RATIONALITY OF AN S_{6}-INVARIANT QUARTIC 3-FOLD

ILYA KARZHEMANOV

Abstract

We complete the study of rationality problem for hypersurfaces $X_{t} \subset \mathbb{P}^{4}$ of degree 4 invariant under the action of the symmetric group S_{6}.

1. Introduction

1.1. Any quartic 3 -fold $X_{t} \subset \mathbb{P}^{4}$ with a non-trivial action of the group S_{6} can be given by the equations

$$
\begin{equation*}
\sum x_{i}=t \sum x_{i}^{4}-\left(\sum x_{i}^{2}\right)^{2}=0 \tag{1.2}
\end{equation*}
$$

in \mathbb{P}^{5}. Here the parameter $t \in \mathbb{P}^{1}$ is allowed to vary.
When $t=2$ one gets the Burkhardt quartic whose rationality is well-known (see e. g. $[10,5.2 .7])$. Similarly, $t=4$ corresponds to the Igusa quartic, which is again rational (see [21, Section 3]). On the other hand, it was shown in [1] that for all other $t \neq 0,6,10 / 7$ the quartic X_{t} is non-rational.

Example 1.3. Following [4, Section 4], let us blow up an A_{6}-orbit of 12 lines in \mathbb{P}^{3} to get a 3 -fold that contracts, A_{6}-equivariantly, onto a quartic threefold with 36 nodes. It follows from Remark in [1] that this (Todd) quartic must be $X_{10 / 7}$. Hence $X_{10 / 7}$ is rational.

Thus, excluding the trivial case of $t=0$ it remains to consider only X_{6}, in order to determine completely the birational type of all S_{6}-invariant quartics. Here is the result we obtain in this paper:

Theorem 1.4. The quartic $X:=X_{6}$ is rational.

Theorem 1.4 is proved in Section 3 by, basically, running the equivariant-MMPtype of arguments as in [22]. (Although the proof also uses some computations carried in Section 2.) Unfortunately, we were not able to apply the results from

[^0][14], since non-rational X_{t} all have defect equal 5 (see [1, Lemma 2]), which seems to contradict either [14, 5.2, Lemma 8] or [14, 5.2, Proposition 3] (compare also with [14, Corollary 1] and the list of cases in [14, Main Theorem]).

Conventions. The ground field is \mathbb{C} and X signifies the quartic X_{6} in what follows. We will be using freely standard notions and facts from [11] and [16] (but we recall some of them for convenience).

Acknowledgments. Some parts of the paper were prepared during my visits to AG Laboratory at HSE (Moscow) and Miami University (US). I am grateful to these Institutions and people there for hospitality. The work was supported by World Premier International Research Initiative (WPI), MEXT, Japan, and Grant-in-Aid for Scientific Research (26887009) from Japan Mathematical Society (Kakenhi).

2. Auxiliary Results

2.1. Consider the subspace $\mathbb{P}^{3} \subset \mathbb{P}^{5}$ given by equations

$$
x_{0}+x_{2}+x_{5}=x_{1}+x_{3}+x_{4}=0
$$

We have $X \cap \mathbb{P}^{3}=Q_{1}+Q_{2}$, where the quadric $Q_{1} \subset \mathbb{P}^{3}$ is given by

$$
x_{0}^{2}+x_{0} x_{2}+x_{2}^{2}+w\left(x_{1}^{2}+x_{1} x_{3}+x_{3}^{2}\right)=0, w:=\sqrt[3]{1}
$$

while the equation of $Q_{2} \subset \mathbb{P}^{3}$ is

$$
x_{0}^{2}+x_{0} x_{2}+x_{2}^{2}-(w+1)\left(x_{1}^{2}+x_{1} x_{3}+x_{3}^{2}\right)=0
$$

Identify the set $\left\{x_{2}, x_{0}, x_{4}, x_{3}, x_{1}\right\}$ with $\{1, \ldots, 5\}$ and consider the corresponding action of the group S_{5}. Put $\tau:=(13524) \in S_{4} \subset S_{5}$ and $o:=\left[1: 1: w: w: w^{2}:\right.$ $\left.w^{2}\right] \in \operatorname{Sing}(X)(c f .[1]) .{ }^{1)}$ Then the following (evident) assertion holds:

Lemma 2.2. $\tau^{c}\left(Q_{i}\right) \ni o$ iff $c=0$ or 2.
Consider $h:=(23451) \in S_{5}$. Again a direct computation gives the following:
Lemma 2.3. $h^{a} \tau^{b}\left(Q_{i}\right) \ni o$ iff
$(a, b) \in\{(0,0),(3,0),(4,0),(0,2),(3,3),(1,2),(4,2),(1,1)\}$. More precisely, we have

[^1]- $\tau^{2}\left(Q_{i}\right)=h^{4}\left(Q_{i}\right) \ni o$ and $\tau^{2}\left(Q_{i}\right) \neq Q_{i}$;
- $h^{4} \tau^{2}\left(Q_{i}\right)=h^{3}\left(Q_{i}\right) \ni o$ and $h^{4} \tau^{2}\left(Q_{i}\right) \neq Q_{i}, \tau^{2}\left(Q_{i}\right)$;
- $h \tau^{2}\left(Q_{i}\right)=Q_{i}$;
- $h^{3} \tau^{3}\left(Q_{i}\right)=h \tau\left(Q_{i}\right) \ni o$ and $h^{3} \tau^{3}\left(Q_{i}\right) \neq Q_{i}, \tau^{2}\left(Q_{i}\right), h^{4} \tau^{2}\left(Q_{i}\right)$.
2.4. Let $G:=\langle\tau, h\rangle$ be the group generated by τ and h. Note that the order of G is divisible by 4 and 5 . Then from the classification of subgroups in S_{5} we deduce that G is the general affine group $\operatorname{GA}(1,5)$. Note also that $G=\mathbb{F}_{5} \rtimes \mathbb{F}_{5}^{*}$ for the field \mathbb{F}_{5} (here $\mathbb{F}_{5}, \mathbb{F}_{5}^{*}$ are the additive and multiplicative groups, respectively).

Consider the divisor $D:=\sum_{\gamma \in G} \gamma\left(Q_{1}\right)$ and the local class group $\mathrm{Cl}_{o, X}$ at o. Note that both Q_{i} are smooth because they are projectively equivalent to $x_{0}^{2}+x_{2}^{2}+$ $x_{1}^{2}+x_{3}^{2}=0$. In particular, blowing up $\mathbb{P}^{4} \supset X$ at Q_{1} yields a small resolution of the singularity $o \in X$. Then by the standard properties of (small) extremal contractions we may identify Q_{1} with the generator $1 \in \mathrm{Cl}_{o, X}=\mathbb{Z}$.

With all this set-up we get the following:
Proposition 2.5. $\mathrm{rk} \mathrm{Cl}^{G} X>1$ for $D \in \mathrm{Cl}_{o, X}$ being equal to either 4 or 8 .
Proof. Let us recall the construction of the group $\mathrm{Cl}_{o, X}$. One identifies $X=$ $\operatorname{Spec} \mathcal{O}_{o, X}$ and considers various morphisms $\mu: X \longrightarrow X^{\prime}$. Here X^{\prime} is any (not necessarily normal) variety. Then $\mathrm{Cl}_{o, X}$ is generated by the sheaves $\mathcal{O}_{X}\left(Q_{1}\right)$ and $\mu^{*} \mathcal{O}_{X^{\prime}}(H)$ for all Cartier divisors H on X^{\prime} (note that $\mu^{*} \mathcal{O}_{X^{\prime}}(H)$ may no longer be a divisorial sheaf for non-flat μ). The group operation " + " on $\mathrm{Cl}_{o, X}$ is induced by the usual product of \mathcal{O}_{X}-modules.

Further, by construction of τ, h (cf. Lemmas 2.2, 2.3) we have

$$
\begin{equation*}
D=\sum_{(a, b) \in\{(0,0), \ldots,(1,1)\}} \tau^{a} h^{b}\left(Q_{1}\right)=2 h^{4}\left(Q_{1}\right)+2 h^{3}\left(Q_{1}\right)+2 Q_{1}+2 h \tau\left(Q_{1}\right) \tag{2.6}
\end{equation*}
$$

in $\mathrm{Cl}_{o, X}$ (we have identified $\mathcal{O}_{X}\left(Q_{1}\right)$ with $\left.Q_{1}\right)$. Now, since $h^{3}\left(Q_{1}\right), h^{4}\left(Q_{1}\right) \ni o$, both h^{3}, h^{4} act on $\mathrm{Cl}_{o, X}=\mathbb{Z}$. Indeed, $h^{3}\left(Q_{1}\right)$ and $h^{4}\left(Q_{1}\right)$ differ from (a power of) Q_{1} by some suitable $\mu^{*} H$ as above.

For $h^{3}=\left(h^{4}\right)^{2}$ we get $h^{3}\left(Q_{1}\right)=1=\left(h^{3}\right)^{3}\left(Q_{1}\right)=h^{4}\left(Q_{1}\right)$ and hence $D=4$ or 8 . This means in particular that the product of \mathcal{O}_{X}-modules

$$
\mathcal{I}:=\prod_{\gamma \in G} \mathcal{O}_{X}\left(-\gamma\left(Q_{1}\right)\right),
$$

identified with D as an element in $\mathrm{Cl}_{o, X}$, is not invertible (otherwise D will be zero).

Take a G-equivariant resolution $r: W \longrightarrow X$. Then the sheaf $r^{*} \mathcal{I}$ becomes invertible and the corresponding (effective) divisor is not of the form [relatively trivial part] + [r-exceptional part]. Indeed, otherwise \mathcal{I} will be equal to $\mu^{*} \mathcal{O}_{X^{\prime}}(H)$, with some X^{\prime} and H as earlier, which is impossible for $D \neq 0$ in $\mathrm{Cl}_{o, X}$.

Applying relative G-equivariant MMP to W (cf. [25, 9.1]) yields a small G equivariant contraction $Y \longrightarrow X$ and a relatively non-trivial G-invariant Cartier divisor on Y (note that according to [15, Lemma 5.1] "Cartier $=\mathbb{Q}$-Cartier" in this case). This shows that $\mathrm{rk} \mathrm{Cl}^{G} X>1$ and completes the proof of Proposition 2.5. ${ }^{2)}$
2.7. Fix some terminal $G \mathbb{Q}$-factorial modification $\phi: Y \longrightarrow X$. Here ϕ is a G equivariant birational morphism with 1-dimensional exceptional locus (see Proposition 2.5). Let also $\psi: Y \longrightarrow Z$ be a K_{Y}-negative G-extremal contraction.

Lemma 2.8. 3-fold Y is Gorenstein.
Proof. This follows from the relation $\phi^{*} \omega_{X}=\omega_{Y}$, the fact that ϕ is small, and the freeness of $\left|-K_{X}\right|$.

Recall that the singular locus of X consists of two S_{6}-orbits, of length 30 and 10 , respectively, where the first orbit contains the point o, while the second one contains $o^{\prime}:=[-1:-1:-1: 1: 1: 1]$ (see Remark in [1]).

For an appropriate Y we get the following:
Lemma 2.9. $\operatorname{Sing} Y=\emptyset$ or $G \cdot o^{\prime}$.
Proof. Indeed, the divisor D from 2.4 contains o and the morphism ϕ makes X $G \mathbb{Q}$-factorial near o, which means that one may take ϕ to resolve the singularities in $G \cdot o \subset D$ (run the G-equivariant \mathbb{Q}-factorialization procedure from the proof of Proposition 2.5).

The complement $\Sigma:=\left[\right.$ the longest S_{6}-orbit in $\left.\operatorname{Sing} X\right] \backslash G \cdot o$ is also a G-orbit (of length 10). Furthermore, we have $s(o) \neq o \in \Sigma$ for $s:=(21) \in S_{5}$ (see 2.1), and

[^2]so the arguments in the proof of Proposition 2.5 , with $s\left(Q_{1}\right)=Q_{1}$, apply to show that X not $G \mathbb{Q}$-factorial near Σ as well. Hence we may assume that ϕ resolves the singularities in Σ as well.

Finally, ϕ either resolves or not the singularities in $G \cdot o^{\prime}$, depending on whether there is a G-invariant non-Cartier divisor passing through o^{\prime} or there is no such.

We will assume from now on that Y is as in Lemma 2.9.
Proposition 2.10. If ψ is birational, with exceptional locus E, then $\psi(E)$ is a curve.

Proof. Firstly, recall that Y is terminal, $G \mathbb{Q}$-factorial (but not necessarily \mathbb{Q} factorial) and Gorenstein (see Lemma 2.8).

Lemma 2.11. Y is \mathbb{Q}-factorial with $\operatorname{rkPic} Y=11$.
Proof. Note that $\mathbb{F}_{5}=\langle h\rangle$ is the unique normal subgroup in $G=\mathbb{F}_{5} \rtimes \mathbb{F}_{5}^{*}$. Then we have $Q_{i} \nsim h\left(Q_{i}\right)$. Indeed, otherwise $D \sim 5 \sum_{\gamma \in\langle\tau\rangle} \gamma\left(Q_{i}\right)$, where D is as in 2.4. But in this case $D=5\left(Q_{1}+\tau^{2}\left(Q_{1}\right)\right)$ in $\mathrm{Cl}_{o, X}$ (see Lemma 2.3), which is either 0 or 10, thus contradicting Proposition 2.5.

Further, since D is a G-orbit of Q_{1}, all of its components are linearly independent in $\mathrm{Cl} X \otimes \mathbb{R}$. Indeed, otherwise we get $\sum \gamma\left(Q_{1}\right)=0$, which is an absurd. This, together with computation of the defect in [1], yields $\mathrm{rk} \mathrm{Cl} X=11$ for $\mathrm{Cl} X$ being generated by K_{X}, a G-invariant class of some Weil divisor D_{o} and by the components of D (the number of these components is 10 because $Q_{1} \nsim h\left(Q_{1}\right)$).

Similarly, we find that $\mathrm{Cl} Y$ is generated by $K_{Y}, \phi_{*}^{-1} D_{o}$ and by the components of $\phi_{*}^{-1} D$, all being Cartier according to Lemma 2.9 and the fact that $D \not \supset o^{\prime}$. Thus $\mathrm{Cl} Y=\operatorname{Pic} Y$ and the claim follows.

Now let E_{i} be the irreducible 2-dimensional components of E. Suppose that $\operatorname{dim} \psi(E)=0$. Then we get the following:

Lemma 2.12. E is a disjoint union of E_{i}.
Proof. Since the divisor $-K_{Y}$ is nef and big, it follows from Lemma 2.11 and [24] that the Mori cone $\overline{N E}(Y)$ is polyhedral, spanned by extremal rays, so that every extremal ray on Y is contractible. This implies that some (at least 1-dimensional) family of curves in every E_{i} generates an extremal ray because there are no small K_{Y}-negative extremal contractions on Y (see [5] and Lemmas 2.8, 2.11). In particular, E_{i} do not intersect, since $\operatorname{dim} \psi(E)=0$ by assumption.

Note that $\mathrm{Cl} X \simeq \mathrm{Cl} Y$ as G-modules. This induces a natural G-action on the cone $\overline{N E}(Y)$. Consider the G-extremal ray in $\overline{N E}(Y)$ corresponding to ψ. By Lemma 2.12 this is a G-orbit of some K_{Y}-negative contractible extremal rays R_{i} corresponding to E_{i}.

It remains to exclude the cases $E_{i}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or quadratic cone, and $E_{i}=\mathbb{P}^{2}$, both for $\operatorname{dim} \psi(E)=0$ (cf. [5]). Suppose one of these possibilities does occur. Then we get

Lemma 2.13. Every surface E_{i} is not preserved by the subgroup $\langle h\rangle \subset G$.
Proof. Assume the contrary. Then all R_{i} are invariant with respect to $\langle h\rangle$ and there is a subspace $\mathbb{P}^{3} \subset \mathbb{P}^{4} \supset X\left(\right.$ with $\left.\phi\left(E_{i}\right) \subseteq X \cap \mathbb{P}^{3}\right)$ invariant under $\mathbb{F}_{5}=\langle h\rangle$. Recall that $h=(23451)$ permutes $x_{0}, x_{2}, x_{1}, x_{3}, x_{4}$. Thus the equation of \mathbb{P}^{3} is $\sum_{i=0}^{4} x_{i}=0$. This implies that $X \cap \mathbb{P}^{3} \cap \operatorname{Sing} X=\emptyset$ and so $\phi\left(E_{i}\right)$ is Cartier. But the latter is impossible for otherwise $\phi\left(E_{i}\right)$ would intersect all the curves on X negatively.

It follows from Lemma 2.13 that all E_{i} are linearly independent in $\operatorname{Pic} Y \otimes \mathbb{R}$ and together with K_{Y} they generate Pic Y (argue exactly as in the proof of Lemma 2.11). Note also that $E_{i} \cdot C \geq 0$ for all i and any K_{Y}-trivial curve $C \subset Y$ because otherwise the class of C belongs to R_{i} (recall that by our assumption $\psi\left(E_{i}\right)$ is a point). In particular, there is such C that any other K_{Y}-trivial curve $\neq C$ on Y is numerically equivalent to $C+\sum a_{i} R_{i}$ for all $a_{i} \geq 0$, and so there is just one C. This implies that every surface $\phi\left(E_{i}\right) \subseteq X \cap \mathbb{P}^{3}$ (of degree $\left(K_{Y}\right)^{2} \cdot E_{i} \leq 2$) contains a G-orbit of length at least 30 (see Lemma 2.9). Hence $\phi\left(E_{i}\right)$ together with E_{i} are all $\langle h\rangle$-invariant. ${ }^{3)}$ The latter contradicts Lemma 2.13 and Proposition 2.10 is completely proved.

We conclude by the following simple, although useful in what follows, observation:

Lemma 2.14. $G \not \subset \mathrm{GL}(3, \mathbb{C})$.

Proof. The group G has only one 4-dimensional and four 1-dimensional irreducible representations. The claim follows by decomposing \mathbb{C}^{3} into the direct sum of irreducible G-modules.

[^3]
3. Proof of Theorem 1.4

3.1. We retain the notation and results of Section 2. Consider some G-extremal contraction $\psi: Y \longrightarrow Z$. Let us assume for a moment that ψ is birational with exceptional locus E. Recall that E is a union of (generically) ruled surfaces E_{i} contracted by ψ onto some curves (see Proposition 2.10).

Lemma 3.2. $E \cap \operatorname{Sing} Y=\emptyset$.
Proof. Over the general point of $\psi\left(E_{i}\right)$ morphism ψ coincides with the blow-up of a curve (see [5]). Then for any ruling $C \subset E_{i}$ contracted by ψ we have $K_{Y} \cdot C=-1$. Hence the surfaces $\phi\left(E_{i}\right) \subset X$ are swept out by the lines $\phi(C)$.

Note further that C corresponds to a contractible extremal face of $\overline{N E}(Y)$ (cf. the proof of Lemma 2.12). In particular, one may assume that C generates a $K_{Y^{-}}$ negative extremal ray, which shows that C is Cartier on E_{i} because all scheme fibers of $\left.\psi\right|_{E_{i}}$ are smooth (lines) and C varies in a flat family.

Recall that all divisors E_{i} are Cartier (cf. Lemmas 2.8, 2.11 and [15, Lemma 5.1]). Now, if $E_{i} \cap \operatorname{Sing} Y \neq \emptyset$, then $\phi(C)$ is a singular curve for some C as above, which is impossible. Hence $E_{i} \cap \operatorname{Sing} Y=\emptyset$. But then $E \cap \operatorname{Sing} Y=\emptyset$ as well because $E_{j} \cap \operatorname{Sing} Y \subset E_{i}$ for all surfaces E_{j} from the corresponding extremal face.

Remark 3.3. We have $h^{1,2}=0$ for a resolution of Y according to Remark in [1]. Then it follows from [5] and Lemma 3.2 that $\psi\left(E_{i}\right)=\mathbb{P}^{1}$ for all i.

Lemma 3.4. We have $K_{Y}=\psi^{*} K_{Z}+E$ (hence Z is Gorenstein), $K_{Y} \cdot C=-1$ for any ruling $C \subset E_{i}$ contracted by ψ, and Z is smooth near $\psi(E)$.

Proof. One obtains the first two identities by exactly the same argument as in the proof of Lemma 3.2. Further, since the linear system $\left|-K_{Y}\right|$ is basepoint-free (with $K_{Y}=\phi^{*} K_{X}$), generic surface $S \in\left|-K_{Y}\right|$ passing through a given point on Y is smooth. Then, for $S \cdot C=1$, we find that the surface $\psi(S) \in\left|-K_{Z}\right|$ is smooth as well, so that Z is smooth near $\psi(E)$.

Now let ψ be the result of running a G-MMP on Y.
Lemma 3.5. In the above setting, ψ is a birational contraction that maps its exceptional loci onto 1-dimensional centers, so that the corresponding 3-folds are smooth near these centers. In particular, all these 3 -folds are \mathbb{Q}-factorial Gorenstein and terminal, with nef and big $-K$, and ψ is composed of blow-downs onto smooth rational curves.

Proof. It follows from Lemmas 2.8, 2.11, 3.2, 3.4 and [23, Corollary 4.9] that each step of ψ produces a \mathbb{Q}-factorial Gorenstein terminal 3 -fold, with a G-action and nef and big $-K$, unless all exceptional $E_{i}=\mathbb{P}^{2}$ on this step. One can easily see the proper transform of such E_{i} on X will be a plane. Moreover, arguing as at the end of the proof of Proposition 2.10 we find that this plane will be $\langle h\rangle$-invariant, which contradicts Lemma 2.13.

Further, arguing as in the proof of Corollary 3.9 below one computes that whenever $E_{i}=$ quadric or \mathbb{P}^{2}, contracted to a point in both cases, its proper transform on Y (hence on X as well) will also have degree ≤ 2 w.r.t. $-K$. This leads to contradiction as earlier.

Thus on each step ψ can contract E_{i} to curves only. Applying the same arguments as in the proof of Proposition 2.10 to each step of ψ gives the claim (the last assertion of lemma follows from [5]).

Let, as above, E be the ψ-exceptional locus. Note that Y contains the G-orbit of 20 curves C_{j} contracted by ϕ (see Lemma 2.9). In particular, G induces a non-trivial action on the set of these C_{j}, which leads to the next

Lemma 3.6. E can not consist of only one (connected) surface.

Proof. Indeed, otherwise we have $\left(E=E_{i}\right) \cap C_{j} \neq \emptyset$ for all j, which yields a faithful G-action on the base of the ruled surface E. Hence we get $G \subset \operatorname{PGL}(2, \mathbb{C})$. On the other hand, we have $G \not \subset A_{5}, S_{4}$ (see Lemma 2.14), a contradiction.

Proposition 3.7. $E \neq \emptyset$ unless Y is rational.
Proof. Let $E=\emptyset$. Then we get $\operatorname{rkPic}^{G} Y=2$ and $\overline{N E}(Y)$ is generated by (G-orbits of) the classes of C_{j} and an extremal ray corresponding to some G-Mori fibration $\varphi: Y \longrightarrow S(\operatorname{dim} S>0)$.

Lemma 3.8. Let $\operatorname{dim} S=1$. Then Y is minimal over S unless it is rational.

Proof. Suppose there is a surface Ξ which is exceptional for some (relative) $K_{Y^{-}}$ negative extremal contraction on Y / S. Then Ξ necessarily contains one of C_{j}. Indeed, otherwise Ξ intersects all curves on Y non-negatively by the structure of $\overline{N E}(Y)$, which is impossible. In particular, we find that Ξ must be a minimal ruled surface (same argument as in the proof of Lemma 2.12), with the negative section equal some C_{j}.

We may assume $K_{Y_{\eta}}^{2} \leq 4$ for generic fiber Y_{η} of φ - otherwise Y is rational (see [9], [18]). Moreover, we have $K_{Y_{\eta}}^{2} \neq 1$, since otherwise the group $G \subseteq \operatorname{Aut}\left(Y_{\eta}\right)$ must act faithfully on elliptic curves from $\left|-K_{\eta}\right|$, which is impossible (cf. Lemma 2.14). One also has $K_{Y_{\eta}}^{2} \neq 2$ because the order of the group of automorphisms of del Pezzo surfaces of degree 2 is not divisible by 5 (see e.g. [7, Table 8.9]).

Further, if $K_{Y_{\eta}}^{2}=4$, then contracting Ξ we arrive at a del Pezzo fibration of degree 5 , so that Y is rational.

Now, if $K_{Y_{\eta}}^{2}=3$, then all smooth fibers of φ are isomorphic and have Aut $Y_{\eta}=S_{5}$ (see [7, Table 9.6]). Away from the singular fibers φ defines a locally trivial (in analytic topology) fibration on smooth cubic surfaces Y_{η}. Two charts, $Y_{\eta} \times S^{\prime}$ and $Y_{\eta} \times S^{\prime \prime}$, say (for some analytic subsets $S^{\prime}, S^{\prime \prime} \subseteq S$), are glued together via an automorphism $t \in$ Aut Y_{η}, which preserves the elements in the G-orbit of Ξ and satisfies $t G t^{-1}=G$. Since G is not a normal subgroup in S_{5}, one gets $t \in G$, and the letter is impossible, once $t \neq 1$, by the way G acts on Ξ (a.k. a. on C_{j}). Thus $t=1$ and φ induces a locally trivial fibration in the Zariski topology, so that Y is rational, and the proof is complete.

Note further that the subgroup $\langle h\rangle \subset G$ must act faithfully on Pic Y. Indeed, otherwise $Q_{i} \sim h^{a}\left(Q_{i}\right)$ for all a, i, which implies that Q_{i} contains the orbit $\langle h\rangle \cdot o$, a contradiction. In particular, if $\operatorname{dim} S=1$, then from Lemma 3.8 we deduce that either Pic $Y=\mathbb{Z}^{2}$ (this contradicts Lemma 2.11), or φ contains a fiber with ≥ 5 irreducible components (interchanged by $\langle h\rangle$). In the latter case, we get $K_{Y_{\eta}}^{2} \geq 5$ for generic fiber Y_{η} of φ, and rationality of Y follows from [9], [18].

Finally, one excludes the case when φ is a G-conic bundle exactly as in the proof of Lemma 3.12 below, and Proposition 3.7 is completely proved.

Here is a refinement of Lemma 3.6 and Proposition 3.7:
Corollary 3.9. E is a disjoint union of G-orbits (length ≥ 2), corresponding to extremal faces of $\overline{N E}(Y)$, unless Y is rational.

Proof. Let E, \tilde{E} be two ψ-exceptional orbits in question. Choose some connected components $E_{j} \subset E, \tilde{E}_{j} \subset \tilde{E}$ and suppose they intersect. One may assume both E_{j}, \tilde{E}_{j} to be ruled surfaces that can be contracted by the blow-downs, one for each surface (cf. Lemma 3.5 and the proof of Lemma 3.2).

Let $\psi_{j}: Y \longrightarrow Y_{j}$ be the contraction of E_{j}. Then, given that $E_{j} \cap \tilde{E}_{j} \neq \emptyset$, there is a ψ-exceptional curve $C \subset \tilde{E}_{j}$ such that $E_{j} \cdot C \geq 0$. On the other hand, we
have $K_{Y}=\psi_{j}^{*} K_{Y_{j}}+E_{j}$ and $K_{Y_{j}} \cdot \psi_{j}(C)=-1$ (for ψ blows down $\psi_{j}\left(\tilde{E}_{j}\right)$), which gives either $K_{Y} \cdot C=-1$ or $K_{Y} \cdot C=0$ (recall that $-K_{Y}$ is nef). The latter case is an absurd by construction of ψ. In the former case, we get $E_{j} \cdot C=0$ and so $\psi_{*}\left(E_{j} \cap \tilde{E}_{j}\right)=\psi_{*} C=0$, which is impossible for the ruled surfaces $E_{j} \neq \tilde{E}_{j}$, since then $0=E_{i} \cdot C=\left(C^{2}\right)<0$ on E_{i}, a contradiction.
3.10. We will assume from now on that $E \neq \emptyset$ is as in Corollary 3.9. It follows from Lemma 3.5 that Z is \mathbb{Q}-factorial Gorenstein and terminal. Note also that $-K_{Z}$ is nef and big by [23, Corollary 4.9].

Lemma 3.11. We have $\phi_{*}^{-1} Q_{j} \not \subset E$ for some j.

Proof. Note that $\psi_{*} K_{Y}=K_{Z}$ because Z has rational singularities. This gives the claim as $-K_{Y}=\phi_{*}^{-1} Q_{1}+\phi_{*}^{-1} Q_{2}$.

Let us treat the case when Z admits a G-Mori fibration.

Lemma 3.12. Z is not a G-conic bundle.

Proof. Suppose we are given a G-conic bundle structure on Z with generic fiber $C=\mathbb{P}^{1}$. Then if $\phi_{*}^{-1} Q_{1} \not \subset E$, say (see Lemma 3.11), it follows from the definition of Q_{i} and G in 2.1 that the G-orbit of Q_{1} (hence also of $\phi_{*}^{-1} Q_{1}$) has length ≥ 10 (cf. the proof of Lemma 2.11). This yields a faithful G-action on C which in turn contradicts Lemma 2.14.

Lemma 3.13. Z is not a G-del Pezzo fibration unless Z is rational.

Proof. Argue exactly as in the del Pezzo case from the proof of Proposition 3.7.
3.14. We will assume from now on that Z is a $G \mathbb{Q}$-Fano (cf. Lemmas 3.12 and 3.13). Note that any two components of exceptional locus of ψ can intersect only along the fibers. Then it follows from Remark 3.3, Lemma 3.4 and Corollary 3.9 that either

$$
\begin{equation*}
-K_{Z}^{3}=4+2 k\left(-K_{Z} \cdot \mathbb{P}^{1}+1\right) \tag{3.15}
\end{equation*}
$$

for some even $k \leq 10$ or

$$
\begin{equation*}
-K_{Z}^{3}=24-20 K_{Z} \cdot \mathbb{P}^{1}-10 k^{\prime} \tag{3.16}
\end{equation*}
$$

for some $k^{\prime} \leq-K_{Z} \cdot \mathbb{P}^{1}$ (recall that rkPic $Y=11$ by Lemma 2.11 and the subgroup $\langle h\rangle \subset G$ acts faithfully on $\operatorname{Pic} Y)$.

Lemma 3.17. The linear system $\left|-K_{Z}\right|$ is basepoint-free.
Proof. Assume the contrary. Then it follows from [12] that Z is a G-equivariant double cover of the cone over a ruled surface (note that $-K_{Z}^{3} \geq 12$ is divisible by 4). This easily gives $G \subset \operatorname{PGL}(2, \mathbb{C})$ and contradiction with Lemma 2.14.

Lemma 3.18. The morphism defined by $\left|-K_{Z}\right|$ is an embedding.
Proof. Assume the contrary. Then it follows from [3, Theorem 1.5] that Z is a G equivariant double cover of either a rational scroll or the cone over a ruled surface. In both cases, arguing similarly as in the proof of Lemma 3.12, one gets contradiction.

Lemmas 3.17 and 3.18 allow one to identify Z with its anticanonical model $Z_{2 g-2} \subset \mathbb{P}^{g+1}$ (here $g:=-K_{X}^{3} / 2+1$ is the genus of Z).

Lemma 3.19. Z is singular unless it is rational.
Proof. Suppose that Z is smooth. Then rationality of Z follows from the fact that $h^{1,2}(Z)=0$ (see Remark 3.3) and [11, §§12.2-12.6].

According to Lemmas $3.19,2.9$ and 3.5 we may reduce to the case when $|\operatorname{Sing} Z|=|\operatorname{Sing} Y|=10$, with the locus $\operatorname{Sing} Z$ being some G-orbit.

Proposition 3.20. $g \leq 9$.
Proof. Let $g>9$. Note that the linear span of any G-orbit in $\operatorname{Sing} Z$ has dimension ≤ 9. Hence we can consider a G-invariant hyperplane section $S \in\left|-K_{Z}\right|$ (satisfying $S \cap \operatorname{Sing} Z \neq \emptyset)$.

Further, since $G \not \subset \mathrm{GL}(3, \mathbb{C})$, the group G acts on Z without smooth fixed points. On the other hand, since Z is G-isomorphic to X near $\operatorname{Sing} Z$ by construction, we obtain that G does not have fixed points on Z at all.

Lemma 3.21. There are no G-invariant smooth rational curves on Z.

Proof. Indeed, otherwise the action $G \circlearrowleft \mathbb{P}^{1} \subset Z$ is cyclic, which gives a G-fixed point $\in \mathbb{P}^{1}$, a contradiction.

Lemma 3.22. The pair (Z, S) is plt.
Proof. Lemma 3.21 and the proof of [22, Lemma 4.6] show that the pair (Z, S) is \log canonical. Moreover, if (Z, S) is not plt, the same argument as in [22] reduces
the claim to the case when S is a ruled surface over an elliptic curve, say B. On the other hand, since $|S \cap \operatorname{Sing} Z|=10$, we get either $G \subset \operatorname{PGL}(2, \mathbb{C})$ or a faithful G-action on B, a contradiction.

It follows from Lemma 3.22 and [25, Corollary 3.8] that S is either normal or reducible. But in the latter case, $-K_{Z} \sim$ [disconnected surface], which is impossible.

Thus the surface S is normal with at most canonical singularities. Let us identify S with its (G-equivariant) minimal resolution. In particular, we may assume that S contains a G-invariant collection of disjoint (-2)-curves $C_{i}, 1 \leq i \leq 10$.

From $G \subseteq$ Aut S one obtains a G-action on the space $H^{2,0}(S)=\mathbb{C}\left[\omega_{S}\right]$. In particular, the subgroup $\left\langle\tau^{2}\right\rangle \subset G$ preserves the 2-form ω_{S}, which implies that the quotient $S_{\tau}:=S /\left\langle\tau^{2}\right\rangle$ has at worst canonical singularities. Note also that $\tau^{2}\left(C_{i}\right)=C_{i}$ and $h\left(C_{i}\right) \neq C_{i}$ for all i.

Let \tilde{C}_{i} be the image of C_{i} on S_{τ}.
Lemma 3.23. $\left|\tilde{C}_{i} \cap \operatorname{Sing} S_{\tau}\right|=2$ for all i.
Proof. This follows from the fact that $\left(\tilde{C}_{i}^{2}\right)=-1$ by the projection formula.
Let S_{τ}^{\prime} be the minimal resolution of S_{τ}. From Lemma 3.23 we obtain that S_{τ}^{\prime} contains ≥ 20 disjoint (-2)-curves. This contradicts $h^{1,1}\left(S_{\tau}^{\prime}\right)=20$ and finishes the proof of Proposition 3.20.

According to Proposition 3.20 and (3.15), (3.16) we may assume that $-K_{Z}^{3} \in$ $\{12,16\} .{ }^{4)}$

Remark 3.24. Actually, since $Z=Z_{16} \subset \mathbb{P}^{10}$ and the projective G-action is induced from the linear one on $\mathbb{C}^{11}=H^{0}\left(Z,-K_{Z}\right)$, one gets a pencil on Z consisting of G-invariant hyperplane sections. In particular, there is such S intersecting $\operatorname{Sing} Z$, so that the arguments in the proof of Proposition 3.20 apply and exclude the case $-K_{Z}^{3}=16$.

Proposition 3.25. rk Pic $Z \neq 2$.
Proof. Suppose that $\operatorname{rk} \operatorname{Pic} Z=2$ and consider a 1-parameter family $s: \mathcal{Z} \longrightarrow \Delta$ over a small disk $\Delta \subset \mathbb{C}$ of smooth Fano 3-folds $Z_{t}, t \neq 0$, deforming to $Z_{0}=Z$ (see Lemma 3.5 and [20]). Since $H^{i}\left(Z_{t}, n K_{Z_{t}}\right)=0$ for all $n \leq 0, i>1$ and t, we deduce that the sheaf $s_{*}\left(-K_{\mathcal{Z}}\right)$ is locally free.

[^4]Similarly to Y, the cone $\overline{N E}(Z)$ is polyhedral, with contractible extremal rays (cf. the proof of Lemma 2.12). Let H be a nef divisor on Z that determines one of these contractions. Then [13] and [17, Proposition 1.4.13] imply that H varies in the family H_{t} of nef divisors on Z_{t}. It follows from the condition $\mathrm{rk}_{\mathrm{Pic}}{ }^{G} Z=1$ that both of the extremal contractions on each Z_{t} must be either birational or Mori fibrations. Now [11, §12.3] (cf. Remark 3.24) shows that Z can only be a divisor in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ of bidegree $(2,2)$.

Lemma 3.26. Z is smooth.
Proof. Let x_{i} (resp. y_{i}) be coordinates on the first (resp. second) \mathbb{P}^{2}-factor of $\mathbb{P}^{2} \times \mathbb{P}^{2}$. Let also $f(x, y)=0$ be the equation of Z (so that it defines a conic in \mathbb{P}^{2} whenever $x:=\left[x_{0}: x_{1}: x_{2}\right]$ or y is fixed).

Note that projections to the \mathbb{P}^{2}-factors induce conic bundle structures on Z. These are interchanged by G (because of ${\mathrm{rk} \mathrm{Pic}^{G}}^{G} Z=1$) and are $\left\langle h, \tau^{2}\right\rangle$-invariant.

One may assume that $\operatorname{Sing} Z$ belongs to the affine chart $x_{0}=y_{0}=1$ on $\mathbb{P}^{2} \times \mathbb{P}^{2}$. Then, after a coordinate change, we obtain that $f(x, y)=x_{1} x_{2} y_{1} y_{2}+x_{1} x_{2}+y_{1} y_{2}+1$ in this chart, for h acting diagonally on x_{i} and y_{i}.

Now, differentiating $f(x, y)$ by x_{1}, x_{2} we get $x_{i}=-y_{1} y_{2}$, and similarly $y_{i}=$ $-x_{1} x_{2}$. This gives $x_{1}=x_{2}, y_{1}=y_{2} \in\{-1,-w\}$, which contradicts $f(x, y)=0$.

Lemma 3.26 contradicts $|\operatorname{Sing} Z|=10$ and Proposition 3.25 follows.
Proposition 3.27. rk Pic $Z \neq 1$.
Proof. Let rk Pic $Z=1$. Then we have $Z_{t} \subset \mathbb{P}^{8}$ (in the notation from the proof of Proposition 3.25) are Fano 3-folds of the principal series.

Note that there is a G-invariant surface $S \in\left|-K_{Z}\right|$, since $\mathbb{P}^{8}=\mathbb{P}\left(\mathbb{C}^{9}\right) \supset Z$, similarly as in Remark 3.24.

Lemma 3.28. The pair (Z, S) is plt.
Proof. As in the proof of Lemma 3.22, it suffices to exclude the case when (the normalization of) the surface S is ruled, over a base curve B of genus ≤ 1.

Note that any line L passing through two points from $\operatorname{Sing} Z$ is contained in Z (as Z is an intersection of quadrics). In particular, we have $S \cdot L>0$ for >10 of such L, which yields either $G \subset \operatorname{PGL}(2, \mathbb{C})$ or a faithful G-action on B, a contradiction.

It follows from Lemma 3.28 that S is normal and connected. Further, we have $k \leq 2$ and $-K_{Z} \cdot \mathbb{P}^{1} \leq 2$ in (3.15), which means (cf. Lemma 3.21) that the
exceptional locus of $\psi: Y \longrightarrow Z$ consists of two disjoint surfaces, say E_{1}, E_{2}, so that $L_{i}:=\psi\left(E_{i}\right)$ are two lines on Z. In particular, there is a G-invariant subspace $\mathbb{P}^{3} \subset \mathbb{P}^{8}$, with $Z \cap \mathbb{P}^{3}=L_{1} \cup L_{2}$, such that X is obtained from Z via the linear projection from \mathbb{P}^{3} (recall that both X and Z are anticanonically embedded).

We may assume that $Z \cap \mathbb{P}^{3} \subset S$ (otherwise there is a pencil as in Remark 3.24). Hence S contains the (-2)-curve L_{1} (we have identified S with its minimal resolution). Note that L_{1} is preserved by the group $\langle h\rangle$.

Consider the quotient $S_{h}:=S /\langle h\rangle$. Then the image of L_{1} on S_{h} has selfintersection $=-2 / 5$ by projection formula. On the other hand, this self-intersection $\in \mathbb{Z}[0.5]$ (for S_{h} has at most canonical singularities due to $\left.h^{*}\left(\omega_{S_{h}}\right)=\omega_{S_{h}}\right)$, a contradiction.

Proposition 3.27 is completely proved.

It follows from Propositions 3.25, 3.27, Remark 3.24, (3.15), (3.16) and [20], [13], [11, $\S \S 12.4-12.6]$ that Z is a deformation of either $\mathbb{P}^{1} \times$ [del Pezzo surface of degree 2] or of a double cover of $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$, ramified along a divisor of tridegree $(2,2,2)$. In both cases, Z is hyperelliptic (cf. the beginning of the proof of Proposition 3.25), which contradicts Lemma 3.18.

The proof of Theorem 1.4 is finished.

4. Concluding discussion

4.1. Equations (1.2) and the results of [6] show that any S_{6}-invariant quartic X_{t} is not \mathbb{Q}-factorial. In turn, as we saw in Section 2, it is indispensable to compute the group $\mathrm{Cl} X_{t}=H_{4}\left(X_{t}, \mathbb{Z}\right)$ (e.g. for the arguments of Section 3 to carry on).

This amazing interrelation between topology and (birational) geometry of X_{t} provides one with a hint for studying the birational type of X_{t} by "topological" means. In this regard, let us give a sketch of an argument, showing that X_{t} is unirational for generic $t \in \mathbb{R}$, hence for (again generic) $t \in \mathbb{C}$ (cf. [8, Proposition 2.3]).

Namely, differentiating (1.2) one interprets this system of equations as the graph of a Morse function $F: \mathbb{R} \mathbb{P}^{4} \longrightarrow \mathbb{R}$, so that $X_{t}^{\mathbb{R}}=F^{-1}(t)$ are smooth level sets for $t \notin\{\infty, 0,10 / 7,2,4,6\}$, while the rest of $t \notin\{0,4\}$ correspond to critical level sets of (maximal) index 3 (here $X_{t}^{\mathbb{R}}$ denotes the real locus of X_{t}).

We may replace $\mathbb{R P}^{4}$ by its double cover S^{4}. Then F lifts to a Morse function on S^{4} and thus all smooth $X_{t}^{\mathbb{R}}$ are homotopy $\mathbb{R P}^{3}$. In fact general $X_{t}^{\mathbb{R}}$ is diffeomorphic to $\mathbb{R} \mathbb{P}^{3}$ (note that this $X_{t}^{\mathbb{R}}$ is smooth and connected).

Further, $X_{t}^{\mathbb{R}}$ is contained in an affine space \mathbb{R}^{N}, some N, because $\sum x_{i}^{4} \neq 0$ over \mathbb{R}. Then the function $F_{p}:=\operatorname{dist}(\cdot, p)$ defines a Morse function on $X_{t}^{\mathbb{R}}$ for very general points $p \in \mathbb{R}^{N}$. (Here $\operatorname{dist}(x, y):=\|x-y\|^{2}$ is the standard Euclidean distance.)

The layers of F_{p} yield a vector field on $X_{t}^{\mathbb{R}}$, which is non-degenerate and normal to these layers outside two points, where this field vanishes. We thus obtain a (Hopf) fibration on $X_{t}^{\mathbb{R}}$ with a section $F_{p}^{-1}(o) \backslash\left\{2\right.$ points $\left.o_{1}, o_{2}\right\}=\mathbb{R}^{2}$ such that $F_{p}^{-1}(o) \subset X_{t}^{\mathbb{R}}$ as an algebraic subset. It remains to apply a diffeomorphism over $F_{p}^{-1}(o) \backslash\left\{o_{1}, o_{2}\right\}$ which makes $X_{t}^{\mathbb{R}} \backslash\left\{F_{p}^{-1}\left(o_{1}\right), F_{p}^{-1}\left(o_{2}\right)\right\}=\mathbb{R} \mathbb{P}^{1} \times F_{p}^{-1}(o) \backslash\left\{o_{1}, o_{2}\right\}$ as algebraic varieties.

The upshot of the above discussion is that $X_{t}^{\mathbb{R}}$ (hence X_{t}) admits many cancellations in the sense of [2]. This implies that X_{t} is unirational.
4.2. We conclude with the following questions:

- What is the Fano 3-fold which the quartic X_{6} is G-birationally isomorphic to (cf. Section 3)?
- Are there non-trivial G-birational modifications of X_{6} for other subgroups $G \subset S_{6}$?
- Is X_{t} unirational over a number field field? ${ }^{5)}$
- Does the set of \mathbb{Q}-points on X_{t} satisfy the potential density property?
- Does X_{t} carry a pencil of (birationally) Abelian surfaces? ${ }^{6)}$

References

[1] A. Beauville, Non-rationality of the S_{6}-symmetric quartic threefolds, Rend. Sem. Mat. Univ. Politec. Torino 71, no. 3-4 (2013), 385-388.
[2] F. Bogomolov, I. Karzhemanov, and K. Kuyumzhiyan, Unirationality and existence of infinitely transitive models, in Birational Geometry, Rational Curves, and Arithmetic (Fedor Bogomolov, Brendan Hassett, Yuri Tschinkel, eds.), Simons Symposia, Springer New York (2013), $77-92$.

[^5][3] I. Cheltsov, V. Przhiyalkovski, and C. Shramov, Hyperelliptic and trigonal Fano threefolds, Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), no. 2, 145 - 204; translation in Izv. Math. 69 (2005), no. 2, $365-421$.
[4] I. Cheltsov and C. Shramov, Five embeddings of one simple group, Trans. Amer. Math. Soc. 366 (2014), no. 3, $1289-1331$.
[5] S. Cutkosky, Elementary contractions of Gorenstein threefolds, Math. Ann. 280 (1988), no. 3, 521-525.
[6] S. Cynk, Defect of a nodal hypersurface, Manuscripta Math. 104 (2001), no. 3, 325-331.
[7] I. V. Dolgachev, Classical algebraic geometry, Cambridge Univ. Press, Cambridge, 2012.
[8] T. de Fernex and D. Fusi, Rationality in families of threefolds, Rend. Circ. Mat. Palermo (2) 62 (2013), no. 1, $127-135$.
[9] T. Graber, J. Harris and J. Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57-67 (electronic).
[10] B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, 1637, Springer, Berlin, 1996.
[11] V. A. Iskovskikh and Yu. G. Prokhorov, Fano varieties, in Algebraic geometry, V, $1-247$, Encyclopaedia Math. Sci., 47, Springer, Berlin.
[12] P. Jahnke and I. Radloff, Gorenstein Fano threefolds with base points in the anticanonical system, Compos. Math. 142 (2006), no. 2, $422-432$.
[13] P. Jahnke and I. Radloff, Terminal Fano threefolds and their smoothings, Math. Z. 269 (2011), no. 3-4, 1129 - 1136.
[14] A.-S. Kaloghiros, A classification of terminal quartic 3-folds and applications to rationality questions, Math. Ann. 354 (2012), no. 1, 263 - 296.
[15] Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (2) 127 (1988), no. 1, $93-163$.
[16] J. Kollár and S. Mori, Birational geometry of algebraic varieties, translated from the 1998 Japanese original, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998.
[17] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 48, Springer, Berlin, 2004.
[18] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, translated from the Russian by M. Hazewinkel, North-Holland, Amsterdam, 1974.
[19] S. Mori and S. Mukai, Classification of Fano 3-folds with $B_{2} \geq 2$. I, in Algebraic and topological theories (Kinosaki, 1984), 496 - 545, Kinokuniya, Tokyo.
[20] Y. Namikawa, Smoothing Fano 3-folds, J. Algebraic Geom. 6 (1997), no. 2, 307 - 324.
[21] Yu. G. Prokhorov, Fields of invariants of finite linear groups, in Cohomological and geometric approaches to rationality problems, 245-273, Progr. Math., 282, Birkhäuser Boston, Boston, MA.
[22] Yu. G. Prokhorov, Simple finite subgroups of the Cremona group of rank 3, J. Algebraic Geom. 21 (2012), no. 3, 563-600.
[23] Yu. G. Prokhorov, The degree of Fano threefolds with canonical Gorenstein singularities, Mat. Sb. 196 (2005), no. 1, 81 - 122; translation in Sb. Math. 196 (2005), no. 1-2, $77-114$.
[24] Yu. G. Prokhorov and V. V. Shokurov, Towards the second main theorem on complements, J. Algebraic Geom. 18 (2009), no. 1, 151 - 199.
[25] V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 1, 105 - 203; translation in Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 95-202.

Kavli IPMU (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan
E-mail address: ILYA.KARZHEMANOV@IPMU.JP

[^0]: MS 2010 classification: $14 \mathrm{E} 08,14 \mathrm{E} 30,14 \mathrm{M} 10$.
 Key words: quartic 3 -fold, ordinary double point, rationality.

[^1]: ${ }^{1)}$ For the set $\{1, \ldots, n\}$, any $n \geq 1$, symbol $\left(i_{1} \ldots i_{n}\right), 1 \leq i_{j} \leq n$, denotes its permutation $\left\{i_{1}, \ldots, i_{n}\right\}$ (i.e. $1 \mapsto i_{1}$ and so on). Also, if $i_{j}=j$ for some j, we will identify (in the obvious way) $\left(i_{1} \ldots i_{n}\right)$ with permutation of the respective $(n-1)$-element set.

[^2]: ${ }^{2)}$ Present definition of $\mathrm{Cl}_{o, X}$ differs from the usual (algebraic) one that is via the direct limit of groups $\mathrm{Cl} U / \operatorname{Pic} U$ over all Zariski opens $U \ni o$ on X. A priori there is no natural isomorphism of the latter with $\mathrm{Cl}_{o, X}$. At the same time, we have used the fact that $0 \neq D \in \mathrm{Cl}_{o, X}$ in order to construct Y as above, thus proving the existence of some G-invariant non-Cartier divisor on X.

[^3]: ${ }^{3)}$ As there are no G-invariant curves in $\mathbb{P}^{3} \cap S_{1} \cap S_{2}$ for two different surfaces S_{i} of degree ≤ 2 containing common G-orbit of length 30 (cf. Lemma 2.14).

[^4]: ${ }^{4)}$ Note that the case $k=10$ yields rkPic $Z=1$ and can be excluded exactly as in the proof of Proposition 3.27 below.

[^5]: ${ }^{5)}$ Note that all rational quartics are \mathbb{Q}-rational.
 ${ }^{6)}$ Again this holds for rational X_{t}.

