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The measurement of a large tensor-to-scalar ratio by the BICEP2 experiment, r = 0.20+0.07
−0.05,

severely restricts the landscape of viable inflationary models and shifts attention once more towards
models featuring large inflaton field values. In this context, chaotic inflation based on a fractional
power-law potential that is dynamically generated by the dynamics of a strongly coupled supersym-
metric gauge theory appears to be particularly attractive. We revisit this class of inflation models
and find that, in the light of the BICEP2 measurement, models with a non-minimal gauge group
behind the dynamical model seem to be disfavored, while the model with the simplest group, i.e.
SU(2), is consistent with all results. We also discuss how the dynamical model can be distinguished
from the standard chaotic inflation model based on a quadratic inflaton potential.

INTRODUCTION

Cosmic inflation [1] is an enormously successful
paradigm of modern cosmology, which not only ex-
plains why the universe is almost homogeneous and
spatially flat but which also accounts for the origin of
the anisotropies in the Cosmic Microwave Background
(CMB) radiation as well as for the origin of the Large
Scale Structure of the Universe [2, 3]. Among the vari-
ous models of inflation, chaotic inflation [4] is particularly
attractive since it is free from the initial condition prob-
lem at the Planck time. Moreover, the large field val-
ues typically encountered in models of chaotic inflation
predict a large contribution from gravitational waves to
the CMB power spectrum [5], which can be tested by
measuring the so-called B-mode of the CMB polariza-
tion spectrum. Interestingly, the BICEP2 collaboration
recently announced the first measurement of just such
a B-mode signal, corresponding to a tensor-to-scalar ra-
tio of r = 0.20+0.07

−0.05 at 1σ [6], which strongly suggests the
presence of primordial B-mode polarization in the CMB.1

This recent progress motivates us to revisit dynami-
cal chaotic inflation, which was proposed in [8] and in
which the inflaton potential is generated by the dynam-
ics of a simple strongly coupled supersymmetric gauge
theory. One prominent feature of this class of models is
that it predicts a fractional power-law potential for the
inflaton with the fractional power being 1 or smaller.2

Chaotic inflation of this type can be distinguished from

1 As pointed out in [6], the observed ratio, r = 0.20+0.07
−0.05, is in ten-

sion with the upper limit on this ratio, r < 0.11 (at 95%C.L.)[7],
which is deduced from a combination of Planck, SPT and ACT
data with polarization data from WMAP. In the following dis-
cussion, we shall keep this tension in mind when applying the
BICEP2 result to our dynamical model of chaotic inflation.

2 A fractional power-law potential can also be realized by intro-
ducing a running kinetic term for the inflaton [9]. For fractional
power-law potentials derived in string theory, cf. [10].

the simplest versions of chaotic inflation, i.e. models with
a quadratic or quartic potential, by precise measurements
of the inflationary CMB observables. Furthermore, dy-
namical chaotic inflation is also attractive since it entails
that the energy scale of inflation is generated via dimen-
sional transmutation due to the strong gauge dynamics.
This provides an explanation for why inflation takes place
at energies much below the Planck scale.3

The organization of the paper is as follows. First, we
review chaotic inflation emerging from a strongly coupled
supersymmetric gauge theory, which eventually leads us
to an inflaton potential proportional to some fractional
power of the inflaton field. Then, we discuss how the
value of the tensor-to-scalar ratio observed by BICEP2
can be explained in this class of models.

DYNAMICAL GENERATION OF THE
INFLATON POTENTIAL

Let us briefly review the scenario of dynamical chaotic
inflation, in which strong gauge interactions such as those
proposed in [8] are responsible for the dynamical gener-
ation of the inflaton potential. For that purpose, let us
consider an SP (N) supersymmetric gauge theory4 with
2(N+2) chiral superfields in the fundamental representa-
tion, QI (I = 1 · · · 2(N + 2)). Besides these fundamental
representations, we also introduce (N+2)(2N+3) gauge-
singlet chiral superfields ZIJ (= −ZJI), which couple to
the fundamental representations in the superpotential via

W =
1

2
λIJZIJQIQJ , (1)

with coupling constants λIJ , which we shall assume to
be close to each other in the following, i.e. λIJ ' λ, for

3 For other examples of models in which the scale of inflation is
generated dynamically, cf. Refs. [11].

4 In our convention SP (1) is equivalent to SU(2).
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simplicity. Note that the couplings to the gauge singlets
ZIJ in Eq. (1) lifts all of the quantum moduli, QIQJ .

To see how the inflaton potential is generated, imag-
ine that one of the singlet fields, S = Z(2N+3)(2N+4) for
instance, has a very large field value, so that the effec-
tive mass of QI=2N+3 and QJ=2N+4 becomes much larger
than the dynamical scale of the SP (N) gauge interac-
tions Λ. Then, QI=2N+3 and QJ=2N+4 decouple per-
turbatively and the model reduces to an SP (N) gauge
theory with 2(N + 1) fundamentals and (N + 1)(2N + 1)
singlets. This low energy effective theory is nothing but
the dynamical supersymmetry breaking model proposed
in [12]. Therefore, for a given non-vanishing S, the model
breaks supersymmetry dynamically and results in a “vac-
uum energy” that depends on the field value of S,

V ' λ2(N + 1)Λ4
eff(S) ' λ2(N + 1)Λ4

(
λ |S|

Λ

) 2
N+1

. (2)

where we have substituted the effective dynamical scale

Λeff = Λ×
(
λ |S|

Λ

) 1
2(N+1)

, (3)

for field values λS � Λ.
As a result, we find that the scalar component of the

singlet S obtains a fractional power-law potential,

V ∝ |S|p , (4)

in which the power is solely determined by the size of the
SP (N) gauge group,5

p =
2

N + 1
. (5)

For example, for SU(2) = SP (1), we obtain a linear
potential, while a much flatter potential is generated for
N � 1. In everything what follows, we will assume that
the field S plays the role of the inflaton, although any of
the other singlets could be equally used as well.

During chaotic inflation, the field value of the inflaton
exceeds the Planck scale MPl. Before we can be sure
that the above model allows for a successful implementa-
tion of chaotic inflation, we thus have to carefully exam-
ine the supergravity contributions to the scalar potential.
For example, naively coupling the above model to super-
gravity by simply assuming a minimal Kähler potential,
K = S†S, leads to a very steep scalar potential

V ' e|S|
2/M2

Pl × λ2(N + 1)Λ4

(
λ |S|

Λ

) 2
N+1

, (6)

5 In this letter, we only discuss the scalar potential for large field
values, λS � Λ. The vacuum structure for λS � Λ has been
addressed in [8].

above the Planck scale. To avoid such a steep potential,
we assume a shift symmetry in the direction of S [13, 14],

S → S + ic , c ∈ R , (7)

(cf. also [15] for recent developments) which renders the
Kähler potential a function of S + S† only,

K =
1

2

(
S + S†

)2
+ · · · , (8)

such that it no longer depends on =(S), the imaginary
component of S. Consequently, the imaginary compo-
nent of S merely has a fractional power-law potential
even for =(S) � MPl. In the following, φ =

√
2=(S)

is identified as the inflaton in the scenario of chaotic
inflation based on the dynamically generated fractional
power-law potential in Eq. (2).

It should be noted that the shift symmetry introduced
in Eq. (7) is explicitly broken by the Yukawa interactions
in Eq. (1), which induce the Kähler potential

δK ∼ 2Nλ2

16π2
|S|2 log

(
µ2

M2
Pl

)
, (9)

where µ is a renormalization scale.6 This breaking term
leads again to a steep exponential potential for =(S) once
=(S)�MPl. To avoid such dangerous effects, we there-
fore assume that λ is rather suppressed, λ� O(10−1).7

TESTING DYNAMICAL CHAOTIC INFLATION

As we have demonstrated, simple strongly coupled
gauge dynamics are able to generate an inflationary po-
tential featuring a fractional power. In this section, we
now outline how chaotic inflation proceeds in these mod-
els. We also summarize the predictions for the inflation-
ary observables encoded in the CMB power spectrum.

Inflation starts out at an arbitrary initial value of
the inflaton field S = iφ/

√
2 above the Planck scale,

φ�MPl. There, the SP (N) gauge interactions are per-
turbative and inflation is characterized by the slow-roll
motion of the inflaton in the effective potential in Eq. (2)
towards smaller field values. We assume that, during in-
flation, the strong gauge dynamics are negligible, which
requires λpMPl � Λ. Inflation finally ends once the
slow-roll conditions are no longer satisfied, which hap-
pens when the inflaton field reaches φ ' pMPl. Well af-
ter inflation, the inflaton oscillates around its origin with

6 Here, we have assumed that the shift-symmetric Kähler potential
in Eq. (8) is defined around the Planck scale.

7 Small λ is also required in order to keep the effective Q mass
below the Planck scale even during inflation, S ∼ 10 · · · 100MPl,
i.e. λS �MPl.
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a mass of mφ ' λΛ. At small field values, the strongly
interacting theory is in the s-confinement phase [16, 17],
which is well-behaved and free of singularities at the ori-
gin in field space.8

After inflation, the inflaton finally decays into radia-
tion through appropriate operators. For example, the
reheating temperature can be estimated as

TR,dim5 ∼ 1012−13GeV ×
( mφ

1015 GeV

)3/2

, (10)

when the inflation decays into Hu and Hd Higgs fields
through a dimension five operator, K ∼ (S + S†)HuHd.
When, instead, the inflaton decays through dimension six
operators, the reheating temperature is roughly

TR,dim6 ∼ 108−9GeV ×
( mφ

1015 GeV

)5/2

, (11)

where we have assumed that the coefficients of the op-
erators responsible for the decay of the inflation are of
O(1). In Eqs. (10) and (11), we have worked with an
inflaton mass of mφ = O(1015) GeV, which turns out to
be a typical value (cf. below).9 As a result, we find that
high reheating temperatures can be realized rather easily,
which is quite favorable for successful leptogenesis [19].

Now, let us discuss the predictions of our fractional
power-law inflaton potential for the CMB observables (cf.
also [20]). Given the potential in Eq. (2), one finds for the
power spectrum Pζ of the curvature perturbations ζ [3]

Pζ =
1

6π2p3

(
Λ

MPl

)4−p (
λ2pNe

)1+p/2
, (12)

where Ne is the number of e-foldings before the end of
inflation when the CMB scales leave the Hubble horizon.
In Fig. 1, the red lines mark the region in the (λ,Λ) pa-
rameter space which is consistent with the observed cur-
vature power spectrum, ln

(
1010 Pζ

)
= 3.080± 0.025 [21]

for N = 1 and N = 5, respectively. The blue dot-dashed
lines represent contour lines indicating the values of the
inflaton mass. In the blue-shaded regions, the dynami-
cal scale is rather large, so that is also important during
inflation, i.e. Λ > λφend, where φend ' pMPL. In this
situation, we loose control over the inflaton potential, as

8 At intermediate field values, λφ ' Λ, where the gauge dynamics
transit from the perturbative to the strongly coupled picture, we
lack the ability to precisely calculate the inflaton potential. In
our discussion, we assume that the effective inflaton potential
exhibits no peculiar features around Λ/λ, but that it is instead
smoothly connected from one regime to the other.

9 Even if the mass of the inflaton is as large as 1015 GeV, such that
its decay products have extremely large momenta, the inflaton
decay products thermalize soon after their production [18].
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FIG. 1: (λ,Λ) plane for N = 1 (upper panel) and N = 5
(lower panel). The red lines indicate where the curvature
power spectrum is consistent with the observed value within
2σ. Solid and dashed lines correspond to Ne = 50 and 60,
respectively. We also show contour lines for the inflaton mass
as blue dot-dashed lines. The shaded regions are theoretically
inaccessible because either the dynamical scale is too large,
i.e. Λ > λφend, or the coupling constant λ is too large, i.e.
λφNe > MPl, as denoted in the figure.

it becomes distorted by incalculable strong coupling ef-
fects. On the other hand, in the gray-shaded regions, the
coupling λ is too large, such that the effective mass of the
heavy Q’s exceeds MPl during inflation, i.e. λφNe

> MPl

with φNe
' (2pNe)

1/2MPl. In conclusion, Fig. 1 illus-
trates that the observed curvature power spectrum can



4

Φ
2

Φ Φ
2�3

Φ
1�2

BICEP2 1Σ

BICEP2 2Σ

BICEP2 3Σ

Planck HarXiv:1312.3313L

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
0.0

0.1

0.2

0.3

0.4

ns

r 0
.0

0
2

FIG. 2: Predicted values for ns and r for p = 1 (N = 1), p =
2/3 (N = 2), and p = 1/2 (N = 3). Here, r0.002 denotes the
tensor-to-scalar ratio at the pivot scale k = 0.002 Mpc−1. The
predictions according to chaotic inflation with a quadratic po-
tential are also shown for comparison. Small and big dots
stand for Ne = 50 and 60, respectively. The green contours
are the constraints extracted from [21]. The orange bands cor-
respond to the 1, 2 and 3σ ranges for r measured by BICEP2.

be reproduced for λ ' 10−(2−1) and Λ ' 1016 GeV, where
the inflaton mass is typically of O(1015) GeV.

The spectral index ns, the running of the spectral in-
dex dns/d ln k, and the tensor-to-scalar ratio r of the
curvature perturbations are predicted to be,

ns = 1− p+ 2

2Ne
,

dns
d ln k

= −2 + p

2N2
e

, r =
4p

Ne
. (13)

In Fig. 2, we show the predicted values for ns and r
for p = 1 (N = 1), p = 2/3 (N = 2), and p = 1/2
(N = 3). At the same time, dynamical chaotic inflation
predicts the running of the spectral index to be negligi-
bly small. In Fig. 2, we also reproduce the constraints on
ns and r presented in [21], in which the Planck data has
been re-analyzed taking particular care of possible sys-
tematics in the 217 GHz map. Furthermore, we include
constraints on the tensor-to-scalar ratio as observed by
BICEP2, r = 0.20+0.07

−0.05. In summary, the figure shows
that models with N > 1 are excluded at the 3σ level
by the BICEP2 results. By contrast, the simplest case,
i.e. N = 1, is consistent with the BICEP2 result within
3σ. In fact, for N = 1, dynamical chaotic inflation pre-
dicts r ' 0.08, which deviates from the BICEP2 best-fit
value, r = 0.20, by 2.9σ. It should be noted, however,
that there is a tension between the constraints deduced
from the Planck data and the value measured by BI-
CEP2, where the Planck data favors a smaller value of
the tensor-to-scalar ratio. Furthermore, the best fit range
of the tensor-to-scalar ratio shifts down to r = 0.16+0.06

−0.05

at 1σ level when a different foreground model is used [6].

Moreover, as far as our theoretical prediction is con-
cerned, we also remark that, if the shift symmetry is bro-
ken not only in the superpotential but also in the Kähler
potential, the prediction for r can be still be raised to
larger values [15, 22, 23]. Therefore, it is certainly pre-
mature to declare dynamical chaotic inflation ruled out
by the data at this point, in particular, the model with
the simplest gauge group SU(2). Quite the contrary, as
further measurements of the CMB B-mode polarization
are being performed, dynamical chaotic inflation based
on strong SU(2) dynamics might eventually develop into
one of the most promising models correctly describing
the data.

Another important key feature of dynamical chaotic
inflation is that it predicts a slightly larger value for the
spectral index compared with the simplest chaotic infla-
tion model. Therefore, by further observational inves-
tigation of ns and r, dynamical chaotic inflation can be
distinguished from the simplest model of chaotic inflation
based on a quadratic potential.10

CONCLUSIONS

In this paper, we revisited the class of models of chaotic
inflation the potential of which is generated by the dy-
namics of a strongly coupled supersymmetric gauge the-
ory. A prominent feature of this scenario of dynamical
chaotic inflation is that the inflaton potential features
a fractional power. Contrasting dynamical chaotic in-
flation with the tensor-to-scalar ratio recently observed
by the BICEP2 experiment, we find that models with
non-minimal gauge group seem to be disfavored, while
the model based on the simplest gauge group, SU(2),
is barely consistent with observations. However, since
there is a tension between the Planck constraints and
the BICEP2 measurement, we need to wait for further
confirmation/refutation by other observations such as
Planck, ACTpole, SPT, and POLARBEAR. Only with
additional data at hand, it will be become clear whether
dynamical chaotic inflation is excluded or in fact a good
description of the CMB data. Likewise, improved con-
straints on ns will also help to distinguish the dynamical
chaotic inflation model from chaotic inflation based on a
quadratic potential.

10 Fig. 2 slightly suggests that a smaller number of e-foldings Ne

(lower TR) is preferred in the case of the dynamical model, so
as to raise the tensor-to-scalar ratio towards the BICEP2 best-
fit value, while a larger number of e-foldings Ne (higher TR) is
preferred in the case of the quadratic potential model, so as to
make the spectral index larger.



5

Acknowledgements This work is supported by
Grant-in-Aid for Scientific Research from the Ministry
of Education, Science, Sports, and Culture (MEXT),
Japan, No. 22244021 (T.T.Y.), No. 24740151 (M.I.), and
by the World Premier International Research Center Ini-
tiative, MEXT, Japan. The work of K.H. is supported in
part by a JSPS Research Fellowship for Young Scientists.

[1] A. H. Guth, Phys. Rev. D 23, 347 (1981); A. D. Linde,
Phys. Lett. B 108, 389 (1982); A. Albrecht and
P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).

[2] V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33,
532 (1981) [Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)];
A. D. Linde, Contemp. Concepts Phys. 5, 1 (1990) [hep-
th/0503203].

[3] D. H. Lyth and A. Riotto, Phys. Rept. 314, 1 (1999)
[hep-ph/9807278].

[4] A. D. Linde, Phys. Lett. B 129, 177 (1983); A. D. Linde,
JETP Lett. 38, 176 (1983) [Pisma Zh. Eksp. Teor. Fiz.
38, 149 (1983)].

[5] A. A. Starobinsky, Sov. Astron. Lett. 11, 133 (1985);
D. H. Lyth, Phys. Rev. Lett. 78, 1861 (1997) [hep-
ph/9606387].

[6] P. A. R. Ade et al. [BICEP2 Collaboration],
arXiv:1403.3985 [astro-ph.CO].

[7] P. A. R. Ade et al. [Planck Collaboration],
arXiv:1303.5076 [astro-ph.CO].

[8] K. Harigaya, M. Ibe, K. Schmitz and T. T. Yanagida,
Phys. Lett. B 720, 125 (2013) [arXiv:1211.6241 [hep-ph]].

[9] F. Takahashi, Phys. Lett. B 693, 140 (2010)
[arXiv:1006.2801 [hep-ph]].

[10] E. Silverstein and A. Westphal, Phys. Rev. D 78, 106003
(2008) [arXiv:0803.3085 [hep-th]].

[11] S. Dimopoulos, G. R. Dvali and R. Rattazzi, Phys.
Lett. B 410, 119 (1997) [hep-ph/9705348]; K. I. Izawa,
M. Kawasaki and T. Yanagida, Phys. Lett. B 411, 249
(1997) [hep-ph/9707201]; K. I. Izawa, Prog. Theor. Phys.
99, 157 (1998) [hep-ph/9708315].

[12] K. -I. Izawa and T. Yanagida, Prog. Theor. Phys. 95,
829 (1996) [hep-th/9602180]; K. A. Intriligator and
S. D. Thomas, Nucl. Phys. B 473, 121 (1996) [hep-
th/9603158].

[13] M. Kawasaki, M. Yamaguchi and T. Yanagida, Phys.
Rev. Lett. 85, 3572 (2000) [hep-ph/0004243].

[14] R. Kallosh, A. Linde, K. A. Olive and T. Rube, Phys.
Rev. D 84, 083519 (2011) [arXiv:1106.6025 [hep-th]]; For
a recent review, see also A. Linde, arXiv:1402.0526 [hep-
th].

[15] R. Kallosh and A. Linde, JCAP 1011, 011 (2010)
[arXiv:1008.3375 [hep-th]].

[16] N. Seiberg, Phys. Rev. D 49, 6857 (1994) [hep-
th/9402044];

[17] K. A. Intriligator and P. Pouliot, Phys. Lett. B 353,
471 (1995) [hep-th/9505006]; C. Csaki, M. Schmaltz
and W. Skiba, Phys. Rev. Lett. 78, 799 (1997) [hep-
th/9610139].

[18] K. Harigaya and K. Mukaida, arXiv:1312.3097 [hep-ph].
[19] M. Fukugita and T. Yanagida, Phys. Lett. B 174 (1986)

45.

[20] L. Alabidi and I. Huston, JCAP 1008, 037 (2010)
[arXiv:1004.4794 [astro-ph.CO]]; J. Martin, C. Ringeval
and R. Trotta, Phys. Rev. D 83, 063524 (2011)
[arXiv:1009.4157 [astro-ph.CO]].

[21] D. Spergel, R. Flauger and R. Hlozek, arXiv:1312.3313
[astro-ph.CO].

[22] R. Kallosh, A. Linde and T. Rube, Phys. Rev. D 83,
043507 (2011) [arXiv:1011.5945 [hep-th]].

[23] T. Li, Z. Li and D. V. Nanopoulos, JCAP 1402, 028
(2014) [arXiv:1311.6770 [hep-ph]].


	 Introduction
	 Dynamical Generation of the Inflaton Potential
	 Testing dynamical chaotic inflation
	 Conclusions
	 References

