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0 Introduction

The words “algebra of the infrared” in the title refer to the physical paper
[GMW] by Gaiotto, Moore and Witten, to which (or, rather, to a part of
which) our article is a mathematical commentary.

In [GMW] the authors developed an algebraic formalism for the study of
certain 2-dimensional massive quantum field theories with (2, 2) supersym-
metry. One of the main algebraic structures introduced in the loc.cit. is
the L∞-algebra of webs, associated with a generic finite subset A ⊂ R2 in
the plane. Physically, elements of A correspond to vacua of the theory. A
web is a plane graph with faces marked by elements of A with an additional
condition on the direction of edges, see §13 below for a review. Further, a
choice of a half-plane containing A determines an A∞-algebra (or an A∞-
category, if one introduces a coefficient system). This A∞-category has an
“upper-triangular structure”, i.e. a semi-orthogonal decomposition.

Using certain “moduli spaces of ζ-instantons” the authors of loc.cit. de-
scribe a class of deformations of the above A∞-category which describe the
D-brane categories for a particular class of (2,2) supersymmetric theories:
Landau-Ginzburg models. Mathematically, the D-brane A∞-categories cor-
responding to LG models are known as Fukaya-Seidel categories [HIV],[Se1].

We reinterpret and develop the algebraic structures proposed in [GMW]
in a way that allows a generalization to higher dimensions (Rd, d ≥ 2 instead
of just R2). It turns out that using the dual language of polygons rather
than webs, one quickly uncovers certain structures well-known in toric ge-
ometry, most notably, secondary polytopes, see [GKZ]. One of the subtle and
surprising points of the GMW construction is the fact that the differential
they define, satisfies d2 = 0. In our approach this fact becomes obvious:
the cellular chain complex of any polytope, in particular, of the secondary
polytope, is indeed a complex, i.e., it has d2 = 0.

Since secondary polytopes make sense in any number of dimensions, our
dual approach leads naturally to higher-dimensional structures of “extended”
topological field theories (TFT). We postpone the study of these structures
to a later work. So the present paper is just the first step in that general
direction.

Let us discuss the contents.

Although we were strongly influenced by [GMW], we have arranged the
exposition logically from scratch, implementing our dual interpretation right
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away. A detailed dictionary relating our approach and terminology with
that of [GMW], is provided in Section 13. The reader familiar with the
terminology of [GMW] can start from that section and then proceed linearly
from the beginning.

Section 1 provides the general background on secondary polytopes. Roughly,
the secondary polytope of a given polytope in Rd has vertices correspond-
ing to decompositions of the initial, “primary”, polytope into simplices (such
decompositions are called triangulations). The usefulness of the notion of sec-
ondary polytope from the point of view of the approach of [GMW] becomes
clear in Section 2: the chain complex of the secondary polytope looks like a
dg-algebra. The main reason for that is explained earlier in Proposition 1.9:
each face of the secondary polytope is itself a product of several secondary
polytopes associated to members of a certain polyhedral subdivision of the
initial polytope.

In Section 3 we introduce an L∞-algebra structure in the space gA spanned
by polytopes with vertices in a given set A ⊂ Rd. For that we define a
differential in the symmetric algebra generated by the (shifted) dual space
to gA. The remark in the previous paragraph about the chain complex of
the secondary polytope explains why our L∞-structure comes naturally from
such a chain complex. Further, one can visualize higher Lie brackets in
gA geometrically. Roughly speaking, they correspond to the operation of
composing a convex polytope from smaller polytopes with vertices in A.

Section 4 is a reminder about Maurer-Cartan elements in L∞-algebras.
Together with Section 7, which is devoted to a short account on deformation
theory, Hochschild complexes etc., it prepares the ground for future applica-
tions à la [GMW]: a geometrically defined Maurer-Cartan element gives rise
to a deformed L∞-structure.

Section 5 is devoted to the most elementary case d = 1, which explains
the reason for the second construction of [GMW]: lifting of a certain L∞-
algebra (related but not equal to gA) to an A∞-algebra. The possibility of
such lifting is the essential 1-dimensionality of the situation, and the purely
1-dimensional case provides a clear starting point. This is related to the fact
that convex polytopes on the real line are just segments, and so one can
naturally order their vertices.

In Section 6 we study the situation when one element of A is distinguished
and referred to as an “element at infinity” (denoted ∞). This is a higher-
dimensional analog of the choice of a half-plane in [GMW]. In this case
the L∞-algebra gA contains an ideal g∞ spanned by “infinite” polytopes
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(containing ∞), and a subalgebra gfin spanned by “finite” polytopes (not
containing∞). We explain in Section 8 how these structures lead, in the case
d = 2, to an action of gfin on R∞, a natural A∞-lift of the L∞-algebra g∞.
Combining this with the results of Sections 6, 7, we arrive at a morphism from
gfin to the Hochschild complex of R∞ (all in the case of trivial coefficients).

The case of non-trivial coefficients is the subject of Section 9. Here we
introduce and exploit an important notion of a factorizing sheaf (on the sec-
ondary polytope). This notion can be seen as a combinatorial version of fac-
torization algebras such as used by Lurie and Costello-Gwylliam [Lur, CGw]
to describe higher-dimensional TFT. This strongly suggests that the con-
structions of the previous sections admit a generalization to the framework
of higher-dimensional TFT, with, for instance, Ed−1-algebras playing the role
of A∞-algebras such as R∞.

For an A∞-algebra with an upper-triangular structure, there is a version
of the Hochschild complex which controls deformations preserving this struc-
ture. We call it the directed Hochschild complex and discuss it in Section .
After preparations in Sections 10, 11 we finally prove, in Section 12 a result
which we call the Universality Theorem. It concerns the case d = 2 and the
situation of Section 11 associated with a choice of a point∞ (or, equivalently,
of a held-plane). It says that the natural morphism from the L∞-algebra gfin

of finite polygons to the Hochschild complex of R∞, is a quasi-isomorphism
onto the directed Hochschild complex.

This result should be compared with the Deligne conjecture, see [KoSo2],
as well as with similar results about the Swiss Cheese operad and its higher-
dimensional generalizations, see e.g., [Ko1]. It certainly admits a generaliza-
tion to the higher-dimensional case (in which case one deals with Hochschild
complexes of Ed−1-algebras in the spirit of [Ko1]). This will be a subject of
separate publication.

In Section 14 we discuss possibilities for the Maurer-Cartan element giving
the Fukaya-Seidel category associated with a choice of a half-plane.

Section 15 contains a list of further applications and speculations.
We should mention here that there are several L∞ and A∞ algebras that

can be naturally associated with a finite subset A ⊂ Rd. The biggest one
involves all marked polytopes. It has non-trivial differential corresponding
to the operation of “insertion of internal points”. On the other hand, for
the application to Fukaya-Seidel categories one needs a much smaller L∞-
subalgebra which involves polytopes, each marked with the set of all its
internal points. The differential is trivial on this subalgebra, and moreover,
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we do not need to include the set of points as a separate piece of the data. In
this way we obtain a smaller L∞-algebra, which we refer to as the geometric
one. It is spanned by convex polytopes with vertices in A, with higher Lie
brackets given by the operation of composing a bigger convex polytope from
smaller ones. As we pointed out above, the geometric L∞-algebra appears
naturally in the description of the Hochschild complex of the Fukaya-Seidel
category. The meaning of the “big” L∞-algebra is not clear at the moment.

Acknowledgements. We thank Davide Gaiotto, Greg Moore and Edward
Witten for multiple discussions and correspondences about their deep and
beautiful paper [GMW] as well as for sending us preliminary drafts. Y.S.
is grateful to IHES for excellent research conditions. His work was partially
supported by an NSF grant. This work was supported by World Premier
International Research Center Initiative (WPI Initiative), MEXT, Japan.
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1 Reminder on secondary polytopes.

In this section we recall some basic material from [GKZ], Ch. 7. We refer
the reader to loc.cit. for details of constructions and proofs of statements.

Let A ⊂ Rd be a finite subset of points. We assume that:

(1) The affine span of A is the whole of Rd.

(2) A is in general position, i.e., any p ≤ d+ 1 points of A are the vertices
of a (p− 1)-simplex.

The first assumption can always be satisfied by passing to the affine span.
The second assumption can be removed at the price of somewhat complicat-
ing the discussion and we prefer to keep it throughout the paper for simplicity.

Let Q = Conv(A) be the convex hull of A, a d-dimensional convex poly-
tope. By a triangulation T of (Q,A) we will mean a subdivision of Q into
straight simplices of full dimension d with vertices in A so that the intersec-
tion of any two simplices is a common face (possibly empty). Note that it is
not required that each element of A appears as a vertex of a simplex of T .
A triangulation T is called regular, if there is a continuous convex function
f : Q→ R such that:

• f is affine-linear on each simplex of T .

• f is not affine-linear on any subset of Q which is not contained in a
simplex of T . In other words, f does indeed break along each codimen-
sion 1 simplex which is a common face of two different d-dimensional
simplices of T .

For a more systematic discussion, we need the following concept.

Definition 1.1. A marked polytope is a pair (Q,A) where Q is a convex
polytope in Rd and A ⊂ Rd is a finite subset such that Q = Conv(A), i.e.,
A contains all vertices of Q. A marked subpolytope of (Q,A) is a marked
polytope (Q′, A′) such that A′ ⊂ A. Notation: (Q′, A′) ⊂ (Q,A).

Definition 1.2. By a polyhedral subdivision of (Q,A) we will mean a collec-
tion P = (Qν , Aν) of marked subpolytopes of (Q,A) which have dim Qν =
dim Q such that:
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(1) The Qν form a polyhedral subdivision of Q (i.e. Q = ∪νQν) so that
each Qν ∩Qν′ is a common face of Qν and Qν′ (possibly empty).

(2) In addition, we have Aν ∩ (Qν ∩Qν′) = Aν′ ∩ (Qν ∩Qν′).

As for triangulations, a polyhedral subdivision P = (Qν , Aν) is called regular,
if there is a continuous convex function f : Q → R which is affine-linear on
each Qν and is not affine linear on any subset which is not contained in some
Qν .

Qν Qν′

Figure 1: A triangulation and a polyhedral subdivision.

Regular polyhedral subdivisions of (Q,A) form a poset (partially ordered
set) R(Q,A) with the order given by refinement. That is,

P ′ = (Q′µ, A
′
µ) ≤ P = (Qν , Aν),

iff P ′ induces a (necessarily regular) polyhedral subdivision of each (Qν , Aν).
Thus, minimal elements of R(Q,A) are precisely the regular triangulations,
while the unique maximal element is the subdivision consisting of (Q,A)
alone.

Remark 1.3. Note the essential role of the choices of markings Aν in the
definition of polyhedral subdivisions and of the poset R(Q,A). We do not
require that A = ∪νAν . E.g. if (Q,A) is a triangle with two points in the
interior then (Q′, A′) is a polyhedral subdivision provided Q′ = Q and A′ is
just one of the interior points.

More generally, if A′ ⊂ A is the set of vertices of Q, then each intermediate
subset A′ ⊂ B ⊂ A gives rise to a 1-element regular polyhedral subdivision
(Q,B) ∈ R(Q,A), and

(Q,B′) ≤ (Q,B) iff B′ ⊂ B.
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Figure 2: The polyhedron Gψ and the function fψ.

The poset R(Q,A) has an interpretation in terms of the secondary fan
of A. This fan, denoted S(A), is a subdivision of RA into convex polyhedral
cones CP corresponding to regular polyhedral subdivisions P ∈ R(Q,A).
To define it, we associate to each ψ : A → R a convex piecewise-affine
function fψ : Q → R as follows. We consider the unbounded polyhedron
Gψ ⊂ Rd+1 = R× Rd given by

Gψ = Conv
{

(t, a)
∣∣ t ∈ R, a ∈ A ⊂ Rd, t ≥ ψ(a)

}
.

This image of Gψ under the projection to Rd is Q, and the bottom of
Gψ is the graph of a convex piecewise-affine function fψ : Q → R. The
function fψ gives rise to unique (necessarily regular) polyhedral subdivision
P(ψ) consisting of domains of affine linearity of fψ. The cone CP ⊂ RA is,
by definition, the set of all ψ such that Pψ = P .

Note that each CP is invariant under translations by those ψ which come
from global affine linear functions on Rd. We denote the space of such func-
tions by Aff(Rd). Then CP gives rise to the cone CP in the quotient space
RA/Aff(Rd). The collection of these cones is called the reduced secondary
fan of A and denoted by S(A).

Proposition 1.4. The correspondence P 7→ CP is an order reversing iso-
morphism between the poset R(Q,A) and the poset of cones of S(A) (ordered
by inclusion).
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Along with S(A) we will consider the dual object, the secondary poly-
tope Σ(A) whose faces correspond to subdivisions P ∈ R(Q,A) in an order-
preserving, not reversing way. The construction of Σ(A) depends on the
choice of a translation invariant measure Vol on Rd, a different choice lead-
ing to a rescaling of Σ(A). For convenience of the reader we recall two
(equivalent) definitions.

Definition 1.5. For a regular triangulation T of (Q,A) define the vector
φT ∈ RA by

φT (ω) =
∑
∆∈T

ω∈Vert(∆)

Vol(∆).

The polytope Σ(A) ⊂ RA is defined to be the convex hull of the vectors φT
for all regular triangulations T of (Q,A).

Definition 1.6. [BS] Consider the standard simplex with the set of vertices
A:

∆A =

{
(pω)ω∈A ∈ RA

∣∣ pω ≥ 0,
∑
ω

pω = 1

}
,

so that, by definition of the convex hull, we have a surjective projection

π : ∆A −→ Q = Conv(A), (pω)ω∈A 7→
∑
ω

pω · ω.

The polytope Σ(A) is defined as the set of vector integrals∫
q∈Q

s(q) dVol ∈ RA

for all continuous sections s : Q→ ∆A of the projection π.

To explain the relation of the two definitions, note that a triangulation
T of (Q,A) defines a “tautological” piecewise linear section sT : Q → ∆A,
and φT =

∫
Q
sT (q) dVol.

To each face F = FP of Σ(A) ⊂ RA we can associate its normal coneNF ⊂
(RA)∗ consisting of those linear functionals l : RA → R which achieve the
maximum on F and are constant on F . The cones NF form a decomposition
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(fan) of the space (RA)∗ called the normal fan of Σ(A). Let us now identify
RA with its dual vector space by means of the standard pairing

(φ, ψ) =
∑
ω∈A

φ(ω)ψ(ω).

Under this identification we have:

Proposition 1.7. The normal fan of Σ(A) is identified with the secondary
fan S(A). In particular:

(a) The face lattice of Σ(A) is isomorphic toR(Q,A) in an order-preserving
way. We denote by FP the face corresponding to a subdivision P ∈ R(Q,A).

(b) The codimension of FP is equal to the dimension of the cone CP .

(c) dim Σ(A) = |A| − d− 1 = dim(RA/Aff(Rd)).

Examples 1.8. (a) A triangulation of (Q,A) can be seen as a polyhedral
subdivision T = (Qν , Aν) such that each Qν is a simplex and Aν consists
exactly of the vertices of Qν . In this case Σ(Aν) is a point and so the face
FT is a vertex.

(b) Edges of Σ(A) correspond to flips (elementary modifications) of tri-
angulations. A flip is based on a circuit, a subset Z ⊂ A which has precisely
one, up to a scalar, affine dependency∑

ω∈Z

aω · ω = 0, aω ∈ R,
∑

aω = 0.

In this case the convex hull Conv(Z) has precisely two triangulations T+, T−
with vertices in Z, so Σ(Z) is an interval. Each edge [φT , φT ′ ] of Σ(A)
corresponds to a pair T , T ′ of triangulations of Q which coincide outside
Conv(Z) for some circuit Z, and restrict to T+, T− inside Conv(Z).

Figure 3: Circuits and flips

(c) Codimension 1 faces correspond to coarse subdivisions (see [GKZ]).
In the dual language used in [GMW] in case d = 2 they are called taut webs.
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By definition, a subdivision P is coarse, if the reduced normal cone CP has
dimension 1, i.e., there exists only one, modulo scaling and adding affine
functions, convex P-piecewise-affine function f : Q → R. The following are
the most important examples of coarse subdivisions.

(c1) Let ω ∈ A be not a vertex of Q. Then (Q,A − {ω}) is a coarse
subdivision of (Q,A).

(c2) Let H is a hyperplane in Rd subdividing Q into two subpolytopes
Q1, Q2. Suppose that the vertices of both these polytopes lie in A. Put
Aν = A ∩ Qν . Then (Q1, A1) and (Q2, A2) form a coarse subdivision of
(Q,A).

H

Q1

Q2

Figure 4: A 2-part coarse subdivision.

The importance of Σ(A) for our purposes comes from the following.

Proposition 1.9 (Factorization property). The face FP corresponding to
a regular polyhedral subdivision P = (Qν , Aν), has the form FP =

∏
ν Σ(Aν),

i.e., it is itself a product of several secondary polytopes.

Remark 1.10. Note that if we drop the assumption of A being in general
position, then FP will be not the full product but the fiber product of the
Σ(Aν) over the secondary polytopes of intermediate faces. This one of the
complications we wanted to avoid in this paper.

For future convenience, we introduce the following terminology.

Definition 1.11. A marked subpolytope (Q′, A′) ⊂ (Q,A) is called geomet-
ric, if A′ = A ∩ Q′. A polyhedral subdivision P = {(Q′ν , A′ν)} of (Q,A) is
called geometric, if each (Q′ν , A

′
ν) is a geometric marked subpolytope. A face

F of Σ(A) is called geometric, if it corresponds to a geometric subdivision.
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We will use the term subpolytope of (Q,A) for a polytope Q′ ⊂ Q with
vertices from A. Notation: Q′ ⊂ (Q,A). Such subpolytopes are in bijection
with geometric marked subpolytopes (Q′, A ∩Q′).

The following property will be important for the construction of §3 to
make sense. Its proof is obvious and is left to the reader.

Proposition 1.12. Geometric faces form a right ideal in the partially ordered
set of all faces of Σ(A). That is, if F ⊂ F ′ and F is geometric, then F ′ is
geometric.

We introduce the geometric part of the secondary polytope to be the
union of the interiors of geometric faces (of all dimensions):

(1.13) Σgeom(A) =
⋃

F⊂Σ(A)

geometric

Int(F ).

Proposition 1.12 can be reformulated by saying that Σgeom(A) is an open
subset of Σ(A).
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2 A commutative dg-algebra from the chain

complex of Σ(A).

The factorization property of Σ(A) implies that its chain complex looks like
a (part of) a multiplicative differential in a dg-algebra.

More precisely, let k be a field of characteristic 0. For any convex polytope
P we denote by C•(P ) its cellular chain complex with coefficients in k graded
so that i-chains are positioned in degree (−i) and the differential raises the
degree by +1. Thus, as a graded vector space

C•(P ) =
⊕
F⊂P

or(F )[dim(F )],

the direct sum over all faces. Here

or(F ) = Hdim(F )
c (Interior of F,k)

is the 1-dimensional orientation space of F .
We apply this to P = Σ(A) and form the graded vector space

(2.1) V =
⊕

(Q′,A′)⊂(Q,A)

VA′ , VA′ = or(Σ(A′))[dim Σ(A′)],

the direct sum over all marked subpolytopes of full dimension d. Here, the
shift means that or(Σ(A′)) is positioned in degree − dim Σ(A′). Note that if
k = R, then

or(Σ(A′)) = Λmax
(
RA′/Aff(Rd).

Now, take the symmetric algebra S•(V ) with the graded commutative prod-
uct denoted �. Each regular polyhedral subdivision P ′′ = {(Q′′ν , A′′ν)} of each
marked subpolytope (Q′, A′) of (Q,A) produces a 1-dimensional subspace

(2.2) VP ′′ =
⊙
ν

VA′′ν ⊂ S•(V ).

The chain differentials in all the C•(Σ(A′)) are compatible with each other
and give a differential d of degree +1

(2.3) d : S•(V ) −→ S•(V ),

satisfying the Leibniz rule.
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More precisely, let P ′′ = {(P ′′ν , Q′′ν)} be a coarse polyhedral subdivision of
(Q′, A′), A′ ⊂ A. Using the factorization property (Proposition 1.9), we see
that the top degree part of the chain differential in C•(Σ(A′)) gives a map

dP ′′ : VA′ −→ VP ′′ ⊂ S•(V ).

We define d to be given, on generators, by

d|VA′ =
∑

P ′′ coarse
subdiv. of (Q′,A′)

dP ′′ ,

and then extend it to the whole of S•(V ) by the Leibniz rule.

Proposition 2.4. The differential d thus defined, satisfies d2 = 0 and so
makes S•(V ) into a commutative dg-algebra.

Proof: In virtue of the Leibniz rule, it is enough to check that d2 = 0 on
generators. To see this, note that on VA′ the picture for d2 is embedded,
again by Proposition 1.9, into the picture for d2 in C•(Σ(A′)). But for any
polytope P , the differential in the chain complex C•(P ) satisfies d2 = 0.

Remark 2.5. We take the symmetric algebra of V because, for a subdivision
P ′′ = {(Q′′ν , A′′ν)} of (Q′, A′), different marked polytopes (Q′′ν , A

′′
ν) have no

apparent order. But this can be refined depending on the dimension d, as
we will see later.
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3 The L∞-algebra.

If h is a finite-dimensional dg-Lie algebra over k, then its Chevalley-Eilenberg
cochain complex is a commutative dg-algebra

C•Lie(h) = S•(h∗[−1]).

For any graded vector space V we denote by S•+(V ) ⊂ S•(V ) the maximal
ideal ⊕n≥1V

⊗n.
As well known, a general algebra differential d on S•+(h∗[−1]) (i.e. an

algebra derivation satisfying d2 = 0), makes h into an L∞-algebra, see, e.g.,
[KoSo1], Ch.3, Section 2.3. Equivalently we can say that L∞-algebra on h is
given by the algebra differential of S•(h∗[−1]) which preserves S•+(h∗[−1]).

Thus, in the situation of §2, we get an L∞-structure on the vector space

•
g =

•
gA = V ∗[−1] =

⊕
(Q′,A′)⊂(Q,A)

EA′ ,

EA′ = V ∗A′ [−1] = or(Σ(A′))∗[−1− dim Σ(A′)].

In other words, the 1-dimensional k-vector space or(Σ(A))∗ (which we can
canonically identify with its dual or(Σ(A))), is now put in the positive degree
1 + dim Σ(A′).

The L∞-algebra
•
g is, while natural, too big for our purposes. Indeed, a

subpolytope Q′ ⊂ (Q,A) with vertices in A can give rise to many summands

EA′ ⊂
•
g corresponding to the choice of A′ sandwiched between Vert(Q′) and

A ∩ Q′. The dot in the notation
•
g is supposed to symbolize this freedom in

choosing the set of points A′. Taking only the “geometric summand corre-
sponding to A′ = A ∩Q′, we define the subspace

g = gA =
⊕

(Q′,A′) geom.

EA′ =
⊕

Q′⊂(Q,A)

EA∩Q; ⊂
•
g.

Remark 3.1. We should warn the reader that in the Sections 3-8 we discuss
L∞-algebras which are toy models of the “realistic” L∞-algebras appearing in
the “nature” (in particular, in the study of Fukaya-Seidel categories). For the
latter situation one has to introduce a “coefficient system” on the secondary
polytope. This will be done in Section 9. Nevertheless the case of “trivial
coefficient system” discussed in Sections 3-8 has most of the features of the
general case, so we decided to keep it for pedagogical reasons.
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Proposition 3.2. gA is an L∞-subalgebra in
•
gA, with trivial differential.

The L∞-algebra gA (together with its various generalizations) will be the
primary object of study in this paper. We will call it the geometric L∞-
algebra associated to A.

Proof of Proposition 3.2: We denote by

λn :
•
g
⊗n
−→ •

g, n = 1, 2, · · · ,

the components of the L∞-structure. Thus λ1 = d is the differential, λ2(x⊗
y) = [x, y] is the bracket, etc.

It follows from our construction that λn corresponds to coarse subdivi-
sions of marked subpolytopes of (Q,A) into precisely n marked subpolytopes.
More precisely, choose a generator (canonical up to sign) eA′ ∈ or(Σ(A′)) for
each A′ ⊂ A, |A′| = d + 1. Thus, the eA′ form a basis in g. Then each
coarse subdivision P ′′ =

{
(Q′′ν , A

′′
ν)}nν=1 of each (Q′, A′) contributes a matrix

element

(3.3)
〈
eA′′1 ⊗ · · · ⊗ eA′′n

∣∣ λn ∣∣eA′′〉 = ±1,

and all non-zero matrix elements of λn are obtained in this way. Now, if each
(Q′′ν , A

′′
ν) is geometric, i.e., A′′ν = A∩Q′′ν , the A′ = A∩Q′ as well, i.e., (Q′, A′)

is geometric, cf. Proposition 1.12. This means that λn(g⊗n) ⊂ g, i.e., that
g is an L∞-subalgebra. The fact that the differential in g vanishes, follows
from Example 3.5(a) below.

Example 3.4. Recall that we have assumed that A is in affinely general
position, i.e. each (d + 1)-element subset generates a d-simplex. Hence the
low degree part of the L∞-algebra g looks as follows. We have g≤0 = 0,
while g1 is spanned by d-dimensional simplices, i.e., by marked subpolytopes
(Q′, A′) with |A′| = d + 1. The degree 2 part g2 is spanned by circuits
(|A′| = d+ 2) and so on.

Examples 3.5. (a) Differential in
•
g. It corresponds to Example 1.8(c1) of

coarse subdivisions. That is, given A′ ⊂ A and ω ∈ A′ which is not a vertex
of Q′ = Conv(A′), we have, specializing (3.3), that〈

eA′−{ω}
∣∣ d ∣∣eA′〉 = ±1.
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Writing B for A′ − {ω} (which can be arbitrary) and collecting the matrix
elements (i.e., adding, not subtracting one point in all admissible ways), we
have, cf. Fig. 5:

d(eB) =
∑

ω∈(A∩Q′)−B

±eB∪{ω}, Q′ = Conv(B).

d
∑
•

±
•

Figure 5: Differential in
•
g.

In other words, fixing a subpolytope Q′ ⊂ (Q,A), all eB with Conv(B) =

Q′, span a subcomplex in (
•
g, d). This subcomplex is isomorphic to the aug-

mented cochain complex of the simplex ∆I , whose set of vertices is

I = (A ∩Q′)− Vert(Q′).

In particular, it is exact, if I 6= ∅, i.e., if Q′ contains points of A other than
its vertices. This exactness is another reason why g is more important for us

than
•
g.

Note that if B = A ∩ Q′, then d(eB) = 0 (there are no more points to
add), so the differential in g vanishes.

(b) The binary bracket in g corresponds to Example 1.8(c2) of coarse sub-
divisions. That is, if (Q′, A′) is subdivided by a hyperplane H into (Q′′1, A

′′
1)

and (Q′′2, A
′′
2), then

[eA′′1 , eA′′2 ] = ±e′A
(c) Consider the particular case d = 2 and assume that A ⊂ R2 is in

convex position, i.e., each element of A is a vertex of Q = Conv(A). Then

g =
•
g and only the binary bracket is present, so g is a graded Lie algebra

in a more familiar sense (no differential, no higher λn). As an illustration,
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consider the further particular case when A consists of 4 points, forming
the vertices of a convex 4-gon. Then g1 has dimension 4, with the basis
vectors corresponding to the 4 triangles a, b, c, d in Fig.6. The space g2 is
1-dimensional, with the basis vector corresponding to the 4-gon itself, while
g≥3 = 0. Thus g is has five basis vectors: ea, eb, ec, ed of degree 1 and eA of
degree 2, with the only non-zero brackets being

[ea, eb] = [ec, ed] = eA.

a

b c

d

Figure 6: Four points in convex position

(d) Take A ⊂ R2 to be a 4-element circuit consisting of the 3 vertices of
a triangle Q and one more point ω′ inside Q. Marked subpolytopes of (Q,A)
include 3 small triangles a, b, c in Fig. 7, one large triangle f = (Q,A−{ω′}),
and (Q,A) itself. In this case

•
g has two non-zero components:

•
g

1
, with

basis ea, eb, ec, ef and
•
g

2
with basis eA. The only non-trivial parts of the

L∞-structure are the differential and the ternary bracket whose nontrivial
matrix elements are given by:

d(ef ) = eA, λ3(ea, eb, ec) = eA,

so the cohomology (w.r.t. d) of
•
g has all the multiplications λn being 0. On

the other hand, g is spanned by ea, eb, ec, eA and has λ3 6= 0.

a b
c

f
A

Figure 7: Four points in non-convex position.

Recall [Get] that an L∞-algebra L is called nilpotent, if there exists r0 > 0
such that all r-ary iterated superpositions of the λn are identically zero as
maps L⊗r → L for r > r0.
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Proposition 3.6. The L∞-algebra
•
g (and therefore g) is nilpotent.

Proof: Since the matrix elements of λn corresponds to coarse subdivisions
of marked subpolytopes (Q′, A′) ⊂ (Q,A) into n marked subpolytopes, the
matrix elements of any r-ary iterated superposition of the λn correspond to
some (not necessarily coarse) subdivisions into r marked subpolytopes and
therefore vanish for r ≥ |A|.

.
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4 Maurer-Cartan elements in g.

Let L be a nilpotent L∞-algebra over k. Recall that a Maurer-Cartan element
in L is an element γ ∈ L1 such that

(4.1)
∞∑
n=0

1

n!
λn(γ, · · · , γ) = 0 ∈ L2.

Maurer-Cartan elements form a subset MC(L) in L1. If dim L1 <∞, we can
consider L1 as an affine space over k and view MC(L) as an affine subscheme
in L1.

If L is a general L∞-algebra, one can define the formal scheme of Maurer-
Cartan elements M̂C(L) which is the functor on local Artin k-algebras Λ
defined by

Λ 7→ MC(L ⊗k m),

where m is the maximal ideal of Λ.

Such a functor represents a geometric object called a formal pointed dg-
manifold in [KoSo1], Ch.3.

We are interested in Maurer-Cartan elements in the finite-dimensional
nilpotent L∞-algebra g = gA. In this section we assume that A is in general
position. As we saw, g1 is spanned by basis vectors eσ corresponding to all
possible marked d-simplices σ = (Conv(A′), A′) with A′ ⊂ A, |A′| = d + 1.
Such a marked simplex is nothing but a straight d-simplex on vertices from
A. Thus we can view

γ =
∑

γσ · eσ, γσ ∈ k

as a “d-cochain”, i.e., a datum of numbers γσ ∈ k attached to all marked
simplices σ.

Now, g2 is spanned by basis vectors eZ corresponding to all possible cir-
cuits Z ⊂ A, |Z| = d + 2. The coefficient of the LHS of (4.1) at eZ is then
equal to the sum of two terms corresponding to the two triangulations T+, T−
of Conv(Z), as in Example 1.8(b). More precisely, this coefficient is equal to∏

σ∈T+

γσ −
∏
σ∈T−

γσ.

Therefore we obtain:
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Proposition 4.2. γ is a Maurer-Cartan element in g, if and only if it is a
“cocycle” in the multiplicative sense: for any circuit Z with triangulations
T+, T− of Conv(Z) we have∏

σ∈T+

γσ =
∏
σ∈T−

γσ.

This means that for any marked subpolytope (Q′, A′) of (Q,A) we have
an element γQ′,A′ ∈ k defined in terms of any chosen regular triangulation T ′
of (Q′, A′):

γQ′,A′ =
∏
σ∈T ′

γσ,

with the RHS being independent of the choice of T ′.
Example 4.3. Let k = C and let Ω be any smooth d-form on Q. Then
putting

γσ = eβσ , βσ =

∫
σ

Ω,

we get a Maurer-Cartan element in g.

One way of interpreting Proposition 4.2 is by saying that the subscheme
MC(g) is given inside the affine space g1 by a system of binomial equations:
each equation had the form of equality of exactly two monomials. This means
that the scheme MC(g) is in fact a toric variety.

More precisely, let Sd(A) be the set of all d-simplices on vertices from
A. Thus Sd(A) is a subset in the set

(
A
d+1

)
of all (d + 1)-element subsets in

A, and Sd(A) =
(
A
d+1

)
when A is in affinely general position. Let ZSd(Q,A)

be the free abelian group of combinatorial d-chains in (Q,A), i.e., of integer
linear combinations of d-simplices. We write an element β ∈ ZSd(Q,A) as
a system β = (βσ) where σ ∈ Sd(A) is a d-simplex, and βσ ∈ Z. Let
Zd(Q,A) ⊂ ZSd(Q,A) be the sublattice of d-cocycles, i.e., of β as above such
that for each circuit Z as in Proposition 4.2, we have∑

σ∈T+

βσ =
∑
σ∈T−

βσ.

Let ΓA = Zd(Q,A)∩ZSd(Q,A)
+ . This is a finitely generated abelian semigroup.

The monomial equations for MC(g) translate into the following.

Corollary 4.4. The scheme MC(g) is isomorphic to Spec k[ΓA], the spec-
trum of the semigroup algebra of ΓA.
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5 1-dimensional case: refinement to an A∞-

algebra.

In this section we consider the simplest case d = 1. So we assume that
A = {ω1 < · · · < ωr} ⊂ R. Then Q = Conv(A) is the interval [ω1, ωr]. Let
us form the vector space V as in (2.1).

If (Q′, A′) is a marked subpolytope of (Q,A) and P ′′ = {(Q′′ν , A′′ν)} is a
polyhedral subdivision of (Q′, A′), then each Q′′ν is a sub-interval in Q′ and so
there is a natural order on the set of the intervals Q′′ν , induced by the order
on R (i.e., geometrically, from left to right). This means that we can lift the
differential d from S•(V ) (free commutative algebra generated by V ) to a
differential in T •(V ), the tensor algebra (free associative algebra) generated
by V . More precisely, we realize the vector space VP ′′ from (2.2) as a subspace
in T •(V ):

VP ′′ =
⊗
ν

VA′ν ⊂ T •(V )

(embedding given by the tensor multiplication in the order from left to right).
We then define the action of d on the generators of T •(V ) by making it act
on a summand VA′ ⊂ V as the top degree part of the chain differential in
C•(Σ(A′)), now considered as a map

∑
P ′′ dP ′′ , where P ′′ runs over all coarse

subdivisions of (Q′, A′) and

dP ′′ : VA′ −→ VP ′′ ⊂ T •(V )

is induced by the chain differential in C•(Σ(A′)). Then we extend d to the
whole T •(V ) by the Leibniz rule. Similarly to Proposition 2.4, we then get:

Proposition 5.1. The differential d in T •(V ) satisfies d2 = 0 and so makes
T •(V ) into an associative dg-algebra. The canonical commutativization ho-
momorphism (T •(V ), d)→ S•(V ), d) is a morphism of associative dg-algebras.

Clearly d preserves the ideal T •+(V ) := ⊕n≥1V
⊗n ⊂ T •(V ).

This means that the L∞-algebra
•
g lifts to an A∞ algebra with the same

underlying vector space by the A∞-analog of the formula

[x, y] = xy − yx.
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We denote this A∞-algebra by
•
R. As before, we have a similar lifting of the

subalgebra g. We denote this lifting by R and it will be more fundamental

for us than
•
R.

Thus R has basis eij, 1 ≤ i < j ≤ r, corresponding to the geometric
marked subpolytopes (

[ωi, ωj], {ωi, ωi+1, · · · , ωj}
)
.

The degree of eij is j − i, and the binary multiplication is given by

eij · ejk = eik, i < j < k,

and all other binary products as well as other A∞-data vanish. In other
words, R is the associative algebra without unit, isomorphic to Tn(k), the
algebra of strictly upper triangular r by r matrices with zeroes on and below
the diagonal. This triangular structure is the simplest instance of the relation
between our formalism and deformations of semi-orthogonal collections, see
below.
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6 Relative setting: one point “at infinity”.

Let (Q,A) be a marked polytope in Rd, as above. Let us add to A one more

point∞ ∈ Rd, forming Ã = A∪{∞} and Q̃ = Conv(Ã). We assume that∞
is a new vertex of Q̃, i.e., that it lies “far outside of A”. We also assume that
the set Ã is in general position. Let g̃ = gÃ be the geometric L∞-algebra

corresponding to Ã.

Q̃

· · ·∞ · · ·

Q

Q̃

∞

Q

Figure 8: ∞ as a point at the projective infinity vs. a finite point far away.

Remark 6.1. We can, if we want, imagine ∞ to be an actual “infinite”
point of the projective completion RPd = Rd∪RPd−1, say the point of RPd−1

with homogeneous coordinates [0 : 0 : · · · : 1]. Note that the concepts of
hyperplanes, triangulations, convexity etc. are invariants under projective
transformations of RPd. So there is no combinatorial difference between a
bounded polytope Q̃ on the right and the unbounded polyhedron Q̃ on the
left of Fig. 8.

A subpolytope Q′ ⊂ (Q̃, Ã) will be called finite, if Vert(Q′) ⊂ A, and
infinite, otherwise, i.e., if ∞ ∈ Q′. The L∞-algebra g̃ splits, as a vector
space, into a direct sum

g̃ = g⊕ g∞,

where g = gA is spanned by the summands

EA′ = or(Σ(Q′ ∩ A))∗[−1− dim Σ(Q′ ∩ A)]

for finite Q′, and g∞ is spanned by similar summands for infinite Q′.
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Proposition 6.2. Both g and g∞ are L∞-subalgebras of g̃, and, moreover,
g∞ is an L∞-ideal. In other words. g̃ is the semi-direct product g̃ = gn g∞.

Proof: The L∞-brackets are given by combining subpolytopes, say, Q′′1, · · · , Q′′n,
together into a coarse subdivision. If neither of the Q′′i contains ∞, then the
combined marked polytope Q′ does not contain it either. This means that g
is an L∞-subalgebra (it is nothing but gA, the geometric L∞-algebra associ-
ated to A alone). If at least one of the Q′′i does contain ∞, then so does Q′.
This means that g∞ is a L∞-ideal.

Remarks 6.3. (a) Let us choose a Euclidean subspace Rd−1 ⊂ Rd not passing
through ∞ and let

p : Rd − {∞} −→ Rd−1

be the projection obtained by drawing straight lines through ∞ and inter-
secting them with Rd−1. In the “projective infinity” picture on the left of
Fig. 8, we can think of p : Rd → Rd−1 as being the projection forgetting the
last coordinate.

We then have the point configuration A = p(A) in Rd−1, and by our
assumption, Q = Conv(A) coincides with the image p(Q). It is instructive to
compare the L∞-algebra g∞ with gA, the L∞-algebra associated to A ⊂ Rd−1.

More precisely, each infinite subpolytope Q′ ⊂ (Q̃, Ã) gives a subpolytope
p(Q′) ⊂ (Q,A) via the projection p. However, not every subpolytope of
(Q,A) is obtained in this way. Similarly, each coarse subdivision of Q′ gives
a coarse subdivision of p(Q′) but not the other way around. Nevertheless,
the L∞-algebra g∞ has, in many respects, (d− 1)-dimensional nature.

(b) The two point configurations A,A associated to Ã and an element

∞ ∈ Ã are precisely the two minors of Ã studied by Billera, Gelfand and
Sturmfels [BGS]. More precisely, A is the minor by deletion and A is the
minor by contraction, in the terminology of [BGS]. Among other things, it

was proved in [BGS] that Σ(A) is a face of Σ(Ã), and Σ(A) is a Minkowski

summand of Σ(Ã).

Remark 6.4. If we assume that g̃ is an ordinary dg-Lie algebra, i.e. if
λ≥3 = 0, then the Lie algebra structure on g̃ gives a morphism of dg-Lie
algebras

g −→ Der(g∞), x 7→ ad(x) : g∞ → g∞.

In general, what we get is a “derived” analog of such a morphism, as we
explain in the next section.
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7 Hochschild complexes and derived deriva-

tion spaces.

In this section we recall some general principles of deformation theory and
of Koszul duality.

Let P be any dg-operad (over k), and A be any P-algebra (in the
category of dg-vector spaces over k). Automorphisms of A form a group
AutP(A), and derivations ofA (of all degrees) form a dg-Lie algebra DerP(A).
One can form the derived functor of A 7→ DerP(A), defining

RDerP(A) = DerP(Ã),

where Ã → A is a “cofibrant resolution”, i.e., a quasi-isomorphism of P-
algebras with Ã being free as a P-algebra without differential. RHS of this
formula can be understood (at least in char(k) = 0 case) as an L∞-algebra.
There is a canonical choice of a cofibrant resolution called the Boardmann-
Vogt resolution in [KoSo2]. It was used in loc. cit. for the description of
general deformation theory of algebras over operads.

Remark 7.1. If P → Q is a morphism of (dg-)operads, then any Q-algebra
A can be also considered as a P-algebra (for example, we have Ass →
Com, so a commutative algebra can be considered as a particular case of an
associative algebra). In this case DerP(A) = DerQ(A), but RDerP(A) can
be different from RDerQ(A).

According to the general philosophy of deformation theory (see e.g. [KoSo1])
the aim of formal deformation theory in the case when char(k) = 0 is the
construction of formal pointed dg-manifold (equivalently, L∞-algebra) which
describes the local structure of the moduli space of deformations. More
precisely, if L is such an L∞-algebra, then the commutative topological al-
gebra generated by L∗[−1] carries a structure of a dg-algebra. Its formal
spectrum (as a graded topological algebra) can be thought of as a formal
graded scheme, endowed with a (graded) vector field Q of degree +1 such
that [Q,Q] = 0 (“homological vector field”). The formal scheme of zeros
Z(Q) admits a foliation generated by graded vector fields of the form [Q, •]
(all schemes are understood as functors on commutative Artin algebras). The
“space of leaves” of the above foliation should be thought of as the moduli
space of the deformation problem controlled by L. The reader can look at
[KoSo1] for the details and examples and at [KoSo2] for the implementation
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of this approach in the case of deformations of algebras over operads. In the
more conventional language of stacks one has the following corollary of those
considerations.

Proposition 7.2 (Local structure of the moduli stack). The formal
germ of the deformation stack of A as a P-algebra is isomorphic to the
quotient stack

M̂C(RDerP(A))
//

exp(RDer0
P(A)).

Here M̂C(RDerP(A)) is the formal scheme of Maurer-Cartan elements in
the dg-Lie algebra RDerP(A), and exp(RDer0

P(A)) is the formal group as-
sociated to the Lie algebra RDer0

P(A), which naturally acts on the formal

scheme M̂C(RDerP(A)).

So we can say that RDerP(A) “governs deformations of A as a P-
algebra”.

Example 7.3. Let P = Ass, and A be an associative algebra. Then
RDer(A) = RDerAss(A) is the shifted and truncated Hochschild cochain
complex of A:

C≥1(A,A)[1] := C≥1
Ass(A,A)[1] ={

Homk(A,A)
δ0−→ Homk(A

⊗2, A)
δ1−→ Homk(A

⊗3, A)→ · · ·
}
.

Thus Ker(δ0) = Der(A) is the usual space of derivations. The Lie algebra
structure on RDer(A) is given by the “brace formula”. That is, for p ∈
Hom(A⊗m, A) and q ∈ Hom(A×n, A) and i = 1, ...,m we define the ith brace
of p and q by p ◦i q ∈ Hom(A⊗(m+n−1), A) by

(p ◦i q)(a1, · · · , am+n−1) =

= p
(
a1, · · · , ai−1, q(ai, ai+1, · · · , ai+n−1), ai+n, · · · am+n−1

)
.

Then

[p, q] =
m∑
i=1

±p ◦i q −
n∑
j=1

±q ◦j p.

Example 7.4. Let P = Lie andA = L be a Lie algebra. ThenRDerLie(L) =
is the shifted and truncated Chevalley-Eilenberg cochain complex of L with
coefficients in the adjoint representation:

C≥1
Lie(L,L)[1] =

{
L∗ ⊗ L δ0−→ Λ2L∗ ⊗ L δ0−→ Λ3L∗ ⊗ L → · · ·

}
28



General principles of Koszul duality: Let P be a quadratic Koszul
operad with Koszul dual operad P ! (see e.g. [GiKa] about basics on Koszul
duality for operads). A weak P-algebra structure (also called a P∞-algebra
structure) on a graded vector space A is the same as a P !-algebra differential
d on the free P !-algebra FP !(A∗[−1]), satisfying d2 = 0.

We remark that we define the free P !-algebra FP !(A∗[−1]) in such a way
that it does not have 0-ary operations.

In particular:

(a) An L∞-structure on a graded vector space L is a multiplicative differential
on the (completed) symmetric algebra S•+(L∗[−1]).

(b) An A∞-structure on a graded vector space R is a multiplicative differ-
ential on the (completed) tensor algebra T •+(R∗[−1]).

Although technically one should consider completed tensor products (since
corresponding structures are defined in dual terms of the differential cofree
coalgebras), we will often skip the word “completed”, since our examples
are nilpotent in the sense that only finitely many “higher” operations are
non-trivial.

Most important for us will be the following principle.

Proposition 7.5. A datum consisting of:

(1) A P∞-algebra A.

(2) An L∞-algebra L.

(3) An L∞-morphism α : L → RDerP∞(A)

is the same as a datum consisting of:

(i) A differential dL in the (completed) algebra S•(L∗[−1]) which preserves
the maximal ideal S•+(L∗[−1]).

(ii) A differential d in the (completed) graded space

S•(L∗[−1])⊗k FP !(A∗[−1])

which is a P !-algebra derivation, satisfies d2 = 0 as well as the follow-
ing Leibniz formula:

d(a⊗x) = dL∗[−1](a)⊗x+(−1)|a|a⊗d(1⊗x), a ∈ S•(L∗[−1]), x ∈ FP !(A∗[−1]).
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Proof: We explain a more conceptual argument and then spell out additional
algebraic details in the examples we will be interested in. Suppose data (i)-(ii)
are given. Then (i) implies that L is an L∞-algebra, thus giving the datum
(2). Further, considering the restriction d|A∗[−1] and projecting the image on
1 ⊗ FP !(A∗[−1]), we get a P !-algebra differential in FP !(A∗[−1]), i.e., we
get a P∞-algebra structure on A which we will call the “initial” structure.
This gives the datum (1). Now, by general principles of deformation the-
ory, Spec S•(L∗[−1]) is a formal commutative dg-manifold (functor on local
artinian commutative dg-algebras) whose underlying ordinary (non-dg) for-

mal commutative manifold is M̂C(L), the formal scheme of Maurer-Cartan
elements in L. So we denote

RM̂C(L) = Spec S•(L∗[−1]).

Thus our differential d in the tensor product is the same as a family of P∞-
structures on A parametrized by RM̂C(L) which gives the datum (3) by
Proposition 7.2. The argument in the opposite direction is similar.

Example 7.6 (Particular case P = Ass). A datum consisting of:

(1) An A∞-algebra R.

(2) An L∞-algebra L.

(3) An L∞-morphism α : L → RDer(R) = C≥1(R,R)[1]

is the same as an algebra differential d in the (completed) tensor product
S•(L∗[−1]) ⊗ T •(R∗[−1]) which preserves S•+(L∗[−1]) ⊗ 1 as well as 1 ⊗
T •+(R∗[−1]).

The relations of the data (1) and (2) to the differential d has already
been explained in the general proof of Proposition 7.5. Let us explain how
to obtain the datum (3) explicitly.

We recall, first of all, the general meaning of the concept of an L∞-
morphism β : L → L′ between two L∞-algebras L and L′ whose L∞-
operations we denote by λn, λ

′
n respectively. By definition, β is the same

as a morphism of commutative dg-algebras

(7.7) β∗ : S•(L′∗[1]) −→ S•(L∗[1]),

the datum which spells out to a collection of morphisms of graded vector
spaces

(7.8) βn : Sn(L[−1]) −→ L′[−1], n ≥ 0
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satisfying a chain of compatibility conditions. More precisely, any collection
of the βn in (7.8) defines a unique morphisms of commutative graded algebras
β∗ as in (7.7) and the conditions on the βn say that β∗ thus defined, actually
commutes with the differentials. Note, in particular, that β1 can be seen,
after shift, as a morphism of graded vector spaces β1[1] : L −→ L′ and the
first in the chain of conditions on the βn says that β1[1] commutes with the
differentials λ1 and λ′1 in L and L′. This is the “underlying morphism” of
the L∞-morphism β, and higher βn can be seen as higher homotopies for its
compatibility with the brackets.

We now specialize to our situation: L′ = C≥1(R,R)[1]. Suppose we are
given a differential d in S•(L∗[−1])⊗T •(R∗[−1]) which preserves S•(L∗[−1]).
We describe the corresponding L∞-morphism α in terms of its components

αn : Sn(L[−1]) −→ C≥1(R,R)[1] =
⊕
m≥1

Homk(R
⊗m, R)[1−m].

More precisely, the matrix element

αn,m : Sn(L[−1])→ Homk(R⊗m, R)[1−m]

of αn with the respect to the above direct sum decomposition of the RHS is
obtained as the dual of the matrix element of the restriction d|R∗[−1] which
we denote

dn,m : R∗[−1] −→ Sn(L∗[−1])⊗ Tm(R∗[−1]), Tm(R∗[−1]) = (R∗)⊗m[−m].

Example 7.9 (Particular case P = Lie). A datum consisting of:

(1) An L∞-algebra L∞.

(2) An L∞-algebra L.

(3) An L∞-morphism α : L → RDerLie(R) = C≥1
Lie(L,L)[1]

is the same as an algebra differential d in the (completed) symmetric algebra

S•(L∗[−1])⊗ S•(L∗∞[−1]) = S•
(
(L ⊕ L∞)∗[−1]

)
,

preserving S•+(L∗[−1]) ⊗ 1 as well as 1 ⊗ S•+(L∗∞[−1]). The correspondence
between the matrix elements of d and the matrix elements of the components
αn is completely analogous to Example 7.6, and we leave it to the reader.
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Note that the data of a differential d as above, is the same as an L∞-
structure on L ⊕ L∞ such that L is an L∞-subalgebra and L∞ is an L∞-
ideal. This is precisely the kind of situation we had in §6. So we obtain the
following.

Corollary 7.10. In the situation of §6, we have a natural L∞-moprhism

α : g −→ RDerLie(g∞).
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8 Refinement in d = 2: relative setting.

Consider the relative setting of §6 of which we keep the notation: Ã =
A ∪ {∞} etc.

In this case the L∞-algebra g∞ can be upgraded to an A∞-algebra R∞,
similar to §5. This is because, for each purely infinite coarse subdivision P ′′ =
{(Q′′ν , A′′ν)} of an infinite marked subpolygon (Q′, A′), ∞ ∈ A′, the infinite
marked polygons Q′′ν , are naturally ordered using the chosen orientation of
R2 and the projection p : R2 − {∞} → R as in Remark 6.3(a).

1 2 3

∞

Figure 9: Ordering of infinite polygons in R2.

So if we put

V∞ =
⊕

(Q′,A′) infinite

VA′ ,

then the formulas for the chain differential in the C•(Σ(A′)) define an algebra

differential d in T •(V∞) with d2 = 0. This means that
•
R∞ = V ∗∞[−1] is an

A∞-algebra.

Similarly to §5,
•
R∞ =

•
g∞ as a graded vector space. Further, the only

A∞-operations in R∞ are the differential and the binary bracket, so R∞ is
an associative dg-algebra.

As before, wee define the geometric subalgebra R∞ ⊂
•
R∞ spanned by

geometric infinite marked polygons (Q′, A ∩Q′). Thus R∞ = g∞ as a vector
space and the differential on R∞ is trivial, so R∞ is a graded associative
algebra.

The product of two infinite marked subpolygons a, b is zero unless their
union is again an infinite marked subpolygon (in particular, the union is
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convex), with a being on the left of b and meeting b along an edge, see Fig.
10.

a b

∞

mult.

ab

∞

Figure 10: Multiplication on R∞.

Now, looking at all coarse subdivisions of all marked subpylgons of (Q̃, Ã),
both finite and infinite, we get an algebra differential in

S•(V )⊗ T •(V∞), V =
⊕

(Q′,A′) finite

VA′ .

This differential preserves S•(V ) and gives there the differential defining g∞.
So we obtain, by Proposition 7.5 and, more particularly, Example 7.6, L∞-
morphisms

(8.1)
•
φ :

•
g∞ −→ RDerAss(

•
R∞), φ : g∞ −→ RDerAss(R∞),

of which the second one will be more important for us. This is the setting
of Gaiotto-Moore-Witten [GMW] in the “case of trivial coefficients”. In the
next sections we explain how can one generalize our setting to fully include
that of [GMW].
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9 Introducing coefficients: factorizing sheaves

on secondary polytopes.

Since we assumed that A ⊂ Rd is in general position, all proper faces of Q are
simplices. Each subset of d points {ω1, · · · , ωd} ⊂ A gives a (d− 1)-simplex
σ = Conv{ω1, · · · , ωd}.

By an oriented simplex we will mean a simplex together with a num-
bering of vertices considered up to an even permutation. We will use the
notation σ = 〈ω1, · · · , ωd〉 to denote the oriented (d − 1)-simplex given by
the numbering of the verices ω1, · · · , ωd. We write σ for “σ with the opposite
orientation”, i.e, σ = 〈ωs(1), · · · , ωs(d)〉, where s is any odd permutation.

Definition 9.1. A system of coefficients for A is a datum N = (Nσ) of
cochain complexes, one for each oriented (d − 1)-simplex σ with vertices in
A, so that Nσ = N∗σ .

We fix an orientation of Rd. Then for each marked subpolytope (Q′, A′) ⊂
(Q,A), each codimension 1 face of Q′ is naturally an oriented (d−1)-simplex.
We denote

(9.2) NA′ =
⊗
σ⊂∂Q′

Nσ.

Let P = {(Qν , Aν)} be a regular polyhedral subdivision of (Q,A). We define

(9.3) NP =
⊗
ν

NA′ν .

If P ′ is a refinement of P , then we have morphisms of cochain complexes

γP ′P : NP ′ → NP

obtained by taking traces Nσ ⊗Nσ → k over those (d− 1)-faces of P ′ which
are internal, i.e., are not faces of P and thus belong to exactly two polytopes
from P ′.

Proposition 9.4. The maps γP ′P are transitive for chains of refinements:
if P ′′ refines P ′ and P ′ refines P, then

γP ′′P = γP ′P ◦ γP ′′P ′ .
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We now interpret this proposition in terms of constructible complexes of
sheaves on secondary polytopes. Let X be a CW-complex with a cellular
stratification (Xα)α∈I . In other words, (I,≤) is a poset together with a
strictly monotone function d : I → Z+, each Xα is a locally closed subspace
of X homeomorphic to the Euclidean space Rd(α), and the condition α ≤ β
is equivalent to the Xα being contained in the closure of Xβ. A sheaf F of
k-vector spaces on X constant along each Xα is, as well known [Cur][GM]
described by the following data:

(1) Vector spaces Fα = H0(Xα,F) (stalk of F).

(2) Generalization maps γαβ : Fα → Fβ defined for any α ≤ β and sat-
isfying the transitivity conditions, i.e., forming a representation of the
poset I in k-vector spaces.

Proposition 9.4 implies that the data (NP , γP ′,P) give rise to a complex of
sheaves NA on the secondary polytope Σ(A) which is constant on each open
face F ◦P with stalk NP and with the generalization maps being the γP ′P . We
then have the following counterpart of Proposition 1.9.

Proposition 9.5. The complex NA satisfies the factorization property: the
restriction of NA to any closed face FP =

∏
(Q′ν ,A

′
ν)∈P Σ(A′i) is identified with

the exterior tensor product �νNA′ν .

The fact that the generalization maps for a cellular sheaf go from the
stalks at smaller cells to the stalks at bigger cells, is a part of the general
phenomenon that sheaves have cohomology rather than homology. In partic-
ular, the cellular cochain complex of a sheaf F given by (Fα, γαβ) has the
form

C•cell(X,F) =

{ ⊕
dim Xα=0

or(Xα)⊗Fα −→
⊕

dim Xα=1

or(Xα)⊗Fα −→ · · ·
}

where or(Xα) = H
d(α)
c (Xα,k) is the 1-dimensional orientation space of the

cell Xα and the differentials are induced by the γαβ.
So sticking to the cohomological picture, we form the graded vector space

V coh
N =

⊕
A′⊂A
|A′|≥d+1

V coh
A′ , V coh

A′ = NA′ ⊗ or(Σ(A′))[− dim Σ(A′)].
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Then the cellular cochain complexes of the factorizing sheaves NA′ unite to
give a coalgebra differential d, d2 = 0, in the symmetric coalgebra S•(V coh

N ).
This is an alternative way of saying that:

Proposition 9.6. (a) The cellular cochain differentials of the NA′ give rise
to an L∞-algebra structure on

•
gN =

•
gA,N =

⊕
(Q′,A′)⊂(Q,A)

EA′ , EA′ = NA′ ⊗ or(Σ(A′))[− dim Σ(A′)− 1].

The L∞-algebra
•
gN is nilpotent.

(b) The subspace

gN = gA,N =
⊕

Q′⊂(Q,A)

EA∩Q′

is an L∞-subalgebra in
•
gN .

As before gN will be more important for us than
•
gN .

Thus, the component g1
N (where Maurer-Cartan elements live) is

g1
N =

⊕
Q′⊂(Q,A)

N
−dim Σ(A′)
A′ ⊗ or(Σ(A′)), A′ = A ∩Q′.

In other words, an element of g1
N is a rule associating to each marked d-

simplex (Q′, A′) ⊂ (Q,A) an element of N0
A′ , to each circuit (Q′, A′) an

element of N−1
A′ and so on.

Relative case. Suppose A is extended to Ã = A∪{∞}, as in §6. Let Ñ be

a coefficient system for Ã. We then generalize Propositions 6.2 and Corollary
7.10 to:

Proposition 9.7. (a) We have a semi-direct product decomposition

gÑ = gN n gÑ,∞

where gN,∞ is the direct sum of summands EA′ corresponding to infinite
marked subpolytopes (Q′, A′). Therefore we have an L∞-morphism α : gÑ →
RDerLie(gÑ,∞).

(b) If d = 2, then gÑ,∞ lifts to an A∞-algebra AÑ,∞ and we have an
L∞-morphism ψ : gÑ → RDerAss(RÑ,∞).
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10 Coefficients in bimodules: d = 2

The systems of coefficients considered in §9 consisted in data associated to
codimension 1 simplices only. It would be natural to consider more general
coefficient systems which would associate some data to simplices of all di-
mensions from 0 up to (d − 1). In this section we explain how to do this in
the case d = 2.

Let us denote elements of A as i, j, k and so on.

Definition 10.1. An extended system of coefficients for A is a following sys-
tem of data:

(1) For each i ∈ A, an associative dg-algebra Si.

(2) For each oriented edge (1-simplex) (i, j), i, j ∈ A, a (differential graded)
(Si, Sj)-bimodule Nij which we assume projective, of finite rank, over
the graded algebra underlying Si ⊗k S

op
j .

(3) For each (i, j), a pairing

βij : Nij ⊗k Nji −→ Si ⊗k Sj,

which is a morphism of (Si ⊗k Sj, Si ⊗k Sj)-bimodules. It is required
that:

(4) The pairing βij is non-degenerate, i.e., the morphism of (Si, Sj)-bimodules

βtij : Nij → HomSj⊗kSop
i

(Nji, Sj ⊗k Sop
i )

induced by βij, is an isomorphism.

(5) The diagram

Nij ⊗k Nji

βij //

perm.

��

Si ⊗k Sj

perm.

��
Nji ⊗k Nij

βji // Sj ⊗k Si

is commutative.

Thus the setting of Definition 9.1, specialized to d = 2, corresponds to
the case when all Si = k.
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Remark 10.2. The data of an extended system of coefficients can be inter-
preted as follows. The datum (1) means that we have a (pre-)triangulated
dg-category Ci. More precisely, let us assume that Si is smooth and proper
[TV], in particular, that dimk Si < ∞. Then we take Ci = DMod<∞Si to
be the derived category formed by finite-dimensional right dg-modules over
Si. Note that Ci has a Serre functor [BK], i.e., a covariant exact functor
Si : Ci → Ci equipped with natural isomorphisms

HomCi(M,M ′)∗ ' HomCi(M
′,Si(M)).

Here and elsewhere ∗ means dualization over k. Explicitly, Si is given by
the Nakayama formula

(10.3) Si(M) =
(
RHomSi(M,Si)

)∗
.

The datum (2) means that we have an exact functor Fij : Ci → Cj (given
by the tensor product with Nij). Finally, the datum (3) means that Fij is
left adjoint to SiFji (or, equivalently, that Fji is left adjoint to SjFij). This
follows from (10.3).

Note that for a pair of exact functors F : C → D, G : D → C between
triangulated categories C,D with Serre functors SC,SD the condition “F is
left adjoint to SCG” is symmetric in F and G (unlike the usual condition
of adjointness). Indeed, such “twisted adjointness” is expressed via natural
isomorphisms

HomD(F (X), Y )∗ ' HomC(G(Y ), X), X ∈ C, Y ∈ D.

We fix an orientation of R2. Suppose given an extended system of coeffi-
cients (Si, Nij). Let Q′ ⊂ (Q,A) be a subpolygon. Let us label the vertices of
Q′ cyclically, in the counterclockwise order as i0, · · · , im. We can then form
the cyclic tensor product

NQ′ =

(
Ni0i1 ⊗Si1 Ni1i2 ⊗Si2 · · · ⊗Sim−1

Nim−1im

)
⊗S

i
op
0
⊗Sim Nimi0 ,

which can be pictorially represented in Figure 11, which makes evident its
cyclic symmetry (independence on the choice of the starting point i0). Note
that NQ′ is just a cochain complex: all module structures have been used in
the formation of the tensor products.
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Ni0i1
⊗Si1 N

i1 i2 ⊗
S
i2

N
i2 i3
⊗
S
i3

···⊗···⊗Si
n−1N

in
−
1i
n
⊗
S
i n
N
i n
i 0

⊗S i 0

Figure 11: The cyclic tensor product.

Remark 10.4. More generally, we can define a cyclic tensor product Nσ for
any closed oriented edge path σ = (i0, i1, · · · , in, i0), not nevessarily coming
from the boundary of a convex polygon. As before, Nσ depends only on σ as
a closed path and not on the choice of a starting point.

Let
σ1 = (· · · , h, i, j, k, · · · ), σ2 = (· · · , p, j, i, q, · · · )

be two closed oriented edge paths having one edge [i, j] in common, with
opposite orientations. Then we can concatenate σ1 and σ2 along this edge,
erasing it and obtaining a new closed oriented edge path

σ1 ∗[i,j] σ2 = (· · · , p, j, k, · · · , h, i, q, · · · ),

see Fig. 12.
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σ1

σ2h
i

j

p
k

q

Figure 12: Concatenation.

In this situation, the pairing βij gives rise to the concatenation map

(10.5) γ[i,j]
σ1,σ2

: Nσ1 ⊗k Nσ2 −→ Nσ1∗[i,j]σ2 .

To define it, consider two decomposable tensors

nσ1 = · · · ⊗ nhi ⊗ nij ⊗ njk ⊗ · · · ∈ Nσ1 ,

nσ2 = · · · ⊗ npj ⊗ nji ⊗ niq ⊗ · · · ∈ Nσ2 ,

where nij ∈ Nij etc. Suppose

βij(nij ⊗ nji) =
∑
ν

s′ν ⊗ s′′ν , s′ν ∈ Si, s′′ν ∈ Sj.

Then we define

γ[i,j]
σ1,σ2

(nσ1 ⊗ nσ2) =
∑
ν

(
· · · ⊗ npjs′′ν ⊗ njk ⊗ · · · ⊗ nhis′ν ⊗ niq ⊗ · · ·

)
.

It is immediate to check that this gives a well defined map of cyclic tensor
products.

If now P is a polygonal subdivision of Q′ = Conv(A′) into {Q′′ν}, we define

NP =
⊗
ν

NQ′′ν
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(tensor product over k). Note that the concatenation maps (10.5) corre-
sponding to various intermediate edges of P , commute with each other, so
the result of applying them all in any order, is independent on the order. We
call this result the composition map and denote it

(10.6) γP : NP −→ NA′ .

Further, if P ′ is a subdivision refining P , the composition maps (10.6) cor-
responding to all polygons of P , give rise to a map

(10.7) γP ′P : NP ′ −→ NP

which we call the generalization map to emphasize that we want to use it to
construct cellular sheaves on secondary polytopes. More precisely, we have
the following statement whose proof is straightforward.

Proposition 10.8. The data (NP , γP ′P) define a factorizing system of com-
plexes of sheaves NA′ on the Σ(A′), with the stalk of NA′ on the face FP ⊂
Σ(A′) being NP . Denote

EA′ = NA′ ⊗ or(Σ(A′))[− dim Σ(A′)− 1].

Then the differentials in the cellular cochain complexes of the NA′ unite to

make the graded vector space
•
g =

⊕
(Q′,A′)⊂(Q,A) EA′ into a nilpotent L∞-

algebra. The subspace g =
⊕

Q′⊂(Q,A) EA∩Q′ is an L∞-subalgebra in
•
g.

Relative situation (as in §6). Ã = A∪{∞}, Q̃ = Conv(Ã). Let (Si, Nij)

be an extended coefficient system for A (not Ã) For any infinite marked
polytope (Q′, A′) with vertices ∞, i0, · · · , im in counterclockwise order, we
define the linear tensor product

LA′ = Ni0i1 ⊗Si1 Ni1i2 ⊗Si2 · · · ⊗Sim−1
Nim−1im .

This is an (Si0 , Sim)-bimodule. If P is a subdivision of a (possibly infinite)
subpolygon (Q′, A′) into (Q′′ν , A

′′
ν), then we define

NP =
⊗
A′′ν 63∞

NA′′ν ⊗
⊗
A′′ν3∞

LA′′ν .

and these complexes, again, give a factorizable system of complexes of sheaves
on the Σ(A′). Restricting to the geometric summands as before, we obtain:

42



Proposition 10.9. Denoting for A′ 3 ∞,

FA′ = LA′ ⊗ or(Σ(A′))[− dim Σ(A′)− 1],

we get the following data:

(1) An L∞-algebra g =
⊕

Q′ 63∞EA∩Q′.

(2) An A∞-algebra R∞ =
⊕

Q′3∞ FA∩Q′.

(3) An L∞-morphism ψ : g→ RDer(R∞).

Remark 10.10. Study of Fukaya-Seidel categories (see §14 below for more
background) leads naturally to a structure somewhat more general and sym-
metric than an extended system of coefficients. In that structure, for each
point i ∈ A we have not just a category, but a local system of triangulated
categories (together with pre-triangulated dg-enhancements) Ci over a small
circle S1

i centered at i. It is required that:

(a) Each fiber category Ci,θ, θ ∈ S1
i has Serre functor Si.

(b) The monodromy around the circle S1
i gives rise to the functor isomor-

phic to Si ◦ [d], where [d] denotes the functor of shift of the grading by
d ∈ Z (for the Fukaya-Seidel category associated with the pair (X,W )
the number d is the dimension of the complex manifold X).

Further, for each pair of different points i, j ∈ A we have functors Fij :
Cj,θj → Ci,θi and Fji : Ci,θi → Cj,θj between the fiber categories over the points
θi ∈ S1

i and θj ∈ S1
j which are intersection points of the straight segment ij

with circles S1
i and S1

j . These functors are required to be “twisted adjoint”
to each other in the sense of the Remark 10.2.

A choice of a “generic” point at infinity (equivalently, of a generic half-
plane) breaks the local rotational symmetry, since each circle S1

i contains the
intersection point with the ray from i to infinity. This allows us to replace
each S1

i by a segment. After this, the more general structure described above
reduces effectively to an extended system of coefficients.
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11 Analysis of the algebra R∞ and the mor-

phism ψ for d = 2.

Since we assumed that Ã = A ∪ {∞} is in general position, A has a total
order by the slope of the line (i∞) from left to right. We get a decomposition

R∞ =
⊕
i,j∈A
i<j

Rij,

where Rij is the direct sum of the summands FA∩Q′ corresponding to infinite
polygons Q′ whose edges through ∞ are (i∞) and (j∞). Note that Rij is
an (Si, Sj)-bimodule.

Proposition 11.1. (a) The higher compositions mn, n ≥ 3, in R∞, are
trivial. The only non-trivial part of the binary compositions m2 are the maps

µijk : Rij ⊗Rjk → Rik, i < j < k.

Thus R∞ is a strictly upper-triangular dg-algebra (without unit).

(b) The multiplication µij is Sj-bilinear with respect to the right Sj-module
structure on Rij and the left Sj-module structure on Rjk. Therefore, putting
Rii = Si, we obtain a non-strictly triangular associative dg-algebra with unit

R =
⊕
i≤j

Rij.

Remark 11.2. Note that part (b) means that ModR has a semi-orthogonal
decomposition with quotients

ModSi1 ,ModSi2 , · · · ,ModSir ,

where i1 < i2 < · · · ir are all the elements of A in our order.

Proof of Proposition 11.1: (a) The only coarse subdivisions of an infinite
polygon into all infinite subpolygons contain either 2 parts (and so account
for m2), or 1 part (and so account for m1 = d, as in Examples 1.8 (c2) and
(c1). The subdivisions into 1 part are excluded in the geometric subalgebra

R∞ ⊂
•
R∞. This shows part (a). Part (b) is clear.
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We now describe the morphism

ψ : g −→ RDer(R∞) = C≥1(R∞, R∞)[1]

from Proposition 10.5 explicitly. Because of the direct sum decompositions

g =
⊕

A′⊂A geom.

EA′ , R∞ =
⊕

B3∞ geom.

FB, |A′|, |B| ≥ 3,

ψ is given by its matrix elements with respect to the induced direct sum de-
compositions of the source and target. These matrix elements are morphisms
of dg-vector spaces

(11.3) ψ
(B1,··· ,Bm|C)
A′ : EA′ −→ Homk(FB1 ⊗k · · · ⊗k FBm , FC),

given for all finite geometricA′ ⊂ A and all infinite geometricB1, · · · , Bm, C ⊂
Ã of cardinality ≥ 3. By the analysis of Example 7.6, ψ

(B1,··· ,Bm|C)
A′ 6= 0 only

if Q′ = Conv(A′) together with the Pν = Conv(Bν), forms a coarse regular
subdivision of P = Conv(C). In other words, nonzero matrix elements of ψ

correspond to coarse regular subdivisions of infinite subpolygons in (Q̃, Ã)
which contain exactly one finite polygon (the rest being infinite). Let us
call such subdivisions 1-finite. We will now describe all 1-finite subdivisions
explicitly, starting with the following class of examples.

Example 11.4. Let Q′ be a finite subpolygon of (Q,A), and let

A′ = A ∩Q′, Q̃′ = Conv(A′ ∪ {∞}), Ã′ = Ã ∩ Q̃′.

Since we assumed that no 3 points of Ã lie on a line, the boundary ∂Q′ splits
into two distinct parts meeting at two points:

• The positive boundary, i.e., the union of sides facing∞, drawn thick in
Figure 13 and denoted ∂+Q

′.

• The negative boundary, denoted ∂−Q
′ formed by the sides which lie on

the opposite side of ∞.
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∞

Q′

η1
η2 · · ·

ηm

Π1 Π2...Πm

∂+Q
′

∂−Q
′

Figure 13: The positive and negative boundary.

We denote the sides of ∂+Q
′ by η1, · · · , ηm in the natural order from left

to right (counter-clockwise rotation around ∞), and let Π1, · · · ,Πm be the
triangles with one vertex at ∞ and the opposite sides being η1, · · · , ηm. Let
also Dν = Ã∩Πν . Then (Πν , Dν) is an infinite marked subpolygon of (Q′, A′),
and we have a polygonal subdivision (see Fig. 13)

(11.5) (Q̃′, Ã′) = (Q′, A′) ∪ (Π1, D1) ∪ · · · ∪ (Πm, Dm).

It is easy to see that (11.5) is a 1-finite subdivision. Indeed, the unique (up
to scalar factors and adding global affine-linear functions) piecewise-affine

function f : Q̃′ → R is determined by putting f(∞) = 1 and f |A′ = 0.

However, Example 11.4 does not give the most general form of a 1-finite
subdivision. To obtain the general form, considering the following situation,
extending the above one.

Example 11.6. Let P ⊂ (Q̃, Ã) be an infinite subpolygon and Q′ ⊂ P be a
finite subpolygon such that ∂−Q

′ is contained in ∂P and is the union of edges
from ∂P . The two remaining finite parts of ∂P (not in ∂−Q

′) will be called
handles, see Fig. 14. We denote the left handle by λ and edges constituting
it by λ1, · · · , λp. Similarly, we denote the right handle by ρ and the edges
constituting it by ρ1, · · · , ρq, in our order from left to right. The handles
may be empty, i.e., it may happen that p = 0 or q = 0 or both.
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∞

Q′

η1
η2 · · ·

ηm

P1 P2... Pm

∂−Q
′

Left handle
λ = (λ1, · · · , λp)
here p = 1

Right handle
ρ = (ρ1, · · · , ρq)
here q = 2

P

Figure 14: General 1-finite subdivision.

Note that by taking the convex hull Q̃′ of Q′ and∞, we get the situation
described in Example 11.4, from which we retain the notation. We then have
a decomposition of P into Q′ and polygons P1, · · ·Pm, where:

• Pν = Πν for ν = 2, · · · ,m− 1.

• The finite part of ∂P1 is composed out of λ and η1.

• The finite part of ∂Pm is composed out of ηm and ρ.

Proposition 11.7. The subdivision described in Example 11.6, is 1-finite,
and each 1-finite subdivision is obtained in this way.

Proof: By construction, the subdivision contains exactly one finite subpoly-
gon. Let us show that it is regular. For this, note that, as in Example 11.4,
the conditions f(∞) = 1 and fQ′ = 0 determine a unique continuous fonc-
tion f : P → R which is affine on each polygon and breaks exactly along
the subdivision. Further, this function is unique with these properties up to
scalar factors and adding global affine functions. This follows from analyzing
the restriction to Q̃′ = Conv(Q ∪ {∞}). Therefore our subdivision is coarse
and therefore is 1-finite.

Conversely, note that the construction of Example 11.6 by its very nature
produces all subdivisions of any infinite polygon P which contain exactly one
finite subpolygon.
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In the situation of Example 11.6, we put

A′ = A ∩Q′, Bν = Ã ∩ Pν , C = Ã ∩ P.

In order to describe the corresponding matrix element ψ
(B1,··· ,Bm|C)
A′ , we write

it in the transposed way, as a map

(11.8) ψCA′;B1,··· ,Bm : EA′ ⊗k FB1 ⊗k · · · ⊗k FBm −→ FC .

Let us denote

Nλ = Nλ1 ⊗S · · · ⊗S Nλp , Nρ = Nρ1 ⊗S · · · ⊗S Nρq

the linear tensor products corresponding to the handles λ and ρ considered
as oriented edge paths. Here and in the sequel we write ⊗S for the tensor
product over the algebra Si corresponding to the vertex common to the two
edges in an edge path. Then

FB1 = Nλ ⊗S Eη1 , FBν = Eην , 2 ≤ ν ≤ m− 1, FBm = Eηm ⊗S Nρ,

FC = Nλ ⊗S EA′ ⊗S Nρ.

Let

(11.9) γQ′ : EA′ ⊗k FD1 ⊗k · · · ⊗k FDm −→ FÃ′

be the composition map obtained, similarly to (10.6), by substituting the
pairings βij over all the intermediate edges [i, j] in the coarse subdivision
(11.5). Define

(11.10) ψCA′;B1,··· ,Bm = IdNλ ⊗S γQ′ ⊗S IdNρ .

Then the source and target of ψCA′;B1,··· ,Bm are as specified in (11.8).

Proposition 11.11. The maps ψCA′;B1,··· ,Bm corresponding to all pairs (P,Q′)

consisting of an infinite subpolygon P ⊂ (Q̃, Ã) and a finite subpolygon Q′

with ∂−Q
′ contained in the finite part of ∂P , are precisely all the matrix

elements of the L∞-morphism ψ : g → C≥1(R∞, R∞)[1] with respect to the
direct sum decompositions of the source and target described above.

Proof: This is a consequence of the analysis of Example 7.6 applied to our
case.
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12 The universality theorem (d = 2).

We work in the setting of §10 and 11. So we have the triangular dg-algebra

R =
⊕
i≤j

Rij, Rii = Si.

We are interested in deformations of R which, first, preserve the triangular
structure and, second, do not change the quotients of the semi-orthogonal
decomposition. The second condition means that the algebras Si are not
deformed. Such deformations are governed by the ordered Hochschild complex−→
C •(R,R), with

−→
C n(R,R) =

=
⊕

i0<i1<···<in

HomSi0⊗S
op
in

(
Ri0i1 ⊗Si1 Ri1i2 ⊗Si2 · · · ⊗Sin−1

Rin−1 , Rin , Ri0in

)
(strict inequalities under the direct sum sign).

Remark 12.1. Note that
−→
C •(R,R) is a subcomplex in the ordinary Hochschild

complex C•(R,R), specified by the multi-linearity conditions. Moreover, this
subcomplex is closed with respect to the Lie bracket and is thus a dg-Lie sub-
algebra.

Theorem 12.2. The L∞-moprhism ψ factors through an L∞-morphism

Ψ : g −→
−→
C ≥1(R,R)[1].

The morphism Ψ is a quasi-isomorphism.

Remarks 12.3. (a) Note that the differential in g is trivial, while that in
−→
C ≥1(R,R)[1] is not.

(b) Theorem 12.2 suggests an alternative way to think about the L∞-
algebra g of convex polygons. Namely, we can start with the dg-algebraR and
define the L∞-structure on g by transferring, along the quasi-isomorphism

Ψ, the DGLA structure from
−→
C •(R,R) to a L∞-structure on g. Explicit

formulas for the transfer in terms of sums over planar trees can be written
similarly to those from [KoSo3], Section 4. Note that the transfered structure
a priori depends on a choice of∞ and hence is different from the one described
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in Section 9. Because of our theorem, these two L∞ structures are equivalent.
In particular, the transfered structure does not, up to equivalence, depend
on a choice of ∞.

On the other hand, the transfered structure has the advantage that it
can be defined in terms of the oriented matroid generated by the set Ã, i.e.,
by the knowledge of which pairs consisting of a point ω ∈ Ã and a subset
A′ ⊂ Ã, satisfy ω ∈ Conv(A′), see [OM]. This is a much weaker and more
combinatorial datum, in particular, it cannot be used to recover the concepts
of a regular decomposition or a convex piecewise affine function.

Proof of the theorem: For simplicity, let us write
−→
C • for

−→
C ≥1(R,R)[1] in the

sequel.
Let us prove the first statement of the theorem. By Proposition 11.11, the

components of ψ are the maps ψ
(B1,··· ,Bm|C)
A′ from (11.3) and (11.10) and we

keep the corresponding notation. These are non-zero only if FB1 , · · · , FBm
are summands of Ri0i1 , Ri1i2 , ..., Rim−1im and FC is a summand of Ri0im .
They are also bilinear with respect to the intermediate algebras. This proves

that ψ factors through a morphism Ψ with values in
−→
C •.

Let us now prove that Ψ is a quasi-isomorphism. It will be convenient to
organize the proof into several steps.

A. Interpretation of
−→
C • via closed paths. Recall that Rij =

⊕
Q′ FA∩Q′

where Q′ runs over infinite subpolygons with edges [∞, i] and [j,∞].

Definition 12.4. A sequence P0, P1, · · · , Pn of marked infinite polygons is
called admissible, if its left and right infinite edges match as in Fig. 15, that
is, there are i0 < · · · < in such that P0 has edges [∞, i0] and [in,∞] which Pν
has edges [∞, iν−1] and [iν ,∞]. Note that it is not required that P0 actually
contains any of the Pν .
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∞

i0
i1 i2

inP1 P2 Pn

P0

∞

i0 in

P0

is this
big polygon

Figure 15: An admissible sequence.

We denote Bν = Ã ∩ Pν . For an admissible sequence P0, P1, · · · , Pn we
define

F P0
P1,··· ,Pn = HomSi0⊗S

op
in

(
FB1 ⊗Si1 FB2 ⊗Si2 · · · ⊗Sin−1

FBn , FB0

)
.

Then −→
C n =

⊕
P0,P1,··· ,Pn admiss.

F P0
P1,··· ,Pn .

We note further that F P0
P1,··· ,Pn is the same as the cyclic tensor product Nσ (in

the sense of Remark 10.4) over the closed edge path σ obtained by running
over the negative boundaries ∂−P1, ∂−P2, · · · , ∂−Pn and then over ∂−P0 in
the opposite direction, see Fig. 16.

i0

i1 i2

in∂−P1 ∂−P2 ∂−Pn

∂−P0

σ =

Figure 16: F P0
P1,··· ,Pn as a cyclic tensor product Nγ.

B. Filtration of
−→
C • by handle length. Note that closed edge paths σ

labeling summands in
−→
C •, can retrace parts of themselves on the left or
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on the right. Similarly to §11, we will call such retraced parts handles and
denote them by λ and ρ, see Fig. 17.

λ ρ

η1 η2 · · · ηm

Figure 17: A closed path with handles.

Lemma 12.5. Put
Gl−→C • =

⊕
n

⊕
F P0
P1,··· ,Pn ,

the second sum running over admissible sequences P0, P1, · · · , Pn with the
sum of edge lengths of the two “handles” on the left and right being ≥ l.

Then G is a decreasing filtration of
−→
C • by subcomplexes.

Proof: The differential in
−→
C • is the sum d + δ, where δ is the Hochschild

differential, induced by the multiplication in R, and d is induced by the
differential in R itself. We recall the formula for

δ : Hom(R⊗n, R) −→ Hom(R⊗(n+1), R)

(in our case, Hom and ⊗ are taken over intermediate algebras, as explained
above):

(δf)(a1, · · · , an+1) = a1f(a2, · · · , an+1) +

+
n∑
ν=1

(−1)νf(a1, · · · , aνaν+1, · · · , an+1) + (−1)nf(a1, · · · , an)an+1.

Recall also the formula for the multiplication m2 in R:

m2|FB1
⊗FB2

=


The canonical map FB1 ⊗ FB2 → FB1∪B2 , if

Q1 ∪Q2 is convex and Q1 is on the left of Q2;

0, otherwise.
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Here Q1 and Q2 are two infinite subpolygons, and Bν = Ã ∩Qν .

Consider a summand F P0
P1,··· ,Pn ⊂

−→
C n(R,R). The first and last terms in

the formula for δ, applied to this summand, consist in adding an infinite
polygon P to the picture on the left and on the right so that ∂−P together
with ∂−P0 form a convex polygon (if the union is not convex, the contribution
is 0). See Fig. 18.

∞

P1 · · · Pn

P0

P

a1f(a2, · · · , an+1)

∞

P1 · · · Pn

P0

P

f(a1, · · · , an)an+1

Figure 18: The first and last terms in δ.

The new summands in which these terms lie, correspond to closed edge
paths with the length of the left or right handle increased. The remaining
summands (−1)νf(a1, · · · , aνaν+1, · · · , an+1) of δ send F P0

P1,··· ,Pn into sum-
mands obtained by all possible splittings of each of the polygons Pν , ν =
1, · · · , n, into two subpolygons along some edge of the form [∞, p] where p
is some intermediate vertex. If Pν is a triangle and cannot be split, then
the corresponding contribution is 0. See Fig. 19. These summands have the
same lengths of handles. Therefore δ preserves the filtration G, and so does
d+ δ.
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∞

p

f(a1, · · · , aνaν+1, · · · , an+1)

Figure 19: Intermediate terms in δ.

C. Ψ : g→ gr0−→C • is an embedding with exact quotient. Consider the
morphism of complexes

Ψ : g −→ gr0
G

−→
C • =

−→
C •/G1−→C •,

induced by Ψ. We can think of gr0
G

−→
C • as the direct sum of cyclic tensor

products Nσ corresponding to closed paths σ without handles (and coming
from admissible sequences).

On the other hand, g is the direct sum of cyclic tensor products taken
over the boundaries of (convex) finite subpolygons Q′. These boundaries are

particular cases of the paths we obtain for gr0
G

−→
C •. Further, it follows from

Proposition 11.11 that the only matrix element of Ψ on EQ′ not landing in

G1−→C •, is the transpose of the map γQ′ from (11.9). This transpose is in fact
an isomorphism (identity)

γQ′
t

: EA′ −→ N∂Q′ = EA′ .

This establishes the following.

Lemma 12.6. Ψ is an embedding of complexes, whose image is the direct sum
of summands F P0

P1,··· ,Pn such that the negative boundaries ∂−Pν, ν = 1, · · · , n,
are segments which, together with ∂−P0, form a convex polygon.
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So it is enough to prove that Coker(Ψ) is exact. As a vector space,
Coker(Ψ), is simply the direct sum of all the summands F P0

P1,··· ,Pn without
handles, other than those forming a convex polygon as above.

Now, in grF the first and last terms of the formula for δ disappear (they
increase the sum of the lengths of the handles). The remaining intermediate
terms correspond to splitting each Pν , ν = 1, ..., n along possible intermediate
vertices p of Pν as in Fig. 19:

Pν  P ′ν ∪ P ′′ν .

The summand corresponding to the split configuration is identical with the
original one:

F P0

P1,··· ,Pν−1,P ′ν ,P
′′
ν ,Pν+1,··· ,Pn = F P0

P1,··· ,Pn .

Thus grF
−→
C • is split into a direct sum of complexes of the form

F P0
P1,··· ,Pn ⊗k C

•(∆r−1),

where:

(a) P0, P1, · · · , Pn is an admissible sequence such that none of the interme-
diate adjacent pairs Pν , Pν+1, i + 1 ≤ n, can be combined together to
form a convex polygon (from which they could be obtained by split-
ting).

(b) r is the number of intermediate vertices of P1, · · · , Pn .

(c) ∆r−1 is the (r − 1)-dimensional combinatorial simplex whose vertices
correspond to the intermediate vertices (the ways of splitting) in (b),
and C•(∆r−1) is the augmented simplicial cochain complex of ∆r−1

with coefficients in k. Note that C•(∆r−1) is exact if r ≥ 0.

So the remaining summands F P0
P1,··· ,Pn which will not be tensored with an

exact complex, correspond to admissible sequences P0, P1, · · · , Pn which:

(1) Cannot be split anywhere, i.e., each Pν , ν = 1, · · · , n, is a triangle, and
so ∂−Pν is a segment.

(2) Cannot appear in the splitting of something else. This means that the
segments ∂−P1, · · · , ∂−Pn form an upwardly convex broken line from i0
to in, which, together with ∂−P0 (a downwardly convex broken line)

55



form a convex finite polygon Q′ representing a summand in Ψ(g), see
Fig. 20, where ∂−P0 depicted curved to emphasize that it can consist
of many segments.

∞

∂−P1

∂−P2
∂−Pn

∂−P0

Figure 20: A convex polygon appearing.

These are precisely the summands forming Ψ(g). This proves that Ψ is a
quasi-isomorphism.

D. All gr≥1−→C • are exact. To finish the proof of Theorem 12.2, it will now

be sufficient to show that each grlG
−→
C •, l ≥ 1, is an exact complex.

This is done similarly to Step C. Since the first and last summands in δ

disappear in grG, the differential induced by δ on grlG
−→
C • consists in splittings

of the polygons Pν into two subpolygons, as in Fig. 19. So grlG
−→
C • splits into

a direct sum of sub complexes corresponding to different total shapes of the
pictures, and the differential in each such summand consists of splittings (the
δ part) plus the differential d induced from dR.

Now, if l ≥ 1, the picture representing each summand has at least one
handle, λ or ρ, nontrivial. If λ is nontrivial, then the edge path σ representing
the picture allows for nontrivial splittings of the union of λ and η1, see Fig.
17. As in part C, his will exhibit a nontrivial (i.e., contractible) C•(∆r−1) as
a tensor factor of our summand. Similarly if ρ is nontrivial.

Theorem 12.2 is proved.
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13 Comparison with Gaiotto-Moore-Witten.

In this section we provide a dictionary between the approach and terminology
of [GMW] and the ones we use in the main body of the paper.

Vacua = elements of A. The construction of [GMW] starts with a finite
set V of “vacua” whose elements are denoted by i, j, k, etc., and a “weight
map” z : V→ C (which we assume injective). Our set A is the image of this
map. So in this section we denote elements of A by zi, i ∈ V.

Webs=polygonal decompositions. We recall:

Definition 13.1. ([GMW]) A plane web is a graph w in the plane R2 = C
together with a labeling of faces (“countries”) by vacua so that:

(1) Different faces have different labels.

(2) If an edge is oriented so that i is on the left and j on the right, then
this edge is parallel to the vector zi − zj (i.e., has the same oriented
direction but possibly different nonzero length).

Remark 13.2. More precisely, in [GMW] the labels are allowed to be re-
peated, with (1) replaced by a weaker condition: labels differ across edges.
Such repeating patterns are accounted for by taking the symmetric algebra
as in §2, and we do not consider them here.

n

i j

k

lm

Figure 21: A plane web. Edges with arrows go to infinity.

We call the set of vacua that appear as labels of the faces of a web w, the
support of w. We further recall that two webs w and w′ are said to be of the
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same deformation type, if they are topologically equivalent in the following
restricted sense: w′ can obtained from w by translation and stretching (but
not rotating) of the edges. Following [GMW], we denote by D(w) the set
formed by all webs of the same deformation type as w, considered modulo
overall translations. This set is called the moduli space of webs in the fixed
deformation type.

Proposition 13.3. Let A′ ⊂ A and Q′ = Conv(A′). Then:

(a) Deformation types of webs with support A′ are in bijection with regular
geometric polygonal decompositions P ′ of (Q′, A′), i.e., with geometric
faces FP ′ of the secondary polytope Σ(A′).

(b) If w is a web whose deformation type corresponds to a decomposition
P ′, then the moduli space D(w) is identified with the reduced normal
cone CP ′ to the face FP ′ ⊂ Σ(A′), see §1.

Proof: Given a polygonal decomposition P ′ = {(Q′′ν , A′′ν)} of (Q′, A′), we form
the dual graph by putting one vertex in each polygon Q′′ν and joining them
as in Fig. 22:

zn

zi zj

zk

zlzm

Figure 22: Webs are dual to decompositions.

This gives a plane graph Γ with faces labelled by elements of A′ but not
necessarily satisfying the condition (2) of Definition 13.1. We now show that
possible ways of deforming Γ to a web, modulo translations, are in bijection
with CP ′ .

We first recall that CP ′ consists of convex P ′-piecewise affine functions
Q′ → R, considered modulo adding global affine functions on Q′, i.e., CP ′ =
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CP ′/Aff(R2), where CP ′ consists of actual convex P ′-piecewise affine func-
tions.

Next, we note that rotation by 90◦ transforms the condition (2) of Defi-
nition 13.1 into:

(2′) An edge having i on the left and j on the right, is perpendicular to
the vector zi − zj (i.e., forms, together with this vector, a positively
oriented orthogonal frame).

So we will work with (2′) instead of (2). Let us identify (R2)∗ with R2 by
means of the standard scalar product.

Suppose given a piecewise-linear f ∈ CP ′ (an actual function, not a class
modulo adding global affine functions). For each polygon Q′′ν ∈ P ′ let pν ∈
(R2)∗ be the slope of the affine function f |Q′′ν . By the above, we can regard
pν as a point of R2. If two polygons Q′′µ, Q

′′
ν ∈ P ′ have a common edge,

the slopes of f must match on this edge, This simply means that pµ − pν is
perpendicular to the edge.

So we obtain a plane graph w topologically equivalent to Γ by joining pµ
and pν by a straight line internal whenever Q′′µ and Q′′ν have a common edge
By the above, w satisfies (2′), i.e., it is a (90◦ rotation of a) web. In this way
the condition (2′) expresses the existence of a global piecewise affine function
f with the slope pν on each Q′′ν . The function f is defined by the knowledge
of the pν up to an additive constant. Further, the convexity of f is expressed
by saying that the edges of w (with respect to our choice of orientations)
have positive length (a concave break would result in the length of an edge
counted as negative). Translating w as a whole amounts to adding a global
linear function to f . We leave the remaining details to the reader.

We now briefly indicate the meaning, in our terms, of some further ter-
minology of [GMW].

Cyclic fans of vacua = subpolygons Q′ = Conv(A′), A′ ⊂ A. Indeed,
according to loc. cit., a cyclic fan of vacua is a cyclically ordered set I =
{i1, · · · , in} such that the rays (zik − zik+1

)R+ are oriented clockwise. This
simply corresponds to zi1 , · · · zin being the vertices of a convex n-gon, in this
cyclic order.

Further, if a web w corresponds to a regular polygonal subdivision P ′ of
(Q′, A′) then vertices of w are labeled, by the above, by polygons Q′′ν of P ′,
and the local fan of w at a vertex v, denoted Iv(w), corresponds the polygons
Q′′ν labeling v. The fan at infinity, denoted I∞(w), corresponds to Q′ itself.
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Rigid, taut and sliding webs. They correspond to faces of a secondary
polytope Σ(A′), A′ ⊂ A of codimension 0, 1, and 2. This is a consequence of
Proposition 13.3.

Convolution of webs. It corresponds to further subdivision of one polygon
of a polygonal decomposition:

∗ =

Figure 23: Convolution of webs in dual language.

Half-plane webs. They correspond, in the dual language, to polygonal
subdivisions of the extended polytope Q̃ = Conv(Ã) where Ã = A ∪ {∞},
see Figs. 8 and 24. The choice of the direction towards∞ corresponds to the
choice of a a half-plane H in [GMW]. In Fig. 24, H is positioned horizontally.

· · ·∞ · · ·

H

Figure 24: A half-plane web in the dual language.
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14 Maurer-Cartan elements for the Fukaya-

Seidel category

In this section we sketch, using our approach, an application of the previous
considerations to the Fukaya-Seidel (FS) categories. We assume familiarity
with the conventional approach to the subject [Se1], so our reminder in that
respect will be minimal.

A. Setup. Let X be a complex Kähler manifold X of complex dimension k.
The Kähler metric, denoted ω1,1, can be understood as a family of complex
valued Hermitian scalar products in the C-vector spaces TxX. Globally, it
gives a smooth isomorphism of C-vector bundles

(14.1) ω1,1 : TX −→ T ∗X,

where TX is the conjugate bundle to the C-vector bundle TX. Separating
the real and imaginary parts, we write ω1,1 = g + ω

√
−1. Thus g is a

Riemannian metric and ω is a symplectic form on X. We also assume that
X is equipped with a nowhere vanishing holomorphic volume form Ωk,0 (to
be used later to obtain Z-gradings of various Floer complexes).

Let W : X → C be a holomorphic function with only non-degenerate
(Morse) critical points. These points correspond to vacua of the Landau-
Ginzburg theory associated to W . We denote the set of critical points by
V and assume it finite: V = {x1, · · · , xr}. We denote by wi = W (xi) the
critical value at xi and put A = {w1, · · · , wr} ⊂ C. We assume that A is
in (affine) general position: no three points lie on a line. By identifying C
with R2, we can apply the formalism of previous sections to this choice of A.
In particular, we have the polygon Q = Conv(A) and can speak about its
triangulations, its secondary polytope etc.

The real part Re(W ) : X → R is a Morse function on X (as a real 2k-
dimensional manifold), with the same critical points x1, · · · , xr. Each xi is
Morse with the same signature (k, k). As usual in Morse theory, by using the
Riemannian metric g, we associate to xi the unstable manifold (also known
in this context as the Lefschetz thimble) Ti = Ti(W ) ' Rk ⊂ X. That is, Ti
is the union of downward gradient trajectories φ(t) originating from xi, i.e.,
such that limt→−∞ φ(t) = xi. We recall the following well known

Proposition 14.2. (a) The gradient flow of Re(W ) with respect to g is equal
to the Hamiltonian flow of Im(W ) with respect to ω.
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(b) Each Ti is Lagrangian with respect to ω.

Since every Hamiltonian flow preserves the Hamiltonian, part (a) implies
that the images W (Ti) lie on horizontal half-lines wi+R≤0 ⊂ C. See Fig. 25,
where we also indicated the hyperplane H describing the “direction towards
infinity”, cf. Fig. 24. Its boundary is now positioned vertically,

H
wi

wj

...

wl

Figure 25: Thimbles project to half-lines.

Definition 14.3. The set A is called horizontally generic, if no two points of
A have the same imaginary part 1. For an angle θ we say that A is θ-generic,
if e
√
−1θA is horizontally generic.

We assume that A is horizontally generic (which can be always assured by
replacing W with some e

√
−1θW ). Then the half-lines wi + R≤0 are disjoint,

and so the thimbles Ti are disjoint closed Lagrangian submanifolds of X,
which we assume numbered in order of increasing imaginary parts: Im(w1) <
· · · < Im(wr). We recall that k is our fixed base field of characteristic 0. The
Fukaya-Seidel category FS = FS(X,W ) is a k-linear A∞-category in which
T1, · · · , Tr are objects, forming an exceptional collection:

Hom•FS(Ti, Ti) = k, Hom•FS(Ti, Tj) = 0, i > j.

We denote
RS = RS(X,W ) =

⊕
i≤j

Hom•FS(Ti, Tj)

the total A∞-algebra associated to FS. The goal is to obtain RS by de-
forming an appropriate algebra R as in §11 with respect to an appropriate
Maurer-Cartan element.

1In other words, the extended set Ã = A ∪ {−∞} is in general position, see §6 and
Fig.8.
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Remark 14.4. There is no doubt that the formalism of Fukaya-Seidel cate-
gories generalizes to a situation much more general than the one described
above: we must be able to allow W to have non-Morse (and even non-
isolated) critical points. In this case, each critical value wi (their number will
still be finite in any algebraic situation) would give rise to a “local Fukaya-
Seidel category” Ci. These local categories would then embed into a global
category FS and form there a semi-orthogonal family. We expect that this
more general setting to be still analyzable by the methods of this paper. In
particular, the generality of extended systems of coefficients in §10 is (inten-
tionally) geared to this future context, the category Ci corresponding to the
dg-algebra Si, see Remark 10.2.

B. The system of coefficients. The algebra R comes from an extended
coefficient system (Si, N

•
ij) as in §10. We put Si = k (so the setting of §9 is

in fact sufficient for this section). This corresponds to the fact that each xi
is a Morse singular point for W . The graded vector spaces N•ij are obtained
by analyzing those angles θ for which W is not θ-generic. These are precisely

θij = − arg(wi − wj) ∈ S1 = R/2πZ, i 6= j.

We associate to them the unit vectors

ζij = e
√
−1θij =

(
wi − wj
|wi − wj|

)−1

.

Note that for any θ ∈ S1 the function Re(e
√
−1θW ) : X → R is again a Morse

function with critical points x1, · · · , xn of signature (k, k) and so gives rise
to the “θ-rotated” thimbles T θi = Ti(e

√
−1θW ). The image of T θi under W

lies now on the half-line originating from wi and having angle −θ with the
real axis. Following [GMW] we introduce the following

Definition 14.5. (a) By a ζij-soliton we will mean a gradient trajectory
φ = φ(t) of Re(ζijW ) originating (at t = −∞) from xi and terminating (at
t = +∞) at xj. Thus the image of a ζij-soliton under W is the straight
interval [wi, wj].

(b) By a gradient polygon we mean a sequence φ = (φi0i1 , φi1i2 , · · · , φimi0),
where φiν iν+1 is a ζiν iν+1-soliton. A gradient polygon is called convex, or a
cyclic fan of solitons, if the intervals [wiν , wiν+1 ] form the boundary of a
convex polygon, in the counter-clockwise order.
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Thus the union of all ζij-solitons is the intersection of the thimbles T
θij
ij

and T
θji
j Since existence of gradient trajectories between critical points of the

same index is a codimension 1 phenomenon in the space of Morse functions,
see, e.g., [KS], the number of ζij-solitons is “typically” finite. We assume
this to be the case and denote this number by nij = nji. Further, let Nij be
the k-vector space having, as basis vectors, symbols eφ corresponding to the
ζij-solitons φ. So dim(Nij) = nij.

We now explain how to introduce a Z-grading on each Nij. As usual
with Floer complexes (of which the Nij are particular cases, see below), the
grading is not fully canonical. More canonical are the following two types of
constraints, which admit a solution but not uniquely.

Duality: Nji = N∗ij as a graded space. Cf. the requirement (4) of Definition
10.1 .

Maslov index grading of cyclic products: The grading in each tensor
product of the form Ni0i1 ⊗· · ·Nim−1im ⊗Nimi0 , m ≥ 1 (cf. Fig. 11, where all
Si = k), is given topologically as follows. By definition, this tensor product
has a basis {eφ} labelled by gradient polygons φ, and we define the degree
of each eφ. This is done by an instance of the Maslov index construction,
which we review here in the generality that we need, referring to [Se1], §11
for the general case.

For a topological space Y and x, y ∈ Y we denote by Πx,yY the set of
homotopy classes of paths in Y beginning at x an ending at y, i.e., the set of
morphisms from x to y in the fundamental groupoid of X.

For a symplectic R-vector bundle E over some base B we denote by
LG(E) the bundle of the Lagrangian Grassmannians of the fibers of E over
B.

Consider first the case when B = pt, so E is a symplectic vector space.
Let L1, L2 ∈ LG(E) be two Lagrangian subspaces meeting transversely, i.e.,
E = L1 ⊕ L2. In this case there is a canonical homotopy class κL1,L2 ∈
ΠL1,L2 LG(E), defined uniquely by three properties:

(1) Naturality with respect to symplectic isomorphisms E → E ′.

(2) Additivity in symplectic direct sums. That is, if E = E ′ ⊕ E ′′, and
Lν = L′ν ⊕ L′′ν , then κL1,L2 is the image of (κL′1,L′2 , κL′′1 ,L′′2 ) under the
morphism of fundamental groupoids induced by LG(E ′)× LG(E ′′) ↪→
LG(E).
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(3) Normalization in dimension 2. If dimR(E) = 2, then LG(E) ' R1 = S1

is a circle, equipped with orientation. In this case κL1,L2 is represented
by the circle arc going from L1 to L2 in the positive direction.

Let us call κL1,L2 the symplectic bridge between L1 and L2.

Returning now to our situation, each gradient polygon φ gives a piece-
wise continuous closed path $φ in LG(TX) obtained by associating to any
internal point p of the segment φiν iν+1 the tangent space at p to the thim-
ble Tiν (ζiν iν+1W ). At each point iν , the path $φ has a simple discontinuity
(jump), with the two limit values before and after the jump forming a pair
of transversal Lagrangian subspaces in TxνX. Joining each such pair by
the symplectic bridge, we obtain a closed continuous path $∧φ in LG(TX),
defined uniquely up to homotopy.

Taking the exterior power and applying the holomorphic volume form
Ωk,0 gives a continuous map (“phase”)

LG(TX)
ΛkR−→ LG(Λk

CTX)
Ωk,0−→ LG(C) = RP 1 = S1.

Denote this composite map Θ. Note that LG(C) = S1 has a canonical
counterclockwise orientation.

Definition 14.6. The Maslov index d(φ) of a gradient polygon φ is the
winding number of the continuous closed path Θ($∧φ) in S1 = LG(C). We
assign to the basis vector eφ the degree d(φ).

C. Transversality assumptions. Note that the intersection of the La-
grangian manifolds T

θij
ij and T

θji
j is never transversal: if non-empty, it has

dimension at least one. There are two ways of realizing nij as the num-
ber of intersection points of two Lagrangian manifolds which can be (and,
“typically”, are) transversal.

(1) Take an intermediate point p on the interval [wi, wj] and consider the
(smooth) Kähler manifold W−1(p) of dimension k−1. The intersections

Vi(p) = T
θij
i ∩W−1(p), Vj(p) = T

θji
j ∩W−1(p)

are Lagrangian spheres (“vanishing cycles”) in W−1(p) whose intersec-

tion points are in bijection with trajectories constituting T
θij
ij and T

θji
j .
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See Fig. 26. We assume that Vi(p) and Vj(p) intersect transversally in
W−1(p).

wi wj
p

xi
xj

W−1(p)

T
θij
i

T
θij
i

Vi(p)

Vj(p)

Figure 26: Vanishing cycles over a midpoint.

(2) For small ε > 0 put θ′ = θij − ε and θ′′ = θji + ε. Then the thimbles
T θ
′

i and T θ
′′

j project by W onto two half lines which intersect in a point
q somewhere near the interval [wi, wj], see Fig. 27. The intersection
points of T θ

′
i and T θ

′′
j , all lying over q, are again in bijection with

trajectories constituting T
θij
ij ∩ T

θji
j . We assume (this assumption is

equivalent to that in (1)) that T θ
′

i and T θ
′′

j intersect transversally in X.

wi wj

q

W (T θ
′

i )W (T θ
′′

j )

Figure 27: Perturbed thimbles in projection to C.

D. The instanton equation. Suppose that the Kähler manifold X is exact,
i.e., there exists a 1-form λ primitive for ω, i.e., dλ = ω. It is convenient
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to write λ symbolically as λ = p dq which refers to a particular choice of a
primitive in local Darboux coordinates p = (p1, · · · , pk), q = (q1, · · · , qk).

The ζij-solitons, being Hamiltonian flow curves for H = Im(ζijW ) are,
according to elementary Hamiltonian mechanics, critical points of the “phase
space action” which is the functional

hζij(φ) =

∫
φ

p dq +Hdt :=

∫
R

φ∗λ+ Im(ζijW )dt.

It is defined on the space Xij of smooth maps φ = φ(t) : R → X with the
boundary conditions

lim
t→−∞

φ(t) = xi, lim
t→+∞

φ(t) = xj.

This interpretation is used in [GMW] for constructing both L∞ and A∞
structures in terms of supersymmetric quantum mechanics. That is, our
transversality assumptions imply that hζij is itself a Morse function on Xij,
i.e., the ζij-solitons are non-degenerate critical points. The grading on Nij

is, up to shift, given by the relative Morse (Floer) index of hζij .
The Riemannian metric g = Re(ω1,1) on X defines the L2-Riemannian

metric on Xij:

(δ1φ, δ2φ) =

∫
R

(
δ1φ(t), δ2φ(t)

)
g
dt,

and so we can speak about the gradient flow of hζij on Xij. We will view a
parametrized curve in Xij with parameter s as a map Φ = Φ(t, s) : R2 → X
or, equivalently, as an X-valued function Φ(τ) of one complex variable τ =
t+
√
−1s ∈ C.

Definition 14.7. (a) The Kähler gradient of W (with respect to ω1,1) is the
vector field gradω1,1(W ) on X (i.e., a smooth section of TX) obtained from
the section dW of T ∗X by applying the composite isomorphism

T ∗X
(ω1,1)−1

−→ TX
v→v−→ TX,

where (ω1,1)−1 is the inverse to (14.1), and v → v is the canonical C-antilinear
identification between TX and TX.

(b) For ζ ∈ C∗, the ζ-instanton equation, or the Witten equation [FJR],
is the following condition on an X-valued function Φ = Φ(τ) : C→ X:

∂Φ

∂τ
= −ζ gradω1,1(W ).
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To explain the meaning of the equation, at any τ0 ∈ C

∂

∂τ
Φ(τ0) =

∂

∂t
Φ(τ0) +

√
−1

∂

∂s
Φ(τ0)

is a C-linear combination of two tangent vectors to X at Φ(τ0), so itself an
element of TΦ(τ0)X. It is required that this element is equal to the value of

−ζ gradω1,1(W ) at Φ(τ0).
The ζ-instanton equation can be seen as a complex ∂-analog of the ordi-

nary differential equation of downward gradient flow for Re(ζW ). In fact, it
reduces to that equation, if we assume that Φ(t, s) = φ(t) is independent on
s.

Proposition 14.8 ([GMW]). A curve Φ(s) in Xij represented by a map
Φ = Φ(t, s) : R2 → C, is a gradient trajectory for hζij , if and only if it
satisfies the ζij-instanton equation.

Examples 14.9. (a) If X = C with coordinate z and ω1,1 = dz dz is the
standard flat Kähler metric, then the equation has the form

∂Φ

∂τ
= −ζ W ′(Φ).

(b) More generally, if (z1, · · · , zk) is a local holomorphic coordinate system on
X, and ω1,1 =

∑
ω1,1

a,b
dza dzb, then we can write Φ(τ) as (Φ1(τ), · · · ,Φk(τ))

and the equation has the form

∂Φa

∂τ
=

(
∂

∂t
+
√
−1

∂

∂s

)
Φa = −ζ

∑
b

ηa,b
∂W

∂Φ
b
.

Here ‖ηa,b‖ is the inverse matrix to ‖ω1,1

a,b
‖.

E. The Maurer-Cartan element. Let g = gA,N be the L∞-algebra corre-
sponding to our set A and the coefficient system given by the Nij defined in
§B. Thus, see §10,

g =
⊕
Q′

NQ′ ⊗ or(Σ(A′)), A′ = Q′ ∩ A,

where Q′ runs over all convex subpolygons with vertices on A.
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Fix one such Q′ and suppose that it has vertices i0, · · · , im (counter-
clockwise). Then the basis of NQ′ is formed by the vectors eφ for all gradient
polygons φ = (φi0i1 , · · · , φimi0) that project (under W ) onto the boundary
∂Q′. Let w′ be the web dual to Q′, i.e., w′ is the normal fan of Q′, see §13
and Fig. 28. Thus w′ has one vertex and the sectors Cν of w are in bijection
with the vertices iν of Q′.

Fix further a gradient polygon φ covering Q′ and letMζ(φ) be the moduli
space of solutions of the ζ-instanton equations Φ : C→ X with the following
asymptotic conditions:

(1) When τ approaches infinity deep inside Cν , then Φ(τ) approaches xiν .

(2) Consider an edge e of w′ separating some Cν and Cν+1, see Fig. 28.
For a point τ ∈ e let l(τ) be the line orthogonal to e passing through
τ . Then, as τ → ∞ on e, the restriction Φ|l(τ) approaches the soliton
φiν ,iν+1 .

Cν

Cν+1

Cν−1

e

τ

l(τ)

w′

Q′

iν
iν−1

iν+1

Figure 28: The asymptotic condition for ζ-instantons.

The proposal of [GMW] can be mathematically summarized as follows.

Conjecture 14.10. (a) Under sufficient genericity assumptions,Mζ(φ) is a
manifold of dimension d(φ)− 1, equipped with a natural orientation.

(b) In particular, for φ such that d(φ) = 1, i.e., eφ is a basis vector of g1,
we have a well defined signed cardinality γζ(φ) ∈ Z of Mζ(φ) (signs come
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from the orientation of the 0-dimensional manifold). The element

γ = γζ =
∑
d(φ)=1

γζ(φ)eφ ∈ g1

is a Maurer-Cartan element.
(c) The deformation of the A∞-algebra R∞ with respect to γζ is identified

with RS(ζW ), the A∞-algebra associated to the Fukaya-Seidel category of
ζW .

Remarks 14.11. (a) Since Nij is spanned by the critical points of hζij on
Xij, it carries a natural Floer differential. This differential is in fact a part of
the datum provided by α, corresponding to m = 1, i.e., to gradient polygons
with 2 edges, so that m = 1 and i0 = i, i1 = j.

(b) Suppose that m ≥ 2 and let φ be a gradient polygon lying over the
boundary of a convex sub polygon Q′. In this case it seems likely that for
any ζ-instanton Φ ∈Mζ(φ), the composition

C Φ−→ X
W−→ C

maps C bijectively onto the interior of Q′. If this is so, then one can think
about ζ-instantons as “sections” of W over Q′.

(c) The argument justifying the Maurer-Cartan condition for γ proposed
in [GMW] is based on “counting the ends” of the 1-dimensional manifolds
Mζ(φ) for eφ ∈ g2. More generally, this type of argument suggests the
existence of a compactificationMζ(φ) ofMζ(φ) by adding strata which are
products ofMζ(ψ) for “smaller” gradient polygons ψ. More precisely, strata
are labelled by data P consisting of:

(1) A regular polygonal subdivision P = {Q′′ν} of the polygon Q′ (image of
φ under W ).

(2) An assignment, to each intermediate edge of the subdivision, of an
instanton projecting onto this edge.

Such a datum can be thought of as a lifting of P into X and is equivalent
to a “colored web” in the terminology of [GMW]. Each polygon Q′′ν is then
lifted to a gradient polygon ψν , and the stratum Mζ(P) is the product of
the Mζ(ψν). In other words, the compactification Mζ(φ) has the strata

70



structure and the factorization property, completely parallel to those of the
secondary polytope Σ(A ∩Q′).

Further, for a sequence of instantons (Φn) in Mζ(φ), the condition of
approaching the stratum Mζ(P), i.e., the condition that lim Φn ∈ Mζ(P),
can be seen as a kind of tropical degeneration. That is, fixing ε > 0, consider
the sets

Un(ε) := {τ ∈ C : ‖dτΦn‖2 ≥ ε}.

Then, as ε→ 0 and n→∞ simultaneously in a compatible way (∀ε∃n), the
sets Un(ε) converge, in the Gromov-Hausdorff sense, to the web w dual to
P . The shape of each individual Un(ε) can be compared to the amoeba of a
plane algebraic curve.
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15 Speculations and directions for further work

1. From Stasheff polytopes to a categorical structure. A ζij-instanton
in §14 is the m = 2 case of the following “catastrophe” (non-generic occur-
rence) for a Morse function: a chain of m critical points of the same index
connected by gradient trajectories in a sequential way. It was shown in [KS]
that generic deformations of such a catastrophe are governed by the Stasheff
polytope Km whose vertices correspond to bracketings of m + 1 factors. As
well known, combinatorics of the Km is at the basis of the formalism of A∞-
algebras and categories. It is therefore interesting to relate this appearance
of the Km to other categorical structures and to wall crossing formulas in
2 and more dimensions. This seems especially appealing since the Km also
describe [KS] higher syzygies among the Steinberg relations for elementary
matrices eij(λ) ∈ GLN :

eij(λ)ejk(µ) = ejk(µ)eik(λ+ µ)eij(λ).

Such relations, each having the shape of a pentagon K3, appear naturally in
the wall-crossing formulas.

2.Higher TFT structures and Ed-algebras. It seems certain that in d
dimensions the L∞-algebra g from §3 can be refined to an Ed-algebra, and g∞
to an Ed−1-algebra. We plan to address this in a subsequent paper, currently
in preparation. The possibility of such refinement is in agreement with the
higher analog of the Deligne conjecture [KoSo2, Lur, Gin] which says that
the deformation complex of an Ed−1-algebra is naturally an Ed-algebra. The
quasi-isomorphism Φ in the Universality Theorem should then be a morphism
of Ed-algebras. Further, the full higher-dimensional analog of the concept of
a coefficient system from §10 should associate to any simplex of codimension
p with vertices in A, an Ep-algebra.

3. Curvilinear theory. It would be interesting to develop the analog of
the formalism of Fukaya-Seidel categories and of [GMW] for the case when
the potential W takes values not in C but in some Riemann surface S. In
this case the set A of critical values makes S into a “marked surface” in the
sense of Teichmüller theory and one can use isotopy classes of curvilinear
triangulations of S with vertices in A in order to analyze various categorical
structures. In particular, geodesics of quadratic differentials as well as spec-
tral networks of Gaiotto-Moore-Neitzke [GMN] seem like natural objects to
appear in such a theory.
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4. Infinite-dimensional case. Much of the recent “physical” work on
Picard-Lefschetz theory and its generalizations was motivated by the infinite-
dimensional example of the complexified Chern-Simons functional [Wit]. Here
X is the (universal cover of the) space of all connections in a principal bun-
dle on a 3-manifold M , whose structure group is a complex semi simple Lie
group. The set A of critical values of the Chern-Simons functional consists of
complex numbers of substantial arithmetic importance (involving volumes of
hyperbolic manifolds, regulators of elements of K3(Q) and the like). The na-
ture of polygons and triangulations that can be formed out of these numbers
remains mysterious. It would be very interesting if Picard-Lefschetz theory
imposed some constraints on the convex geometry of these numbers.

The case of the holomorphic Chern-Simons functional (M is a 3-dimensional
complex Calabi-Yau) is even more mysterious.
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