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We argue that the deconfinement transition of large-N Yang-Mills theory is the condensation
of very long and self-intersecting chromo-electric flux strings (QCD string), which is analogous
to the formation of a black hole in string theory. We do this by using lattice gauge theory and
matrix models. As evidence, we derive an analytic formula for the deconfinement temperature in
the strong coupling limit and confirm it numerically. Dual gravity descriptions interpreted in this
manner should make it possible to understand the details of the formation of black holes in terms of
fundamental strings. We argue that very simple matrix models capture the essence of the formation
of black holes.

INTRODUCTION

In the gauge/gravity duality [1], the deconfinement
transition of the gauge theory is dual to the formation
of a black hole in the gravity side [2]. In this paper, we
give an intuitive way of understanding this correspon-
dence, without referring to a sophisticated dictionary of
the duality. Our argument does not assume the dual
gravity description, and hence it is applicable to generic
gauge theories including QCD. We pay attention to the
stringy degrees of freedom in gauge theory – the Wilson
loops – and see how their behaviors change across the
deconfinement transition. The authors believe that this
result will be useful in understanding the formation and
thermalization of the quark-gluon plasma in QCD, and
the formation of a black hole in the gravitational picture,
from a unified perspective.

Although our argument applies to rather generic gauge
theories and matrix models, our initial motivation comes
from a simple matrix model for the black hole [3, 4] to
study the duality [2] between the deconfinement transi-
tion in 4d N = 4 super Yang-Mills theory on a three-
sphere and the Hawking-Page transition [5] of a black
hole in the AdS space. At the Hawking-Page transition,
a small black hole whose Schwarzschild radius is of order
AdS radius is formed. Such a small black hole can natu-
rally be identified with a long and winding string [7, 8].
One of the authors (L. S.) has argued that it can be mod-
eled by using a lattice gauge theory with a continuum
time and a few spatial lattice sites, e.g. a tetrahedron
(Fig. 1) sitting at the center of the AdS space, by iden-
tifying the string and chromo-electric flux string. Our
result in this paper justifies this argument.

As a concrete example, let us consider pure U(N)
Yang-Mills theory. The Hilbert space is spanned by Wil-
son loops acting on the vacuum |0〉, WCWC′ · · · |0〉, where
WC represent the Wilson loop along a closed contour C.

FIG. 1. Tetrahedron matrix model (left) and single-site
model (Eguchi-Kawai model) with three links (right).

In the standard identification of the Feynman diagrams
and the string world-sheet [6], the Wilson loop is nat-
urally interpreted as the creation operator of the string.
Therefore, WC1

WC2
· · ·WCk |0〉 is the state which consists

of k strings, and C1, C2, · · · , Ck represent the shapes of
the strings.

In the large-N limit, the energy of the string is ap-
proximated by its length. In the confinement phase, the
energy is of orderN0 per unit volume, and hence a typical
state is a finite-density gas of loops with finite length. In
other words, it is gas of glue-balls. In this gas, two loops
can intersect with each other and combined to form a
longer string. Alternatively, when a loop intersects with
itself, it can be split into two shorter loops. However such
joining and splitting are suppressed at large-N .

In the deconfinement phase, the energy density is of
order N2. In this phase the loops necessarily intersect
O(N2) times. Although the interaction at each inter-
section is 1/N -suppressed, small interactions at many
intersections accumulate to a non-negligible amount.
As we will explain shortly, a typical state consists of
finitely many very long and self-intersecting strings,
whose lengths are of O(N2). In the string theory, it is
natural to interpret such very long and self-intersecting
strings as a black hole [7, 8]. In this sense, the deconfine-
ment transition can be understood as the formation of a
‘black hole’ through condensation of QCD strings.
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In this paper, we establish this picture by using lattice
gauge theory and matrix models as concrete examples.
Our interpretation does not rely on details of the theory
and hence is applicable to any gauge theory. When it
is applied to theories with gravity duals, the ‘analogy’
turns to an equivalence. That is to say that the ‘QCD
string’ is naturally identified with the fundamental string,
and their condensation is equivalent to the formation of
an actual black hole in superstring theory. Therefore
we believe our picture is useful for understanding the
black hole from the degrees of freedom of the fundamental
string.

QUANTITATIVE ARGUMENT ON LATTICE

Let us consider (D+ 1)-dimensional U(N) Yang-Mills
lattice gauge theory in the Hamiltonian formulation [9].
(We consider D ≥ 2, which goes through a first-order de-
confinement transition as the temperature is raised.) The
time direction is continuous, and D-dimensional space
is regularized by a D-dimensional square lattice. The
Hamiltonian is given by the kinetic term (or electric
term) K and the potential term (magnetic term) V re-
spectively, H = K + V , where

K =
λN

2

∑
~x

∑
µ

N2∑
α=1

(
Eαµ,~x

)2
(1)

and

V =
N

λ

∑
~x

∑
µ<ν

(
N − Tr(Uµ,~xUν,~x+µ̂U

†
µ,~x+ν̂U

†
ν,~x)
)
.(2)

Here Uµ(~x) is the unitary link variable connecting ~x and
~x+ µ̂, where µ̂ is the unit vector along µ-direction. Eαµ,~x
is defined via its commutation relation which is given by,

[Eαµ,~x, Uν,~y] = δµνδ~x~y · ταUν,~y,

[Eµ,~x, Eν,~y] = [Uµ,~x, Uν,~y] = [Uµ,~x, U
†
ν,~y] = 0. (3)

τα (α = 1, 2, · · · , N2) are generators of the U(N) group,
which are N × N Hermitian matrices normalized as∑N2

α=1 τ
α
ijτ

α
kl = δilδjk/N

2. The vacuum |0〉 is annihilated
by Eαµ,~x, Eαµ,~x|0〉 = 0.

The Hilbert space consists of gauge-invariant states, in
which Wilson loops acting on |0〉 form an over-complete
basis. In the lattice gauge theory, the Wilson loop is
the trace of the product of link variables along a contour
C, WC = Tr (Uµ,~xUν,~x+µ̂ · · ·Uρ,~x−ρ̂). The Wilson loop
sources a set of interacting gluons. The correspondence
between the Feynman diagram expansion and the string
world-sheet leads us to interpret the Wilson loop as the
creation operator of the closed string.

Let us say the Wilson loop is not self-intersecting when
each link variable appears only once. Similarly, two loops
WC and WC′ do not intersect when they do not share

the same link variable. (With this definition, even if two
loops go through the same point ~x, they do not necessar-
ily ‘intersect’. Although this definition may look strange
at first glance, this is actually a natural generalization
of the intersection between strings in continuum space,
because two strings represented by the Wilson loops on
the lattice can interact only when they share the same
link, as we will see shortly.)

When the loop WC does not self-intersect, the electric
term K acts on the state |WC〉 ≡WC |0〉 as

K|WC〉 =
λN

2

∑
µ,~x,α

[
Eαµ,~x,

[
Eαµ,~x,WC

]]
|0〉 =

λL

2
|WC〉.

(4)

where L is the length of the contour C in the lat-
tice unit. In the same manner, for a multi-loop
state |WC ,WC′ , · · · 〉 = WCWC′ · · · |0〉, K acts as
K|WC ,WC′ , · · · 〉 = λ

2 (L+ L′ + · · · )|WC ,WC′ , · · · 〉 when
there is no intersection.

When two loops WC and WC′ intersect once by sharing
Uµ,~x, they can be joined to form a longer loop as follows.
Let us write WC and WC′ as WC = Tr(Uµ,~xMC) and
WC′ = Tr(Uµ,~xMC′), where MC and MC′ are product of
other link variables. Then,

K|WC ,WC′〉

=
λ(L+ L′)

2
|WC ,WC′〉

+λN
∑
α

Tr(ταUµ,~xMC) · Tr(ταUµ,~xMC′)|0〉

=
λ(L+ L′)

2
|WC ,WC′〉+

λ

N
Tr(Uµ,~xMCUµ,~xMC′)|0〉.

(5)

The second term in (5) is a longer string whose length
is L + L′. The state is then a superposition of a state
containing two loops of length L and L′ and a state of a
single long string of length L+ L′. In the same manner,
a self-intersecting string can be split into two strings. If
there are multiple intersections, such joinings and split-
tings take place at all intersections.

In this manner, the electric term K measures the to-
tal length of the strings, and also joins and splits strings.
The magnetic term V is the plaquette, which is the small-
est possible Wilson loop; this term adds a very short
string (one plaquette) to the states.

Confinement phase as gas of free strings

In the confining phase, the energy density is of order
N0. Therefore, the length of the strings is also of or-
der N0. In this phase joining and splitting coming from
the electric term is negligible at large-N , because there
are only O(N0) intersections, and interaction at each
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intersection is 1/N -suppressed. The confinement phase
can therefore be understood as a gas of non-interacting
strings. (The left of Fig. 2)

Deconfinement phase as black hole

In the deconfinement phase, the energy density is of or-
der N2. Therefore the total length of the strings is also
of order N2. The strings must intersect O(N2) times,
and then the 1/N -suppressed interaction at each inter-
section accumulates and becomes non-negligible (Fig. 2).
Strings are joining, splitting, as well as changing their
shapes very rapidly in this phase. This is true even in the
strong coupling limit λ = ∞, where the magnetic term
V vanishes. The deconfinement phase is highly dynami-
cal, unlike the common folklore stating that “the strong
coupling limit is free string theory.

FIG. 2. The intuitive picture of the deconfinement transition
in terms of QCD strings. In the confining phase, the strings
do not intersect often, interaction between them is negligible,
and the free-string picture is valid (left). As the system is
heated up, more strings are excited, they intersect more often
(middle). When the density of strings becomes large, the
interaction becomes non-negligible and a long string is formed
(right). This is the same as the formation of a black hole in
string theory.

There are many string states with total length Ltotal ∼
N2. One extreme, are cases with configurations contain-
ing a single long string, while the other extreme, are
states only containing the O(N2) shortest strings (pla-
quettes). A single long string can possess a lot of states;
after Uµ,~x, one can multiply any link variables originat-

ing from the point ~x+ µ̂ except U†µ,~x, and hence at each
point there are 2D−1 choices, and the entropy is roughly
log((2D−1)Ltotal) = Ltotal log(2D−1) ∼ N2. The states
which consist of several long strings can carry the same
amount of entropy. On the other hand, if we consider
a bunch of very short strings, say a bunch of plaquetts,
then the entropy is much smaller, because the state can
be specified by the number of each type of plaquette.
Therefore, it is natural to conclude that typical states
contain a few long strings. In string theory, this is exactly
how the black hole (or more precisely a D-dimensional
black brane) is formed from the fundamental string.

In order to justify this picture, we derive the following
analytic predictions, and then confirm them numerically.
Let us consider the strong coupling limit (λ =∞, V = 0).

Then the energy of the deconfinement phase is propor-
tional to the total length of the strings Ltotal(T ), which
is an unknown function of the temperature T , because
the electric term measures the length:

E = K =
λ

2
Ltotal(T ). (6)

The entropy S is also proportional to Ltotal(T ),

S = Ltotal log(2D − 1). (7)

Therefore the free energy F = E − TS is given by

F = Ltotal(T )

(
λ

2
− T log(2D − 1)

)
. (8)

The free energy of the confinement phase is zero up to
a 1/N correction, and hence the confinement phase is
favored when (8) is positive and the deconfinement tran-
sition takes place when (8) crosses zero. Therefore, al-
though we do not know the T -dependence of the length
Ltotal, we can easily determine the critical temperature
Tc,

Tc = λ/(2 log(2D − 1)). (9)

Note that this derivation is formally the same as the
derivation of the Hagedorn temperature in free string
theory on a lattice. See e.g. [10].

Matrix models

Strictly speaking, the (D + 1)-dimensional Yang-Mills
theory is analogous to a D-dimensional black brane
rather than a black hole, because the condensation of
the strings fills entire D-dimensional space. In order to
describe a black hole (0-brane), let us consider the di-
mensionally reduced D-matrix model H = K+V , where

K = λN
2

∑
µ

∑N2

α=1

(
Eαµ
)2

is the kinetic term (or electric

term) and V = N
λ

∑
µ6=ν

(
N − Tr(UµUνU

†
µU
†
ν )
)
. Now the

space is reduced to a single point, andD link variables are
attached to that point (see Fig. 1 for the case of D = 3).
This is the Eguchi-Kawai model [11] with a continuous
time direction. At strong coupling the U(1)D center sym-
metry along the spatial directions, Uµ → eiθµUµ, is not
spontaneously broken. Then this theory is known to be
equivalent to the (D+1)-dimensional theory at large-N in
the sense that translationally invariant observables in the
latter, for example the energy density and entropy den-
sity, are reproduced from the former to the leading order
in the 1/N -expansion [11]. At weak coupling, this model
is analogous to the bosonic part of the matrix model of
M-theory [12], which is dual to the black zero-brane in
type IIA supergravity in the ’t Hooft large-N limit [13].
For D ≥ 2, this theory exhibits the deconfinement transi-
tion, which is characterized by the non-vanishing expec-
tation value of the Polyakov loop. At sufficiently strong
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coupling, the transition is of first order. In the deconfine-
ment phase, the energy and the entropy is of order N2,
and typical state should be described by long, winding
strings such as Tr(U1U2U

†
1U
†
1U2U2U1 · · · ). All of these

arguments parallel the case of the (D + 1)-dimensional
lattice, and (9) should hold in this case as well.

We can also consider other matrix models such as the
tetrahedron model (Fig. 1). In this model, space con-
sists of four points labelled by 1, 2, 3, and 4. There
are six link variables Umn (m 6= n) which satisfy
U†mn = Unm. We have shown numerically that this
model also possesses a first-order deconfinement tran-
sition. The long string can be described with a term
such as Tr(U12U23U31U14U42 · · · ). The entropy is S =
Ltotal log 2, and (9) is modified as Tc = λ/(2 log 2).

NUMERICAL CONFIRMATION

In this section we confirm the analytic predictions by
lattice Monte Carlo simulation. There exists a wide liter-
ature on Monte Carlo algorithms and a nice review can be
found in [14]. Thanks to the Eguchi-Kawai equivalence
[11], we do not have to study the (D+1)-dimensional YM
theory, and hence we consider the matrix models. In or-
der to study the thermodynamics, we consider the theory
in Euclidean time, and compactify the time direction to
a circle with circumference β = 1/T . The Lagrangian in
Euclidean signature is given by L = K + V , where V is
the same as before and K = N

2λ

∑
~x Tr

(
DtU~x · (DtU~x)†

)
with DtU~x = ∂tU~x − i[At, U~x]. We regularize the model
by introducing nt lattice sites along the temporal direc-
tion. The lattice spacing a is given by ant = β. The
action is

Slattice = − N

2aλ

∑
µ,t

Tr
(
VtUµ,t+aV

†
µ,tUµ,t + c.c.

)
+
aN

λ

∑
µ6=ν,t

(
N − Tr(Uµ,tUν,tU

†
µ,tU

†
ν,t)
)
(10)

where t = a, 2a, · · · , nta, and t = nta is identified to
t = 0. Vt is the unitary link variable connecting t and
t+a, and Uµ,t are spatial links at time t. The tetrahedron
matrix model can be regularized in a similar manner with
action

Stet = − N

2aλ

∑
t

∑
m<n

(
Tr(Vm,tUmn,t+aV

†
n,tUnm,t) + c.c.

)
−aN

λ

∑
t

∑
l<m<n

((N − Tr(Ulm,tUmn,tUnl,t)) + c.c.) .

(11)

In the following we concentrate on the strong cou-
pling limit, where the magnetic terms are omitted.
The order parameter for the deconfinement transition
is the Polyakov loop, P = 1

NTr(Vt=aVt=2a · · ·Vt=nta).

For the tetrahedron matrix model the loop is Ptet =
1

4N

∑4
m=1 Tr(Vm,t=aVm,t=2a · · ·Vm,t=nta). The expecta-

tion value of P itself vanishes trivially due to the U(1)
phase. Therefore we consider the expectation value of
the absolute value, 〈|P |〉. We performed hot and cold
start simulations, in which the temperature is gradually
decreased and increased, respectively. In Fig. 3, 〈|P |〉
in the tetrahedron model is plotted. We can see a clear
hysteresis at 0.66 ≤ (T/λ) ≤ 0.74, which means the tran-
sition is of first order as expected. The theoretically pre-
dicted critical temperature (Tc/λ) = 1/(2 log 2) ' 0.721
is in this range. We observed similar hystereses also in
the Eguchi-Kawai model with various values of D. In
the right panel of Fig. 3 we plot the temperature range
of the hystereses for D = 2, 3, · · · , 10. We can see that
the theoretical predictions for Tc is consistent with the
simulation results. Note that Tc goes close to the lower
edge of the hysteresis as D becomes large; it would be
interesting we can understand the mechanism behind it.

FIG. 3. (Left)The expectation value of the Polyakov loop in
the tetrahedron matrix model in the strong coupling limit.
There is a strong hysteresis around the theoretically pre-
dicted critical temperature (Tc/λ) = 1/(2 log 2) ' 0.721.
N = 64, nt = 12. The temperature range of the hystere-
ses of the Eguchi-Kawai model. (Right)The dashed line is
the analytic prediction for the critical temperature, (Tc/λ) =
1/(2 log(2D − 1)). N = 64, nt = 16.

CONCLUSION AND DISCUSSION

In this paper we have visualized the relationship be-
tween the deconfinement phase of the large-N Yang-
Mills theory and a black hole, by paying attention to
the stringy degrees of freedom (i.e. the Wilson loops)
in Yang-Mills theory. The essence is contained already
in the strong coupling limit of the lattice gauge the-
ory. The common folklore that this theory describes free
strings is only correct in the confinement phase. The
deconfinement phase is dominated by very dynamical
self-intersecting strings which should be understood as
a black hole, unlike the free case.

In the gauge theories with dual gravity descriptions,
the Wilson loops are naturally identified with the fun-
damental strings. Therefore, the condensation of the
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Wilson loops argued in this paper is equivalent to the
condensation of fundamental strings and formation of an
actual black hole. By following the time evolution of
the loops, it should be possible to see how a black hole
forms, thermalizes, and eventually evaporates. As we
have seen, qualitative features are common even in the
strong coupling limit of simple matrix models, and hence
they should serve as good toy models for a black hole.

Among various possible applications of this work is
the fast scrambling conjecture [15]. It has been argued
that a black hole is the fastest scrambler of information,
in other words, it exhibits the fastest thermalization in
nature. Due to the gauge/gravity duality, the large-N
gauge theory is conjectured to scramble the information
as fast as a black hole because they are equivalent. The
intuitive picture discussed in this paper should be use-
ful for understanding the microscopic mechanism of fast
scrambling from gauge theory. Clearly, a huge number of
simultaneous interactions at various intersections should
be the essence of fast scrambling. As we have mentioned
above, it would be possible to show fast scrambling by
studying strong coupling lattice gauge theory or matrix
models. The understanding of fast scrambling in gauge
theory is interesting from the point of view of the quan-
tum information theory, and even more, would be useful
in understanding the very fast thermalization of RHIC
fireball [16]. We hope to report progress in this direction
in near future.
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