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ABSTRACT

We present well-sampled UBV RIJHK photometry of SN 2002fk starting 12 days

before maximum light through 122 days after peak brightness, along with a series

of 15 optical spectra from -4 to +95 days since maximum. Our observations show

the presence of C II lines in the early-time spectra of SN 2002fk, expanding at

11,000 km s−1 and persisting until 8 days past maximum light with a velocity of

∼9,000 km s−1 . SN 2002fk is characterized by a small velocity gradient of v̇Si II =

26 km s−1 day−1, possibly caused by an off-center explosion with the ignition

region oriented towards the observer. The connection between viewing angle of an

off-center explosion and the presence of C II in the early time spectrum suggests
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that the observation of C II could be also due to a viewing angle effect. Adopting

the Cepheid distance to NGC 1309 we provide the first H0 value based on near-

IR measurements of a Type Ia supernova between 63.0±0.8 (± 2.8 systematic)

and 66.7±1.0 (± 3.5 systematic) km s−1 Mpc−1 , depending on the absolute

magnitude/decline rate relationship adopted. It appears that the near-IR yields

somewhat lower (6-9%) H0 values than the optical. It is essential to further

examine this issue by (1) expanding the sample of high-quality near-IR light

curves of SNe in the Hubble flow, and (2) increasing the number of nearby SNe

with near-IR SN light curves and precise Cepheid distances, which affords the

promise to deliver a more precise determination of H0.

Subject headings: supernovae: general - supernovae: individual: SN 2002fk -

cosmological parameters - cosmology: observations

1. INTRODUCTION

Type Ia supernovae (SNe) have proven to be extremely useful as extragalactic dis-

tance indicators in the optical (Hamuy et al. 2006; Hicken et al. 2009; Folatelli et al. 2010)

thanks to the relation between peak luminosity and decline rate (Phillips 1993), which al-

lows the standardization of their luminosities, and in the near infrared (Wood-Vasey et al.

2008; Krisciunas et al. 2004b,c) where they behave almost as standard candles (Kattner et al.

2012). Photometric observations of SNe Ia have delivered Hubble diagrams with unrivaled

low dispersions (0.15 mag), which permits one to determine precise values for fundamental

cosmological parameters such as the Hubble constant and the deceleration parameter. It was

this technique that led in 1998 to the surprising discovery that the Universe is in a state of

accelerated expansion caused by a mysterious dark energy that comprises 70% of the energy

content of the Universe (Riess et al. 1998; Perlmutter et al. 1999). Measuring the equation

of state parameter of the dark energy and its evolution with time constitutes one of the most

important astrophysical challenges today.

Since the discovery of the accelerated expansion, extensive surveys and follow-up pro-

grams have increased the number of SNe Ia by more than an order of magnitude. Further-

more, the quality of the follow–up observations (light curves, early–time optical spectra, near-

infrared (near-IR) spectra, nebular spectroscopy, polarization) has significantly increased. As

a consequence of the increase in the statistical samples available and the degree of details

observed, several indications of diversity have emerged within the family of SNe Ia that

manifest in differences in several observables, most notably, early time velocity gradients

(Benetti et al. 2004), the presence of unburned material, late-time nebular velocity shifts
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(Maeda et al. 2010a,c), line polarization (Leonard et al. 2005; Wang & Wheeler 2008), high-

velocity components of spectral lines (Kasen et al. 2003; Thomas et al. 2004; Gerardy et al.

2004; Mazzali et al 2005), and interstellar line strengths (Sternberg et al. 2011; Foley et al.

2012d; Förster et al. 2012; Phillips et al. 2013). At this point the use of SNe Ia for the

determination of cosmological parameters and the equation of state of the dark energy is

dominated by systematics (see e.g. Kessler et al. 2009; Conley et al. 2011). Among the

most important sources of systematics are the extinction by dust in the SN host galaxies

(Folatelli et al. 2010, and references therein) and our lack of understanding of the explosion

mechanisms and the progenitor system (see e.g. Hillebrandt & Niemeyer 2000; Röpke et al.

2012; Maoz et al. 2014).

SNe Ia are believed to result from the nuclear burning of a C+O white dwarf (WD).

Given that carbon is not produced in the explosion, it provides unique evidence of the original

composition of the star before explosion. For this reason the amount and distribution of the

unburned carbon material is fundamental to understand the burning process of the star.

Until recently only a handful of normal SNe Ia have shown carbon. Thanks to large surveys

that have discovered and followed–up SNe Ia from very early phases, carbon has been found

in nearly 30% of the SNe before maximum light (Parrent et al. 2011; Thomas et al. 2011b;

Folatelli et al. 2012; Silverman & Filippenko 2012b), and even more frequently within the

class of very luminous and low expansion velocities objects thought to be the result of a

super–Chandrasekhar–mass WD (Howell et al. 2006; Thomas et al. 2007; Yamanaka et al.

2009; Scalzo et al. 2010; Silverman et al. 2010).

Additional multi-wavelength and multi-epoch observations of SNe Ia will be required

to establish a scenario connecting the observed diversity among SNe Ia. Here we present

a contribution to this subject through extensive optical and near-IR observations for the

normal Type Ia SN 2002fk obtained in the course of the “Carnegie Type II Supernova

Survey” (CATS, hereafter) (Hamuy et al. 2009). While our optical data are complementary

to the photometry published by the Lick Observatory Supernova Search (LOSS, Riess et al.

2009b; Ganeshalingam et al. 2010), and by the Center for Astrophysics (CfA) Supernova

Program (CfA3 sample, Hicken et al. 2009), our near-IR data provide one of the earliest

near-IR light curves for a Type Ia SN. The exceptional coverage of the maximum both in the

optical and the near-IR light curves together with the Cepheid distance recently measured by

Riess et al. (2011a, 2009a), makes SN 2002fk one of the most suitable SNe Ia for calibration

of the Hubble constant. The completeness of the light curves also affords the opportunity to

test independent methods for the determination of the host galaxy reddening using a mixture

of B−V and V-near–IR colors. In addition, we present 15 optical spectra obtained from −4

to +95 days since maximum in the B-band, which are complemented by spectra obtained by

the CfA Supernova Program (Blondin et al. 2012) and the Berkeley Supernova Ia Program



– 4 –

(BSNIP, Silverman et al. 2012a). The spectra provide clear evidence for unburned carbon.

SN 2002fk is a very well observed SNe Ia showing carbon lines in pre-maximum spectra

and the only one where such lines persist several days past peak brightness. Thus, these

observations provide important clues to our understanding of the explosion mechanisms for

normal SNe Ia.

This paper is organized as follows: in section 2 we describe the photometric and spec-

troscopic observations and data reductions; in section 3 we present the photometric data

and the determination of reddening caused by dust; in section 4 we show the spectroscopic

evolution of SN 2002fk; in section 5 we calculate the Hubble constant using the photometry

presented here complemented by LOSS and CfA3 photometry, and the distance to NGC 1309

(Riess et al. 2011a); we discuss our results and present our conclusions in section 6. In

an upcoming paper (Zelaya et al. 2014) we will present spectropolarimetric observations of

SN 2002fk.

2. OBSERVATIONS AND DATA REDUCTION

SN 2002fk was discovered independently by Kushida, R. (2002) and by Wang & Qiu

(2002) at V ≃ 15.0 mag on 2002 September 17.7. The supernova was located at α=03:22:05.71

and δ=-15:24:03.2 (J2000), 3.6′′ south and 12.6′′ west of the host galaxy NGC 1309 (see

Figure 1). NGC 1309 is an SA(s)bc galaxy with a heliocentric recession velocity of 2,136

km s−1 obtained from neutral hydrogen line measurements (Koribalski et al. 2004). Ayani & Yamaoka

(2002) classified SN 2002fk as a Type Ia from an optical spectrum obtained on 2002 Septem-

ber 20.

2.1. Instrumental Settings

The optical imaging of SN 2002fk was obtained with UBVRI Johnson-Kron-Cousins

filters using the Swope 1 m telescope, the Wide Field Re-imaging CCD Camera (WFCCD)

on the 2.5 m du Pont telescope, and the Low-Dispersion Survey Spectrograph (LDSS-2) on

the 6.5 m f/11 Magellan Clay telescope, all at Las Campanas Observatory (LCO). A few

additional optical images were obtained with the 0.9 m and 1.5 m telescopes at Cerro Tololo

Inter-American Observatory (CTIO). For galaxy subtraction, we used images obtained with

the Direct CCD Camera on the 2.5 m du Pont telescope. Additional observations with the

Panchromatic Robotic Optical Monitoring and Polarimetry Telescope (PROMPT) at CTIO

were obtained for the single purpose of calibrating a photometric sequence of local standards
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around SN 2002fk.

IR images of SN 2002fk were obtained with JHKs filters with the Swope telescope IR

Camera (C40IRC) and the Wide Field IR Camera (WIRC) on the du Pont telescope. In

Table 1 we summarize the instruments used for the optical and IR imaging.

Optical spectroscopy of SN 2002fk was obtained with five instruments: LDSS-2 and the

B&C Spectrograph on the LCO Baade telescope, the WFCCD and Modular Spectrograph

on the LCO du Pont telescope, and FORS1-PMOS on the ESO (European Southern Ob-

servatory) Very Large Telescope located on Cerro Paranal. In Table 2 we summarize the

instruments used for the spectroscopic follow-up and their main characteristics. More details

about these instruments are given by Hamuy et al. (2009).

2.2. Optical Photometry Reduction

We reduced the optical images using a custom IRAF11 script package, as described by

Hamuy et al. (2009). We processed the raw images through bias subtraction and flat fielding.

As long as sky flats were available, we corrected small gradients in dome flat illumination

(∼ 1%). To reduce any possible galaxy contamination in our photometry we subtracted the

host galaxy from our SN images using high quality template images obtained with the Direct

CCD Camera on the du Pont telescope after the SN had vanished on 2005 February 13. This

instrument delivers a typical point-spread-function (PSF) of 0.7′′ (full width at half-maximum

intensity), thus providing templates with better image quality than any of the SN+galaxy

images. To secure high quality image subtractions, we employed the same UBV (RI)KC

filter set of the Swope telescope (which was used on the majority of our optical observations;

see Table 5). Differential PSF photometry was made on the galaxy-subtracted images using

the sequence of local standards (Figure 1), calibrated against Landolt (1992) photometric

standards observed during several photometric nights. Systematic errors introduced by using

template images taken with the du Pont telescope are considered in Appendix A.

The Landolt stars were employed to derive the following photometric transformations

from instrumental to standard magnitudes,

U = u + ctu (u − b) + zpu (1)

11IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the As-

sociation of Universities for Research in Astronomy, Inc., under cooperative agreement with the National

Science Foundation.
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B = b + ctb (b − v) + zpb (2)

V = v + ctv (v − i) + zpv (3)

R = r + ctr (v − r) + zpr (4)

I = i+ cti (v − i) + zpi (5)

In these equations UBV RI (left-hand side) are the published magnitudes in the standard

system Landolt (1992), ubvri (right-hand side) correspond to the natural system magnitudes,

ctj to the color term, and zpj to the zero-point for filter j(j = u, b, v, r, i)12.

These transformations were then applied to 11 pre-selected stars in the field of the SN in

order to establish a sequence of local standards, which is presented in Table 3. In Appendix

B we perform a detailed analysis of our photometric calibration and a comparison with that

obtained by LOSS (Ganeshalingam et al. 2010) and CfA3 (Hicken et al. 2009).

Having established the photometric calibration of the SN 2002fk field, we carried out

differential photometry between the SN and the local standards. For all five optical cameras

we employed average color terms determined on multiple nights (listed in Table 4), solving

only for the photometric zero-points. The resulting UBV RI magnitudes covering 130 days

of evolution of SN 2002fk are summarized in Table 5.

2.3. Near-IR Photometry Reduction

The vast majority (21/24) of the near-IR photometric observations were obtained with

WIRC on the du Pont telescope. WIRC has four different detectors. Usually only two of

the detectors were used to observe. The observing strategy consisted in taking five dithered

images of the object with detector 1, while detector 2 was used to take sky images. Then

the detectors were switched, i.e. the SN was observed on detector 2 while detector 1 was

used to take sky images. The observations were reduced following standard procedures with

a slighty modified version of the Carnegie Supernova Project (CSP) WIRC pipeline (written

in IRAF, Hamuy et al. 2006; Contreras et al. 2010). We had to modify the pipeline to work

without dark and bias because these calibrations were not taken during the observations of

SN 2002fk. The pipeline first masks detectable sources in the sky frames and then combines

them to create a final sky frame for each detector. Then the pipeline subtracts the final sky

image from the science images to get a bias/dark/sky subtracted science frame. In order to

12In the case of the LDSS-2 instrument which does not have an I filter, we used (b− v) instead of (v − i)

in equation 3.
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correct for pixel–to–pixel gain variations we divide science images by a flat field constructed

from the subtraction of a flat-off from a flat-on image and normalize the result. For nights

where flats were not taken we used the best calibration images from the two closest nights.

In addition to this, the pipeline masks cosmetic defects and saturated objects and combines

the dithered frames from each detector to deliver a final science image per detector.

Classic-Cam on the 6.5 m Baade telescope was used on three nights to obtain near-

IR images. Since all calibrations (dark, bias, flat) were taken with this instrument, we

performed the standard data reduction. First we subtracted the bias and the dark from all

frames. Then we created a flat field for each night subtracting the flat–off from the flat–on

image and normalized the result. Finally, we corrected pixel–to–pixel variations dividing all

science images by the flat fields.

We obtained galaxy subtraction templates, using the WIRC/du Pont configuration,

on 2003 November 2 and 11 after the SN had vanished. We perfomed differential PSF

photometry of the SN in the WIRC galaxy–subtracted images with respect to four near-IR

local sequence stars around SN 2002fk. We calibrated these four local standards stars with

respect to Persson et al. (1998) standards using aperture photometry. The Persson standard

star images were taken close in time and airmass to the SN field, so it was not necessary to

correct for atmospheric extinction. Photometry of the local sequence was obtained in four

photometric nigths with WIRC. In Table 6 we present our JHKs photometry for the local

sequence along with the 2MASS magnitudes for comparison. Within the uncertainties our

photometry is in good agreement with the 2MASS values. This is an encouraging result

considering that the Persson et al. (1998) system is not identical to the 2MASS photometric

system (Skrutskie et al. 2006).

In the small field-of-view of Classic-Cam only star c5 was observed along with the SN.

This precluded us from subtracting the galaxy templates and performing PSF photometry,

so we ended up measuring aperture photometry of the SN with respect to c5 alone. Table 7

presents the resulting JHKS photometry for SN 2002fk which covers 115 days of its evolution

since discovery.

2.4. Spectroscopy

A total of 15 spectra of SN 2002fk were obtained, as summarized in Table 2. We

obtained five spectra with the 6.5 m Magellan Baade telescope using LDSS-2. For these

observations, a 300 line mm−1 grism blazed at 5000 Å was employed, covering from 3600

to 9000 Å with a resolution of 14 Å. Three spectra were observed with the Baade telescope
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using the B&C Spectrograph. This instrument uses a SITe 1752× 572 pixel CCD with 300

line mm−1 grating blazed at 5000 Å. The wavelength range obtained was 3200 to 9200 Å with

a resolution of 7 Å. Three times we used the du Pont telescope with the WFCCD instrument

in its spectroscopic long-slit mode. A 400 line mm−1 blue grism was employed, covering the

wavelength range from 3800 to 9200 Å with a resolution of 8 Å. We also obtained one

spectrum with the Las Campanas Modular Spectrograph on the du Pont telescope, covering

from 3790 to 7270 Å with a resolution of 7 Å. With all four instruments (WFCCD, LDSS-

2, B&C, and Modular Spectrograph) we observed the SN and the standard stars with the

slit aligned along the parallactic angle (Filippenko 1982) to reduce the effects of atmospheric

dispersion. Additional information about the instruments and observing modes are presented

in Hamuy et al. (2009).

Three of our spectra of SN 2002fk were obtained in polarimetric mode with the FORS1

instrument on the ESO VLT UT3 telescope on 2002 October 1st, 5th, and 14th. For each

of the three epochs observed, four exposures were taken with the retarder plate at position

angles of 0, 22.5, 45 and 67.5 degrees. The exposure times were 720 sec on October 1st, 720

sec on October 5th, and 600 sec on October 14th. Grism GRIS 300V was used with no order

separation filter. This provides a dispersion of 2.59 Å pix−1, and the resulting wavelength

range 3300–8500 Å. The spectral resolution with a 1′′ slit was 12.25 Å, which we measured

using the [OI] 5577 sky emission line. Additional observations of a flux standard, EG21, were

performed at position angle 0 degrees to calibrate the flux level. We followed a standard

data reduction procedure using IRAF. A single intensity spectrum was obtained for each

epoch, combining the four angle spectra with two beams each, in the following way:

Ftot =

∑
speci

specerr2
i∑

1
specerr2

i

(6)

with i=0, 22, 45 and 67, where speci is the sum of the two beams corresponding to ordi-

nary and extraordinary rays, at each angle, and specerri is the quadratic sum of the errors

per beam for each of the four angles. Here we present the intensity spectra alone, and

we postpone the spectropolarimetric reduction details and results for an upcoming paper

(Zelaya et al. 2014).

Despite having observed the SN along the parallactic angle, we checked the spectropho-

tometric quality of our spectra by convolving them with the standard BV (RI)KC bandpasses

described by Bessell (1990) and computing synthetic magnitudes. In general, this compar-

ison shows very good agreement within 0.01-0.03 mag between the observed and synthetic

colors, thus demonstrating the excellent quality of our spectra. Having checked the relative

spectrophotometry we proceeded to apply a low–order wavelength dependent correction to
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make all of our spectra fully consistent with the photometry.

Optical spectra of SN 2002fk were recently published by the CfA Program (Blondin et al.

2012) and the Berkeley Supernova Ia Program (BSNIP, Silverman et al. 2012a). CfA ob-

tained 23 spectra covering from −3 to +120 days since maximum in B and BSNIP obtained

five spectra from +8 to +150 days after B maximum. In Figure 2 we compare our spectra

(blue) taken with the CfA (green) and the BSNIP (orange) spectra observed within one day

from ours. As can be seen, the agreement is excellent, with only very small differences with

the first two CfA spectra. All of these data will be used subsequently in our study.

3. LIGHT CURVES OF SN 2002fk

3.1. Optical Light Curves

Optical photometry of SN 2002fk has been previously published by LOSS (Riess et al.

2009b; Ganeshalingam et al. 2010) and by the CfA Supernova Program (CfA3 sample,

Hicken et al. 2009). These data have good sampling, most notably the LOSS observations

that begin 11.8 days before B-band maximum. These datasets are a valuable complement to

our optical photometry. However, since we have detected systematic differences between the

CATS, LOSS, and CfA3 photometric calibrations it has proven necessary to apply offsets

to the LOSS and CfA3 photometry in order to bring all measurements to the same CATS

photometric system, as described in Appendix B. In doing so, we added in quadrature to

the LOSS and CfA3 uncertainties those from the photometric offsets. Adding these offsets

(summarized in Table 8) decrease significantly the differences in the R- and I–band SN

magnitudes among the three datasets (as illustrated in Figure 3 for the I–band), but has no

noticeable effects in the B- and V –bands.

Figure 4 presents the UBV RI light curves of SN 2002fk, including CATS (filled circles)

and the LOSS (open circles) and CfA3 data (open squares) after applying the corresponding

photometric offsets. A polynomial fit to the B-band light curve around maximum brightness

yields Bmax = 13.30 ± 0.03 mag on JD 2, 452, 547.8 ± 0.5 and a decline rate parameter

∆m15 = 1.02 ±0.04 which is close to the fiducial value adopted by Phillips et al. (1999)

and Folatelli et al. (2010) for SNe Ia. Polynomial fits to the other lightcurves yield Umax =

12.69±0.07 mag on JD 2, 452, 546.0±1.5, Vmax = 13.37±0.03 mag on JD 2, 452, 548.5±0.5,

Rmax = 13.36 ± 0.03 mag on JD 2, 452, 549.2 ± 0.5, and Imax = 13.57 ± 0.03 mag on JD

2, 452, 545.8± 0.5. V and R peak roughly one day after B, whilst U and I peak two days

before B. This is consistent with the typical behavior of SNe Ia. Bright Type Ia SNe

usually show a secondary maximum in R and I, and in the near-IR bands. A polynomial
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fit to the secondary peaks yields R2nd max = 14.14 ± 0.03 on JD 2, 452, 568.3 ± 0.5 and

I2nd max = 14.08 ± 0.03 on JD 2, 452, 575.4 ± 0.5. Errors in peak magnitudes include the

uncertainty due to differences in filter transmissions (S-corrections; see Appendix C).

A small bump ∼ 0.15 mag is present in the I-band light curve of SN 2002fk located

∼ 20 days past maximum and ∼ 7.5 days before the secondary maximum. This is seen in

Figure 3 which shows the individual I-band data points and the residuals from a polynomial

fit. The left panels correspond to the original CATS, LOSS, and CfA3 data, while the right

panels correspond to the same data after applying the photometric offsets. Although the

bump in question is supported by three photometric points (two from CATS and one from

CfA3), each one with a 3-7 σ significance, we cannot rule out the possibility that it is an

artifact due to the combination of photometry taken with different filters and detectors.

In Figure 5 we compare the BV RI light-curves of SN 2002fk and other SNe with similar

∆m15. Despite their similar decline rates, we notice small yet real departures from a com-

mom photometric behavior, namely: 1) a dispersion in the rise branch, where SN 2002bo,

SN 2002dj, and SN 2005cf show faster rise times, in agreement to what was found by

Pignata et al. (2008) and Ganeshalingam et al. (2011) where high-velocity gradient objects

(as defined by Benetti et al. 2005) generally show shorter rise times; 2) the small bump

∼ 0.15 mag in the I–band light curve of SN 2002fk that peaks 20 days past maximum in B;

3) small differences in the time and amplitude of the secondary peaks in R and I (see also

Krisciunas et al. 2001; Folatelli et al. 2010; Burns et al. 2011).

3.2. Near-IR Light Curves

Figure 6 shows our optical and near-IR light curves of SN 2002fk. Our near-IR ob-

servations begin 12 days before B-maximum, among the earliest JHK photometry ever

obtained for a SN Ia, and extend through 102 days past maximum which is exceptional

for a SN Ia (Krisciunas et al. 2004b; Wood-Vasey et al. 2008; Folatelli et al. 2010). The

photometric coverage is remarkably good before and close to peak brightness, through the

near-IR minimum, and at late times. The second near-IR peak, on the other hand, is not

so well sampled. Polynomial fits to the IR light curves around maximum brightness yield

Jmax = 13.76± 0.02 on JD 2, 452, 544.3± 0.5, Hmax = 13.98± 0.02 on JD 2, 452, 543.5± 0.5,

and Kmax = 13.76± 0.02 on JD 2, 452, 544.2± 0.5.

In Figure 7 we compare the IJHK-band light curves of SN 2002fk, SN 2001el (Krisciunas et al.

2003), SN 2002dj (Pignata et al. 2008), SN 2005cf (Wang et al. 2009), and SN 2006dd

(Stritzinger et al. 2010) normalized to peak magnitudes in each band. These are well-studied
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SNe with very complete optical and near-IR light curves and with similar ∆m15 values. We

also show in dotted-dashed lines the templates from Krisciunas et al. (2004b) and in dashed

lines the templates from Wood-Vasey et al. (2008). In all bands SN 2002fk has a faster rise

to peak than both templates. After maximum it is evident that SN 2002fk has a more pro-

nounced minimum in all IJHK bands compared with the other SNe and a deeper minimum

than the Wood-Vasey et al. (2008) and Krisciunas et al. (2004b) templates. Although the

secondary peak was not covered by our observations in JHK, the observations suggest a well

defined secondary maximum, clearly distinguishable from the first peak and from the min-

imum between the peaks. The differences in the light curves become much smaller around

the secondary peak, after which all five SNe show good agreement in their decline rates.

Kasen (2006) showed that the near–IR secondary maximum is related to the ionization

evolution of the iron group elements, in particular to the transition of the iron/cobalt gas from

double to singly ionized. In his scenario the mixing of 56Ni outward increases the velocity

extent of the iron core. This hastens the ocurrence of the near–IR secondary maximum.

In SN 2002fk the secondary peak does not occur earlier than in the remaining SNe, so a

large mixing of 56Ni is unlikely. Higher metallicity progenitors should produce a higher

fraction of stable iron group material (Timmes et al 2003). Kasen (2006) showed that a

large amount of iron group material would cause the recombination wave to reach the iron–

rich layers relatively earlier, thus producing an earlier secondary maximum. Given that

in SN 2002fk the secondary peak was not observed to occur earlier, greater than normal

progenitor metallicity is also unlikely. In his models, Kasen (2006) presented evidence that

a higher contrast between the peaks and the minima is expected in hotter SNe (i.e. those

with relatively greater 56Ni mass) because the transition wave from double to single ionized

iron takes a longer time to reach the iron core. Perhaps then, the deep minimum observed

in SN 2002fk is produced by a higher than normal ejecta temperature, and the I-band bump

∼20 days past maximum could be due to asymmetries in the distribution of iron group

elements.

3.3. Reddening Determination

Given the early and complete optical and near-IR light curves of SN 2002fk we can esti-

mate the amount of dust reddening (Galactic + host galaxy) using different colors, assuming

the standard Galactic extinction law of Cardelli et al. (1989).

Firstly, we estimate the reddening towards SN 2002fk from its late-time (B − V ) colors

using the standard Lira–Phillips relation (Lira 1996; Phillips et al. 1999), which yields E(B−

V )Lira = 0.066± 0.019. The slope of SN 2002fk is in good agreement with the Lira relation
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within the dispersion. Secondly, we use the near maximum optical colors versus decline

rate relations (Phillips et al. 1999), which yields E(B − V )Bmax−Vmax
= 0.009 ± 0.044 and

E(B− V )Vmax−Imax
= 0.082± 0.038. Thirdly, we estimate the reddening using the V− near-

IR colors by minimizing χ2 between the observed V −H and V −K colors with respect to

the Krisciunas et al. (2004b) zero-reddening templates. From these fits we obtain E(B −

V )V−H = 0.014± 0.037 and E(B − V )V−K = 0.075± 0.036. Within the uncertainties these

results are consistent with the optical methods.

In table 9 we summarize our results. The weighted mean of the reddening using these

five different methods is E(B − V ) = 0.057 with a dispersion of 0.036 mag. This value is

close to the measured Galactic reddening towards SN 2002fk, namely E(B − V ) = 0.035

mag (Schlafly & Finkbeiner 2011), which implies that the host galaxy reddening was low.

As shown by Phillips et al. (2013), the equivalent width of Na I D is not a reliable indicator

of host dust extinction in SNe Ia. According to these authors, only the absence of detectable

NaI D absorption in a high signal-to-noise ratio spectrum can be used to infer low dust

extinction. The fact that we detect a weak (0.018 Å) Na I D absorption in our highest

signal-to-noise spectra at the redshift of the host galaxy is consistent with the small dust

reddening inferred from the SN colors.

3.4. Optical Colors

Figure 8 shows dust corrected color curves of well observed “normal” SNe Ia with

similar ∆m15 to SN 2002fk. We dereddened the color curves using the recalibrated Galac-

tic extinction maps of Schlegel et al. (1998) presented by Schlafly & Finkbeiner (2011) and

the host galaxy reddening derived from the Lira–Phillips relation (Lira 1996; Phillips et al.

1999). In all cases we transformed reddening into extinction at different filters using the

standard Galactic extinction law of Cardelli et al. (1989) with RV = 3.1, with the warning

that the use of RV = 3.1 can introduce systematic offsets for heavily reddened SNe like

SN 2002bo (Phillips et al. 2013), with the effect being largest in V − I. In red are shown

SN 1990N (Lira et al. 1998), SN 1994D (Patat et al. 1996), SN 1998aq (Riess et al. 2005),

SN 2003du (Stanishev et al. 2007) which are LVG SNe.13 In magenta we show SN 2001el

(Krisciunas et al. 2003) and SN 2005cf (Wang et al. 2009) both of which are LVG with strong

high velocity Ca II lines near maximum light. Finally in blue are SN 2002dj (Pignata et al.

13Benetti et al. (2005) separated SNe Ia into three groups: high-velocity gradient (HVG) objects, consisting

of SNe with v̇Si II & 70 km s−1 day−1 and ∆m15 . 1.5 mag, low-velocity gradient (LVG) objects, consisting

of SNe with v̇Si II . 70 km s−1 day−1 and ∆m15 . 1.5, and FAINT objects with ∆m15 & 1.5.
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2008), SN 2002bo (Benetti et al. 2004), and SN 2009ig (Foley et al. 2012a) which are HVG

SNe.

In the upper left panel of Figure 8 we show the U − B color curves. Overall, we see

an evident dispersion amounting to several tenths of a magnitude, despite all SNe having

been corrected for dust reddening. We see a progression in color before and near maximum,

where the LVG SNe display the bluest colors, the LVG SNe with strong high-velocity (HV)

Ca II lines have intermediate colors, and the HVG SNe are the reddest. What is more

remarkable is the difference in shape between the two most complete U − B color curves.

While SN 1998aq grows steadily redder in U − B during the first 30 days, SN 2005cf shows

a dramatic blueing at early epochs followed by an upturn seven days before maximum. The

evolution of SN 2002fk is similar to SN 1994D, evolving with a linear trend from very blue

U − B colors at pre-maximum epochs to redder colors at about 30 days past maximum. It

is important to note at this point, that even though the dispersion in U − B colors can be

significantly affected by systematic errors in dust reddening corrections, the differences in

shape cannot be accounted by this effect. Although filter transmission variations can reach

a few tenths of a magnitude in the U -band, the differences observed at early epochs reach

even one magnitude, so we believe they are real and not a result of filter mismatches or sky

transmission.

The upper right panel of Figure 8 shows the B − V colors. Overall, the color evolution

of SN 2002fk is that of a normal Type Ia. The four SNe with the earliest observations

(SN 1994D, SN 2002bo, SN 2005cf, SN 2003du, and SN 2009ig) all show clear evidence for

un upturn around 5 days before maximum that indicates an evolution from red to blue at

the very early epochs. Even though the sample is small, this seems to be a generic feature

of SNe Ia. This behavior was already noted by Hamuy et al. (1991) in SN 1981D, based

on early-time observations obtained with photographic plates (see their Fig. 5). Promptly

after maximum all SNe grow redder for a period of ∼30 days, after which they all grow bluer

which corresponds to the linear tail of the optical light curves. As a reference we show with

solid line the Lira law (in cyan). Within the uncertainties it appears that all SNe share a

common slope at these epochs, but we observe small systematic offsets of ∼0.08 mag for

some individual objects. Considering that the use of different instrumental bandpasses can

introduce systematic errors ∼0.05 mag at these epochs (Stritzinger et al. 2002), it appears

that there are some small yet significant intrinsic color differences among SNe Ia during the

phase corresponding to the Lira law.

The V − R colors are shown in the lower left panel of Figure 8. The evolution of

SN 2002fk has a normal shape compared to the other SNe. However, we see an intrinsic

scatter at the level of 0.4 mag among the different objects, with SN 2002fk and SN 1998aq
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being among the reddest objects. SN 2005cf and SN 2001el, which are LVG objects with

strong HV Ca II lines, are in the middle of the distribution, while the HVG objects are

among the bluest objects. Note that this is the opposite trend that we observe in U − B.

This apparent gradient in V −R color is specially noticeable 10 days before B maximum. At

later times this gradient still seems to be present, but there is more scatter in the photometry.

In the lower right of Figure 8 we show the V − I color curves. We see evidence for a

divergent behaviour at the very earliest epochs. We can separate the SNe in two groups

before maximum; the SN 2002fk-like SNe (LVG SNe without strong Ca II before maximum)

showing a steady evolution from red to blue; the SN 2005cf-like group (LVG SNe with

strong Ca II lines); and the HVG SNe, that show a downturn at day ∼-7. At about ten

days before maximum, the former are nearly 0.3 mag redder then the latter. An interesting

case is SN 2009ig which belongs to the HVG group (Foley et al. 2012a) and is slightly redder

than SN 2005cf, but at ∼-15 days shows redder colors than the remaining SN 2005cf-like

objects. The early-time dichotomy observed in V − I is reminiscent of what happens in

U − B. Interestingly, both the U and I bands share the presence of Ca II lines, namely the

Ca II H&K lines at 3951 Å and the Ca IR triplet at 8579 Å. However, as demostrated by

Cartier et al. (2011) the strength of the Ca II lines cannot completely explain the dichotomy

observed in U −B and V − I. About 10 days past B maximum all SNe grow redder through

40 days after peak. Later on, all SNe grow bluer. Although the slope is similar we observe

significant offsets that exceed the potential systematic errors due to the use of different

instrumental bandpasses (Stritzinger et al. 2002).

3.5. V − near-IR Colors

Figure 9 shows the dereddened V − near-IR colors of SN 2002fk. For comparison

we show the V − near-IR color curves of SN 2001el (Krisciunas et al. 2003), SN 2002dj

(Pignata et al. 2008), SN 2003du (Stanishev et al. 2007), SN 2005cf (Wang et al. 2009), and

SN 2006dd (Stritzinger et al. 2010). These are well studied SNe with similar ∆m15, early,

and complete near-IR light curves. As in Section 3.4, we corrected the colors making use of

the Galactic extinction maps of Schlafly & Finkbeiner (2011), the Lira–Phillips relation to

estimate host galaxy reddening, and the Cardelli et al. (1989) extinction law to transform

from color excess to extinction in specific bandpasses. We caution the reader that our choice

of RV = 3.1 may introduce significant offsets in the V –near-IR colors of heavily reddened

objects with a lower value of RV .

We show in Figure 9 the V − near-IR templates of Krisciunas et al. (2004b). In dotted-

dashed lines are shown the loci for slow decliners while dashed lines correspond to the loci
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of mid-range decliners. In the top panel we show the V − J colors. SN 2002fk declines from

blue to red at a similar rate as the locus of slow decliners, but is offset by ∼0.2 mag to redder

colors. At early epochs SN 2002fk is similar to SN 2002dj, SN 2003du, and SN 2006dd. After

ten days since maximum SN 2002fk is similar to SN 2001el, and SN 2005cf.

The middle panel of Figure 9 shows the V −H color curves. Here SN 2002fk fits the locus

of the mid-range decliners at early epochs but after ten days SN 2002fk is ∼0.2 mag bluer

than the template. At early times SN 2002fk has similar colors to SN 2002dj, SN 2003du,

SN 2005cf, and SN 2006dd. SN 2002dj and SN 2006dd resemble the mid-range decliners

template. After 10 days since maximum, the evolution of SN 2002fk continues to be similar

to SN 2005cf.

The V − K color curve is shown in the botton panel of Figure 9. SN 2002fk matches

the template quite well, although at early epochs it is slighty redder than the locus of the

mid-range decliners. SN 2002dj is very similar to SN 2002fk, whereas SN 2001el, SN 2003du,

and SN 2005cf show colors that better fit the locus of the slow decliners.

4. OPTICAL SPECTRA

Figure 10 shows 15 optical spectra of SN 2002fk that span from four days before B

maximum to 95 days past peak. Near maximum, SN 2002fk shows the characteristic Si II

λ6355 absorption, Ca II H&K lines, the Ca II near-IR triplet, the W-shaped S II lines,

and Si III λ4560. Nugent et al. (1995) found a correlation between peak luminosity and

R(Si II), the ratio of the intensities of Si II λ5972 to Si II λ6355 lines near maximum, which

is interpreted as a temperature effect. For SN 2002fk we measure R(Si II) = 0.189 ± 0.002,

corresponding to a bright SN with a hot ejecta (see section 5, Nugent et al. 1995). Further

evidence that SN 2002fk was hotter than normal can be drawn from the blue B−V colors,

and from the Si III λ4560 and λ5740 absorption lines before maximum, which are usually

present in the early spectra of bright SNe.

A relatively weak yet evident absorption is present at ∼ 6400 Å, which we identify as

C II λ6580. This line was previously identified by Blondin et al. (2012) in a spectrum taken

−3.34 days since maximum. Support for this identification comes from two additional lines

at ∼ 4600 Å and ∼ 7000 Å which can also be attributed to C II. Remarkably, the C II λ6580

feature persists until several days past maximum, which is unprecedented in normal SNe Ia

(see Parrent et al. 2011; Thomas et al. 2011b; Folatelli et al. 2012; Silverman & Filippenko

2012b). Otherwise, the post-maximum evolution of SN 2002fk is consistent with that of a

Branch-normal Type Ia SNe (see section 4.1 below).
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4.1. Temporal Evolution of the Spectra

In Figure 11 we compare the spectra of SN 2002fk with three well-observed SNe with

similar ∆m15: SN 1998aq (Branch et al. 2003), SN 2003du (Stanishev et al. 2007), and

SN 2005cf (Wang et al. 2009; Bufano et al. 2009), the prototypical Branch-normal SN 1994D

(Patat et al. 1996), and the super–Chandra candidate SN 2006gz (Hicken et al. 2007). We

choose -4, 0, +25 and +95 days after maximum light as comparison epochs. All the spectra

are in the host galaxy rest-frame and were reddening corrected as described in Section 3.4.

In the top-left of Figure 11 we show the spectra of SN 2002fk at ∼ −4 days. The

spectrum is characterized by lines of singly ionized intermediate-mass elements (Si, S, Mg,

and Ca), higher-ionized lines of Si III, C II, and a strong absorption at ∼ 3750 Å that

could correspond either to high-velocity Ca II H&K, Si II λ3858, or a blend of both (see

Section 4.4). At this epoch the spectrum of SN 2002fk is similar to SN 2003du with both SNe

showing strong Si III absorption lines. Also the super–Chandra candidate SN 2006gz shows

prominent Si III lines. Like SN 2002fk, SN 2006gz also shows strong C II λ6580 absorption,

which is broader than the ones in SN 2002fk. If the HV Ca II lines are present in SN 2002fk,

they are slightly stronger than the ones observed in SN 1994D, but not as remarkable as the

HV Ca II lines present in SN 2005cf at this epoch.

In the top-right panel of Figure 11 we show the spectrum of SN 2002fk near maximum

light. At this epoch SN 2002fk and SN 1998aq share similar spectral shape and features

and both SNe show Si III lines comparable to the lines present in SN 2006gz. Additionally,

SN 2002fk shows normal Ca II, and maybe weak HV Ca II lines. In contrast SN 2005cf

shows strong HV Ca II lines. Remarkably, SN 2002fk still shows clear C II λ6580 and λ7234

absorption lines.

In the bottom-left of Figure 11 we show the spectrum of SN 2002fk at ≃ +25 days since

maximum. This epoch corresponds to the beginning of the transition from the photospheric

to the nebular phase and the spectra are becoming dominated by absorption of iron–peak

elements (Fe II, Co II, Cr II, etc). The similarity of all the spectra at this epoch is impressive.

However, it is interesting to mention that the Na I absorption in SN 2002fk is slightly stronger

than in the others. In the bottom-right of Figure 11 we show the spectrum of SN 2002fk and

other SNe at ≃ +95 days since maximum. At this epoch the transition from photospheric

to nebular phase is almost complete, and all the spectra are very similar showing forbidden

emission lines of iron elements (i.e. [Fe III], [Co III]). SN 2002fk is particularly similar to

SN 1998aq, and still has a slightly stronger Na I absorption line.
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4.2. Photospheric Expansion Velocity

In Figure 12 we show the photospheric expansion velocity of SN 2002fk measured from

the minimum of the Si II λ6355 line, and a comparison with other SNe Ia. The Si II λ6355 line

is thought to trace the position of the photosphere (Benetti et al. 2005). In red we plot three

HVG SNe: SN 2002bo (Benetti et al. 2004), SN 2002dj (Pignata et al. 2008) and SN 2009ig

(Foley et al. 2012a; Marion et al. 2013). In blue we show the five best observed LVG SNe:

SN 1990N (Leibundgut et al. 1991), SN 1994D (Patat et al. 1996), SN 1998aq (Branch et al.

2003), SN 2003du (Stanishev et al. 2007) and SN 2005cf (Wang et al. 2009). For SN 2002fk

we measure a velocity gradient of v̇ = 26.3 km s−1 day−1 between −4 and +14 days since

maximum, which falls in the low end of the distribution of SNe Ia (Benetti et al. 2005). We

also measure the velocity ten days after maximum v10 ∼ 9,400 km s−1. Compared to the

Benetti et al. (2005) sample, SN 2002fk falls 3σ below the mean (<v10>∼10,300 km s−1 ±

300 km s−1). From v̇ and v10 we unambiguously classify SN 2002fk as a LVG SN. Note that

in the sample of near-IR spectra of SNe Ia presented by Marion et al. (2003), SN 2002fk also

stands out for its anomalously low velocity measured from the Mg II λ 10910 absorption.

In the inset of Figure 12 we show velocities measured from other prominent lines in

the spectrum. Compared to Si II λ6355, the Si III λ4560, S II λ5635, and Si III λ5740

lines show lower velocities and higher velocity gradients, implying that they form below and

recede faster into the SN ejecta. We observe that Ca II H&K possibly has two components

(see Section 4.4 for a detailed discussion). The main photospheric absorption is located at

v ∼ 11,150 km s−1 and shows a flat evolution compared to Si II λ6355. It is possible that

a detached high–velocity Ca II component is observed four days before maximum with v ∼

16,700 km s−1, and could be observed on day +5 with v ∼ 15,700 km s−1 (see Figure 10).

This is similar to the velocity evolution of the Ca II lines in HVG SNe.

Before maximum light the minimum of the C II λ6580 absorption line is formed at higher

velocites than Si II λ6355 (i.e. at larger radii in the SN ejecta), but near maximum light and

thereafter the C II absorption minimum is measured deeper in the ejecta than Si II. This

means that there is a significant amount of unburned C II at the same position, in velocity

space, where the intermediate mass elements (IME) are located. The absorption minimum

of C II λ6580 goes deeper in the ejecta with time, which could be due to emission coming

from the red side of the Si II λ6355 line (see Folatelli et al. 2012). Although the velocity

estimation from the minimum of the C II lines has larger associated uncertainties owing to

the weakness of the lines, the fact that both the C II λ6580 and λ7234 lines have similar

velocities suggests that our measurements are correct. Previous studies of Parrent et al.

(2011) and Folatelli et al. (2012) have shown that the C II λ6580 line is found at higher

velocities than the Si II λ6355 line, and the velocity gradient of these two lines is roughly
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the same (i.e. they are parallel in velocity versus time since maximum), which is different

from what we observe in SN 2002fk.

4.3. Presence of Unburned Material

Nearly 30% of all SNe Ia show evidence of C II λ6580 before maximum (Parrent et al.

2011; Thomas et al. 2011b; Folatelli et al. 2012; Silverman & Filippenko 2012b). In the mid-

dle panels of Figures 13 and 14 we present a series of spectra of SN 2002fk from −3.96 to

+7.70 days since B–band maximum. The x–axis shows the expansion velocity measured

with respect to C II λ6580. The presence of C II is confirmed by the simultaneous detection

of C II λ6580 and λ7234 lines at the same expansion velocities (∼ 10,000 km s−1). The

detection of both lines at several epochs, together with a possible detection of C II λ4745 in

our first two epochs with a similar velocity, gives us confidence in identifying these features

as C II.

Both C II λ6580 and λ7234 become weaker and shift to the red with time. Our latest

detection of C II λ7234 is at +4.50 days past B maximum while the C II λ6580 absorption

is detectable even at +8.07 days. Notably, this is the latest detection of C II in a normal SN

Ia and, as discussed in Section 4.2, it is clear indication of the presence of unburned material

mixed with IME’s if a homologous expansion of the ejecta is assumed.

4.4. Spectral Modeling

We used SYN++ (Thomas et al. 2011a), an updated version of SYNOW (Fisher et al.

1997) written in C++, to model the spectra. We modeled our data, CfA, and BSNIP spectra

from −3.96 to +7.70 days since maximum.

In SYN++, one computes a spectrum by specifying the location and optical depth for

a given set of ions. The input parameters for SYN++ are the photospheric velocity, the

optical depth, the e-folding length of the opacity profile, the maximum and minimum cut–

off velocity for each ion, and the Boltzmann excitation temperature for parameterizing line

strengths.

Recently Foley (2013) presented convincing evidence, though not definitive, that the

absorption on the blue side of the H&K Ca II line could be produced by Si II λ3858,

challenging the traditional interpretation that this absorption is caused by a HV Ca II line.

Here we attempt to test both hypotheses. To do this we fit a SYN++ model to all the

spectra from −3.96 to +7.70 days since B–band maximum. In Figure 15 we present some
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examples of our models which overall provide good fits to the observed spectra. We began our

modeling by fitting only the photospheric lines, especially Si II and Ca II. The characteristic

blackbody temperature (Tphot) in our models was ∼ 12, 800 K, and we set the excitation

temperature (Texc) of most of the ions at 500 K below Tphot. For the high ionizaton lines

like Si III and Fe III we set Texc to be the same as Tphot. Then, in order to get a good fit to

the absorption on the blue side of the H&K line without appealing to a HV Ca II line, we

had to modify Texc for Si II to ∼ 7000 K. We note that small variations around this value

can change dramatically the strength of Si II λ3858 but not the strength of Si II λ6355.

Alternatively, we also modeled this feature by adding a HV Ca II component with Texc set

equal to the rest of the ions without modifying the rest of the parameters. Both approaches

produce equally good models (see Figures 13, 14, and 15).

The Foley (2013) approach requires fewer parameters and reproduces the observations

equally well. Remarkably, the velocity and optical depth of Si II λ6355 proved quite in-

sensitive to Texc. However, the low Texc required to fit the Si II λ3858 line seems slighty

odd for a relatively bright SN with low R(Si II) (i.e. hot ejecta) and high ionization lines

like Si III and Fe III. Additionally, there is strong evidence that supports the presence of

HV Ca II in “normal” SNe Ia (Kasen et al. 2003; Gerardy et al. 2004; Mazzali et al 2005;

Stanishev et al. 2007; Tanaka et al. 2008; Childress et al. 2014). These features are clearly

observed at very early phases (∼ −7 days) in both Ca II H&K and the Ca II IR–triplet,

but near maximum they are not always easy to identify (Mazzali et al 2005). We conclude

that, while both Si II λ3858 and HV Ca II produce equally good fits to the data within the

SYN++ framework, more realistic radiative transfer models will be necessary to distinguish

which line is responsible for the absorption on the blue side of the H&K line.

As can be seen in Figures 13 and 14, the red side of the Si II λ6355 profile is not properly

fit by Si II alone (shown in red). To obtain a better fit we added a C II HV component

(shown in green). In the case of our spectra, which are not corrected for telluric absorption,

this feature on the red side of the Si II profile could be due to the lack of such corrections.

However, the CfA spectra obtained on days -3.34 and -1.36, which do include corrections

for telluric lines, are best modelled with a HV C II component. Interestingly, the HV C II

is at nearly the same velocity of the HV Ca II (∼ 16,000 km s−1). The presence of a HV

C II was previously suggested by Fisher et al. (1997), and is not completely unexpected

since unburned carbon material should be present in the outer layers of SNe Ia. We flag the

presence of HV C II as possible but not as certain.
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5. DETERMINATION OF THE HUBBLE CONSTANT USING THE

CEPHEID DISTANCE TO NGC 1309

With the relative Cepheid distance between NGC 1309 and NGC 4258 of Riess et al.

(2011a) (µNGC 1309−µNGC 4258 = 3.276±0.05), the maser distance to NGC 4258 of Humphreys et al.

(2013) (µNGC 4258 = 29.40± 0.06), the peak brightness and reddening of SN 2002fk derived

in Section 3.3, it is straightforward to calculate the Hubble constant (H0) via the formula

H0 = 100.2(M
1.1
max+25−α), where M1.1

max is the absolute magnitude of SN 2002fk corrected for

reddening and ∆m15, and α is the corresponding zero point of the Hubble diagram. In

the optical (BV I), we adopt the decline rate versus luminosity (∆m15/Mmax) relations and

zero points from Phillips et al. (1999), who employ the same prescription that we use here

for luminosity and reddening corrections. In the near-IR (JHK) we adopt ∆m15/Mmax

relations and zero points derived from two independent analysis of nearly the same near-IR

CSP observations, one by Folatelli et al. (2010) and the other by Kattner et al. (2012).

In Table 10 we summarize all the adopted parameters and the resulting values for

H0. The statistical uncertainty in H0 was computed from a Monte Carlo simulation. Our

code computes 10, 000 simulated values of H0 assuming a Gaussian distribution in peak

magnitude, reddening, ∆m15, the slope of the ∆m15/Mmax relationship, and the zero point

of the Hubble diagram. The systematic error includes 0.08 mag in distance modulus to NGC

1309, 0.03 mag in the photometric zero point, and the intrinsic dispersion in the ∆m15/Mmax

relationship from Phillips et al. (1999), Folatelli et al. (2010), and Kattner et al. (2012).

As can be seen in Table 10, the H0 values that we derive from the optical bands (BV I)

are very consistent with each other, allowing us to combine them into an BV I average of

H0(BV I) = 69.6±2.1 (±5.0 systematic) km s−1 Mpc−1 , where the systematic error includes

0.08 mag in distance modulus to NGC 1309, 0.03 mag in the photometric zero point, and the

intrinsic dispersion in the ∆m15/Mmax relationship including the variance in each band and

band-to-band covariances. Our value is 0.8 σ lower than the one published by Riess et al.

(2011a), H0 = 73.8± 2.4 km s−1 Mpc−1 , from eight SNe Ia with precise Cepheid distances.

This is due to the fact that SN 2002fk lies in the bright side of their luminosity distribution.

In fact, using the values listed in Table 3 of Riess et al. (2011a) and their Eq. (4), we find

H0 = 68.5 km s−1 Mpc−1 for this same SN, in very good agreement with our determination.

Thus, using SN 2002fk alone to determine H0 is expected to yield a lower value than the fit

to all eight SNe in their sample.

Table 10 shows that our near-IR estimate of H0 is sensitive to the adopted calibration:

using Kattner et al. (2012), we obtainH0(JH) = 66.7±1.0 (±3.5 systematic) km s−1 Mpc−1 ,

whereas if we employ Folatelli et al. (2010) we get H0(JHK) = 63.0±0.8 (±2.8 systematic)

km s−1 Mpc−1 . This discrepancy is mainly due to the different zero points obtained from
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their analysis, 0.17 and 0.07 mag in J and H , respectively (see Table 10), which arise

from the different techniques employed to measure peak magnitudes. While Kattner et al.

(2012) directly measured peak magnitudes based on a cubic-spline interpolation to seven

exquisitely observed SNe with observations starting before maximum, Folatelli et al. (2010)

included peak magnitudes extrapolated from a template light curve fit. As mentioned by

Kattner et al. (2012) the large diversity in early time near-IR light curve shapes can lead to

significant errors when fitting template light curves to derive peak brightnesses.

Despite the differences in H0 caused by the near-IR calibration adopted, it appears that

the near-IR yields somewhat lower (6-9%) H0 values than the optical. How significant is this

difference? Given that the systematic error for this particular SN is almost fully correlated

band to band (owing to the same Cepheid distance and the fact that the intrinsic dispersion

of SNe Ia is correlated band to band), the significance can be estimated from the statistical

uncertainty alone, which yields 1.2 and 2.9 σ for Kattner et al. (2012) and Folatelli et al.

(2010), respectively. It will be essential to further examine this issue by expanding the

sample of near-IR SN light curves with good sampling near maximum, which should lead to

a more robust determination of the zero point of the Hubble diagram and the ∆m15/Mmax

relationship. Such effort should be rewarded with a significantly more precise determination

of H0: as can be seen in Table 10, the near-IR yields smaller statistical uncertainties due to

a smaller sensitivity to extinction, decline rate correction, and higher precision in the zero

point of the Hubble diagram. As opposed to the optical bands where the zero point is subject

to inaccuracies caused by the heterogeneity in the various photometric systems employed,

our near-IR zero point is based in a single homogeneous Carnegie photometric dataset, an

essential ingredient in lowering the statistical uncertainty in H0.

An independent value of H0 = 69.77+2.07
−2.07 was obtained by Sullivan et al. (2011) by

combining the SNLS3 data with the full WMAP7 power spectrum and the Sloan Digital Sky

Survey luminous red galaxy power spectrum (DR7). Similarly, Mehta et al. (2012) obtained

H0 = 69.8 ± 1.2 by fitting a ΛCDM model to the DR7 and WMAP7 data. Studies of

galaxy clustering from the SDSS–III Data Release 8 (DR8) yield H0 = 70.5± 1.6 (Ho et al.

2012). More recently, the first results based on the Planck satellite measurements of the

CMB temperature and lensing-potential power spectra find a low value of H0 = 67.3 ± 1.2

(Ade et al. 2014). All these experiments reveal some tension with the H0 = 73.8± 2.4 value

obtained by Riess et al. (2011a). Our analysis provides the first determination of H0 from

near-IR SNe Ia data, and suggests that the near-IR could help to alleviate this tension.
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6. DISCUSSION AND CONCLUSIONS

We present early and complete optical (BV RI) and near-IR (JHK) light-curves of

SN 2002fk starting 12 days before maximum light through 122 days past maximum, along

with a series of 15 optical spectra from -4 to +95 days since maximum. Our study reveals

the following distinguishing properties of SN 2002fk:

• Low decline rate (∆m15=1.02) of the B lightcurve, consistent with a higher than

average peak luminosity (MB=-19.49).

• Negligible host galaxy reddening as inferred from the observed colors.

• Slightly bluer than average B − V color near maximum.

• Presence of Si II 6355 with a relatively low (9,500 km s−1 ) expansion velocity near

maximum, and a small velocity gradient, v̇Si II = 26 km s−1 day−1.

• Blue U −B and a red V − I early-time color, expected for LVG SNe Ia (Cartier et al.

2011).

• Presence of C II lines in the early-time spectra expanding at 11,000 km s−1 persisting

until 8 days past maximum light with a velocity ∼9,000 km s−1 , and possible HV component

with 16,000 km s−1 .

• Possible presence of a HV Ca II H&K component in the early-time spectra expanding

at ∼ 16, 000 km s−1 and persisting until ∼ 8 days past maximum, with similar velocity of a

possible HV C II component (an alternative explanation for the HV Ca II is Si II λ3858; see

Foley 2013).

In the off-center explosion models of Maeda et al. (2010c), SNe Ia with low Si II velocity

gradients are those with the ignition region oriented towards the observer. Therefore, we

expect a negative (blueshifted) velocity shifts of the [Fe II] λ7155 and [Ni II] λ7378 neb-

ular lines (Vneb). Silverman et al. (2013) have recently shown that this is indeed the case

for SN 2002fk (Vneb = −2060 km s−1 ), lending support to the Maeda et al. (2010c) mod-

els, the Cartier et al. (2011) relations (see their Fig. 2), and Förster et al. (2012) work.

Parrent et al. (2011) and Folatelli et al. (2012) have noted that SNe showing C II in their

spectra are grouped preferentially in the bottom of the Si II expansion velocity distribution.

Our observations of SN 2002fk are consistent with such findings. The connection between

viewing angle of an off-center explosion and the presence of C II in the early time spectrum

suggests that the observation of C II could be also due to a viewing angle effect. A possible

explanation could be that when the ignition region is directed towards us, the burning front

leaves some pockets of unburned material in the direction of the observer. Our observations



– 23 –

indicate also that SN 2002fk is quite luminous and somewhat bluer than normal, which might

also be a signature of an ignition region oriented towards the observer.

The possible presence of a HV Ca II component in the early-time spectra expanding at

∼ 16, 000 km s−1 persisting until ∼ 8 days past maximum, at a similar velocity of a possible

detection of a HV C II component, suggests that these HV features may arise from density

enhanced regions containing a mixture of Ca II and C II.

Our photometry shows good agreement with the optical magnitudes published by Riess et al.

(2009b), except in the I-band where we find an offset of 0.07 mag. We do not have an ex-

planation for this worrisome discrepancy except that LOSS employed an I filter with an

extended red tail compared to the standard bandpass.

Adopting the Cepheid distance to NGC 1309 recently measured by Riess et al. (2011a)

and Humphreys et al. (2013), we derive optical and near-IR absolute magnitudes for SN 2002fk.

Using the BV I absolute magnitude/decline rate calibration of Phillips et al. (1999) we solve

for the Hubble constant, obtaining a consistent value of H0 = 69.6± 2.1 (± 5.0 systematic),

which is 0.8 σ lower than the one published by Riess et al. (2011a), H0 = 73.8 ± 2.4 from

eight SNe Ia with precise Cepheid distances. This is due to the fact that SN 2002fk lies on

the bright side of their luminosity distribution.

We proceed in a similar manner for the JHK absolute magnitudes to derive the first

H0 value based on near-IR measurements of a SN Ia. As opposed to the optical method that

relies on many different photometric calibrations containing significant systematic differences

(as shown in Appendix B), the near-IR has the great advantage that it is founded on a ho-

mogeneous Carnegie photometric dataset including (1) the Persson standards (Persson et al.

2002), (2) the CSP Hubble diagram (Folatelli et al. 2010; Kattner et al. 2012), and (3) the

calibrating CATS SN 2002fk. Our near-IR H0 values rely on two CSP different absolute

magnitude/decline rate relationships. Using the Kattner et al. (2012) relation, we obtain

H0(JH) = 66.7 ± 1.0 (±3.5 systematic) km s−1 Mpc−1 , whereas employing Folatelli et al.

(2010) we get H0(JHK) = 63.0 ± 0.8 (±2.8 systematic) km s−1 Mpc−1 . This discrepancy

is mainly due to the different zero points obtained from their analysis, 0.17 and 0.07 mag in

J and H , respectively, which arise from the different techniques employed to measure peak

magnitudes. More importantly, it appears that the near-IR yields somewhat lower (6-9%)

H0 values than the optical, with a significance of 1.2 and 2.9 σ depending on the near-IR

calibration adopted. It is essential to further examine this issue by (1) expanding the sample

of high-quality near-IR light curves of SNe in the Hubble flow, and (2) increasing the number

of nearby SNe with near-IR SN light curves and precise Cepheid distances, which affords the

promise to deliver a more precise determination of H0.
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APPENDICES

A. CROSS-CAMERA SUBTRACTIONS

Since our template images in UBV RI were acquired with a different instrument than

the ones used for the SN imaging (see Table 1), there is a potential systematic error caused by

our cross-camera subtractions. To assess this error we performed the following intrepid test:

we subtracted the V template from the B SN images, the B template from the V SN images,

the V template from the R SN images, and the R template from the I SN images. Then we

measured instrumental magnitudes with a 3 arcsec aperture both in the crossed subtracted

images and those performed with the same filter. The magnitude differences yielded by this

test amounted to 0.001-0.003 mag. Given that these cross subtractions involve wavelength

differences ∼1,000 Å between templates and SN images, the actual error caused by using

templates that differ by ∼10 Å in central wavelenghts (as in our case) from the SN images can

be ignored. In the near-IR this potential uncertainty does not exist because the templates

images were obtained with the same instrument employed for the SN.

B. LOCAL STANDARDS & PHOTOMETRIC ZERO POINTS

Given that there are other sources of optical photometry available in the literature for

SN 2002fk, it is necessary to verify the compatibility of the individual photometric cali-

14See http://suspect.nhn.ou.edu/∼suspect/

http://suspect.nhn.ou.edu/~suspect/
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brations before attempting to merge the photometry. Initially we started this exercise by

comparing the magnitudes of the four local standard stars in common (stars 5, 6, 7, 8)

between us (LCO/Swope) and LOSS. To our surprise we discovered very good agreement

in BVR but a significant systematic offset ∼0.07 mag in the I-band. When we noticed this

discrepancy, we proceeded to obtain additional measurements of the local standards with

the CTIO/0.9-m telescope (two nights) and the CTIO/PROMPT telescopes (two nights)

under photometric conditions. Given that we found very good agreement (≤0.015 mag) in

BV RI among all three calibrations and a reasonable (∼0.06 mag) consistency in the U -

band between LCO/Swope and CTIO/0.9–m (no U measurements could be obtained with

CTIO/PROMPT) we decided to combine all of our UBV RI values into the single CATS

calibration, which is presented in Table 3.

Our internal consistency can be seen in detail in Table 8 which summarizes the differ-

ences in each filter between the magnitudes of the local standard stars measured with our

three instruments (LCO/Swope, CTIO/0.9-m, CTIO/PROMPT) and our average CATS

calibration. We find excellent agreement in BV RI (≤0.015 mag). This is remarkable

considering that the CTIO/PROMPT data were reduced with a completely independent

pipeline by one of us (GP). In the U -band the ∼0.06 mag difference between LCO/Swope

and CTIO/0.9–m (no U measurements could be obtained with CTIO/PROMPT) is not

surprising given that U–band photometry is generally difficult to calibrate as a result of

filter mismatches or differences in the sky transmission (i.e. effective bandpass), and large

systematic differences are common.

Having demonstrated our own internal consistency (with the above mentioned caveat in

U) we return to the issue of comparing our photometry with the external measurements of

the local standards obtained by LOSS (Riess et al. 2009b; Ganeshalingam et al. 2010) and

CfA3 (Hicken et al. 2009). This comparison is presented in Table 8 which gives magnitude

differences between the local standard stars measured by CATS, LOSS, and CfA3. Overall

we found good agreement between LOSS and CATS (≤0.02 mag), with the notable exception

of the I-band where the LOSS magnitudes are systematically brighter by ∼ 0.07 mag. We

do not have an explanation for this worrisome discrepancy except that LOSS employed on

the Nickel telescope an I filter with an extended red tail compared to the standard bandpass

[see Fig. 1 in Ganeshalingam et al. (2010)]. Perhaps this is also the cause of the systematic

differences ∼0.1 mag in the I–band between LOSS and CfA2 (Jha et al. 2006) reported

by Ganeshalingam et al. (2010) for some SNe. When we compare CATS and CfA3, we find

better agreement in I (CfA3 is between CATS and LOSS). However, what is more concerning

is that CfA3 is consistently brighter than CATS by ∼ 0.03− 0.04 mag in all UBV RI filters.

While LOSS is halfway between CATS and CfA3 in B, LOSS is much closer to CATS than

CfA3 in V and R. We cannot claim which one is correct, but the advantage of the CATS
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calibration is that it was obtained with three different cameras, two independent pipelines,

and two reducers.

Based on this analysis, we adopt a systematic uncertainty of 0.03 mag for our photo-

metric zero points. Unfortunately, we cannot apply this approach to the near-IR because

the 2MASS magnitudes are not sufficiently precise. Hence, we adopt the same uncertainty

of 0.03 mag.

C. S-CORRECTIONS

SN magnitudes obtained with different instruments can potentally lead to significant

systematic errors due to the non-stellar nature of the SN spectrum. These effects, a.k.a.

S-terms, were computed by Stritzinger et al. (2002) for the normal Type Ia SN 1999ee. As

shown in their Fig. 4, the S-corrections change with time as the SN spectrum evolves.

The systematic errors for the CTIO/0.9-m camera are generally small in BV RI, from 0.01

mag near maximum to 0.04 mag at late times (∼60 days past maximum), suggesting that

this instrument provides a good match to the standard system (Bessell 1990), while for the

YALO instrument the systematic errors are larger (∼0.05-0.08 mag) owing to significant

instrumental departures from the standard bandpasses. In order to quantify this effect in

SN 2002fk, we took advantage of the fact that the object was measured with seven different

instruments allowing us to calculate magnitude differences among all of them after removing

the systematic differences caused by the photometric zero-points. This empirical approach

showed that the S-terms amount to 0.02 mag at maximum light and 0.03 mag at later epochs

(40-80 days after peak), allowing us to to attach a systematic error to our BV RI photometry.

Its is encouraging that this empirical approach yields similar values to those computed by

Stritzinger et al. (2002) for the CTIO/0.9-m camera. Likewise, in the near-IR we estimate

the systematic errors caused by the S-terms to be 0.02 mag at maximum, from a comparison

of the SN magnitudes measured with Baade/Classic-Cam and du Pont/WIRC. We cannot

apply this technique at later times in the near-IR since SN 2002fk was observed with a single

instrument, but we can safely adopt the 0.03 uncertainty measured in the optical. Most

likely, this is an upper limit to the systematic errors in the near-IR, considering that the

instrument detector and filters used with WIRC and Classic-Cam were essentially the same

as those employed by Persson et al. (1998) in the establishment of the standard system.
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Table 1. Photometric Observations of SN 2002fk.

Observatory Telescope Instrument Detector Plate Scale Filters

(arcsec pixel−1)

LCO Swope CCD SITe 2048×3150 0.435 UBV (RI)KC

LCO du Pont WFCCD Tek 2048×2048 0.774 BV (I)KC

LCO du Pont CCD Tek 2048×2048 0.259 UBV (RI)KC

LCO Baade LDSS-2a SITe 2048×2048 0.380 BV (R)KC

CTIO 0.9m CCD 2048×2048 0.396 UBV (RI)KC

CTIO 1.5m CCD 2048×2048 0.440 BV (RI)KC

CTIO PROMPT CCDb Alta U47 E2V 1024×1024 0.600 BV (RI)KC

LCO du Pont WIRCc HAWAII-1 1024×1024 0.196 JSHKS

LCO Baade Classic-Cam NICMOS3 256×256 0.094 JSHKS

aAllington-Smith et al. (1994)

bPignata et al. (2011)

cPersson et al. (2002)
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Table 2. Spectroscopic Observations of SN 2002fk.

Date(UT) JD Phase Instrument/ Wavelength Resolution Exposure

-2,400,000 (days) Telescope Range (Å) (Å) (s)

2002 Sep 26 52543.84 -3.96 LDSS-2/Baade 3600 - 9000 14 120

2002 Sep 28 52545.89 -1.91 LDSS-2/Baade 3600 - 9000 14 200

2002 Sep 30 52547.89 0.09 WFCCD/du Pont 3800 - 9200 8 200

2002 Oct 01 52548.31 0.50 FORS1-PMOS/VLT 3330 - 8500 12 2880

2002 Oct 05 52552.32 4.50 FORS1-PMOS/VLT 3330 - 8500 12 2880

2002 Oct 08 52555.87 8.07 WFCCD/du Pont 3800 - 9200 8 200

2002 Oct 14 52561.36 13.54 FORS1-PMOS/VLT 3330 - 8500 12 2400

2002 Oct 14 52561.83 14.03 LDSS-2/Baade 3600 - 9000 14 60

2002 Oct 25 52573.15 25.35 LDSS-2/Baade 3600 - 9000 14 120

2002 Oct 29 52576.87 29.07 LDSS-2/Baade 3600 - 9000 14 90

2002 Nov 11 52589.82 42.02 B&C Spec./Baade 3200 - 9200 7 300

2002 Nov 12 52590.83 43.03 B&C Spec./Baade 3200 - 9200 7 200

2002 Nov 28 52606.75 58.95 B&C Spec./Baade 3200 - 9200 7 200

2002 Dec 02 52610.70 62.90 WFCCD/du Pont 3800 - 9200 8 450

2003 Jan 03 52642.73 94.93 Mod. Spec./du Pont 3790 - 7270 7 450
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Table 3. UBRV I Photometric Sequence Around SN 2002fk.

Star U N B N V N R N I N LOSSa CfA3b

name name

c1 13.604(0.018) 4 13.424(0.016) 4 12.705(0.014) 4 12.322(0.015) 4 11.951(0.014) 4 - -

c2 14.337(0.020) 4 13.386(0.016) 4 12.346(0.014) 4 11.752(0.015) 4 11.279(0.014) 4 - -

c3 13.248(0.013) 4 13.278(0.025) 4 12.718(0.014) 4 12.366(0.016) 4 12.065(0.014) 4 - -

c4 14.313(0.014) 4 14.230(0.019) 4 13.620(0.013) 4 13.281(0.008) 4 12.961(0.008) 4 - -

c5 16.197(0.009) 6 16.330(0.013) 8 15.771(0.006) 8 15.424(0.007) 8 15.077(0.005) 8 4 4

c6 16.419(0.010) 6 16.437(0.013) 8 15.820(0.006) 8 15.447(0.006) 8 15.080(0.006) 8 2 5

c7 16.209(0.011) 6 16.276(0.008) 8 15.759(0.005) 8 15.429(0.010) 8 15.102(0.006) 8 1 6

c8 17.519(0.018) 6 17.555(0.013) 8 16.948(0.008) 8 16.595(0.007) 8 16.237(0.008) 8 3 3

c9 · · · 4 19.083(0.028) 4 17.842(0.021) 4 17.069(0.010) 4 16.425(0.007) 4 - -

c10 · · · 4 16.329(0.016) 4 15.780(0.014) 4 15.425(0.015) 4 15.122(0.010) 4 - -

c11 · · · 4 15.221(0.016) 4 14.669(0.014) 4 14.310(0.015) 4 14.013(0.010) 4 - -

Note. — Errors given in parenthesis, are 1σ statistical uncertainties. For each star we indicate N, the number of

photometric nights used to calibrate them.

aGaneshalingam et al. (2010)

bHicken et al. (2009)
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Table 4. Color Terms for the five Optical Cameras

Telescope U B V R I

Swope/CCD +0.177 +0.053 -0.054 +0.021 +0.052

du Pont/WFCCD · · · +0.125 -0.045 · · · +0.010

Clay/LDDS-2 · · · +0.132 +0.046 · · · · · ·

CTIO 0.9-m/CCD +0.126 -0.086 +0.011 +0.004 +0.007

CTIO 1.5-m/CCD +0.139 -0.080 +0.030 +0.016 +0.017

Note. — Color terms are defined in equations 1-5.
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Table 5. UBV RI Photometry of SN 2002fk.

Date(UT) JD-2,400,000 U B V R I Telescope

2002 Sep 21 52538.8 13.523(0.013) 14.128(0.016) 14.234(0.014) 14.149(0.015) 14.119(0.010) Swope

2002 Sep 26 52543.9 · · · 13.443(0.012) 13.515(0.014) · · · · · · Baade

2002 Sep 30 52547.9 · · · 13.319(0.047) 13.358(0.019) · · · 13.609(0.051) du Pont

2002 Oct 01 52548.9 12.792(0.018) 13.287(0.016) 13.350(0.014) 13.335(0.011) 13.595(0.014) Swope

2002 Oct 08 52555.9 · · · 13.675(0.076) 13.623(0.085) · · · 14.003(0.074) du Pont

2002 Oct 14 52561.8 · · · 14.261(0.017) 13.904(0.014) · · · · · · Baade

2002 Oct 20 52567.8 15.044(0.010) 14.883(0.011) 14.239(0.010) 14.133(0.011) 14.181(0.010) Swope

2002 Oct 21 52568.8 15.195(0.024) 15.014(0.011) 14.355(0.023) 14.139(0.013) 14.218(0.023) Swope

2002 Oct 24 52571.9 15.544(0.017) 15.294(0.014) 14.409(0.015) 14.196(0.015) 14.198(0.015) CTIO 0.9-m

2002 Oct 25 52572.8 15.631(0.018) 15.394(0.016) 14.500(0.014) 14.205(0.015) 14.121(0.014) Swope

2002 Oct 29 52572.9 · · · · · · 14.511(0.014) · · · · · · Baade

2002 Oct 30 52576.9 · · · 15.782(0.018) 14.714(0.010) 14.376(0.014) · · · Baade

2002 Oct 08 52577.9 · · · 15.825(0.017) 14.778(0.019) · · · 14.123(0.017) du Pont

2002 Nov 07 52585.8 16.388(0.018) 16.238(0.016) 15.229(0.014) 14.888(0.015) 14.539(0.015) Swope

2002 Nov 08 52586.9 · · · 16.277(0.016) 15.256(0.014) 14.939(0.015) 14.570(0.019) Swope

2002 Nov 12 52590.8 16.531(0.020) 16.396(0.016) 15.440(0.014) 15.129(0.015) 14.840(0.014) Swope

2002 Nov 18 52596.7 16.668(0.019) 16.546(0.016) 15.640(0.014) 15.358(0.015) 15.161(0.014) Swope

2002 Dec 02 52610.7 · · · 16.819(0.062) 16.075(0.033) · · · 15.785(0.019) du Pont

2002 Dec 04 52612.8 17.045(0.023) 16.830(0.016) 16.091(0.014) 15.922(0.015) 15.887(0.014) Swope

2002 Dec 07 52615.7 17.043(0.018) 16.848(0.016) 16.128(0.014) 15.981(0.015) 16.000(0.014) Swope

2003 Jan 07 52646.7 17.803(0.024) 17.324(0.016) 16.907(0.010) 16.954(0.015) 17.184(0.014) Swope

2003 Jan 31 52670.6 · · · 17.762(0.014) 17.397(0.015) 17.633(0.015) 18.069(0.027) CTIO 1.5-m
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Table 5—Continued

Date(UT) JD-2,400,000 U B V R I Telescope

Note. — Errors given in parenthesis, are 1σ statistical

uncertainties.
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Table 6. JHKs Photometric Sequence Around SN 2002fk.

Star J J2MASS H H2MASS Ks K2MASS

c5 14.599(0.014) 14.582(0.028) 14.259(0.008) 14.272(0.055) 14.148(0.009) 14.173(0.067)

c8 15.764(0.020) 15.712(0.062) 15.439(0.009) 15.564(0.101) 15.299(0.024) 15.408(0.179)

c12 16.093(0.011) 16.083(0.080) 15.439(0.009) 15.312(0.094) 15.190(0.019) 15.100(0.137)

c13 18.224(0.064) · · · 17.628(0.077) · · · · · · · · ·

Note. — Errors given in parenthesis, are 1σ statistical uncertainties.
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Table 7. JHKs Photometry of SN 2002fk.

Date(UT) JD-2,400,000 J H Ks Telescope

2002 Sep 18 52535.7 15.162(0.011) 15.200(0.011) 15.107(0.011) du Pont

2002 Sep 19 52536.7 14.798(0.011) 14.859(0.011) 14.797(0.011) du Pont

2002 Sep 20 52537.8 14.540(0.011) 14.605(0.011) 14.532(0.015) du Pont

2002 Sep 21 52538.7 14.324(0.011) 14.405(0.011) 14.323(0.011) du Pont

2002 Sep 22 52539.7 14.132(0.011) 14.234(0.015) 14.103(0.015) du Pont

2002 Sep 23 52540.7 14.000(0.011) 14.133(0.011) 13.997(0.011) du Pont

2002 Sep 24 52541.7 13.860(0.016) 14.044(0.016) 13.863(0.017) Baade

2002 Sep 24 52541.7 13.879(0.011) 14.036(0.011) 13.926(0.011) du Pont

2002 Sep 25 52542.7 13.801(0.015) 13.975(0.011) 13.766(0.019) Baade

2002 Sep 27 52544.7 13.764(0.015) 13.981(0.011) 13.741(0.017) Baade

2002 Sep 29 52546.6 13.847(0.011) 14.113(0.011) 13.859(0.011) du Pont

2002 Oct 14 52560.7 15.623(0.011) 14.590(0.011) 14.264(0.011) du Pont

2002 Oct 15 52562.7 15.647(0.011) 14.549(0.011) 14.262(0.011) du Pont

2002 Oct 20 52567.8 15.549(0.011) 14.332(0.011) 14.152(0.011) du Pont

2002 Oct 23 52570.6 15.497(0.018) · · · · · · du Pont

2002 Oct 24 52571.8 15.377(0.011) 14.175(0.011) 14.083(0.011) du Pont

2002 Nov 12 52590.8 15.854(0.011) 14.905(0.011) 14.922(0.011) du Pont

2002 Nov 14 52593.8 16.073(0.011) 15.030(0.011) 15.063(0.011) du Pont

2002 Nov 19 52597.5 16.367(0.011) 15.248(0.011) 15.249(0.011) du Pont

2002 Nov 22 52600.6 16.549(0.013) 15.367(0.014) 15.350(0.030) du Pont

2002 Dec 09 52617.5 17.713(0.039) 16.112(0.015) 16.010(0.027) du Pont

2002 Dec 11 52619.7 17.798(0.030) 16.185(0.011) 16.070(0.027) du Pont

2002 Dec 23 52631.6 18.534(0.042) 16.797(0.017) 16.549(0.033) du Pont

2003 Jan 11 52650.6 19.434(0.103) 17.597(0.027) 17.039(0.056) du Pont

Note. — Errors given in parenthesis, are 1σ statistical uncertainties.
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Table 8. Mean Differences among different photometric systems and our Averagea values

∆U ∆B ∆V ∆R ∆I

LCO/Swope− Averagea 0.025± 0.008 0.009± 0.004 0.006± 0.006 0.006± 0.004 0.006± 0.002

CTIO/0.9m− Averagea −0.038± 0.012 −0.006± 0.008 −0.009± 0.006 −0.004± 0.006 −0.007± 0.008

CTIO/PROMPT −Averagea · · · −0.006± 0.028 −0.003± 0.010 −0.008± 0.012 −0.008± 0.008

LOSSb −Averagea · · · −0.020± 0.016 −0.001± 0.024 0.004± 0.026 −0.070± 0.016

CfA3c − Averagea −0.025± 0.026 −0.038± 0.022 −0.031± 0.004 −0.033± 0.004 −0.044± 0.008

CfA3c − LOSSb · · · −0.017± 0.016 −0.026± 0.020 −0.037± 0.022 0.022± 0.022

Note. — Quoted uncertanties are weighted standard deviations

a CATS calibration (average of LCO/Swope, CTIO/0.9m, and CTIO/PROMPT measurements)

b LOSS calibration from Riess et al. (2009b); Ganeshalingam et al. (2010)

c CfA3 calibration from Hicken et al. (2009)
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Table 9. SN 2002fk total (Galactic + host galaxy) reddening from different methods.

Method E(B − V ) Reference

(B − V )Tail 0.066± 0.019 Phillips et al. (1999)

Bmax − Vmax 0.009± 0.044 Phillips et al. (1999)

Vmax − Imax 0.082± 0.038 Phillips et al. (1999)

(V −H) 0.014± 0.037 Krisciunas et al. (2004b)

(V −K) 0.075± 0.036 Krisciunas et al. (2004b)

Mean 0.057± 0.036
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Table 10. Hubble constant using different filter calibrations.

Filter mmax
a Mmax

b M1.1
max

c αd σSN
e H0

f Systematicg Referenceh

(km s−1 Mpc−1 ) Error

B 13.07(0.15) -19.49(0.17) -19.43(0.17) -3.671(0.043) 0.11 70.5+5.4
−5.0 4.5 Phillips et al. (1999)

V 13.19(0.11) -19.37(0.14) -19.32(0.15) -3.615(0.037) 0.09 72.4+4.5
−4.1 4.1 Phillips et al. (1999)

I 13.47(0.07) -19.09(0.11) -19.06(0.08) -3.236(0.035) 0.13 68.3+2.8
−2.7 4.9 Phillips et al. (1999)

J 13.71(0.04) -18.85(0.09) -18.83(0.09) -2.893(0.003) 0.125 65.1+1.4
−1.3 4.5 Kattner et al. (2012)

H 13.95(0.03) -18.61(0.08) -18.57(0.09) -2.733(0.009) 0.053 68.0+1.4
−1.2 3.2 Kattner et al. (2012)

J 13.71(0.04) -18.85(0.09) -18.80(0.09) -2.727(0.01) 0.12 60.8+1.3
−1.3 4.1 Folatelli et al. (2010)

H 13.95(0.03) -18.61(0.08) -18.59(0.09) -2.667(0.02) 0.16 65.4+1.2
−1.2 5.5 Folatelli et al. (2010)

K 13.74(0.03) -18.82(0.08) -18.76(0.09) -2.717(0.03) 0.10 61.9+1.6
−1.5 5.4 Folatelli et al. (2010)

aMagnitude at maximum of SN 2002fk corrected for reddening (Galactic + host).

bPeak absolute magnitude of SN 2002fk corrected for reddening (Galactic + host).

cPeak absolute magnitude of SN 2002fk corrected for reddening (Galactic + host) and ∆m15.

dZero point of the Hubble diagram.

eIntrinsic dispersion in the decline rate versus luminosity relationship.

fStatistical error includes uncertainties in apparent peak magnitude, reddening, correction for ∆m15, and zero point of the Hubble diagram.

gSystematic error in H0 in units of km s−1 Mpc−1 includes 0.08 mag in distance modulus to NGC 1309, 0.03 mag in the photometric zero point, and

the intrinsic dispersion in the decline rate versus luminosity relationship.

hReference for the ∆m15/Mmax relation, intrinsic dispersion in M
1.1
max, and the zero point of the Hubble diagram.
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Fig. 1.— Field of SN 2002fk observed with the Swope telescope. North is up and east is

to the left. SN 2002fk is marked with an arrow and eleven stars of the local standard stars

used to derive differential photometry are labeled.
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Fig. 2.— Comparison between our spectra (blue), the CfA (green, Blondin et al. 2012), and

the BSNIP (orange, Silverman et al. 2012a) spectra taken at similar epochs. The phase is

indicated on the right for each spectrum.
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Fig. 3.— Upper left. I-band light curve of SN 2002fk (red=CATS, blue=LOSS, green=CfA3)

before applying the photometric offset found in the calibration of the local standards. Bottom

left. Magnitude residuals from the polynomial fit (blue line). Upper right. I-band light curve

of SN 2002fk after applying the photometric offset caused by systematic differences in the

local standards, along with a polynomial fit (blue line). Bottom left. Magnitude residuals

from the polynomial fit.
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Fig. 4.— Optical light curves of SN 2002fk. Filled circles are our observations, open cir-

cles correspond to LOSS measurements, and open squares to CfA3 data. Photometry of

LOSS and CfA3 were shifted by the offsets given in Table 8 to bring them into our CATS

photometric system (as discussed in Appendix B).
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Fig. 5.— BV RI light curves of SN 1990N, SN 1998aq, SN 2001el, SN 2002bo, SN 2002dj,

SN 2002fk, SN 2003du, and SN 2005cf, (Lira et al. 1998; Riess et al. 2005; Krisciunas et al.

2003; Benetti et al. 2004; Pignata et al. 2008; Stanishev et al. 2007; Wang et al. 2009) se-

lected for their similar decline rates, normalized to peak brightness. ∆m15 is given in

parenthesis for each SN.
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Fig. 6.— Our optical and Near-IR photometry of SN 2002fk. In JHK bands open symbols

are data obtained with Classic-Cam, whilst filled symbols correspond to WIRC observations.
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Fig. 7.— IJHK light curves of SN 2001el (cyan), SN 2002dj (blue), SN 2002fk (black),

SN 2005cf (magenta), and SN 2006dd (red), selected for their similar decline rates, normal-

ized to peak brightness. We chose to compare the templates of Krisciunas et al. (2004b)

(dotted-dashed line) and Wood-Vasey et al. (2008) (dashed line). ∆m15 is given in paren-

thesis for each SN.
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Fig. 8.— Optical colors of SN 2002fk (in black). For comparison, in red are shown the

LVG SN 1990N, SN 1994D, SN 1998aq, and SN 2003du. In magenta are shown the LVG

SN 2001el and SN 2005cf with strong HV Ca II near maximum, and in blue the HVG

SN 2002bo, SN 2002dj and SN 2009ig.
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Fig. 9.— V − near-IR colors of SN 2002fk and the well sampled SNe Ia of similar ∆m15:

SN 2001el, SN 2002dj, SN 2003du, SN 2005cf and SN 2006dd. Dashed line are V − near-IR

loci for mid-range decliners and dotted-dashed line are V − near-IR loci for slow decliners

(Krisciunas et al. 2004b).
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Fig. 10.— Optical spectral evolution of SN 2002fk. The spectra have been corrected for the

redshift of the host galaxy (2,137 km s−1) and have been shifted vertically for clarity. The

labels on the right mark the days since B-band maximum.
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Fig. 11.— Spectrum of SN 2002fk at -4, 0, +25 and +95 days after B maximum. We plot for

comparison SN 1994D, SN 1998aq, SN 2003du, SN 2006gz, and SN 2005cf at similar epochs.
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Fig. 12.— Time evolution of the photospheric expansion velocity derived from Si II λ6355.

Red simbols correspond to HVG SNe and blue simbols to LVG SNe. Black dots correspond

to SN 2002fk, the black asterisc is the velocity of Si II λ16 910 obtained by Marion et al.

(2003) from a near-IR spectrum taken 12 days before maximum. In the inset we show the

time evolution of other optical lines in SN 2002fk.
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Fig. 13.— SYN++ models of the SN 2002fk spectra. Data are shown in black. Left

panel: The blue–dashed lines correspond to models of H&K Ca II lines using Texc of Si II

∼ 12, 500 K, which is close to Tphot, with no HV Ca II component. In red we show models

using Texc of Si II ∼ 7, 000 K, and in green we show models using Texc of Si II ∼ 12, 500 K,

which is close to Tphot, and including a HV Ca II component. The x–axis is the expansion

velocity measured with respect to the H&K Ca II line. Middle panel: in red we show models

using Texc of Si II ∼ 7, 000 K. In green we show models using Texc of Si II ∼ 12, 500 K,

which is close to Tphot, and including a HV C II component to get a better fit to the red

side of the Si II line. The x–axis is the velocity measured with respect to C II λ6580. Right

panel: as in the left panel but for the Ca II IR–triplet. The x–axis is the expansion velocity

measured with respect to the Ca II triplet. The phase of each spectrum is on the right side

of each panel.
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Fig. 14.— SYN++ models of the SN 2002fk spectra. In all three panels we show the same

models as in Figure 13 but for later phases. The phase of each spectrum is on the right side

of each panel.
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Fig. 15.— SYN++ models of the observed spectra of SN 2002fk spectra, shown in black.

The blue–dashed lines correspond to models using Texc of Si II ∼ 12, 500 K with no HV

components. In red we show models using Texc of Si II ∼ 7, 000 K with no HV components,

and in green we show models using Texc of Si II ∼ 12, 500 K, and including HV components

of Ca II, and C II. These are the same models of Figure 13, now showing the full spectral

range for representative phases. The phase of each spectrum is on the right side.
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