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Abstract

We initiate the spectral analysis of pseudo-Riemannian locally symmetric spaces I'\G/H, beyond
the classical cases where H is compact (automorphic forms) or I’ trivial (analysis on symmetric
spaces).

For any non-Riemannian reductive symmetric space X = G/H on which the discrete spec-
trum of the Laplacian is nonempty, and for any discrete group of isometries I' whose action on X
is sufficiently proper, we construct L>-eigenfunctions of the Laplacian on Xp := I'\X for an infi-
nite set of eigenvalues. These eigenfunctions are obtained as generalized Poincaré series, i.e. as
projections to X of sums, over the I"-orbits, of eigenfunctions of the Laplacian on X.

We prove that the Poincaré series we construct still converge, and define nonzero L2-functions,
after any small deformation of I" inside G, for a large class of groups I'. Thus the infinite set of
eigenvalues we construct is stable under small deformations. This contrasts with the classical set-
ting where the nonzero discrete spectrum varies on the Teichmiiller space of a compact Riemann
surface.

We actually construct joint L?-eigenfunctions for the whole commutative algebra of invariant
differential operators on Xr.
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1. Introduction

The goal of this paper is to initiate the spectral study of the Laplacian on pseudo-Riemannian
locally symmetric spaces I'\G/H, beyond the classical cases where H is compact (automorphic
forms) or I’ trivial (analysis on symmetric spaces). In the non-Riemannian case, the Laplacian
is not an elliptic operator, and the existence of discrete spectrum is not obvious even for com-
pact quotients. We obtain the first general results on the discrete spectrum of non-Riemannian
locally symmetric spaces I'\G/H, under a rank condition on G/H. In particular, we construct
L?-eigenfunctions for an infinite set of eigenvalues on a large class of quotients (not necessarily
of finite volume) and prove some deformation results that have no analogue in the classical Rie-
mannian setting. We work not only with the Laplacian, but with the whole commutative algebra
of “intrinsic” differential operators on ['\G/H, which includes the Laplacian.

Before describing our results in more detail, we first recall a few definitions.

1.1. The main objects

A pseudo-Riemannian metric on a manifold M is a smooth, nondegenerate, symmetric bilin-
ear tensor g of signature (p, q) for some p,q € N. As in the Riemannian case (i.e. ¢ = 0), the
metric g induces a second-order differential operator

Uy = div grad (1.1)



called the Laplacian or Laplace—Beltrami operator. For instance, for
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the Laplacian is
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In general, [y, is elliptic if g is Riemannian, hyperbolic if g is Lorentzian (i.e. ¢ = 1), and
none of these otherwise. The discrete spectrum of Uy, is its set of eigenvalues corresponding to
L*-eigenfunctions:

Spec,(Cy) :={te€ C: Af € L2 (M), £ #0, s.t. Oy f = tf}, (1.2)

where L?(M) is the Hilbert space of square-integrable functions on M with respect to the Radon
measure induced by the pseudo-Riemannian structure.

A reductive symmetric space is a homogeneous space X = G/H where G is a real reductive
Lie group and H an open subgroup of the group of fixed points of G under some involutive
automorphism o. The manifold X naturally carries a pseudo-Riemannian metric, induced by the
Killing form of the Lie algebra g of G when G is semisimple; therefore, X has a Laplacian Uy.
Alternatively, [y is induced by the Casimir element of the enveloping algebra U(g), acting on
C*(X) by differentiation (see Section 3.2). Let D(X) be the C-algebra of differential operators
on X that are invariant under the natural G-action

D= oDo ;= (f1— D),

where we set £,(f) = f# := f(g-). The Laplacian Ly belongs to ID(X) and, since X is a symmetric
space, D(X) is commutative (see Section 3.1); we shall consider eigenfunctions for [y that are
in fact joint eigenfunctions for D(X).

A locally symmetric space is a quotient Xp = I'\ X of a reductive symmetric space X = G/H
by a discrete subgroup I of G acting properly discontinuously and freely. Such a quotient is
also called a Clifford—Klein form of X. The proper discontinuity of the action of I" ensures that
Xr is Hausdorff, and it is in fact a manifold since the action is free. It is locally modeled on X
(it is a complete (G, X)-manifold in the sense of Ehresmann and Thurston), hence inherits a
pseudo-Riemannian structure from X and has a Laplacian Uy.. Any operator D € D(X) induces
a differential operator Dr on Xr such that the following diagram commutes, where pr : X — Xr
is the natural projection.

Xy —2 - X))

p;T Tﬁ}‘

C(Xp) —2= C¥(Xr)
In particular, note that
Ox. = Ox),.

The discrete spectrum Spec, (Xr) of Xr is defined to be the set of C-algebra homomorphisms
X1 : D(X) — C such that the space L>(Xr, M,) of weak solutions f € L*(Xr) to the system

Drf =xaD)f  forall D e D(X) (My)
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is nonzero. (The notation y,; will be explained in Section 3.1.) It is the set of joint eigenvalues
for the commutative algebra D(Xr) := {Dr : D € D(X)}, which we think of as the algebra of
“intrinsic” differential operators on Xr. The discrete spectrum Spec,(Xr) refines the discrete
spectrum of the Laplacian Uy, from (1.2) (see Remark 3.3).

1.2. The main problems

Let Xr = I'\X be a locally symmetric space. We wish to initiate the following program
(see [33]):

A) Construct joint L2-eigenfunctions on Xt corresponding to Spec ,(Xr);
B) Understand the behavior of Spec,(Xr) under small deformations of I inside G.

By a small deformation we mean a homomorphism close enough to the natural inclusion in the
compact-open topology on Hom(I', G).
Problems A and B have been studied extensively in the following two cases.

e Assume that H is compact. Then X is Riemannian and the Laplacian Oy is elliptic. If Xr
is compact, then the discrete spectrum of [y, is infinite. If furthermore I" is irreducible,
then Weil’s local rigidity theorem [81] states that nontrivial deformations exist only when
X is the hyperbolic plane H?> = SL,(R)/SO(2), in which case compact Clifford—Klein
forms have an interesting deformation space modulo conjugation, namely their Teich-
miiller space. Viewed as a “function” on the Teichmiiller space, the discrete spectrum
varies analytically [9] and nonconstantly (Fact 1.2 below). On the other hand, for non-
compact Xr the discrete spectrum Spec,(Xr) may be considerably different depending on
whether I' is arithmetic or not (see Selberg [74], Phillips—Sarnak [62, 63], Wolpert [84],
etc.).

e Assume that I is trivial. Then the group G naturally acts on L*(Xr) = L*X) and so
representation-theoretic methods may be used. Spectral analysis on the reductive sym-
metric space X with respect to D(X) is essentially equivalent to finding a Plancherel-type
theorem for the irreducible decomposition of the regular representation of G on L*(X): see
van den Ban—Schlichtkrull [2], Delorme [16], and Oshima [59], as a far-reaching general-
ization of Harish-Chandra’s earlier work [23] on the regular representation L*(G) for group
manifolds. Flensted-Jensen [19] and Matsuki—Oshima [57] showed that Spec,(X) # 0 if
and only if the condition rank G/H = rank K/K N H is satisfied (see Section 3.3), in
which case they gave an explicit description of Spec,(X) (Fact 5.5). The rest of the spec-
trum (tempered representations for X, see [4]) is constructed from the discrete spectrum of
smaller symmetric spaces by induction.

On the other hand, Problems A and B have not been much studied when H is noncompact, I
is nontrivial, and I acts properly discontinuously on X = G/H, except in the group manifold case
when Xt identifies with ‘T'\'G for some reductive Lie group ‘G and some discrete subgroup ‘I’.
Here we give the first results that do not restrict to this case. The fact that H is noncompact and
I" nontrivial implies new difficulties from several perspectives:

(1) Analysis: the Laplacian on Xt is not an elliptic operator anymore;

(2) Geometry: an arbitrary discrete subgroup I" of G does not necessarily act properly discontin-
uously on X;
4



(3) Representation theory: a discrete subgroup I' of G acting properly discontinuously on X
always has infinite covolume in G; moreover, G does not act on L>(Xr), and L*(Xy) #
L*(T'\G)" since H is noncompact.

In particular, point (1) makes Problem A nontrivial: we do not know a priori whether or not
Spec,(Xr) # 0, even for compact Xr.

Point (2) creates some underlying difficulty to Problem B: we need to consider Clifford—Klein
forms Xt for which the proper discontinuity of the action of I" on X is preserved under small de-
formations of I" in G. Not all Clifford—Klein forms Xt have this property (see Example 4.16),
but a large class does (see Example 4.13 and subsequent comments). The study of small de-
formations of Clifford—Klein forms in the general setting of reductive homogeneous spaces was
initiated in [45]; we refer to [12] for a recent survey in the case of compact Clifford—Klein forms.
An interesting aspect of the case of noncompact H is that there are more examples where non-
trivial deformations of compact Clifford—Klein forms exist than for compact H (see Sections 2.3
and 2.4).

1.3. One approach: constructing generalized Poincaré series

In this paper we investigate Problems A and B under the assumption (3.3) that X admits a
maximal compact subsymmetric space of full rank. This case is somehow orthogonal to the case
of Riemannian symmetric spaces of the noncompact type, where compact subsymmetric spaces
are reduced to points. Assuming that G is noncompact, the group H is thus noncompact and X
non-Riemannian.

By [19, 57], the assumption (3.3) is equivalent to the fact that Spec,(X) is nonempty. Our
idea is then to construct joint eigenfunctions on Xt as generalized Poincaré series

¢ T > ely-x), (1.3)

yel

where the ¢ are well-behaved joint eigenfunctions on X. The convergence and nonvanishing
of the series are nontrivial since the behavior of ¢ needs to be controlled in relation to the dis-
tribution of T'-orbits in the non-Riemannian space X, for which not much is known since T is
not a lattice in G (see Remark 4.8). From a representation-theoretic viewpoint, we build on
Flensted-Jensen’s discrete series representations [19] for X, whose underlying (g, K)-modules
are isomorphic to certain Zuckerman—Vogan derived functor modules Aq(4). The summation
process (1.3) is different from that of Tong—Wang [77]: see Remark 6.2.

Our approach enables us to address Problem A for a large class of Clifford—Klein forms Xr
of X, constructing eigenfunctions on Xt for an explicit, infinite set of joint eigenvalues contained
in Spec,(X). In particular, this proves that the discrete spectrum Spec,(Xr) is nonempty.

We also address Problem B for a large class of Clifford—Klein forms Xr. We prove that
the infinite subset of Spec,(Xr) that we construct is stable under any small deformation of T
in G, by establishing that the generalized Poincaré series (1.3) still converges after such a small
deformation. This is achieved by carefully controlling the analytic parameters and using recent
results in the deformation theory of proper actions on homogeneous spaces.

One special example to which our results apply is the aforementioned classical quotients
IN\G, regarded as (I' X {e})\(G x G)/Diag(G) where Diag(G) is the diagonal of G X G. Our
geometric and analytic estimates in this case imply that all discrete series representations 7,
of G with sufficiently regular parameter A appear in the regular representation L>(I'\G), without
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replacing I" by a deep enough finite-index subgroup (Proposition 10.5). When I' is arithmetic, our
construction improves the non-vanishing results of Homg(r;, L*(I'\G)) that were known earlier
from the asymptotic multiplicity formulas of DeGeorge—Wallach [15], Clozel [11], and Rohlfs—
Speh [68] or the theta-lifting (see Kazhdan [36], Borel-Wallach [8], Li [53]) in automorphic
forms; these previous approaches required passing to a congruence subgroup that depended on
the discrete series representation. We refer to Remark 10.6 for more details.

We introduce three main ingredients:

(1) Uniform analytic estimates for eigenfunctions on X, including their asymptotic behavior at
infinity (Proposition 5.1) and the local behavior near the origin of specific eigenfunctions
(Proposition 7.1);

(2) A quantitative understanding of proper actions on reductive homogeneous spaces (notion of
sharpness — Definition 4.2);

(3) Counting estimates for points of a given I'-orbit in X, both in large “pseudo-balls” (Lem-
ma 4.6) and near the origin (Proposition 8.9).

In (1), our estimates are uniform in the spectral parameter and refine results of Flensted-Jensen
[19] and Matsuki—Oshima [57]. In (2), the quantitative approach to properness that we develop
builds on the qualitative interpretation of Benoist [3] and Kobayashi [41, 44] in terms of a Cartan
decomposition G = KAK. In (3), we relate the natural “pseudo-distance from the origin” in the
non-Riemannian space X to the distance from the origin in the Riemannian symmetric space G/ K
of G in order to use the growth rate of I, the Kazhdan—Margulis lemma, and the sharpness con-
stants of (2). Our counting results may be compared to those obtained by Eskin—-McMullen [17]
in a different setting, where I is a lattice in G (see Remark 4.8).

We now state precise results, not on our construction of joint eigenfunctions (for this we refer
to Propositions 6.1 and 8.1), but on the corresponding eigenvalues, i.e. on the discrete spectrum
of our locally symmetric spaces. These results were partially announced in [33]. Before we state
them in full generality, we illustrate them with two simple examples of rank one (see Sections 9
and 10 for more details); in these two examples, the commutative C-algebra ID(X) is generated
by the Laplacian [y and therefore Spec,(Xr) identifies with Spec, (L, ) for any Clifford—Klein
form Xr.

1.4. Two examples

Our first example is the 3-dimensional anti-de Sitter space X = AdS® = SO(2,2)/SO(1, 2)o,
which can be realized as the quadric of R* of equation Q = 1, endowed with the Lorentzian
metric induced by —Q, where

O(x) := X} + x5 — x5 — x2.
It is a Lorentzian analogue of the real hyperbolic space H?, being a model space for all Lorentzian
3-manifolds of constant sectional curvature —1 (or anti-de Sitter 3-manifolds). The Lapla-
cian [, 4¢3 18 a hyperbolic operator of signature (+ + —); it is given explicitly by

Uags?S = Uge2 (x — f( xl%))

for all f € C*(AdS?), where f(x/ VO()) is defined on the neighborhood {Q(x) > 0} of the
quadric AdS® in R*. 1t is equal to 4 times the Casimir operator of g = so0(2,2) with respect
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to the Killing form. We construct eigenfunctions of the Laplacian on all compact anti-de Sitter
3-manifolds, for an infinite set of eigenvalues, and prove that this infinite set of eigenvalues is
stable under any small deformation of the anti-de Sitter structure.

Theorem 1.1. The discrete spectrum of any compact anti-de Sitter 3-manifold is infinite. Explic-
itly, if M = T\AdS?> with =1 ¢ T, then

Spec,(Oy) D {6l -2): €N, €> (o} (1.4)

for some integer {y; moreover, (1.4) still holds (with the same {,) after any small deformation of
the anti-de Sitter structure on M.

Here -1 € SO(2, 2)( denotes the nontrivial element of the center of SO(2, 2), acting on AdS? =
{x € R* : Q(x) = 1} by the antipodal map x +— —x. If —I € T, then half of the spectrum survives:

Spec,(Oy) D (6L —2) : €€ 2N, > ()

for some £,. We actually prove that (1.4) holds (for some explicit £,) for any complete anti-de
Sitter 3-manifold M = T'\AdS® with T finitely generated (Theorem 9.9). The stability of eigen-
values under small deformations in Theorem 1.1 contrasts with the situation in the Riemannian
case:

Fact 1.2 (see [84, Th. 5.14]). For a compact hyperbolic surface, no eigenvalue of the Laplacian
above 1/4 is constant on its Teichmiiller space.

As we shall recall in Section 9, any compact anti-de Sitter 3-manifold M is a circle bundle over
some closed hyperbolic surface S (up to a finite covering); the deformation space of M contains
the Teichmiiller space of S, and its dimension is actually twice as large. We shall also prove the
existence of an infinite stable spectrum for a large class of noncompact complete anti-de Sitter
3-manifolds (Corollary 9.10).

Our second example is the 3-dimensional complex manifold

X =SU(2,2)/U(1,2) = SO(2,4)/U(l, 2),
which can be realized as the open subset of P3C of equation & > 0, where
h(@) = |21 + |22l = Iz — |zl

on C*. The space X is naturally endowed with an indefinite Hermitian structure of signature
(2,1) induced by —A. The imaginary part of —h endows X with a symplectic structure, making X
into an indefinite Kihler manifold. The real part of —/ gives rise to a pseudo-Riemannian metric
of signature (4,2). The Laplacian Uy has signature (+ + + + — —) and is given by the following
commutative diagram:

Co(Ch )y < C™(X)

h>0

2h DCZ,Z l iDX

Cx(CH) <" C>X),

h>0
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where
C* :={zeC*: h(z)> 0},

h>0

where 7 : (C;‘)O—> X is the natural projection, and where

(92 (92 62 82
- — — + — + -
021021 022072 073073 024074

D(cz,z =

on C*. It is 8 times the Casimir operator of g = su(2,2) with respect to the Killing form. A
natural way to construct Clifford—Klein forms of X is to notice that X fibers over the quaternionic
hyperbolic space Hll_l = Sp(1, 1)/Sp(1) x Sp(1), with compact fiber:
“ih(z) =1 - X = P3C : h(z) > 0
{zeC':h(z) =1} e U {[z] e P°C : h(z) > 0}
R lﬁber Sp(1)/U(1)

{ue B : 2 - Jup? = 1} P Hy; = {[u] € P'H : uy]* — luz* > 0},

where H is the ring of quaternions and P'H the quotient of H? ~. {0} by the diagonal action of
H ~ {0} on the right. The isometry group Sp(1l, 1) of the Riemannian symmetric space Hh acts
transitively on X, and this action is proper since the fiber Sp(1)/U(1) ~ S? is compact. Any
torsion-free discrete subgroup I' of Sp(1, 1) therefore acts properly discontinuously and freely
on X; we say that the corresponding Clifford—Klein form Xr is standard (see Definition 1.4).

Theorem 1.3. The discrete spectrum of any standard Clifford—Klein form Xr of X =
SU(2,2)/U(1,2) is infinite. Explicitly, there is an integer €, such that for any torsion-free discrete
I' c Sp(1, 1),

Spec,(Ox) 2 {2(€-2)(¢+1): CeN, €= &o)s (1.5)

moreover, (1.5) still holds after any small deformation of T in SU(2, 2).

We will see in Section 10.3 that there exist interesting small deformations of standard Clifford—
Klein forms of X = SU(2,2)/U(1,2), both compact and noncompact. We will compute explicit
eigenfunctions. We refer to [46] for further global analysis on X in connection with branching
laws of unitary representations with respect to the restriction SU(2,2) | Sp(1, 1).

1.5. General results for standard Clifford—Klein forms

We now state our results in the general setting of reductive symmetric spaces X = G/H, as
defined in Section 1.1. For simplicity we shall assume G to be linear throughout the paper.
An important class of Clifford—Klein forms Xr of X that we consider is the standard ones.

Definition 1.4. A Clifford—Klein form Xt of X is standard if T is contained in some reductive
subgroup L of G acting properly on X.

By reductive subgroup of G we mean that L has finitely many connected components and is
stable under some Cartan involution of G (see Section 3.2). This notion of standard generalizes
the notion introduced above for X = SU(2,2)/U(1,2). When L acts cocompactly on X, we can
obtain compact (resp. finite-volume noncompact) standard Clifford—Klein forms Xr by taking I'
to be a uniform (resp. nonuniform) lattice in L. An open conjecture [49, Conj. 3.3.10] states that
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any reductive homogeneous space G/H admitting compact Clifford—Klein forms should admit
standard ones.

Our first main result in this general setting is the existence of an infinite discrete spectrum for
all standard Clifford—Klein forms of X when Spec,(X) # 0.

Theorem 1.5. Let X = G/H be a reductive symmetric space with Spec,(X) # 0, and L a
reductive subgroup of G acting properly on X. Then #Spec,(Xt) = +oo for any standard Clifford—
Klein form Xr with I’ C L. Moreover, if L is simple (resp. semisimple), then there is an infinite
subset of Spec;(X) that is contained in Spec,(Xr) for any (resp. any torsion-free) I’ C L.

We wish to emphasize that when L is semisimple, the infinite subset of the discrete spectrum
that we find is universal, in the sense that it does not depend on I C L. A universal spectrum does
not exist in the Riemannian case (see Fact 1.2). Our proof is constructive; we shall explicitly
describe an infinite subset of Spec,(Xr) N Spec,(X), independent of I' € L, in terms of the
geometry of X and of some quantitative estimate of the proper discontinuity of L acting on X
(see Theorem 3.8).

For I = {e}, the existence of an infinite discrete spectrum was established by Flensted-Jensen
[19]. As mentioned above, by [19, 57], the condition Spec,(X) # 0 is equivalent to the condition
rank G/H = rank K/K N H (see Section 3.3), or in other words to the existence of a maximal
compact subsymmetric space of X of full rank.

Our second main result concerns the szability of the discrete spectrum of standard compact
Clifford—Klein forms Xt of X under small deformations of I' in G. The set Hom(I", G) of group
homomorphisms from I' to G is endowed with the compact-open topology. In the following
definition, we assume that the group ¢(I') acts properly discontinuously and freely on X for
all ¢ € Hom(I', G) in some neighborhood U of the natural inclusion of ' in G (we shall call
this property “stability for proper discontinuity”). Under this assumption, X, = @(ID\X is a
manifold for all ¢ € Uy and we can consider the discrete spectrum Spec (X, r)); recall that it is
contained in the set of C-algebra homomorphisms from D(X) to C.

Definition 1.6. We say that A € Spec,(Xr) is stable under small deformations if there exists a
neighborhood U < Uy € Hom(I', G) of the natural inclusion such that 4 € Spec,(X,r)) for all
pel.

We say that Xr has an infinite stable discrete spectrum if there exists an infinite subset of
Spec,(Xr) that is contained in Spec (X)) for all ¢ in some neighborhood U ¢ Uy € Hom(T', G)
of the natural inclusion.

We address the existence of an infinite stable discrete spectrum for standard compact Clifford—
Klein forms Xr, where I is a uniform lattice in some reductive subgroup L of G. First observe that
if L has real rank > 2 and I’ is irreducible, then I is locally rigid in G by Margulis’s superrigid-
ity theorem [55, Cor.IX.5.9], i.e. all small deformations of I" in G are obtained by conjugation;
consequently Spec,(Xyr)) = Spec,(Xr) for all small deformations ¢, and thus Xr has an infinite
stable discrete spectrum by Theorem 1.5. Consider the more interesting case when L has real
rank 1. Then nontrivial deformations of I' inside G may exist (see Section 2.3). By [31], all
compact Clifford—Klein forms Xt with I" ¢ L have the stability property for proper discontinuity;
more generally, so do all Clifford—Klein forms Xr with I" convex cocompact in L. We prove the
existence of an infinite stable discrete spectrum when Spec,(X) # 0.

Theorem 1.7. Let X = G/H be a reductive symmetric space with Specy,(X) # 0, and L a
reductive subgroup of G of real rank 1 acting properly on X. Then Xr has an infinite stable
9



discrete spectrum for any uniform lattice I of L, and more generally for any convex cocompact
subgroup T of L.

We recall that a discrete subgroup I of L is said to be convex cocompact if it acts cocompactly
on some nonempty convex subset of the Riemannian symmetric space of L. Convex cocompact
groups include uniform lattices, but also discrete groups of infinite covolume such as Schottky
groups, or for instance quasi-Fuchsian embeddings of surface groups for L = PSL,(C).

Let us emphasize that the small deformations of I" that we consider in Theorem 1.7 are
arbitrary inside G; in particular, in the interesting cases I' does not remain inside a conjugate
of L. A description of an infinite stable discrete spectrum as in Theorem 1.7 will be given in
Theorem 3.11.

In addition to this infinite stable discrete spectrum, standard Clifford—Klein forms X may
also have infinitely many eigenvalues that vary under small deformations (see Remark 9.11).
Note that an explicit description of the full discrete spectrum is not known even in the Rieman-
nian case.

1.6. General results for sharp Clifford—Klein forms

The class of standard Clifford—Klein forms that we have just considered is itself contained in
a larger class of Clifford—Klein forms, namely those that we call sharp. Let us define this notion
(see Sections 4.2 and 4.4 for more details and examples).

Let G = KA, K be a Cartan decomposition of G, where K is a maximal compact subgroup
of G and A, a closed Weyl chamber in a maximal split abelian subgroup A of G. Any element
g € G may be written as g = kjak, for some k;, k, € K and a unique a € A, ; setting u(g) = loga
defines a continuous, proper, and surjective map i : G — logA, C a := Lie(A), called the
Cartan projection associated with the Cartan decomposition G = KA, K (see Example 4.1 for
G = SL,(R)). Let || - || be a norm on a. We say that a discrete subgroup I' of G is sharp for
X = G/H if there are constants ¢ > 0 and C > 0 such that

da(u(y), p(H)) 2 cllu(y)ll = C (1.6)

for all y € I', where d, is the metric on a induced by the norm || - ||. This means that the set u(I")
“goes away linearly from u(H) at infinity”. This notion does not depend on the choice of the
Cartan decomposition G = KA. K nor of the norm ||-|. By the properness criterion of Benoist [3]
and Kobayashi [44], any sharp discrete subgroup I' of G acts properly discontinuously on X (see
Section 4.4); sharpness should be thought of as a form of strong proper discontinuity. When I is
sharp, we say that the corresponding Clifford—Klein form Xr is sharp too.

Examples of sharp Clifford—Klein forms are plentiful, as explained in Section 4.4. For
instance, all standard Clifford—Klein forms are sharp. Also, all known examples of compact
Clifford—Klein forms of reductive homogeneous spaces are sharp, even when they are nonstan-
dard. We conjecture that all compact Clifford—Klein forms of reductive homogeneous spaces
should be sharp (Conjecture 4.12).

We generalize Theorem 1.5 from the standard to the sharp case and prove the following.

Theorem 1.8. Let X = G/H be a reductive symmetric space with Spec;(X) # 0. Then Spec,(Xr)
is infinite for any sharp Clifford—Klein form Xr of X.

We give an explicit infinite subset of Spec,(Xr) contained in Spec,(X) (see Theorem 3.8),
in terms of the geometry of X, of the “sharpness constants” ¢, C from (1.6), and of a “pseudo-
distance” from the origin xo = eH of X = G/H to the other points of its I"-orbit in X.

10



Recall that on a Riemannian symmetric space all eigenfunctions of the Laplacian are analytic
by the elliptic regularity theorem (see [28, Th. 3.4.4] for instance). Here X is non-Riemannian,
hence eigenfunctions are not automatically analytic. We still obtain some regularity result (see
Section 3.5).

1.7. Another approach in certain standard cases

The approach described in this paper is based on the existence of discrete series representa-
tion for the reductive symmetric space X — a phenomenon specific to the non-Riemannian case,
and equivalent to the rank condition (3.3) thanks to the work of Harish-Chandra, Flensted-Jensen,
and Matsuki—Oshima. In a forthcoming paper [34], we develop another approach for construct-
ing joint eigenfunctions on Clifford—Klein forms Xr when the rank condition (3.3) does not
necessarily hold: namely, in the standard case that I is contained in some reductive subgroup L
of G acting properly and spherically on X, we use the spectral analysis of the Riemannian sym-
metric space of L and the restriction to L of irreducible unitary representations of G (branching
laws for the restriction G | L) to understand the spectral analysis of Xr. In particular, we treat
the following issues:

o Infiniteness of Spec,(Xr) \ Spec,(X) for compact Xr;
e Extension of the Laplacian [y, to a self-adjoint operator on L*(Xr);
o Inclusion of analytic functions as a dense subspace of L*(Xr, M)).

In [35], we shall also address the question whether the joint eigenfunctions constructed in the
current paper have finite multiplicity.

1.8. Organization of the paper

The paper is divided into four parts.

Part I is a complement to the introduction. In Section 2 we give an overview of various types
of examples that our main theorems cover. In Section 3 we introduce some basic notation and
give more precise statements of the theorems by means of the Harish-Chandra isomorphism for
the ring of invariant differential operators; in particular, we describe an explicit infinite set of
eigenvalues, which in the standard case of Theorem 1.7 is both universal and stable under small
deformations.

Part II is devoted to the proof that for all K-finite L>-eigenfunctions ¢ on X with sufficiently
regular spectral parameter, the generalized Poincaré series (1.3) converges and yields an L*-
eigenfunction on Xr. The proof is carried out in Section 6, based on both geometric and analytic
estimates. The geometric estimates are established in Section 4, where we quantify proper dis-
continuity through the notion of sharpness and count points of I'-orbits in the non-Riemannian
symmetric space X when I' is a sharp discrete subgroup of G. The analytic estimates are given in
Section 5, where we reinterpret some asymptotic estimates of Oshima in terms of the regularity
of the spectral parameter and of a “pseudo-distance from the origin” in X.

Part III establishes that, as soon as the spectral parameter A is regular enough and satisfies
some integrality and positivity condition, the generalized Poincaré series (1.3) is nonzero for
some good choice of ¢; this completes the proof of the results stated in Sections 1 to 3. The
functions ¢ that we consider are G-translates of some K-finite L?-eigenfunctions ¢, on X intro-
duced by Flensted-Jensen. The proof is given in Section 8, and prepared in Section 7, where we
give a finer analytic estimate for ¢, that controls its behavior, not only at infinity, but also near
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the origin x¢ := eH of X = G/H. To deduce the nonvanishing of the series (1.3), it is then enough
to control how the I'-orbit through xy approaches xy: this is done in Section 8, after conjugating I
by some appropriate element of G; for uniformity for standard I', we use the Kazhdan—Margulis
theorem. We complete the proof of the main theorems in Section 8.6.

Finally, Part IV provides a detailed discussion of some examples, designed to illustrate the
general theory in a more concrete way.

Notation

In the whole paper, we use the notation R, = (0, +c0) and R5o = [0, +0), as well as N, =
ZNR,; and N =Z N Ryy.
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Part I
Precise description of the results

2. Lists of examples to which the results apply

There is a variety of locally symmetric spaces Xr = ['\G/H to which Theorems 1.5, 1.7,
and 1.8 can be applied. The aim of this section is to provide a brief overview, with an emphasis
on compact Xt in the first three sections. Some of the examples mentioned here will be analyzed
in more detail in Sections 9 and 10.

2.1. Symmetric spaces with standard compact Clifford—Klein forms

We recall the following general construction from [41]. Assume that there exists a reductive
subgroup L of G acting properly and cocompactly on X. Then standard compact Clifford—Klein
forms Xr = I'\X can be obtained by taking I" to be any torsion-free uniform lattice in L. Like-
wise, standard Clifford—Klein forms Xr that are noncompact but of finite volume can be obtained
by taking I to be any torsion-free nonuniform lattice in L. Uniform lattices of L always exist
and nonuniform lattices exist for semisimple L, by work of Borel-Harish-Chandra, Mostow—
Tamagawa, and Borel [6]; they all admit torsion-free subgroups of finite index by the Selberg
lemma [75, Lem. 8].

Here is a list, taken from [49, Cor. 3.3.7], of some triples (G, H, L) where G is a simple Lie
group, X = G/H is a reductive symmetric space, and L is a reductive subgroup of G acting
properly and cocompactly on X, with the additional assumption here that Spec,(X) # 0, so that
Theorem 1.5 applies. We denote by m and n any integers > 1 with m even.
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G H L
6] SO(2, 2n) SO(1, 2n) U, n)
(ii) SO(2, 2m) ud, m) SO(1,2m)
(iii) SO(4, 4n) SO(3,4n) Sp(1, n)
(iv) SU(2,2n) U(l,2n) Sp(1,n)
™) SO(8, 8) S0(7, 8) Spin(1, 8)

Table 2.1: Some triples (G, H, L) to which Theorem 1.5 applies

2.2. Group manifolds with interesting standard compact Clifford—Klein forms

Any reductive group ‘G may be regarded as a homogeneous space under the action of ‘G X'G
by left and right multiplication; in this way, it identifies with the symmetric space X =
(‘\GX'G)/Diag(‘G), where Diag(*G) denotes the diagonal of ‘G x'G. The condition Spec,(X) # 0,
or in other words rank G/H = rank K/K N H (see Section 3.3), is equivalent to the condition

rank ‘G = rank ‘K, 2.1)

where ‘K is any maximal compact subgroup of ‘G; for ‘G simple, this condition is satisfied if and
only if the Lie algebra of ‘G belongs to the following list, where n, p, and g are any integers > 1:

so(p,2q), su(p,q), sp(p,q), sp(n,R), s0"(2n), (2.2)
€6(2)s €6(—14)> €7(7)> €7(-5)> €7(-25)> €8(8)> €8(-24), f4(4), f4(,20), 9202)-

Standard Clifford—Klein forms Xr of X = (‘G x'G)/Diag(*G) can always be obtained by taking
I of the form ‘T" X {e} or {e} X ‘T, where ‘T is a discrete subgroup of ‘G. Then Xr identifies with a
usual quotient ‘I'\'G or ‘G/'T" of ‘G by a discrete subgroup on one side; in particular, Xr has finite
volume (resp. is compact) if and only if ‘I’ is a lattice (resp. a uniform lattice) in ‘G. Theorem 1.5
applies to such Xr.

It is worth noting that for certain specific groups ‘G of real rank > 2, there is another
(more general) type of standard compact Clifford—Klein forms of X, namely double quotients
‘T'1\'G/'T'; where ‘I'; and ‘I'; are discrete subgroups of ‘G [42]. This happens when there ex-
ist two reductive subgroups ‘G; and ‘G, of ‘G such that ‘G; acts properly and cocompactly
on ‘G/'G,. In this case, the group L := ‘G| X ‘G, acts properly and cocompactly on X =
(‘G x'G)/Diag(‘G), and standard Clifford—Klein forms Xr can be obtained by taking I" of the
form I’ = 'T'y X ‘', € L, where T} is a discrete subgroup of ‘G;. Such a Clifford—Klein form X
identifies with the double quotient ‘I';\'G/'T’,; it has finite volume (resp. is compact) if and only
if \T; is a lattice (resp. a uniform lattice) in ‘G; for all i € {1, 2}. We would like to emphasize that
this “exotic” Xt is locally modeled on the group manifold ‘G and not on the homogeneous space
‘G/'G,. The following table, obtained from [49, Cor.3.3.7], gives some triples (‘G,‘'G1,'G,)
such that ‘G satisfies the rank condition (2.1) and ‘G| acts properly and cocompactly on ‘G/*G,;
Theorem 1.5 applies to the corresponding double quotients ‘I';\'G/'T’,. Here n is any integer
> 1; it does not need to be even in Example (ii), in contrast with Example (ii) of Table 2.1. We
note that neither (\G,‘'G1) nor (\G,‘G>) has to be a symmetric pair, and that ‘G; and ‘G, play
symmetric roles.

2.3. Symmetric spaces with nontrivial deformations of standard compact Clifford—Klein forms

Theorem 1.7 applies to all the examples in Table 2.1. However, this theorem is relevant only
for standard Clifford—Klein forms Xt such that I" admits nontrivial small deformations inside G,
13



‘G ‘G ‘G,

@) ‘G with Lie algebra in (2.2) ‘G {e}

(>i1) SO(2,2n) SO(1,2n) u(l,n)

(ii1) SO4,4n) SO(@3,4n) Sp(1,n)

(iv) SU(2,2n) U(1,2n) Sp(1, n)

) SO(8, 8) SO(7, 8) Spin(1, 8)
(vi) SO(4, 4) SO(4,3) Spin(4, 1)
(vii) S04, 4) Spin(4, 3) S04, 1) x SO(3)
(viii) SO4,3) Gy SO(4,1) x SO(2)
(ix) SO*(8) UG, 1) Spin(1, 6)

(x) SO*(8) SO*(6) x SO*(2) Spin(1, 6)

Table 2.2: Some examples to which Theorem 1.5 applies with (G, H, L) = (‘G x'G, Diag(‘G x'G), ‘G| x'G3)

i.e. deformations that are not obtained by conjugation. Such deformations do not always exist
when Xt is compact. We now point out a few examples where they do exist.

Consider Example (i) of Table 2.1, where X = SO(2, 2n)/SO(1, 2n) is the (2n+1)-dimensional
anti-de Sitter space AdS*"*!. The group L = U(1, n) has a nontrivial center Z(L), isomorphic to
U(1). For certain uniform lattices I" of L, small nontrivial deformations of I" inside G = SO(2, 2n)
can be obtained by considering homomorphisms of the form y +— yy(y) with ¢ € Hom(I", Z(L))
(see [45]). By [65] and [82], any small deformation of I inside G is actually of this form, up
to conjugation. The Clifford—Klein forms corresponding to these nontrivial deformations remain
standard, but the existence of a stable discrete spectrum given by Theorem 1.7 is not obvious
even in this case. We examine this example in more detail in Section 10.1.

Consider Example (ii) of Table 2.1, where X = SO(2, 2m)/U(1, m) has the additional struc-
ture of an indefinite Kéhler manifold (see Section 10.3). Here it is actually possible to deform
certain standard compact Clifford—Klein forms of X into nonstandard ones. Indeed, using a bend-
ing construction due to Johnson—-Millson [27], one can obtain small Zariski-dense deformations
inside G = SO(2,2m) of certain arithmetic uniform lattices I' of L = SO(1,2m) (see [31, § 6]):
this yields a continuous family of compact Clifford—Klein forms X with I Zariski-dense in G.
(Recall that a group is said to be Zariski-dense in G if it is not contained in any proper algebraic
subgroup of G.) Here the C-algebra ID(X) is a polynomial ring in [%] generators; we discuss
the discrete spectrum of Xr in Section 10.3.

Finally, consider the “exotic” standard compact Clifford—Klein forms ‘T';\'G/'T’; discussed in
Section 2.2, for which some examples are given in Table 2.2. Here is an analogue of Theorem 1.7
in this setting (see Proposition 2.2 below for noncompact Clifford—Klein forms): the novelty is
the stability of the discrete spectrum, whereas the fact that the quotient remains a manifold under
small deformations (i.e. stability for proper discontinuity, in the sense of Section 1.5) is a direct
consequence of [31]. We refer to Section 8.6 for a proof.

Proposition 2.1. Let ‘G be a reductive linear Lie group and let ‘G| and ‘G, be two reductive
subgroups of G such that ‘G acts properly on ‘G ['G,. Any standard Clifford—Klein form

T1\'G/ T = (T1 X' T2)\('G x'G)/Diag('G),

where ‘T'; is an irreducible uniform lattice of ‘G; for all i € {1,2)}, remains a manifold after any
small deformation of \T'y x'T'y inside ‘G x‘G, and it has an infinite stable discrete spectrum if
(2.1) is satisfied.
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In Examples (ii), (vii), and (viii) of Table 2.2, certain standard compact Clifford—Klein forms
‘T''\'G/'T"; admit small nonstandard deformations obtained by bending, similarly to Example (ii)
of Table 2.1 above. In Example (i) of Table 2.2, there exist standard compact Clifford—Klein
forms ‘I'|\'G with nonstandard small deformations if and only if ‘G has a simple factor that is
locally isomorphic to SO(1, 2n) or SU(1, n) [45, Th. A].

2.4. Clifford—Klein forms of infinite volume

Most examples of Clifford—Klein forms that we have given in Sections 2.1 to 2.3 were com-
pact. However, Theorems 1.5, 1.7, and 1.8 do not require any compactness assumption. In
particular, in Theorems 1.5 and 1.7 on the existence of an infinite (universal or stable) spectrum
for standard Clifford—Klein forms, we remark that

o the reductive group L does not need to act cocompactly on X (it could be quite “small”,
for instance locally isomorphic to SL,(RR)),

o the discrete group I" does not need to be cocompact (nor of finite covolume) in L.

Also, in Theorem 1.8, the sharp Clifford—Klein form X does not need to be compact (nor of
finite volume). Therefore, our theorems apply to much wider settings than those of Tables 2.1
and 2.2; we now discuss some examples.

Firstly, as soon as rankr H < rankg G, there exist infinite cyclic discrete subgroups I' of G
that are sharp for X = G/H [41]; Theorem 1.8 applies to the corresponding Clifford—Klein
forms Xr. Even in this case, the existence of an infinite discrete spectrum for Xt is new.

Secondly, for many X there exist discrete subgroups I" of G that are nonvirtually abelian (i.e.
with no abelian subgroup of finite index) and sharp for X; we can again apply Theorem 1.8. This
is for instance the case for X = SO(p + 1,¢9)/SO(p, q) whenever 0 < p <g—lorp =g—11is
odd [3]. Recently, Okuda [58] gave a complete list of reductive symmetric spaces X = G/H with
G simple that admit Clifford—Klein forms Xr with I" nonvirtually abelian. For such symmetric
spaces, there always exist interesting sharp examples:

(1) on the one hand, sharp Clifford—Klein forms Xt such that I is a free group, Zariski-dense
inG [3, Th.1.1];

(2) on the other hand, standard Clifford—Klein forms X with ' C L for some subgroup L of G
isomorphic to SL,(R) or PSL,(R) [58].

In case (1), the group I is in some sense ““as large as possible”, in contrast with case (2), where
it is contained in a proper algebraic subgroup L of G. In case (2), we can take I to be a surface
group embedded in L, therefore admitting nontrivial deformations inside L. Theorem 1.8 applies
to case (1) and Theorems 1.5 and 1.7 to case (2).

Thirdly, for group manifolds X = (‘G x'G)/Diag(‘G) there are many examples of standard
Clifford—Klein forms of infinite volume that admit nontrivial deformations. As in Section 2.2,
we can take a pair of reductive subgroups ‘G, ‘G, of ‘G such that ‘G, acts properly on ‘G/‘G,,
but now we do not require anymore that this action be cocompact. We consider Xr = ‘I'1\'G/'T’,
where 'T; is a discrete subgroup of ‘G; (not necessarily cocompact) and we deform I' = ‘I'; xX'I',
inside ‘G x'G. Here is an analogue of Theorem 1.7 that applies in this setting; we refer to
Section 8.6 for a proof.
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Proposition 2.2. Let ‘G be a reductive linear Lie group satisfying (2.1) and let ‘G and ‘G,
be two reductive subgroups of ‘G such that ‘G acts properly on ‘G /'G,. Consider a standard
Clifford—Klein form

TI\'G/'Ty = (T1x'T)\('G x'G)/Diag(‘G),

where ‘T'; is a discrete subgroup of ‘G; for all i.

(1) If ‘G has real rank 1 and ‘T'y is convex cocompact in ‘G, then there exists an infinite
subset I of Spec,(‘T'\'G/'I'2) and a neighborhood ‘U c Hom('T'|, G X Zx('T'2)) of the
natural inclusion such that ‘¢('T1)\'\G/'I'; is a manifold and I c Spec,(¢(‘T'1)\'G/'I'2) for
all ‘o € “U.

(2) If'G; has real rank 1 and ‘T'; is convex cocompact in ‘G; for all i € {1, 2}, then the standard
Clifford—Klein form ‘T'1\'\G/‘\T'y remains a manifold after any small deformation of ‘T'1 X ‘T’
inside ‘G xX'G and it has an infinite stable discrete spectrum in the sense of Definition 1.6.

3. Quantitative versions of the results

In this section, we give some quantitative estimates of Theorems 1.5, 1.7, and 1.8 (Sec-
tion 3.4) and discuss the regularity of our eigenfunctions (Section 3.5). We first fix some notation
that will be used throughout the paper and recall some useful classical facts (Sections 3.1 to 3.3).

3.1. Invariant differential operators

In the whole paper, G denotes a real reductive linear Lie group and H an open subgroup of
the group of fixed points of G under some involutive automorphism o. We denote their respective
Lie algebras by g and . Without loss of generality, we may and will assume that G is connected;
indeed, we only need to consider the discrete spectrum of one connected component of X = G/H.

In this paragraph, we recall some classical results on the structure of the algebra D(X) of
G-invariant differential operators on X. We refer the reader to [25, Ch.II] for proofs and more
details.

Let U(gc) be the enveloping algebra of the complexified Lie algebra gc := g Qg C and
U(gc)™ the subalgebra of Adg(H)-invariant elements (it contains in particular the center Z(gc)
of U(gc)). Recall that U(gc) acts on C*(G) by differentiation on the right, with

f(g eXP(tl Yl) e CXP(thm))

t,=0

d d
((Y1---Y) - f)g) = a't.:o T

for all Yy,...,Y, € g, all f € C*(G), and all g € G. This gives an isomorphism between
U(gc) and the ring of left-invariant differential operators on G. By identifying the set of smooth
functions on X with the set of right-H-invariant smooth functions on G, we obtain a C-algebra
homomorphism

p: Uge)" — DX).

This homomorphism is surjective, with kernel U(gc)he N U(ge)? [25, Ch. 11, Th. 4.6], hence it
induces an algebra isomorphism

U(gc)? /U(gc)be N U(ge)? = DX). 3.1)
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Let g = h + g be the decomposition of g into eigenspaces of do-, with respective eigenvalues
+1 and —1. In the whole paper, we fix a maximal semisimple abelian subspace j of V-1 q. The
integer

rank G/H := dimg ) (3.2)
does not depend on the choice of j. Geometrically, if xy denotes the image of H in X = G/H,
then exp( V-1j)- xo is a maximal flat totally geodesic submanifold of X, where “flat” means that
the induced pseudo-Riemannian metric is nondegenerate and that the curvature tensor vanishes
(see [40, Ch.XI, §4]). Let W be the Weyl group of the restricted root system X(gc,jc) of jc
in gc, and let S (jc)V be the subalgebra of W-invariant elements in the symmetric algebra S (jc)
of jc. The important fact that we will use is the following.

Fact 3.1. The algebra D(X) of G-invariant differential operators on X is a polynomial alge-
bra in r := rank G/H generators. It naturally identifies with S (ic)V, and the set of C-algebra
homomorphisms from D(X) to C identifies with ji./W, where ji. is the dual vector space of jc.

Let us explicit these identifications. Let X*(gc, jc) be a system of positive roots in Z(gc, jc)

and let
nc = @ (g(C)(t

a€X*(ge.ic)
be the sum of the corresponding root spaces, where

(0c)e :={Y €gc: [T,Y] =a(T)Y forall T € j}.

The complexified Iwasawa decomposition gc = hc + jc + nc holds, implying that U(gc) is the
direct sum of U(jc) = S (jc) and hcU(gc) + U(ge)ne. Let p” : U(ge) — S (i) be the projection
onto S (jo) with respect to this direct sum and let p”” : U(gc) — S (jo) be the “shifted projection”
given by

(p"(w), 1) ={p’'w), 1 - p)

forall A e j(*C, where
1
pi=3 Z ' dime(gc)e @ € j¢
a€X*(gc,jc)
is half the sum of the elements of X*(gc,jc), counted with root multiplicities. The restriction
of p” to U(gc) is independent of the choice of Z*(gc, jc) and induces an isomorphism
U(ge)"®/U(ge)be N U(ge)™® = S(Gc)”

[25, Ch.II, Th.5.17]. If H is connected, then U(gc)"® = U(gc)” and, using (3.1) above, we
obtain the following commutative diagram.

DY) ~—"— U@t —L = SGo)V
U(gc)?/U(ge)be N U(ge)?

Thus we have a C-algebra isomorphism ¥ : D(X) = S (jc)V (Harish-Chandra isomorphism). In
the general case when H is not necessarily connected, we still have an isomorphism
¥ : D(X) = S(jc)” by the following remark.
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Remark 3.2. The C-algebra D(X) is isomorphic to D(G/H,), where H, denotes the identity
component of H.

Proof. There is a natural injective algebra homomorphism D(X) — ID(G/H,) induced by the
natural projection G/Hy — X. To see that this homomorphism is surjective, it is sufficient to see
that H acts trivially on D(G/Hp). This follows from the fact that the quotient field of D(G/Hj)
is isomorphic to that of p(Z(gc)) [25, Ch.III, Th.3.16] (where p : U(ge)™ — I(G/Hy) is
given by the diagram above for Hy) and from the fact that H acts trivially on Z(gc) and p is
H-equivariant. O

By the Harish-Chandra isomorphism ¥ : D(X) = S(jc)", the C-algebra D(X) is a com-
mutative algebra generated by r := dimg j = rank G/H homogeneous, algebraically independent
differential operators Dy,...,D,. If we identify S (jc) with the ring of polynomial functions
on jg, then any homomorphism from D(X) to C is of the form

Xa1: Dr— (¥(D), )

for some A € ji., and ya =y if and only if A" € W - 4. By construction, any D € D(X) acts on
the constant functions on X by multiplication by the scalar x,(D). From now on, we identify the
set of C-algebra homomorphisms from ID(X) to C with ji. /W in particular, we see Spec ,(X) (or
Spec,(Xr) for any Clifford—Klein form Xr) as a subset of ji./W:

Specy(Xr) = {1 € jo/W @ L*(Xr, My) # {0},
where L*(Xr, M,) is the space of weak solutions f € L?>(Xr) to the system
Drf =x.D)f for all D € D(X) M.

Remark 3.3. When r = rank G/H > 1, the space L>(Xr, M,) is in general strictly contained in
the space of L*-eigenfunctions of the Laplacian (ly, [34, Rem. 2.5].

3.2. The Laplacian

In the whole paper, we fix a Cartan involution 0 of G commuting with o and let K = G
be the corresponding maximal compact subgroup of G, with Lie algebra . Let g = € + p be
the corresponding Cartan decomposition, i.e. the decomposition of g into eigenspaces of df with
respective eigenvalues +1 and —1. We fix a G-invariant nondegenerate symmetric bilinear form
B on g with the following properties: B is positive definite on p, negative definite on €, and p
and € are orthogonal for B. If G is semisimple, we can take B to be the Killing form « of g.

On the one hand, since the involution o- commutes with the Cartan involution 6, the form B
is nondegenerate on f X b, and induces an H-invariant nondegenerate symmetric bilinear form
on g/h. By identifying the tangent space T, (G/H) at xo = eH € G/H with g/h and using left
translations, we obtain a G-invariant pseudo-Riemannian structure on X = G/H. We then define
the Laplacian [y as in (1.1) with respect to this pseudo-Riemannian structure.

On the other hand, the form B defines an isomorphism g* =~ g, yielding a canonical element
in (g ® g)¢ corresponding to the identity under the isomorphism (g* ® g)° =~ Homg(g, g). This
element projects to the Casimir element of U(gc), which lies in the center Z(gc). It gives a
differential operator of order two on X, the Casimir operator, whose actions by differentiation
on the left and on the right coincide. Since X is a symmetric space, the Casimir operator on X
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coincides with (. (We refer to [25, Ch. II, Exer. A.4] for the case when H is a maximal compact
subgroup of G; a proof for the general case goes similarly.)

We now explicit the eigenvalues of Uy. For this we note that B is nondegenerate on any
6-stable subspace of g. In particular, if j is #-stable (which will always be the case below), then
B induces a nondegenerate W-invariant bilinear form (-, -) on j*, which we extend to a complex
bilinear form (-, -) on j¢..

Fact 3.4. If f € C*(X) satisfies (M,) for some A € i then

Oxf = (4,0 - (p.p) f.

Indeed, this follows from the above description of the Harish-Chandra isomorphism; one can also
use [25, Ch.II, Cor. 5.20] and the fact that D(X) =~ D(X?), where X¢ is a Riemannian symmetric
space of the noncompact type with the same complexification as X (see Section 5.2).

3.3. Some further basic notation

We now fix some additional notation that will be used throughout the paper.

We first recall that the connected reductive group G is the almost product of its connected
center Z(G)p and of its commutator subgroup G,, which is semisimple. The group G; itself
is the almost product of finitely many (nontrivial) connected simple normal subgroups, called
the simple factors of G. The connected center Z(G)y is isomorphic to R* x (S')’ for some
integers a, b € N. Recall that G admits a unique maximal compact normal subgroup G, which
is generated by the compact simple factors of G, by the center Z(G;) of G,, and by the compact
part of Z(G)y. The group G is said to have no compact factor if G, = Z(Gy).

Generalizing Harish-Chandra’s work on the group manifold case, Flensted-Jensen [19] and
Matsuki—Oshima [57] proved that Spec,(X) is nonempty if and only if

rank G/H =rank K/H N K, 3.3)

where the rank is defined as in (3.2). This is equivalent to the fact that X admits a maximal
compact subsymmetric space of full rank, namely K/H N K. Under the rank condition (3.3), we
may and do assume that the maximal semisimple abelian subspace j of Section 3.1 is contained
in V=1(¢n q). Then j is 6-stable, all restricted roots @ € Z(gc, jc) take real values on j, and the
W-invariant bilinear form (-, -) on j* from Section 3.2 is positive definite.

We fix once and for all a positive system X*(€c, ic) of restricted roots of jc in tc, which we
will keep until the end of the paper; we denote by p. half the sum of the elements of Z*(¥c, jc),
counted with root multiplicities. We now introduce some notation A, A, and 1~\J that will be
used throughout the paper. We start by extending j to a maximal abelian subspace j of V-1t Let
A*(Ec, jc) be a positive system of roots of jc in £¢ such that the restriction map @ +— «af;, sends
At (¢ ,T(c) to Z*(Ec, jc) U{0}. We identify the set of irreducible finite-dimensional representations
of ¢ with the set of dominant integral weights with respect to the positive system A*(£c, jc). As
a subset, we denote by

A, =A(K/HNK) (3.4)

the set of irreducible representations of K with nonzero (H N K)-fixed vectors; it is the support

of the regular representation of K on L*(K/H n K) by Frobenius reciprocity.

Remark 3.5. By definition, A, is a set of dominant integral elements in the dual ofj~= j+G Nbhe).
However, we can regard it as a subset of j* by the Cartan—Helgason theorem [80, Th. 3.3.1.1].
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We set
A :=Z-span(A;) Cj". (3.5)

For any finite subgroup J of the center Z(K) of K, let K/J be the set of (highest weights of)
irreducible representations of K that factor through K/J and let
A’ := Z-span(A, N K/J). (3.6)

We note that the Z-module A’ has finite index in A. Indeed, if J has cardinal m, then A’ contains
mA = {mA : A € A} since mA)(z) = A(Z") =1 forallAe A, andze J. IfJ c J/, then A’ > A”';
in particular, for any discrete subgroup I' of G we have

A > AINZG) 5 AZG), (3.7

where, as before, Z(Gj) is the center of the commutator subgroup G, of G.

Remark 3.6. If J C H, then A = A’. In particular, if Z(G,) c H, then AT"?(C) = A for any
subgroup I' of G.

Indeed, if J ¢ H, then J acts trivially on K/H N K, hence the regular representation of K on
L*(K/H N K) factors through K/J.

Any choice of a positive system X" (gc, jc) of restricted roots of j¢ in g¢ containing X* (8¢, jc)
will determine:

(1) abasis {aq,...,a,} of Z(gc,jc),
(2) a positive Weyl chamber
it := {2 € Homg(,R) : (1,@) > 0forall @ € T*(gc,ic)}
with closure E in j*,

(3) an element p € j%, defined as half the sum of the elements of Z*(gc, jc), counted with root
multiplicities,

(4) afunction d : j; — R, measuring the “weighted distance” from A to the walls of j;, given
by
4,
d(A) := min (4, a;)

> 0.
I<i<r (@, ;)

The function d does not depend on the choice of the W-invariant inner product (-, -) that we made
in Section 3.2; we extend it as a W-invariant function on j*. We note that any element of j* enters
the positive Weyl chamber j} if we add #p for some sufficiently large ¢ > 0; conversely, d(1)
measures to which extent A — fp remains in j} for A € j3:

Observation 3.7. For all A € E,

d() =
1-S2p e i,
my
where we set
m, = max £2%0 (3.8)

I<i<r (@, @;)
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Proof. For any simple root @; (1 <i <r),

(- 52p, @) d(d
—m d(/l)—ﬁmp —0. O
(ai’ (l,‘) my

We note that if jc is a Cartan subalgebra of gc, then d(p) = m, = 1/2.

3.4. Precise statements of the main theorems

With the above notation, here is a more precise statement of Theorems 1.5 and 1.8 on the ex-
istence of an infinite discrete spectrum, which is “universal” for standard Clifford—Klein forms.
We choose a positive system X*(gc, jc) containing the fixed positive system X*(€c, jc) of Sec-
tion 3.3; this determines a positive Weyl chamber j; and an element p € j;.

Theorem 3.8. Suppose that G is connected, that H does not contain any simple factor of G, and
that the rank condition (3.3) holds.

(1) For any sharp Clifford—Klein form Xr with T N G, C Z(Gy), there is a constant R > 0 such
that
{1eiin@pc—p+A"4C) : d(A) > R} © Spec,(Xr).

(2) The constant R can be taken uniformly for standard Clifford—Klein forms: given any reduc-
tive subgroup L of G, with a compact center and acting properly on X, there is a constant
R > 0 such that

(A€t n@p.—p+ A4 1 d(d) > R} € Spec,(Xr)

for all discrete subgroups T of L with T’ N L. C Z(Gy) (this includes all torsion-free discrete
subgroups I of L); in particular, by (3.7),

{1€iin@pc—p+A"9): d(d) > R} € Spec,(Xr)
for all suchT.

As in Section 3.3, we denote by G, (resp. by L.) the maximal compact normal subgroup
of G (resp. of L), and by Z(G,) the center of the semisimple part of G. The Z-modules AT"#(©
and A%(©*) have been defined in (3.6) and the term “sharp” in Section 1.6.

We note that the technical assumptions of Theorem 3.8 are not very restrictive:

Remarks 3.9. (a) The assumption I' N G, C Z(Gjy) is automatically satisfied if G has no com-
pact factor (i.e. if G, = Z(Gy)) or if I is torsion-free. This assumption will be removed in
Section 8.6 in order to prove the theorems and propositions of Sections 1 and 2.

(b) The assumption I' N L. ¢ Z(G,) is automatically satisfied if I is torsion-free, or if L has no
compact factor and Z(L) C Z(Gy). We note that for I' C L, the condition ' N L. C Z(Gjy) is
stronger than I' N G, C Z(Gy).

Constants R as in Theorem 3.8.(1) and (2) can be expressed in terms of the geometry of X,
of the sharpness constants (¢, C) of I', and of a “pseudo-distance” from the origin xo = eH of
X = G/H to the other points of its ['-orbit in X: see (8.9), (8.10), (8.11).

We note that our choice of a positive system X*(gc, jc) containing X*(€¢, jc) could affect the
lattice condition A € 2p. — p + AT"4C9)_ since p depends on this choice. All elements A satisfying
one of these lattice conditions appear in the discrete spectrum. We refer to (5.6) for a geometric
meaning of the choice of Z*(gc, jc).
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Remark 3.10. In Theorem 3.8.(1), we can take R = 0 if I' = {e}. This is the “C = 0” conjecture
of [19] on the precise condition of the parameter A for the square integrability of certain joint
eigenfunctions on X; this conjecture was proved affirmatively in [57], and the main ingredient is
Fact 5.7 that we also use below.

The following theorem gives a description of an infinite stable discrete spectrum as in Theo-
rem 1.7: it states that the constant R of Theorem 3.8.(2) is stable under small deformations.

Theorem 3.11. Assume that G is connected, that H does not contain any simple factor of G, and
that the rank condition (3.3) holds. For any reductive subgroup L of G of real rank 1 and any
convex cocompact subgroup I of L (in particular, any uniform lattice T of L) withT NG, C Z(Gy),
there are a constant R > 0 and a neighborhood U c Hom(I', G) of the natural inclusion such
that Xy = ¢(D\X is a Clifford—Klein form of X for all ¢ € U and

(1€t N (2o —p+A"4E)): d(2) > R} € Specy, (X))
In particular, for all ¢ € U,
{1 €3t N (2o —p+ A1) 1 d(d) > R} € Spec,(Xum)

If T N L. c Z(Gy) (for instance if T is torsion-free or if L is simple with Z(L) C Z(Gy)), then
we may take the same R (independent of T') as in Theorem 3.8.(2), up to replacing U by some
smaller neighborhood.

Theorems 3.8 and 3.11 will be proved in Section 8.

Remark 3.12. Our proofs depend on the rank condition (3.3). It is plausible that for a general
locally symmetric space, no nonzero eigenvalue is stable under nontrivial small deformations
unless (3.3) is satisfied. This is corroborated by Fact 1.2 (in the Riemannian case, (3.3) is not
satisfied). It is also plausible that there should be no “universal spectrum” as in Theorems 1.5
and 3.8 unless (3.3) is satisfied.

3.5. Regularity of the generalized Poincaré series
As explained in the introduction, Theorems 3.8 and 3.11 are proved by constructing general-
ized Poincaré series. Consider the action of G on L?(X, M,) by left translation

g o= (3.9)

and let L?(X, M)k be the subspace of K-finite functions in L?>(X, M,). We prove that for any
A €7 with d(1) large enough, the operator

St L*(X, Mg — L*(Xr, My)

mapping ¢ to
¢ = (x> > (r-9)(x)
yell

is well-defined (Proposition 6.1.(1)). We actually prove that S is well-defined on g-L>(X, M)k
for any g € G and A € j; with d(1) large enough, and that there exists g € G such that for
any 1 € i* N (2p. — p + ATN4C) with d(1) large enough, St is nonzero on g-L*(X, M)k
(Proposition 8.1 and Remark 8.2).

By using the fact that L>(X, M,)x is stable under the action of g by differentiation, we obtain
the following regularity result for the image of St (Proposition 6.1.(2)).
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Theorem 3.13. Assume that G is connected and that the rank condition (3.3) holds. Let Xt be
a sharp Clifford—Klein form with T N G, C Z(Gy) and let R > 0 be the corresponding constant
given by Theorem 3.8. For any A € % with d(d) > R and any g € G, the image of g-L*(X, M)k
under the summation operator St is contained in LP(Xr) for all 1 < p < oo, and in C"™(Xr)
whenever d(d) > (m + 1)R.

In particular, if we take m to be the maximum degree of the generators Dy,..., D, of the
C-algebra D(X), then for f € Sr(g-L*(X, M;)x) we have

(Dpr f=x21Dpf

for all 1 < j < r in the sense of functions, not only in the sense of distributions. For certain
standard Clifford—Klein forms Xr, it is actually possible to prove that the image of L*(X, M)k
under the summation operator St consists of analytic functions (see [35]).

Part II
Construction of generalized Poincaré series

4. Sharpness and counting in non-Riemannian symmetric spaces

In this section we examine in detail the new notion of sharpness, which we have introduced
in Section 1.6. We then establish some counting results for the orbits of sharp discrete groups I
in the non-Riemannian symmetric space X = G/H (Lemma 4.6 and Corollary 4.7). We note that
these groups I can never be lattices of G: they have to be much “smaller” (Remark 4.8).

Counting is developed here in the perspective of spectral theory: our results will be useful,
together with the analytic estimates of Section 5, to prove the convergence of the generalized
Poincaré series (1.3). However, the counting results we obtain might also have some interest of
their own.

We first introduce some notation and briefly recall the notions of Cartan and polar projections
for noncompact, reductive G.

4.1. Preliminaries: Cartan and polar projections

We keep the notation of Section 3. In particular, 6 is the Cartan involution and g = ¢+ p
the Cartan decomposition introduced in Section 3.2. Let a be a maximal abelian subspace of p
and let A = expa be the corresponding connected subgroup of G. We consider the logarithm
log : A = a, which is the inverse of exp : a = A. We choose a system X*(g, a) of positive
restricted roots and let @, and A, = exp @, denote the corresponding closed positive Weyl cham-
bers in a and A, respectively. The Cartan decomposition G = KA, K holds [26]: any g € G may
be written as g = kyagk, for some kg, k, € K and a unique a, € A,. Setting u(g) = log a, defines
a map

u:G—a; :=logA,

called the Cartan projection associated with the Cartan decomposition G = KA, K. This map is
continuous, proper, surjective, and bi-K-invariant; we will still denote by u the induced map on
the Riemannian symmetric space G/K of G.
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Example 4.1. For G = SL,(R) and 8 = (g — ‘g7"), we have K = SO(n). We can take A to
be the group of diagonal matrices in SL,(R) with positive entries and its subset A, to consist of
matrices with entries in nonincreasing order; then the Cartan decomposition G = KA, K follows
from the polar decomposition in SL,,(R) and from the reduction of symmetric matrices. We have
ug) = (% log 1,)1<i<n Where t; is the i-th eigenvalue of 'gg.

The G-invariant symmetric bilinear form B of Section 3.2 restricts to a K-invariant inner product
on p, which defines a Euclidean norm || - || on a and a G-invariant Riemannian metric dg/x on
G/K. The norm of the Cartan projection ¢ admits the following geometric interpretation in terms
of distances in the Riemannian symmetric space G/K:

(@Il = dek(vo, & - yo) (4.1)

for all g € G, where y, denotes the image of K in G/K. Using the triangular inequality and the
fact that G acts by isometries on G/K, we obtain that

lIk(ggNIl < (@Il + llu(g Il (4.2)

for all g,¢’ € G. In fact, the following stronger inequalities hold, which can be proved in a
geometric way (see [30, Lem. 2.3]):

A

lIk(gg") =@l < llu(g)ll, (4.3)
lIk(gg") = ugHl ll()Il- (4.4)

IA

On the other hand, recall that the group H is an open subgroup of the set of fixed points of G
under the involution 0. Let g = h + q be the decomposition of g into eigenspaces of do as in
Section 3.1. Since 6§ commutes with o, the following decomposition holds:

g=EnNhH+ENP+PNhH+pHNq.

Let b be a maximal abelian subspace of p N q and let B := exp(b). We choose a system £* (g”e,@
of positive restricted roots of b in the subspace g”? of fixed points of g under d(c6), and let b,
be the corresponding closed positive Weyl chamber and B, := exp b,. Then the polar decom-
position (or generalized Cartan decomposition) G = KB, H holds [72, Prop.7.1.3]: any g € G
may be written as g = k,b,h, for some k, € K, some h, € H, and a unique b, € B,. We refer to
Sections 9 and 10 for examples. Since all maximal abelian subspaces of p are conjugate under
the adjoint action of K, we may (and will) assume that a contains b. As above, we define a
projection .

v:G— by Ca 4.5)

corresponding to the polar decomposition G = KB, H. It is continuous, surjective, and right-H-
invariant; we will still denote by v the induced map on X. Geometrically, ||v(x)|| can be interpreted
as some kind of “pseudo-distance” from the origin xy) = eH of X = G/H to x € X: in order to
go from xy to x in X, one can first travel along the flat sector B, - xo, then along some (compact)
K-orbit; ||v(x)|| measures how far one must go in B,-xy. The set of points x € X such that v(x) = 0
is the maximal compact subsymmetric space X, := K-xo ~ K/H N K.

We note that for any b € B there is some w € W(G, A) such that u(b) = w - v(b), hence

DI = NIv(D)II. (4.6)
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4.2. Sharpness

We now turn to the new notion of sharpness, which quantifies proper discontinuity. We first
recall that not all discrete subgroups I' of G can act properly discontinuously on X = G/H since
H is noncompact. A criterion for proper discontinuity was established by Benoist [3, Cor. 5.2]
and Kobayashi [44, Th. 1.1], in terms of the Cartan projection u. This criterion states that a
closed subgroup I' of G acts properly on X = G/H if and only if the set u(I') N (u(H) + C) is
bounded for any compact subset C of a; equivalently, if and only if u(I') “goes away from u(H)
at infinity”.

In this paper, we introduce the following stronger condition.

Definition 4.2. A subgroup I" of G is said to be sharp for X if there are constants ¢ € (0, 1] and
C > 0 such that

da(u(y), p(H)) = c|lu(ll = C 4.7)

for all y € I', where d,, is the metric on a induced by the Euclidean norm || - ||. If (4.7) is satisfied,
we say that I is (¢, C)-sharp.

\, arcsin(c)
u(H)

(@)
Figure 1: The Cartan projection of a (¢, C)-sharp group I'

We note that this definition makes sense in the more general context of a homogeneous space
X = G/H where G is a reductive group and H a closed subgroup of G.

If T is sharp for X, then u(I') “goes away from u(H) at infinity” with a speed that is at least
linear. Indeed, consider the open cone

o) :=1{Y eay : da(Y,u(H)) < clIYll}

of angle arcsin(c) around p(H). If " is (¢, C)-sharp with ¢ € (0, 1), then the set u(I') is contained
in the \&-neighborhood of a; \ €(c); in other words, it does not meet the shaded region in
Figure 1.

In particular, if " is sharp for X and closed in G, then the action of " on X is proper by the
properness criterion. The bigger c is, the “more proper” the action is; the critical case is therefore
when c gets close to 0. For I discrete and sharp, we will equivalently say that the Clifford—Klein
form Xr = I'\ X is sharp.

The following two properties will be useful.
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Proposition 4.3. (1) If a subgroup T of G is (c,C)-sharp for X, then any conjugate of T is
(¢, C")-sharp for some C' > 0.

(2) Any reductive subgroup L of G acting properly on X admits a conjugate that is (c,0)-sharp
for some ¢ > 0.

Proposition 4.3.(1) is an immediate consequence of the following inequality, which will be
used several times in the paper.

Lemma 4.4. Forany g,g’,g" € G,
da (1(g'gg"), u(H)) = da(u(g), u(H)) — llu(g")Il = ll(g™)Il-

Proof. Forall h € H, by (4.3) and (4.4) we have

da(u(g), u(H)) < |lu(g) — ull
< lu(g) — u(g'gg M + llu(g’'gg”) — u(h)l|
< @I+ NIl + llug’gg”) — . O

We will explain why Proposition 4.3.(2) is true in Section 4.4. We refer to Section 4.4 for
a list of examples of sharp Clifford—Klein forms and to Section 4.7 for a discussion of how
sharpness behaves under small deformations.

We note that dy(u(y), u(H)) < ||u(y)|| always holds, since d,(u(y), u(H)) is the norm of the
projection of u(y) to the orthogonal of u(H) in a; this is why we restrict to ¢ < 1 in Definition 4.2.

4.3. Counting in the reductive symmetric space X

In order to prove the convergence of the generalized Poincaré series (1.3), we will need
to understand the growth rate of I" with respect to the norm of v. Given the above geometric
interpretation of ||v|| as a “pseudo-distance from the origin” in the reductive symmetric space X,
this means estimating the number of points of any given I'-orbit in the “pseudo-ball”

Bx(R) :={xe X :|v(x)| < R} (4.8)

as R tends to infinity. We note that the closure of By (R) is compact for all R > 0, which implies
the following (by definition of proper discontinuity).

Remark 4.5. Let I be a discrete subgroup of G acting properly discontinuously on X. For any
x € X, the set of elements y € I with y - x € Bx(R) is finite.

In the case when I is sharp for X, we establish exponential bounds for the growth of I'-orbits
in X: here are the precise estimates that we will need for our theorems (a proof will be given in
Section 4.6).

Lemma 4.6. Letc € (0,1] and C > 0.

(1) For any discrete subgroup I of G that is (c, C)-sharp for X and any € > 0, there is a constant
cs(I') > 0 such that for any R > 0 and any x = g - xo € X (where g € G),

#y eT: |v(y-x)|l < R} < co(I7) eCrrORH@I/e
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(2) (Removing the dependence in x)
For any discrete subgroup I of G that is (c, C)-sharp for X and any & > 0, there is a constant
ci(') > 0 such that for any R > 0 and any x € X,

#Hy €T+ Iv(y-x)ll < R} < () 20Ok,

(3) (Controlling the dependence in T, allowing for dependence in x)
There is a constant cg > 0 depending only on G such that for any discrete subgroup T of G
that is (c, C)-sharp for X, any R > 0, and any x = g - xo € X (where g € G),

#{,y el: |viy-x)l < R} <#TNK) cg 2lPallR+Clu(g)ID /¢
(4) (Controlling the dependence in I and removing the dependence in x)

There is a constant cg > 0 depending only on G such that for any discrete subgroup T of G
that is (¢, C)-sharp for X, any R > 0, and any x € X,

#lyel: [yl <R} <#T NK) - cgePel®Oe,

As before, x is the image of H in X = G/H and p, € a is half the sum of the elements of
>¥*(g, a), counted with root multiplicities. We denote by

R—+00

1
or := limsup (E log #(I"yo N Bg/k(R)) “.9)

the critical exponent of I', which measures the growth rate of the I'-orbits in the Riemannian
symmetric space G/K of G. Here

Bg/k(R) :={y € G/K : [lu()Il < R}

is the ball of radius R centered at yo = eK € G/K for the Riemannian metric dg,x (see (4.1)).
Recall that the classical Poincaré series Y e Ol converges for s > &r and diverges for
s < Or, and that if G has real rank 1, then dr is the Hausdorff dimension of the limit set of I in
the boundary at infinity of G/K [13, 61, 76].

In X, consider the “pseudo-ball” Bx(R) of radius R centered at x, as in (4.8). For all x =
g - Xo € X (where g € G), the stabilizer of xinT'isT'n gHg™!, hence

#ly el : |W(y-x)| <R} = #IT NngHg™") - #('-x N Bx(R)). (4.10)
Therefore, Lemma 4.6 gives the following counting result for I"-orbits in X.
Corollary 4.7. For any discrete subgroup I of G that is (c, C)-sharp for X and any x € X,
. 1 or
limsup| = log#(I"-x N Bx(R))| < —;
R—+o00 R 4
if moreover I' N K = {e} (for instance if T is torsion-free), then

#(I'-xo N Bx(R)) < cg el ®+O/e

and for all x € X,
#(T-x N By(R)) < cg eMPllR+Oc
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Remark 4.8. In our setting I can never be a lattice in G because it acts properly discontinuously
on X = G/H and H is noncompact. (In fact I' has to be quite “small”: the cohomological
dimension of any torsion-free finite-index subgroup of I has to be < dim(G/K) —dim(H/H N K),
see [41].) Corollary 4.7 can be compared with the following results on lattices of G.

(a) LetT be anirreducible lattice of G such that TN H is a lattice of H. Here is a precise counting
result, due to Eskin—-McMullen [17], for the I"-orbit through the origin xy: for any sequence
(B,)nen of “well-rounded” subsets of X,

#Toxon B, ~ SMEOHND

14(B,).
S T volmGg)  volx(Bu)

In particular (see Lemma 4.18 and (5.16), (5.17) below), there is a constant C > 0, indepen-
dent of I, such that

vol(NH)\H)
#(T x9N Bx(R)) ~ C- ————— . Ik,
(T"-xo N Bx(R)) i volT\G) e
(b) Let I' be a lattice of G. The I'-orbit through an arbitrary point x € X can be dense in X,
in which case #(I'-x N Bx(R)) is infinite. For instance, this is generically the case for X =
SL3(R)/SO(2,1) and I" = SL3(Z): see Margulis’s proof [54] of the Oppenheim conjecture.

Here we denote by ||op|| the norm of half the sum of the elements of a positive system X* (g, b)
of restricted roots of b in g; this norm does not depend on the choice of X*(g, b). We note that
llosll < llpall (see Remark 6.8).

It would be interesting to obtain a precise counting result in our setting, in terms of the
sharpness constants and of the critical exponent of I. We observe that the following lower bound
holds.

Remark 4.9. Let I be a discrete subgroup of G whose Zariski closure in G is semisimple or
contained in a semisimple group of real rank 1. For any & > 0O there is a constant c.(I') € (0, 1]
such that for any x = g-xo € X (where g € G) and any R > 0,

#(T-x N Bx(R)) = _ @ £ Or—e)R=llu()ID
T #TNgHg™")

(with the convention 1/+c0 = 0). If I' is (¢, C)-sharp, then
HI N gHg ™) < ) 0™ <o

Indeed, the first formula is a consequence of (4.10), of the inequality ||v|| < ||u|| (Lemma 4.17),
and of the fact that the critical exponent, defined as a limsup, is in fact a limit [67, 64]. The bound
on#[T"'NgHg™") for sharp I comes from the fact that if y € gHg™!, then do (u(y), u(H)) < 2 ||u(2)ll
by (4.3) and (4.4), hence [lu(y)ll < 2EE by (¢, €)-sharpness.

4.4. Examples of sharp groups

Before we prove Lemma 4.6 (in Section 4.6), we first give some examples of sharp Clifford—
Klein forms to illustrate and motivate this notion. We begin with an important example (which
holds in the more general context of a homogeneous space X = G/H where G is a reductive
group and H a closed subgroup of G).
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Example 4.10. All standard Clifford—Klein forms of X are sharp.

The notion of “standard” was defined in the introduction (Definition 1.4). To understand why
Example 4.10 is true, here is a more precise statement.

Example 4.11. Let L be a reductive subgroup of G acting properly on X. If L is stable under the
Cartan involution 0, then the set u(L) is the intersection of a, with a finite union of subspaces
of a, which meet u(H) only in 0. Let ¢ be the sine of the minimal angle between u(L) and pu(H).
Then any Clifford—Klein form Xr with I C L is (c, 0)-sharp.

Proof of Example 4.11. 1If L is stable under the Cartan involution 6, then K N L is a maximal
compact subgroup of L and there is an element k € K such that kAk~! N L is a maximal split
abelian subgroup of L and the Cartan decomposition

L=(KnLKAK"'nLYKNL)

holds. The set u(L) = p(ANk~'Lk) = a, nW-(anAd(k~')(Lie(L))) is the intersection of a, with
a finite union of subspaces of a; it meets u(H) only in O by the properness criterion [41, Th. 4.1].
By definition of sharpness, L is (c, 0)-sharp for X, and so is any subgroup I C L. O

This explains why Proposition 4.3.(2) is true.

Proof of Proposition 4.3.(2). The fact that any reductive subgroup L of G acting properly on X
admits a conjugate that is (c, 0)-sharp for some ¢ > 0 follows from Example 4.11 and from the
fact that any reductive subgroup L of G admits a conjugate in G that is #-stable, by our definition
of reductive (see Section 1.5). O]

Proof of Example 4.10. The fact that all standard Clifford—Klein forms of X are sharp follows
from Proposition 4.3.(1) and (2). O

Additional evidence that sharpness is a fundamental concept is given by the fact that all
known examples of compact Clifford—Klein forms of reductive homogeneous spaces are sharp,
even when they are nonstandard. We conjecture that they should all be.

Conjecture 4.12. Let G be a reductive linear Lie group and H a reductive subgroup of G. Any
compact Clifford—Klein form of X = G/H is sharp.

The following particular case of Conjecture 4.12 was proved in [31].

Example 4.13 ([31, Th. 1.1]). Let X = G/H, where G is a reductive linear Lie group and H a
reductive subgroup of G. Let I be a uniform lattice in some reductive subgroup L of G of real
rank 1. Any small deformation of the standard Clifford—Klein form Xv is sharp.

In other words, there exists a neighborhood U € Hom(I', G) of the natural inclusion such that
the group ¢(I') is discrete in G and sharp for X for all ¢ € U. More precisely, if I is (¢, C)-sharp,
then for any & > 0 there is a neighborhood U, ¢ Hom(I', G) of the natural inclusion such that
o) is (c — &, C + &)-sharp for all ¢ € U, (and even (c — g,C)-sharpif C > 0 orI'N K = {e},
for instance if T is torsion-free). This holds more generally whenever I is a convex cocompact
subgroup of L, i.e. a discrete subgroup acting cocompactly on some nonempty convex subset of
the Riemannian symmetric space of L.

In the special case of X = AdS? = SO(2,2)0/S0O(1, 2)o, sharpness was proved in [32] for all
compact Clifford—Klein forms, even for those that are not deformations of standard ones (such
forms exist by [70]).
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Example 4.14 ([32, Th. 5.1.1]). All compact Clifford—Klein forms of X = AdS® are sharp.
As we will see in Section 10.2, this is a special case of the following recent result.

Example 4.15 ([21, Cor. 1.16]). Let ‘G be a real semisimple linear Lie group of real rank 1. All
compact Clifford—Klein forms of X = (\G x'G)/Diag(‘G) are sharp.

We note that there exist Clifford—Klein forms Xt with I infinitely generated that are not
sharp (see [22, §10.1]). Also, not all sharp Clifford—Klein forms remain sharp under small
deformations; it can happen that the action actually stops being properly discontinuous.

Example 4.16. Let X = (G X'G)/Diag('\G) and T’ = ‘T'x{e}, where ‘G is a real semisimple linear
Lie group of real rank 1 and ‘T a discrete subgroup of ‘G containing a nontrivial unipotent ele-
ment “y, (for instance a nonuniform lattice of ‘G). For any neighborhood U c Hom(T','G x'G),
there is an element ¢ € U such that the group ¢(I') does not act properly discontinuously on X.

The idea is to obtain a contradiction with the properness criterion of Benoist and Kobayashi
for some ¢ such that the first projection of ¢(‘y,, €) to ‘G is unipotent and the second projection
is hyperbolic (see [22, § 6]).

4.5. Link between the Cartan and polar projections

In order to prove Lemma 4.6, we will use the following link between the Cartan projection u
(on which the notion of sharpness is built) and the polar projection v (on which our counting is
based).

Lemma 4.17. Forany g € G,

da(u(g), u(H)) < V(I < [l -

Proof. For g € G, write g = kbh, where k € K, b € B_+, and h € H. Since H is fixed by o, since
K is globally preserved by o (because o and # commute), and since o(b) = b™' € B C A, we
have

wgo(@)™) = pbo(®)™) = pb*) = 2 u(b).
Using (4.2) and the fact that ||u(b)|| = |[v(b)|| = |[v(g)|| by (4.6), we obtain
2|l = lIu(ga(g) DIl < llu@)Il + e (9)II. (4.11)

Since o7(K) = K and o/(A) = A (because a = (a N h) + b), we have ||u(o(g) DIl = ||u(g)ll, which
implies [|[v(g)]| < |ju(g)]l. On the other hand, by (4.4) and (4.6),

da(u(g), u(H)) < [lu(g) — u(h)l
= |lu®h) — u®|
< @ = Iv®d)l = vl O

The following lemma implies, together with (5.16) below, that for any sequence (R,) € RY
tending to infinity, the sequence (Bx(R,))uen of “pseudo-balls” of radius R, centered at the origin
(see (4.8)) is “well-rounded” in the sense of Eskin—-McMullen [17]: for any € > O there is a
neighborhood U of e in G such that

Vle(qz’ . 6Bx(Rn)) < 8V0]X(Bx(Rn)).
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Lemma 4.18. Forany g,g’ € G,

V(NI = NIl < IIv(gg"Il < IVl + llu(@)II-

Proof. Letg,g’ € G. Write g’ = kbh withke K, b € B_+, and 4 € H. By Lemma 4.17 and (4.2),

Iv(ggMIl = lIV(gkb)II < lIu(gkb)Il < lIu(@)ll + llukD)I|.

But [[u(kb)ll = vkl = llv(g")ll by (4.6), hence [[v(gg)ll < Iv(g)Il + llu(@ll. Applying this
inequality to (¢™', gg’) instead of (g, g’), we obtain [V(gg")ll > V(g = llu(Q)II. O

4.6. Proof of the counting estimates

We now use Lemmas 4.4 and 4.17, together with the classical growth theory for discrete
isometry groups in the Riemannian symmetric space G/K, to prove Lemma 4.6.

Proof of Lemma 4.6.(1). By Lemmas 4.4 and 4.17, for all g € G and y € I we have

IViy@ll = da(u(yg), u(H)) = da(uy), u(H)) — llu(ll.

Using the sharpness assumption, we obtain that for all g € G,

vyl = clluIl = C = llu@ll, (4.12)

hence

R+C
#ly €T Iv(yg)ll < R} < #{y €T : Juy)l < 2EE SN t ”“(g)”},

By definition (4.9) of the critical exponent or, for any & > 0 there exists R, > 0 such that for all
R >R,

1
? log#ly eI': luty)ll <R} < 6r + &
In particular, there is a constant ¢, > 0 such that for any R > 0,
#y eT: Ul <R} < cp .
This implies the result. O

The proof of Lemma 4.6.(3) follows rigorously the same idea, using the following classical
observation (where yy = eK € G/K as before).

Observation 4.19. There is a constant ¢ > 1 depending only on G such that for any discrete
subgroup I' of G and any R > 0,

#(T-yo N Bgx(R)) < cg &P,
In particular, 6 < 2||o4|| and

#y €T : |lu)ll < R} < cg W I® - #T N K).
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Proof. Let
Dk =y € G/K : dgix(y,y0) < dg/x(y,y-y0) VyeT} (4.13)

be the Dirichlet domain centered at yy, and let # > 0 be the distance from y, to the boundary
of Dg/k. Forall R > 0 and all y € I" with y - yg € Bg/x(R),

v+ Bg/k(t) C Bg/x(R +1)

since G acts on G/K by isometries. Moreover, by definition of #, the balls y - Bg/k(f) and
v - Bgk(t) (for v,y € T') do not intersect if y - yo # ¥” - yo. Therefore,

#(Fyo N B(;/]((R)) - vol B(;/]((t) < vol B(;/[((R + f).

Observation 4.19 is then a consequence of the following volume estimate (see [25, Ch. I, Th. 5.8]):
there is a constant c; (depending only on G) such that

vol Bg/x(R') ~ cé;ez”p"”Rl. O
R —+co

We now turn to Lemma 4.6.(2) and (4). It is sufficient to give a proof for x in some fun-
damental domain of X for the action of I'. We consider the following particular fundamental
domain.

Definition-Lemma 4.20 (A pseudo-Riemannian Dirichlet domain). Let I be a discrete subgroup
of G acting properly discontinuously on X. The set

Dy ={xeX: [vl<Ivy- -0l YyeT}
is nonempty and is a fundamental domain of X for the action of T

Proof. By Remark 4.5, for any given x € X there are only finitely many elements y € I such that
[Iv(y- )|l < [Iv(x)ll; in particular, there is an element yo € I such that |[v(yo-x)|| < |[v(y-x)|| for all
y € I'. Thus Dy is nonempty and I' - Dy = X. To see that Dy is actually a fundamental domain
(which is not needed in our proof of Lemma 4.6, where we only use I' - Dy = X), it is sufficient
to see that for any y in the countable group T, the set

Hy :={xeX: vl =Ivy- ol
has measure 0 in X. But (4.1) and (4.11) imply that for any g € G,

2|Vl = llu(go(e) ™Il = deyx(vo, go(g) ™" - yo)-

Therefore the function ||v|| is analytic on G, hence on X = G/H. Since x — |[v(x)|* = v(y - )I|?
is not constant on X, the set ,, has measure 0. ]

The fundamental domain Dy is an analogue, in the pseudo-Riemannian space X = G/H,
of the classical Dirichlet domain Dg/k of (4.13). Indeed, by (4.1) and the G-invariance of the
metric dgk,

Deix ={y € G/K = luWIl < lluty -pII - Yy €T}

The distance to the origin ||u]| in G/K is replaced by the “pseudo-distance to the origin” ||v|| in X.
The proof of Lemma 4.6.(2) and (4) is now similar to that of Lemma 4.6.(1) and (3): we just
replace (4.12) by the following inequality.
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Lemma 4.21. Let T be a discrete subgroup of G that is (c, C)-sharp for X. For anyy € I' and
X € ﬂx,

IM%@HZ%MWW—C

Proof. Let y € T and x € Dy. There is an element g € KB, C G such that x = g-xo. If
ll(Il = 5 llu(y)ll, then, using the definition of Dy and the fact that g € KB, together with (4.6),
we have

vyl = VIl = llu@ll = %IIM()’)II-

If |ju(®)l < §||u(y)||, then, using Lemmas 4.4 and 4.17 together with the sharpness of I', we
obtain

\%

vyl = da(u(yg), u(H))
da(u(y), u(H)) — [luCgll

C
5 kil =¢. U

\

\%

4.7. Sharpness and deformation

We conclude this section by examining the behavior of the sharpness constants under small
deformations in the standard case. The two results below are easy corollaries of [31, Th. 1.4] (see
Example 4.13).

Lemma 4.22. Let ' be a convex cocompact subgroup (for instance a uniform lattice) of some
reductive subgroup L of G of real rank 1 acting properly on the reductive symmetric space X.
Assume that T is (c, C)-sharp for X and that ||v(y)|| = r for all y € I \ Z(Gy). For any € > O there
is a neighborhood U, c Hom(I', G) of the natural inclusion such that for any ¢ € Uy, the group
o) is discrete in G and (¢ — €, C + g)-sharp for X, with |[v(e(Y))|| = r — e forall y € T \ Z(Gy).

As in Section 3.3, we denote by Z(Gj) the center of the commutator subgroup of G.

Proof. Fix € > 0 and let &’ > 0 be small enough so that

/ S/
c—¢ and g+ <
1+¢& 1+¢&

c—&

\%

By [31, Th. 1.4], there is a neighborhood W, ¢ Hom(I', G) of the natural inclusion such that for
any ¢ € Wy, the group ¢(I') is discrete in G and

lltee(y)) = Il < & )l + €

for all y € T" (and even ||u(e(y)) — u()|| < & ||u(y)|| forall y e T’ \ K). By Lemma 4.17,

VeIl = da(ue(y)), u(H))
> da(u(y), u(H)) = llule(y)) — u)ll
> (c=&)upll - (C+¢&)

c—¢&
1+¢&

|M¢wm—@+5+ljy)
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for all ¢ € W, and y € T; in particular, ¢(I') is (¢ — &, C + &)-sharp for X. Since I' is discrete
in G and u is a proper map, the set

r+C+¢
Fi={yer: ol < ==}

is finite. For any ¢ € ‘W, and y € ' \\ F we have

VeIl > (¢ =N lluIl = (C+ &) > r.

Let U, be the set of elements ¢ € W, such that |[[v(e(y))|| = r — e for all y € F \ Z(Gy). Then
Uy is a neighborhood of the natural inclusion since v is continuous and F finite, and 9, satisfies
the conclusions of Lemma 4.22. ]

Lemma 4.23. Suppose that G = ‘G X'G for some reductive linear group ‘G and let X =
(‘G x'G)/Diag(*G). Let ‘G, and ‘G, be reductive subgroups of ‘G and let T' = ‘I'y X ‘I'; for
some discrete subgroups ‘T'1 of \G1 and ‘T'y of *G». Assume that T is (c, C)-sharp for X and that
vl = r forally e T \ Z(Gy).

(1) Suppose that for all i € {1,2}, the group ‘T'; is

e cither an irreducible uniform lattice of ‘G;
e or, more generally, a convex cocompact subgroup of ‘G; if \G; has real rank 1.
Then for any € > 0 there is a neighborhood U, ¢ Hom(I', G) of the natural inclusion such

that for any ¢ € U,, the group o) is discrete in G and (c — €,C + €)-sharp for X, with
VeIl = r — e forally € T \ Z(Gy).

(2) Suppose that ‘G has real rank 1 and that ‘T'; is convex cocompact in‘G. Then for any € > 0
there is a neighborhood ‘U, ¢ Hom(‘TI'1, G X Z.g('T'2)) of the natural inclusion such that
for any ‘¢ € ‘“U,, the group ‘¢(‘I'1)\I'; is discrete in G and (c — &, C + &)-sharp for X, with
VeIl = r — & for all y € ' \ Z(Gy).

Here Z.(‘'T'») denotes the centralizer of ‘T, in 'G.

Proof. Fix € > 0 and let &’ > 0 be small enough so that

-2 2V2¢
¢z >c—¢ and 2V2¢& + V2e <
1+2¢ 1+2¢

By [31, Th. 1.4], if ‘G| (resp. ‘G») has real rank 1 and ‘I'; (resp. ‘I';) is convex cocompact in ‘G|
(resp. in ‘Gy), then there is a neighborhood ‘W) c Hom(T',G) (resp. W, C Hom(T, G)) of
the natural inclusion such that for any ¢ € ‘W, (resp. ¢ € ‘W, ), the group ¢('T'| X {e}) (resp.
o({e} x 'T'p)) is discrete in G and

(@1, e)) = uCyr, ell < & lluCyr, el + & (4.14)
for all Yy, € ‘I'y (resp.

llk(gp(e, y2)) — ple, y2)ll < € llue, 'yl + & (4.15)
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for all Yy, € ‘). If ‘G (resp. ‘G,) has real rank > 2 and ‘I'; (resp. ‘I';) is an irreducible
lattice in ‘G (resp. in ‘G»), then ‘I'y (resp. ‘I';) is locally rigid in G [65, 82], and so a similar
neighborhood W, ¢ Hom(I', G) (resp. W>, € Hom(I', G)) of the natural inclusion exists by
(4.3) and (4.4). Since I' is discrete in G and u is a proper map, the set

r+C+2\/§8’}

F = {yef el < -
c-2¢

is finite. In the setting of (/), we let U, be the set of elements ¢ € W), N W, such that
[V(ey)Il = r—eforall y € F \ Z(Gy); then U, c Hom(T', G) is a neighborhood of the natural
inclusion and any ¢ € U, satisfies (4.14) and (4.15). In the setting of (2), we set

‘W i={poir: ¢ € Wiy, @leper, = ideper, ),

where i; : ‘I'i — ‘T'; X {e} is the natural inclusion, and we let ‘U, be the set of elements
‘o € "W, such that |v('e(y)'y)ll = r—eforall y = (y1,'y) € F ~\ Z(Gy); then ‘U, C
Hom('T'1,'G X Z.('T'1)) is a neighborhood of the natural inclusion and for any ‘¢ € ‘U,, the
homomorphism ¢ := ((*y1, “y2) = ‘o('y1)'y2) satisfies (4.14) and (4.15).

We now consider ¢ € Hom(I', G) satisfying (4.14) and (4.15) and prove that the group ¢(I') is
discrete in G and (c — &, C + &)-sharp for X, with ||[v(¢(y))|| = r —e for all y € I \ Z(G,). We note
that a = ‘a +'a, where ‘a is a maximal split abelian subspace of ‘g; fori € {1,2}, letn; : a — ‘a
be the projection onto the i-th factor. Then

1 ey y2) = uCyr )| = ity 'v2) = uCyi. o)
< i (uteCyn, v2) = peCyr, )| + || (uleCyrs €) = uCyi, o).

where
1 (e y1. y2) — uleCyr )| < [lmi(utete, 'y2)||
= |miutete, \y2)) = pte. y2)||
< luele, y2)) — e, 'yl
< & lute, 'yl + &
(using (4.3) applied to ‘G and (4.15)) and
1@y e) —uCyr )| < llueCyi,e) = uCyis el
< luCynell +¢&

(using (4.14)). Therefore,

1 (e Cy1s ) =y )| < & Uy, Ol + llute, “ya)ll) + 2¢7
< V2E |juCy )l + 22
Similarly,
(e 1. y2) = i y)|| < V2e Iy, )l + 2€.
Thus

u(e(y) — ul < 2" lu()ll + 2 V2&'

for all y € I'. Using the fact that I" is discrete in G and y is a proper map, we obtain that ¢(I') is
discrete in G. We conclude as in the proof of Lemma 4.22. O
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5. Asymptotic estimates for eigenfunctions on symmetric spaces

Under the rank condition (3.3), Flensted-Jensen [19] proved that the space L*(X, M)k of
K-finite elements in L*(X, M,) is nonzero for infinitely many joint eigenvalues A, by an explicit
construction based on some duality principle and the Poisson transform. Then, applying deep
results of microlocal analysis and hyperfunction theory [29], Oshima and Matsuki [57, 60] gave
a detailed analysis of the asymptotic behavior at infinity of these eigenfunctions. In this section,
we reformulate their estimates as follows, in terms of

o the “weighted distance” d(1) of the spectral parameter A to the walls of j* (which measures
the regularity of A),

o the “pseudo-distance from the origin” |[v(x)|| of x € X (which measures how x goes to
infinity).

Proposition 5.1. Under the rank condition (3.3), there is a constant g > 0 such that for all A € j*
and ¢ € L*(X, M)k, the function

x — @(x) - eqd(/l)IIV(X)II

is bounded on X; in particular, ¢ € L'(X) if d() > 2||ppll/gq-

We refer to Section 3.3 (resp. 4.1) for the definition of d : j* — Ry (resp. v : X — b,). As
in Remark 4.8, we denote by ||o,|| the norm of half the sum of the elements of a positive system
>*(g, b) of restricted roots of b in g; this norm does not depend on the choice of £*(g, b).

As we shall see, the constant g is computable in terms of some root system (see (5.14) in the
proof of Lemma 5.8).

The proof of Proposition 5.1 will be given in Section 5.4. For the reader’s convenience, we
first give a brief review of the Poisson transform on Riemannian symmetric spaces of the non-
compact type (Section 5.1), of the Flensted-Jensen duality (Section 5.2), and of the construction
of discrete series representations (Section 5.3). The material of these three sections is not new,
but we will need it later. Often analysis on reductive symmetric spaces requires a rather large
amount of notation; here we try to keep it minimal for our purpose.

In the whole section, we denote by A the sheaf of real analytic functions and by 8 the sheaf
of hyperfunctions; we refer to [28] for an introduction to hyperfunctions.

5.1. Poisson transform in Riemannian symmetric spaces

Let X? = GY/K“ be a Riemannian symmetric space of the noncompact type, where G is a
connected reductive linear Lie group and K¢ a maximal compact subgroup of G¢. Let P¢ be a
minimal parabolic subgroup of G¢. We give a brief overview of the theory of the Poisson trans-
form as an intertwining operator between hyperfunctions on G?/P¢ and eigenfunctions on X¢
(see [25, 29] for details). The notation G? is used to avoid confusion since the results of this
paragraph will not be applied to G but to another real form of G¢.

Let j be a maximal split abelian subalgebra of g? := Lie(G%) such that the Cartan decom-
position G¢ = K%(expj)K? holds. Since all minimal parabolic subgroups of G¢ are conjugate,
we may assume that P¢ contains expj and has the Langlands decomposition P? = M%(expj)N¢,
where M? = K¢ n P? is the centralizer of expj in K¢ and N is the unipotent radical of P¢. The
Iwasawa decomposition G¢ = K%(expj)N¢ holds. Let £ : G — j be the corresponding Iwasawa
projection, defined by

g € K'(expZ(g)N?
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forall g € G¢. For A € j. we define functions &, £} € AGY) by

E(g) =MD and  €(g):=&ug™) (5.1)

for g € G?. Since &, is left-K“-invariant, £} induces a function on X¢, which we still denote
by &).

We choose a positive system X (gc, jc), defining positive Weyl chambers j. in j and j} in j*.
Let p be half the sum of the elements of £*(gc, jc), counted with root multiplicities. For 1 € jg.,
the function &, is a character of P¢. Let B(G?/P¢, L;) be the hyperfunction-valued normal-
ized principal series representation of G¢ associated with the character £_; of P¢: by definition,
B(G?/P?, L) is the set of hyperfunctions f € B(G?) such that

FCp) =P (= FE,(P))

for all p € P¢. Here we use the character £_; and not &,, following the usual convention in
harmonic analysis on symmetric spaces (see [2, 16, 19, 25, 57]) rather than in the representation
theory of reductive groups (see [39, 80]). Setting

AG P!, Ly) = AGH N BG P, L)),
there is a natural G¢-invariant bilinear form
(-,2) + BGYP!, LYy x AGIP, L)) — C

given by the integration over G?/P?. We note that £_ A-p € A(GY/ P, £_)), hence the left trans-
late £_,_,(g™" +) also belongs to A(G?/P?, L_,) for all g € G*. Since £_,_, is left-K?-invariant,
we obtain a G¥-intertwining operator (Poisson transforn)

P BGY P, L) — AXY

given by
Paf)(g) = (fré-ap(g ).

It follows directly from the definition of the Harish-Chandra isomorphism in Section 3.1 that for
all f € B(GY/P!, L)), the function P,f € A(X?) satisfies the system (M,), defined similarly
to Section 3.1. For Re 4 € j7, the Helgason conjecture (proved in [29]) asserts that the Poisson
transform

Py BGY/P, L) — AG /K My)

is actually a bijection.

Example 5.2. Assume that G? has real rank 1. Then G¢/P? identifies with the boundary at
infinity of X?. The function &Y is the exponential of some multiple of the Busemann function
associated with the geodesic ray (expi.)K? in X? = G/K; its level sets are the horospheres
centered at eP? € G4/ P®. For A = p, the Poisson operator P, identifies the set of continuous
functions on G| P? with the set of harmonic functions on X¢ admitting a continuous extension

to X4 = X1 U G?/P?. (See Section 9.7 for the case G* = SL,(C).)
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5.2. Real forms of Gc/Hc and the Flensted-Jensen duality

We now come back to the setting of Sections 1 to 4, where G is a connected reductive linear
Lie group and H an open subgroup of the group of fixed points of G under some involutive
automorphism o. Let G¢ be a connected Lie group containing G with Lie algebra g¢ := g®gr C,
and let Hc be the connected subgroup of G¢ with Lie algebra he = h ®g C. We consider
three different real forms of the complex symmetric space X¢c = G¢/Hg: our original pseudo-
Riemannian symmetric space X = G/H, a Riemannian symmetric space Xy = Gy/Hy of the
compact type, and a Riemannian symmetric space X¢ = G%/K? of the noncompact type. They
are constructed as follows. Let g = h + g be the decomposition of g into eigenspaces of do- as in
Section 3.1, and let g = £ + p be the Cartan decomposition associated with the Cartan involution
6 of G of Section 3.2, which commutes with o~. The maps do- and df extend to automorphisms
of the complex Lie algebra gc, for which we use the same letters. We set

g’ = ¢+ V-lg=(nt+qgnp+ V-1(Hnp+qne),
¢ = py hne+ V=1(hnp),
gU E"F \/—_1]3,

and let G¢ (resp. K¢ = Hy, resp. Gy) be the connected subgroup of G¢ with Lie algebra g¢

(resp. &/ = by, resp. gy). We note that K¢ = Hy is the compact real form of Hc. For

instance, for the anti-de Sitter space X = AdS™*! = SO(2,2n)y,/S0O(1, 2n)y, we have Xy =

SO(2n+2)/SO2n+ 1) = S and X? = SO(L, 21+ 1)9/SO2n + 1) = H2"*! (see Section 10.1).
Let H? be the connected subgroup of G¢ with Lie algebra

b :=hnt+ V=1(qne).

We note that K¢ N HY = (H N K)o and that H?/K? N H? and K/H N K are two Riemannian
symmetric spaces with the same complexification — the first one of the noncompact type, the
second one of the compact type. This will be used in Section 7.

For any h?-module V over C, the action of h¢ on V extends C-linearly to an action of ¢ =
h¢ ® C, and the set Vi of h<-finite vectors is equal to the set V. of £c-finite vectors. We define
the set Vi of K-finite vectors of V to consist of vectors v € Vy« = Vi, such that the action of
€ C £c on the C-span of £ - v lifts to an action of K. Then Vi is a K-module contained in V..

Remark 5.3. In the definition of Vi, we do not assume that the group K acts on V. In the
situation below, neither V nor Vi« = Vi can be acted on by the group K.

The Lie algebra g¢ (hence its subalgebra h¢) acts on A(X“) by differentiation on the left:

d
Y- o)x) = —

% o $(exp(=1Y) - x) (5.2)

forall Y € g%, all ¢ € AX?), and all x € X¢. Since the system (M,) is G%-invariant, its space
of solutions AX?, M,) is a g’-submodule of AXY) for A € ji.; thus we can define K-modules
AX, M)k € AXY. By using holomorphic continuation, Flensted-Jensen [19] constructed
an injective homomorphism

n: AXx — AXk (5.3)

U U
AX Mg — AX Mk
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for all A € ji.. For the reader’s convenience, we now recall the construction of 7 in the case when
G is simply connected.

Assume that G is simply connected. Then the set of fixed points of G¢ under any involutive
automorphism is connected [5, Th. 3.4]. We can extend o and 8 to holomorphic automorphisms
of G, for which we use the same letters o~ and 6. The complex conjugation of gc = g + V—1g
with respect to the real form g lifts to an anti-holomorphic involution 7 of G¢, such that G = G¢..
Since o, 6, and T commute, the composition of any of them gives involutive automorphisms
of G¢. We have

He=G%, G'=GY° K'=Hy=HcnGY and Gy=GY.

Moreover, setting K¢ = G%, we have H? = (K¢ N G¥)g and the following inclusions hold:

K cG o H
n N N
Kc ¢ Ge D He 5.4
U U U

H? c G > K%

The restriction of o to G? is a Cartan involution of G%, and the corresponding Cartan decom-
position g¢ = &4 + p? is obtained as the intersection of g¢ with the direct sum decomposition
gc = be + qc. The restriction of 6 to G¢ is an involution of G, and the corresponding decom-
position g¢ = b9 + q¢ of g (into eigenspaces of df with respective eigenvalues +1 and —1) is
obtained as the intersection of g with the complexified Cartan decomposition gc = tc +pc. Let
b be the maximal abelian subspace of pNq from Section 4.1. Since p?Ng? = pNq, we may regard
B = exp b as a subgroup of G, and the polar decomposition G = H?B, K* holds similarly to the
polar decomposition G = KB, H of Section 4.1. Any function f € A(X)x extends uniquely to a
function f¢ : K¢B,He/He — C such that k — Jfc(kbH¢) is holomorphic on K¢ for any b € B.:
by letting 77( f) be the restriction of fc to X¢, we get the injective homomorphism (5.3), which is
actually bijective. The homomorphism 7 respects the left action of U(gc) ([19, Th. 2.5]).

We now return to the general case, where G¢ is not necessarily simply connected. Any G-
invariant (resp. Gy-invariant, resp. G%-invariant) differential operator on X = G/H (resp. Xy =
Gy/Hy, resp. X? = G¢/K?) extends holomorphically to X¢ = G¢/Hc, hence we have canonical
C-algebra isomorphisms

D(X) ~ D(Xy) ~ DXY).

Therefore, for 4 € ji., a function f € A(X) satisfies (M,) if and only if n(f) € AXY) does.

5.3. Discrete series representations

We continue in the setting of Section 5.2 and now assume that the rank condition (3.3) is
satisfied. In this section we summarize Flensted-Jensen’s construction of discrete series rep-
resentations V', using his duality (5.3). Recall that the regular representation of G on L?(X)
is unitary; an irreducible unitary representation m of G is said to be a discrete series represen-
tation for X if there exists a nonzero continuous G-intertwining operator from 7 to L*(X) or,
equivalently, if 77 can be realized as a closed G-invariant subspace of L*(X). By a little abuse of
notation, we shall also call the underlying (g, K)-module g a discrete series representation. It
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should be noted that discrete series representations for X = G/H may be different from Harish-
Chandra’s discrete series representations for the group manifold G if H is noncompact, because
L2(X) # L*(G)!.

We shall parameterize the discrete series representations for X by the spectral parameter A
and some finite set Z defined as follows. Let ¢ be the set of minimal parabolic subalgebras
of g¢, on which G acts transitively by the adjoint action. There are only finitely many H“-orbits
in P; a combinatorial description was given by Matsuki [56]. We set

Z := {closed H%-orbits in P%}. (5.5)

Here is a description of the finite set Z. Consider the maximal abelian subspace j of V—1(q N €)
from Section 3. The rank condition (3.3) is equivalent to the fact that j is maximal abelian in
p? = qNp+ V=1(qN¥). Thus j is a maximal split abelian subalgebra of g and the notation fits
with that of Section 5.1. All restricted roots of j in g take real values on j and there is a natural
bijection E(Qd ,1) = Z(gc,jc). Note that j is actually contained in h?; there is a natural bijection
2(h%,j) =~ Z(tc.jc). As in Section 3.1, let W be the Weyl group of the restricted root system
2(g¢,j), and let Wy be that of £(h¢, ). Any choice of a positive system Z*(g?,j) ~ Z*(gc.ic)
defines a point in P and the H?-orbit through this point is closed. Conversely, any closed H-
orbit in 7 is obtained in this way. Recall that in Section 3.3 we have fixed once and for all a
positive system =¥ (£c, jc) = Z*(h?, j). Since any two such positive systems are conjugate by H¢,
we obtain a one-to-one correspondence

{positive systems =" (g%, ) containing =*(h<, )} ~ Z. (5.6)

Here is another description of the finite set Z. We fix a positive system Z*(g¢,j) containing
T*(h?,j); this defines a minimal parabolic subgroup P? of G¢. The subspace p¢ in the Cartan
decomposition g¢ = £ + p? should not be confused with the Lie algebra of P?. The subset

W(H!, G :={we W: wEZ (g’ i) NnZ(h%,j) = 7, j)}. (5.7)

of the Weyl group W gives a complete set of representatives of the left coset space Wyng\W.
Clearly, e € W(H?, G%). We identify P with G?/P¢. Then, by (5.6), the other closed H?-orbits
in G/ P? are of the form

Z = H'wP¢ forw e WH, G (= Wyngx\W). (5.8)
Thus we have a one-to-one correspondence
Z = W(H,GY. (5.9)

Remark 5.4. We have given two equivalent combinatorial descriptions of the finite set Z in
(5.6) and (5.9). The latter one (5.9) depends on a fixed choice of a positive system Z*(gd, j); it is
convenient to treat different closed orbits Z simultaneously (e.g. in Fact 5.5 below). We shall use
the former one (5.6) when we give an estimate of the asymptotic behavior of individual discrete
series representations for a fixed Z € Z (e.g. in the proof of Proposition 5.1 in Section 5.4, or in
Section 7).

We now recall from [19] how to construct, for any Z € Z and infinitely many 4 € jg, a
subspace V, of L*(X, M)k that will be a discrete series representation for X. For Z € Z and
le j(*c, we define a gd—submodule

B(GIP!, L) :={f € BG'/P, L)) : supp f € Z}
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of the principal series representation B(GY/P“, L) of Section 5.1. Similarly to the definition of
A(G? /K, M)k, we can define the set Bz(G¢/P?, L)k of K-finite elements in BZ(Gd/Pi, L)
even though the group K does not act on Bz(G?/P?, £,) (see Remark 5.3). For Re 1 € j*, we
then have the following commutative diagram, where %, is the Poisson transform of Section 5.1.

B(Gd/Pd,.[,)) ? ﬂ(Gd/Kd,M,l)
) U
BGYPL L)y — AGUKL MYk = AX M)k.

We set
V=17 (PuBLAG! P!, L)) (5.10)

Since B,(G¢/P¢, L)k is a (g, K)-module, V, is a (g, K)-submodule of A(X, M)k, where g
acts by differentiation on the left, similarly to (5.2). We recall that the space V), := LX(X, M)k
depends only on the image of A in j;./W, hence we may assume Red € ji without loss of
generality. The following fact (which includes the “C = 0” conjecture [19] and the irreducibility
conjecture) is a consequence of the work of Flensted-Jensen [19], Matsuki—Oshima [57], and
Vogan [78]. See also [2, Th. 16.1].

Fact 5.5. Let A € ji. satisfy Re A € 5.

e Forany Z € Z, the space Vz, constructed above is contained in V) := L2(X, M)k, it is
either zero or irreducible as a (g, K)-module. Moreover,

(V,l = @ (VZ,/l-

ZeZ

o Let Z € Z correspond to w € W(H?, G%) via (5.8).

— If V2, is nonzero, then A € j; and
wy =w@d+p)—2p, (5.11)

belongs to the Z-module A defined in (3.5).

— Conversely, if A € i’ and if the stronger integrality condition
uy € Ay (5.12)

holds, where A, is defined in (3.4), then V7, is nonzero.

Thus there are countably many discrete series representations for X. The discrete series
representations V', for A satisfying (5.12) were constructed by Flensted-Jensen in [19]; we will
give more details in Section 7.3.

We note that Fact 5.5 completely describes Spec;(X) away from the walls of j; : the following
lemma states that any A € j} satisfying the weak condition ¢} € A but not the strong condition
1Y € A, has a bounded “weighted distance to the walls” d(1). On the other hand, the nonvan-
ishing condition for V, is combinatorially complicated for A near the walls of j;; it is still not
completely settled in the literature.
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Lemma 5.6. Suppose that A € j} satisfies d(A) > m,, where m, is given by (3.8). For w €
W(H?Y, G?), the following conditions on A are equivalent:

(i) w0y € A,
(i) u" € A,

Proof. The implication (ii) = (i) is obvious. Let us prove (i) = (ii), namely that if u' € A, then
w1y is dominant with respect to =%, 5) = (e, o). Firstly, we note that wp is half the sum
of the elements in w(Z*(g¢,)) counted with root multiplicities, where w(Z*(g,j)) is a positive
system containing *(h<, ) (by definition (5.7) of W(H?, G%)). By [79], 2wp — 2p, is dominant
with respect to X*(h%,j). (In fact, it occurs as the highest weight of a representation of h? in
A*q?.) Secondly, Observation 3.7 and the inequality d(1) > m,, imply that

(1D Dy

m, m,

A-p= s
therefore w(d — p) is dominant with respect to £*(h<,j) since w € W(H? G9). Thus pu =
2(wp — pc) + w(d — p) is dominant with respect to =Y, 5). O

5.4. Asymptotic behavior of discrete series

We can now complete the proof of Proposition 5.1.

By Fact 5.5, we may assume that ¢ € LX(X, M)k belongs to Vz, for some closed H?-orbit
Z in P¢. We then use Oshima’s theorem ([60], see Fact 5.7 below) that the asymptotic behavior
of the eigenfunction ¢ is determined by Z. This theorem requires an unavoidable amount of
notation. Before entering into technical details, let us pin down the role of two positive systems
involved:

TH(g ) < closed H-orbit Z in P¢
Cayley transform Ad(k) *W(2)
X*(g,b) ... asymptotic behavior of ¢ € Vz,

at infinity in X = G/H

We now enter into details, retaining notation from Sections 4.1 and 5.3.

We first recall that in Section 4.1 we have chosen a positive system Z*(g??, b), determining a
closed positive Weyl chamber b, inb, a polar decomposition G = K(exp b,)H, and a projection
v: G — b,. Any choice of a positive system X*(g, b) containing (g% b) gives rise to a closed
positive Weyl chamber b, C b, and b, is the union of such Weyl chambers b, for the (finitely
many) different choices of £*(g, b). On the other hand, by Fact 5.5, the space V, = L>(X, M)k
is the direct sum of finitely many subspaces Vz,, where Z € Z is a closed H%orbit in P,
Therefore, in the rest of the section, we may restrict to one closed positive Weyl chamber [
(determined by some arbitrary positive system *(g, b) containing X*(g°?, b)) and one H%-orbit
Z € Z, and prove the existence of a constant g > 0 such that for any A € j* and ¢ € Vz,, the
function

(k,Y) +— @(k(expY) - xo) 24Vl

is bounded on K X E Since Vz, and d(4) depend only on the image of A € j* modulo W, we
will be able to take A in any Weyl chamber j; of j*.
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Fix Z € Z and consider the positive Weyl chamber j* in j* determined by Z via (5.6). We
introduce some additional notation. Let
=42) ={Yej: (A4,Y)>0 VYaej)

be the dual cone of j; and let p € j; be given as in Section 3.3. Since all maximally split abelian
subspaces of g¢ are conjugate by K¢, there exists k € K such that Ad(k)b C j; the element
Ad(k) may be thought of as an analogue of a Cayley transform from the upper-half plane to the
hyperbolic disk (see Section 9.8). We may assume that

(Ad(k)" @)l € X*(g, b) U {0}
for all @ € =*(g?,j); in particular, Ad(k)(E) C 5 For Y € b, we write
Y := Ad(K)Y €.

Let {Y),..., Y} be the basis of b that is dual to the set of simple roots in X*(g, b). For ¢ € (R,)’,

we set
t

Yo(1) := = ) (log1))¥; € b,

=1
so that ¢ > Y, (¢) is a bijection from R to b, inducing a bijection between (0, 17¢ and m For
w € Wand 1 € j*, we set
B = ((p—wA, Y1), ..., (0 —wa,Y)) € R
We recall that W is the Weyl group of X(g?, j). We define
W=tW(Z) = {weW: —w - Ad(k)(b,,) CHj).

The set*W depends on the closed He%orbit Z in P?. If rank G/H = 1, then £ = 1 and*W = {w},
where w is the unique nontrivial element of W.

With this notation, here is the asymptotic behavior, due to Oshima, that we shall translate in
terms of v and d to obtain Proposition 5.1. We consider the partial order on R’ given by

B<p ifandonlyif g;<p foralll<j<C.

Fact 5.7 ([60]). Let A € j and let I, be the set of minimal elements, for <, in the finite set
Bw(A) : w e W)} c R For any ¢ € Vy,, there exist real analytic functions ag € AK), for
B € 1, such that

lp(k(exp Yo(DH)| < " agh)#

Beli
forallk € K and t € (0, 1), where we write 1 for Hi’:l 1.

Let*W, := {w e*W : B, (1) € I,}. Then Fact 5.7 has the following immediate consequence:
for any A € j; and ¢ € Vz,, there is a constant ¢, > 0 such that

l(p(k(exp Y)H)| < ¢, Z A (5.13)
wetW,
forallke Kand Y € E Indeed, K is compact, I, is finite, and for all w € *W, and ¢ € (0, 11¢,

PO fpg) o W)

We now bound (wA, 7) in terms of the “weighted distance to the walls” d(2).
43



Lemma 5.8. There is a constant gz > 0 such that
(W, Y) < —qzdD) 1Yl
forallwe™W, all A €j%, and all Y € E

Proof. Let{ay,...,a,} be the basis of £(g%, j) corresponding to j*. Recall that for any A € i,

d() = min 20

L<i<r (@, @;)

Let || - ||’ be the norm on b defined by ||Z§:1yij||’ :
elementary computation shows that we may take

Sy lyjl for all yi,...,y, € R. An

g, = T2 (5.14)

ny
where m,, was defined in (3.8) and where

Yy
min .
veb~ (0} ||Y]|

g1 = min { —(wp,?}) twetW, 1<j<¢ and ¢ :=
By (5.13) and Lemma 5.8, for any A € j} and ¢ € Vz, there is a constant ¢, > 0 such that

|e(k(exp V)H)| < ¢, e 4O (5.15)

forallk € Kand Y € m We now recall (see [19, Th.2.6] for instance) that the G-invariant
Radon measure on X = G/H is given (up to scaling) by

d(k(exp Y)H) = 6(Y) dk dY (5.16)

with respect to the polar decomposition G = K(exp b, )H, where the weight function ¢ is given
on b, by
8(Y) = ]—[ | sinh a(Y)|4™ 9" | cosh a/(Y)4im 8"
aez+(g,b)

When Y € E tends to infinity,
8(Y) ~ 1),

where p;, € E is half the sum of the elements of X*(g, b), counted with root multiplicities. In
particular, there is a constant C > 0 such that

16(Y)| < C Xes:Y) < C 2ol (5.17)
forall Y € b,,. Proposition 5.1 follows from (5.15), (5.16), and (5.17), setting

:=min qz.
q ZeZ qz
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6. Convergence, square integrability, and regularity of the generalized Poincaré series

As before, X = G/H is a reductive symmetric space satisfying the rank condition (3.3).
We use the notation from Sections 3 to 5. For any Clifford—Klein form Xr = I'\X and any
p > 1, we denote by LP(Xr, M,) the subspace of L?(Xr) consisting of the weak solutions to the
system (M,). The group G acts on L”(X, M,) by left translation: for g € G and ¢ € LP(X, M,),

g-pi=g(g' ) e LP(X, My).

The first key step in our construction of eigenfunctions on Clifford—Klein forms of X is the
following (see Definition 4.2 for the notion of sharpness).

Proposition 6.1. There is a constant Ry > 0 depending only on X such that for any c¢,C > 0 and
any discrete subgroup T of G that is (c, C)-sharp for X,

(1) the function ¢" : Xr — C given by

0= - pm=> e 0

yell yell
is well-defined and continuous for all ¢ € L*(X, M)k with A € i* and d(2) > Rx/c,

(2) furthermore, ¢ — @' defines a linear operator

Sr: LMy —  C"Xon (] LK, M)

1<p<eo
forall A €i* and m € N with d(2) > (m + 1)Rx/c.

The fact that the constant Ry /c depends only on the first sharpness constant ¢ explains why
we obtain a universal discrete spectrum in Theorem 1.5, independent of the discrete subgroup I'
of L (see Proposition 4.3). Note that Proposition 6.1.(2) actually contains Theorem 3.13. We
could obtain a slightly weaker condition than d(1) > (m + 1)Rx/c by taking into account the
critical exponent or of I" (see Section 6.4).

In Proposition 6.1, the function ¢! = Sp(¢) satisfies (M,) (in the sense of distributions)
because ¢ does and any D € ID(X) is G-invariant, that is,

D(g-¢) = g - (Dy) (6.1)

for all g € G. Furthermore, Proposition 6.1.(2) ensures that ¢! satisfies (M,) in the sense of func-
tions if A is regular enough (i.e. d(2) large enough). More precisely, recall from Section 3.1 that
D(X) is a polynomial algebra in r := rank(G/H) generators Dy, ..., D,. By Proposition 6.1.(2), if
we take m to be the maximum degree of Dy, ..., D,, then for any A € j* with d(1) > (m + 1)Rx/c
and any ¢ € L>(X, M)k, the function ¢ = S(¢) satisfies

Dre' =xaDy¢"

for all 1 < j < rin the sense of functions.
We note that the image of L*(X, M)k under the summation operator St could be trivial. In
Section 8, we will discuss a condition for the nonvanishing of S (Proposition 8.1). For this we
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will consider the summation operator S, not only on L*(X, M)k, but also on some G-translates
g-L*(X, My)k.

The rest of this section is devoted to the proof of Proposition 6.1, using the geometric esti-
mates of Section 4 (Lemma 4.6) and the analytic estimates of Section 5 (Proposition 5.1). As a
consequence of Proposition 5.1, the series .,cr e~V Ill will naturally appear in the proof of
Proposition 6.1: it is a pseudo-Riemannian analogue of the classical Poincaré series

Z o~ 94OV — Z =94 gk (0.7y)

yel’ yel’
fory € G/K.

Remark 6.2. A summation process was used by Tong—Wang in [77] to construct cohomology
classes of Riemannian locally symmetric spaces ['\G/K with coefficients in a locally constant
vector bundle, based on Flensted-Jensen’s discrete series representations for a non-Riemannian
symmetric space G/H. The summation described here is different in two respects:

¢ in the situation considered by Tong—Wang, I' was a lattice in G and I' N H a lattice in H,
whereas here I can never be a lattice in G and I' N H is finite (see Remark 4.8);

e Tong—Wang obtained a nonzero (g, K)-homomorphism from L>(X, M)k to C*(G/I') by
summation over I'/(I' N H) from the right, whereas we obtain a nonzero map St from
L*(X, M)k to LXT\G/H) by summation over I' from the left; our map St cannot be a
(g, K)-homomorphism since G does not act on L2(I'\G/H).

G/I'NH) X=G/H
N I
X=G/H G/T Xr =T\G/H
Tong—Wang’s situation Our situation

6.1. Convergence and boundedness

Let us prove Proposition 6.1.(1). We denote by g > 0 the constant of Proposition 5.1.
Lemma 6.3. Let I' be a discrete subgroup of G that is (c, C)-sharp for X.

(1) For any A € j* with d(1) > dr/qc and any ¢ € L*(X, M)k, the function @' is well-defined
and continuous.

(2) For any A € i* with d(1) > 26r/qc and any ¢ € L*>(X, My)k, the function ¢' is bounded.

Proof. Fix A € j* with d(1) > dr/qc and ¢ € L*(X, M ). We claim that

x— ey )

yel
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converges uniformly on any compact subset of X. Indeed, by Proposition 5.1, there is a constant
¢, > 0 such that for all x € X,

Z ey ) < c, Z 94y 0l

yel yel’

hence

Z lo(y™ x| < ¢, Z e 19D w e T < Ity 0l < n + 1.
yell neN

Fix € > 0 such that d(1) > ‘SE% and, as before, let xo be the image of H in X = G/H. By
Lemma 4.6.(1), there is a constant ¢.(I') > 0 such that for all x = g - xy € X (where g € G) and
allneN,

#Hy el : vy )|l < n+ 1} < cp(I) lrroetH@iie, (6.2)

Therefore, for any compact subset C of G and any x € C - xo,

)2

D letr ! Dl < 6 caD) 0TI N a2
yel' neN

where
M := C + max [ju(g)Il.
geC
This series converges since d(1) > ‘5r:f£, proving the claim and Lemma 6.3.(1).
The proof of Lemma 6.3.(2) is similar: we replace (6.2) by the uniform (but slightly less
good) estimate of Lemma 4.6.(2) in order to obtain a uniform convergence on the fundamental
domain D of Definition-Lemma 4.20, and hence on the whole of X. O

6.2. Square integrability

In order to see that the image of the summation operator S is contained in L*(Xr), and more
generally in LP(Xr) for any 1 < p < oo, it is enough to see that it is contained in both L'(Xr) and
L>(Xr), by Holder’s inequality. The case of L*(Xr) has already been treated in Lemma 6.3. For
L'(Xr), we note that by Fubini’s theorem,

f lo"(®)| dF = f (0 dx:
xeXt xeX

using Proposition 5.1, we obtain the following.

Lemma 6.4. For any discrete subgroup I of G, any A € j* with d(1) > 2||ppll/q, and any
@ € L2(X, M)k, we have ¢" € L'(Xr).

Here, as in Proposition 5.1, we denote by [|op|| the norm of half the sum of the elements
of a positive system X*(g, b) of restricted roots of b in g, and ¢ > 0 is again the constant of
Proposition 5.1.

Holder’s inequality then gives the following.

Corollary 6.5. Let I be a discrete subgroup of G that is (c, C)-sharp for X. For any A € j* with
2
d) > p max (dr/c, llos|l)

and any ¢ € L*(X, M)k, we have @' € LP(Xr) for all 1 < p < oo; in particular, ¢" € L*(Xr).
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6.3. Regularity

We now complete the proof of Proposition 6.1.(2) (hence Theorem 3.13) by examining the
regularity of the image of St. We set

eg ;= max |||l
aeX(g,a)
Lemma 6.6. Let I' be a discrete subgroup of G that is (c, C)-sharp for X. For any m € N and
any A € j* with d(1) > (or + eg m)/qc,

Sr(L*(X, M) € C"(Xp).

The idea of the proof of Lemma 6.6 is to control the decay at infinity of the derivatives of the
elements of L?(X, M,)x by using the action of the enveloping algebra U(gc) by differentiation
on the left, given by

Y- o)x) = ,Plexp(=1Y)-x) (6.3)

d
@

forall Y € g, all ¢ € L*(X, M)k, and all x € X. This idea works as a consequence of Fact 5.7
and of the following well-known fact.

Fact 6.7 (See [1]). For any A € ji,, the subspace L2(X, M)k of A(X) is stable under the action
of g by differentiation.

Proof of Lemma 6.6. Consider A € j* with d(1) > dr/qc and ¢ € L*(X, M))k. Let {Un(8c)}tmen
be the natural filtration of the enveloping algebra U(gc). Then any u € U,,(gc) gives rise to a
differential operator on X of degree < m by (6.3). Conversely, any differential operator on X of
degree < m is obtained as a linear combination of differential operators induced from U,,(gc)
with coefficients in C®(X). Therefore, in order to prove that ¢ is C, it is sufficient to show that
for any differential operator D on X that is induced from an element u € U, (gc),

x— > 1Dy - 9)()

yel

converges uniformly on all compact subsets of X. As before, let xy be the image of H in X =
G/H. In view of the formula

D(y - ¢)(x) = (Ad(y HYw) - 9)(y " ),

we only need to prove the existence of a constant R > 0 such that for any integer m > 1, any
Y € g®", and any compact subset C of G,

x> Y [(Ad@) - @)y - )

yell

converges uniformly on C - xo whenever d(1) > (m + 1)R.

We fix a K-invariant inner product on g, extend it to g®", and write the corresponding Eu-
clidean norms as || - |5 and || - |[qen, Tespectively. Let || - [lgnacg) be the operator norm on g. We
observe that

”T(Y)”g®”‘ < ||T||f;"nd(g) ”Y”g@’”
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for all T € End(g) and Y € g®", where T acts on g®" diagonally. Moreover,

log || Ad(g)llena(e) < g lIu()l (6.4)

for all g € G: indeed, the Cartan decomposition G = KAK holds and the norm ||||4 is K-invariant.
By Proposition 5.1 and Fact 6.7, we may define a function ¢ : g®" — Ry by

{(Y) = sup |(Y - ¢)(x)| & dDlv0ll.
xeX

It satisfies
@Y +7Y)) < eY) + || €(Y)

for all 1,#/ € C and Y, Y’ € g®". Taking a (finite) basis of g®”, this implies the existence of a
constant ¢,, > 0 such that
LY) < cp Y| gom

forall Y € g®". Then for any y € T, any Y € g®", and any x € X,
|(Ad(7)(Y) o)y - x)| <cmll Ad()’)”%"nd(g) [1Y1]] gom e~ 94Dl

Therefore we only need to prove the existence of a constant R > 0 such that for any integer m € N
and any compact subset C of G,

—agd(d .
X — Z “Ad(y)”gnd(g) e~ 2d@DIviyll
yell

converges uniformly on C - xo whenever d(1) > (m + 1)R. Let us fix an integer m € N and a
compact subset C of G. By (4.12),

Iv(y - Ol = cllull — M
forall y e T'and x € C - xo, where

M = C + max |lu(g)ll.
geC

Using (6.4), we obtain that for all y € I" and x € C - xo,
m ,—q d(D)Iv(y-x)l qd(OM —(gd(D)c—egm) lluy)ll
IAd(Y)II e <e e
g < .
yel yel'
This series converges as soon as

or +egm

d) > O

6.4. The constant Ry in Proposition 6.1
Lemma 6.3, Corollary 6.5, and Lemma 6.6 show that the summation operator

Sr: P Mok — (] LG M)
1<p<oco
is well-defined and with values in C"™(Xr) as soon as

M). (6.5)

1 26,
d() > = max (==, 2oyl
q c

‘We note that
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e or < 2||p,|l (Observation 4.19),
e |lopll < lloall/c by Remark 6.8 below and the fact that ¢ < 1,
e ¢; < 2||p,|| by definition of eg.
Therefore (6.5) is satisfied as soon as d(1) > (m + 1)Rx/c for
q

Remark 6.8. Suppose that the positive systems £* (g, a) defining p, and X*(g, b) defining p; are
compatible, in the sense that the restriction from a to b maps X*(g, a) to 2*(g, b) U {0}. Then pj,
is the restriction of p, to b, i.e. the orthogonal projection of p, to b*. Thus

Ry : (6.6)

llosll = llpall - cos(P),

where @ € [0, 2) is the angle between p, and pj. In particular ||pp|| < [|o,]l- This inequality is true
in general since the norms ||p,|| and ||pp|| do not depend on the choice of the positive systems.

Part III
Nonvanishing of the generalized Poincaré
series

7. An estimate for certain eigenfunctions near the origin of X

Let I' be a discrete subgroup of G that is sharp for the reductive symmetric space X = G/H
satisfying the rank condition (3.3). In Proposition 6.1, we saw that the summation operator

Sr: PX Mok — (] LG M)

1<p<eo

mapping ¢ to @' = (I'x Yyer (7 - 9)(x)) is well-defined for all A € j* with d(2) sufficiently
large. In Section 8.1, we are similarly going to define a summation operator S on any G-translate
g-L*(X, M)k. Our goal will be to show that S is nonzero on some G-translate g-L*(X, M)k
for infinitely many joint eigenvalues A € j*, namely for all

A €75 N (2pe — p + ATHEY) (7.1)

with d(1) large enough (Proposition 8.1). Here j* and p are defined with respect to some choice
of a positive system X" (gc, jc) containing the fixed positive system I*(¥c, jc) of Section 3.3; the
set AIN4(G9) ig the Z-submodule of A of finite index that was defined in (3.6).

A similar argument to the one used in Section 6 for the convergence of ¢" would show that for
a fixed A satisfying (7.1) with d(1) large enough, S is nonzero for any finite-index subgroup I/
of I such that the index [I" : I"] is large enough, where “large enough” depends on I" and A.
However, we wish to prove that St is nonzero without passing to any subgroup; therefore we
need to carry out some more delicate estimates in the summation process.

In preparation for Proposition 8.1, the goal of the current section is to establish the following
analytic estimate, where, as before, x denotes the image of H in X = G/H.
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Proposition 7.1. Under the rank condition (3.3), there exists q¢' > 0 with the following property:
forany A €5 N2p.—p+Ay), there is a function ) € Vz, C L*(X, M)k such that y(xp) = 1,
such that

a(x)l < cosh(g’ [v(x)l)="" (7.2)

for all x € X, and such that for any finite subgroup J of the center Z(K) of K we have y,(g-x¢) = 1
forallge JifA1€2p. —p+ A

Here Z € Z denotes the closed H?-orbit through the origin in the flag variety P¢ ~ G¢/P,
where P? is the minimal parabolic subgroup of G corresponding to the choice of the positive
system ¥ (gc, jc) defining j; and p, using (5.6). We refer to Section 5.3 (and more precisely to
(5.10)) for the definition of V.

The decay at infinity (i.e. when [[v(x)]| — +o0) of the elements of L*(X, M)k was already
discussed in Section 5. The point of Proposition 7.1 is to control the behavior of certain eigen-
functions i, not only at infinity, but also near the origin xy € X.

We actually prove that the estimate (7.2) holds for the Flensted-Jensen eigenfunction ¥, =
a1z, given by (7.3) below. In Section 8 we shall consider some G-translates of i,z and apply
the analytic estimate of Proposition 7.1 in connection with some geometric estimates near the
origin (Propositions 8.9 and 8.14).

7.1. Flensted-Jensen’s eigenfunctions

Before we prove Proposition 7.1, we recall the definition of the Flensted-Jensen eigenfunc-
tion ¥, = Y¥,z, in the spirit of Section 5. We note that we may assume that H is connected,
because otherwise the Flensted-Jensen function v, € L*(G/H)(C L*(G/Hy)) is the average of
finitely many Flensted-Jensen functions in L*(G/Hy). We will assume that H is connected for the
rest of the section.

We retain the notation of Sections 3 and 5. As explained above, in the whole section we fix a
positive system Z*(gc, ic) = Z*(g’, j) containing the fixed positive system X*(£c, jc) = Z*(h?, j)
of Section 3.3; it determines a positive Weyl chamber j* and an element p € j%. Let P? be the
corresponding minimal parabolic subgroup of G¢. We denote by Z € Z the closed H“-orbit
through the origin in GY/P“. For A € j%, we set y; := A + p — 2p... The condition on A € j% that
appears in Proposition 7.1 is gy € Ay (i.e. (5.12) with w = e).

Let 6, be the (K¢ N HY)-invariant probability measure supported on Z. For any 1 € j¢ the
G“-equivariant line bundle £; = G¥Xps &,_; over G¥/P? is trivial as a K“-equivariant line bundle
over K¥/K? n Pi(~ G?/P?), because the restriction of &,_; to K N P? is trivial. Thus 67 can
be seen as an element of B(G?/P¢, L;) via the isomorphism B(K¢/K? n P?) ~ B(G?/P?, L,).
Flensted-Jensen [19] proved that if A € j; satisfies u, € A, then 6z is K-finite (see Remark 5.3)
and generates the irreducible representation of h¢ with highest weight x,. The Poisson transform
P1(87) is also K-finite and moreover, viewed as an element of A(G?/K, M,)k, it belongs to the
image of the homomorphism 7 of (5.3). He then set

Yaz = 1" (Pa(62) € AX, My)k. (7.3)

We shall prove that this function ¢, = ¢, 7 satisfies (7.2). We note that our estimate (7.2) is
stronger, for this specific ,, than what is given in the general theory of [19, 57, 60], as it is both
uniform on the spectral parameter A and uniform on x € X near the origin.
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7.2. Spherical functions on compact symmetric spaces

We first recall some basic results concerning spherical functions on the compact symmetric
space Xy = Gy/Hy (see Section 5.2 for notation). In Section 7.3, some of these results will
actually be used, not only for Xy = Gy /Hy, but also for the compact symmetric space K/HNK.

Let gy = hy + qu be the decomposition of gy into eigenspaces of do- with respective eigen-
values +1 and —1. We note that j is a maximal abelian subspace of ¢y. Similarly to (3.4),
let A.(Gy/Hy) be the set of highest weights of finite-dimensional irreducible representations
of Gy with nonzero Hy-invariant vectors; we see it as a subset of ji. by Remark 3.5. We note
that Xy has the same complexification as the Riemannian symmetric space of the noncompact
type X¢ = G¢/K?. The Borel-Weil theorem (see [39, Th. 5.29]) implies that

A(Gy/Hy) = {A €ji : &, extends holomorphically to G¢}, (7.4)

where &, : G - C is defined by (5.1). If Oq4(Gc/Hc) denotes the ring of regular functions on
Gc/Hc, endowed with the action of G¢ by left translation, then we have an isomorphism

Ou(Ge/Ho) = €D v,

AeA(Gy/Hy)

of Gy-modules, where (1, V) is the finite-dimensional irreducible representation of Gy with
highest weight A. A highest weight vector of (), V,) is given by the holomorphic extension of

‘f/{ to G¢ (see Section 5.1), which is denoted by the same symbol 53’. Let {a,...,a,} be the basis
of 2(gc, jc) corresponding to our choice of £*(gc,jc), and let wy, ..., w, € j% be defined by
(aj, w))
=0;; 7.5
(@i, @) g (7-5)

forall 1 <1i,j < r,so that

1= Z Aap (7.6)

(a,j’ aj)

for all A € j*; we note that w; is twice the usual fundamental weight associated with ;. If G¢ is
simply connected, then the Cartan—Helgason theorem (see [80, Th. 3.3.1.1]) shows that

A+(Gy/Hy) = @ij. (7.7)

J=1

For any A € A.(Gy/Hy), we fix a Gy-invariant inner product (-,-) on V; with (¢],&)) = 1. The
following easy observation and lemma will be useful in the next section.

Observation 7.2. For any g € G,
E1(8) = (ma(®)), ma(Q)EY).

Proof. We consider the Iwasawa decomposition G¢ = K“(expj)N? of Section 5.1. For any
g = k(exp £(e)n € K(exp )N = G

mA(@)E) = O Mg = £a(g) mak)E).
Since K¢ = Hy is contained in Gy and (-, -) is Gy-invariant, we obtain

(@€}, ma(Q)EY) = &ag)*. O
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Lemma 7.3. For A € A, (Gy/Hy), the function &, € O(Gc) satisfies

lEa(@l <1 forall g € Gy.

Proof. By Observation 7.2,

£9)? = (m(o(g) ' 9)éY &Y) forall g e G

Since both sides are holomorphic functions on Gg, this holds for all g € G¢. Applying the
Cauchy—Schwarz inequality, we get |£,(g)] < 1 on Gy . [

7.3. Proof of Proposition 7.1 for the Flensted-Jensen functions

We now go back to the setting of Section 7.1. When A € j; satisfies uy € A,, the function
Ya € Vz, of (7.3) is well-defined and extends uniquely to a right-Hc-invariant function on
Kc B, Hc [19]; we keep the notation ¢, for this extension. Directly from the definition, we have

!lu(ky)=fHKfm(kf)ffafp(y_lf)df (7.8)

forallk € K¢ and y € G4 [19, (3.13)], where Eap G? — Cis given by (5.1) and &y, Kc—C
is the holomorphic extension, given by (7.4) for the compact symmetric space K/KNH instead of
Gy/Hy, of the function &, : HY — C given by (5.1) with respect to the Iwasawa decomposition

H? = (K n H")(expj)(N? N H?). (7.9)

We note that the restriction to H? of any “&” function for G¢ coincides with the corresponding
“&” function for H?, which is why we use the same notation. The fact that (7.9) is an Iwasawa
decomposition of H¢ relies on the rank condition (3.3).

In order to prove Proposition 7.1, we first observe the following.

Lemma 7.4. Let J be a finite subgroup of the center Z(K) of K. For A € j* with iy € Ay N A,
the Flensted-Jensen function ¥, satisfies Y (g - xo) = 1 forall g € J.

Proof. As in Section 3.3, we can see the highest weight of any irreducible representation of K
with nonzero (K N H)-fixed vectors as an element of ]_j_ (see Remark 3.5). Let A € j} satisfy
Ha € A,. By construction, the highest weight of the K-span of ¥,|x/kni € L*(K/K N H)is s
this can be seen directly on (7.8), using the fact that [jc, hc N €c] € he N €. If uy € A7, then by
definition g - Yalx/kne = Yalk/knu for all g € J (where g acts by left translation); in particular,
wﬂ(g~x0)=¢4(x0)=lforallgEJ. O

Proposition 7.1 for the Flensted-Jensen function ¢, € V, is an immediate consequence of
(7.8), of Lemma 7.4, and of the following lemma.

Lemma 7.5. Let A € j; satisfy (5.12). Then
(1) 1., (k) < 1 forallk € K;
(2) there exists ¢’ > 0 such that forallY e band { € HN K,

- a-p(exp(=Y)O)| < cosh(g'|[Y[)~ "+,
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Proof of Lemma 7.5. Lemma 7.5.(1) follows immediately from Lemma 7.3 applied to the com-
pact symmetric space K/H N K instead of Gy /Hy .

To prove Lemma 7.5.(2), we may assume that G¢ is simply connected, because the [wasawa
projection for G is compatible with that of any covering of G¢. Then w i € Ay(Gy/Hy) for all
1 < j < rby (7.7). To simplify notation, we write (7}, Vj,fjv.) for (m,,, ij,gjuj) and || - ||, for the
Euclidean norm on V; corresponding to the Gy-invariant inner product (-, ) of Section 7.2. Then
(7.6) and Observation 7.2 imply that for all A € j* and g € G,

(A+p.aj) r

- T ana; —dia
|§—/l—p(g)| = L9 — 1—[ ||7r](g)glv||J (@ja)) < l_[ ||7r,(g)§;’||j ( +p)‘
=1

J J=1

Therefore, in order to prove Lemma 7.5.(2), we only need to prove the existence of a constant
q’ > 0 such that

min ||7;((exp V)OIl > 1 (7.10)
1<j<r
and
max llj((exp Y)E)E] |l = cosh(g'lIY1]) (7.11)

forall Y e band £ € HN K. Forany 1 < j < r, the Lie algebra b acts semisimply on V; with real
eigenvalues, hence there are an orthonormal basis (V;;)1<i<dim v of V; and linear forms §;; € b*,
1 <i < dimVj, such that

ﬂj(CXp Y) Vij = €<ﬂij’y> Vij

forall Y € band 1 <i < dim V;. Write the matrix coefficients {b;;} for the restriction 7;|zng as

dimV;

TOE = Y biOvy;  ((eHNK),

i=1

where Z?:F Vi Ib,-j(f)l2 = 1 since 7 j|gng is unitary. By [19, Lem. 4.6],

dimV;

llrj(exp VIOESIE = > Ibi(OF cosh(2By;, Y)
i=1

foralll < j<r,allY € b, and all £ € H N K, hence (7.10) holds. Let us prove (7.11). By a
compactness argument [19, Th. 4.8], there is a constant £ > 0 with the following property: for
any Y e band £ € HN K, there exist j € {I,...,r}and iy € {1,...,dim V;} such that

Bioj Yy = ellYll and  |b;;(6)] = &. (7.12)
For Y e band ¢ € HN K, let (iy, j) be as in (7.12). Then
dim V;

llrj((exp VIOESIE = > Ibi(OF cosh(2By;, Y)
i=1

> [biy(OF cosh(2B;,, Y + " bij(O)F
[EIN)
> &% cosh(2&]|Y])) + (1 — €%).
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By using the general inequality
1x\2
tcosh(x)+ (1 —1) > (cosh 5> ,
which holds for any 0 < < 1 and x € R, we obtain
llj((exp Y)O)E] Il = cosh(&’||Y])).

This proves (7.11) for ¢’ := & and completes the proof of Lemma 7.5. O

8. Nonvanishing of eigenfunctions on locally symmetric spaces

As explained at the beginning of Section 7, our goal now is to complete the proof of the
theorems and propositions of Sections 1 to 3 by establishing the following key proposition.

As in Section 3.3, we denote by G, (resp. L.) the maximal compact normal subgroup of
the reductive group G (resp. L) and by Z(Gy) the center of the commutator subgroup of G.
The Z-module A% for I' ¢ G has been defined in (3.6). We choose a positive system
>*(gc,jc) containing the fixed positive system X* (£, jc) of Section 3.3; this defines a positive
Weyl chamber j;; and an element p € j} as in Section 3.3.

Proposition 8.1. Suppose that G is connected, that H does not contain any simple factor of G,
and that the rank condition (3.3) holds.

(1) (Sharp Clifford—Klein forms)
For any sharp Clifford—Klein form Xr of X with I’ N G, C Z(Gy), there is a constant R > 0
such that for any 1 € i3 N (2p, —p + ATNZGI)Y with d(1) > R, the summation operator St is
well-defined and nonzero on g-L*(X, M)k for some g € G.

(2) (Uniformity for standard Clifford—Klein forms)
Let L be a reductive subgroup of G, with a compact center and acting properly on X. There
is a constant R > 0 with the following property: for any discrete subgroup U of L with
I'n L. € Z(Gy) (in particular, for any torsion-free discrete subgroup I of L) and for any
1ejirNnCp.—p+ ATNZG9Y with d(X) > R, the operator St is well-defined and nonzero on
g-L*(X, M)k for some g € G.

(3) (Stability under small deformations)

Let L be a reductive subgroup of G of real rank 1, acting properly on X, and let T be a
convex cocompact subgroup of L (for instance a uniform lattice) withT N G, C Z(Gy). Then
there are a constant R > 0 and a neighborhood U c Hom(T', G) of the natural inclusion
such that for any ¢ € U, the group ¢(I') acts properly discontinuously on X and for any
A€it N Q2pe — p + AT with d(A) > R, the operator S o) is well-defined and nonzero
on g-L*(X, M)k for some g € G.

IfT'N L. C Z(Gy) (for instance if T is torsion-free or if L is simple with Z(L) C Z(G,)), then

we may take the same R (independent of T') as in (2), up to replacing U by some smaller
neighborhood.

Recall that L>(X, M,) is the space of L?>-weak solutions to the system (M) of Section 3.3
and L*(X, M,)k is the subspace of K-finite functions. The group G acts on L*(X, M) by left
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translation (3.9). We define a summation operator St on any G-translate g~L2(X, Mk by the
same formula as in Proposition 6.1: see Section 8.1 below. The fact that we need to consider G-
translates is linked to the geometric issue of distribution of I'-orbits in X and in the Riemannian
symmetric space G/K (see Remark 8.4, together with Propositions 8.9 and 8.14).

As we shall see in Section 8.5 (Formulas (8.9) and (8.10)), the constant R of Proposi-
tion 8.1.(1) can be expressed in terms of the sharpness constants (¢, C) of I' and of the minimal
nonzero value of ||v|| on the I'-orbit I'-xp. Recall that ||v|| measures the “pseudo-distance to the
origin xp”.

We note that the technical assumptions of Proposition 8.1 are not very restrictive: Re-
marks 3.9 also apply in this context.

Remark 8.2. We can make Proposition 8.1.(1), (2), and (3) more precise with respect to G-
translation: we actually prove that

(a) for d(1) > R, the operator St is well-defined on g-Lz(X, Mk forall g € G;

(b) there is an element g € G such that St is nonzero on g-Lz(X, M)k for all A with d(2) > R.

Statement (a) follows from Proposition 6.1 and from the fact that the first sharpness constant is
invariant under conjugation (Proposition 4.3), using Remark 8.4 below. For Statement (b), we
refer to Section 8.5.

Remark 8.3. We can make Proposition 8.1 more precise in terms of discrete series representa-
tions for X. Recall from Fact 5.5 that L*(X, M) is the direct sum of finitely many irreducible
(g, K)-modules Vz,, where Z € Z. We have given two combinatorial descriptions of the set Z.

e In terms of positive systems: by (5.6), any Z € Z corresponds to a positive system
2*(gc, jc), which determines a positive Weyl chamber j% and an element p € j;. We
prove that St is well-defined and nonzero on g-Vz, C g-L*(X, M)k for any A € j* with
d(A) > R satisfying

wy=A+p—2p. € NIN4G)