-th eigenvalue of tgg.

The G-invariant symmetric bilinear form B of Section 3.2 restricts to a K-invariant inner product
on p, which defines a Euclidean norm ‖ · ‖ on a and a G-invariant Riemannian metric dG/K on
G/K. The norm of the Cartan projection µ admits the following geometric interpretation in terms
of distances in the Riemannian symmetric space G/K:

‖µ(g)‖ = dG/K(y0, g · y0) (4.1)

for all g ∈ G, where y0 denotes the image of K in G/K. Using the triangular inequality and the
fact that G acts by isometries on G/K, we obtain that

‖µ(gg′)‖ ≤ ‖µ(g)‖ + ‖µ(g′)‖ (4.2)

for all g, g′ ∈ G. In fact, the following stronger inequalities hold, which can be proved in a
geometric way (see [30, Lem. 2.3]):

‖µ(gg′) − µ(g)‖ ≤ ‖µ(g′)‖, (4.3)
‖µ(gg′) − µ(g′)‖ ≤ ‖µ(g)‖. (4.4)

On the other hand, recall that the group H is an open subgroup of the set of fixed points of G
under the involution σ. Let g = h + q be the decomposition of g into eigenspaces of dσ as in
Section 3.1. Since θ commutes with σ, the following decomposition holds:

g = (k ∩ h) + (k ∩ q) + (p ∩ h) + (p ∩ q).

Let b be a maximal abelian subspace of p∩q and let B := exp(b). We choose a system Σ+(gσθ, b)
of positive restricted roots of b in the subspace gσθ of fixed points of g under d(σθ), and let b+

be the corresponding closed positive Weyl chamber and B+ := exp b+. Then the polar decom-
position (or generalized Cartan decomposition) G = KB+H holds [72, Prop. 7.1.3]: any g ∈ G
may be written as g = kgbghg for some kg ∈ K, some hg ∈ H, and a unique bg ∈ B+. We refer to
Sections 9 and 10 for examples. Since all maximal abelian subspaces of p are conjugate under
the adjoint action of K, we may (and will) assume that a contains b. As above, we define a
projection

ν : G −→ b+ ⊂ a (4.5)

corresponding to the polar decomposition G = KB+H. It is continuous, surjective, and right-H-
invariant; we will still denote by ν the induced map on X. Geometrically, ‖ν(x)‖ can be interpreted
as some kind of “pseudo-distance” from the origin x0 = eH of X = G/H to x ∈ X: in order to
go from x0 to x in X, one can first travel along the flat sector B+ ·x0, then along some (compact)
K-orbit; ‖ν(x)‖measures how far one must go in B+·x0. The set of points x ∈ X such that ν(x) = 0
is the maximal compact subsymmetric space Xc := K ·x0 ' K/H ∩ K.

We note that for any b ∈ B there is some w ∈ W(G, A) such that µ(b) = w · ν(b), hence

‖µ(b)‖ = ‖ν(b)‖. (4.6)
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4.2. Sharpness
We now turn to the new notion of sharpness, which quantifies proper discontinuity. We first

recall that not all discrete subgroups Γ of G can act properly discontinuously on X = G/H since
H is noncompact. A criterion for proper discontinuity was established by Benoist [3, Cor. 5.2]
and Kobayashi [44, Th. 1.1], in terms of the Cartan projection µ. This criterion states that a
closed subgroup Γ of G acts properly on X = G/H if and only if the set µ(Γ) ∩ (µ(H) + C) is
bounded for any compact subset C of a; equivalently, if and only if µ(Γ) “goes away from µ(H)
at infinity”.

In this paper, we introduce the following stronger condition.

Definition 4.2. A subgroup Γ of G is said to be sharp for X if there are constants c ∈ (0, 1] and
C ≥ 0 such that

da(µ(γ), µ(H)) ≥ c ‖µ(γ)‖ −C (4.7)

for all γ ∈ Γ, where da is the metric on a induced by the Euclidean norm ‖ · ‖. If (4.7) is satisfied,
we say that Γ is (c,C)-sharp.
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Figure 1: The Cartan projection of a (c,C)-sharp group Γ

We note that this definition makes sense in the more general context of a homogeneous space
X = G/H where G is a reductive group and H a closed subgroup of G.

If Γ is sharp for X, then µ(Γ) “goes away from µ(H) at infinity” with a speed that is at least
linear. Indeed, consider the open cone

C(c) :=
{
Y ∈ a+ : da(Y, µ(H)) < c ‖Y‖

}
of angle arcsin(c) around µ(H). If Γ is (c,C)-sharp with c ∈ (0, 1), then the set µ(Γ) is contained
in the C

√
1−c2

-neighborhood of a+ r C(c); in other words, it does not meet the shaded region in
Figure 1.

In particular, if Γ is sharp for X and closed in G, then the action of Γ on X is proper by the
properness criterion. The bigger c is, the “more proper” the action is; the critical case is therefore
when c gets close to 0. For Γ discrete and sharp, we will equivalently say that the Clifford–Klein
form XΓ = Γ\X is sharp.

The following two properties will be useful.
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Proposition 4.3. (1) If a subgroup Γ of G is (c,C)-sharp for X, then any conjugate of Γ is
(c,C′)-sharp for some C′ ≥ 0.

(2) Any reductive subgroup L of G acting properly on X admits a conjugate that is (c, 0)-sharp
for some c > 0.

Proposition 4.3.(1) is an immediate consequence of the following inequality, which will be
used several times in the paper.

Lemma 4.4. For any g, g′, g′′ ∈ G,

da
(
µ(g′gg′′), µ(H)

)
≥ da(µ(g), µ(H)) − ‖µ(g′)‖ − ‖µ(g′′)‖.

Proof. For all h ∈ H, by (4.3) and (4.4) we have

da(µ(g), µ(H)) ≤ ‖µ(g) − µ(h)‖
≤ ‖µ(g) − µ(g′gg′′)‖ + ‖µ(g′gg′′) − µ(h)‖
≤ ‖µ(g′)‖ + ‖µ(g′′)‖ + ‖µ(g′gg′′) − µ(h)‖.

We will explain why Proposition 4.3.(2) is true in Section 4.4. We refer to Section 4.4 for
a list of examples of sharp Clifford–Klein forms and to Section 4.7 for a discussion of how
sharpness behaves under small deformations.

We note that da(µ(γ), µ(H)) ≤ ‖µ(γ)‖ always holds, since da(µ(γ), µ(H)) is the norm of the
projection of µ(γ) to the orthogonal of µ(H) in a; this is why we restrict to c ≤ 1 in Definition 4.2.

4.3. Counting in the reductive symmetric space X

In order to prove the convergence of the generalized Poincaré series (1.3), we will need
to understand the growth rate of Γ with respect to the norm of ν. Given the above geometric
interpretation of ‖ν‖ as a “pseudo-distance from the origin” in the reductive symmetric space X,
this means estimating the number of points of any given Γ-orbit in the “pseudo-ball”

BX(R) := {x ∈ X : ‖ν(x)‖ < R} (4.8)

as R tends to infinity. We note that the closure of BX(R) is compact for all R > 0, which implies
the following (by definition of proper discontinuity).

Remark 4.5. Let Γ be a discrete subgroup of G acting properly discontinuously on X. For any
x ∈ X, the set of elements γ ∈ Γ with γ · x ∈ BX(R) is finite.

In the case when Γ is sharp for X, we establish exponential bounds for the growth of Γ-orbits
in X: here are the precise estimates that we will need for our theorems (a proof will be given in
Section 4.6).

Lemma 4.6. Let c ∈ (0, 1] and C ≥ 0.

(1) For any discrete subgroup Γ of G that is (c,C)-sharp for X and any ε > 0, there is a constant
cε(Γ) > 0 such that for any R > 0 and any x = g · x0 ∈ X (where g ∈ G),

#
{
γ ∈ Γ : ‖ν(γ·x)‖ < R

}
≤ cε(Γ) e(δΓ+ε)(R+‖µ(g)‖)/c.
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(2) (Removing the dependence in x)
For any discrete subgroup Γ of G that is (c,C)-sharp for X and any ε > 0, there is a constant
c′ε(Γ) > 0 such that for any R > 0 and any x ∈ X,

#
{
γ ∈ Γ : ‖ν(γ·x)‖ < R

}
≤ c′ε(Γ) e2(δΓ+ε)R/c.

(3) (Controlling the dependence in Γ, allowing for dependence in x)
There is a constant cG > 0 depending only on G such that for any discrete subgroup Γ of G
that is (c,C)-sharp for X, any R > 0, and any x = g · x0 ∈ X (where g ∈ G),

#
{
γ ∈ Γ : ‖ν(γ·x)‖ < R

}
≤ #(Γ ∩ K) · cG e2‖ρa‖(R+C+‖µ(g)‖)/c.

(4) (Controlling the dependence in Γ and removing the dependence in x)
There is a constant cG > 0 depending only on G such that for any discrete subgroup Γ of G
that is (c,C)-sharp for X, any R > 0, and any x ∈ X,

#
{
γ ∈ Γ : ‖ν(γ·x)‖ < R

}
≤ #(Γ ∩ K) · cG e4‖ρa‖(R+C)/c.

As before, x0 is the image of H in X = G/H and ρa ∈ a is half the sum of the elements of
Σ+(g, a), counted with root multiplicities. We denote by

δΓ := lim sup
R→+∞

(
1
R

log #
(
Γ·y0 ∩ BG/K(R)

))
(4.9)

the critical exponent of Γ, which measures the growth rate of the Γ-orbits in the Riemannian
symmetric space G/K of G. Here

BG/K(R) := {y ∈ G/K : ‖µ(y)‖ < R}

is the ball of radius R centered at y0 = eK ∈ G/K for the Riemannian metric dG/K (see (4.1)).
Recall that the classical Poincaré series

∑
γ∈Γ e−s‖µ(γ)‖ converges for s > δΓ and diverges for

s < δΓ, and that if G has real rank 1, then δΓ is the Hausdorff dimension of the limit set of Γ in
the boundary at infinity of G/K [13, 61, 76].

In X, consider the “pseudo-ball” BX(R) of radius R centered at x0, as in (4.8). For all x =

g · x0 ∈ X (where g ∈ G), the stabilizer of x in Γ is Γ ∩ gHg−1, hence

#
{
γ ∈ Γ : ‖ν(γ·x)‖ < R

}
= #(Γ ∩ gHg−1) · #

(
Γ·x ∩ BX(R)

)
. (4.10)

Therefore, Lemma 4.6 gives the following counting result for Γ-orbits in X.

Corollary 4.7. For any discrete subgroup Γ of G that is (c,C)-sharp for X and any x ∈ X,

lim sup
R→+∞

(
1
R

log #
(
Γ·x ∩ BX(R)

))
≤
δΓ

c
;

if moreover Γ ∩ K = {e} (for instance if Γ is torsion-free), then

#
(
Γ·x0 ∩ BX(R)

)
≤ cG e2‖ρa‖(R+C)/c

and for all x ∈ X,
#
(
Γ·x ∩ BX(R)

)
≤ cG e4‖ρa‖(R+C)/c.
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Remark 4.8. In our setting Γ can never be a lattice in G because it acts properly discontinuously
on X = G/H and H is noncompact. (In fact Γ has to be quite “small”: the cohomological
dimension of any torsion-free finite-index subgroup of Γ has to be ≤ dim(G/K)−dim(H/H∩K),
see [41].) Corollary 4.7 can be compared with the following results on lattices of G.

(a) Let Γ be an irreducible lattice of G such that Γ∩H is a lattice of H. Here is a precise counting
result, due to Eskin–McMullen [17], for the Γ-orbit through the origin x0: for any sequence
(Bn)n∈N of “well-rounded” subsets of X,

#
(
Γ·x0 ∩ Bn

)
∼

n→+∞

vol((Γ ∩ H)\H)
vol(Γ\G)

· volX(Bn).

In particular (see Lemma 4.18 and (5.16), (5.17) below), there is a constant C > 0, indepen-
dent of Γ, such that

#
(
Γ·x0 ∩ BX(R)

)
∼

R→+∞

C ·
vol((Γ ∩ H)\H)

vol(Γ\G)
· e2‖ρb‖R.

(b) Let Γ be a lattice of G. The Γ-orbit through an arbitrary point x ∈ X can be dense in X,
in which case #(Γ · x ∩ BX(R)) is infinite. For instance, this is generically the case for X =

SL3(R)/SO(2, 1) and Γ = SL3(Z): see Margulis’s proof [54] of the Oppenheim conjecture.

Here we denote by ‖ρb‖ the norm of half the sum of the elements of a positive system Σ+(g, b)
of restricted roots of b in g; this norm does not depend on the choice of Σ+(g, b). We note that
‖ρb‖ ≤ ‖ρa‖ (see Remark 6.8).

It would be interesting to obtain a precise counting result in our setting, in terms of the
sharpness constants and of the critical exponent of Γ. We observe that the following lower bound
holds.

Remark 4.9. Let Γ be a discrete subgroup of G whose Zariski closure in G is semisimple or
contained in a semisimple group of real rank 1. For any ε > 0 there is a constant cε(Γ) ∈ (0, 1]
such that for any x = g·x0 ∈ X (where g ∈ G) and any R > 0,

#
(
Γ·x ∩ BX(R)

)
≥

cε(Γ)
#(Γ ∩ gHg−1)

e(δΓ−ε)(R−‖µ(g)‖)

(with the convention 1/+∞ = 0). If Γ is (c,C)-sharp, then

#(Γ ∩ gHg−1) ≤ cε(Γ)−1 e(δΓ+ε) 2 ‖µ(g)‖+C
c < +∞.

Indeed, the first formula is a consequence of (4.10), of the inequality ‖ν‖ ≤ ‖µ‖ (Lemma 4.17),
and of the fact that the critical exponent, defined as a limsup, is in fact a limit [67, 64]. The bound
on #(Γ∩gHg−1) for sharp Γ comes from the fact that if γ ∈ gHg−1, then da(µ(γ), µ(H)) ≤ 2 ‖µ(g)‖
by (4.3) and (4.4), hence ‖µ(γ)‖ ≤ 2 ‖µ(g)‖+C

c by (c,C)-sharpness.

4.4. Examples of sharp groups
Before we prove Lemma 4.6 (in Section 4.6), we first give some examples of sharp Clifford–

Klein forms to illustrate and motivate this notion. We begin with an important example (which
holds in the more general context of a homogeneous space X = G/H where G is a reductive
group and H a closed subgroup of G).
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Example 4.10. All standard Clifford–Klein forms of X are sharp.

The notion of “standard” was defined in the introduction (Definition 1.4). To understand why
Example 4.10 is true, here is a more precise statement.

Example 4.11. Let L be a reductive subgroup of G acting properly on X. If L is stable under the
Cartan involution θ, then the set µ(L) is the intersection of a+ with a finite union of subspaces
of a, which meet µ(H) only in 0. Let c be the sine of the minimal angle between µ(L) and µ(H).
Then any Clifford–Klein form XΓ with Γ ⊂ L is (c, 0)-sharp.

Proof of Example 4.11. If L is stable under the Cartan involution θ, then K ∩ L is a maximal
compact subgroup of L and there is an element k ∈ K such that kAk−1 ∩ L is a maximal split
abelian subgroup of L and the Cartan decomposition

L = (K ∩ L)(kAk−1 ∩ L)(K ∩ L)

holds. The set µ(L) = µ(A∩k−1Lk) = a+∩W · (a∩Ad(k−1)(Lie(L))) is the intersection of a+ with
a finite union of subspaces of a; it meets µ(H) only in 0 by the properness criterion [41, Th. 4.1].
By definition of sharpness, L is (c, 0)-sharp for X, and so is any subgroup Γ ⊂ L.

This explains why Proposition 4.3.(2) is true.

Proof of Proposition 4.3.(2). The fact that any reductive subgroup L of G acting properly on X
admits a conjugate that is (c, 0)-sharp for some c > 0 follows from Example 4.11 and from the
fact that any reductive subgroup L of G admits a conjugate in G that is θ-stable, by our definition
of reductive (see Section 1.5).

Proof of Example 4.10. The fact that all standard Clifford–Klein forms of X are sharp follows
from Proposition 4.3.(1) and (2).

Additional evidence that sharpness is a fundamental concept is given by the fact that all
known examples of compact Clifford–Klein forms of reductive homogeneous spaces are sharp,
even when they are nonstandard. We conjecture that they should all be.

Conjecture 4.12. Let G be a reductive linear Lie group and H a reductive subgroup of G. Any
compact Clifford–Klein form of X = G/H is sharp.

The following particular case of Conjecture 4.12 was proved in [31].

Example 4.13 ([31, Th. 1.1]). Let X = G/H, where G is a reductive linear Lie group and H a
reductive subgroup of G. Let Γ be a uniform lattice in some reductive subgroup L of G of real
rank 1. Any small deformation of the standard Clifford–Klein form XΓ is sharp.

In other words, there exists a neighborhoodU ⊂ Hom(Γ,G) of the natural inclusion such that
the group ϕ(Γ) is discrete in G and sharp for X for all ϕ ∈ U. More precisely, if Γ is (c,C)-sharp,
then for any ε > 0 there is a neighborhood Uε ⊂ Hom(Γ,G) of the natural inclusion such that
ϕ(Γ) is (c − ε,C + ε)-sharp for all ϕ ∈ Uε (and even (c − ε,C)-sharp if C > 0 or Γ ∩ K = {e},
for instance if Γ is torsion-free). This holds more generally whenever Γ is a convex cocompact
subgroup of L, i.e. a discrete subgroup acting cocompactly on some nonempty convex subset of
the Riemannian symmetric space of L.

In the special case of X = AdS3 = SO(2, 2)0/SO(1, 2)0, sharpness was proved in [32] for all
compact Clifford–Klein forms, even for those that are not deformations of standard ones (such
forms exist by [70]).
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Example 4.14 ([32, Th. 5.1.1]). All compact Clifford–Klein forms of X = AdS3 are sharp.

As we will see in Section 10.2, this is a special case of the following recent result.

Example 4.15 ([21, Cor. 1.16]). Let 8G be a real semisimple linear Lie group of real rank 1. All
compact Clifford–Klein forms of X = (8G ×8G)/Diag(8G) are sharp.

We note that there exist Clifford–Klein forms XΓ with Γ infinitely generated that are not
sharp (see [22, § 10.1]). Also, not all sharp Clifford–Klein forms remain sharp under small
deformations; it can happen that the action actually stops being properly discontinuous.

Example 4.16. Let X = (8G×8G)/Diag(8G) and Γ = 8Γ×{e}, where 8G is a real semisimple linear
Lie group of real rank 1 and 8Γ a discrete subgroup of 8G containing a nontrivial unipotent ele-
ment 8γu (for instance a nonuniform lattice of 8G). For any neighborhoodU ⊂ Hom(Γ, 8G ×8G),
there is an element ϕ ∈ U such that the group ϕ(Γ) does not act properly discontinuously on X.

The idea is to obtain a contradiction with the properness criterion of Benoist and Kobayashi
for some ϕ such that the first projection of ϕ(8γu, e) to 8G is unipotent and the second projection
is hyperbolic (see [22, § 6]).

4.5. Link between the Cartan and polar projections
In order to prove Lemma 4.6, we will use the following link between the Cartan projection µ

(on which the notion of sharpness is built) and the polar projection ν (on which our counting is
based).

Lemma 4.17. For any g ∈ G,

da(µ(g), µ(H)) ≤ ‖ν(g)‖ ≤ ‖µ(g)‖ .

Proof. For g ∈ G, write g = kbh, where k ∈ K, b ∈ B+, and h ∈ H. Since H is fixed by σ, since
K is globally preserved by σ (because σ and θ commute), and since σ(b) = b−1 ∈ B ⊂ A, we
have

µ(gσ(g)−1) = µ(bσ(b)−1) = µ(b2) = 2 µ(b).

Using (4.2) and the fact that ‖µ(b)‖ = ‖ν(b)‖ = ‖ν(g)‖ by (4.6), we obtain

2 ‖ν(g)‖ = ‖µ(gσ(g)−1)‖ ≤ ‖µ(g)‖ + ‖µ(σ(g)−1)‖. (4.11)

Since σ(K) = K and σ(A) = A (because a = (a ∩ h) + b), we have ‖µ(σ(g)−1)‖ = ‖µ(g)‖, which
implies ‖ν(g)‖ ≤ ‖µ(g)‖. On the other hand, by (4.4) and (4.6),

da(µ(g), µ(H)) ≤ ‖µ(g) − µ(h)‖
= ‖µ(bh) − µ(h)‖
≤ ‖µ(b)‖ = ‖ν(b)‖ = ‖ν(g)‖.

The following lemma implies, together with (5.16) below, that for any sequence (Rn) ∈ RN
+

tending to infinity, the sequence (BX(Rn))n∈N of “pseudo-balls” of radius Rn centered at the origin
(see (4.8)) is “well-rounded” in the sense of Eskin–McMullen [17]: for any ε > 0 there is a
neighborhoodU of e in G such that

volX
(
U · ∂BX(Rn)

)
≤ ε volX

(
BX(Rn)

)
.
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Lemma 4.18. For any g, g′ ∈ G,

‖ν(g′)‖ − ‖µ(g)‖ ≤ ‖ν(gg′)‖ ≤ ‖ν(g′)‖ + ‖µ(g)‖.

Proof. Let g, g′ ∈ G. Write g′ = kbh with k ∈ K, b ∈ B+, and h ∈ H. By Lemma 4.17 and (4.2),

‖ν(gg′)‖ = ‖ν(gkb)‖ ≤ ‖µ(gkb)‖ ≤ ‖µ(g)‖ + ‖µ(kb)‖.

But ‖µ(kb)‖ = ‖ν(kb)‖ = ‖ν(g′)‖ by (4.6), hence ‖ν(gg′)‖ ≤ ‖ν(g′)‖ + ‖µ(g)‖. Applying this
inequality to (g−1, gg′) instead of (g, g′), we obtain ‖ν(gg′)‖ ≥ ‖ν(g′)‖ − ‖µ(g)‖.

4.6. Proof of the counting estimates

We now use Lemmas 4.4 and 4.17, together with the classical growth theory for discrete
isometry groups in the Riemannian symmetric space G/K, to prove Lemma 4.6.

Proof of Lemma 4.6.(1). By Lemmas 4.4 and 4.17, for all g ∈ G and γ ∈ Γ we have

‖ν(γg)‖ ≥ da(µ(γg), µ(H)) ≥ da(µ(γ), µ(H)) − ‖µ(g)‖.

Using the sharpness assumption, we obtain that for all g ∈ G,

‖ν(γg)‖ ≥ c ‖µ(γ)‖ −C − ‖µ(g)‖, (4.12)

hence
#
{
γ ∈ Γ : ‖ν(γg)‖ < R

}
≤ #

{
γ ∈ Γ : ‖µ(γ)‖ <

R + C + ‖µ(g)‖
c

}
.

By definition (4.9) of the critical exponent δΓ, for any ε > 0 there exists Rε > 0 such that for all
R ≥ Rε,

1
R

log #{γ ∈ Γ : ‖µ(γ)‖ < R} ≤ δΓ + ε.

In particular, there is a constant cε > 0 such that for any R > 0,

#{γ ∈ Γ : ‖µ(γ)‖ < R} ≤ cε eδΓ+ε.

This implies the result.

The proof of Lemma 4.6.(3) follows rigorously the same idea, using the following classical
observation (where y0 = eK ∈ G/K as before).

Observation 4.19. There is a constant cG ≥ 1 depending only on G such that for any discrete
subgroup Γ of G and any R > 0,

#
(
Γ·y0 ∩ BG/K(R)

)
≤ cG e2 ‖ρa‖R.

In particular, δΓ ≤ 2 ‖ρa‖ and

#
{
γ ∈ Γ : ‖µ(γ)‖ < R

}
≤ cG e2 ‖ρa‖R · #(Γ ∩ K).
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Proof. Let
DG/K =

{
y ∈ G/K : dG/K(y, y0) ≤ dG/K(y, γ · y0) ∀γ ∈ Γ

}
(4.13)

be the Dirichlet domain centered at y0, and let t > 0 be the distance from y0 to the boundary
ofDG/K . For all R > 0 and all γ ∈ Γ with γ · y0 ∈ BG/K(R),

γ · BG/K(t) ⊂ BG/K(R + t)

since G acts on G/K by isometries. Moreover, by definition of t, the balls γ · BG/K(t) and
γ′ · BG/K(t) (for γ, γ′ ∈ Γ) do not intersect if γ · y0 , γ

′ · y0. Therefore,

#
(
Γ·y0 ∩ BG/K(R)

)
· vol BG/K(t) ≤ vol BG/K(R + t).

Observation 4.19 is then a consequence of the following volume estimate (see [25, Ch. I, Th. 5.8]):
there is a constant c′G (depending only on G) such that

vol BG/K(R′) ∼
R′→+∞

c′G e2‖ρa‖R′ .

We now turn to Lemma 4.6.(2) and (4). It is sufficient to give a proof for x in some fun-
damental domain of X for the action of Γ. We consider the following particular fundamental
domain.

Definition-Lemma 4.20 (A pseudo-Riemannian Dirichlet domain). Let Γ be a discrete subgroup
of G acting properly discontinuously on X. The set

DX = {x ∈ X : ‖ν(x)‖ ≤ ‖ν(γ · x)‖ ∀γ ∈ Γ}

is nonempty and is a fundamental domain of X for the action of Γ.

Proof. By Remark 4.5, for any given x ∈ X there are only finitely many elements γ ∈ Γ such that
‖ν(γ ·x)‖ ≤ ‖ν(x)‖; in particular, there is an element γ0 ∈ Γ such that ‖ν(γ0 ·x)‖ ≤ ‖ν(γ ·x)‖ for all
γ ∈ Γ. Thus DX is nonempty and Γ · DX = X. To see that DX is actually a fundamental domain
(which is not needed in our proof of Lemma 4.6, where we only use Γ · DX = X), it is sufficient
to see that for any γ in the countable group Γ, the set

Hγ := {x ∈ X : ‖ν(x)‖ = ‖ν(γ · x)‖}

has measure 0 in X. But (4.1) and (4.11) imply that for any g ∈ G,

2 ‖ν(g)‖ = ‖µ(gσ(g)−1)‖ = dG/K
(
y0, gσ(g)−1 · y0

)
.

Therefore the function ‖ν‖2 is analytic on G, hence on X = G/H. Since x 7→ ‖ν(x)‖2 − ‖ν(γ · x)‖2

is not constant on X, the setHγ has measure 0.

The fundamental domain DX is an analogue, in the pseudo-Riemannian space X = G/H,
of the classical Dirichlet domain DG/K of (4.13). Indeed, by (4.1) and the G-invariance of the
metric dG/K ,

DG/K =
{
y ∈ G/K : ‖µ(y)‖ ≤ ‖µ(γ · y)‖ ∀γ ∈ Γ

}
.

The distance to the origin ‖µ‖ in G/K is replaced by the “pseudo-distance to the origin” ‖ν‖ in X.
The proof of Lemma 4.6.(2) and (4) is now similar to that of Lemma 4.6.(1) and (3): we just

replace (4.12) by the following inequality.
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Lemma 4.21. Let Γ be a discrete subgroup of G that is (c,C)-sharp for X. For any γ ∈ Γ and
x ∈ DX ,

‖ν(γ·x)‖ ≥
c
2
‖µ(γ)‖ −C.

Proof. Let γ ∈ Γ and x ∈ DX . There is an element g ∈ KB+ ⊂ G such that x = g · x0. If
‖µ(g)‖ ≥ c

2 ‖µ(γ)‖, then, using the definition ofDX and the fact that g ∈ KB+, together with (4.6),
we have

‖ν(γg)‖ ≥ ‖ν(g)‖ = ‖µ(g)‖ ≥
c
2
‖µ(γ)‖.

If ‖µ(g)‖ ≤ c
2 ‖µ(γ)‖, then, using Lemmas 4.4 and 4.17 together with the sharpness of Γ, we

obtain

‖ν(γg)‖ ≥ da(µ(γg), µ(H))
≥ da(µ(γ), µ(H)) − ‖µ(g)‖

≥
c
2
‖µ(γ)‖ −C.

4.7. Sharpness and deformation

We conclude this section by examining the behavior of the sharpness constants under small
deformations in the standard case. The two results below are easy corollaries of [31, Th. 1.4] (see
Example 4.13).

Lemma 4.22. Let Γ be a convex cocompact subgroup (for instance a uniform lattice) of some
reductive subgroup L of G of real rank 1 acting properly on the reductive symmetric space X.
Assume that Γ is (c,C)-sharp for X and that ‖ν(γ)‖ ≥ r for all γ ∈ ΓrZ(Gs). For any ε > 0 there
is a neighborhoodUε ⊂ Hom(Γ,G) of the natural inclusion such that for any ϕ ∈ Uε, the group
ϕ(Γ) is discrete in G and (c − ε,C + ε)-sharp for X, with ‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ Γ r Z(Gs).

As in Section 3.3, we denote by Z(Gs) the center of the commutator subgroup of G.

Proof. Fix ε > 0 and let ε′ > 0 be small enough so that

c − ε′

1 + ε′
≥ c − ε and ε′ +

ε′

1 + ε′
≤ ε.

By [31, Th. 1.4], there is a neighborhoodWε′ ⊂ Hom(Γ,G) of the natural inclusion such that for
any ϕ ∈ Wε′ , the group ϕ(Γ) is discrete in G and

‖µ(ϕ(γ)) − µ(γ)‖ ≤ ε′ ‖µ(γ)‖ + ε′

for all γ ∈ Γ (and even ‖µ(ϕ(γ)) − µ(γ)‖ ≤ ε′ ‖µ(γ)‖ for all γ ∈ Γ r K). By Lemma 4.17,

‖ν(ϕ(γ))‖ ≥ da(µ(ϕ(γ)), µ(H))
≥ da(µ(γ), µ(H)) − ‖µ(ϕ(γ)) − µ(γ)‖
≥ (c − ε′) ‖µ(γ)‖ − (C + ε′)

≥
c − ε′

1 + ε′
‖µ(ϕ(γ))‖ −

(
C + ε′ +

ε′

1 + ε′

)
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for all ϕ ∈ Wε′ and γ ∈ Γ; in particular, ϕ(Γ) is (c − ε,C + ε)-sharp for X. Since Γ is discrete
in G and µ is a proper map, the set

F :=
{
γ ∈ Γ : ‖µ(γ)‖ <

r + C + ε′

c − ε′

}
is finite. For any ϕ ∈ Wε′ and γ ∈ Γ r F we have

‖ν(ϕ(γ))‖ ≥ (c − ε′) ‖µ(γ)‖ − (C + ε′) ≥ r.

LetUε be the set of elements ϕ ∈ Wε′ such that ‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ F r Z(Gs). Then
Uε is a neighborhood of the natural inclusion since ν is continuous and F finite, andUε satisfies
the conclusions of Lemma 4.22.

Lemma 4.23. Suppose that G = 8G × 8G for some reductive linear group 8G and let X =

(8G × 8G)/Diag(8G). Let 8G1 and 8G2 be reductive subgroups of 8G and let Γ = 8Γ1 ×
8Γ2 for

some discrete subgroups 8Γ1 of 8G1 and 8Γ2 of 8G2. Assume that Γ is (c,C)-sharp for X and that
‖ν(γ)‖ ≥ r for all γ ∈ Γ r Z(Gs).

(1) Suppose that for all i ∈ {1, 2}, the group 8Γi is

• either an irreducible uniform lattice of 8Gi

• or, more generally, a convex cocompact subgroup of 8Gi if 8Gi has real rank 1.

Then for any ε > 0 there is a neighborhood Uε ⊂ Hom(Γ,G) of the natural inclusion such
that for any ϕ ∈ Uε, the group ϕ(Γ) is discrete in G and (c − ε,C + ε)-sharp for X, with
‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ Γ r Z(Gs).

(2) Suppose that 8G1 has real rank 1 and that 8Γ1 is convex cocompact in 8G1. Then for any ε > 0
there is a neighborhood 8Uε ⊂ Hom(8Γ1,

8G × Z8G(8Γ2)) of the natural inclusion such that
for any 8ϕ ∈ 8Uε, the group 8ϕ(8Γ1)8Γ2 is discrete in G and (c − ε,C + ε)-sharp for X, with
‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ Γ r Z(Gs).

Here Z8G(8Γ2) denotes the centralizer of 8Γ2 in 8G.

Proof. Fix ε > 0 and let ε′ > 0 be small enough so that

c − 2ε′

1 + 2ε′
≥ c − ε and 2

√
2 ε′ +

2
√

2 ε′

1 + 2ε′
≤ ε.

By [31, Th. 1.4], if 8G1 (resp. 8G2) has real rank 1 and 8Γ1 (resp. 8Γ2) is convex cocompact in 8G1
(resp. in 8G2), then there is a neighborhood W1,ε′ ⊂ Hom(Γ,G) (resp. W2,ε′ ⊂ Hom(Γ,G)) of
the natural inclusion such that for any ϕ ∈ W1,ε′ (resp. ϕ ∈ W2,ε′ ), the group ϕ(8Γ1 × {e}) (resp.
ϕ({e} × 8Γ2)) is discrete in G and

‖µ(ϕ(8γ1, e)) − µ(8γ1, e)‖ ≤ ε′ ‖µ(8γ1, e)‖ + ε′ (4.14)

for all 8γ1 ∈
8Γ1 (resp.

‖µ(ϕ(e, 8γ2)) − µ(e, 8γ2)‖ ≤ ε′ ‖µ(e, 8γ2)‖ + ε′ (4.15)
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for all 8γ2 ∈
8Γ2). If 8G1 (resp. 8G2) has real rank ≥ 2 and 8Γ1 (resp. 8Γ2) is an irreducible

lattice in 8G1 (resp. in 8G2), then 8Γ1 (resp. 8Γ2) is locally rigid in G [65, 82], and so a similar
neighborhoodW1,ε′ ⊂ Hom(Γ,G) (resp.W2,ε′ ⊂ Hom(Γ,G)) of the natural inclusion exists by
(4.3) and (4.4). Since Γ is discrete in G and µ is a proper map, the set

F :=
{
γ ∈ Γ : ‖µ(γ)‖ <

r + C + 2
√

2 ε′

c − 2ε′

}
is finite. In the setting of (1), we let Uε be the set of elements ϕ ∈ W1,ε′ ∩ W2,ε′ such that
‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ F r Z(Gs); thenUε ⊂ Hom(Γ,G) is a neighborhood of the natural
inclusion and any ϕ ∈ Uε satisfies (4.14) and (4.15). In the setting of (2), we set

8Wε′ :=
{
ϕ ◦ i1 : ϕ ∈ W1,ε′ , ϕ|{e}×8Γ2 = id{e}×8Γ2

}
,

where i1 : 8Γ1 ↪→ 8Γ1 × {e} is the natural inclusion, and we let 8Uε be the set of elements
8ϕ ∈ 8Wε′ such that ‖ν(8ϕ(8γ1)8γ2)‖ ≥ r − ε for all γ = (8γ1,

8γ2) ∈ F r Z(Gs); then 8Uε ⊂

Hom(8Γ1,
8G × Z8G(8Γ2)) is a neighborhood of the natural inclusion and for any 8ϕ ∈ 8Uε, the

homomorphism ϕ := ((8γ1,
8γ2) 7→ 8ϕ(8γ1)8γ2) satisfies (4.14) and (4.15).

We now consider ϕ ∈ Hom(Γ,G) satisfying (4.14) and (4.15) and prove that the group ϕ(Γ) is
discrete in G and (c− ε,C + ε)-sharp for X, with ‖ν(ϕ(γ))‖ ≥ r− ε for all γ ∈ ΓrZ(Gs). We note
that a = 8a +8a, where 8a is a maximal split abelian subspace of 8g; for i ∈ {1, 2}, let πi : a → 8a
be the projection onto the i-th factor. Then∥∥∥π1

(
µ(ϕ(8γ1,

8γ2)) − µ(8γ1,
8γ2)

)∥∥∥ =
∥∥∥π1

(
µ(ϕ(8γ1,

8γ2)) − µ(8γ1, e)
)∥∥∥

≤
∥∥∥π1

(
µ(ϕ(8γ1,

8γ2)) − µ(ϕ(8γ1, e))
)∥∥∥ +

∥∥∥π1
(
µ(ϕ(8γ1, e)) − µ(8γ1, e)

)∥∥∥,
where ∥∥∥π1

(
µ(ϕ(8γ1,

8γ2)) − µ(ϕ(8γ1, e))
)∥∥∥ ≤

∥∥∥π1
(
µ(ϕ(e, 8γ2)

)∥∥∥
=

∥∥∥π1
(
µ(ϕ(e, 8γ2)) − µ(e, 8γ2)

)∥∥∥
≤ ‖µ(ϕ(e, 8γ2)) − µ(e, 8γ2)‖
≤ ε′ ‖µ(e, 8γ2)‖ + ε′

(using (4.3) applied to 8G and (4.15)) and∥∥∥π1
(
µ(ϕ(8γ1, e)) − µ(8γ1, e)

)∥∥∥ ≤ ‖µ(ϕ(8γ1, e)) − µ(8γ1, e)‖
≤ ε′ ‖µ(8γ1, e)‖ + ε′

(using (4.14)). Therefore,∥∥∥π1
(
µ(ϕ(8γ1,

8γ2)) − µ(8γ1,
8γ2)

)∥∥∥ ≤ ε′
(
‖µ(8γ1, e)‖ + ‖µ(e, 8γ2)‖

)
+ 2ε′

≤
√

2ε′ ‖µ(8γ1,
8γ2)‖ + 2ε′.

Similarly, ∥∥∥π2
(
µ(ϕ(8γ1,

8γ2)) − µ(8γ1,
8γ2)

)∥∥∥ ≤ √2ε′ ‖µ(8γ1,
8γ2)‖ + 2ε′.

Thus
‖µ(ϕ(γ)) − µ(γ)‖ ≤ 2ε′ ‖µ(γ)‖ + 2

√
2ε′

for all γ ∈ Γ. Using the fact that Γ is discrete in G and µ is a proper map, we obtain that ϕ(Γ) is
discrete in G. We conclude as in the proof of Lemma 4.22.
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5. Asymptotic estimates for eigenfunctions on symmetric spaces

Under the rank condition (3.3), Flensted-Jensen [19] proved that the space L2(X,Mλ)K of
K-finite elements in L2(X,Mλ) is nonzero for infinitely many joint eigenvalues λ, by an explicit
construction based on some duality principle and the Poisson transform. Then, applying deep
results of microlocal analysis and hyperfunction theory [29], Oshima and Matsuki [57, 60] gave
a detailed analysis of the asymptotic behavior at infinity of these eigenfunctions. In this section,
we reformulate their estimates as follows, in terms of

• the “weighted distance” d(λ) of the spectral parameter λ to the walls of j∗ (which measures
the regularity of λ),

• the “pseudo-distance from the origin” ‖ν(x)‖ of x ∈ X (which measures how x goes to
infinity).

Proposition 5.1. Under the rank condition (3.3), there is a constant q > 0 such that for all λ ∈ j∗

and ϕ ∈ L2(X,Mλ)K , the function

x 7−→ ϕ(x) · eq d(λ)‖ν(x)‖

is bounded on X; in particular, ϕ ∈ L1(X) if d(λ) > 2‖ρb‖/q.

We refer to Section 3.3 (resp. 4.1) for the definition of d : j∗ → R≥0 (resp. ν : X → b+). As
in Remark 4.8, we denote by ‖ρb‖ the norm of half the sum of the elements of a positive system
Σ+(g, b) of restricted roots of b in g; this norm does not depend on the choice of Σ+(g, b).

As we shall see, the constant q is computable in terms of some root system (see (5.14) in the
proof of Lemma 5.8).

The proof of Proposition 5.1 will be given in Section 5.4. For the reader’s convenience, we
first give a brief review of the Poisson transform on Riemannian symmetric spaces of the non-
compact type (Section 5.1), of the Flensted-Jensen duality (Section 5.2), and of the construction
of discrete series representations (Section 5.3). The material of these three sections is not new,
but we will need it later. Often analysis on reductive symmetric spaces requires a rather large
amount of notation; here we try to keep it minimal for our purpose.

In the whole section, we denote byA the sheaf of real analytic functions and by B the sheaf
of hyperfunctions; we refer to [28] for an introduction to hyperfunctions.

5.1. Poisson transform in Riemannian symmetric spaces
Let Xd = Gd/Kd be a Riemannian symmetric space of the noncompact type, where Gd is a

connected reductive linear Lie group and Kd a maximal compact subgroup of Gd. Let Pd be a
minimal parabolic subgroup of Gd. We give a brief overview of the theory of the Poisson trans-
form as an intertwining operator between hyperfunctions on Gd/Pd and eigenfunctions on Xd

(see [25, 29] for details). The notation Gd is used to avoid confusion since the results of this
paragraph will not be applied to G but to another real form of GC.

Let j be a maximal split abelian subalgebra of gd := Lie(Gd) such that the Cartan decom-
position Gd = Kd(exp j)Kd holds. Since all minimal parabolic subgroups of Gd are conjugate,
we may assume that Pd contains exp j and has the Langlands decomposition Pd = Md(exp j)Nd,
where Md = Kd ∩ Pd is the centralizer of exp j in Kd and Nd is the unipotent radical of Pd. The
Iwasawa decomposition Gd = Kd(exp j)Nd holds. Let ζ : Gd → j be the corresponding Iwasawa
projection, defined by

g ∈ Kd(exp ζ(g))Nd
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for all g ∈ Gd. For λ ∈ j∗C we define functions ξλ, ξ∨λ ∈ A(Gd) by

ξλ(g) := e〈λ,ζ(g)〉 and ξ∨λ (g) := ξλ(g−1) (5.1)

for g ∈ Gd. Since ξλ is left-Kd-invariant, ξ∨λ induces a function on Xd, which we still denote
by ξ∨λ .

We choose a positive system Σ+(gC, jC), defining positive Weyl chambers j+ in j and j∗+ in j∗.
Let ρ be half the sum of the elements of Σ+(gC, jC), counted with root multiplicities. For λ ∈ j∗C,
the function ξλ is a character of Pd. Let B(Gd/Pd,Lλ) be the hyperfunction-valued normal-
ized principal series representation of Gd associated with the character ξ−λ of Pd: by definition,
B(Gd/Pd,Lλ) is the set of hyperfunctions f ∈ B(Gd) such that

f ( · p) = ξ−λ+ρ(p−1) f (= f ξλ−ρ(p))

for all p ∈ Pd. Here we use the character ξ−λ and not ξλ, following the usual convention in
harmonic analysis on symmetric spaces (see [2, 16, 19, 25, 57]) rather than in the representation
theory of reductive groups (see [39, 80]). Setting

A(Gd/Pd,L−λ) := A(Gd) ∩ B(Gd/Pd,L−λ),

there is a natural Gd-invariant bilinear form

〈 · , · 〉 : B(Gd/Pd,Lλ) ×A(Gd/Pd,L−λ) −→ C

given by the integration over Gd/Pd. We note that ξ−λ−ρ ∈ A(Gd/Pd,L−λ), hence the left trans-
late ξ−λ−ρ(g−1 · ) also belongs to A(Gd/Pd,L−λ) for all g ∈ Gd. Since ξ−λ−ρ is left-Kd-invariant,
we obtain a Gd-intertwining operator (Poisson transform)

Pλ : B(Gd/Pd,Lλ) −→ A(Xd)

given by
(Pλ f )(g) := 〈 f , ξ−λ−ρ(g−1 · )〉 .

It follows directly from the definition of the Harish-Chandra isomorphism in Section 3.1 that for
all f ∈ B(Gd/Pd,Lλ), the function Pλ f ∈ A(Xd) satisfies the system (Mλ), defined similarly
to Section 3.1. For Re λ ∈ j∗+, the Helgason conjecture (proved in [29]) asserts that the Poisson
transform

Pλ : B(Gd/Pd,Lλ) −→ A(Gd/Kd,Mλ)

is actually a bijection.

Example 5.2. Assume that Gd has real rank 1. Then Gd/Pd identifies with the boundary at
infinity of Xd. The function ξ∨λ is the exponential of some multiple of the Busemann function
associated with the geodesic ray (exp j+)Kd in Xd = Gd/Kd; its level sets are the horospheres
centered at ePd ∈ Gd/Pd. For λ = ρ, the Poisson operator Pλ identifies the set of continuous
functions on Gd/Pd with the set of harmonic functions on Xd admitting a continuous extension
to Xd = Xd ∪Gd/Pd. (See Section 9.7 for the case Gd = SL2(C).)
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5.2. Real forms of GC/HC and the Flensted-Jensen duality
We now come back to the setting of Sections 1 to 4, where G is a connected reductive linear

Lie group and H an open subgroup of the group of fixed points of G under some involutive
automorphism σ. Let GC be a connected Lie group containing G with Lie algebra gC := g⊗R C,
and let HC be the connected subgroup of GC with Lie algebra hC := h ⊗R C. We consider
three different real forms of the complex symmetric space XC = GC/HC: our original pseudo-
Riemannian symmetric space X = G/H, a Riemannian symmetric space XU = GU/HU of the
compact type, and a Riemannian symmetric space Xd = Gd/Kd of the noncompact type. They
are constructed as follows. Let g = h + q be the decomposition of g into eigenspaces of dσ as in
Section 3.1, and let g = k + p be the Cartan decomposition associated with the Cartan involution
θ of G of Section 3.2, which commutes with σ. The maps dσ and dθ extend to automorphisms
of the complex Lie algebra gC, for which we use the same letters. We set

gd := gσθ +
√
−1 g−σθ = (h ∩ k + q ∩ p) +

√
−1 (h ∩ p + q ∩ k),

kd = hU := h ∩ k +
√
−1 (h ∩ p),

gU := k +
√
−1 p,

and let Gd (resp. Kd = HU , resp. GU) be the connected subgroup of GC with Lie algebra gd

(resp. kd = hU , resp. gU). We note that Kd = HU is the compact real form of HC. For
instance, for the anti-de Sitter space X = AdS2n+1 = SO(2, 2n)0/SO(1, 2n)0, we have XU =

SO(2n + 2)/SO(2n + 1) = S2n+1 and Xd = SO(1, 2n + 1)0/SO(2n + 1) = H2n+1 (see Section 10.1).
Let Hd be the connected subgroup of GC with Lie algebra

hd := h ∩ k +
√
−1 (q ∩ k).

We note that Kd ∩ Hd = (H ∩ K)0 and that Hd/Kd ∩ Hd and K/H ∩ K are two Riemannian
symmetric spaces with the same complexification — the first one of the noncompact type, the
second one of the compact type. This will be used in Section 7.

For any hd-module V over C, the action of hd on V extends C-linearly to an action of kC =

hd ⊗R C, and the set Vhd of hd-finite vectors is equal to the set VkC of kC-finite vectors. We define
the set VK of K-finite vectors of V to consist of vectors v ∈ Vhd = VkC such that the action of
k ⊂ kC on the C-span of k · v lifts to an action of K. Then VK is a K-module contained in Vhd .

Remark 5.3. In the definition of VK , we do not assume that the group K acts on V . In the
situation below, neither V nor Vhd = VkC can be acted on by the group K.

The Lie algebra gd (hence its subalgebra hd) acts onA(Xd) by differentiation on the left:

(Y · ϕ)(x) =
d
dt

∣∣∣∣
t=0
ϕ
(

exp(−tY) · x
)

(5.2)

for all Y ∈ gd, all ϕ ∈ A(Xd), and all x ∈ Xd. Since the system (Mλ) is Gd-invariant, its space
of solutions A(Xd,Mλ) is a gd-submodule of A(Xd) for λ ∈ j∗C; thus we can define K-modules
A(Xd,Mλ)K ⊂ A(Xd)K . By using holomorphic continuation, Flensted-Jensen [19] constructed
an injective homomorphism

η : A(X)K ↪−→ A(Xd)K (5.3)
∪ ∪

A(X,Mλ)K ↪−→ A(Xd,Mλ)K
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for all λ ∈ j∗C. For the reader’s convenience, we now recall the construction of η in the case when
GC is simply connected.

Assume that GC is simply connected. Then the set of fixed points of GC under any involutive
automorphism is connected [5, Th. 3.4]. We can extend σ and θ to holomorphic automorphisms
of GC, for which we use the same letters σ and θ. The complex conjugation of gC = g +

√
−1 g

with respect to the real form g lifts to an anti-holomorphic involution τ of GC, such that G = Gτ
C.

Since σ, θ, and τ commute, the composition of any of them gives involutive automorphisms
of GC. We have

HC = Gσ
C, Gd = Gτσθ

C , Kd = HU = HC ∩Gd, and GU = Gτθ
C .

Moreover, setting KC = Gθ
C, we have Hd = (KC ∩Gd)0 and the following inclusions hold:

K ⊂ G ⊃ H

⊃ ⊃ ⊃
KC ⊂ GC ⊃ HC (5.4)

⊂ ⊂ ⊂

Hd ⊂ Gd ⊃ Kd.

The restriction of σ to Gd is a Cartan involution of Gd, and the corresponding Cartan decom-
position gd = kd + pd is obtained as the intersection of gd with the direct sum decomposition
gC = hC + qC. The restriction of θ to Gd is an involution of Gd, and the corresponding decom-
position gd = hd + qd of gd (into eigenspaces of dθ with respective eigenvalues +1 and −1) is
obtained as the intersection of gd with the complexified Cartan decomposition gC = kC + pC. Let
b be the maximal abelian subspace of p∩q from Section 4.1. Since pd∩qd = p∩q, we may regard
B = exp b as a subgroup of Gd, and the polar decomposition Gd = HdB+Kd holds similarly to the
polar decomposition G = KB+H of Section 4.1. Any function f ∈ A(X)K extends uniquely to a
function fC : KCB+HC/HC → C such that k 7→ fC(kbHC) is holomorphic on KC for any b ∈ B+;
by letting η( f ) be the restriction of fC to Xd, we get the injective homomorphism (5.3), which is
actually bijective. The homomorphism η respects the left action of U(gC) ([19, Th. 2.5]).

We now return to the general case, where GC is not necessarily simply connected. Any G-
invariant (resp. GU-invariant, resp. Gd-invariant) differential operator on X = G/H (resp. XU =

GU/HU , resp. Xd = Gd/Kd) extends holomorphically to XC = GC/HC, hence we have canonical
C-algebra isomorphisms

D(X) ' D(XU) ' D(Xd).

Therefore, for λ ∈ j∗C, a function f ∈ A(X) satisfies (Mλ) if and only if η( f ) ∈ A(Xd) does.

5.3. Discrete series representations

We continue in the setting of Section 5.2 and now assume that the rank condition (3.3) is
satisfied. In this section we summarize Flensted-Jensen’s construction of discrete series rep-
resentations VZ,λ using his duality (5.3). Recall that the regular representation of G on L2(X)
is unitary; an irreducible unitary representation π of G is said to be a discrete series represen-
tation for X if there exists a nonzero continuous G-intertwining operator from π to L2(X) or,
equivalently, if π can be realized as a closed G-invariant subspace of L2(X). By a little abuse of
notation, we shall also call the underlying (g,K)-module πK a discrete series representation. It
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should be noted that discrete series representations for X = G/H may be different from Harish-
Chandra’s discrete series representations for the group manifold G if H is noncompact, because
L2(X) , L2(G)H .

We shall parameterize the discrete series representations for X by the spectral parameter λ
and some finite set Z defined as follows. Let Pd be the set of minimal parabolic subalgebras
of gd, on which Gd acts transitively by the adjoint action. There are only finitely many Hd-orbits
in Pd; a combinatorial description was given by Matsuki [56]. We set

Z := {closed Hd-orbits in Pd}. (5.5)

Here is a description of the finite setZ. Consider the maximal abelian subspace j of
√
−1(q ∩ k)

from Section 3. The rank condition (3.3) is equivalent to the fact that j is maximal abelian in
pd = q ∩ p +

√
−1(q ∩ k). Thus j is a maximal split abelian subalgebra of gd and the notation fits

with that of Section 5.1. All restricted roots of j in gd take real values on j and there is a natural
bijection Σ(gd, j) ' Σ(gC, jC). Note that j is actually contained in hd; there is a natural bijection
Σ(hd, j) ' Σ(kC, jC). As in Section 3.1, let W be the Weyl group of the restricted root system
Σ(gd, j), and let WH∩K be that of Σ(hd, j). Any choice of a positive system Σ+(gd, j) ' Σ+(gC, jC)
defines a point in Pd and the Hd-orbit through this point is closed. Conversely, any closed Hd-
orbit in Pd is obtained in this way. Recall that in Section 3.3 we have fixed once and for all a
positive system Σ+(kC, jC) ' Σ+(hd, j). Since any two such positive systems are conjugate by Hd,
we obtain a one-to-one correspondence{

positive systems Σ+(gd, j) containing Σ+(hd, j)
}
' Z. (5.6)

Here is another description of the finite set Z. We fix a positive system Σ+(gd, j) containing
Σ+(hd, j); this defines a minimal parabolic subgroup Pd of Gd. The subspace pd in the Cartan
decomposition gd = kd + pd should not be confused with the Lie algebra of Pd. The subset

W(Hd,Gd) :=
{
w ∈ W : w(Σ+(gd, j)) ∩ Σ(hd, j) = Σ+(hd, j)

}
. (5.7)

of the Weyl group W gives a complete set of representatives of the left coset space WH∩K\W.
Clearly, e ∈ W(Hd,Gd). We identify Pd with Gd/Pd. Then, by (5.6), the other closed Hd-orbits
in Gd/Pd are of the form

Z = HdwPd for w ∈ W(Hd,Gd) (' WH∩K\W). (5.8)

Thus we have a one-to-one correspondence

Z ' W(Hd,Gd). (5.9)

Remark 5.4. We have given two equivalent combinatorial descriptions of the finite set Z in
(5.6) and (5.9). The latter one (5.9) depends on a fixed choice of a positive system Σ+(gd, j); it is
convenient to treat different closed orbits Z simultaneously (e.g. in Fact 5.5 below). We shall use
the former one (5.6) when we give an estimate of the asymptotic behavior of individual discrete
series representations for a fixed Z ∈ Z (e.g. in the proof of Proposition 5.1 in Section 5.4, or in
Section 7).

We now recall from [19] how to construct, for any Z ∈ Z and infinitely many λ ∈ j∗C, a
subspace VZ,λ of L2(X,Mλ)K that will be a discrete series representation for X. For Z ∈ Z and
λ ∈ j∗C, we define a gd-submodule

BZ(Gd/Pd,Lλ) :=
{
f ∈ B(Gd/Pd,Lλ) : supp f ⊂ Z

}
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of the principal series representation B(Gd/Pd,Lλ) of Section 5.1. Similarly to the definition of
A(Gd/Kd,Mλ)K , we can define the set BZ(Gd/Pd,Lλ)K of K-finite elements in BZ(Gd/Pd,Lλ)
even though the group K does not act on BZ(Gd/Pd,Lλ) (see Remark 5.3). For Re λ ∈ j∗+, we
then have the following commutative diagram, where Pλ is the Poisson transform of Section 5.1.

B(Gd/Pd,Lλ) ∼−−→
Pλ

A(Gd/Kd,Mλ)

∪ ∪

BZ(Gd/Pd,Lλ)K −→ A(Gd/Kd,Mλ)K
η
←−↩ A(X,Mλ)K .

We set
VZ,λ := η−1

(
Pλ

(
BZ(Gd/Pd,Lλ)K

))
. (5.10)

Since BZ(Gd/Pd,Lλ)K is a (g,K)-module, VZ,λ is a (g,K)-submodule of A(X,Mλ)K , where g
acts by differentiation on the left, similarly to (5.2). We recall that the spaceVλ := L2(X,Mλ)K

depends only on the image of λ in j∗C/W, hence we may assume Re λ ∈ j∗+ without loss of
generality. The following fact (which includes the “C = 0” conjecture [19] and the irreducibility
conjecture) is a consequence of the work of Flensted-Jensen [19], Matsuki–Oshima [57], and
Vogan [78]. See also [2, Th. 16.1].

Fact 5.5. Let λ ∈ j∗C satisfy Re λ ∈ j∗+.

• For any Z ∈ Z, the spaceVZ,λ constructed above is contained inVλ := L2(X,Mλ)K; it is
either zero or irreducible as a (g,K)-module. Moreover,

Vλ =
⊕
Z∈Z

VZ,λ.

• Let Z ∈ Z correspond to w ∈ W(Hd,Gd) via (5.8).

– IfVZ,λ is nonzero, then λ ∈ j∗+ and

µw
λ := w(λ + ρ) − 2ρc (5.11)

belongs to the Z-module Λ defined in (3.5).

– Conversely, if λ ∈ j∗+ and if the stronger integrality condition

µw
λ ∈ Λ+ (5.12)

holds, where Λ+ is defined in (3.4), thenVZ,λ is nonzero.

Thus there are countably many discrete series representations for X. The discrete series
representationsVZ,λ for λ satisfying (5.12) were constructed by Flensted-Jensen in [19]; we will
give more details in Section 7.3.

We note that Fact 5.5 completely describes Specd(X) away from the walls of j∗+: the following
lemma states that any λ ∈ j∗+ satisfying the weak condition µw

λ ∈ Λ but not the strong condition
µw
λ ∈ Λ+ has a bounded “weighted distance to the walls” d(λ). On the other hand, the nonvan-

ishing condition for VZ,λ is combinatorially complicated for λ near the walls of j∗+; it is still not
completely settled in the literature.
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Lemma 5.6. Suppose that λ ∈ j∗+ satisfies d(λ) ≥ mρ, where mρ is given by (3.8). For w ∈
W(Hd,Gd), the following conditions on λ are equivalent:

(i) µw
λ ∈ Λ,

(ii) µw
λ ∈ Λ+.

Proof. The implication (ii)⇒ (i) is obvious. Let us prove (i)⇒ (ii), namely that if µw
λ ∈ Λ, then

µw
λ is dominant with respect to Σ+(hd, j) = Σ+(kC, jC). Firstly, we note that wρ is half the sum

of the elements in w(Σ+(gd, j)) counted with root multiplicities, where w(Σ+(gd, j)) is a positive
system containing Σ+(hd, j) (by definition (5.7) of W(Hd,Gd)). By [79], 2wρ − 2ρc is dominant
with respect to Σ+(hd, j). (In fact, it occurs as the highest weight of a representation of hd in
Λ∗qd.) Secondly, Observation 3.7 and the inequality d(λ) ≥ mρ imply that

λ − ρ =
(
λ −

d(λ)
mρ

ρ
)

+
d(λ) − mρ

mρ
ρ ∈ j∗+ ;

therefore w(λ − ρ) is dominant with respect to Σ+(hd, j) since w ∈ W(Hd,Gd). Thus µw
λ =

2(wρ − ρc) + w(λ − ρ) is dominant with respect to Σ+(hd, j).

5.4. Asymptotic behavior of discrete series

We can now complete the proof of Proposition 5.1.
By Fact 5.5, we may assume that ϕ ∈ L2(X,Mλ)K belongs toVZ,λ for some closed Hd-orbit

Z in Pd. We then use Oshima’s theorem ([60], see Fact 5.7 below) that the asymptotic behavior
of the eigenfunction ϕ is determined by Z. This theorem requires an unavoidable amount of
notation. Before entering into technical details, let us pin down the role of two positive systems
involved:

Σ+(gd, j) ∼←−−→ closed Hd-orbit Z in Pd

Cayley transform Ad(k)
...

... +W(Z)
Σ+(g, b) . . . asymptotic behavior of ϕ ∈ VZ,λ

at infinity in X = G/H

We now enter into details, retaining notation from Sections 4.1 and 5.3.
We first recall that in Section 4.1 we have chosen a positive system Σ+(gσθ, b), determining a

closed positive Weyl chamber b+ in b, a polar decomposition G = K(exp b+)H, and a projection
ν : G → b+. Any choice of a positive system Σ+(g, b) containing Σ+(gσθ, b) gives rise to a closed
positive Weyl chamber b++ ⊂ b+, and b+ is the union of such Weyl chambers b++ for the (finitely
many) different choices of Σ+(g, b). On the other hand, by Fact 5.5, the spaceVλ = L2(X,Mλ)K

is the direct sum of finitely many subspaces VZ,λ, where Z ∈ Z is a closed Hd-orbit in Pd.
Therefore, in the rest of the section, we may restrict to one closed positive Weyl chamber b++

(determined by some arbitrary positive system Σ+(g, b) containing Σ+(gσθ, b)) and one Hd-orbit
Z ∈ Z, and prove the existence of a constant q > 0 such that for any λ ∈ j∗ and ϕ ∈ VZ,λ, the
function

(k,Y) 7−→ ϕ
(
k(exp Y) · x0

)
eq d(λ)‖Y‖

is bounded on K × b++. SinceVZ,λ and d(λ) depend only on the image of λ ∈ j∗ modulo W, we
will be able to take λ in any Weyl chamber j∗+ of j∗.
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Fix Z ∈ Z and consider the positive Weyl chamber j∗+ in j∗ determined by Z via (5.6). We
introduce some additional notation. Let

+j ≡ +j(Z) :=
{
Ỹ ∈ j : 〈λ, Ỹ〉 ≥ 0 ∀λ ∈ j∗+

}
be the dual cone of j∗+ and let ρ ∈ j∗+ be given as in Section 3.3. Since all maximally split abelian
subspaces of gd are conjugate by Kd, there exists k ∈ Kd such that Ad(k)b ⊂ j; the element
Ad(k) may be thought of as an analogue of a Cayley transform from the upper-half plane to the
hyperbolic disk (see Section 9.8). We may assume that

(Ad(k)∗α)|b ∈ Σ+(g, b) ∪ {0}

for all α ∈ Σ+(gd, j); in particular, Ad(k)(b++) ⊂+j. For Y ∈ b, we write

Ỹ := Ad(k)Y ∈ j.

Let {Y1, . . . ,Y`} be the basis of b that is dual to the set of simple roots in Σ+(g, b). For t ∈ (R+)`,
we set

Yb(t) := −
∑̀
j=1

(log t j)Y j ∈ b,

so that t 7→ Yb(t) is a bijection from (R+)` to b, inducing a bijection between (0, 1]` and b++. For
w ∈ W and λ ∈ j∗, we set

βw(λ) :=
(
〈ρ − wλ, Ỹ1〉, . . . , 〈ρ − wλ, Ỹ`〉

)
∈ R`.

We recall that W is the Weyl group of Σ(gd, j). We define
+W ≡+W(Z) :=

{
w ∈ W : −w−1 · Ad(k)(b++) ⊂+j

}
.

The set+W depends on the closed Hd-orbit Z in Pd. If rank G/H = 1, then ` = 1 and+W = {w},
where w is the unique nontrivial element of W.

With this notation, here is the asymptotic behavior, due to Oshima, that we shall translate in
terms of ν and d to obtain Proposition 5.1. We consider the partial order on R` given by

β ≺ β′ if and only if β j ≤ β
′
j for all 1 ≤ j ≤ `.

Fact 5.7 ([60]). Let λ ∈ j∗+ and let Iλ be the set of minimal elements, for ≺, in the finite set
{βw(λ) : w ∈ +W} ⊂ R`. For any ϕ ∈ VZ,λ, there exist real analytic functions aβ ∈ A(K), for
β ∈ Iλ, such that ∣∣∣ϕ(k(exp Yb(t))H

)∣∣∣ ≤ ∑
β∈Iλ

aβ(k) tβ

for all k ∈ K and t ∈ (0, 1]`, where we write tβ for
∏`

j=1 t j
β j .

Let+Wλ := {w ∈ +W : βw(λ) ∈ Iλ}. Then Fact 5.7 has the following immediate consequence:
for any λ ∈ j∗+ and ϕ ∈ VZ,λ, there is a constant cϕ > 0 such that∣∣∣ϕ(k(exp Y)H

)∣∣∣ ≤ cϕ
∑

w∈+Wλ

e〈wλ,Ỹ〉 (5.13)

for all k ∈ K and Y ∈ b++. Indeed, K is compact, Iλ is finite, and for all w ∈+Wλ and t ∈ (0, 1]`,

tβw(λ) = e〈wλ−ρ, ˜Yb(t)〉 ≤ e〈wλ, ˜Yb (t)〉.

We now bound 〈wλ, Ỹ〉 in terms of the “weighted distance to the walls” d(λ).
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Lemma 5.8. There is a constant qZ > 0 such that

〈wλ, Ỹ〉 ≤ −qZ d(λ) ‖Y‖

for all w ∈+W, all λ ∈ j∗+, and all Y ∈ b++.

Proof. Let {α1, . . . , αr} be the basis of Σ(gd, j) corresponding to j∗+. Recall that for any λ ∈ j∗+,

d(λ) = min
1≤i≤r

(λ, αi)
(αi, αi)

.

Let ‖ · ‖′ be the norm on b defined by ‖
∑`

j=1 y jY j‖
′ :=

∑`
j=1 |y j| for all y1, . . . , y` ∈ R. An

elementary computation shows that we may take

qZ =
q1q2

mρ
, (5.14)

where mρ was defined in (3.8) and where

q1 := min
{
− 〈wρ, Ỹ j〉 : w ∈+W, 1 ≤ j ≤ `

}
and q2 := min

Y∈br{0}

‖Y‖′

‖Y‖
.

By (5.13) and Lemma 5.8, for any λ ∈ j∗+ and ϕ ∈ VZ,λ there is a constant c′ϕ > 0 such that∣∣∣ϕ(k(exp Y)H
)∣∣∣ ≤ c′ϕ e−qZ d(λ) ‖Y‖ (5.15)

for all k ∈ K and Y ∈ b++. We now recall (see [19, Th. 2.6] for instance) that the G-invariant
Radon measure on X = G/H is given (up to scaling) by

d
(
k(exp Y)H

)
= δ(Y) dk dY (5.16)

with respect to the polar decomposition G = K(exp b+)H, where the weight function δ is given
on b++ by

δ(Y) =
∏

α∈Σ+(g,b)

| sinhα(Y)|dimgσθα | coshα(Y)|dimg−σθα .

When Y ∈ b++ tends to infinity,
δ(Y) ∼ e2〈ρb,Y〉,

where ρb ∈ b++ is half the sum of the elements of Σ+(g, b), counted with root multiplicities. In
particular, there is a constant C > 0 such that

|δ(Y)| ≤ C e2〈ρb,Y〉 ≤ C e2‖ρb‖ ‖Y‖ (5.17)

for all Y ∈ b++. Proposition 5.1 follows from (5.15), (5.16), and (5.17), setting

q := min
Z∈Z

qZ .
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6. Convergence, square integrability, and regularity of the generalized Poincaré series

As before, X = G/H is a reductive symmetric space satisfying the rank condition (3.3).
We use the notation from Sections 3 to 5. For any Clifford–Klein form XΓ = Γ\X and any
p ≥ 1, we denote by Lp(XΓ,Mλ) the subspace of Lp(XΓ) consisting of the weak solutions to the
system (Mλ). The group G acts on Lp(X,Mλ) by left translation: for g ∈ G and ϕ ∈ Lp(X,Mλ),

g · ϕ := ϕ(g−1 · ) ∈ Lp(X,Mλ).

The first key step in our construction of eigenfunctions on Clifford–Klein forms of X is the
following (see Definition 4.2 for the notion of sharpness).

Proposition 6.1. There is a constant RX > 0 depending only on X such that for any c,C > 0 and
any discrete subgroup Γ of G that is (c,C)-sharp for X,

(1) the function ϕΓ : XΓ → C given by

ϕΓ(Γx) :=
∑
γ∈Γ

(γ · ϕ)(x) =
∑
γ∈Γ

ϕ(γ−1 · x)

is well-defined and continuous for all ϕ ∈ L2(X,Mλ)K with λ ∈ j∗ and d(λ) > RX/c,

(2) furthermore, ϕ 7→ ϕΓ defines a linear operator

S Γ : L2(X,Mλ)K −→ Cm(XΓ) ∩
⋂

1≤p≤∞

Lp(XΓ,Mλ)

for all λ ∈ j∗ and m ∈ N with d(λ) > (m + 1)RX/c.

The fact that the constant RX/c depends only on the first sharpness constant c explains why
we obtain a universal discrete spectrum in Theorem 1.5, independent of the discrete subgroup Γ

of L (see Proposition 4.3). Note that Proposition 6.1.(2) actually contains Theorem 3.13. We
could obtain a slightly weaker condition than d(λ) > (m + 1)RX/c by taking into account the
critical exponent δΓ of Γ (see Section 6.4).

In Proposition 6.1, the function ϕΓ = S Γ(ϕ) satisfies (Mλ) (in the sense of distributions)
because ϕ does and any D ∈ D(X) is G-invariant, that is,

D(g · ϕ) = g · (Dϕ) (6.1)

for all g ∈ G. Furthermore, Proposition 6.1.(2) ensures that ϕΓ satisfies (Mλ) in the sense of func-
tions if λ is regular enough (i.e. d(λ) large enough). More precisely, recall from Section 3.1 that
D(X) is a polynomial algebra in r := rank(G/H) generators D1, . . . ,Dr. By Proposition 6.1.(2), if
we take m to be the maximum degree of D1, . . . ,Dr, then for any λ ∈ j∗ with d(λ) > (m + 1)RX/c
and any ϕ ∈ L2(X,Mλ)K , the function ϕΓ = S Γ(ϕ) satisfies

(D j)Γ ϕ
Γ = χλ(D j)ϕΓ

for all 1 ≤ j ≤ r in the sense of functions.
We note that the image of L2(X,Mλ)K under the summation operator S Γ could be trivial. In

Section 8, we will discuss a condition for the nonvanishing of S Γ (Proposition 8.1). For this we
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will consider the summation operator S Γ, not only on L2(X,Mλ)K , but also on some G-translates
g·L2(X,Mλ)K .

The rest of this section is devoted to the proof of Proposition 6.1, using the geometric esti-
mates of Section 4 (Lemma 4.6) and the analytic estimates of Section 5 (Proposition 5.1). As a
consequence of Proposition 5.1, the series

∑
γ∈Γ e−q d(λ)‖ν(γ·x)‖ will naturally appear in the proof of

Proposition 6.1: it is a pseudo-Riemannian analogue of the classical Poincaré series∑
γ∈Γ

e−q d(λ)‖µ(γ·y)‖ =
∑
γ∈Γ

e−q d(λ) dG/K (y0,γ·y)

for y ∈ G/K.

Remark 6.2. A summation process was used by Tong–Wang in [77] to construct cohomology
classes of Riemannian locally symmetric spaces Γ\G/K with coefficients in a locally constant
vector bundle, based on Flensted-Jensen’s discrete series representations for a non-Riemannian
symmetric space G/H. The summation described here is different in two respects:

• in the situation considered by Tong–Wang, Γ was a lattice in G and Γ ∩ H a lattice in H,
whereas here Γ can never be a lattice in G and Γ ∩ H is finite (see Remark 4.8);

• Tong–Wang obtained a nonzero (g,K)-homomorphism from L2(X,Mλ)K to C∞(G/Γ) by
summation over Γ/(Γ ∩ H) from the right, whereas we obtain a nonzero map S Γ from
L2(X,Mλ)K to L2(Γ\G/H) by summation over Γ from the left; our map S Γ cannot be a
(g,K)-homomorphism since G does not act on L2(Γ\G/H).

G/(Γ ∩ H)

yyrrrrrrrrrr

$$IIIIIIIII
X = G/H

pΓ

��

X = G/H G/Γ XΓ = Γ\G/H

Tong–Wang’s situation Our situation

6.1. Convergence and boundedness

Let us prove Proposition 6.1.(1). We denote by q > 0 the constant of Proposition 5.1.

Lemma 6.3. Let Γ be a discrete subgroup of G that is (c,C)-sharp for X.

(1) For any λ ∈ j∗ with d(λ) > δΓ/qc and any ϕ ∈ L2(X,Mλ)K , the function ϕΓ is well-defined
and continuous.

(2) For any λ ∈ j∗ with d(λ) > 2δΓ/qc and any ϕ ∈ L2(X,Mλ)K , the function ϕΓ is bounded.

Proof. Fix λ ∈ j∗ with d(λ) > δΓ/qc and ϕ ∈ L2(X,Mλ)K . We claim that

x 7−→
∑
γ∈Γ

|ϕ(γ−1 · x)|
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converges uniformly on any compact subset of X. Indeed, by Proposition 5.1, there is a constant
cϕ > 0 such that for all x ∈ X,∑

γ∈Γ

|ϕ(γ−1 · x)| ≤ cϕ
∑
γ∈Γ

e−q d(λ)‖ν(γ−1·x)‖,

hence ∑
γ∈Γ

|ϕ(γ−1 · x)| ≤ cϕ
∑
n∈N

e−q d(λ)n · #{γ ∈ Γ : n ≤ ‖ν(γ−1 · x)‖ < n + 1}.

Fix ε > 0 such that d(λ) > δΓ+ε
qc and, as before, let x0 be the image of H in X = G/H. By

Lemma 4.6.(1), there is a constant cε(Γ) > 0 such that for all x = g · x0 ∈ X (where g ∈ G) and
all n ∈ N,

#
{
γ ∈ Γ : ‖ν(γ−1 · x)‖ < n + 1

}
≤ cε(Γ) e(δΓ+ε)(n+1+‖µ(g)‖)/c. (6.2)

Therefore, for any compact subset C of G and any x ∈ C · x0,∑
γ∈Γ

|ϕ(γ−1 · x)| ≤ cϕ cε(Γ) e(δΓ+ε)(1+M)/c
∑
n∈N

e−(q d(λ)− δΓ+ε

c )n,

where
M := C + max

g∈C
‖µ(g)‖.

This series converges since d(λ) > δΓ+ε
qc , proving the claim and Lemma 6.3.(1).

The proof of Lemma 6.3.(2) is similar: we replace (6.2) by the uniform (but slightly less
good) estimate of Lemma 4.6.(2) in order to obtain a uniform convergence on the fundamental
domainD of Definition-Lemma 4.20, and hence on the whole of X.

6.2. Square integrability
In order to see that the image of the summation operator S Γ is contained in L2(XΓ), and more

generally in Lp(XΓ) for any 1 ≤ p ≤ ∞, it is enough to see that it is contained in both L1(XΓ) and
L∞(XΓ), by Hölder’s inequality. The case of L∞(XΓ) has already been treated in Lemma 6.3. For
L1(XΓ), we note that by Fubini’s theorem,∫

x∈XΓ

∣∣∣ϕΓ(x)
∣∣∣ dx =

∫
x∈X
|ϕ(x)| dx ;

using Proposition 5.1, we obtain the following.

Lemma 6.4. For any discrete subgroup Γ of G, any λ ∈ j∗ with d(λ) > 2‖ρb‖/q, and any
ϕ ∈ L2(X,Mλ)K , we have ϕΓ ∈ L1(XΓ).

Here, as in Proposition 5.1, we denote by ‖ρb‖ the norm of half the sum of the elements
of a positive system Σ+(g, b) of restricted roots of b in g, and q > 0 is again the constant of
Proposition 5.1.

Hölder’s inequality then gives the following.

Corollary 6.5. Let Γ be a discrete subgroup of G that is (c,C)-sharp for X. For any λ ∈ j∗ with

d(λ) >
2
q

max
(
δΓ/c, ‖ρb‖

)
and any ϕ ∈ L2(X,Mλ)K , we have ϕΓ ∈ Lp(XΓ) for all 1 ≤ p ≤ ∞; in particular, ϕΓ ∈ L2(XΓ).
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6.3. Regularity

We now complete the proof of Proposition 6.1.(2) (hence Theorem 3.13) by examining the
regularity of the image of S Γ. We set

eG := max
α∈Σ(g,a)

‖α‖.

Lemma 6.6. Let Γ be a discrete subgroup of G that is (c,C)-sharp for X. For any m ∈ N and
any λ ∈ j∗ with d(λ) > (δΓ + eG m)/qc,

S Γ

(
L2(X,Mλ)K

)
⊂ Cm(XΓ).

The idea of the proof of Lemma 6.6 is to control the decay at infinity of the derivatives of the
elements of L2(X,Mλ)K by using the action of the enveloping algebra U(gC) by differentiation
on the left, given by

(Y · ϕ)(x) =
d
dt

∣∣∣∣
t=0
ϕ
(

exp(−tY)·x
)

(6.3)

for all Y ∈ g, all ϕ ∈ L2(X,Mλ)K , and all x ∈ X. This idea works as a consequence of Fact 5.7
and of the following well-known fact.

Fact 6.7 (See [1]). For any λ ∈ j∗C, the subspace L2(X,Mλ)K ofA(X) is stable under the action
of g by differentiation.

Proof of Lemma 6.6. Consider λ ∈ j∗ with d(λ) > δΓ/qc and ϕ ∈ L2(X,Mλ)K . Let {Um(gC)}m∈N
be the natural filtration of the enveloping algebra U(gC). Then any u ∈ Um(gC) gives rise to a
differential operator on X of degree ≤ m by (6.3). Conversely, any differential operator on X of
degree ≤ m is obtained as a linear combination of differential operators induced from Um(gC)
with coefficients in C∞(X). Therefore, in order to prove that ϕΓ is Cm, it is sufficient to show that
for any differential operator D on X that is induced from an element u ∈ Um(gC),

x 7−→
∑
γ∈Γ

|D(γ · ϕ)(x)|

converges uniformly on all compact subsets of X. As before, let x0 be the image of H in X =

G/H. In view of the formula

D(γ · ϕ)(x) =
(

Ad(γ−1)(u) · ϕ
)
(γ−1 · x),

we only need to prove the existence of a constant R ≥ 0 such that for any integer m ≥ 1, any
Y ∈ g⊗m, and any compact subset C of G,

x 7−→
∑
γ∈Γ

∣∣∣( Ad(γ)(Y) · ϕ
)
(γ · x)

∣∣∣
converges uniformly on C · x0 whenever d(λ) > (m + 1)R.

We fix a K-invariant inner product on g, extend it to g⊗m, and write the corresponding Eu-
clidean norms as ‖ · ‖g and ‖ · ‖g⊗m , respectively. Let ‖ · ‖End(g) be the operator norm on g. We
observe that

‖T (Y)‖g⊗m ≤ ‖T‖mEnd(g) ‖Y‖g⊗m
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for all T ∈ End(g) and Y ∈ g⊗m, where T acts on g⊗m diagonally. Moreover,

log ‖Ad(g)‖End(g) ≤ eG ‖µ(g)‖ (6.4)

for all g ∈ G: indeed, the Cartan decomposition G = KAK holds and the norm ‖·‖g is K-invariant.
By Proposition 5.1 and Fact 6.7, we may define a function ` : g⊗m → R≥0 by

`(Y) = sup
x∈X
|(Y · ϕ)(x)| eq d(λ)‖ν(x)‖.

It satisfies
`(tY + t′Y ′) ≤ |t| `(Y) + |t′| `(Y ′)

for all t, t′ ∈ C and Y,Y ′ ∈ g⊗m. Taking a (finite) basis of g⊗m, this implies the existence of a
constant cm > 0 such that

`(Y) ≤ cm ‖Y‖g⊗m

for all Y ∈ g⊗m. Then for any γ ∈ Γ, any Y ∈ g⊗m, and any x ∈ X,∣∣∣( Ad(γ)(Y) · ϕ
)
(γ · x)

∣∣∣ ≤ cm ‖Ad(γ)‖mEnd(g) ‖Y‖g⊗m e−q d(λ)‖ν(γ·x)‖.

Therefore we only need to prove the existence of a constant R ≥ 0 such that for any integer m ∈ N
and any compact subset C of G,

x 7−→
∑
γ∈Γ

‖Ad(γ)‖mEnd(g) e−q d(λ)‖ν(γ·x)‖

converges uniformly on C · x0 whenever d(λ) > (m + 1)R. Let us fix an integer m ∈ N and a
compact subset C of G. By (4.12),

‖ν(γ · x)‖ ≥ c ‖µ(γ)‖ − M

for all γ ∈ Γ and x ∈ C · x0, where

M = C + max
g∈C
‖µ(g)‖.

Using (6.4), we obtain that for all γ ∈ Γ and x ∈ C · x0,∑
γ∈Γ

‖Ad(γ)‖mg e−q d(λ)‖ν(γ·x)‖ ≤ eq d(λ)M
∑
γ∈Γ

e−(q d(λ)c−eGm) ‖µ(γ)‖.

This series converges as soon as

d(λ) >
δΓ + eG m

qc
.

6.4. The constant RX in Proposition 6.1
Lemma 6.3, Corollary 6.5, and Lemma 6.6 show that the summation operator

S Γ : L2(X,Mλ)K −→
⋂

1≤p≤∞

Lp(XΓ,Mλ)

is well-defined and with values in Cm(XΓ) as soon as

d(λ) >
1
q

max
(2δΓ

c
, 2‖ρb‖,

δΓ + eG m
c

)
. (6.5)

We note that
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• δΓ ≤ 2‖ρa‖ (Observation 4.19),

• ‖ρb‖ ≤ ‖ρa‖/c by Remark 6.8 below and the fact that c ≤ 1,

• eG ≤ 2‖ρa‖ by definition of eG.

Therefore (6.5) is satisfied as soon as d(λ) > (m + 1)RX/c for

RX :=
4‖ρa‖

q
. (6.6)

Remark 6.8. Suppose that the positive systems Σ+(g, a) defining ρa and Σ+(g, b) defining ρb are
compatible, in the sense that the restriction from a to b maps Σ+(g, a) to Σ+(g, b) ∪ {0}. Then ρb

is the restriction of ρa to b, i.e. the orthogonal projection of ρa to b∗. Thus

‖ρb‖ = ‖ρa‖ · cos(Φ),

where Φ ∈ [0, π2 ) is the angle between ρa and ρb. In particular ‖ρb‖ ≤ ‖ρa‖. This inequality is true
in general since the norms ‖ρa‖ and ‖ρb‖ do not depend on the choice of the positive systems.

Part III

Nonvanishing of the generalized Poincaré
series
7. An estimate for certain eigenfunctions near the origin of X

Let Γ be a discrete subgroup of G that is sharp for the reductive symmetric space X = G/H
satisfying the rank condition (3.3). In Proposition 6.1, we saw that the summation operator

S Γ : L2(X,Mλ)K −→
⋂

1≤p≤∞

Lp(XΓ,Mλ)

mapping ϕ to ϕΓ =
(
Γx 7→

∑
γ∈Γ (γ · ϕ)(x)

)
is well-defined for all λ ∈ j∗ with d(λ) sufficiently

large. In Section 8.1, we are similarly going to define a summation operator S Γ on any G-translate
g ·L2(X,Mλ)K . Our goal will be to show that S Γ is nonzero on some G-translate g ·L2(X,Mλ)K

for infinitely many joint eigenvalues λ ∈ j∗, namely for all

λ ∈ j∗+ ∩
(
2ρc − ρ + ΛΓ∩Z(Gs)) (7.1)

with d(λ) large enough (Proposition 8.1). Here j∗+ and ρ are defined with respect to some choice
of a positive system Σ+(gC, jC) containing the fixed positive system Σ+(kC, jC) of Section 3.3; the
set ΛΓ∩Z(Gs) is the Z-submodule of Λ of finite index that was defined in (3.6).

A similar argument to the one used in Section 6 for the convergence of ϕΓ would show that for
a fixed λ satisfying (7.1) with d(λ) large enough, S Γ′ is nonzero for any finite-index subgroup Γ′

of Γ such that the index [Γ : Γ′] is large enough, where “large enough” depends on Γ and λ.
However, we wish to prove that S Γ is nonzero without passing to any subgroup; therefore we
need to carry out some more delicate estimates in the summation process.

In preparation for Proposition 8.1, the goal of the current section is to establish the following
analytic estimate, where, as before, x0 denotes the image of H in X = G/H.
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Proposition 7.1. Under the rank condition (3.3), there exists q′ > 0 with the following property:
for any λ ∈ j∗+∩ (2ρc−ρ+ Λ+), there is a function ψλ ∈ VZ,λ ⊂ L2(X,Mλ)K such that ψλ(x0) = 1,
such that

|ψλ(x)| ≤ cosh(q′‖ν(x)‖)−d(λ+ρ) (7.2)

for all x ∈ X, and such that for any finite subgroup J of the center Z(K) of K we have ψλ(g·x0) = 1
for all g ∈ J if λ ∈ 2ρc − ρ + ΛJ .

Here Z ∈ Z denotes the closed Hd-orbit through the origin in the flag variety Pd ' Gd/Pd,
where Pd is the minimal parabolic subgroup of Gd corresponding to the choice of the positive
system Σ+(gC, jC) defining j∗+ and ρ, using (5.6). We refer to Section 5.3 (and more precisely to
(5.10)) for the definition ofVZ,λ.

The decay at infinity (i.e. when ‖ν(x)‖ → +∞) of the elements of L2(X,Mλ)K was already
discussed in Section 5. The point of Proposition 7.1 is to control the behavior of certain eigen-
functions ψλ, not only at infinity, but also near the origin x0 ∈ X.

We actually prove that the estimate (7.2) holds for the Flensted-Jensen eigenfunction ψλ =

ψλ,Z , given by (7.3) below. In Section 8 we shall consider some G-translates of ψλ,Z and apply
the analytic estimate of Proposition 7.1 in connection with some geometric estimates near the
origin (Propositions 8.9 and 8.14).

7.1. Flensted-Jensen’s eigenfunctions

Before we prove Proposition 7.1, we recall the definition of the Flensted-Jensen eigenfunc-
tion ψλ = ψλ,Z , in the spirit of Section 5. We note that we may assume that H is connected,
because otherwise the Flensted-Jensen function ψλ ∈ L2(G/H)(⊂ L2(G/H0)) is the average of
finitely many Flensted-Jensen functions in L2(G/H0). We will assume that H is connected for the
rest of the section.

We retain the notation of Sections 3 and 5. As explained above, in the whole section we fix a
positive system Σ+(gC, jC) ' Σ+(gd, j) containing the fixed positive system Σ+(kC, jC) ' Σ+(hd, j)
of Section 3.3; it determines a positive Weyl chamber j∗+ and an element ρ ∈ j∗+. Let Pd be the
corresponding minimal parabolic subgroup of Gd. We denote by Z ∈ Z the closed Hd-orbit
through the origin in Gd/Pd. For λ ∈ j∗+, we set µλ := λ + ρ − 2ρc. The condition on λ ∈ j∗+ that
appears in Proposition 7.1 is µλ ∈ Λ+ (i.e. (5.12) with w = e).

Let δZ be the (Kd ∩ Hd)-invariant probability measure supported on Z. For any λ ∈ j∗C, the
Gd-equivariant line bundleLλ = Gd×Pd ξρ−λ over Gd/Pd is trivial as a Kd-equivariant line bundle
over Kd/Kd ∩ Pd(' Gd/Pd), because the restriction of ξρ−λ to Kd ∩ Pd is trivial. Thus δZ can
be seen as an element of B(Gd/Pd,Lλ) via the isomorphism B(Kd/Kd ∩ Pd) ' B(Gd/Pd,Lλ).
Flensted-Jensen [19] proved that if λ ∈ j∗+ satisfies µλ ∈ Λ+, then δZ is K-finite (see Remark 5.3)
and generates the irreducible representation of hd with highest weight µλ. The Poisson transform
Pλ(δZ) is also K-finite and moreover, viewed as an element ofA(Gd/Kd,Mλ)K , it belongs to the
image of the homomorphism η of (5.3). He then set

ψλ,Z := η−1(Pλ(δZ)
)
∈ A(X,Mλ)K . (7.3)

We shall prove that this function ψλ = ψλ,Z satisfies (7.2). We note that our estimate (7.2) is
stronger, for this specific ψλ, than what is given in the general theory of [19, 57, 60], as it is both
uniform on the spectral parameter λ and uniform on x ∈ X near the origin.
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7.2. Spherical functions on compact symmetric spaces
We first recall some basic results concerning spherical functions on the compact symmetric

space XU = GU/HU (see Section 5.2 for notation). In Section 7.3, some of these results will
actually be used, not only for XU = GU/HU , but also for the compact symmetric space K/H∩K.

Let gU = hU + qU be the decomposition of gU into eigenspaces of dσ with respective eigen-
values +1 and −1. We note that j is a maximal abelian subspace of qU . Similarly to (3.4),
let Λ+(GU/HU) be the set of highest weights of finite-dimensional irreducible representations
of GU with nonzero HU-invariant vectors; we see it as a subset of j∗C by Remark 3.5. We note
that XU has the same complexification as the Riemannian symmetric space of the noncompact
type Xd = Gd/Kd. The Borel–Weil theorem (see [39, Th. 5.29]) implies that

Λ+(GU/HU) ' {λ ∈ j∗C : ξλ extends holomorphically to GC}, (7.4)

where ξλ : Gd → C is defined by (5.1). If Oalg(GC/HC) denotes the ring of regular functions on
GC/HC, endowed with the action of GC by left translation, then we have an isomorphism

Oalg(GC/HC) '
⊕

λ∈Λ+(GU/HU )

Vλ

of GU-modules, where (πλ,Vλ) is the finite-dimensional irreducible representation of GU with
highest weight λ. A highest weight vector of (πλ,Vλ) is given by the holomorphic extension of
ξ∨λ to GC (see Section 5.1), which is denoted by the same symbol ξ∨λ . Let {α1, . . . , αr} be the basis
of Σ(gC, jC) corresponding to our choice of Σ+(gC, jC), and let ω1, . . . , ωr ∈ j

∗
+ be defined by

(αi, ω j)
(αi, αi)

= δi, j (7.5)

for all 1 ≤ i, j ≤ r, so that

λ =

r∑
j=1

(λ, α j)
(α j, α j)

ω j (7.6)

for all λ ∈ j∗; we note that ω j is twice the usual fundamental weight associated with α j. If GC is
simply connected, then the Cartan–Helgason theorem (see [80, Th. 3.3.1.1]) shows that

Λ+(GU/HU) =

r⊕
j=1

Nω j. (7.7)

For any λ ∈ Λ+(GU/HU), we fix a GU-invariant inner product (·, ·) on Vλ with (ξ∨λ , ξ
∨
λ ) = 1. The

following easy observation and lemma will be useful in the next section.

Observation 7.2. For any g ∈ Gd,

ξλ(g)2 =
(
πλ(g)ξ∨λ , πλ(g)ξ∨λ

)
.

Proof. We consider the Iwasawa decomposition Gd = Kd(exp j)Nd of Section 5.1. For any
g = k(exp ζ(g))n ∈ Kd(exp j)Nd = Gd,

πλ(g)ξ∨λ = e〈λ,ζ(g)〉 πλ(k)ξ∨λ = ξλ(g) πλ(k)ξ∨λ .

Since Kd = HU is contained in GU and (·, ·) is GU-invariant, we obtain(
πλ(g)ξ∨λ , πλ(g)ξ∨λ

)
= ξλ(g)2.
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Lemma 7.3. For λ ∈ Λ+(GU/HU), the function ξλ ∈ O(GC) satisfies

|ξλ(g)| ≤ 1 for all g ∈ GU .

Proof. By Observation 7.2,

ξλ(g)2 =
(
πλ(σ(g)−1g)ξ∨λ , ξ

∨
λ

)
for all g ∈ Gd.

Since both sides are holomorphic functions on GC, this holds for all g ∈ GC. Applying the
Cauchy–Schwarz inequality, we get |ξλ(g)| ≤ 1 on GU .

7.3. Proof of Proposition 7.1 for the Flensted-Jensen functions

We now go back to the setting of Section 7.1. When λ ∈ j∗+ satisfies µλ ∈ Λ+, the function
ψλ ∈ VZ,λ of (7.3) is well-defined and extends uniquely to a right-HC-invariant function on
KCB+HC [19]; we keep the notation ψλ for this extension. Directly from the definition, we have

ψλ(ky) =

∫
H∩K

ξµλ (k`) ξ−λ−ρ(y
−1`) d` (7.8)

for all k ∈ KC and y ∈ Gd [19, (3.13)], where ξ−λ−ρ : Gd → C is given by (5.1) and ξµλ : KC → C
is the holomorphic extension, given by (7.4) for the compact symmetric space K/K∩H instead of
GU/HU , of the function ξµλ : Hd → C given by (5.1) with respect to the Iwasawa decomposition

Hd = (Kd ∩ Hd)(exp j)(Nd ∩ Hd). (7.9)

We note that the restriction to Hd of any “ξ” function for Gd coincides with the corresponding
“ξ” function for Hd, which is why we use the same notation. The fact that (7.9) is an Iwasawa
decomposition of Hd relies on the rank condition (3.3).

In order to prove Proposition 7.1, we first observe the following.

Lemma 7.4. Let J be a finite subgroup of the center Z(K) of K. For λ ∈ j∗+ with µλ ∈ Λ+ ∩ ΛJ ,
the Flensted-Jensen function ψλ satisfies ψλ(g · x0) = 1 for all g ∈ J.

Proof. As in Section 3.3, we can see the highest weight of any irreducible representation of K
with nonzero (K ∩ H)-fixed vectors as an element of j∗+ (see Remark 3.5). Let λ ∈ j∗+ satisfy
µλ ∈ Λ+. By construction, the highest weight of the K-span of ψλ|K/K∩H ∈ L2(K/K ∩ H) is µλ;
this can be seen directly on (7.8), using the fact that [jC, hC ∩ kC] ⊂ hC ∩ kC. If µλ ∈ ΛJ , then by
definition g · ψλ|K/K∩H = ψλ|K/K∩H for all g ∈ J (where g acts by left translation); in particular,
ψλ(g · x0) = ψλ(x0) = 1 for all g ∈ J.

Proposition 7.1 for the Flensted-Jensen function ψλ ∈ VZ,λ is an immediate consequence of
(7.8), of Lemma 7.4, and of the following lemma.

Lemma 7.5. Let λ ∈ j∗+ satisfy (5.12). Then

(1) |ξµλ (k)| ≤ 1 for all k ∈ K;

(2) there exists q′ > 0 such that for all Y ∈ b and ` ∈ H ∩ K,

|ξ−λ−ρ(exp(−Y)`)| ≤ cosh(q′‖Y‖)−d(λ+ρ).
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Proof of Lemma 7.5. Lemma 7.5.(1) follows immediately from Lemma 7.3 applied to the com-
pact symmetric space K/H ∩ K instead of GU/HU .

To prove Lemma 7.5.(2), we may assume that GC is simply connected, because the Iwasawa
projection for Gd is compatible with that of any covering of Gd. Then ω j ∈ Λ+(GU/HU) for all
1 ≤ j ≤ r by (7.7). To simplify notation, we write (π j,V j, ξ

∨
j ) for (πω j ,Vω j , ξ

∨
ω j

) and ‖ · ‖ j for the
Euclidean norm on V j corresponding to the GU-invariant inner product (·, ·) of Section 7.2. Then
(7.6) and Observation 7.2 imply that for all λ ∈ j∗ and g ∈ Gd,

|ξ−λ−ρ(g)| = e−〈λ+ρ,ζ(g)〉 =

r∏
j=1

‖π j(g)ξ∨j ‖
−

(λ+ρ,α j )
(α j ,α j )

j ≤

r∏
j=1

‖π j(g)ξ∨j ‖
−d(λ+ρ)
j .

Therefore, in order to prove Lemma 7.5.(2), we only need to prove the existence of a constant
q′ > 0 such that

min
1≤ j≤r

‖π j((exp Y)`)ξ∨j ‖ j ≥ 1 (7.10)

and
max
1≤ j≤r

‖π j((exp Y)`)ξ∨j ‖ j ≥ cosh(q′‖Y‖) (7.11)

for all Y ∈ b and ` ∈ H ∩K. For any 1 ≤ j ≤ r, the Lie algebra b acts semisimply on V j with real
eigenvalues, hence there are an orthonormal basis (vi j)1≤i≤dim V j of V j and linear forms βi j ∈ b∗,
1 ≤ i ≤ dim V j, such that

π j(exp Y) vi j = e〈βi j,Y〉 vi j

for all Y ∈ b and 1 ≤ i ≤ dim V j. Write the matrix coefficients {bi j} for the restriction π j|H∩K as

π j(`) ξ∨j =

dim V j∑
i=1

bi j(`) vi j (` ∈ H ∩ K),

where
∑dim V j

i=1 |bi j(`)|2 = 1 since π j|H∩K is unitary. By [19, Lem. 4.6],

‖π j((exp Y)`)ξ∨j ‖
2
j =

dim V j∑
i=1

|bi j(`)|2 cosh〈2βi j,Y〉

for all 1 ≤ j ≤ r, all Y ∈ b, and all ` ∈ H ∩ K, hence (7.10) holds. Let us prove (7.11). By a
compactness argument [19, Th. 4.8], there is a constant ε > 0 with the following property: for
any Y ∈ b and ` ∈ H ∩ K, there exist j ∈ {1, . . . , r} and i0 ∈ {1, . . . , dim V j} such that

〈βi0 j,Y〉 ≥ ε‖Y‖ and |bi0 j(`)| ≥ ε. (7.12)

For Y ∈ b and ` ∈ H ∩ K, let (i0, j) be as in (7.12). Then

‖π j((exp Y)`)ξ∨j ‖
2
j =

dim V j∑
i=1

|bi j(`)|2 cosh〈2βi j,Y〉

≥ |bi0 j(`)|2 cosh〈2βi0 j,Y〉 +
∑
i,i0

|bi j(`)|2

≥ ε2 cosh(2ε‖Y‖) + (1 − ε2).
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By using the general inequality

t cosh(x) + (1 − t) ≥
(
cosh

tx
2

)2
,

which holds for any 0 < t ≤ 1 and x ∈ R, we obtain

‖π j((exp Y)`)ξ∨j ‖ j ≥ cosh(ε3‖Y‖).

This proves (7.11) for q′ := ε3 and completes the proof of Lemma 7.5.

8. Nonvanishing of eigenfunctions on locally symmetric spaces

As explained at the beginning of Section 7, our goal now is to complete the proof of the
theorems and propositions of Sections 1 to 3 by establishing the following key proposition.

As in Section 3.3, we denote by Gc (resp. Lc) the maximal compact normal subgroup of
the reductive group G (resp. L) and by Z(Gs) the center of the commutator subgroup of G.
The Z-module ΛΓ∩Z(Gs) for Γ ⊂ G has been defined in (3.6). We choose a positive system
Σ+(gC, jC) containing the fixed positive system Σ+(kC, jC) of Section 3.3; this defines a positive
Weyl chamber j∗+ and an element ρ ∈ j∗+ as in Section 3.3.

Proposition 8.1. Suppose that G is connected, that H does not contain any simple factor of G,
and that the rank condition (3.3) holds.

(1) (Sharp Clifford–Klein forms)
For any sharp Clifford–Klein form XΓ of X with Γ ∩ Gc ⊂ Z(Gs), there is a constant R ≥ 0
such that for any λ ∈ j∗+ ∩ (2ρc − ρ + ΛΓ∩Z(Gs)) with d(λ) > R, the summation operator S Γ is
well-defined and nonzero on g·L2(X,Mλ)K for some g ∈ G.

(2) (Uniformity for standard Clifford–Klein forms)
Let L be a reductive subgroup of G, with a compact center and acting properly on X. There
is a constant R > 0 with the following property: for any discrete subgroup Γ of L with
Γ ∩ Lc ⊂ Z(Gs) (in particular, for any torsion-free discrete subgroup Γ of L) and for any
λ ∈ j∗+ ∩ (2ρc − ρ + ΛΓ∩Z(Gs)) with d(λ) > R, the operator S Γ is well-defined and nonzero on
g·L2(X,Mλ)K for some g ∈ G.

(3) (Stability under small deformations)
Let L be a reductive subgroup of G of real rank 1, acting properly on X, and let Γ be a
convex cocompact subgroup of L (for instance a uniform lattice) with Γ ∩Gc ⊂ Z(Gs). Then
there are a constant R > 0 and a neighborhood U ⊂ Hom(Γ,G) of the natural inclusion
such that for any ϕ ∈ U, the group ϕ(Γ) acts properly discontinuously on X and for any
λ ∈ j∗+ ∩ (2ρc − ρ + ΛΓ∩Z(Gs)) with d(λ) > R, the operator S ϕ(Γ) is well-defined and nonzero
on g·L2(X,Mλ)K for some g ∈ G.

If Γ ∩ Lc ⊂ Z(Gs) (for instance if Γ is torsion-free or if L is simple with Z(L) ⊂ Z(Gs)), then
we may take the same R (independent of Γ) as in (2), up to replacing U by some smaller
neighborhood.

Recall that L2(X,Mλ) is the space of L2-weak solutions to the system (Mλ) of Section 3.3
and L2(X,Mλ)K is the subspace of K-finite functions. The group G acts on L2(X,Mλ) by left
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translation (3.9). We define a summation operator S Γ on any G-translate g ·L2(X,Mλ)K by the
same formula as in Proposition 6.1: see Section 8.1 below. The fact that we need to consider G-
translates is linked to the geometric issue of distribution of Γ-orbits in X and in the Riemannian
symmetric space G/K (see Remark 8.4, together with Propositions 8.9 and 8.14).

As we shall see in Section 8.5 (Formulas (8.9) and (8.10)), the constant R of Proposi-
tion 8.1.(1) can be expressed in terms of the sharpness constants (c,C) of Γ and of the minimal
nonzero value of ‖ν‖ on the Γ-orbit Γ · x0. Recall that ‖ν‖ measures the “pseudo-distance to the
origin x0”.

We note that the technical assumptions of Proposition 8.1 are not very restrictive: Re-
marks 3.9 also apply in this context.

Remark 8.2. We can make Proposition 8.1.(1), (2), and (3) more precise with respect to G-
translation: we actually prove that

(a) for d(λ) > R, the operator S Γ is well-defined on g·L2(X,Mλ)K for all g ∈ G;

(b) there is an element g ∈ G such that S Γ is nonzero on g·L2(X,Mλ)K for all λ with d(λ) > R.

Statement (a) follows from Proposition 6.1 and from the fact that the first sharpness constant is
invariant under conjugation (Proposition 4.3), using Remark 8.4 below. For Statement (b), we
refer to Section 8.5.

Remark 8.3. We can make Proposition 8.1 more precise in terms of discrete series representa-
tions for X. Recall from Fact 5.5 that L2(X,Mλ)K is the direct sum of finitely many irreducible
(g,K)-modulesVZ,λ, where Z ∈ Z. We have given two combinatorial descriptions of the setZ.

• In terms of positive systems: by (5.6), any Z ∈ Z corresponds to a positive system
Σ+(gC, jC), which determines a positive Weyl chamber j∗+ and an element ρ ∈ j∗+. We
prove that S Γ is well-defined and nonzero on g ·VZ,λ ⊂ g ·L2(X,Mλ)K for any λ ∈ j∗+ with
d(λ) > R satisfying

µλ = λ + ρ − 2ρc ∈ ΛΓ∩Z(Gs).

• In terms of Weyl group elements: fix a positive system Σ+(gC, jC) containing the positive
system Σ+(kC, jC) of Section 3.3; this determines a positive Weyl chamber j∗+ and an el-
ement ρ ∈ j∗+. By (5.9), any Z ∈ Z corresponds to an element w ∈ W(Hd,Gd), where
W(Hd,Gd) ⊂ W is a complete set of representative for the left coset space WH∩K\W. We
prove that S Γ is well-defined and nonzero on g · VZ,λ ⊂ g·L2(X,Mλ)K for any λ ∈ j∗+ with
d(λ) > R satisfying

µw
λ = w(λ + ρ) − 2ρc ∈ ΛΓ∩Z(Gs).

Thus we get different integrality conditions on λ depending on the element Z ∈ Z we are con-
sidering. These conditions might not be all equivalent; it is enough for λ to satisfy one of them
in order to belong to the discrete spectrum Specd(XΓ).

8.1. The summation operator S Γ on G-translates of L2(X,Mλ)K

Let XΓ be a Clifford–Klein form of X. We define the summation operator S Γ on any G-
translate g·L2(X,Mλ)K as follows.
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For g ∈ G, let `g : x 7→ g · x be the translation by g on X. The following diagram commutes,
where pΓ : X → XΓ is the natural projection.

X

pΓ

��

`g

∼
// X

pgΓg−1

��

x
_

��

� // g · x
_

��

XΓ
∼ // XgΓg−1 Γx � // (gΓg−1) (g · x)

Since D(X) consists of G-invariant differential operators, we obtain the following commutative
diagram for smooth functions satisfying (Mλ).

C∞(X,Mλ) C∞(X,Mλ)
`∗g

∼
oo

C∞(XΓ,Mλ)

p∗
Γ

OO

C∞(XgΓg−1 ,Mλ)∼oo

p∗
gΓg−1

OO

The space L2(X,Mλ)K is contained in C∞(X,Mλ) (see Section 5.3), and

`∗g L2(X,Mλ)K = L2(X,Mλ)g−1Kg. (8.1)

For ϕ ∈ `∗g L2(X,Mλ)K ⊂ C∞(X,Mλ), we set

S Γ(ϕ) = ϕΓ :=
(
Γx 7−→

∑
γ∈Γ

ϕ(γ−1 · x)
)

;

this is the same formula as the one defining S Γ on L2(X,Mλ)K in Proposition 6.1. Then S Γ is
well-defined on `∗g L2(X,Mλ)K if and only if S gΓg−1 is well-defined on L2(X,Mλ)K , and in this
case the following diagram commutes.

C∞(X,Mλ) ⊃ `∗g L2(X,Mλ)K

S Γ

��

L2(X,Mλ)K ⊂ C∞(X,Mλ)
`∗g

∼
oo

S gΓg−1

��

L2(XΓ,Mλ) L2(XgΓg−1 ,Mλ)∼oo

We note that
g · L2(X,Mλ)K = `∗g−1

(
L2(X,Mλ)K

)
. (8.2)

In particular, we will use the following.

Remark 8.4. The operator S Γ is nonzero on g · L2(X,Mλ)K if and only if the operator S g−1Γg is
nonzero on L2(X,Mλ)K .

The reason why we consider G-translates g·L2(X,Mλ)K to construct nonzero eigenfunctions
on XΓ is precisely that we want to allow ourselves to replace the groups Γ by conjugates g−1Γg
(see Propositions 8.9 and 8.14).
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8.2. Nonvanishing on sharp Clifford–Klein forms
We adopt the first point of view described in Remark 8.3: for the whole section we choose

a positive system Σ+(gC, jC) containing the fixed positive system Σ+(kC, jC) of Section 3.3; this
defines a positive Weyl chamber j∗+ and an element ρ ∈ j∗+ as in Section 3.3, as well as an element
Z ∈ Z by (5.6). The key ingredient in the proof of Proposition 8.1 is the following lemma.

Lemma 8.5. Assume that the rank condition (3.3) holds. For c,C, r > 0, let Γ be a discrete
subgroup of G such that:

(1) Γ is (c,C)-sharp for X,

(2) inf{‖ν(x)‖ : x ∈ Γ·x0 and x < Xc} ≥ r,

(3) Γ·x0 ∩ Xc ⊂ Z(Gs)·x0.

For any λ ∈ j∗+ ∩ (2ρc − ρ + ΛΓ∩Z(Gs)) with d(λ) > max(mρ,RX/c) and

d(λ + ρ) >
4‖ρa‖(r + C) + log

(
2cG #(Γ ∩ K)

)
c log cosh(q′r)

,

the operator S Γ : L2(X,Mλ)K → L2(XΓ,Mλ) is well-defined and any function ψλ ∈ VZ,λ ⊂

L2(X,Mλ)K as in Proposition 7.1 satisfies S Γ(ψλ)(x0) , 0.

Let us recall earlier notation: ρa ∈ a is half the sum of the elements of Σ+(g, a), counted
with root multiplicities, and mρ, cG, RX , and q′ are the constants of (3.8), Observation 4.19,
Proposition 6.1, and Proposition 7.1 respectively. We denote by x0 the image of H in X = G/H
and keep the same notation for its image in XΓ = Γ\X for any Clifford–Klein form XΓ. The set
Xc = K ·x0 consists of the points x in X whose “pseudo-distance to the origin” ‖ν(x)‖ is zero; it
is a maximal compact subsymmetric subspace of X, and identifies with K/K ∩ H. Remark 4.5
implies the following.

Remark 8.6. For any discrete subgroup Γ of G acting properly discontinuously on X,

inf
{
‖ν(x)‖ : x ∈ Γ·x0 and x < Xc

}
> 0.

Remark 8.7. For any λ ∈ j∗+ we have d(λ+ρ) ≥ d(λ), hence for R′ > 0 the condition d(λ+ρ) > R′

is satisfied as soon as d(λ) > R′.

Proof of Lemma 8.5. Let λ ∈ j∗+ ∩ (2ρc − ρ + ΛΓ∩Z(Gs)). Assume that d(λ) > RX/c; then the
summation operator

S Γ : L2(X,Mλ)K −→ L2(XΓ,Mλ)

is well-defined by Proposition 6.1. Assume moreover that d(λ) ≥ mρ; then λ ∈ 2ρc − ρ + Λ+ by
Lemma 5.6 and we can apply Proposition 7.1. The function ψλ of Proposition 7.1 has module
< 1 outside of Xc. In order to prove that ψΓ

λ(x0) , 0, we naturally split the sum into two: on
the one hand the sum over the elements γ ∈ Γ with γ · x0 ∈ Xc, on the other hand the sum over
the elements γ ∈ Γ with γ · x0 < Xc. We control the first summand by using the assumption (3)
that the Γ-orbit of Γ·x0 meets Xc only inside the finite set Z(Gs)·x0, where ψλ takes value 1: by
Lemma 7.4, ∣∣∣∣∣∣∣∣

∑
γ∈Γ, γ·x0∈Xc

ψλ(γ·x0)

∣∣∣∣∣∣∣∣ = #{γ ∈ Γ : γ·x0 ∈ Xc} ≥ 1.
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Therefore, in order to prove that ψΓ
λ(x0) , 0, it is sufficient to prove that∑
γ∈Γ, γ·x0<Xc

|ψλ(γ·x0)| < 1.

The estimate (7.2) and the assumption (2) on the “pseudo-distance to the origin” ‖ν‖ imply∑
γ∈Γ, γ·x0<Xc

|ψλ(γ·x0)|

≤

+∞∑
n=1

cosh(q′rn)−d(λ+ρ) · #{γ ∈ Γ : nr ≤ ‖ν(γ)‖ < (n + 1)r},

where the constant q′ > 0 of Proposition 7.1 depends only on X. We now use the assumption (1)
that Γ is (c,C)-sharp. By Lemma 4.6.(3),

#{γ ∈ Γ : ‖ν(γ)‖ < (n + 1)r} ≤ #(Γ ∩ K) · cG e2‖ρa‖
(n+1)r+C

c ,

where the constant cG > 0 of Observation 4.19 depends only on G. Thus∑
γ∈Γ, γ·x0∈Xc

|ψλ(γ·x0)|

≤ #(Γ ∩ K) · cGe
2‖ρa‖(r+C)

c ·

+∞∑
n=1

cosh(q′rn)−d(λ+ρ) · e( 2‖ρa‖r
c )n,

and we conclude using the following lemma.

Lemma 8.8. For any S ,T,U > 0 with S ≥ 1,

S
+∞∑
n=1

cosh(Tn)−d eUn < 1

for all d > R := log(2S )+U
log cosh T .

Proof. It is sufficient to prove that for all d > R and all n ≥ 1,

S cosh(Tn)−d eUn < 2−n,

or equivalently

d >
log S + n (log 2 + U)

log cosh(Tn)
.

One easily checks that for all n ≥ 1,

log S + n (log 2 + U) ≤ n (log(2S ) + U)

and
log cosh(Tn) ≥ n log cosh T.
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8.3. Points near the origin in the orbit of a sharp discrete group

In this section and the next one we do not need the rank condition (3.3).
In Lemma 8.5 we assumed that Γ·x0∩Xc ⊂ Z(Gs)·x0, where Xc = K ·x0 is the maximal compact

subsymmetric space of X consisting of the points x whose “pseudo-distance to the origin” ‖ν(x)‖
is zero and Z(Gs) is the center of the commutator subgroup of G. We now prove the following,
where Gc denotes the maximal compact normal subgroup of G (as in Section 3.3) and GH the
maximal normal subgroup of G contained in H.

Proposition 8.9. For any discrete subgroup Γ of G acting properly discontinuously on X, there
is an element g ∈ G such that g−1γg · x0 < Xc for all γ ∈ Γ r Gc GH .

In Section 8.5 we shall combine Proposition 8.9 with Lemma 8.5 to prove Proposition 8.1.(1).
Recall that in Proposition 8.1.(1) we assumed that H does not contain any simple factor of G; it
has the following consequence.

Remark 8.10. If H does not contain any simple factor of G, then GH = Z(G)∩H and Γ∩GcGH =

Γ ∩Gc for any discrete subgroup Γ of G acting properly discontinuously on X = G/H.

The assumption Γ ∩ Gc ⊂ Z(Gs) in Proposition 8.1.(1) is there to ensure that if g−1γg · x0 < Xc

for all γ ∈ Γ rGc (as given by Proposition 8.9), then g−1Γg · x0 ∩ Xc ⊂ Z(Gs) · x0 (as required to
apply Lemma 8.5).

In the rest of this section we give a proof of Proposition 8.9.

• The main lemma and its interpretation
We first establish the following.

Lemma 8.11. For any γ ∈ G rGc GH , there is an element g ∈ G such that g−1γg · x0 < Xc, or in
other words g−1γg < KH.

We note that GH is the set of elements of G that act trivially on X. In particular, for any
γ ∈ G r GH there is an element g ∈ G such that g−1γg · x0 , x0. Lemma 8.11 states that if
γ < Gc GH , then we can actually find g such that g−1γg · x0 < Xc. The condition γ < Gc GH

cannot be improved: if γ ∈ Gc GH , then any conjugate of γ maps x0 inside Gc · x0 ⊂ Xc, since
Gc GH is normal in G.

Here is a group-theoretic interpretation.

Remark 8.12. For any subset S of G, let

G[S ] :=
⋂
g∈G

gS g−1.

If S is a group, then G[S ] is the maximal normal subgroup of G contained in S . In particular,
G[K] = Gc and G[H] = GH . Lemma 8.11 states that G[KH] = G[K]G[H]. We note that this
equality may fail if we replace K by some noncompact symmetric subgroup of G, i.e. by H′ such
that G/H′ is a non-Riemannian symmetric space.
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• Preliminary Lie-theoretic remarks
Before we prove Lemma 8.11, we make a few useful remarks. For any subspaces e, f of g,

we set
ef :=

{
Y ∈ e : [f,Y] = {0}

}
. (8.3)

Lemma 8.13. Assume that G is simple.

(1) For any nonzero ideal k′ of k, we have pk
′

= {0}.

(2) The Lie algebra spanned by k ∩ q contains ks.

(3) The normalizer NH(k ∩ q) := {h ∈ H : Ad(h)(k ∩ q) = k ∩ q} of k ∩ q in H is contained in K.

Proof of Lemma 8.13. (1) If k′ is an ideal of k, then the space pk
′

is globally stable under ad(k),
or equivalently under Ad(K). But the adjoint action of K on p is irreducible [40, Ch. XI,
Prop. 7.4], hence pk

′

is either {0} or p. Since K is reductive, we can write k as the direct sum
of k′ and of some other ideal k′′. If pk

′

= p, then k′′ + p is an ideal of g, hence k′′ + p = g
since g is simple; in other words, k′ = {0}.

(2) For any reductive Lie group L with Lie algebra l, we denote by ls the Lie algebra of the com-
mutator subgroup (or semisimple part) of L. Proving that ks is contained in the Lie algebra
spanned by k ∩ q is equivalent to proving that (kC)s is contained in the Lie algebra spanned
by kC ∩ qC. In turn, this is equivalent to proving that (hd)s is contained in the Lie algebra
spanned by hd ∩ pd, since the complexifications of hd and pd are kC and qC, respectively (see
Section 5.2). But (hd)s admits the Cartan decomposition (hd)s = (hd)s ∩ kd + (hd)s ∩ pd, and
it is well-known that if l is a semisimple Lie algebra with Cartan decomposition l = kl + pl,
then [pl, pl] + pl = l (one easily checks that [pl, pl] + pl is an ideal of l, hence equal to l if
l is simple; the general semisimple case follows from decomposing l into a sum of simple
ideals). Thus (hd)s is contained in the Lie algebra spanned by (hd)s ∩ pd ⊂ hd ∩ pd.

(3) The group L := NH(k ∩ q) is stable under the Cartan involution θ of G, since k ∩ q is fixed
by θ. Therefore L is reductive and admits the Cartan decomposition L = (K ∩ L) exp(p ∩ l).
Proving that L is contained in K is equivalent to proving that p ∩ l = {0}. We have

p ∩ l =
{
Y ∈ h ∩ p : ad(Y)(k ∩ q) ⊂ k ∩ q

}
= (h ∩ p)k∩q,

hence p ∩ l is contained in pk∩q = p〈k∩q〉, where 〈k ∩ q〉 is the Lie algebra spanned by k ∩ q.
By (1) (with k′ = ks) and (2), we have p〈k∩q〉 = {0}.

• Proof of Lemma 8.11
Suppose that γ satisfies

g−1γg ∈ KH for all g ∈ G. (8.4)

Let us prove that γ ∈ Gc GH . We first assume that G is simple. The idea is to work in the
Riemannian symmetric space G/K of G, where we can use the G-invariant metric dG/K . As
before, we denote by y0 the image of K in G/K.

Firstly, we claim that γ ∈ K. Indeed, write γ ∈ Kh where h ∈ H. Then (8.4) with g ∈ K
implies hKh−1 ⊂ KH, i.e. hKh−1 ·y0 ⊂ H ·y0. By considering the tangent space of G/K at y0,
which identifies with g/k, we see that Ad(h)k ⊂ h + k, or in other words k ⊂ h + Ad(h−1)(k). This
implies Ad(h−1)(k ∩ q) = k ∩ q. By Lemma 8.13.(3), we have h ∈ K.
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Secondly, we claim that γ−1 fixes pointwise the set KB+ · y0. Indeed, let k ∈ K and b ∈ B+.
By (8.4), we have γ−1kb · y0 ∈ kbH · y0. By (4.1), (4.6), and Lemma 4.17,

dG/K(y0, kb · y0) = ‖µ(b)‖ = ‖ν(b)‖ = ‖ν(bh)‖ ≤ ‖µ(bh)‖ = dG/K(y0, kbh · y0)

for all h ∈ H, hence kb · y0 is the projection of y0 to the totally geodesic subspace kbH ·y0. Since
γ ∈ K fixes y0 and acts on G/K by isometries, we have

dG/K(y0, γ
−1kb · y0) = dG/K(y0, kb · y0) ≤ dG/K(y0, kbh · y0)

for all h ∈ H. But γ−1kb · y0 belongs to kbH · y0 by assumption, and kb · y0 is the projection of y0
to kbH · y0, so γ−1kb · y0 = kb · y0. This proves the claim.

To prove that γ ∈ Gc GH , we assume that the simple group G is noncompact, so that GcGH =

Z(G) (otherwise Gc = G). Then B+ , {e}. We have seen that γ−1 fixes pointwise the set KB+ · y0,
which is equivalent to the fact that γ ∈ (kb)K(kb)−1 for all k ∈ K and b ∈ B+. Thus γ belongs to
the closed normal subgroup

K′ :=
⋂

k∈K, b∈B+

(kb)K(kb)−1

of K. We note that Ad(k′)(Y) = Y for all k′ ∈ K′ and Y ∈ b+. Indeed, Ad(k′)(Y) − Y ∈ p since
K′ ⊂ K, and Ad(k′)(Y) − Y ∈ k since b−1K′b ⊂ K. In particular, the Lie algebra k′ of K′ satisfies
pk
′

, {0} with the notation (8.3). But k′ is an ideal of k, hence k′ = {0} by Lemma 8.13.(1). In
other words, K′ is contained in the center Z(K) of K. We claim that in fact K′ ⊂ Z(G). Indeed,
for any k′ ∈ K′ the set gAd(k′) of fixed points of g under Ad(k′) is a Lie subalgebra that contains
both k and b+ , {0}. But the Lie algebra g is generated by k and any nontrivial element of p
(because the adjoint action of K on p is irreducible [40, Ch. XI, Prop. 7.4]), hence gAd(k′) = g,
which means that k′ ∈ Z(G). In particular, γ ∈ Z(G) = GcGH .

In the general case where G is not necessarily simple, we write G as the almost product of a
split central torus ' Ra, of Gc GH , and of noncompact simple factors G1, . . . ,Gm with Gi 1 H
for all i. Since γ is elliptic, we can decompose it as γ = γ0γ1 . . . γm, where γ0 ∈ Gc GH and
γi ∈ Gi for all i ≥ 1. For i ≥ 1, the restriction of σ to Gi is an involution; the polar decomposition
Gi = (K ∩Gi)(B+ ∩Gi)(H ∩Gi) holds, with B+ ∩Gi , {e}, and the corresponding projection is
the restriction of ν. By the previous paragraph, γi ∈ Z(Gi) for all i ≥ 1. Therefore γ ∈ Gc GH

since Z(Gi) ⊂ Gc GH . This completes the proof of Lemma 8.11.

• Proof of Proposition 8.9
Let Γ be a discrete subgroup of G acting properly discontinuously X. Consider the set

F := {γ ∈ Γ : da(µ(γ), µ(H)) < 1}.

For any γ ∈ F we have γ · C ∩ C , ∅, where C is the compact subset of X = G/H obtained as the
image of µ−1([0, 1]) ⊂ G; therefore F is finite. For γ ∈ F, the map fγ : G → G sending g ∈ G
to g−1γg is real analytic, hence f −1

γ (KH) is an analytic submanifold of G. By Lemma 8.11,
if γ < Gc GH , then f −1

γ (KH) is strictly contained in G, hence it has positive codimension. In
particular, there is an element g ∈ G with ‖µ(g)‖ < 1/2 such that g−1γg < KH (i.e. g−1γg·x0 < Xc)
for all γ ∈ F r Gc GH . By Lemmas 4.4 and 4.17, for all γ ∈ Γ r F,

‖ν(g−1γg)‖ ≥ da
(
µ(g−1γg), µ(H)

)
≥ da(µ(γ), µ(H)) − 2‖µ(g)‖ > 0.

In particular, g−1γg · x0 < Xc for all γ ∈ Γ rGc GH . This completes the proof of Proposition 8.9.
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8.4. Uniformity for standard Clifford–Klein forms

In Section 8.5, we shall prove Proposition 8.1.(2) by combining Lemma 8.5 with the fol-
lowing consequence of the Kazhdan–Margulis theorem, applied to some conjugate of L instead
of G.

Proposition 8.14. Assume that the reductive group G has a compact center. There is a constant
rG > 0 (depending only on G) with the following property: for any discrete subgroup Γ of G,
there is an element g ∈ G such that

‖µ(g−1γg)‖ ≥ rG for all γ ∈ Γ r Gc.

As before, Gc denotes the largest compact normal subgroup of G. The condition γ ∈ Γ r Gc

cannot be improved: if γ ∈ Gc, then µ(g−1γg) = 0 for all g ∈ G since g−1γg ∈ Gc ⊂ K. The
condition that the center Z(G) of G is compact also cannot be improved: if Lie(Z(G))∩a contains
a nonzero vector Y , then for any t ∈ R+ the cyclic group generated by γt := exp(tY) ∈ G r Gc is
discrete in G and ‖µ(g−1γtg)‖ = t ‖Y‖ for all g ∈ G.

Recall that ‖µ(g)‖ = dG/K(y0, g·y0) for all g ∈ G, where y0 is the image of K in the Riemannian
symmetric space G/K. Thus Proposition 8.14 has the following geometric interpretation: there
is a constant rG > 0 such that any Riemannian locally symmetric space M = Γ\G/K locally
modeled on G/K admits a point at which the injectivity radius is ≥ rG.

Proposition 8.14 is not new; we give a proof for the reader’s convenience. We begin with
an elementary geometric lemma in the Riemannian symmetric space G/K, designed to treat
groups Γ with torsion.

Lemma 8.15. For any g ∈ G r Gc of finite order and any R, ε > 0, there exists r > 0 such that
for any ball B of radius R in G/K,

volG/K
({

y ∈ B : dG/K(y, g·y) < r
})
< ε.

This r depends only on the conjugacy class of g in G (and on R and ε).

Proof. For g ∈ G r Gc of order n ≥ 2, let Fg be the set of fixed points of g in G/K. We
claim that for any r > 0 the set of points y ∈ G/K with dG/K(y, g ·y) < r is contained in an
(n − 1)r-neighborhood of Fg. Indeed, for y ∈ G/K, consider the “center of gravity” z of the g-
orbit {y, g·y, . . . , gn−1 ·y}, such that

∑n−1
i=0 dG/K(z, gi ·y)2 is minimal. (The existence and uniqueness

of such a point were first established by É. Cartan [10] to prove his fixed point theorem.) The
point z belongs to the convex hull of {y, g·y, . . . , gn−1·y}, hence there exists 1 ≤ i0 ≤ n−1 such that
dG/K(y, gi0 · y) ≥ dG/K(y, z). Moreover, z ∈ Fg, hence dG/K(y, z) ≥ dG/K(y,Fg). By the triangular
inequality,

dG/K(y, g · y) =
1
i0

i0−1∑
i=0

dG/K(gi · y, gi+1 · y) ≥
1
i0

dG/K(y, gi0 · y) ≥
1
i0

dG/K(y,Fg),

which proves the claim. Let R, ε > 0. We note that Fg is an analytic subvariety of G/K of
positive codimension since g < Gc. Therefore, for any ball B′ of radius (n + 1)R centered at a
point of Fg, there exists r ∈ (0,R] such that

volG/K
({

y ∈ B′ : dG/K(y, g·y) < r
})
< ε.
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Using the fact that the centralizer of g in G acts transitively on Fg (see [26, Ch. IV, § 7]), it is
easy to see that this r can actually be taken uniformly for all such balls. We conclude the proof
of Lemma 8.15 by observing that any ball of radius R meeting the (n − 1)r-neighborhood of Fg

is actually contained in a ball of radius (n + 1)R centered at a point of Fg, since r ≤ R. The fact
that r depends only on the conjugacy class of g in G (and on R and ε) follows from the fact that
the metric dG/K is G-invariant.

Proof of Proposition 8.14. We first assume that G is semisimple with no compact factor, so that
Gc = Z(G). The Kazhdan–Margulis theorem (see [66, Th. 11.8]) then gives the existence of a
neighborhoodW of e in G with the following property: for any discrete subgroup Γ of G, there
is an element g ∈ G such that g−1Γg ∩ W = {e}. It is enough to prove Proposition 8.14 for
discrete groups Γ such that Γ ∩W = {e}.

We note that for all g, γ ∈ G, we have dG/K(y0, g−1γg · y0) = dG/K(y, γ · y) where y := g · y0.
Therefore, using the interpretation (4.1) of ‖µ‖ as a distance in the Riemannian symmetric space
G/K, it is enough to prove the existence of a constant rG > 0 with the following property: for
any discrete subgroup Γ of G with Γ ∩ W = {e}, there is a point y ∈ G/K such that for any
γ ∈ Γ r Z(G),

dG/K(y, γ · y) ≥ rG. (8.5)

In order to prove this, we consider a bounded neighborhoodU of e in G such thatUU−1 ⊂ W,
and an integer m such that

m · volG(U) > volG
(
K1 · U

)
, (8.6)

where we set
K1 :=

{
g ∈ G : dG/K(y0, g · y0) < 1

}
.

•We claim that for any torsion-free discrete subgroup Γ of L with Γ ∩W = {e},

‖µ(γ)‖ = dG/K(y0, γ · y0) ≥
1
m
. (8.7)

Indeed, let Γ be such a group. Then γU ∩ γ′U = ∅ for all γ , γ′ in Γ, hence

volG
(
K1 · U

)
≥ #

(
Γ ∩ K1

)
· volG(U).

Therefore, by (8.6),
#
(
Γ ∩ K1

)
< m.

Using the fact (4.2) that ‖µ(gm)‖ ≤ m ‖µ(g)‖ for all g ∈ G, we obtain that any element γ ∈ Γ with
‖µ(γ)‖ < 1/m has order < m; the number of such elements γ is < m. In particular, since Γ is
torsion-free, the only element γ ∈ Γ with ‖µ(γ)‖ < 1/m is e, proving (8.7).
• We now deal with groups Γ that have torsion. By Lemma 8.15, for any g ∈ G r Gc of finite
order there exists r ∈ (0, 1

3m ] such that for any ball B of radius 1/3m in G/K,

volG/K
({

y ∈ B : dG/K(y, g · y) < r
})
<

1
m

volG/K(B), (8.8)

and this r depends only on the conjugacy class of g in G. Since there are only finitely many
conjugacy classes of elements of order < m in G [26, Ch. IX, Cor. 4.4 & Prop. 4.6], there exists
a constant r = rG such that (8.8) holds for all g ∈ G r Gc of order < m and all balls B of
radius 1/3m. Let us prove that this constant rG satisfies (8.5). Let Γ be a discrete subgroup of G
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such that Γ ∩ W = {e} . The same reasoning as before shows that any element γ ∈ Γ with
‖µ(γ)‖ < 1/m has order < m; the number of such elements γ is < m. By (8.8), there is a point
y ∈ BG/K(y0,

1
3m ) such that dG/K(y, γ · y) ≥ rG for all γ ∈ Γ rGc with ‖µ(γ)‖ < 1/m. For all γ ∈ Γ

with ‖µ(γ)‖ = dG/K(y0, γ · y0) ≥ 1/m, we also have

dG/K(y, γ · y) ≥ dG/K(y0, γ · y0) − 2 dG/K(y, y0) ≥
1

3m
≥ rG,

which proves (8.5) and completes the proof of Proposition 8.14 in the case when G has no
compact factor.

We now consider the general case where G may have compact factors. Let π : G → G/Gc

be the natural projection. The group π(G) = G/Gc is semisimple with a trivial center and no
compact factor. It admits the Cartan decomposition

π(G) = π(K) π(A+) π(K).

Let µπ(G) : π(G)→ log π(A+) be the corresponding Cartan projection. The restriction of π to A is
injective, hence we may identify log π(A+) with a+. With this identification,

µπ(G)(π(g)) = µ(g)

for all g ∈ G. Therefore, Proposition 8.14 for G follows from Proposition 8.14 for π(G), given
that for any discrete subgroup Γ of G the group π(Γ) is discrete in π(G).

Remark 8.16. If G is disconnected, with finitely many connected components, then it still admits
a Cartan decomposition G = KA+K, where K is a maximal compact subgroup of G and A+ a
positive Weyl chamber in a maximal split torus of G, possibly smaller than the corresponding
positive Weyl chamber for the identity component of G. The corresponding Cartan projection
µ : G → log A+ is well-defined and has the property that ‖µ(g)‖ = dG/K(y0, g · y0) for all g ∈ G,
where y0 denotes the image of K in G/K. Lemma 8.15 and Proposition 8.14 hold with the same
proof.

8.5. Proof of Proposition 8.1

Recall from (6.6) that we may take RX to be 4‖ρa‖/q in Proposition 6.1. For any subgroup Γ

of G acting properly discontinuously on X, we set

rΓ := inf
{
‖ν(x)‖ : x ∈ Γ·x0 and x < Xc

}
> 0

(see Remark 8.6).
We first consider Proposition 8.1.(1). Let XΓ be a sharp Clifford–Klein form of X with Γ ∩

Gc ⊂ Z(Gs). If Γ · x0 ∩ Xc ⊂ Z(Gs) · x0, then, by Lemma 8.5 and Remark 8.7, the operator S Γ is
well-defined and nonzero onVZ,λ for any λ ∈ j∗+ ∩ (2ρc − ρ + ΛΓ∩Z(Gs)) with d(λ) larger than

max
(
mρ ,

4‖ρa‖

qc
,

4‖ρa‖(rΓ + C) + log
(
2cG #(Γ ∩ K)

)
c log cosh(q′rΓ)

)
. (8.9)

Otherwise, we use Proposition 8.9, Remark 8.10, and the assumptions that H does not contain
any simple factor of G and Γ ∩ Gc ⊂ Z(Gs) to obtain the existence of an element g ∈ G such
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that g−1Γg · x0 ∩ Xc ⊂ Z(Gs) · x0; then S g−1Γg is well-defined and nonzero on VZ,λ for any
λ ∈ j∗+ ∩ (2ρc − ρ + Λg−1Γg∩Z(Gs)) with d(λ) larger than

max
(
mρ ,

4‖ρa‖

qc
,

4‖ρa‖(rg−1Γg + C) + log
(
2cG #(g−1Γg ∩ K)

)
c log cosh(q′rg−1Γg)

)
. (8.10)

By Remark 8.4 (and the fact that g−1Γg ∩ Z(Gs) = Γ ∩ Z(Gs)), the operator S Γ is well-defined
and nonzero on g · VZ,λ for any λ ∈ j∗+ ∩ (2ρc − ρ + ΛΓ∩Z(Gs)) satisfying (8.10). This concludes
the proof of Proposition 8.1.(1).

We now consider Proposition 8.1.(2). Let L be a reductive subgroup of G acting properly
on X. Assume that the center of L is compact. There is a conjugate L′ of L in G that is stable
under the Cartan involution θ; in particular, L′ is (c, 0)-sharp for some c > 0 (Example 4.11). By
Remark 8.4, it is sufficient to prove Proposition 8.1.(2) for L′. Let L′c be the maximal compact
normal subgroup of L′. Applying Proposition 8.14 to L′ instead of G, we obtain the existence
of a constant rL′ > 0 (depending only on L′) such that any discrete subgroup Γ of L′ admits a
conjugate g−1Γg, g ∈ L′, with ‖µ(g−1γg)‖ ≥ rL′ for all γ ∈ Γ r L′c. The reason why we apply
Proposition 8.14 to L′ and not G is that in this way the group g−1Γg ⊂ L′ remains (c, 0)-sharp.
Lemma 4.17 then yields ‖ν(g−1γg)‖ ≥ c rL′ for all γ ∈ Γ r L′c. In particular, g−1γg · x0 < Xc for
all γ ∈ Γ r L′c and rΓ ≥ c rL′ . By Remark 8.10 and the assumptions that H does not contain any
simple factor of G and Γ∩L′c ⊂ Z(Gs), we have g−1Γg∩K ⊂ Z(Gs) and g−1Γg·x0∩Xc ⊂ Z(Gs)·x0,
which enables us to apply Lemma 8.5. Using Remark 8.7, we obtain that the operator S g−1Γg is
well-defined and nonzero onVZ,λ for any λ ∈ j∗+ ∩ (2ρc − ρ + Λg−1Γg∩Z(Gs)) with d(λ) larger than

R := max
(
mρ ,

4‖ρa‖

qc
,

4‖ρa‖c rL′ + log
(
2cG #Z(Gs)

)
c log cosh(q′c rL′ )

)
. (8.11)

Proposition 8.1.(2) follows, using Remark 8.4.
We now consider Proposition 8.1.(3). Let L be a reductive subgroup of G of real rank 1 and let

Γ be a convex cocompact subgroup of L with Γ∩Gc ⊂ Z(Gs). By Proposition 8.9, Remark 8.10,
and the assumptions that H does not contain any simple factor of G and Γ∩Gc ⊂ Z(Gs), there is
an element g ∈ G such that g−1γg · x0 < Xc for all γ ∈ Γ r Z(Gs). By Proposition 4.3, the group
g−1Γg is (c,C)-sharp for some c,C > 0 (where c depends only on L). Choose ε ∈ (0, rg−1Γg).
By Lemma 4.22 applied to g−1Γg ⊂ g−1Lg instead of Γ ⊂ L, there is a neighborhood U′ ⊂
Hom(Γ,G) of the natural inclusion such that for all ϕ ∈ U′, the group g−1ϕ(Γ)g is discrete in G
and (c − ε,C + ε)-sharp for X, and satisfies ‖ν(g−1ϕ(γ)g)‖ ≥ rg−1Γg − ε for all γ ∈ Γ r Z(Gs). We
now use the following fact, which holds because there are only finitely many conjugacy classes
of elements of order ≤ #Z(Gs) in G [26, Ch. IX, Cor. 4.4 & Prop. 4.6] and they are all closed [7,
Th. 9.2].

Remark 8.17. There is a neighborhoodU ⊂ U′ ⊂ Hom(Γ,G) of the natural inclusion such that
ϕ(Γ ∩ Z(Gs)) ⊂ Z(Gs) for all ϕ ∈ U.

By Remark 8.17, we have g−1ϕ(Γ)g · x0 ∩ Xc ⊂ Z(Gs) · x0 and rg−1ϕ(Γ)g ≥ rg−1Γg − ε, as well as
g−1ϕ(Γ)g∩K ⊂ Z(Gs); we can apply Lemma 8.5. Using Remark 8.7, we obtain that for all ϕ ∈ U,
the operator S g−1ϕ(Γ)g is well-defined and nonzero onVZ,λ for any λ ∈ j∗+∩(2ρc−ρ+Λg−1ϕ(Γ)g∩Z(Gs))
with d(λ) larger than

R := max
(
mρ ,

4‖ρa‖

qc
,

4‖ρa‖(r + C) + log
(
2cG #Z(Gs)

)
c log cosh(q′(r − ε))

)
.
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Proposition 8.1.(3) follows, using Remark 8.4. If Γ ∩ Lc ⊂ Z(Gs), then we can conjugate Γ as in
the proof of Proposition 8.1.(2) and take r = c rL′ and C = 0. Since the function d takes discrete
values on j∗+ ∩ (2ρc − ρ + Λ), by choosing ε small enough we see that we can take the same R as
in Proposition 8.1.(2). This completes the proof.

8.6. Proof of the results of Sections 1 to 3

The bulk of the paper was the proof of Proposition 8.1; now we briefly explain how the results
of Sections 1 to 3 follow.

Theorem 3.8.(1) follows immediately from Proposition 8.1.(1); Theorem 3.8.(2) from Propo-
sition 8.1.(2); Theorem 3.11 from Proposition 8.1.(3); Theorem 3.13 from Proposition 6.1. In the
case when 8G is connected with no compact factor, Propositions 2.1 and 2.2 follow from Lemmas
4.23 and 8.5 as in the proof of Proposition 8.1.(3) (see Section 8.5).

In order to deduce Theorems 1.5, 1.7, and 1.8 from Theorems 3.8 and 3.11, and to prove
Propositions 2.1 and 2.2 in the general case, it is sufficient to deal with the following three issues:

• G may be disconnected,

• some simple factors of G may be contained in H,

• G may have compact factors.

Indeed, when G has no compact factor, the condition Γ∩Gc ⊂ Z(Gs) of Theorems 3.8 and 3.11 is
automatically satisfied (see Remark 3.9.(a)). The first issue is easily dealt with: if G0 denotes the
identity component of G, then G0/(G0 ∩ H) is a connected component of X, so Specd(G0/H) is
a subset of Specd(X) (extend eigenfunctions by 0 on the other connected components). In order
to deal with the second and third issues, we consider the group G := G/GcGH , where GH is the
maximal normal subgroup of G contained in H (see Section 8.3). We note that G is reductive
with no compact factor and that none of its simple factors is contained in H := H/GcGH ∩ H,
hence Theorems 3.8 and 3.11 apply to the reductive symmetric space X := G/H. To relate X
to X, we make the following elementary observation.

Observation 8.18. The natural projection π : X → X induces homomorphisms

• C∞(X)
π∗

↪−→ C∞(X),

• D(X)
π∗
−� D(X),

• HomC-alg(D(X),C)
π∗

↪−→ HomC-alg(D(X),C)

such that for all D ∈ D(X), f ∈ C∞(X), and χ ∈ HomC-alg(D(X),C),

(π∗D) f = χ(π∗D) f ⇐⇒ D(π∗ f ) = (π∗χ)(D) π∗ f .

Moreover, π∗(L2(X)) ⊂ L2(X), hence

π∗
(
Specd(X)

)
⊂ Specd(X).

67



Let us now consider Clifford–Klein forms. We note that if Γ is a discrete subgroup of G
acting properly discontinuously and freely on X, then the image Γ of Γ in G is discrete and acts
properly discontinuously on X, but not necessarily freely. However, in all the previous sections
we could actually drop the assumption that Γ acts freely, allowing XΓ to be an orbifold (or V-
manifold in the sense of Satake) instead of a manifold. Indeed, let us define L2(XΓ) to be the
set of Γ-invariant functions on X that are square-integrable on some fundamental domain for the
action of Γ. If C∞c (XΓ) denotes the space of Γ-invariant smooth functions on X with compact
support modulo Γ, then any D ∈ D(X) leaves C∞c (XΓ) invariant, so that for χλ : D(X) → C we
can define the notion of weak solution f ∈ L2(XΓ) to the system

D f = χλ(D) f for all D ∈ D(X) (Mλ)

with respect to integration against elements of C∞c (XΓ). We can then define Specd(XΓ) to be the
set of C-algebra homomorphisms χλ : D(X) → C for which the system (Mλ) admits a nonzero
weak solution f ∈ L2(XΓ). Since our construction of joint eigenfunctions is obtained by the
summation operator S Γ, Propositions 6.1 and 8.1, as well as Theorems 3.8 and 3.11, hold in this
more general setting. We conclude the proof of Theorems 1.5, 1.7, and 1.8 and Propositions 2.1
and 2.2 with the following observation.

Observation 8.19. (1) The rank condition (3.3) for X = G/H holds if and only if that for X =

G/H holds.

(2) For any discrete subgroup Γ of G acting properly discontinuously on X, the image Γ of Γ

in G is discrete and acts properly discontinuously on X.

(3) The projection π : X → X induces π∗(L2(XΓ)) ⊂ L2(XΓ), hence

π∗
(
Specd(XΓ)

)
⊂ Specd(XΓ).

Part IV

Detailed discussion of some examples
9. Three-dimensional anti-de Sitter manifolds

In this section and the following one, we concentrate on a few examples to illustrate our
general theory. We first examine the case of the 3-dimensional anti-de Sitter space X = AdS3 =

SO(2, 2)0/SO(1, 2)0. Our purpose is 3-fold:

• recall the description of the Clifford–Klein forms of AdS3 in terms of representations of
surface groups, as developed since the 1980’s (Sections 9.1 to 9.3);

• use it to give an explicit infinite subset of the discrete spectrum of the Laplacian on any
Clifford–Klein form Γ\AdS3 with Γ finitely generated, in terms of some geometric constant
CLip(Γ) (Section 9.4);

• understand the analytic estimates developed in Sections 5 and 7 through concrete harmonic
analysis computations on the group SL2(R) (Sections 9.5 to 9.9).
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As mentioned in the introduction, X = AdS3 is a Lorentzian analogue of the real hyperbolic
space H3 = SO(1, 3)0/SO(3): it is a model space for all Lorentzian 3-manifolds of constant
negative curvature, or anti-de Sitter 3-manifolds. One way to see X is as the quadric of equation
Q = 1 in R4 with the Lorentzian metric induced by −Q, where

Q(x) = x2
1 + x2

2 − x2
3 − x2

4 ; (9.1)

the sectional curvature of X is then −1 (see [83]). Another way to see X is as the manifold
SL2(R), with the Lorentzian structure induced by 1/8 times the Killing form of sl2(R) and the
transitive action (by isometries) of the group

G := SL2(R) × SL2(R)

by left and right multiplication:
(g1, g2) · g = g1gg−1

2 . (9.2)

We will use both realizations of X. An explicit correspondence is given by

{x ∈ R4 : Q(x) = 1} ∼−−→ SL2(R) .

x 7−→

(
x1 + x4 −x2 + x3
x2 + x3 x1 − x4

)
(9.3)

The stabilizer in G of the identity element 1 ∈ SL2(R) is the diagonal H := Diag(SL2(R)),
which is the set of fixed points of G under the involution σ : (g1, g2) 7→ (g2, g1). Thus X =

SO(2, 2)0/SO(1, 2)0 identifies with

G/H = (SL2(R) × SL2(R))/Diag(SL2(R)).

We note that the action of G on X factors through G/{±(1, 1)} ' SO(2, 2)0; we have H/{±(1, 1)} '
SO(1, 2)0. By [38] and [51], all compact anti-de Sitter 3-manifolds are Clifford–Klein forms
XΓ = Γ\X of X, up to finite covering. We now recall how these Clifford–Klein forms (compact
or not) can be described in terms of representations of surface groups.

9.1. Description of the Clifford–Klein forms of AdS3

As in Section 1.4, let −I ∈ SO(2, 2)0 be the diagonal matrix with all entries equal to −1;
it identifies with (1,−1) ∈ G/{±(1, 1)} and acts on X = AdS3 by x 7→ −x. Describing the
Clifford–Klein forms of X reduces to describing those of its quotient of order two

X := SO(2, 2)0/
(
SO(1, 2)0 × {±I}

)
'

(
PSL2(R) × PSL2(R)

)
/Diag(PSL2(R)).

If Γ is a discrete subgroup of G acting properly discontinuously and freely on X, then its projec-
tion Γ to PSL2(R)×PSL2(R) acts properly discontinuously and freely on X; the natural projection
XΓ → XΓ between Clifford–Klein forms is an isomorphism if −I belongs to the image of Γ in
SO(2, 2)0, and a double covering otherwise.

A fundamental result of Kulkarni–Raymond [51] states that if a torsion-free discrete sub-
group Γ of PSL2(R) × PSL2(R) acts properly discontinuously on X, then it is of the form

Γ = {( j(γ), ρ(γ)) : γ ∈ π1(S )}, (9.4)
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where S is a hyperbolic surface and j, ρ ∈ Hom(π1(S ),PSL2(R)) are two representations of the
surface group π1(S ), with one of them Fuchsian, i.e. injective and discrete. The Clifford–Klein
form XΓ = Γ\X is compact if and only if S is. Pairs ( j, ρ) ∈ Hom(π1(S ),PSL2(R))2 such that
the group ( j, ρ)(π1(S )) acts properly discontinuously on X are said to be admissible (terminology
of [69]). We note that not all pairs ( j, ρ) are admissible: for instance, if j and ρ are conjugate,
then the infinite group ( j, ρ)(π1(S )) does not act properly discontinuously on X since it fixes a
point. The question is to determine which pairs are admissible.

Easy examples of admissible pairs are obtained by taking j Fuchsian and ρ constant, or more
generally ρ with values in a compact subgroup of PSL2(R): the group Γ := ( j, ρ)(π1(S )) and
the Clifford–Klein form XΓ = Γ\X are then standard in the sense of Definition 1.4. When ρ is
constant, XΓ identifies with 8Γ\8G, where 8G = PSL2(R) and 8Γ = j(π1(S )) is a discrete sub-
group of 8G; in other words, it is the unit tangent bundle to the hyperbolic surface 8Γ\H2 (where
H2 denotes the hyperbolic plane). The first nonstandard examples of compact anti-de Sitter 3-
manifolds were obtained by deforming standard ones, i.e. proving that for fixed Fuchsian j, the
pair ( j, ρ) is admissible for any ρ close enough to the constant homomorphism: this was done
by Goldman [20] when ρ(π1(S )) is abelian, then by [45] in general. Salein [70] constructed the
first nonstandard compact Clifford–Klein forms that are not deformations of standard ones. It
is also easy to construct nonstandard Clifford–Klein forms XΓ that are not compact but convex
cocompact, in the following sense. We refer to [32, Ch. 5] and [22] for more details.

Definition 9.1. A Clifford–Klein form XΓ is convex cocompact if, up to finite index and switch-
ing the two factors, Γ is of the form (9.4) with j injective and j(π1(S )) convex cocompact in
PSL2(R) in the sense of Section 1.5.

This terminology is justified by the fact that the convex cocompact Clifford–Klein forms of X
are circle bundles over convex cocompact hyperbolic surfaces, up to a finite covering [14, 22]. We
shall say that a Clifford–Klein form XΓ of X = AdS3 is convex cocompact if its projection XΓ is.

By the Selberg lemma [75, Lem. 8], any finitely generated subgroup Γ of PSL2(R)×PSL2(R)
acting properly discontinuously on X has a finite-index subgroup that is torsion-free, hence of
the form (9.4). However, in order to obtain estimates on the discrete spectrum of XΓ itself and
not only of a finite covering, we need to understand the precise structure of Γ itself. We shall use
the following result, whose proof is based on [51].

Lemma 9.2. Let Γ be a finitely generated discrete subgroup of PSL2(R) × PSL2(R) (possibly
with torsion) acting properly discontinuously on X. Then either Γ is standard (i.e. Γ or σ(Γ) is
contained in a conjugate of PSL2(R) × PSO(2)) or Γ is of the form

Γ = {( j(γ), ρ(γ)) : γ ∈ π1(S )}, (9.4)

where S is a 2-dimensional hyperbolic orbifold, π1(S ) is the orbifold fundamental group of S ,
and ( j, ρ) ∈ Hom(π1(S ),PSL2(R))2, with j or ρ Fuchsian.

Recall that a 2-dimensional hyperbolic orbifold S is a hyperbolic surface with finitely many
singularities whose stabilizers are finite groups; the orbifold fundamental group π1(S ) is torsion-
free if and only if S is an actual hyperbolic surface. The point of Lemma 9.2 is that in the
nonstandard case, even if Γ has torsion, one of its projections to PSL2(R) is still discrete and
injective (not only with a finite kernel).
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Proof of Lemma 9.2. For i ∈ {1, 2}, consider the restriction to Γ of the i-th projection
pri : PSL2(R) × PSL2(R) → PSL2(R). The kernels Ker(pr1|Γ) and Ker(pr2|Γ) are discrete. They
cannot both be infinite since Γ acts properly discontinuously on X [51, § 5]. Therefore, after pos-
sibly conjugating and replacing Γ by σ(Γ), we may assume that Ker(pr1|Γ) is finite and contained
in {1}×PSO(2). If Ker(pr1|Γ) = {1}, then Γ is of the form (9.4) with j injective, and j is in fact dis-
crete [51, § 5]. If Ker(pr1|Γ) , {1}, then it is easy to see that Γ is contained in PSL2(R) × PSO(2)
since it normalizes Ker(pr1|Γ).

9.2. Deformation of convex cocompact Clifford–Klein forms of AdS3

The fact that the group PSL2(R)×PSL2(R) is not simple allows for a rich deformation theory.
For instance, for any compact hyperbolic surface S , the set of admissible pairs ( j, ρ) is

open in Hom(π1(S ),PSL2(R))2; the deformation space (modulo conjugation) thus has dimen-
sion 12g − 12, where g is the genus of S . In other words, for any compact Clifford–Klein form
XΓ of X = AdS3 = G/H, the group ϕ(Γ) is discrete in G and acts properly discontinuously and
cocompactly on X for all ϕ ∈ Hom(Γ,G) in some neighborhood of the natural inclusion of Γ

in G. Indeed, this follows from the completeness of compact anti-de Sitter manifolds [38] and
from the Ehresmann–Thurston principle on the holonomy of geometric structures on compact
manifolds (see [69, § 4.2.1]); a quantitative proof was also given in [45].

More generally, proper discontinuity is preserved under small deformations [32, Cor. 5.1.6]
for any convex cocompact Clifford–Klein form of X (in the sense of Definition 9.1), as a conse-
quence of the following two facts (the first one extending Example 4.13).

Fact 9.3 ([32, Th. 5.1.1]). All convex cocompact Clifford–Klein forms of X = AdS3 are sharp.

Fact 9.4 ([32, § 5.7.2]). Let XΓ be a (c,C)-sharp, convex cocompact Clifford–Klein form of
X = AdS3 = G/H. For any ε > 0, there is a neighborhood Uε ⊂ Hom(Γ,G) of the natural
inclusion such that the group ϕ(Γ) is discrete in G and (c − ε,C + ε)-sharp for all ϕ ∈ Uε.

(We refer to Definition 4.2 for the notion of sharpness.)
Facts 9.3 and 9.4 give the geometric estimates that we need (together with the analytic esti-

mates of Section 9.5 below) to construct an infinite stable discrete spectrum for the convex co-
compact Clifford–Klein forms of X = AdS3 (Corollary 9.10). By [22], sharpness actually holds
for all Clifford–Klein forms XΓ of X with Γ finitely generated, which implies that the discrete
spectrum is infinite for all such XΓ (Theorem 9.9).

9.3. The constant CLip(Γ)
The infinite subset of the discrete spectrum that we shall give in Section 9.4 will be expressed

in terms of a geometric constant CLip(Γ). The goal of this section is to introduce this constant, to
explain how sharpness is determined by it, and to provide some explanation of Facts 9.3 and 9.4.

• A reformulation of sharpness for X = AdS3

Let µPSL2(R) : PSL2(R)→ R≥0 be the Cartan projection mapping any element g to the loga-
rithm of the highest eigenvalue of tgg. We will use the following geometric interpretation:

µPSL2(R)(g) = dH2 (y0, g · y0), (9.5)
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where y0 is the point of H2 whose stabilizer is PSO(2). Consider a 2-dimensional hyperbolic
orbifold S and a pair ( j, ρ) ∈ Hom(π1(S ),PSL2(R))2. By [30, Th. 1.3], if the group ( j, ρ)(π1(S ))
acts properly discontinuously on X = AdS3, then the set of points(

µPSL2(R)( j(γ)) , µPSL2(R)(ρ(γ))
)
∈ R2

for γ ∈ π1(S ) lies on one side only of the diagonal of R2, up to a finite number of points.
Therefore, the group Γ := ( j, ρ)(π1(S )) is sharp for X if and only if, up to switching j and ρ, there
exist constants c′ < 1 and C′ ≥ 0 such that

µPSL2(R)(ρ(γ)) ≤ c′ µPSL2(R)( j(γ)) + C′

for all γ ∈ π1(S ); in this case, Γ is (c,C)-sharp for

c := sin
(π
4
− arctan(c′)

)
=

(1 − c′)√
2(1 + c′2)

and C :=
C′
√

2
(9.6)

and j is Fuchsian.

• The constants CLip( j, ρ) and CLip(Γ)
We denote by CLip( j, ρ) the infimum of Lipschitz constants

Lip( f ) = sup
y,y′ in H2

dH2 ( f (y), f (y′))
dH2 (y, y′)

of maps f : H2 → H2 that are ( j, ρ)-equivariant, i.e. that satisfy f
(
j(γ) · y

)
= ρ(γ) · f (y) for all

γ ∈ π1(S ) and y ∈ H2. By the Ascoli theorem, this infimum is a minimum if j is Fuchsian and
the Zariski closure of ( j, ρ)(π1(S )) is reductive (i.e. the image of ρ does not fix a unique point
on the boundary at infinity of H2). The constant CLip( j, ρ) is clearly invariant under conjugation
of j or ρ by PSL2(R). The logarithm of CLip, corrected by the ratio of the critical exponents,
can be seen as a generalization of Thurston’s “asymmetric metric” (or “Lipschitz metric”) on
Teichmüller space: see [32, § 5.6.2] and [22, § 1.5].

Let Γ be a discrete subgroup of G acting properly discontinuously on X. By Lemma 9.2,
either Γ is standard, or its projection to PSL2(R) × PSL2(R) is of the form (9.4). In the first case,
we set CLip(Γ) := 0. In the second case, we set

CLip(Γ) := min
(
CLip( j, ρ) , CLip(ρ, j)

)
.

• Link between sharpness and the constant CLip

Consider a 2-dimensional hyperbolic orbifold S and ( j, ρ) ∈ Hom(π1(S ),PSL2(R))2 with
j Fuchsian. Using the geometric interpretation (9.5), we make the following easy but useful
observation.

Remark 9.5. • If the Zariski closure of ( j, ρ)(π1(S )) is reductive, then there is an element
g0 ∈ PSL2(R) such that for all γ ∈ π1(S ),

µPSL2(R)
(
g−1

0 ρ(γ) g0
)
≤ CLip( j, ρ) µPSL2(R)( j(γ)).

• In general, for any ε > 0 there is an element gε ∈ PSL2(R) such that for all γ ∈ π1(S ),

µPSL2(R)
(
g−1
ε ρ(γ) gε

)
≤

(
CLip( j, ρ) + ε

)
µPSL2(R)( j(γ)).
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Indeed, for ε ≥ 0, let fε : H2 → H2 be a ( j, ρ)-equivariant map with Lip( fε) ≤ CLip( j, ρ) + ε. We
can take any gε ∈ PSL2(R) such that fε(y0) = gε·y0, using the fact that the metric dH2 is invariant
under PSL2(R).

Let Γ be a discrete subgroup of G. Proposition 4.3.(1) and Remark 9.5 (together with the
above reformulation of sharpness) imply that if CLip(Γ) < 1, then Γ is sharp for X; in particular,
Γ acts properly discontinuously on X. The converse is nontrivial but true in the finitely generated
case (based on the existence [22, 32] of a “maximally stretched line” for ( j, ρ)-equivariant maps
of minimal Lipschitz constant CLip( j, ρ) ≥ 1).

Fact 9.6 ([22, 32]). A finitely generated discrete subgroup Γ of G acts properly discontinuously
on X = AdS3 if and only if CLip(Γ) < 1, in which case Γ is sharp for X.

This is how Fact 9.3 and its generalization [22] to Clifford–Klein forms XΓ with Γ finitely
generated were obtained. Fact 9.4 is a consequence of Fact 9.6 and of the following continuity
result.

Fact 9.7 ([22, Prop. 1.5]). The function ( j, ρ) 7→ CLip( j, ρ) is continuous over the set of pairs
( j, ρ) ∈ Hom(π1(S ),PSL2(R))2 with j injective and j(π1(S )) convex cocompact in PSL2(R).

9.4. The discrete spectrum of the Laplacian
We note that here

q := g−dσ = {(Y,−Y) : Y ∈ sl2(R)} ⊂ sl2(R) ⊕ sl2(R) = g.

Therefore, the symmetric space X = AdS3 has rank 1 and the C-algebra D(X) is generated by the
Laplacian �X (Fact 3.1). Let us identify X with the quadric of equation Q = 1 in R4, where the
Lorentzian structure is induced by −Q. As mentioned in the introduction, if we set r(x) :=

√
Q(x)

for Q(x) > 0, then the Laplacian �X is explicitly given by

�X f =
1
2
�R2,2

(
x 7−→ f

( x
r(x)

))
for all f ∈ C∞(X), where

�R2,2 =
∂2

∂x2
1

+
∂2

∂x2
2

−
∂2

∂x2
3

−
∂2

∂x2
4

and where f (x/r(x)) is defined on the neighborhood {Q > 0} of X in R4. The invariant measure ω
on X is given by

ω = x1 dx2 dx3 dx4 − x2 dx1 dx3 dx4 + x3 dx1 dx2 dx4 − x4 dx1 dx2 dx3 ;

in other words, 1
r dr∧ω is the Lebesgue measure on a neighborhood of X in R4. The full discrete

spectrum of �X is well-known (see [18]). It is a special case of the general theory stated in
Fact 5.5, and it also follows from Claim 9.12 below.

Fact 9.8. The discrete spectrum of the Laplacian on X = AdS3 is

Specd(�X) =
{
`(` − 2) : ` ∈ N

}
.

We now consider Clifford–Klein forms XΓ. Here is a more precise version (and generaliza-
tion) of Theorem 1.1, using the constant CLip(Γ) of Section 9.3.
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Theorem 9.9. There is a constant R′X > 0 depending only on X = AdS3 such that for any
Clifford–Klein form XΓ with finitely generated Γ ⊂ SO(2, 2)0 ' (SL2(R) × SL2(R))/{±(1, 1)},

• if −I < Γ, then

Specd(�XΓ
) ⊃

{
`(` − 2) : ` ∈ N, ` >

R′X
(1 −CLip(Γ))3

}
;

• if −I ∈ Γ, then

Specd(�XΓ
) ⊃

{
`(` − 2) : ` ∈ 2N, ` >

R′X
(1 −CLip(Γ))3

}
.

In particular, the discrete spectrum of any Clifford–Klein form XΓ with Γ finitely generated is
infinite.

Using Fact 9.7, we obtain the existence of an infinite stable discrete spectrum in the convex
cocompact case.

Corollary 9.10. For any convex cocompact Clifford–Klein form XΓ of X = AdS3 (in the sense of
Definition 9.1), there is an infinite subset of Specd(�XΓ

) that is stable under any small deforma-
tion of Γ.

We note that Corollary 9.10 is stronger, in the case of X = AdS3, than the general Theo-
rem 1.7, because it treats small deformations of Clifford–Klein forms that may be nonstandard
to start with.

For standard Clifford–Klein forms XΓ, we have CLip(Γ) = 0 and Theorem 9.9 follows from
the general Theorem 3.11. We now explain how to prove Theorem 9.9 for nonstandard Clifford–
Klein forms, using the precise version (8.9) of Proposition 8.1.(1) together with the theory of
Sections 9.1 to 9.3 (in particular Lemma 9.2, Remark 9.5, and Fact 9.6). We first note that
we can identify the closed positive Weyl chamber b+ of Section 4.1 with R+ so that the polar
projection

ν : G = SL2(R) × SL2(R) −→ R≥0

of (4.5) is given by
ν(g) = µSL2(R)(g1g−1

2 ) (9.7)

for all g = (g1, g2) ∈ G = SL2(R) × SL2(R). Here µSL2(R) : SL2(R) → R≥0 is the Cartan
projection of SL2(R) obtained from the Cartan projection µPSL2(R) of Section 9.3 via the covering
map SL2(R)→ PSL2(R).

Proof of Theorem 9.9 for nonstandard Clifford–Klein forms. Let Γ be a finitely generated dis-
crete subgroup of G acting properly discontinuously on X = AdS3. Assume that Γ is nonstandard.
By Lemma 9.2 and Fact 9.6, after possibly applying σ, we may assume that the projection of Γ

to PSL2(R) × PSL2(R) is of the form Γ = ( j, ρ)(π1(S )) with ( j, ρ) ∈ Hom(π1(S ),PSL2(R))2 and
j Fuchsian, satisfying CLip( j, ρ) < 1. By Proposition 8.14, after replacing j by some conjugate
under PSL2(R), we may assume that µPSL2(R)( j(γ)) ≥ rPSL2(R) > 0 for all γ ∈ π1(S ) r {e}, where
rPSL2(R) is the constant given by Proposition 8.14, which depends only on the group PSL2(R). In
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particular, Γ ∩ K = {e}. Consider ε > 0 such that CLip( j, ρ) + ε < 1. By Remark 9.5 and (9.6),
after replacing ρ by some conjugate under PSL2(R), we may assume that Γ is (c, 0)-sharp for

c :=
1 − (CLip( j, ρ) + ε)√

2
(
1 +

(
CLip( j, ρ) + ε

)2) ≥ 1
2
(
1 −CLip( j, ρ) − ε

)
and, using (9.7) and (4.2), that

rΓ := inf
γ∈Γr{e}

ν(γ) ≥ inf
γ∈π1(S )r{e}

µPSL2(R)( j(γ)) − µPSL2(R)(ρ(γ))

≥ rPSL2(R)
(
1 −CLip( j, ρ) − ε

)
> 0.

We note that the function t 7→ log(cosh(t)) t−2 extends by continuity in 0 and is bounded on any
bounded interval of R. We conclude by using Proposition 8.1.(1) with the explicit constant (8.9),
together with Remark 8.4, and by letting ε tend to zero.

We note that the infinite subset of Specd(�XΓ
) given by Theorem 9.9 is largest when

CLip(Γ) = 0; this condition is realized when Γ is standard, but also when the projection of Γ

to PSL2(R) × PSL2(R) is of the form (9.4) with ρ(π1(S )) unipotent.

Remark 9.11. Assume that XΓ is a standard compact Clifford–Klein form with Γ = 8Γ × {e}
for some uniform lattice 8Γ of SL2(R). Then the Laplacian �XΓ

has not only infinitely many
positive eigenvalues that remain constant under small deformations (given by Theorem 9.9), but
also infinitely many negative eigenvalues that vary.

Indeed, L2(8Γ\H2) embeds into L2(XΓ) = L2(8Γ\SL2(R)) and the restriction to L2(8Γ\H2) of the
Laplacian �XΓ

corresponds to −2 times the usual Laplacian ∆ 8Γ\H2 on the hyperbolic surface
8Γ\H2 (see [52, Ch. X]). Therefore �XΓ

is essentially self-adjoint and admits infinitely many
negative eigenvalues coming from eigenvalues of ∆ 8Γ\H2 . All these eigenvalues vary under small
deformations of 8Γ inside SL2(R) (Fact 1.2).

9.5. Flensted-Jensen eigenfunctions and analytic estimates for AdS3

In Section 9.4 we have given an explicit infinite set of eigenvalues of the Laplacian on
Clifford–Klein forms of X = AdS3 (Theorem 9.9), based on a geometric discussion of prop-
erly discontinuous actions on AdS3 (Sections 9.1 to 9.3). We now make the analytic aspects of
the paper more concrete by expliciting the general estimates of Sections 5 and 7 in our example
X = AdS3. We first give an explicit formula for the Flensted-Jensen eigenfunctions ψλ.

• Flensted-Jensen functions
It is known that, in general, the radial part of the K-invariant eigenfunctions on a rank-one

reductive symmetric space X satisfies the Gauss hypergeometric differential equation [24, Ch. III,
Cor. 2.8]. However, it is another thing to find an explicit global formula on the whole of X for
K-finite eigenfunctions such as the Flensted-Jensen functions. We now give such a formula for
X = AdS3.

We now switch to the quadric realization of X: we identify X with the quadric of equation
Q = 1 in R4, where Q is given by (9.1). We use the same letter Q to denote the corresponding
complex quadratic form on C4. Let ` be an integer. For any a = (ai) ∈ C4 with Q(a) = 0, the
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restriction of the function x 7→ (
∑4

i=1 aixi)−` to X is well-defined. It is an eigenfunction of �X

with eigenvalue `(` − 2), as one sees from the formulas

�R2,2

( 4∑
i=1

aixi

)−`
= 0

for Q(a) = 0 and

−r2 �R2,2 = −
(
r
∂

∂r

)2
− 2r

∂

∂r
+ �X

(where, as above, we set r(x) :=
√

Q(x) for Q(x) > 0). Let ψ+
` : X → C and ψ−` : X → C be

given by
ψ+
` (x) =

(
x1 +

√
−1 x2

)−` and ψ−` (x) =
(
x1 −

√
−1 x2

)−`
. (9.8)

Then �X ψ
±
` = `(` − 2)ψ±` and the following holds.

Claim 9.12. For any integer ` ≥ 2, the functions ψ±` : X → C are Flensted-Jensen functions for
the parameter λ = 2`−2 ∈ R+ ' j∗+. The (g,K)-modules generated by ψ+

` and by ψ−` (` = 2, 3, ...)
form the complete set of discrete series representations for X.

A proof of Claim 9.12 will be given in Section 9.9, after we explicit the Flensted-Jensen
duality, the Poisson transform, and the complexified Iwasawa projection GC = KC(exp jC)NC in
Sections 9.6 to 9.8.

Remark 9.13. It is known that for the rank-one symmetric spaces G/H = O(p, q)/O(p−1, q), the
radial part of the K-finite eigenfunctions is given by hypergeometric functions with respect to the
polar decomposition G = K(exp b+)H, while the spherical part is given by spherical harmonics
(see [18] or [73] for instance). Combining the radial and spherical parts in the case p = q = 2, we
could obtain Claim 9.12 from some nontrivial relation between special functions [48, Lem. 8.1].
Instead, we will take an alternative approach, using the explicit realization of XC = GC/HC as a
complex quadric in C4.

• Analytic estimates
Here are the estimates of Propositions 5.1 and 7.1 for the Flensted-Jensen functions ψ±` of

(9.8). As before, we denote by x0 the image of H in X = G/H; in our quadric realization,
x0 = (1, 0, 0, 0) ∈ R4.

Lemma 9.14. For any x ∈ X = AdS3,

|ψ±` (x)| ≤
(cosh ν(x)

2

)−`/2
≤ 2` e−` ν(x)/2, (9.9)

and
|ψ±` (x)| ≤ cosh

(ν(x)
2

)−`/2
≤ cosh

(ν(x)
4

)−`
≤ |ψ±` (x0)| = 1. (9.10)

We give a direct, elementary proof of these inequalities.

Proof. By (9.7), in the realization of X = AdS3 as the group manifold SL2(R), the polar projec-
tion ν : X → R≥0 coincides with the Cartan projection µSL2(R) : SL2(R) → R≥0, which maps
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g ∈ SL2(R) to the logarithm of the highest eigenvalue of tgg, or in other words to arcosh(tr(tgg)/2).
Using the explicit correspondence (9.3), we obtain

ν(x) = arcosh(x2
1 + x2

2 + x2
3 + x2

4) = arcosh(2x2
1 + 2x2

2 − 1) (9.11)

for all x = (x1, x2, x3, x4) ∈ X in the quadric realization. By definition (9.8) of ψ±` , we have
|ψ±` (x)| = (x2

1 + x2
2)−`/2 for all x ∈ X. Thus (9.9) follows directly from (9.11). To obtain (9.10),

we use the general inequality 1 + cosh(2s) ≥ 2 cosh(s) with 2s = ν(x).

The rest of the section is devoted to explaining Claim 9.12. For this purpose we explicit, in
the particular case of X = AdS3, some of the notation that was introduced in Sections 3 to 8.

9.6. The Flensted-Jensen duality for AdS3

We now realize X again as (SL2(R)×SL2(R))/Diag(SL2(R)). Then the set of inclusions (5.4)
is given by

K = SO(2) × SO(2) ⊂ G = SL2(R) × SL2(R) ⊃ H = Diag(SL2(R))

⊃ ⊃ ⊃

KC = SO(2,C) × SO(2,C) ⊂ GC = SL2(C) × SL2(C) ⊃ HC = Diag(SL2(C))

⊂ ⊂ ⊂

Hd = Φ(SO(2,C)) ⊂ Gd = Φ(SL2(C)) ⊃ Kd = Φ(SU(2)),

where Φ is the embedding of SL2(C) into SL2(C) × SL2(C) defined by

Φ(g) =
(
g, tg−1) (9.12)

for all g ∈ SL2(C). We can see the complexified symmetric space XC either as the 3-dimensional
complex sphere of equation Q = 1 in C4 or as the group SL2(C) with the transitive action (9.2)
of SL2(C)× SL2(C) by left and right multiplication; the correspondence is given by the complex
linear extension of (9.3). The dual space Xd can be realized either as

Xd =
{(

x1,
√
−1 x2, x3, x4

)
: xi ∈ R, x2

1 − x2
2 − x2

3 − x2
4 = 1, x1 > 0

}
(9.13)

or as the set Herm(2,C)+∩SL2(C) of positive definite Hermitian matrices in SL2(C); it identifies
with the 3-dimensional hyperbolic space H3. The compact form XU of XC can be realized either
as

XU =
{(

x1, x2,
√
−1 x3,

√
−1 x4

)
: xi ∈ R, x2

1 + x2
2 + x2

3 + x2
4 = 1

}
or as the subgroup SU(2) of SL2(C); it identifies with the 3-dimensional real sphere S3. The
following diagram summarizes the different realizations of X, XC, and Xd.

X = G/H ' SL2(R) ↪−→ R4

⊂ ⊂ ⊂

XC = GC/HC
∼−−→
Φ′

SL2(C)
(9.3)
↪−→ C4

⊂ ⊂ ⊂

Xd = Gd/Hd ' Herm(2,C)+ ∩ SL2(C) ↪−→ R ×
√
−1R × R × R

∼
−−
→ Φ ∼

−−−−
−−→

Φ
′ ◦Φ

SL2(C)/SU(2),
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Here we set
Φ′(gHC) := g1g−1

2

for all g = (g1, g2) ∈ GC = SL2(C) × SL2(C). In the rest of the section, we always identify Gd

with SL2(C) using the isomorphism Φ of (9.12).

9.7. Eigenfunctions on Xd ' H3 and the Poisson transform

Let Pd be any Borel subgroup of Gd = SL2(C), let Nd be the unipotent radical of Pd, and let j
be any maximal split abelian subalgebra of gd with exp j ⊂ Pd. For instance, we could take Pd to
be the group of upper triangular matrices of determinant 1, so that Nd is the group of unipotent
upper triangular matrices, and take j to be the set of real diagonal matrices of trace 0 (in the next
section we are going to make another choice).

The boundary at infinity ∂∞Xd ' P1C of Xd ' H3 identifies with Gd/Pd; we denote the
image of Pd by z0. Let yd

0 be the image of Kd in Xd = Gd/Kd and let L be the geodesic line
(exp j) · yd

0. The Iwasawa decomposition Gd = Kd(exp j)Nd holds; this means that any point
y ∈ Xd can be reached from yd

0 by first applying some translation along the line L, then traveling
along some horosphere centered at z0 ∈ ∂∞Xd. The Iwasawa projection ζd : Gd → j measures
this translation: we can identify j with R so that ζd(g) is the signed distance between yd

0 and
the horosphere through g−1 · yd

0 centered at z0 for any g ∈ Gd; the sign of ζd(g) is negative if
the horosphere intersects the geodesic ray R := (exp j+) · yd

0 and nonnegative otherwise. For all
k ∈ Kd and g ∈ Gd,

ζd(g−1k) = Bk·R(g · yd
0),

where Bk·R : Xd → R is the Busemann function associated with the geodesic ray k·R. Recall that
by definition

Bk·R(x) = lim
t→+∞

(
dXd

(
x, k·R(t)

)
− t

)
,

where dXd is the metric on the Riemannian symmetric space Xd = Gd/Kd.
We note that the group Kd acts transitively on ∂∞Xd. The classical Poisson transform, defined

by

(P f )(y) =

∫
k∈Kd/Kd∩Pd

f (k·z0) e−2Bk·R(y) dk

for all f ∈ C(∂∞Xd) and y ∈ Xd = Gd/Kd, induces a bijection between the continuous functions
on ∂∞Xd and the harmonic functions on Xd that extend continuously to ∂∞Xd; the function P f
is the unique solution to the Dirichlet problem on Xd ' H3 with boundary condition f (see
[25, Ch. II, § 4]). If we extend the domain of definition of P to the space of all hyperfunctions
on ∂∞Xd, then we obtain all harmonic functions on Xd in a unique way. For λ ∈ j∗C ' C (where
ρ ∈ j∗C corresponds to 2 ∈ C), the “twisted Poisson transform”

Pλ : B(Kd/Kd ∩ Pd) ∼−−→ A(Xd,Mλ)

of Section 5.1 is given by

(Pλ f )(y) =

∫
k∈Kd/Kd∩Pd

f (k·z0) e−(λ+2)Bk·R(y) dk

for y ∈ Xd; its image consists of eigenfunctions of the Laplacian on Xd with eigenvalue λ(λ+2)/4.
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The action of Hd = SO(2,C) on ∂∞Xd corresponds to the action of C∗ by multiplication on
P1C, hence there are three Hd-orbits: two closed ones Z0 = {z0} and Z∞ = {w · z0} (where w is
the nontrivial element of the Weyl group W = W(gC, jC) ' Z/2Z), corresponding respectively to
{0} and {∞}, and an open one, corresponding to C∗.

9.8. Meromorphic continuation of the Iwasawa projection

We now assume that j is a maximal abelian subspace of
√
−1(k ∩ q), as in Section 3.3. If we

still identify Gd with SL2(C) by (9.12), this means that

j =
√
−1R

(
0 1
−1 0

)
.

Thus j is a maximal split abelian subalgebra of gd as in Section 9.7. It is readily seen that

nd := C
(

1
√
−1

√
−1 −1

)
is a root space for j, hence the Iwasawa decomposition Gd = Kd(exp j)Nd holds for Nd := exp nd.
This Iwasawa decomposition can be recovered from the usual decomposition

Gd = Kd exp
(
R

(
1 0
0 −1

))
exp

(
C

(
0 1
0 0

))
(9.14)

by conjugating by

k :=
1
2

(
1 +
√
−1 1 +

√
−1

−1 +
√
−1 1 −

√
−1

)
∈ Kd. (9.15)

We note that

k SL2(R) k−1 = SU(1, 1) =

{
g ∈ SL2(C) : tg

(
0 1
1 0

)
g =

(
0 1
1 0

) }
and that Ad(k) induces an identification (“Cayley transform”) between the upper half-plane
model SL2(R)/SO(2) of H2 and the unit disk model SU(1, 1)/S(U(1) × U(1)). An elementary
computation shows that the Iwasawa projection corresponding to (9.14) is given by

g ∈ Gd 7−→
1
2

log(tgg)1,1 ∈ R, (9.16)

where (tgg)1,1 denotes the upper left entry of tgg ∈ SL2(C). We now go back to the quadric
realization (9.13) of Xd. Using (9.16) and the explicit correspondence (9.3), we see that if
ζd : Gd → R is the Iwasawa projection corresponding to Gd = Kd(exp j)Nd, then for λ ∈ j∗ ' R
the map ξ∨λ : Xd → R induced by g 7→ e〈λ,ζ

d(g−1)〉 is given by

ξ∨λ (z) =
(
z1 +

√
−1 z2

)λ/2 (9.17)

for all z = (z1, z2, z3, z4) ∈ Xd ⊂ C4. When λ ∈ 2Z, the map ξ∨λ extends meromorphically to
XC = {z ∈ C4 : Q(z) = 1} and restricts to an analytic function on X.
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9.9. Proof of Claim 9.12

We now combine the elementary computations of Sections 9.6 to 9.8 to obtain an explicit
formula of the Flensted-Jensen functions ψλ for X = AdS3.

We choose j and Nd as in Section 9.8 and let Pd be the Borel subgroup of Gd ' SL2(C)
containing exp j and Nd. By Section 9.7, the two closed Hd-orbits in Gd/Pd are Z0 = HdPd and
Z∞ = HdwPd. If we identify Gd/Pd with Kd/Kd ∩ Pd ' SU(2)/SO(2), then

Z0 = {Kd ∩ Pd} and Z∞ = {w(Kd ∩ Pd)}.

For λ ∈ j∗ ' R, the Flensted-Jensen function ψ0
λ : Xd → C associated with Z0 is the Poisson

transform Pλ(δZ0 ) of the Dirac delta function δZ0 , hence

ψ0
λ(gKd) = e〈−λ−ρ,ζ

d(g−1)〉 = ξ∨−λ−ρ(g)

for all g ∈ Gd. Similarly, the Flensted-Jensen function ψ∞λ : Xd → C associated with Z∞ is given
by

ψ∞λ (gKd) = e〈−λ−ρ,ζ
d(g−1w)〉 = ξ∨−λ−ρ(w

−1g).

Therefore, by (9.17),

ψ0
λ(z) =

(
z1 +

√
−1 z2

)−(λ+2)/2 and ψ∞λ (z) =
(
z1 −

√
−1 z2

)−(λ+2)/2

for all z ∈ Xd, in the quadric realization (9.13). As observed at the end of Section 9.8, the
functions ψ0

λ and ψ∞λ on Xd induce analytic functions on X as soon as (λ + 2)/2 ∈ Z, i.e. as soon
as λ ∈ 2Z; this corresponds to the integrality condition (5.12) (we have µe

λ = µw
λ = λ + 2). The

proof of Claim 9.12 is now complete.

10. Some other illustrative examples

In this section we present some higher-dimensional examples of non-Riemannian locally
symmetric spaces to which our theorems apply, namely higher-dimensional anti-de Sitter mani-
folds and group manifolds, as well as certain indefinite Kähler manifolds.

10.1. Anti-de Sitter manifolds of arbitrary dimension

As a generalization of Section 9, we consider the discrete spectrum of complete anti-de Sitter
manifolds of arbitrary dimension ≥ 3.

For m ≥ 2, the anti-de Sitter space X = AdSm+1 := SO(2,m)0/SO(1,m)0 is a model space for
all Lorentzian manifolds of dimension m + 1 and constant negative curvature. It can be realized
as the quadric of Rm+2 of equation Q = 1, endowed with the Lorentzian structure induced by
−Q, where

Q(x) = x2
1 + x2

2 − x2
3 − · · · − x2

m+2 ;

the sectional curvature is then −1 (see [83]).
By the general construction of [41], we see that AdSm+1 admits proper actions by reductive

subgroups L of G := SO(2,m)0 of real rank 1 such as:

• L = U(1, [ m
2 ]), where [ m

2 ] denotes the largest integer ≤ m
2 (see also [50]);
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• L = PSL2(R), via a real 5-dimensional irreducible representation τ5 of PSL2(R) when
m ≥ 3.

Standard Clifford–Klein forms XΓ of X can be obtained by taking Γ to be any torsion-free discrete
subgroup inside L (for instance an infinite cyclic group, a nonabelian free group, a lattice of L,
an embedded surface group, etc.).

In particular, since U(1, m
2 ) acts transitively on X for m even, we can obtain compact (resp.

noncompact but finite-volume) standard Clifford–Klein forms of AdSm+1 for m even by taking
Γ to be any torsion-free uniform (resp. nonuniform) lattice in U(1, m

2 ). This construction of
compact Clifford–Klein forms of AdSm+1 is (conjecturally) the only one for m > 2 since

• compact Clifford–Klein forms do not exist when m is odd [50],

• Zeghib [85] has conjectured that for m even > 2, all compact Clifford–Klein should be
standard, with Γ ⊂ U(1, m

2 ) up to conjugation (this conjecture is still open).

We recall from Section 9 that the case m = 2 is different, as AdS3 admits many nonstandard
compact Clifford–Klein forms.

Since all compact anti-de Sitter manifolds are complete [38], small deformations of the anti-
de Sitter structure on a compact Clifford–Klein form Γ\AdSm+1 correspond to small deformations
of Γ inside G = SO(2,m)0. When Γ ⊂ L is standard, nontrivial deformations exist as soon as
the first Betti number of Γ is nonzero [45], which can happen by work of Kazhdan [36]. For
m > 2, small deformations of standard compact Clifford–Klein forms of AdSm+1 can never
give rise to nonstandard forms (see Section 2.3). However, standard noncompact Clifford–Klein
forms Γ\AdSm+1 can, typically if Γ is a convex cocompact subgroup of L that is a free group
(Schottky group). By [31], if Γ is an arbitrary convex cocompact subgroup of L, then it keeps
acting properly discontinuously on AdSm+1 after any small (possibly nonstandard) deformation
inside G. Nonstandard noncompact Clifford–Klein forms of AdSm+1 were also constructed by
Benoist [3] without using any deformation.

As a symmetric space, X = AdSm+1 has rank one, hence the algebra D(X) of G-invariant
differential operators on X is generated by the Laplacian �X . For standard Clifford–Klein forms
of X, Theorem 3.8.(2) yields the following (explicit eigenfunctions can be constructed as in
Section 9).

Proposition 10.1. There is an integer `0 such that for any standard Clifford–Klein form XΓ of
X = AdSm+1 with Γ ⊂ L = U(1, [ m

2 ]) and Γ ∩ Z(L) = {e},

Specd(�XΓ
) ⊃

{
`(` − m) : ` ∈ N, ` ≥ `0

}
, (10.1)

and (10.1) still holds after a small deformation of Γ inside G. A similar statement holds for
L = PSL2(R), embedded in SO(2,m)0 via τ5.

For the reader who would not be very familiar with reductive symmetric spaces, we now
explicit the notation of the previous sections for X = AdSm+1. We see H := SO(1,m)0 as
SO(2,m)0 ∩ SLm+1(R), where SLm+1(R) is embedded in the lower right corner of SLm+2(R); the
involution σ defining H is thus given by

σ(g) =


1
−1

. . .
−1

 g


1
−1

. . .
−1
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for g ∈ G = SO(2,m)0.

• Cartan and generalized Cartan decompositions
The Cartan decomposition G = KAK holds, where K = SO(2) × SO(m) and the Lie algebra

a of A is the set of block matrices of the form

as,t :=


Es,t 0

0 0


for s, t ∈ R, where

Es,t :=


0 s

0 t
−t 0

−s 0

 ∈ so(4).

The generalized Cartan decomposition G = KBH holds, where the Lie algebra b of B is the set
of elements as,0 for s ∈ R.

• The Flensted-Jensen duality
The set of inclusions (5.4) is given by

K = SO(2) × SO(m) ⊂ G = SO(2,m)0 ⊃ H = SO(1,m)0

⊃ ⊃ ⊃
KC = SO(2,C) × SO(m,C) ⊂ GC = SO(m + 2,C) ⊃ HC = SO(m + 1,C)

⊂ ⊂ ⊂

Hd = SO(1, 1)0 × SO(m) ⊂ Gd = SO(1,m + 1)0 ⊃ Kd = SO(m + 1).

In particular, Xd = Gd/Kd = SO(1,m + 1)0/SO(m + 1) is the real hyperbolic space Hm.

• Closed Hd-orbits Z and the parameter λ of discrete series representations
A maximal abelian subspace of

√
−1 (k ∩ q) is given by j :=

√
−1 so(2), where so(2) is the

first factor of k = so(2) ⊕ so(m). We note that j is also maximal abelian in
√
−1 q, hence

rank G/H = rank K/H ∩ K = 1 = dim j.

Since j is centralized by k, the restricted root system Σ(kC, jC) is empty. Let Y be the generator
√
−1

(
0 1
−1 0

)
of j =

√
−1 so(2) and let e1 ∈ j

∗ be defined by 〈e1,Y〉 = 1. There are two possible

choices of positive systems Σ+(gC, jC), namely {e1} and {−e1}. By (5.6), the setZ of closed Hd-
orbits in the real flag variety Gd/Pd has exactly two elements. They are actually singletons, the
“North and South poles” of Gd/Pd ' Sm. Take Σ+(gC, jC) to be {e1} (resp. {−e1}). If we identify
j with R by sending e1 (resp. −e1) to 1, then j∗+ identifies with R+ and we have ρ = m

2 and ρc = 0,
hence

µλ = λ + ρ − 2ρc = λ +
m
2
.

Condition (5.12) on µλ amounts to λ ∈ Z. The two discrete series representations with parameter
±λ are dual to each other.
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• Eigenvalues of the Laplacian
By Fact 3.4, the action of the Laplacian �X on L2(X,Mλ) is given by multiplication by the

scalar

(λ, λ) − (ρ, ρ) = λ2 −
m2

4
,

which can be written as `(` − m) if we set ` := λ + m
2 . This explains Proposition 10.1.

10.2. Group manifolds
In this section we consider symmetric spaces of the form X = (8G × 8G)/Diag(8G) where 8G

is any reductive linear Lie group. As mentioned in Section 2.2, the rank condition (3.3) is here
equivalent to rank 8G = rank 8K, where 8K is a maximal compact subgroup of 8G. This condition
is satisfied for 8G = SL2(R), in which case X is the 3-dimensional anti-de Sitter space AdS3

examined in Section 9. More generally, it is satisfied for all simple groups 8G with Lie algebra in
the list (2.2). It is equivalent to the fact that the Cartan involution of 8G is an inner automorphism.

• Infinite stable spectrum in real rank one
Assume that 8G has real rank 1. Then the structural results of Section 9.1 generalize: by

[30, Th. 1.3] (improving an earlier result of [42]), if a torsion-free discrete subgroup Γ of 8G×8G
acts properly discontinuously on X, then it is of the form

Γ =
{
( j(γ), ρ(γ)) : γ ∈ 8Γ

}
, (10.2)

where 8Γ is a discrete subgroup of 8G and j, ρ ∈ Hom(8Γ, 8G) are two representations with j
injective and discrete (up to switching the two factors). Moreover, the Clifford–Klein form XΓ is
compact if and only if j(8Γ)\G is. Standard Clifford–Klein forms correspond to the case when
ρ(8Γ) is bounded.

There exist standard compact Clifford–Klein forms XΓ that can be deformed into nonstandard
ones if and only if 8G has a simple factor that is locally isomorphic to SO(1, 2n) or SU(1, n)
[45, Th. A]. On the other hand, for convex cocompact Clifford–Klein forms XΓ, i.e. for Γ of the
form (10.2) with j injective and j(8Γ) convex cocompact in 8G up to switching the two factors
(see Definition 9.1), there is much more room for deformation: for instance, Γ could be a free
group of any rank m, in which case the deformation space has dimension m ·2 dim(8G). Similarly
to Corollary 9.10, we can extend Theorem 1.7 to nonstandard convex cocompact Clifford–Klein
forms (in particular that do not identify with 8Γ\8G).

Theorem 10.2. Let 8G be a semisimple linear Lie group of real rank 1 satisfying rank 8G =

rank 8K. All convex cocompact Clifford–Klein forms XΓ have an infinite stable discrete spectrum.

We note that most semisimple groups 8G of real rank 1 satisfy the condition rank 8G =

rank 8K: the only exception is if the Lie algebra 8g is so(1, n) for some odd n up to a compact
factor. Theorem 10.2 relies on the following two properties, which generalize Facts 9.3 and 9.4
and corroborate Conjecture 4.12.

Fact 10.3 ([21, Th. 1.13]). Let 8G be a semisimple linear Lie group of real rank 1. All convex
cocompact Clifford–Klein forms of X = (8G ×8G)/Diag(8G) are sharp.

Fact 10.4 ([32, § 5.7.2, using Prop. 6.5.1]). Let 8G be a semisimple linear Lie group of real rank 1
and let XΓ be a (c,C)-sharp, convex cocompact Clifford–Klein form of X = (8G × 8G)/Diag(8G).
For any ε > 0, there is a neighborhoodUε ⊂ Hom(Γ, 8G × 8G) of the natural inclusion such that
ϕ(Γ) is discrete in 8G ×8G and (c − ε,C + ε)-sharp for all ϕ ∈ Uε.
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For 8G = SO(1, n), Facts 10.3 and 10.4 were established in [22] using the Lipschitz approach
of Section 9.3. In this case, Fact 10.3 actually holds for a larger class of Clifford–Klein forms XΓ,
namely all those that are geometrically finite (in the sense that the hyperbolic manifold j(8Γ)\Hn

is geometrically finite, allowing for cusps) [22]. This implies that the discrete spectrum of any
geometrically finite Clifford–Klein form of X = (SO(1, n) × SO(1, n))/Diag(SO(1, n)) is infinite
for n even.

• “Exotic” Clifford–Klein forms in higher real rank
As we have seen in Section 2.2, for several families of groups 8G of higher real rank, the space

X = (8G×8G)/Diag(8G) admits standard compact Clifford–Klein forms XΓ of a more general form
than 8Γ\8G. More precisely, let 8G1 and 8G2 be two reductive subgroups of 8G such that 8G1 acts
properly and cocompactly on 8G/8G2: we can then take Γ of the form Γ = 8Γ1 ×

8Γ2, where 8Γ1
(resp. 8Γ2) is a uniform lattice of 8G1 (resp. of 8G2). Theorem 1.5 and Proposition 2.1 apply to
the discrete spectrum of these “exotic” standard compact Clifford–Klein forms XΓ '

8Γ1\
8G/8Γ2

when rank 8G = rank 8K.
A list of examples is given in Table 2.2 of Section 2. Among them, the example (8G, 8G1,

8G2) =

(SO(2, 2n)0,SO(1, 2n)0,U(1, n)) has the property that certain uniform lattices 8Γ1 of 8G1 admit
nonstandard deformations inside 8G, for which there exists an infinite stable discrete spectrum
by Proposition 2.1. For n = 1, manifolds of the form XΓ = 8Γ1\

8G/8Γ2 have dimension 6 and are
locally modeled on AdS3 × AdS3; the ring D(XΓ) is generated by the Laplacians of the two fac-
tors. The following table, for general n, shows that these Clifford–Klein forms XΓ = 8Γ1\

8G/8Γ2
are very different from the anti-de Sitter manifolds 8G1\

8G/8Γ2 '
8Γ2\

8G/8G1 = 8Γ2\AdS2n+1

which we examined in Section 10.1 and from the indefinite Kähler manifolds 8Γ1\
8G/8G2 =

8Γ1\SO(2, 2n)0/U(1, n) which we shall examine in Section 10.3.

Type of Clifford–Klein form 8Γ1\
8G/8Γ2

8G1\
8G/8Γ2

8Γ1\
8G/8G2

Model space X SO(2, 2n)0 AdS2n+1 SO(2, 2n)0/U(1, n)
Dimension 2n2 + 3n + 1 2n + 1 n(n + 1)
Signature (4n, 2n2 − n + 1) (2n, 1) (2n, n2 − n)
rank(X) n + 1 1 n

Degrees of generators of D(X) 2, 4, . . . , 2n, n + 1 2 2, 4, . . . , 2n
#Z 2(n + 1) 2 1

Table 10.1: Comparison of “exotic” Clifford–Klein forms of X = (8G ×8G)/Diag(8G) with Clifford–Klein forms of other
homogeneous spaces of 8G

More generally, whenever 8G has real rank > 1, there always exist two nontrivial reductive
subgroups 8G1 and 8G2 of 8G such that 8G1 acts properly (but not necessarily cocompactly) on
8G/8G2 [42, Th. 3.3]. When rank 8G = rank 8K, Theorem 1.5 and Propositions 2.1 and 2.2 apply
to the standard Clifford–Klein forms (possibly of infinite volume) XΓ = 8Γ1\

8G/8Γ2, where Γ =
8Γ1×

8Γ2 is the product of any discrete subgroup 8Γ1 of 8G1 with any discrete subgroup 8Γ2 of 8G2.

• Link between the discrete series representations of X and 8G
We now assume that 8G is connected and that rank 8G = rank 8K. Flensted-Jensen’s construc-

tion of discrete series representationsVZ,λ for X = (8G ×8G)/∆(8G) (as described in Section 5.3)
yields all of Harish-Chandra’s discrete series representations π8λ for 8G. This is well-known, but
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for the reader’s convenience we briefly recall the Harish-Chandra discrete series and make the
link with our previous notation.

Let 8θ be a Cartan involution of 8G and let 8K = (8G)
8θ be the corresponding maximal

compact subgroup of 8G. For simplicity, suppose that 8θ extends to a holomorphic involution
of some complexification 8GC of 8G. As in Section 9.6, we define a holomorphic embedding
Φ : 8GC →

8GC ×
8GC by

Φ(g) :=
(
g, 8θ(g)

)
.

Then the set of inclusions (5.4) is given by

K = 8K ×8K ⊂ G = 8G ×8G ⊃ H = Diag(8G)

⊃ ⊃ ⊃

KC = 8KC ×
8KC ⊂ GC = 8GC ×

8GC ⊃ HC = Diag(8GC)

⊂ ⊂ ⊂

Hd = Φ(8KC) ⊂ Gd = Φ(8GC) ⊃ Kd = Φ(8GU),

where 8GU is the compact real form of 8GC defined similarly to Section 5.2. As in Section 9.6, the
group Hd identifies with 8KC and Gd/Pd with the full complex flag variety 8GC/

8BC, where 8BC
is a Borel subgroup of 8GC. Fix a Cartan subalgebra 8t of 8k and a positive system ∆+(8kC, 8tC).
We note that 8t is also a Cartan subalgebra of 8g since rank 8G = rank 8K. The set Z of closed
Hd-orbits in Gd/Pd identifies with the set of positive systems ∆+(8gC, 8tC) containing the fixed
positive system ∆+(8kC, 8tC). In particular, the cardinal ofZ is easily computable as the quotient
of the cardinals of two Weyl groups. For instance, for 8G = SO(1, 2n)0, we have

#Z =
#W(Bn)
#W(Dn)

= 2.

Let 8ρc be half the sum of the elements of ∆+(8kC, 8tC). Any choice of a positive system
∆+(8gC, 8tC) containing ∆+(8kC, 8tC) determines a positive Weyl chamber 8t∗+ in 8t∗, an element
8ρ ∈ 8t∗+, defined as half the sum of the elements of ∆+(8gC, 8tC), and an element Z ∈ Z. For any
8λ ∈ 8t∗+ such that

µ8λ := 8λ + 8ρ − 28ρc

lifts to the torus 8T ⊂ 8K with Lie algebra 8t, Harish-Chandra proved the existence of an irre-
ducible unitary representation π8λ of 8G with square-integrable matrix coefficients, with infinites-
imal character 8λ (Harish-Chandra parameter) and minimal 8K-type µ8λ (Blattner parameter).
With the notation of the previous sections, we can take

j = {(8Y,−8Y) : 8Y ∈ 8t}.

For λ = (8λ,−8λ) ∈ j∗ and Y = (8Y,−8Y) ∈ j, we have

〈λ,Y〉 = 2 〈8λ, 8Y〉,

and if 8d : 8t∗ → R+ denotes the “weighted distance to the walls” defined as in Section 3.3, then

d(λ) = 8d(8λ).

Since K/H ∩ K = (8K ×8K)/Diag(8K) ' 8K, the set Λ+ = Λ+(K/H ∩ K) of (3.4) is here equal to
{(8λ,−8λ) : 8λ ∈ 8̂K}, which naturally identifies with the set 8̂K of irreducible representations of
8K. For λ = (8λ,−8λ) ∈ j∗+, we have an isomorphism of (8g, 8K) × (8g, 8K)-modules:

VZ,λ ' (π8λ)8K � (π∨8λ)8K .
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• Regular representation on L2(8Γ\8G)
Let 8Γ be a discrete subgroup of 8G. The action of 8G on 8Γ\8G from the right defines a

unitary representation of 8G on L2(8Γ\8G). With the previous notation, here is a consequence of
Proposition 8.1.(2) applied to the special case

G = 8G ×8G, H = Diag(8G), Γ = 8Γ × {e},

where the Clifford–Klein form XΓ = Γ\G/H identifies with 8Γ\8G.

Proposition 10.5. Let 8G be a reductive linear group with rank 8G = rank 8K.

(1) There is a constant R > 0 (depending only on 8G) such that for any torsion-free discrete
subgroup 8Γ of 8G and any discrete series representation π8λ of 8G with 8d(8λ) > R,

Hom8G

(
π8λ, L2(8Γ\8G)

)
, {0}.

(2) The same statement holds without the “torsion-free” assumption on Γ if 8G has no compact
factor.

Proof. Consider 8λ ∈ 8t∗+ such that µ8λ lifts to a maximal torus in 8K. Then λ := (8λ,−8λ) ∈ j∗+
belongs to 2ρc − ρ + Λ+ and d(λ) = 8d(8λ). Applying Proposition 8.1.(2), together with (8.1) and
(8.2), to

G = 8G ×8G, H = Diag(8G), Γ = 8Γ × {e},

we obtain the existence of a constant R > 0 such that if 8d(8λ) > R and 8G has no compact
factor (resp. 8G has compact factors), then for any discrete (resp. torsion-free discrete) subgroup
8Γ of 8G, the summation operator

S Γ : L2(8G,Mλ)8K1×
8K2 −→ L2(8Γ\8G,Mλ)

is well-defined and nonzero for some conjugates 8K1 = g1
8Kg−1

1 and 8K2 = g2
8Kg−1

2 of 8K (where
gi ∈

8G). In our specific setting, for ϕ ∈ L2(8G,Mλ)8K1×
8K2 , the function S Γ(ϕ) is nothing but the

classical Poincaré series ∑
γ∈8Γ

ϕ(γ ·) ∈ L2(8Γ\8G,Mλ)8K2 ,

and S Γ respects the action of (8g, 8K2) from the right. Therefore,

Hom(8g,8K2)

(
(π8λ)8K2 , L

2(8Γ\8G)
)
8K2
, {0}

if 8d(8λ) > R. Since π8λ is an irreducible unitary representation of 8G, this is equivalent to

Hom8G

(
π8λ, L2(8Γ\8G)

)
, {0}.

Remark 10.6. For arithmetic 8Γ, we may consider a tower of congruence subgroups 8Γ ⊃ 8Γ1 ⊃
8Γ2 ⊃ · · · . In the work of DeGeorge–Wallach [15] (cocompact case), Clozel [11], Rohlfs–
Speh [68], and Savin [71] (finite covolume case), the asymptotic behavior of the multiplicities
Hom8G

(
π8λ, L2(8Γ j\

8G)
)

for a discrete series representation π8λ was studied as j goes to infinity,
under the condition rank 8G = rank 8K. Then one could deduce from their result that any dis-
crete series representation π8λ with 8d(8λ) large enough occurs in L2(88Γ\8G) for some congruence
subgroup 88Γ of 8Γ, where 88Γ possibly depends on π8λ. The approach of [15, 11, 71] uses the
Arthur–Selberg trace formula. There is another approach for classical groups 8G and arithmetic
subgroups 8Γ using the theta-lifting, see [8, 36, 53]. Proposition 10.5 is stronger in three respects:
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(1) 8Γ is not necessarily arithmetic and 8Γ\8G can have infinite volume,

(2) we do not need to replace 8Γ by some finite-index subgroup 88Γ,

(3) the constant R is independent of the discrete group 8Γ.

10.3. Indefinite Kähler manifolds

We now consider the symmetric space X = SO(2, 2m)0/U(1,m) for m ≥ 2. Later we will
assume m to be even for the rank condition (3.3) to be satisfied. We see the group O(2, 2m) as
the set of linear transformations of R2m+2 preserving the quadratic form

x2
1 + y2

1 − x2
2 − y2

2 − · · · − x2
m+1 − y2

m+1,

and the subgroup H := U(1,m) of G := SO(2, 2m)0 as the set of linear transformations of Cm+1

preserving the Hermitian form |z1|
2 − |z2|

2 − · · · − |zm+1|
2. The involution σ of G defining H is

given by σ(g) = JgJ−1, where J is the diagonal block matrix with all diagonal blocks equal to
( 0 −1

1 0 ).
The natural G-invariant pseudo-Riemannian metric g on X has signature (2m,m(m − 1)). We

note that here X carries some additional structures, due to the fact that H is the centralizer of a
one-dimensional compact torus (namely its center Z(H) ' U(1)):

(1) X can be identified with an adjoint orbit (namely Ad(G)v where v is any generator of the
Lie algebra of Z(H)), hence also with a coadjoint orbit via the isomorphism g∗ ' g induced
by the Killing form; thus, X carries a Kostant–Souriau symplectic form ω (see [37, Ch. 1,
Th. 1]);

(2) X can be realized as an open subset of the flag variety GC/PC for some maximal proper
parabolic subgroup PC of GC = SO(2m + 2,C), as a generalized Borel embedding (see
[47] for instance); in particular, X has a G-invariant complex structure and g +

√
−1ω is a

G-invariant indefinite Kähler form on X if g is normalized by the Killing form.

The existence of the complex structure can easily be seen for m = 2, since SO(2, 4)0/U(1, 2)
identifies with SU(2, 2)/U(1, 2), which can be realized as an open subset of P3C (see Section 1.4).

Standard Clifford–Klein forms XΓ of X that are compact (resp. noncompact but of finite
volume) were constructed in [41]. They can be obtained by taking torsion-free uniform (resp.
nonuniform) lattices Γ inside L := SO(1, 2m)0. We note that the group L acts properly and transi-
tively on X. An elementary explanation for this is to observe that U(m+1) acts transitively on the
sphere S2m+1 = SO(2m+2)/SO(2m+1); by duality, so does SO(2m+1) on SO(2m+2)/U(m+1);
in turn, L acts properly and transitively on X = SO(2, 2m)0/U(1,m). (For a general argument,
we refer to [43, Lem. 5.1].)

If Γ is a free discrete subgroup of L, then the noncompact standard Clifford–Klein form XΓ

has a large deformation space. There are also examples of compact standard Clifford–Klein
forms that admit interesting small deformations. Indeed, certain arithmetic uniform lattices Γ of
L = SO(1,m)0 have the following property: there is a continuous 1-parameter group (ϕt)t∈R of
homomorphisms from Γ to G such that for any t , 0 small enough, the group ϕt(Γ) is discrete in G
and Zariski-dense in G; this 1-parameter group can be obtained by a bending construction due to
Johnson–Millson (see [31, § 6]). As we have seen in Example 4.11, any discrete subgroup Γ of L
is (

√
2

2 , 0)-sharp for X; by [31], if Γ is cocompact or convex cocompact in L, then for any ε > 0
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there is a neighborhood Uε ⊂ Hom(Γ,G) of the natural inclusion such that for any ϕ ∈ Uε, the
group ϕ(Γ) is discrete in G and (

√
2

2 − ε, ε)-sharp for X (see Lemma 4.22).
We now assume that m = 2n is even, so that the rank condition (3.3) is satisfied. We start by

examining the case n = 1, in which we give explicit formulas for the Flensted-Jensen eigenfunc-
tions of Section 7.1; we then explicit the notation of the previous sections for general n.

• The case n = 1
The group G = SO(2, 4)0 admits SU(2, 2) as a double covering, and the preimage of H =

U(1, 2) in SU(2, 2) is S(U(1) × U(1, 2)) ' U(1, 2). For an actual computation, in this paragraph
we set G := SU(2, 2) and H := S(U(1) × U(1, 2)) ' U(1, 2), and we consider the maximal
compact subgroup K := S(U(2) × U(2)). The symmetric space X ' SU(2, 2)/U(1, 2) identifies
with the open subset of P3C of equation h > 0, where

h(z) = |z1|
2 + |z2|

2 − |z3|
2 − |z4|

2

for z = (zi)1≤i≤4 ∈ C4. The Laplacian �X has been made explicit in Section 1.4. For any ` ∈ N,
we consider the following harmonic polynomial of degree (`, `) on C2:

P`(z1, z2) :=
∑̀
i=0

(
`

i

)2

(−1)i |z1|
2`−2i |z2|

2i.

Up to a multiplicative scalar, it is the unique harmonic polynomial of degree (`, `) that is fixed
by U(1) × U(1) ' H ∩ K; we normalize it so that P`(1, 0) = 1. The function

ψ` : z = (zi)1≤i≤4 7−→ P`(z1, z2) h(z)`+1 (
|z1|

2 + |z2|
2)−2`−1 (10.3)

on C4 r {0} satisfies the following differential equation:

h(z) �C2,2 ψ` = (` + 1)(` − 2)ψ`.

Since ψ` is homogeneous of degree 0, we may regard it as a function on X = {h > 0} ⊂ P3C.
Using these properties, we obtain the following (we omit the details).

Claim 10.7. For any ` ∈ N+, the function ψ` : X → C is a Flensted-Jensen function on X =

SU(2, 2)/U(1, 2), with parameter λ = 2` − 1 ∈ R+ ' j∗+ and with

�X ψ` = 2(` + 1)(` − 2)ψ`.

The (g,K)-modules V` generated by ψ` for ` ∈ N+ form the complete set of discrete series
representations for X.

We note that the (g,K)-module V` is irreducible and isomorphic to the Zuckerman–Vogan de-
rived functor module V0(2` − 1, 1) in algebraic representation theory, with notation as in [43,
§ 4]; in particular,V` has infinitesimal character 1

2 (2` − 1, 1,−1,−2` + 1) in the Harish-Chandra
parameterization and minimal K-type parameter (`,−`, 0, 0).

For the symmetric pair (G,H) ' (SU(2, 2),U(1, 2)), the polar decomposition G = KBH
holds, where the Lie algebra b of B is generated by

Y0 :=


0

0
1

0

1
0

0
0

 ∈ su(2, 2) ' g.
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If we identify b with R by sending Y0 to 1, then

ν(z) = arccosh

√
|z1|

2 + |z2|
2

h(z)
∈ R≥0

for all z = [z1 : z2 : z3 : z4] ∈ X. Here are the analytic estimates of Propositions 5.1 and 7.1 for
the Flensted-Jensen functions ψ` of (10.3).

Lemma 10.8. For any z ∈ X = SU(2, 2)/U(1, 2),

|ψ`(z)| ≤
(
cosh ν(z)

)−2(`+1)
≤ 22(`+1) e−2(`+1)ν(z).

This estimate follows immediately from the definition (10.3) of ψ`, in light of the inequality
|P`(z1, z2)| ≤ (|z1|

2 + |z2|
2)` for all (z1, z2) ∈ C2. Using (5.16), one can show that the function ψ`

is square integrable on X if and only if ` > 1/2.

• The general case
We now consider G = SO(2, 4n)0 and H = U(1, 2n) for an arbitrary integer n ≥ 1. The Cartan

decomposition G = KAK holds, where K = SO(2) × SO(4n) and A is the maximal split abelian
subgroup of G whose Lie algebra a is the set of elements

as,t :=



0 s 0
0 t

s 0
0 t

0
0

0 0


for s, t ∈ R. The generalized Cartan decomposition G = KBH holds, where the Lie algebra b
of B is the set of elements as,−s with s ∈ R. The set of inclusions (5.4) is given by

K = SO(2) × SO(4n) ⊂ G = SO(2, 4n)0 ⊃ H = U(1, 2n)

⊃ ⊃ ⊃

KC = SO(2,C) × SO(4n,C) ⊂ GC = SO(2 + 4n,C) ⊃ HC = GL(1 + 2n,C)

⊂ ⊂ ⊂

Hd = SO(2) × SO∗(4n) ⊂ Gd = SO∗(2 + 4n) ⊃ Kd = U(1 + 2n).

We recall that for any m ≥ 1, the group SO∗(2m) is a real form of SO(2m,C) with maximal
compact subgroup U(m).

89



A maximal abelian subspace j of
√
−1(k ∩ q) is given by the set of block matrices

Y(s1,...,sn) :=



0 0

0

snY

. .
.

s1Y
−s1Y

. .
.

−snY


for s1, . . . , sn ∈ R, where

Y :=

 0
√
−1

√
−1 0

 .
In particular, the rank of the symmetric space X is dim j = n.

Let { f1, . . . , fn} be the basis of j∗ that is dual to {Y(1,0,...,0), . . . ,Y(0,...,0,1)}. The set

Σ+(kC, jC) := { fi ± f j : 1 ≤ i < j ≤ n} ∪ {2 fk : 1 ≤ k ≤ n}

is a positive system of restricted roots of jC in kC. There is a unique positive system Σ+(gC, jC)
that contains it, namely

{ fi ± f j : 1 ≤ i < j ≤ n} ∪ {2 fk : 1 ≤ k ≤ n} ∪ { fk : 1 ≤ k ≤ n}.

By (5.6), for any minimal parabolic subgroup Pd of Gd, there is a unique closed Hd-orbit in
Gd/Pd, i.e. the set Z has only one element. The multiplicities of the restricted roots ± fi ± f j

and ± fk are four, and those of ±2 fk are one. Identifying j∗ with Rn via the basis { f1, . . . , fn}, we
obtain

j∗+ =
{
λ = (λ1, . . . , λn) : λ1 > λ2 > · · · > λn > 0},

d(λ) =
1
2

min
{
λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, 2λn

}
,

ρ =
(
4n − 1, 4n − 5, . . . , 7, 3

)
,

ρc =
(
4n − 3, 4n − 7, . . . , 5, 1

)
,

µλ = λ + ρ − 2ρc =
(
λ1 − 4n + 5, λ2 − 4n + 9, . . . , λn−1 − 3, λn + 1

)
.

The integrality condition (5.12) on µλ amounts to

λ j + 1 ∈ 2N for all 1 ≤ j ≤ n

and λ j − λ j+1 ≥ 4 for all 1 ≤ j ≤ n − 1.

Since the restricted root system Σ(gC, jC) is of type BCn, the Weyl group W is isomorphic to the
semidirect product Sn n (Z/2Z)n and we have C-algebra isomorphisms

D(X) ' C[x1, . . . , xn]Snn(Z/2Z)n
' C[D1, . . . ,Dn],
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where D1,D2, . . . ,Dn are algebraically independent invariant polynomials of homogeneous de-
grees 2, 4, . . . , 2n. If we normalize the pseudo-Riemannian metric g on X by g(Y,Y) = 1 for
Y := d

ds |s=0 exp(as,−s) · x0 ∈ Tx0 X (where x0 denotes the image of H in X = G/H, as usual), then
the Laplacian �X is 16n times the Casimir operator defined by the Killing form (for n = 1, this
is twice the Laplacian that we defined in Section 1.4 with respect to the “indefinite Fubini–Study
metric” h). By Fact 3.4, the action of the Laplacian �X on L2(X,Mλ) is given by multiplication
by the scalar

(λ, λ) − (ρ, ρ) = λ2
1 + · · · + λ2

n −
1
3

(16n3 + 12n2 − n).

We note that the center Z(SO(2, 4n)0) is contained in U(1, 2n), hence ΛΓ∩Z(Gs) = Λ for all Γ by
Remark 3.6; this shows that the choice of Γ does not impose any additional integrality condition
on the discrete spectrum for X = SO(2, 4n)0/U(1, 2n) when we apply Theorems 3.8 and 3.11.

Remark 10.9. In Sections 10.1 and 10.3, the isometry group of X is in the same family O(2, 2m),
with m ∈ N in Section 10.1 and m ∈ 2N in Section 10.3. However, the representations VZ,λ

of G = SO(2, 2m)0 that are involved are different: they are all highest-weight modules if X =

AdS2m+1, and never highest-weight modules if X is the indefinite Kähler manifold
SO(2, 4n)0/U(1, 2n).
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