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THE MODULI OF KLEIN COVERS OF CURVES

CHARLES SIEGEL

Abstract. We study the moduli space V4Mg of Klein four covers of genus
g curves and its natural compactification. This requires the construction of
a related space which has a choice of basis for the Klein four group. This
space has the interesting property that the two components intersect along
a component of the boundary. Further, we carry out a detailed analysis of
the boundary, determining components, degrees of the components over their
images in Mg, and computing the canonical divisor of V4Mg.
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Introduction

Ever since the nineteenth century, unramified double covers have been an essen-
tial tool for studying curves. They correspond to square roots of the trivial line
bundle which form a group. This formulation can be used to study surface groups
and the mapping class group, and also theta characteristics, the square roots of the
canonical line bundle. There are intricate relationships between double covers and
theta characteristics, in particular, and the difference between them only become
completely clear after passing to moduli.

The moduli of double covers of curves has two components, one that is isomor-
phic to Mg, where the double cover is a disconnected union of two copies of the
base curve, and one where the double cover is nontrivial, traditionally denoted by
Rg. While the moduli of theta characteristics also has two components, neither
one is isomorphic to Mg. The components, S±

g , correspond to whether the theta

characteristic has an even or odd dimensional space of global sections.1

Another, slightly more subtle, connection between the two moduli spaces is that
the theta characteristics on a curve correspond to quadratic forms on the (F2-
vector space of) points of order two on the curve. The quadratic form is given

1The notations come from the French for covering, revêtement and from the fact that curves
with theta characteristics are often called spin curves, due to connections with the quantum
mechanical notion of spin.
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by, if L is a theta characteristic, µ 7→ h0(L ⊗ µ) − h0(L) mod 2, and induces
a skew-symmetric bilinear form on the points of order two. This bilinear form
is independent of the theta characteristic chosen and is called the Weil pairing.
The Weil pairing, however, is really an invariant of a Klein four subgroup of the
Jacobian, as 〈µ, ν〉 = 〈µ, µ+ν〉, and in fact, if {0, µ1, µ2, µ3} is a Klein four subgroup
of J (C)[2], then the Weil pairing on the group has the value h0(L⊗OC) + h0(L⊗
µ1) + h0(L⊗ µ2) + h0(L⊗ µ3) mod 2, which is manifestly symmetric in the group
elements, suggesting that it could be clarified by studying the moduli of Klein
covers.

The boundaries of these moduli spaces have been studied in detail, and the
fibers of the natural projection to Mg have been made very explicit. The approach

originates in [Cor89] for Sg
±
and is pushed through in detail in [CC03], and adapted

to Rg in [BCF04]. More recently, this approach has been adapted to proving that

pluricanonical forms extend to both Sg
±

[Lud10] and to Rg [FL10], bringing the
study of the birational geometry of these spaces into reach.

This paper. In this paper, we extend the description of the boundary and pluri-
canonical forms to the moduli of Klein covers of curves. This, however, is difficult

to do directly, so instead we introduce an intermediate moduli space, Z2
2Mg, of

pairs of Prym curves and study it, then use the relationship between it and the
moduli of Klein covers V4Mg to prove the results on this space. In fact, we use this

relationship to define V4Mg.
In section 1 of this paper, we recall relevant facts about double covers. In

particular, the classification of points in the fiber over a stable curve from [BCF04],
and the relationship between two competing notations for the components of the
boundary of Rg, used in, for instance, [Don87] and [Far12].

In section 2, we initiate the study of Z2
2Mg, focusing on the interior. We con-

struct the space and show that there are two connected components, corresponding
to Weil pairing 0, which was studied in [Sie13] under the notation R2Mg, and
Weil pairing 1, and the degree of each component over Mg, reproducing a result in
[CLP12], which holds in the degenerate case where the dihedral group is only four
elements.

In section 3, we analyze the boundary of Z2
2Mg in detail, describing the fibers

over Mg, then identify the boundary components and determine how many objects
in each fiber lie in each component. Here, we note an interesting fact. Although
Z2
2Mg is an unramified covering of Mg and has two components, the natural com-

pactification Z2
2Mg is in fact connected, and the boundaries of the two components

intersect nicely along a single component.
In section 4, we proceed to analyzing V4Mg and its boundary. We do so by

showing that the group action of PSL2(F2) on Z2
2Mg extends to the boundary of

each of the two components separately, identifying several components of ∂Z2
2Mg.

This allows us to describe the (much simple) boundary of V4Mgand to show that the

natural map V4Mg → Mg is simply ramified along a single boundary component.
In the last section, we follow [FL10], [Lud10] and [HM82], to extend the pluri-

canonical forms from the smooth locus to an arbitrary resolution of singularities.
The main tool in this is the Reid–Shepherd-Barron–Tai criterion [Rei80, Tai84].
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We conclude with a slope criterion for V4Mg
i
to be of general type analagous to

similar results for Mg and Rg:

Theorem 5.8. For any g, V4Mg
i
has general type if there exists a single effective

divisor D ≡ aλ −
∑

T b∆T
∆T where T runs over all boundary components, such

that all the ratios a
bT

are less than 13
2 and the ratios a

bII,III,III
, a

b1,g−1,1:g−1
, a

b1,1,1
,

a
bg−1,g−1,g−1

, a
b1,1:g−1,1:g−1

, a
bg−1,1:g−1,1:g−1

, and a
b1:g−1,1:g−1,1:g−1

are less than 13
3 .
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1. Background

In this section, we will recall relevant facts about double covers and points of
order two on curves. For C a smooth projective curve over C, we denote by J (C)
the group of line bundles of degree 0 on C. It has a natural subgroup J (C)[2]
consisting of the elements whose square is trivial.

Lemma 1.1. The following data are equivalent:

(1) C̃ → C an irreducible étale double cover,
(2) µ ∈ J (C)[2] nonzero, and

(3) C̃ ∈ M2g−1 with ι : C̃ → C̃ a fixed point free involution.

Proof. Given a point of order two, we get an unramified double cover by looking
at Spec(OC ⊕ µ). Conversely, given a double cover, there is a single point of order
two that pulls back to zero.

To get between 1 and 3, we note that C ∼= C̃/ι. �

By Lemma 1.1, we have an equivalence between J (C)[2] and the set of étale
double covers, with 0 corresponding to the trivial double cover. This induces a
group structure on double covers, and if C̃µ, C̃ν correspond to µ, ν, then C̃µ+ν is

given by C̃µ ×C C̃ν/(ιµ, ιν).

Definition 1.2 (quasistable curve). A genus g ≥ 2 curve X is quasistable if every
smooth rational component has at least two nodes and no two of these components
intersect. We call the stable curve C obtained by removing these rational com-
ponents and gluing the nodes together the stabilization of X, and the nodes of C
obtained this way are the exceptional nodes and the rational components of X over
them exceptional components.

We define the nonexceptional curve to be the union of the nonexceptional com-
ponents and denote it by Xne.

Definition 1.3 (Prym curve). A Prym curve is a triple (X, η, β) where X is qua-
sistable, η ∈ J (X) such that for all exceptional components, E, we have ηE ∼=
OE(1), and β : η⊗2 → OX is a homomorphism that is generically nonzero on each
nonexceptional component.
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Remark 1.4. In the notation we will use for other objects, a Prym curve would
be called a Z/2Z curve, but we will continue to refer to them as Prym curves.

Definition 1.5 (Isomorphism of Prym Curves). An isomorphism of Prym curves
(X, η, β) and (X ′, η′, β′) is an isomorphism σ : X → X ′ such that there exists an
isomorphism τ : σ∗(η′) → η such that the diagram commutes:

σ∗(OX′) OX

σ∗(η′)⊗2 η⊗2

∼
//

τ⊗2
//

σ∗(β′)

��

β

��

Note that the definition of isomorphism of Prym curves does not depend on what
τ is chosen, only on σ.

Any automorphism of a Prym curve which induces the identity on the stable
model of X will be called inessential. The group of automorphisms will be denoted
by Aut(X, η, β) and the inessential automorphisms will be Aut0(X, η, β).

For the rest of this paper, for any curve, denote by ν the normalization morphism
for a curve, and denote by gν the geometric genus of the normalization:

Proposition 1.6 ([BCF04, Proposition 11]). Let X be a quasistable curve, Z its
stable model, ΓZ the dual graph of Z, and ∆X the set of nodes not lying under
an exceptional curve, and assume further that ∆c

X is eulerian. Then there are

22g
ν+b1(∆X) Prym curves supported on X and each has multiplicity 2b1(ΓZ)−b1(∆X)

in the fiber of Rg → Mg.

We will denote the moduli space of these curves by Z2Mg, and we note that it

has two components. One, isomorphic to Mg where the Prym curve has η ∼= OX

over a stable base, and Rg, the nontrivial Prym curves.

Remark 1.7 (Notation). The boundary components of the Prym moduli space have
several competing notations in the literature. For the 22g objects, we always have
1 that is the disconnected double cover, and in this setting, it lies over the stable
curve itself.

Additionally, Donagi [Don87] classified the nontrivial points of order two on an
irreducible 1-nodal curve in terms of the vanishing cycle δ. In his notation, ∆I is
the subset with the marked point µ being equal to δ, ∆II when 〈δ, µ〉 = 0 but µ 6= δ
and ∆III being when 〈δ, µ〉 6= 0, under the Weil pairing, defined below. Alternately,
these three components are denoted by ∆′′

0 , ∆
′
0 and ∆ram

0 by Farkas [FL10] and it
is noted that ∆III = ∆ram

0 is precisely the set of Prym curves on the quasistable
curve. In the rest of this article, however, we will follow Donagi’s notation.

Over the 1-nodal reducible curves, the notation agrees, and the components are
∆i, ∆g−i and ∆i:g−i, for the Prym curves supported on the component of genus i,
g − i or both, respectively.

2. The space Z2
2Mg

Definition 2.1 (Weil Pairing). Let µ, ν ∈ J (C)[2], and let κ ∈ Pic(C) such that
κ⊗2 ∼= KC . Then the Weil pairing on the curve C is given by

〈µ, ν〉 = h0(κ) + h0(κ⊗ µ) + h0(κ⊗ ν) + h0(κ⊗ µ⊗ ν) mod 2.
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The Weil pairing is bilinear, skew-symmetric, and independent of the choice of
κ, and therefore we can see that 〈µ, ν〉 = 〈µ, µ + ν〉 = 〈ν, µ + ν〉, and so it is an
invariant of a rank 2 subgroup of J (C)[2].

Lemma 2.2. The following data are equivalent:

(1) A curve C ∈ Mg along with C̃i → C, i = 1, 2 irreducible, nonisomorphic
unramified double covers,

(2) A curve C ∈ Mg along with µ1, µ2 ∈ J (C)[2], with µ1 6= µ2, and
(3) A pair of curves C,D ∈ M2g−1 along with involutions σC , σD that act

freely on C,D respectively and which are such that C/σC and D/σD are
isomorphic, but the pairs (C, σC) and (D, σD) are not.

Proof. This is just an application of Lemma 1.1. �

A related, but slightly different result is the following, where we do not choose
a basis for the Klein four group.

Lemma 2.3. The following data are equivalent:

(1) A curve C ∈ Mg, and C̃ → C an étale Klein 4 cover,
(2) A curve C ∈ Mg, and φ : V4 → J (C)[2] an injective homomorphism, and

(3) A curve C̃ ∈ M4g−3 with a free action of V4 on C̃.

Proof. This is again just an application of Lemma 1.1. �

For the rest of this section, we will be working in the case with a basis, and later
will return to the basis-free case.

Definition 2.4 (Z2
2 curve). A Z2

2 curve is (X1, X2, η1, η2, β1, β2) where (Xi, ηi, βi)
is a Prym curve for i = 1, 2 and X1 and X2 have isomorphic stabilizations.

An isomorphism of Z2
2 curves is just a pair of isomorphisms of Prym curves that

induce the same isomorphism on the stable model. Equivalently, an automorphism
can be seen by looking at the quasistable curve with exceptional nodes the union
of the exceptional nodes of X1 and X2. From this viewpoint, an isomorphism is
an isomorphism of such quasi-stable curves which induces isomorphisms on the
pullbacks of ηi and η′i.

Given this, we can see that the moduli space of Z2
2 curves is just Z2Mg ×Mg

Z2Mg. It is easy to see that it has at least five components, depending on η1, η2. If

both are trivial, we have a copy of Mg. If one is trivial but the other is nontrivial,
then we get two copies of Rg. Additionally, when η1 ∼= η2, we get another copy of

Rg leaving the remnant:

Definition 2.5 (Z2
2Mg). We denote by Z2

2Mg the closure in Z2Mg ×Mg
Z2Mg

of the locus of Z2
2 curves with η1 6∼= η2 both nontrivial. The locus of smooth curves

in Z2
2Mg will be denoted by Z2

2Mg.

Geometrically, the most natural thing to study is the moduli space of Klein
four subgroups, with no choice of basis. This, by Lemma 2.3 is then the moduli
space of Klein four covers of curves. However, it is much easier to construct the

space with a choice of basis, which is Z2
2Mg (also note that the geometricity of

the covers is less clear on the boundary). There is a natural PSL2(F2) action on
Z2
2Mg, permuting the ordered bases of the Z2

2 ⊂ J (C)[2]. Below, we will extend it
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to the boundary and construct V4Mg, and we will deduce many of its properties

from those of Z2
2Mg.

Here, we note that Aut(C, η1, η2) is just Aut(X1, η1, β1)×Aut(C) Aut(X2, η2, β2)
where (Xi, ηi, βi) are the two Prym structures. Thus, the results of [BCF04] apply
without difficulty, so we have good behavior of the universal deformation, we have
a subgroup of inessential automorphisms, etc. We will recall those facts we need in
the last section of the paper.

Lemma 2.6. The map Z2
2Mg → Mg has degree (22g − 1)(22g − 2), thus, so does

Z2
2Mg → Mg.

Proof. We know that the degree of Z2Mg ×Mg
Z2Mg → Mg is 24g and that it

breaks down as Mg ∪ Rg ∪ Rg ∪ Rg ∪ Z2
2Mg. Each component is dominant and

equidimensional, so we can compute the degree on Z2
2Mg as 24g − 1− 3(22g − 1) =

(22g − 1)(22g − 2). �

The space Z2
2Mg is not irreducible. We can see that there must be at least two

components because the Weil pairing is deformation invariant; we will write Z2
2M

0
g

and Z2
2M

1
g for the two components, with Weil pairing respectively 0 and 1.

Lemma 2.7. The spaces Z2
2M

0
g and Z2

2M
1
g are both irreducible.

Proof. For any curve C of genus g, the action of Sp(2g,F2) on the space J (C)[2]×
J (C)[2] has two orbits, pairs of points that are orthogonal and pairs that are
nonorthogonal, and this is the monodromy of Z2

2Mg → Mg. �

Remark 2.8. Although slightly more complex, in the case where we look at points
of order n rather than points of order 2, we get a similar theorem, where the number
of components is indexed by Zn. Similarly, the Klein moduli space, which we will
study below, will have components indexed by Zn/Z

×
n . In our case, both of these

are Z2, and we will identify them with {0, 1}.

Before moving on to a detailed analysis of the boundary, we compute the degrees
of the maps Z2

2M
i
g → Mg.

Proposition 2.9. We have natural maps to Mg forgetting the points of order two,
and their degrees are:

(1) Z2
2M

0
g → Mg has degree (22g − 1)(22g−1 − 2)

(2) Z2
2M

1
g → Mg has degree (22g − 1)22g−1

Proof. Fix a smooth curve C of genus g.
Any element of Z2

2Mg lying over C is of the form (C, η, η′) where η, η′ ∈ J (C)[2],
which is an F2 vector space. To be in Z2

2M
0
g they must be orthogonal under the

Weil pairing, which is a nondegenerate form. Thus, for each η, we must choose
η′ ∈ η ⊥, a hyperplane in J (C)[2]. However, as they are linearly independent,
we asset that η′ /∈ {0, η}. Thus, we have 22g − 1 choices for η, and given one of
those, we have 22g−1 − 2 choices of η′ satisfying these conditions, which computes
the degree of Z2

2M
0
g → Mg.

To determine the degree of Z2
2M

1
g → Mg, we note that we can again choose η

freely, and now η′ ∈ J (C)[2] \ η⊥, giving us the degree claimed. �
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3. Geometry of the boundary

Proposition 3.1. Let Z be a stable curve with dual graph ΓZ . The fiber over Z

in the Z2
2Mg consists of the following objects:

(1) (22g
ν+b1(ΓZ) − 1)(22g

ν+b1(ΓZ)− 2) objects of multiplicity 1 where both Prym
curves are supported on Z.

(2) If X is quasistable with stabilization Z and ∆c
X is Eulerian, then we get

24g
ν+b1(∆X)+b1(ΓZ)−22g

ν+b1(∆X) objects of multiplicity 2b1(ΓZ)−b1(∆X) sup-
ported on each of (X,Z) and (Z,X).

(3) If X is quasistable with stabilization Z and ∆c
X is Eulerian, then we get

two types of objects supported on (X,X):
(a) 24g

ν+2b1(∆X)−22g
ν+b1(∆X) objects of multiplicity 22b1(ΓZ)−2b1(∆X) with

two distinct Prym structures
(b) 22g

ν+b1(∆X) objects of multiplicity 22b1(ΓZ)−2b1(∆X) − 2b1(ΓZ)−b1(∆X)

with the same Prym structure.
(4) If X1, X2 are quasistable over Z and ∆c

X1
and ∆c

X2
are Eulerian, then there

exist 24g
ν+b1(∆X)+b1(∆X) objects of multiplicity 22b1(ΓZ)−b1(∆X1)−b1(∆X2) on

(X1, X2) and again on (X2, X1).

Proof. The fiber is a subscheme of RZ ×RZ which is the complement of Mg ∪Rg ∪
Rg ∪ Rg, components which split off completely over smooth base curves. Away
from the diagonal, we simply remove anything where one of the components is the
trivial line bundle. On the diagonal, the situation is somewhat more intricate. We
look at Z2Mg ×Mg

Z2Mg \ (Mg ∪ Z2Mg ∪ Z2Mg ∪ Z2Mg) and then take the

closure. This leaves us with some points on the diagonal, which we can see because
on any degeneration, there will be classes of Prym curves that will degenerate to
the same thing, which is seen by noting the multiplicity greater than 1.

Additionally, a straightforward computation summing these over all of the Euler
paths gives us total degree (22g

ν+2b1(ΓZ) − 1)(22g
ν+2b1(ΓZ) − 2), which is the degree

of the moduli space, showing that nothing has been missed. �

Now, applying the above to the general point on the boundary, we see that for
a reducible 1-nodal curve, all Prym curves on it are supported on the stable curve
itself, yielding (22g−1)(22g−2) objects of multiplicity 1. The case of an irreducible
curve is a bit more complex:

Corollary 3.2. Let Z be a 1-nodal irreducible stable curve of genus g and ν : Zν →
Z its normalization. There is only one unstable quasistable curve, X = Zν ∪x,y P

1,

where x, y are the preimages of the node in Zν . Then the fiber of Z2
2Mg → Mg

over Z consists of the following objects:

(1) On (Z,Z), we have (22g−1 − 1)(22g−1 − 2) objects of multiplicity 1.
(2) On each (Z,X) and (X,Z), we have a total of 24g−2 − 22g−1 objects of

multiplicity 2
(3) On (X,X) we have two types of objects:

(a) 24g−4−22g−2 objects of multiplicity 4 with non-isomorphic projections
to Z2Mg.

(b) 22g−2 objects of multiplicity 2 with the same projections to Z2Mg.

Now, we must compute the list of boundary divisors. We begin by looking at

the boundary of Z2
2Mg ×Mg

Z2
2Mg. Points on the boundary can be classified into
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products ∆a ×∆b where a, b were in {I, II, III} over an irreducible 1-nodal curve
and {i, g− i, i : g− i} over a reducible curve with components of genus i and g− i.

We denote the restrictions of these loci to Z2
2Mg by ∆a,b, and note that although

some are, many of these are not irreducible.

The components with nonirreducible restrictions to Z2
2Mg

i
are ∆II,II , ∆III,III ,

∆i,i:g−i, ∆i:g−i,i, ∆g−i,i:g−i, ∆i:g−i,g−i, and ∆i:g−i,i:g−i. Specifically, they break
up as

∆II,II = ∆±
II,II +∆′

II,II

∆III,III = ∆diag
III,III +∆′

III,III

∆i,i:g−i = ∆i
i,i:g−i +∆′

i,i:g−i

∆i:g−i,i = ∆i
i:g−i,i +∆′

i:g−i,i

∆g−i,i:g−i = ∆g−i
g−i,i:g−i +∆′

g−i,i:g−i

∆i:g−i,g−i = ∆g−i
i:g−i,g−i +∆′

i:g−i,g−i

∆i:g−i,i:g−i = ∆i
i:g−i,i:g−i +∆g−i

i:g−i,i:g−i +∆′
i:g−i,i:g−i

where (with equality meaning equal to the closure of)

∆±
II,II = {(η1, η2)|ν

∗η1 ∼= ν∗η2}

∆′
II,II = {(η1, η2)|ν

∗η1 6∼= ν∗η2}

∆diag
III,III = {(η1, η2)|η1 ∼= η2}

∆′
III,III = {(η1, η2)|η1 6∼= η2}

∆i
i,i:g−i = {(η1, η2)|η1|C1

∼= η2|C1}

∆′
i,i:g−i = {(η1, η2)|η1|C1 6∼= η2|C1}

∆i
i:g−i,i = {(η1, η2)|η1|C1

∼= η2|C1}

∆′
i:g−i,i = {(η1, η2)|η1|C1 6∼= η2|C1}

∆g−i
g−i,i:g−i = {(η1, η2)|η1|C2

∼= η2|C2}

∆′
g−i,i:g−i = {(η1, η2)|η1|C2 6∼= η2|C2}

∆g−i
i:g−i,g−i = {(η1, η2)|η1|C2

∼= η2|C2}

∆′
i:g−i,g−i = {(η1, η2)|η1|C2 6∼= η2|C2}

∆i
i:g−i,i:g−i = {(η1, η2)|η1|C1

∼= η2|C1}

∆g−i
i:g−i,i:g−i = {(η1, η2)|η1|C2

∼= η2|C2}

∆′
i:g−i,i:g−i = {(η1, η2)|η1|Ci

6∼= η2|Ci
for i = 1, 2}

Now that we have a list of all of the components, we compute which objects are
in which, a straightforward computation:

Proposition 3.3. Over the locus of 1-nodal irreducible curves in Mg of the bound-

ary components of Z2
2Mg consist of

∆I,II = 22g−1 − 2 objects of multiplicity 1

∆II,I = 22g−1 − 2 objects of multiplicity 1
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∆I,III = 22g−2 objects of multiplicity 2

∆III,I = 22g−2 objects of multiplicity 2

∆II,III = 22g−2(22g−1 − 2) objects of multiplicity 2

∆III,II = 22g−2(22g−1 − 2) objects of multiplicity 2

∆±
II,II = 22g−1 − 2 objects of multiplicity 1

∆′
II,II = (22g−1 − 2)(22g−1 − 4) objects of multiplicity 1

∆diag
III,III = 22g−2 objects of multiplicity 2

∆′
III,III = 24g−4 − 22g−2 objects of multiplicity 4

Remark 3.4. It is interesting to note that away from ∆′
III,III , the Weil pairing

is well-defined by continuity. However, on this divisor, this fails. Let us look at a
simple example. Let C be a smooth genus 2 curve with p1, . . . , p6 the fixed points of
the hyperelliptic involution. Then any point of order two is pi − pj for i 6= j, and
pi − pj ≡ pj − pi. If the vanishing cycle of the degeneration is p1 − p2, then the
pairs (p1 − p3, p1 − p4) and (p1 − p3, p2 − p4) both degenerate to the same point of
∆′

III,III. We note that, for a genus 2 curve, the Weil pairing can be described as the
cardinality of the intersection of the set of indices appearing in this representation.
Thus, 〈p1 − p3, p1 − p4〉 = 1 and 〈p1 − p3, p2 − p4〉 = 0. Thus, the two components
of this moduli space intersect on the boundary!

In fact, we can say a bit more about the intersection:

Theorem 3.5. The intersection ∆′
III,III = Z2

2Mg

0
∩ Z2

2Mg

1
is transverse, in the

sense that if (C, η1, η2) ∈ ∆′
III,III , then we have

T(C,η1,η2)Z
2
2Mg

∼= T(C,η1,η2)Z
2
2Mg

0
⊕T(C,η1,η2)∆

′
III,III

T(C,η1,η2)Z
2
2Mg

1
.

Proof. To see that this is precisely the intersection, we look at a degeneration of
Prym curves with vanishing cycle δ. The fiber over the nodal curve only has points
coming together over ∆III , which is the part of the fiber over the quasi-stable
curve. There, every Prym curve structure is the limit of both η and η + δ for η
some Prym curve structure on a smooth curve in the degeneration. The Weil pairing
is well-defined on all components over ∆III other than ∆′

III,III , by linearity and

the definitions of ∆I and ∆II . However, on ∆III,III , we have (η1, η2) two Prym
structures giving a Z2

2 curve. This limit as δ vanishes, is the same as the limit
of (η1, η2 + δ), and also two other loci. However, the Weil pairing is linear, so
〈η1, η2 + δ〉 = 〈η1, η2〉+ 〈η1, δ〉, and because it is in ∆III , 〈η1, δ〉 = 1, so this point
is a limit of families of Veil pairing both 0 and 1, and this holds for every point in
∆′

III,III .

Transversality follows by looking at first order deformations of (C, η1, η2). The
Weil pairing determines which component (C, η1, η2) is on, except along ∆′

III,III

where it is indeterminate. So we describe all of the space:

T(C,η1,η2)Z
2
2Mg = First order deformations with 〈η1, η2〉 undefined, 0, or 1,

T(C,η1,η2)Z
2
2Mg

0
= First order deformations with 〈η1, η2〉 undefined, or 0,

T(C,η1,η2)∆
′
III,III = First order deformations with 〈η1, η2〉 undefined,
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T(C,η1,η2)Z
2
2Mg

1
= First order deformations with 〈η1, η2〉 undefined, or ,

From these descriptions, transversality follows immediately. �

A similar computation to Proposition 3.3 over reducible 1-nodal curves gives:

Proposition 3.6. Over the locus of 1-nodal reducible curves that are a union of a

genus i and a genus g − i curve in Mg, the boundary components of Z2
2Mg are of

the following degrees (and all objects are multiplicity 1):

∆i,i = (22i − 1)(22i − 2)

∆g−i,g−i = (22(g−i) − 1)(22(g−i) − 2)

∆i,g−i = (22i − 1)(22(g−i) − 1)

∆g−i,i = (22i − 1)(22(g−i) − 1)

∆i
i,i:g−i = (22i − 1)(22(g−i) − 1)

∆′
i,i:g−i = (22i − 2)(22i − 1)(22(g−i) − 1)

∆i
i:g−i,i = (22i − 1)(22(g−i) − 1)

∆′
i:g−i,i = (22i − 2)(22i − 1)(22(g−i) − 1)

∆g−i
g−i,i:g−i = (22i − 1)(22(g−i) − 1)

∆′
g−i,i:g−i = (22(g−i) − 2)(22i − 1)(22(g−i) − 1)

∆g−i
i:g−i,g−i = (22i − 1)(22(g−i) − 1)

∆′
i:g−i,g−i = (22(g−i) − 2)(22i − 1)(22(g−i) − 1)

∆i
i:g−i,i:g−i = (22i − 1)(22(g−i) − 1)(22(g−i) − 2)

∆g−i
i:g−i,i:g−i = (22i − 1)(22i − 2)(22(g−i) − 1)

∆′
i:g−i,i:g−i = (22i − 1)(22(g−i) − 1)

×((22i − 1)(22(g−i) − 1)− (22i − 1)− (22(g−i) − 1))

4. The moduli of Klein curves

In this section, we extend the results of the previous section to a compactification
of V4Mg = Z2

2Mg/PSL2(F2), that is, the moduli space where we do not choose a
basis of the Deck transformations. We will do so by extending the group action to

the compactification Z2
2Mg, and defining the quotient to be V4Mg.

Proposition 4.1. The group action PSL2(F2) × Z2
2Mg → Z2

2Mg extends to each

component of Z2
2Mg.

Proof. Let D1 = ∆I,III ∪∆III,I ∪∆diag
III,III and D2 = ∆′

III,III ∪∆II,III ∪∆III,II .

Then the extension is actually straightforward over Z2
2Mg \ (D1 ∪D2), as over this

locus, the fibers are reduced, and the action is just by change of basis on a Klein 4
group. Only in the cases where multiplicities are no longer 1, namely D1 and D2,
will these fail to just be Klein four groups.

Now, we take the orbit of a Z2
2-curve in the locus where we have the group

action, and degenerate it to D1. Then, the six objects of multiplicity 1 of this fiber

degenerate to (η, η) ∈ ∆diag
III,III , (η,O

−
X) ∈ ∆III,I and (O−

X , η) ∈ ∆I,III , where O
−
X



THE MODULI OF KLEIN COVERS OF CURVES 11

is the Prym curve structure on X lying in ∆I ⊂ Z2Mg. Each of these appears
with multiplicity 2. Here, the group action can be seen most clearly by noting
that PSL2(F2) ∼= S3 (and in fact, the change of basis on a Klein four group is
just permuting the three nonzero elements) and seeing the action as being that of
S3 on the ordered set (O−

X , η, η) followed by forgetting the last element. Deeper
degeneration into the strata D1 \D2 can be handled in the same way, leaving only
D2 remaining.

To extend the action to D2, we must first restrict to the individual irreducible

components of Z2
2Mg. This is because ∆′

III,III is the intersection of the two com-
ponents, by Theorem 3.5. So, by transversality the fiber multiplicity of elements in
the intersection must be split evenly between the components.

Now, let (ǫ1, ǫ2) ∈ ∆′
III,III . Then ǫ2⊗ ǫ−1

1 gives a Prym structure on the closure
of the complement of the exceptional components. There are two different Prym
structures on the stable curve that pull back to this under the stabilization map,
but one of them lies on each componenet. We will denote by ηi the Prym structure

such that (ηi, ǫ1), (η
i, ǫ2) ∈ Z2

2Mg

i
. Then, the PSL2(F2) ∼= S3 action is given by

permutation of ǫ1, ǫ2, η
i. �

This extension allows us to take the quotient, which constructs from the moduli
of pairs of Prym structures, which is the same as the moduli of Klein four groups
of Prym structures, with the moduli of Klein four groups of Prym covers without
a basis.

Definition 4.2 (Moduli of Klein four covers). We define the space V4Mg to be

the quotient of Z2
2Mg by the relation described above, and we call it the moduli of

Klein four covers of genus g curves.

Given an orbit {(C, ηi1, η
i
2)} where i runs over the elements of the orbit, we will

denote by (C, {ηij}i,j) the corresponding point of V4Mg, with i running over the
orbit and j = 1, 2.

The boundary in the Klein moduli space simplifies significantly. Because the
action of PSL2(F2) exchanges some boundary components, we group them together
and give names to their images (fixing the Weil pairing as either 0 or 1 in each case)
in the following:

∆I,II ∪∆II,I ∪∆±
II,II → ∆I,II,II

∆I,III ∪∆III,I ∪∆diag
III,III → ∆I,III,III

∆II,III ∪∆III,II ∪∆′
III,III → ∆II,III,III

∆′
II → ∆II,II,II

∆i,g−i ∪∆g−i,i ∪∆i
i,i:g−i ∪∆i

i:g−i,i ∪∆g−i
g−i,i:g−i ∪∆g−i

i:g−i,g−i → ∆i,g−i,i:g−i

∆i,i → ∆i,i,i

∆g−i,g−i → ∆g−i,g−i,g−i

∆′
i,i:g−i ∪∆′

i:g−i,i ∪∆i
i:g−i,i:g−i → ∆i,i:g−i,i:g−i

∆′
g−i,i:g−i ∪∆′

i:g−i,g−i ∪∆g−i
i:g−i,i:g−i → ∆g−i,i:g−i,i:g−i

∆′
i:g−i,i:g−i → ∆i:g−i,i:g−i,i:g−i
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Between the degrees computed in the previous section and the maps above all
being PSL2(F2) quotients, we find the following structure on the boundary

∆I,II,II = 22g−2 − 1 objects of multiplicity 1

∆I,III,III = 22g−2 objects of multiplicity 1

∆II,III,III = 22g−2(22g−2 − 1) objects of multiplicity 2

∆II,II,II =
(22g−1 − 2)(22g−1 − 4)

6
objects of multiplicity 1

∆i,g−i,i:g−i = (22i − 1)(22(g−i) − 1) objects of multiplicity 1

∆i,i,i =
(22i − 1)(22i − 2)

6
objects of multiplicity 1

∆g−i,g−i,g−i =
(22(g−i) − 1)(22(g−i) − 2)

6
objects of multiplicity 1

∆i,i:g−i,i:g−i =
(22i − 1)(22i − 2)(22(g−i) − 1)

2
objects of multiplicity 1

∆g−i,i:g−i,i:g−i =
(22(g−i) − 1)(22(g−i) − 2)(22i − 1)

2
objects of multiplicity 1

∆i:g−i,i:g−i,i:g−i =
(22i − 1)(22(g−i) − 1)(22i − 2)(22(g−i) − 2)

6
objects of

multiplicity 1

This gives us

Proposition 4.3. The morphsim V4Mg → Mg has degree (22g−1)(22g−2)
6 and is

simply ramified along ∆II,III,III.

Thus, we have

Corollary 4.4. The canonical divisor of V4Mg is

KV4Mg
= 13λ− 2∆I,II,II − 2∆I,III,III − 2∆II,II,II − 3∆II,III,III

−∆1,g−1,1:g−1 −∆1,1,1 −∆g−1,g−1,g−1

−∆1,1:g−1,1:g−1 −∆g−1,1:g−1,1:g−1 −∆1:g−1,1:g−1,1:g−1

−2

⌊g/2⌋∑

i=1

(∆i,g−i,i:g−i +∆i,i,i +∆g−i,g−i,g−i +∆i,i:g−i,i:g−i

+∆g−i,i:g−i,i:g−i +∆i:g−i,i:g−i,i:g−i).

Proof. We use the Hurwitz formula, which tells us that KV4Mg
= π∗KMg

+

∆II,III,III . The canonical divisor ofMg is 13λ−2δ0−3δ1−2δ2−. . .−2δ⌊g/2⌋[HM82].
We note that π∗(∆i) = ∆i,g−i,i:g−i + ∆i,i,i + ∆g−i,g−i,g−i + ∆i,i:g−i,i:g−i +

∆g−i,i:g−i,i:g−i + ∆i:g−i,i:g−i,i:g−i and π∗∆0 = ∆I,II,II + ∆I,III,III + ∆II,II,II +
2∆II,III,III and π∗λ = λ. �

Now we’ll work out some numerics of the odd and even components of V4Mg

Proposition 4.5. The degrees of the natural projection maps to Mg are

• for V4Mg,
(22g−1)(22g−2)

6 .
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• for V4Mg
0
, (22g−1)(22g−1−2)

6 .

• for V4Mg
1
, (22g−1)22g−1

6 .

This follows directly from Proposition 2.9 and Lemma 2.6.
As a final computation involving the degrees, we compute the content of the

boundary divisors when restricted to V4Mg
0
and V4Mg

1
.

Theorem 4.6. The fiber over the generic element C of the boundary of Mg in

V4Mg is:

(1) if C is irreducible 1-nodal, the fiber in V4Mg
0
is

(a) 22g−2 − 1 elements of ∆0
I,II,II with multiplicity 1,

(b) (22g−1−2)(22g−2−4)
6 elements of ∆0

II,II,II with multiplicity 1,

(c) (22g−1 − 2)22g−4 elements of ∆0
II,III,III with multiplicity 2,

(2) if C is irreducible 1-nodal, the fiber in V4Mg
1
is

(a) (22g−1−2)22g−2

6 elements of ∆1
II,II,II with multiplicity 1,

(b) (22g−1 − 2)22g−4 elements of ∆1
II,III,III with multiplicity 2,

(c) 22g−2 elements of ∆1
I,III,III with multiplicity 1,

(3) if C is reducible with components of genus i and g − i, the fiber in V4Mg
0

is
(a) (22i − 1)(22(g−i) − 1) elements of ∆0

i,g−i,i:g−i with multiplicity 1,

(b) (22i−1)(22i−1−2)
6 elements of ∆0

i,i,i with multiplicity 1,

(c) (22(g−i)−1)(22(g−i)−1−2)
6 elements of ∆0

g−i,g−i,g−i with multiplicity 1,

(d) (22i−1 − 1)(22i−2 − 1)(22(g−i) − 1) elements of ∆0
i,i:g−i,i:g−i with mul-

tiplicity 1,
(e) (22(g−i)−1 − 1)(22(g−i)−2 − 1)(22i − 1) elements of ∆0

g−i,i:g−i,i:g−i with
multiplicity 1,

(f) (22i−1)(22(g−i)−1)((22i−1−2)(22(g−i)−1−2)+(22i−1)(22(g−i)−1))
6 elements of

∆0
i:g−i,i:g−i,i:g−i with multiplicity 1,

(4) if C is reducible with components of genus i and g − i, the fiber in V4Mg
1

is
(a) (22i−1)22i−1

6 elements of ∆1
i,i,i with multiplicity 1,

(b) (22(g−i)−1)22(g−i)−1

6 elements of ∆1
g−i,g−i,g−i with multiplicity 1,

(c) (22i−1 − 1)(22i−1)(22(g−i) − 2) elements of ∆1
i,i:g−i,i:g−i with multiplic-

ity 1,
(d) (22(g−i)−1 − 1)(22(g−i)−2)(22i − 1) elements of ∆1

g−i,i:g−i,i:g−i with
multiplicity 1,

(e) (22i−1)(22(g−i)−1)((22i−1−2)(22i−1)+(22(g−i)−1)(22(g−i)−1−2))
6 elements of

∆1
i:g−i,i:g−i,i:g−i with multiplicity 1.

Proof. We will work out parts 1 and 3, parts 2 and 4 being analagous.
With the exception of ∆II,III,III , we can compute the Weil pairing by choosing

any pair of elements in the group. For ∆II,III,III , we note that it must be divided
evenly between the components. The groups consist of two elements from ∆III

and the one element of ∆II , and can be chosen to either be glued by +1 or −1 at
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the node. These will correspond to Weil pairing 0 and 1, thus dividing ∆II,III,III

evenly.
For ∆I,II,II , by definition, we must have ∆0

I,II,II = ∆I,II,II . Similarly, we can

see that ∆0
I,III,III = ∅. We can finish by computing that ∆0

II,II,II must be the

correct size to, with the other components, add up to (22g−1)(22g−1−2)
6 . However, we

can compute this directly by choosing µ1, µ2 ∈ ∆II distinct and orthogonal. Then,
if δ is the vanishing cycle, we have µ1 ∈ δ⊥ \ (δ) and µ2 ∈ (δ, µ1)

⊥ \ (δ, µ1), which
gives the appropriate number.

Over a reducible curve C = Ci ∪ Cg−i, although the expressions are more com-
plex, the situation is simpler. We begin by noting that everything in ∆i,g−i,i:g−i

must be in ∆0
i,g−i,i:g−i, because the generators have no common support curve.

As for ∆i,i,i and ∆g−i,g−i,g−i, they will be precisely the fibers of the lower genus
maps V4M0

i → Mi and V4M0
g−i → Mg−i. On ∆i,i:g−i,i:g−i, we can have any

nonzero square trivial line bundle on the component Ci, and the second generator
can have any restriction to Cg−i, but the restriction to Ci must be orthogonal to the
first, and here, we only divide by two choices in ∆i:g−i that can be basis elements.
The next component, ∆g−i,i:g−i,i:g−i, can be computed in a similar way. The fi-
nal component, ∆i:g−i,i:g−i,i:g−i starts with an arbitary element of ∆i:g−i, and the
second must either have both restrictions orthogonal to those of the first, or else
both nonorthogonal, and then we divide by 6 from choices of basis, completing the
computation. �

5. Pluricanonical forms

In this section, we show that pluricanonical forms on V4Mg extend to any smooth

model, allowing us to compute the Kodaira dimension on V4Mg itself, rather than
having to work on the set of smooth models. As such, the goal of this section is to
prove

Theorem 5.1. Fix g ≥ 4 and i ∈ {0, 1}, and let Ẑ2
2Mg

i

→ Z2
2Mg

i
be any reso-

lution of the singularities. Then every pluricanonical form defined on Z2
2Mg

i,reg
,

the smooth locus, extends holomorphically to Ẑ2
2Mg

i

. Specifically, for all integers
ℓ ≥ 0, we have isomorphisms

H0(Z2
2Mg

i,reg
,K⊗ℓ

Z2
2Mg

i,reg ) ∼= H0(Ẑ2
2Mg

i

,K⊗ℓ

Ẑ2
2Mg

i)

Analogues of this theorem are known for all of the relevant related moduli spaces:
Mg is proved in [HM82, Theorem 1], Rg is proved in [FL10, Theorem 6.1], and the
moduli of spin curves in [Lud10, Theorem 4.1]. Our proof will very closely follow

the one in [FL10] for Rg, which can be expected as Z2
2Mg is two of the components

of Rg ×Mg
Rg.

Before we can proceed, we need to make a few remarks about the versal defor-

mations of an object X = (X1, X2, η1, η2, β1, β2) ∈ Z2
2Mg. Let C

3g−3
t be the versal

deformation space of Z, the stabilization of Xi and C3g−3
α the versal deformation

space of X . There are compatible decompositions

C
3g−3
α

∼=
⊕

pi∈∆c
X1

∩∆X2

Cτi ⊕
⊕

pi∈∆c
X2

∩∆X1

Cτi ⊕
⊕

pi∈∆c
X1

∩∆c
X2

Cτi
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⊕
⊕

pi∈∆X1∩∆X2

Cτi ⊕
⊕

Cj⊂C

H1(Cν
j , TCν

j
(−Dj))

C
3g−3
t

∼=
⊕

pi∈Sing(C)

Cti ⊕
⊕

Cj⊂C

H1(Cν
j , TCν

j
(−Dj))

where Dj is the sum of the preimages of the nodes under the normalization map.
There is a natural map from the versal deformation space of a Z2

2 curve to that
of the underlying stable curve, given by ti = α2

i if ti = 0 is the locus where the
exceptional node pi ∈ ∆c

X1
∪∆c

X2
persists and ti = αi otherwise. Similarly to the

discussion in Section 1.2 of [BCF04], we can blow up along all of the exceptional
components and extend η1, η2 using only those in ∆c

X1
and ∆c

X2
respectively.

This description makes the rest of the work in Section 6 of [FL10] relatively
straightforward to generalize. Set X∆ to be the quasi-stable curve with exceptional
nodes ∆c

X1
∪∆c

X2
.

Definition 5.2 (Elliptic tail). Let X be a quasi-stable curve, a component Cj is
an elliptic tail if it has arithmetic genus 1 and intersects the rest of the curve in a
single point. That point is called an elliptic tail node, and any automorphism of X
that is the identity away from Cj is an elliptic tail automorphism.

Proposition 5.3. Let σ ∈ Aut(X) be an automorphism in genus g ≥ 4. Then σ
acts on C3g−3

α as a quasi-reflection if and only if X∆ has an elliptic tail Cj such
that σ is the elliptic tail involution with respect to Cj.

The proof of this proposition follows from the proof of [FL10, 6.6]. It implies that

the smooth locus of Z2
2Mg is the locus where the automorphism group is generated

by elliptic tail involutions. Now that we have determined the smooth locus, we
must determine the non-canonical locus. If G acts on a vector space V by quasi-
reflections, then V/G ∼= V , so we let H ⊂ Aut(X1, X2, η1, η2, β1, β2) be generated
by automorphisms acting as quasi-reflections, that is elliptic tail involutions. Then
C3g−3

α /H ∼= C3g−3
ν where νi = α2

i if pi is an elliptic tail node and νi = αi else.
On C3g−3

ν , the automorphisms act without quasi-reflections, so the Reid–Shepherd-
Barron–Tai criterion can be applied.

Theorem 5.4 (Reid–Shepherd-Barron–Tai Criterion [Rei80, Tai84]). Let V be a
vector space of dimension d, G ⊂ GL(V ) a finite group and V0 ⊂ V the open set
where G acts freely. Fix g ∈ G, and let g be conjugate to a diagonal matrix with
ζai for i = 1, . . . , d on the diagonal for ζ a fixed mth root of unity and 0 ≤ ai < m.

If for all g and ζ, we have 1
m

∑d
i=1 ai ≥ 1, then any n-canonical form on V0/G

extends holomorphically to a resolution Ṽ/G.

It is straightforward to check that for g ≥ 4, we have a noncanonical singularity
if X∆ has an elliptic tail Cj with j-invariant 0 such that η1, η2 are both trivial on
Cj . This goes as in [FL10], where the action of σ is determined to be as the square
of a sixth root of unity in two coordinates for an automorphism of order 6 and as
a cube root of unity in those two coordinates for an order 3 element. Both of these
fail the Reid–Shepherd-Barron–Tai criterion.

Now, assuming that we have a noncanonical singularity, then we have an auto-
morphism σ of order n failing Reid–Shepherd-Barron–Tai. Our goal is to classify
such things, and eventually show that only the examples above exist. Let pi0 ,
pi1 = σ(pi0 ),. . ., σ

m−1(pi0 ) = pim−1 be distinct nodes of the stabilization, C, which
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are permuted by σ and not elliptic tail nodes. The action on the subspace corre-
sponding to these nodes is then given by a matrix




0 c1
...

. . .

0 cm−1

cm 0 . . . 0




for some complex numbers cj . We call the pair (X, σ) singularity reduced if
∏m

j=1 cj
is not 1.

By [HM82] and [Lud10, Proposition 3.6], we know that there is a deformation
X ′ of X such that σ deforms to σ′, an automorphism of X ′ such that every cycle
of nodes with

∏m
j=1 cj = 1 is smoothed and the action of σ and σ′ on C3g−3

ν and

C
3g−3
ν′ have the same eigenvalues. In particular, one will satisfy Reid–Shepherd-

Barron–Tai if and only if the other does.
Now, we fix a pair (X, σ) that is singularity reduced and fails the Reid–Shepherd-

Barron–Tai inequality. On C, the stabilization, the induced automorphism σC must
either fix all of the nodes or else exchange a single pair of them. We look at what
the action does on the components. In [FL10, Proposition 6.9] the proof of [Lud10,
Proposition 3.8] is adapted to the situation of Z2Mg, and this proof goes through
verbatum, telling us that the action fixes each component of the stable model. Now,
we recall that

Theorem 5.5 ([HM82, Page 36]). Assume that (X, σ) is singularity reduced and
fails the Reid–Shepherd-Barron–Tai inequality. Denote by ϕj the induced automor-
phism on the normalization Cν

j of the irreducible component Cj of the stabilization
C of X. Then the pair (Cν

j , ϕj) is one of the following:

(1) Cν
j rational, and the order of ϕj is 2 or 4,

(2) Cν
j elliptic, and the order of ϕj is 2,4,3 or 6,

(3) Cν
j hyperelliptic of genus 2, and ϕj is the hyperelliptic involution,

(4) Cν
j bielliptic of genus 2, and ϕj is the associated involution,

(5) Cν
j hyperelliptic of genus 3, and ϕj is the hyperelliptic involution, and

(6) Cν
j arbitary, and ϕj is the identity.

As pointed out in [Lud10, Proposition 3.10], this rules out the possibility of nodes
being exchanged, so the automorphism must fix all nodes and all components on
the stable curve.

Proposition 5.6 ([FL10, Proposition 6.12]). In the same situation as above, set
Dj to be the divisor of the marked points on Cν

j that are preimages of nodes. Then
the triples (Cν

j , Dj, ϕj) are one of the following types, and the contribution to the
left hand side of the Reid–Shepherd-Barron–Tai inequality are at least wj:

(1) Cν
j arbitary, ϕj is the identity, and wj = 0,

(2) Elliptic tails: Cν
j is elliptic, D = p+1 which is fixed by ϕj, ϕj has order

2,3,4 or 6, and wj is, respectively, 0, 1
3 ,

1
2 and 1

3 .

(3) Elliptic ladder: Cν
j is elliptic and D = p+1 + p+2 , with both points fixed, the

automorphism is of order 2, 3, or 4 and wj is, respectively, 1
2 ,

2
3 , and

3
4

(4) Hyperelliptic tail: Cν
j has genus 2, ϕj is the hyperelliptic involution, and

Dj = p+1 fixed by ϕj. Then wj =
1
2 .
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With a bit of case by case work, essentially [FL10] Propositions 6.13, 6.14, 6.15
and 6.16, we can see that hyperelliptic tails, elliptic ladders, and elliptic tails of
order 4 do not occur, and that there must, in fact, be at least one elliptic tail of
order 3 or 6, giving us our restrictions on the curve. Now, we look to the line
bundles. Because the automorphism must pull back the line bundle to itself on the
elliptic curve, it must be trivial on the elliptic tail, and this must hold for both
of the Prym line bundles. Thus, if we start with (X, σ) failing Reid–Shepherd-
Barron–Tai, then we can deform to a singularity reduced pair (X ′, σ′) such that
the Reid–Shepherd-Barron–Tai value is constant. The pair (X ′, σ′) must have an
elliptic tail with j invariant 0, the automorphism must be of order 3 or 6, and η1, η2
must both be trivial along it. Thus:

Proposition 5.7. Fix g ≥ 4. A point (X1, X2, η1, η2, β1, β2) ∈ Z2
2Mg is a non-

canonical singularity if and only if X∆ has an elliptic tail Cj with j-invariant 0
and η1|Cj

∼= η2|Cj
∼= OCj

.

Proof of Theorem 5.1. Let ω be a pluricanonical form on Z2
2Mg

i,reg
. We want

to show that it lifts to a desingularization of some neighborhood of any point

(X1, X2, η1, η2, β1, β2) ∈ Z2
2Mg

i
. Because this can be done for canonical singu-

larities, we assume that (X1, X2, η1, η2, β1, β2) is a general non-canonical singular-
ity, and thus X∆ = C1 ∪p C2 where (C1, p) ∈ Mg−1,1 and (C2, p) ∈ M1,1 with
j(C2) = 0. We also assume that η1|C2

∼= η2|C2
∼= OC2 and ηi|C1 are two arbitrary

line bundles on C1, so that we are on a hypersurface in ∆g−1,g−1. We consider the

pencil φ : M1,1 → Z2
2Mg

i
given by φ(C, p) = C1∪pC and line bundles η′i trivial on

C and isomorphic to ηi|Ci
on Ci. As φ(M1,1) does not intersect the ramification

locus, then just as in [HM82] pages 41-44, we can construct an open neighborhood

of the pencil, S, such that the restriction of Z2
2Mg

i
→ Mg to S is an isomorphism

and every pluricanonical form on the smooth locus extends to a resolution Ŝ of
S. For the arbitrary case, with more than one node, ω will extend locally to a
desingularization, just as in [Lud10, Theorem 4.1]. �

Then, Theorem 5.1 in fact implies the same result for V4Mg
i
. This is because

Z2
2Mg

i
→ V4Mg

i
is a quotient by PSL2(F2). The action is free except for along

∆I,III ∪∆III,I ∪∆diag
III,III , where the stabilizer of a point is Z/2Z. Looking at the

Reid–Shepherd-Barron–Tai criterion for m = 2, we find that either the pluricanon-
ical forms extend or we have a quasi-reflection, in which case the pluricanonical
forms will also extend. So, either way, we can see that what we get are the in-

variants: H0(V4Mg
i,reg

,K⊗ℓ) ∼= H0(Z2
2Mg

i
,K⊗ℓ)PSL2(F2), and so, because we can

also do this for partial resolutions of Z2
2Mg

i
, we can do this for any resolution

V̂4Mg

i
.

We conclude with a statement about the birational geometry of these moduli
spaces, justified by the above

Theorem 5.8. For any g, V4Mg
i
has general type if there exists a single effective

divisor D ≡ aλ −
∑

T b∆T
∆T where T runs over all boundary components, such

that all the ratios a
bT

are less than 13
2 and the ratios a

bII,III,III
, a

b1,g−1,1:g−1
, a

b1,1,1
,

a
bg−1,g−1,g−1

, a
b1,1:g−1,1:g−1

, a
bg−1,1:g−1,1:g−1

, and a
b1:g−1,1:g−1,1:g−1

are less than 13
3 .
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This allows us to begin computing the classes of divisors on the Klein moduli
space to determine its Kodaira dimension, and thus begin the study of the birational
geometry of these spaces.
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