Orthogonal pairs for Lie algebra sl(6)

Alexey Bondal* ${ }^{*}$ and Ilya Zhdanovskiy ${ }^{\dagger}$

August 29, 2014

1 Introduction

An orthogonal pair in a semisimple Lie algebra is a pair of Cartan subalgebras which are orthogonal with respect to the Killing form. Description of orthogonal pairs in a given Lie algebra is an important step in the classification of orthogonal decompositions, i.e. decompositions of the Lie algebra into the sum of Cartan subalgebras pairwise orthogonal with respect to the Killing form.

Orthogonal decompositions come up firstly in the theory of integer lattices in the paper by Thompson [14]. Then the theory of such bases was substentially developed by mathematicians [9]. The classification problem of orthogonal pairs in $\operatorname{sl}(n)$ is closely related to the classification of complex Hadamard matrices of order n [9], [2].

Independently, a unitary version of orthogonal pairs appeared in quantum theory under the name of mutually unbiased bases [2], objects of constant use in Quantum Information Theory, Quantum Tomography, etc. This makes a link of the subject to various vibrant probelms in Mathematical Physics.

One of the reasons why mutually unbiased bases are important in practice is that they provide a crucial mathematical tool that allows to transfer quantum information with minimal loss of it in the channel. Reliable protocols in quantum channels, such as protocol BB84, are based on a choice of maximal number of mutually unbiased bases in the relevant vector space of quantum states of transmited particles. Protocol BB84, which utilize 3 such bases in a 2 dimensional vector space, allows us to significantly extend the distance between the source and the receiver of quantum information. Clearly, big number of bases in a higher dimensional spaces is of tremendous importance in constructing reliable protocols in quantum channels.

Also, in quantum teleportation, it is important to check the result of purity of teleportation by means of Quantum Tomography. The Quantum Tomography with minimal error bar is again based on mutually unbiased bases.

Despite of simple definition, the classification of orthogonal pairs is a very hard problem of algebraic geometric origin. We will consider pairs in the Lie algebra $\operatorname{sl}(n, \mathbb{C})$. According to the famous Winnie-the-Pooh conjecture [7], orthotogonal decompositions are possible in this algebra when n is a power of prime number only. This suggests the idea that the behavior of the objects under the study strongly depend on the arithmetic properties of the number n. For $n=1,2,3$, there is a unique, up to natural symmetries, orthogonal pair. For $n=5$, there are three of them [8], [11], while, for $n=4$ (the first non-prime integer), there is a one dimensional family of pairs parameterized by a rational curve.

The first positive integer which is not a power of prime is $n=6$. Winnie-the-Pooh conjecture is open even for this case. Researchers in the quantum information theory have independently come to the unitary version of the Winnie-the-Pooh conjecture, which claims non-existence of $n+1$ mutually unbiased bases in the n-dimensional

[^0]complex space [7] when n is not a power of prime. The case $n=6$ is the subject of problem number 13 in the popular list of problems in Quantum Information Theory [12].

In this paper we construct a 4 -dimensional family of orthogonal pairs in Lie algebra $s l(6, \mathbb{C})$. The existence of such a family was conjectured by the authors (unpublished) and independently by mathmatical physicists $[13],[10]$. Despite of many efforts the proof of the existence of the family was not available until now.

In [1], we interpreted orthogonal pairs and decompositions as representations of the algebra $B(\Gamma)$ for a suitable choice of graph Γ (see section 2). These algebras are so-called homotopes of the Poincare groupoids of graph Γ considered as a topological space. In the course of the prove of the main result of the paper, we present various relevant algebras as free products of two algebras over a third one and explore these facts for describing the moduli spaces of their representations.

The key point in the proof is, probably, section 7 , where we consider the moduli spaces, X, of 6 dimensional representations of $B(\Gamma)$, where Γ is a full bipartite graph of length $(3,3)$. We define 3 functions on X which determine a map $X \rightarrow \mathcal{U}$, where \mathcal{U} is a three dimensional affine space. The advantage of this map is that the original problem of describing orthogonal pairs in $s l(6, \mathbb{C})$ can be interpreted in terms of gluing four copies of X in such a way that everything is basically done over \mathcal{U}. If A is a 6×6 matrix that conjugates one Cartan subalgebra in the orthogonal pair to the other one, then this is about presenting this matrix in 4 blocks of 3×3 matrices. This reduces the problem to the study of the fibres of the above map. After factorization by permutation group $S_{3} \times S_{3}$, the fibre is actually isomorphic to (an open affine subset in) two disjoint copies of an elliptic curve.

This leads us to study of the geometry of the elliptic fibration. Namely, we study the interplay of relevant involutions acting on the elliptic fibres. This part is based on heavy use of algebraic geometry. Eventually, it allows us to show the existence of the 4-dimensional family. Note that the proof is based on formula 174 which probably needs more conceptual explanation than just verification.

In order to study the moduli space of representations of $B(\Gamma)$, we introduce more general algebra $\operatorname{Pr}(\Gamma)$. This algebra is a homotope of the path algebra of the double quiver \mathbf{Q}_{Γ} constructed from graph Γ by replacing every edge of Γ by two arrows with opposite orientation. Algebra $\operatorname{Pr}(\Gamma)$ is generated by idempotents x_{v} labelled by the vertices of Γ. They satisfy relations which are weaker than those for algebra $B(\Gamma)$. The moduli spaces of representations for $\operatorname{Pr}(\Gamma)$ is naturally fibered over the moduli of representations for $B(\Gamma)$.

Orthogonal pairs in $s l(n)$ correspond to representations for algebra $B(\Gamma)$ where Γ is the complete bipartite graphs $\Gamma_{n, n}$. We study algebra $\operatorname{Pr}\left(\Gamma_{k, n}\right)$ for complete bipartite graph $\Gamma_{k, n}$. We consider a quotient of $\operatorname{Pr}\left(\Gamma_{k, n}\right)$ which we denote by $\mathbf{P}_{k, n}$. We prove that representation spaces and moduli varieties for $\operatorname{Pr}\left(\Gamma_{k, n}\right)$ and $\mathbf{P}_{k, n}$ are smooth and irreducible. We calculate the dimensions of these varieties. Also, we prove that algebra $\mathbf{P}_{k, n}$ is a free product of algebras of Pr of smaller bipartite graphs over algebra $\operatorname{Pr}\left(\Gamma_{k, 1}\right)$. We show birational equivalence of representation spaces and moduli varieties for $\operatorname{Pr}\left(\Gamma_{k, n}\right)$ and fibred product of representation spaces and moduli varieties for $\mathbf{P r}$'s of smaller bipartite graphs over moduli variety of $\operatorname{Pr}\left(\Gamma_{k, 1}\right)$.

Then we consider algebras $B_{k, n}$ which are similar quotients of $B\left(\Gamma_{k, n}\right)$. We use results on algebra $\operatorname{Pr}\left(\Gamma_{k, n}\right)$ to get similar results for $B\left(\Gamma_{k, n}\right)$. Analogously, We prove that $B_{n, n}$ and $B_{k, n}$ are free products of B 's of smaller bipartite graphs over some algebras \mathcal{A}_{n} and $\widetilde{\mathcal{A}}_{k}$, respectively. We get a birational equivalence of representation spaces and moduli varieties for $B\left(\Gamma_{k, n}\right)$ and fibred product similar to the case of $\mathbf{P r}$.

We construct Morita equivalence of the algebra \mathcal{A}_{n} awith the deformed preprojective algebra for arbitrary quiver. The deformed preprojective algebras are intensively studied by many authors (cf. [5], [3]). Using a result of Crawley-Boewey [4], we check the required conditions for representation space and moduli space for $B_{n, n}$. Thus, we get an important fact, a birational equivalence of the moduli space for $B_{n, n}$ and the fibred product of B 's of smaller bipartite graphs over moduli variety of \mathcal{A}_{n}. Moreover, using properties of flat morphisms, we get a similar birational equivalence for $B_{k, n}$.

At the end of the paper, we construct a birational immersion of the moduli space for \mathcal{A}_{n} into the fibred product of $\widetilde{\mathcal{A}}_{k}$. Together with some other technical results this allows us to finish the proof.

2 Basic definitions and preliminary results.

Firstly, in this section we formulate definitions of orthogonal pair in Lie algebra, generalized hadamard matrices, their connection. Also, we remind the famous Winnie-the-Pooh conjecture formulated by Kostrikin et all in []. In the second subsection we recall the notion of algebraic unbiasedness and mutually unbiased basis in Hermitian space. In the third subsection we formulate the definition of reduced Temperley-Lieb algebra of graph. Also, we light the connection between orthogonal pairs (decompositions) and representations of temperley-Lieb algebra of arbitrary graph. In the fourth subsection we introduce the algebra $\operatorname{Pr}(\Gamma)$ the generalization of $B(\Gamma)$. Also, we formulate some trivial properties of $\operatorname{Pr}(\Gamma)$. In the last subsection we recall the notion of representation space and moduli variety and note some properties of these objects. For fixed algebra C, we will consider moduli varieties of two types: representation space, i.e. space of all algebraic homomorphisms from C to $M_{n}(F)$, and moduli variety, i.e quotient of representation space by natural $\mathrm{PGL}_{n}(F)$ - action.

2.1 Orthogonal Cartan subalgebras and generalized Hadamard matrices.

Consider a simple Lie algebra L over an algebraically closed field F of characteristic zero. Let K be the Killing form on L. In 1960, J.G.Thompson, in course of constructing integer quadratic lattices with interesting properties, introduced the following definitions.

Definition. Two Cartan subalgebras H_{1} and H_{2} in L are said to be orthogonal if $K\left(h_{1}, h_{2}\right)=0$ for all $h_{1} \in H_{1}, h_{2} \in H_{2}$.

There is the classification problem for pair of Cartan subalgebras in $\operatorname{sl}(n)$. Reader could find some previous results about this problem and closely related problem of classification of generalized Hadamard matrices later.

Definition. Decomposition of L into the direct sum of Cartan subalgebras $L=\oplus_{i=1}^{h+1} H_{i}$ is said to be orthogonal if H_{i} is orthogonal to H_{j}, for all $i \neq j$.

We will study pair of orthogonal Cartan subalgebras of $s l(n)$ and orthogonal decompositions of $s l(n)$ up to action of $G L_{n}(F)$ by conjugation.

Intensive study of orthogonal decompositions has been undertaken since then (see the book ?? and references therein). For Lie algebra $s l(n)$, A.I. Kostrikin and co-authors ?? arrived to the following conjecture, called Winnie-the-Pooh Conjecture (cf. ibid. where, in particular, the name of the conjecture is explained by a wordplay in the Milne's book in Russian translation).

Conjecture 1. Lie algebra sl(n) has an orthogonal decomposition if and only if $n=p^{m}$, for a prime number p.

The conjecture has proved to be notoriously difficult. Even the non-existence of an orthogonal decomposition for $\operatorname{sl}(6)$, when $n=6$ is the first number which is not a prime power is still open.

Further, let us recall the connection between orthogonal pairs in $\operatorname{sl}(n)$ and generalized Hadamard matrices of order n. Firstly, remind the definition of generalized Hadamard matrices. Let \mathcal{N} be the set of $n \times n$ matrices with non-zero entries. A matrix $A=\left\{a_{i j}\right\}$ from \mathcal{N} is said to be a generalized Hadamard matrix if

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{i j}}{a_{k j}}=0 \tag{1}
\end{equation*}
$$

for all $i \neq k$.
This condition can be recast by means of Hadamard involution $h: \mathcal{N} \rightarrow \mathcal{N}$ defined by

$$
\begin{equation*}
h: a_{i j} \mapsto \frac{1}{n a_{j i}} . \tag{2}
\end{equation*}
$$

Proposition 2. A is a generalized Hadamard matrix if and only if A is invertible and $h(A)=A^{-1}$.
Proof. Indeed, (1) is equivalent to $A \cdot h(A)=1$.

Remark. Sometimes, generalized Hadamard matrices are named as Type-\| matrices (cf. [?]) or orthogonalinverse matrices (cf. []).

For any two Cartan subalgebras in a simple Lie algebra, one is known to be always a conjugate of the other by an automorphism of the Lie algebra. For the case of $s l(n)$, Cartan subalgebras are conjugate by an element of $G L_{n}(F)$, i.e. if $\left(H, H^{\prime}\right)$ is pair of Cartan subalgebras, then $H^{\prime}=A H A^{-1}$, for $A \in G L_{n}(F)$. The transition matrix A is uniquely defined when we fix basis $\left\{e_{i}\right\}$ and $\left\{f_{i}\right\}$ such that H consists of diagonal matrices in the first basis and H^{\prime} does in the second basis. The freedom of choice for one basis is given by the normalizer in $G L_{n}(F)$ of one Cartan subalgebra, i.e. the group of monomial matrices. Therefore, the transition matrix A is defined up to transformations

$$
\begin{equation*}
A^{\prime}=M_{1} A M_{2} \tag{3}
\end{equation*}
$$

where M_{1} and M_{2} are invertible monomial matrices.
Proposition 3. [?] Two Cartan subalgebras H and $A H A^{-1}$ form an orthogonal pair of Cartan subalgebras in $s l(n)$ if and only if A is a generalized Hadamard matrix.

2.2 Algebraic unbiasedness and mutually unbiased bases and configurations of lines in a Hermitian space

In this subsection, we will remind the notion of algebraic unbiasedness, mutually unbiased bases and complex Hadamard matrices.

Two minimal (i.e. rank 1) projectors p and q in V are said to be algebraically unbiased if

$$
\begin{equation*}
\operatorname{tr}(p q)=\frac{1}{n} \tag{4}
\end{equation*}
$$

Equivalently, this reads as one of the two (equivalent) algebraic relations:

$$
\begin{align*}
& p q p=\frac{1}{n} p \tag{5}\\
& q p q=\frac{1}{n} q . \tag{6}
\end{align*}
$$

We will also consider orthogonal projectors. Orthogonality of p and q is algebraically expressed as

$$
\begin{equation*}
p q=q p=0 \tag{7}
\end{equation*}
$$

Two maximal (i.e. of cardinality n) sets of minimal orthogonal projectors $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ are said to be algebraically unbiased if p_{i} and q_{j} are algebraically unbiased for all pairs (i, j).

Let $s l(V)$ be the Lie algebra of traceless operators in V. Killing form is given by the trace of product of operators. A Cartan subalgebra H in V defines a unique maximal set of minimal orthogonal projectors in V. Indeed, H can be extended to the Cartan subalgebra H^{\prime} in $g l(V)$ spanned by H and the identity operator E. Rank 1 projectors in H^{\prime} are pairwise orthogonal and comprise the required set. We say that these projectors are associated to H.

If p is a minimal projector in H^{\prime}, then trace of p is 1 , hence, $p-\frac{1}{n} E$ is in H. If projectors p and q are associated to orthogonal Cartan subalgebras, then

$$
\operatorname{Tr}\left(p-\frac{1}{n} E\right)\left(q-\frac{1}{n} E\right)=0
$$

which is equivalent to p and q to be algebraically unbiased.
Therefore, an orthogonal pair of Cartan subalgebras is in one-to-one correspondence with two algebraically unbiased maximal sets of minimal orthogonal projectors. Similarly, orthogonal decompositions of $s l(n)$ correspond to $n+1$ of pairwise algebraically unbiased sets of minimal orthogonal projectors. This will lead us to the representation theory of reduced Temperley-Lieb algebras which we study in the next section.

More explicitly, algebraic unbiasedness can be expressed as follows. Let projectors p and q be given as

$$
p=e \otimes x, \quad q=f \otimes y
$$

where e and f are in V and x and y are in V^{*}. The equations $p^{2}=p$ and $q^{2}=q$ imply:

$$
\begin{equation*}
(e, x)=1, \quad(f, y)=1, \tag{8}
\end{equation*}
$$

where $(-,-)$ stands for the pairing between vectors and covectors. Then the algebraic unbiasedness of p and q reads:

$$
\begin{equation*}
(x, f)(y, e)=\frac{1}{n} \tag{9}
\end{equation*}
$$

Orthogonality conditions (7) reads:

$$
\begin{equation*}
(x, f)=0, \quad(y, e)=0 \tag{10}
\end{equation*}
$$

The terminology of unbiased bases first appeared in physics. It is a unitary version of the algebraic unbiasedness introduced above.

Let V be an n dimensional complex space with a fixed Hermitian metric \langle,$\rangle . Two orthonormal Hermitian$ bases $\left\{e_{i}\right\}$ and $\left\{f_{j}\right\}$ in V are mutually unbiased if, for all (i, j),

$$
\begin{equation*}
\left|\left\langle e_{i}, f_{j}\right\rangle\right|^{2}=\frac{1}{n} \tag{11}
\end{equation*}
$$

Consider the orthogonal projectors p_{i} and q_{j}, corresponding to these bases, defined by:

$$
p_{i}(-)=e_{i} \otimes\left\langle-, e_{i}\right\rangle, \quad q_{j}(-)=f_{j} \otimes\left\langle-, f_{j}\right\rangle
$$

Then, the condition (9) is satisfied for them, hence they are algebraically unbiased. Note that these operators are rank 1 Hermitian projectors, and, being such, are defined by non-zero vectors in their images. We say that two rank 1 projectors are unbiased if they are algebraically unbiased Hermitian projectors.

We can regard algebraic unbiasedness as the complexification of unbiasedness. ???? Fix a Hermitian form on V. The Hermitian involution gives a new duality on the set of algebraic configurations:

$$
\begin{equation*}
p_{i} \mapsto p_{i}^{\dagger} \tag{12}
\end{equation*}
$$

As we know(??), the duality induces an anti-holomorphic involution on the variety of algebraically unbiased minimal projectors.

Since mutually unbiased bases are algebraically unbiased, they are related to orthogonal Cartan subalgebras in $\operatorname{sl}(n)$. Given m pairwise mutually unbiased bases $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{m}$ in a Hermitian space V, we obtain m Cartan subalgebras $H_{1}, H_{2}, \ldots, H_{m}$ in $s l(n)$ which are pairwise orthogonal with respect to the Killing form. In particular, a collection of $n+1$ mutually unbiased bases in a Hermitian vector space of dimension n gives rise to an orthogonal decomposition of $s l(n)$. This fact was noticed by P.Oscar Boykin, Pham Huu Tiep, Meera Sitharam and Pawel Wocjan in [2].

Let \mathcal{B} an orthonormal basis in \mathbb{C}^{n}. Matrix $A=\left(a_{i j}\right)$ is said to be complex Hadamard if bases \mathcal{B} and $A(\mathcal{B})$ are mutually unbiased. Let A and C be a complex Hadamard matrices. We will say that A is equivalent to C if $A=M_{1} C M_{2}$ for some unitary monomial matrices M_{1}, M_{2}.

There exists the following relation between complex Hadamard matrices and generalized Hadamard ones: A is a complex Hadamard if and only if A is a generalized Hadamard and $\left|a_{i j}\right|=1$. As we know, there is an anti-holomorphic involution on the variety of generalized Hadamard matrices. Fixed points of this involution is a variety of complex Hadamard matrices. Therefore, if we construct d-dimensional complex algebraic variety of generalized Hadamard matrices, then we get d-dimensional real variety of complex Hadamard matrices.

2.3 Reduced Temperley-Lieb algebra of graph $B_{r}(\Gamma)$, orthogonal pairs and decompositions in $s l(n)$.

The above discussion of the problem on orthogonal decompositions and algebraically unbiased projectors motivates the study of representation theory for algebras $B(\Gamma)$, which we introduce here. Under some specialization of parameters, these algebras become quotients of more familiar Temperley-Lieb algebras of graphs. The latter are, in their turn, quotients of Hecke algebras of graphs.

Let Γ be a connected simply laced graph with no loop (i.e. no edge with coinciding ends). Denote by $V(\Gamma)$ and $E(\Gamma)$ the sets of vertices and edges of the graph. Let \mathbb{K} be a commutative ring $\mathbb{K}=F\left[r, r^{-1}\right]$, where F is a field of characteristic zero. We define reduced Temperley-Lieb algebra $B(\Gamma)$ as a unital algebra over Generators x_{i} of $B(\Gamma)$, except for 1 , are numbered by all vertices i of Γ. They subject relations:

- $x_{i}^{2}=x_{i}$, for every i in $V(\Gamma)$,
- $x_{i} x_{j} x_{i}=r x_{i}, x_{j} x_{i} x_{j}=r x_{j}$, if i and j are adjacent in Γ,
- $x_{i} x_{j}=x_{j} x_{i}=0$, if there is no edge connecting i and j in Γ.

For fixed $r \in F^{*}$, we will use the notation $B_{r}(\Gamma)$. Clearly, any automorphism of graph Γ induces automorphism of algebra $B(\Gamma)$. It can be shown that algebra $B(\Gamma)$ is a quotient of Temperley-Lieb algebra $T L(\Gamma)$ of graph Γ (cf.??).

Fix $r_{i j} \in F^{*}$ for any non-oriented edge ($i j$). Denote by \mathbf{r} the collection of all $r_{i j}$. Consider algebra $B_{\mathbf{r}}(\Gamma)$. Namely, for fixed $r_{i j} \in F^{*}$, let us define the algebra $B_{\mathbf{r}}(\Gamma)$ as unital algebra with generators x_{v} labeled by vertices of Γ with relations:

- $x_{i}^{2}=x_{i}$ for every $i \in V(\Gamma)$,
- $x_{i} x_{j} x_{i}=r_{i j} x_{i}, x_{j} x_{i} x_{j}=r_{i j} x_{j}$ for adjacent vertices i, j,
- $x_{i} x_{j}=x_{j} x_{i}=0$ for non-adjacent vertices i, j.

It is clear that if $r_{i j}$ are the same for all edges $i j$ and is r then $B_{\mathbf{r}}(\Gamma)=B_{r}(\Gamma)$.
Using relations and connectedness of graph Γ, we get that ranks of generators x_{i} under any representation are the same. We will say that representation ϱ of $B_{r}(\Gamma)$ has rank d iff rank of some (and hence all) x_{i} is d. We will study non-trivial representations of algebra $B(\Gamma)$ (i.e. representations of positive rank).

It is easy that group $\operatorname{Aut}(\Gamma)$ acts on the variety of representations of $B(\Gamma)$. Denote by $\Gamma_{m}(n)$ the graph with m rows by n vertices in each row. Two vertices are adjacent iff they are in different rows. It is clear that automorphism group of $\Gamma_{m}(n)$ is the wreath product of symmetric groups $S_{n} 2 S_{m}$. Also, we will consider direct product of symmetric groups $S_{n}^{\times m}$ acting by permutations of vertices lying in the same rows. Thus, we can formulate the following theorem:

Theorem 4. - Non-ordered set of m orthogonal Cartan subalgebras H_{0}, \ldots, H_{m-1} of $s l(n)$ are in bijective correspondence with $S_{n} \ S_{m}$-orbits of n-dimensional representations of the algebra $B_{\frac{1}{n}}\left(\Gamma_{m}(n)\right)$.

- Ordered set of m orthogonal Cartan subalgebras H_{0}, \ldots, H_{m-1} of $s l(n)$ are in bijective correspondence with $S_{n}^{\times m}$-orbits of n-dimensional representations of the algebra $B_{\frac{1}{n}}\left(\Gamma_{m}(n)\right)$. We have analogous statement for $G L_{n}(F)$-quotients:
- $G L_{n}(F)$-orbits of non-ordered set of m orthogonal Cartan subalgebras H_{0}, \ldots, H_{m-1} of sl(n) are in bijective correspondence with $S_{n} 2 S_{m}$-orbits of n-dimensional modules of the algebra $B_{\frac{1}{n}}\left(\Gamma_{m}(n)\right)$.
- $G L_{n}(F)$-orbits of ordered set of m orthogonal Cartan subalgebras H_{0}, \ldots, H_{m-1} of sl(n) are in bijective correspondence with $S_{n}^{\times m}$-orbits of n-dimensional modules of the algebra $B_{\frac{1}{n}}\left(\Gamma_{m}(n)\right)$.
Proof. Let us show that n-dimensional representation of $B_{\frac{1}{n}}\left(\Gamma_{m}(n)\right)$ has rank 1 . Actually, we have m sets of n orthogonal projectors of the same rank. Thus, these projectors has rank 1. It is easy that n-dimensional representation of $B_{\frac{1}{n}}\left(\Gamma_{m}(n)\right)$ defines m sets of pairwise algebraically unbiased sets of minimal projectors. Straightforward check proves the theorem.

2.4 Standard orthogonal pair in $s l(n)$, Heisenberg relation and deformation.

In this subsection we give some examples of orthogonal pairs in $\operatorname{sl}(n)$ related to Heisenberg group and its deformations.

It is well-known that Cartan subalgebra H of Lie algebra $s l(n)$ has basis X, \ldots, X^{n-1}, where X satisfy to relations: $X^{n}=1$ and $\operatorname{Tr} X^{i}=0, i=1, \ldots, n-1$. Adding identity element, we get associative commutative algebra \widehat{H} with basis $1, X, \ldots, X^{n-1}$. Consider pair of Cartan subalgebras $\left(H_{0}, H_{1}\right)$. As we know, there are bases $1, X, \ldots, X^{n-1} ; X^{n}=1, \operatorname{Tr} X^{i}=0, i=1, \ldots, n-1$ and $1, Y, \ldots, Y^{n-1} ; Y^{n}=1, \operatorname{Tr} Y^{j}=0, j=1, \ldots, n-1$ of associative subalgebras $\widehat{H_{0}}$ and $\widehat{H_{1}}$ respectively. We will say that pair of Cartan subalgebras $\left(H_{0}, H_{1}\right)$ is standard (cf.??) iff X, Y satisfy to Heisenberg relation:

$$
\begin{equation*}
X Y=\epsilon Y X \tag{13}
\end{equation*}
$$

where ϵ is a primitive root of 1 of degree n. It is well-known that standard pair $\left(H_{0}, H_{1}\right)$ is orthogonal. Actually, if X, Y such that $X Y=\epsilon Y X$ then $\operatorname{Tr}(X Y)=\epsilon \operatorname{Tr}(Y X)=\epsilon \operatorname{Tr}(X Y)$. Hence, $\operatorname{Tr}(X Y)=0$. Analogously, one can prove that $\operatorname{Tr}\left(X^{i} Y^{j}\right)=0$ for $i, j=1, \ldots, n-1$.

As we know, any two Cartan subalgebras are conjugate. Consider standard pair $\left(H_{0}, H_{1}\right)$. Let H_{0} be a subalgebra of diagonal matrices. Choose generator X as diagonal matrix of type: $\operatorname{diag}\left(1, \epsilon, \ldots, \epsilon^{n-1}\right)$. Thus, $Y=A X A^{-1}$ for some matrix A. It can be shown in usual way that matrix A (up to permutation of rows and columns) has the following view:

$$
A=\left(a_{i j}=\epsilon^{(i-1)(j-1)}\right)_{i, j=1, \ldots, n}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \tag{14}\\
1 & \epsilon & \ldots & \epsilon^{n-1} \\
\ldots & \ldots & \ldots & \ldots \\
1 & \epsilon^{n-1} & \ldots & \epsilon
\end{array}\right)
$$

It is well-known that matrix X and Y define the irreducible representation of Heisenberg group, which is a central extension of $\mathbb{Z}_{n} \oplus \mathbb{Z}_{n}$ by \mathbb{Z}_{n}.

Assume that $n=k m$. Consider deformation of Heisenberg relation of the following type:

$$
\begin{equation*}
X^{k} Y=\epsilon^{k} Y X^{k}, X Y^{m}=\epsilon^{m} Y^{m} X \tag{15}
\end{equation*}
$$

Proposition 5. Consider Cartan subalgebras $H_{0}=<X, \ldots, X^{n-1}>_{F}, H_{1}=<Y, \ldots, Y^{n-1}>_{F}$, where $X^{n}=$ $Y^{n}=1, \operatorname{Tr} X^{i}=\operatorname{Tr} Y^{i}=0, i=1, \ldots, n-1$ and X, Y satisfy to relation (15). Then pair of Cartan subalgebras $\left(H_{0}, H_{1}\right)$ is orthogonal.
Proof. We have to prove that $\operatorname{Tr} X^{i} Y^{j}=0$ for $i, j=1, \ldots, n-1$. Consider the case: $j=a m, a=$ $1, \ldots, k-1$. Applying relation (15), we obtain the following identity: $X^{i} Y^{a m}=\epsilon^{a m} X^{i-1} Y^{a m} X . \operatorname{Tr}\left(X^{i} Y^{a m}\right)=$ $\epsilon^{a m} \operatorname{Tr}\left(X^{i-1} Y^{a m} X\right)=\epsilon^{a m} \operatorname{Tr}\left(X^{i} Y^{a m}\right)$. Thus, $\operatorname{Tr}\left(X^{i} Y^{a m}\right)=0$ for any $i=1, \ldots, n-1$. Further, consider the case $j \neq a m$. $X^{i} Y^{j}=X^{i-k} X^{k} Y^{j}=\epsilon^{k j} X^{i-k} Y^{j} X^{k}$. Because of $j \neq a m$, we get that $k j \neq 0(m o d n)$. Hence, $\operatorname{Tr}\left(X^{i} Y^{j}\right)=\epsilon^{k j} \operatorname{Tr}\left(X^{i-k} Y^{j} X^{k}\right)=\epsilon^{k j} \operatorname{Tr}\left(X^{i} Y^{j}\right)$. Therefore, we get that $\operatorname{Tr}\left(X^{i} Y^{j}\right)=0$ for all $i, j=1, \ldots, n-1$.

Orthogonal pair of Cartan subalgebras $\left(H_{0}, H_{1}\right)$ of $s l(n)$ is said to be (k, m) - weak standard if there are bases $X^{i}, i=1, \ldots, n-1$ of H_{0} and $Y^{j}, j=1, \ldots, n-1$ satisfying to relation (15).

For studying of (k, m) - weak standard orthogonal pairs, we will introduce the group \widehat{G} and its quotient G. Denote by $[k, m]$ and (k, m) the l.c.m. and g.c.d of k and m respectively. Consider group \widehat{G} with generators x, y, t and defining relations: $x^{n}=y^{n}=t^{[k, m]}=1, x^{k} y=t^{\frac{k}{(k, m)}} y x^{k}, x y^{m}=t^{\frac{m}{(k, m)}} y^{m} x, x t=t x, y t=t y$. It is evident that group \widehat{G} is a central extension:

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z}_{[k, m]} \longrightarrow \widehat{G} \longrightarrow G_{1} \longrightarrow 1 \tag{16}
\end{equation*}
$$

where G_{1} is generated by x, y satisfying to relations: $x^{n}=y^{n}=1, x^{k} y=y x^{k}, x y^{m}=y^{m} x$. It is easy that element x^{k} and y^{m} are in the center of G_{1}. Thus, G_{1} is a central extension:

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z}_{m} \oplus \mathbb{Z}_{k} \longrightarrow G_{1} \longrightarrow \mathbb{Z}_{m} * \mathbb{Z}_{k} \longrightarrow 1 \tag{17}
\end{equation*}
$$

where $\mathbb{Z}_{m} * \mathbb{Z}_{k}$ is a free product of cyclic groups. Denote by a, b the generators of \mathbb{Z}_{m} and \mathbb{Z}_{k} respectively. Also, we have the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z}_{[k, m]} \oplus \mathbb{Z}_{m} \oplus \mathbb{Z}_{k} \longrightarrow \widehat{G} \longrightarrow \mathbb{Z}_{m} * \mathbb{Z}_{k} \longrightarrow 1 \tag{18}
\end{equation*}
$$

Consider natural morphism: $\mathbb{Z}_{m} * \mathbb{Z}_{k} \rightarrow \mathbb{Z}_{m} \oplus \mathbb{Z}_{k}$. As we know (see [?]), kernel of this morphism is a free group F of rank $(m-1)(k-1)$ with generators $a^{i} b^{j} a^{-i} b^{-j}, i=1, \ldots, m-1, j=1, \ldots, k-1$. Thus, we have the following commutative diagram:

H_{1} is a subgroup of G generated by $x^{k}, y^{m}, t, x^{i} y^{j} x^{-i} y^{-j}, i=1, \ldots, m-1, j=1, \ldots, k-1$. Since F is a free group, upper sequence is split. And hence, H_{1} is a semidirect product. Since x^{k}, y^{m} are central, we obtain that $x^{i} y^{j} x^{-i} y^{-j} \cdot x^{k}=x^{k} \cdot x^{i} y^{j} x^{-i} y^{-j}$ and $x^{i} y^{j} x^{-i} y^{-j} \cdot y^{m}=y^{m} \cdot x^{i} y^{j} x^{-i} y^{-j}$, i.e. action of F on $\mathbb{Z}_{[k, m]} \oplus \mathbb{Z}_{m} \oplus \mathbb{Z}_{k}$ is trivial. Thus, H_{1} is a direct product $F \times \mathbb{Z}_{[k, m]} \oplus \mathbb{Z}_{m} \oplus \mathbb{Z}_{k}$.

Further, consider n-dimensional representation ρ of \widehat{G} corresponding to orthogonal pair. In this case, we have $\rho(t)=\epsilon^{(k, m)} \cdot 1, \operatorname{Tr} \rho\left(x^{i}\right)=0, i=1, \ldots, m-1, \operatorname{Tr} \rho\left(y^{j}\right)=0, j=0, \ldots, m-1$ and $\operatorname{Tr} \rho\left(x^{i} y^{j}\right)=0$ for $i, j=1, \ldots, m-1$. Let us restrict ρ to subgroup $\mathbb{Z}_{m} \oplus \mathbb{Z}_{k}$ generated by x^{k} and y^{m}. Using vanishing of the traces, we get that this restriction is a regular representation of $\mathbb{Z}_{m} \oplus \mathbb{Z}_{k}$ and $\rho\left(F\left(\mathbb{Z}_{m} \oplus \mathbb{Z}_{k}\right)\right)$ is a n-dimensional commutative diagonalizable subalgebra, i.e. there is a basis in which matrices from $\rho\left(F\left(\mathbb{Z}_{m} \oplus \mathbb{Z}_{k}\right)\right)$ are diagonal. As we know elements $x^{i} y^{j} x^{-i} y^{-j}, i=1, \ldots, m-1, j=1, \ldots, k-1$ commute with x^{k} and y^{m}, then one can show that $\rho\left(x^{i} y^{j} x^{-i} y^{-j}\right)$ are commuting matrices. Let us consider the quotient of \widehat{G} by commutativity relation of $x^{i} y^{j} x^{-i} y^{-j}, i=1, \ldots, m-1, j=1, \ldots, k-1$. Denote this quotient by G. We have the following exact sequence for G :

$$
\begin{equation*}
0 \longrightarrow H=\mathbb{Z}^{\oplus(k-1)(m-1)} \oplus \mathbb{Z}_{[k, m]} \oplus \mathbb{Z}_{m} \oplus \mathbb{Z}_{k} \longrightarrow G \longrightarrow G_{2}=\mathbb{Z}_{m} \oplus \mathbb{Z}_{k} \longrightarrow 0 \tag{20}
\end{equation*}
$$

One can construct representations of group G as follows: fix one-dimensional representation (or character) χ of H with condition $\chi: t \mapsto \epsilon^{(k, m)}$. By proposition 5 , we get that $F[G]$ - module $F[G] \otimes_{F[H]} \chi$ defines weak standard orthogonal pair. Variety of characters of H is $\operatorname{Hom}\left(H, F^{*}\right)=\left(F^{*}\right)^{(k-1)(m-1)} \oplus \operatorname{Hom}\left(\mathbb{Z}_{k}, F^{*}\right) \oplus \operatorname{Hom}\left(\mathbb{Z}_{m}, F^{*}\right)$. There is an action of $G_{2}=\mathbb{Z}_{m} \oplus \mathbb{Z}_{k}$ on H (and hence on $\operatorname{Hom}\left(H, F^{*}\right)$). It is clear that orthogonal pairs are equivalent iff corresponding characters of H are in the same orbit of G_{2} - orbit. It can be shown in usual way that

Proposition 6. (k, m) - Weak standard orthogonal pairs in sl(n) are parameterized by algebraic torus $T(k, m)=$ $\left(F^{*}\right)^{(k-1)(m-1)}$.

Further, consider (m, k) - weak standard orthogonal pairs. The same arguments show us that (m, k) - weak standard orthogonal pairs are parameterized by torus $T(m, k)=\left(F^{*}\right)^{(k-1)(m-1)}$.

Proposition 7. If $(k, m)=1$, then intersection of two tori $T(k, m) \cap T(m, k)$ in $X(n, n)$ is a standard pair.
Proof. Consider the relations: $X^{k} Y=\epsilon^{k} Y X^{k}, X^{m} Y=\epsilon^{m} Y X^{m}$. Because of $(k, m)=1$, there are $a, b \in \mathbb{Z}$ such that $a k+b m=1$. Thus, $X Y=X^{a k+b m} Y=\epsilon^{a k+b m} Y X^{a k+b m}=\epsilon Y X$.

Let us consider the case $n=6=2 \cdot 3$. In this case relation (15) has the following view:

$$
\begin{equation*}
X^{2} Y=\epsilon^{2} Y X^{2}, X Y^{3}=-Y^{3} X \tag{21}
\end{equation*}
$$

where ϵ is a primitive root of unity of degree 6 . As we know, X and Y are parameterized by two-dimensional algebraic torus $T(2,3)$. Find generalized hadamard matrices parameterized by this torus. One can show in usual way that these matrices $A(a, b), a, b \in F^{*}$ (up to permutation of columns and rows) have the following type:

$$
A(a, b)=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \tag{22}\\
1 & a \epsilon & b \epsilon^{2} & -1 & a \epsilon^{4} & b \epsilon^{5} \\
1 & \epsilon^{2} & \epsilon^{4} & 1 & \epsilon^{2} & \epsilon^{4} \\
1 & -a & b & -1 & a & -b \\
1 & \epsilon^{4} & \epsilon^{2} & 1 & \epsilon^{4} & \epsilon^{2} \\
1 & a \epsilon^{5} & b \epsilon^{4} & -1 & a \epsilon^{2} & b \epsilon
\end{array}\right)
$$

where $a, b \in F^{*}$. It is easy that generalized Hadamard matrices corresponding to $T(3,2)$ are $A^{t}(a, b)$ (up to permutation of columns and rows).

Remark. This example will play important role in the proof of main result of this paper.

$3 n$-dimensional representations of $B_{\mathbf{r}}\left(\Gamma_{k, n}\right)$ and fibred products.

Let us introduce the notions of variety of representations and moduli variety of algebra A. Variety of representations of A is affine variety $\operatorname{Hom}_{a l g}\left(A, \mathrm{M}_{n}(F)\right)$. We will denote this variety by $\operatorname{Rep}_{n}(A)$. It is easy that there is a well-defined action of group $\mathrm{GL}_{n}(F)$ on $\operatorname{Rep}_{n}(A)$. It is well-known that there is algebraic quotient $\boldsymbol{R e p}_{n}(A) / \mathrm{GL}_{n}(F)$. This quotient is called moduli variety of A. We will denote moduli variety by $\mathcal{M}_{n}(A)$.

In this section we consider n-dimensional representations of reduced Temperley-Lieb algebra $B_{\mathbf{r}}\left(\Gamma_{k, n}\right)$ for complete bipartite graph $\Gamma_{k, n}$. Firstly, we will introduce an algebra $\operatorname{Pr}(\Gamma)$. This algebra is a natural generalization of $B_{\mathbf{r}}(\Gamma)$. Further, we will prove that these representations are representations of the natural quotient $B_{k, n}$. For this purpose, we will introduce algebra $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$. We will prove that $B_{k, n}$ is a free product of $B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ and $B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ over $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$. Using these arguments, we deduce that variety $\boldsymbol{\operatorname { R e p }}_{n} B_{k, n}$ is a fibred product of $\boldsymbol{\operatorname { R e p }}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ and $\boldsymbol{\operatorname { R e p }}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ over $\boldsymbol{\operatorname { R e p }}{ }_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]$.

After that we will study some basic relation between $\mathcal{M}_{n} B_{k, n}$ and fibred product of $\mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ and $\mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ over $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]$.

3.1 Algebras $\operatorname{Pr}(\Gamma), B_{\mathbf{r}}(\Gamma)$ and its relations to path algebras.

In this subsection we will introduce the algebra $\operatorname{Pr}(\Gamma)$ and will study its connection with $B_{\mathbf{r}}(\Gamma)$. Algebra $\operatorname{Pr}(\Gamma)$ is algebra over $\mathbb{K}\left[r_{i j}\right]$ with unit and generators x_{v} labeled by vertices of Γ with relations:

- $x_{v}^{2}=x_{v}$ for every $v \in V(\Gamma)$
- $x_{v} x_{w}=x_{w} x_{v}=0$ for non-adjacent vertices v, w.

It is clear that algebra $B_{\mathbf{r}}(\Gamma)$ is a quotient of $\operatorname{Pr}(\Gamma)$ for fixed $r_{i j} \in F^{*}$. Moreover, the algebras $\operatorname{Pr}(\Gamma)$ and $B_{\mathbf{r}}(\Gamma)$ are algebras with augmentation. Denote by $\operatorname{Pr}^{+}(\Gamma)$ and $B_{\mathbf{r}}^{+}(\Gamma)$ the respective ideals of augmentation.

Let us construct the double quiver \mathbf{Q}_{Γ}. The set of vertices of \mathbf{Q}_{Γ} is the set $V(\Gamma)$. For any adjacent vertices i, j in the graph Γ, we will connect these vertices by opposite arrows $a_{i j}$ and $a_{j i}$. For any path $\gamma \in \mathbf{Q}_{\Gamma}$, we will consider the element $x_{\gamma} \in \operatorname{Pr}(\Gamma)$ of form: $x_{i_{1}} \ldots x_{i_{k}}$, where i_{1}, \ldots, i_{k} are consecutive vertices of path γ.

Let us formulate (cf. [1]) proposition:
Proposition 8. Algebra $\operatorname{Pr}(\Gamma)$ has F-basis of form $1, x_{\gamma}$ where γ runs over all pathes in \mathbf{Q}_{Γ}. Similarly, algebra $B_{\mathbf{r}}(\Gamma)$ has F-basis of form $1, x_{\gamma}$ where γ runs over homotopic classes of pathes in the graph Γ.

Recall the construction of homotop \widehat{A}_{x} of the algebra A by means of the element $x \in A$. Let x be the fixed element of algebra A. We will consider non-unital algebra A_{x} with multiplication $*_{x}$ defined by formula:

$$
a_{1} *_{x} a_{2}=a_{1} x a_{2}
$$

Formally adding the unit, we get the algebra \widehat{A}_{x}. We studied the properties of homotops in the article [1].
Consider the path algebras $F \mathbf{Q}_{\Gamma}$ and $F \Gamma$ of quiver \mathbf{Q}_{Γ} and graph Γ respectively. It is clear that algebra $F \Gamma$ is a quotient of $F \mathbf{Q}_{\Gamma}$ by ideal generated by elements $a_{i j} a_{j i}-e_{i}$ for any arrows $a_{i j}, a_{j i}$ and vertices i.

For $s_{i j} \in F^{*}$ such that $s_{i j}^{2}=r_{i j}$, consider the elements

$$
\Delta\left(\mathbf{Q}_{\Gamma}\right)=1+\sum s_{i j} a_{i j}, \quad \Delta(\Gamma)=1+\sum s_{i j} l_{i j}
$$

sum is taken over all arrows $a_{i j}$ of the quiver \mathbf{Q}_{Γ} and all edges $l_{i j}$ of the graph Γ. It is easy that algebras $B_{\mathbf{r}}(\Gamma)$ and $\operatorname{Pr}(\Gamma)$ are homotops of path algebras $F \Gamma$ and $F \mathbf{Q}_{\Gamma}$ by means of the elements $\Delta(\Gamma) \in F \Gamma$ and $\Delta\left(\mathbf{Q}_{\Gamma}\right) \in F \mathbf{Q}_{\Gamma}$ respectively. Evidently, we have the following commutative diagram:

for $i=1,2$.
Also, note the following property of the algebras $B_{\mathbf{r}}(\Gamma)$ and $\operatorname{Pr}(\Gamma)$ (cf. [1]):
Proposition 9. Homological dimension of categories $\mathrm{B}_{\mathbf{r}}(\Gamma)-\bmod$ and $\operatorname{Pr}(\Gamma)-\bmod$ is less or equal 2.

3.2 Connection between representation of $\operatorname{Pr}(\Gamma)$ and $B_{\mathbf{r}}(\Gamma)$.

In this subsection we will consider representations of quiver \mathbf{Q}_{Γ} and its relation to representation of $\operatorname{Pr}(\Gamma)$. As we know, representation of quiver Q with set of vertices Q_{0} and set of arrows Q_{1} has the following description. Denote by $F Q_{0}$ the subalgebra of $F Q$ generated by all elements $e_{v}, v \in Q_{0}$. Denote by $\boldsymbol{\operatorname { R e p }}_{n} Q$ and $\operatorname{Rep}_{n} Q_{0}$ varieties of n-dimensional representation of $F Q$ and $F Q_{0}$ respectively. Algebra $F Q_{0}$ is isomorphic to direct sum: $\oplus_{v \in Q_{0}} F$. We have the surjective morphism of varieties:

$$
\begin{equation*}
f: \boldsymbol{\operatorname { R e p }}_{n} Q \rightarrow \boldsymbol{\operatorname { R e p }}_{n} Q_{0} \tag{24}
\end{equation*}
$$

Recall that variety $\operatorname{Rep}_{n} Q_{0}$ is the union of irreducible components. These components are parameterized by vectors $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{\left|Q_{0}\right|}\right), \alpha_{i} \in \mathbb{N}_{0}, \sum_{i=1}^{\left|Q_{0}\right|} \alpha_{i}=n$. These vectors are called dimension vectors. We will denote by $\boldsymbol{\operatorname { R e p }}_{n} Q_{0}[\vec{\alpha}]$ the component corresponding to dimension vector $\vec{\alpha}$. Denote by $\boldsymbol{\operatorname { R e p }}_{n} Q[\vec{\alpha}]$ the subvariety $f^{-1}\left(\operatorname{Rep}_{n} Q_{0}[\vec{\alpha}]\right)$ of $\boldsymbol{\operatorname { R e p }}_{n} Q$. Thus, we have the following decomposition:

$$
\begin{equation*}
\operatorname{Rep}_{n} Q=\bigcup_{\vec{\alpha}} \operatorname{Rep}_{n} Q[\vec{\alpha}] \tag{25}
\end{equation*}
$$

Variety $\boldsymbol{\operatorname { R e p }}_{n} Q[\vec{\alpha}]$ has the following description. Fix the representation $\varrho \in \boldsymbol{\operatorname { R e p }}_{n} Q[\vec{\alpha}]$. Consider the space V of the representation ϱ. Space V is the direct sum $\oplus_{v \in Q_{0}} V_{v}$ of subspaces $V_{v}, v \in Q_{0}$. Elements $\varrho\left(e_{v}\right), v \in Q_{0}$ are orthogonal projectors: $\varrho\left(e_{v}\right): V \rightarrow V_{v}$. Linear operators $\varrho\left(a_{i j}\right)$ transform subspace V_{j} into V_{i}. Denote by $\mathbf{G r}(\vec{\alpha}, V)$ the product $\prod_{v \in Q_{0}} \mathbf{G r}\left(\alpha_{v}, V\right)$. Then variety $\boldsymbol{\operatorname { R e p }}_{n} Q_{0}[\vec{\alpha}]$ is a dense open subvariety of $\mathbf{G r}(\vec{\alpha}, V)$. The fiber of f is the product $\prod_{a_{i j} \in Q_{1}}^{Q_{0}} \operatorname{Hom}\left(V_{j}, V_{i}\right)$.

Consider representation ρ of the algebra $\operatorname{Pr}(\Gamma)$. Denote by $\operatorname{Rep}_{n} \operatorname{Pr}(\Gamma)[\vec{\alpha}]$ the variety of n-dimensional $\operatorname{Pr}(\Gamma)$-representations satisfying to condition: $\operatorname{rank} \rho\left(x_{v}\right)=\alpha_{v}, v \in V(\Gamma)$. Let $|\vec{\alpha}|=\sum_{i=1}^{|V(\Gamma)|} \alpha_{i}$. Using morphism $\phi_{i}, i=1,2$, we have the morphisms of varieties:

$$
\begin{equation*}
\phi_{i}^{*}: \boldsymbol{\operatorname { R e p }}_{|\vec{\alpha}|} \mathbf{Q}_{\Gamma}[\vec{\alpha}] \rightarrow \boldsymbol{\operatorname { R e p }}_{|\vec{\alpha}|} \operatorname{Pr}(\Gamma)[\vec{\alpha}], i=1,2 \tag{26}
\end{equation*}
$$

Similar statements for algebras $F \Gamma$ and $B_{\mathbf{r}}(\Gamma)$ are true.

We will say that representation ρ of $B_{\mathbf{r}}(\Gamma)$ is representation of rank α if $\operatorname{rank}\left(x_{v}\right)=\alpha$ for some vertex v. Note that, it follows from relations of $B_{\mathbf{r}}(\Gamma)$ that ranks of all x_{v} coincide. Denote by $\operatorname{Rep}_{n} B_{\mathbf{r}}(\Gamma)[\alpha]$ the variety of n-dimensional $B_{\mathbf{r}}(\Gamma)$-representation of rank α.

Note some properties of morphisms: $\boldsymbol{\operatorname { R e p }}_{n} \Gamma \rightarrow \boldsymbol{\operatorname { R e p }}_{n} \mathbf{Q}_{\Gamma}[\vec{\alpha}]$ and $\boldsymbol{\operatorname { R e p }}_{n} B_{\mathbf{r}}(\Gamma)[\alpha] \rightarrow \boldsymbol{\operatorname { R e p }}_{n} \boldsymbol{\operatorname { P r }}(\Gamma)[\vec{\alpha}]$. Using relations of algebras $F \Gamma$ and $B_{\mathbf{r}}(\Gamma)$, we get that images of $\operatorname{Rep}_{n} \Gamma$ and $\operatorname{Rep}_{n} B_{\mathbf{r}}(\Gamma)$ are in the components of the $\operatorname{Rep}_{n} \mathbf{Q}_{\Gamma}[\vec{\alpha}]$ and $\operatorname{Rep}_{n} \operatorname{Pr}(\Gamma)[\vec{\alpha}]$ with condition: $\alpha_{i}=\alpha_{j}=\alpha$ for all $i, j \in V(\Gamma)$ respectively.

Thus, square (23) implies the commutative diagram of varieties:

Further, define map from moduli varieties of algebras $\operatorname{Pr}(\Gamma)$ to affine space of dimension $|E(\Gamma)|$.

$$
\begin{equation*}
\operatorname{tr}_{\Gamma}: \boldsymbol{\operatorname { R e p }}_{n} \mathbf{P r}(\Gamma)[1, \ldots ., 1] \rightarrow F^{E(\Gamma)} \tag{28}
\end{equation*}
$$

by formula:

$$
\begin{equation*}
\operatorname{tr}_{\Gamma}: \rho \mapsto\left(\operatorname{Tr} \rho\left(x_{i} x_{j}\right)\right),(i j) \in E(\Gamma) \tag{29}
\end{equation*}
$$

where $i j$ runs over all non-oriented edges of graph Γ. Fix $r_{i j} \in F^{*}$ for any edge $i j$. Then $\boldsymbol{\operatorname { R e p }}_{n} B_{\mathbf{r}}(\Gamma)[1]=$ $\operatorname{tr}_{\Gamma}^{-1}\left(\left\{r_{i j}\right\}_{i j \in E(\Gamma)}\right)$. It is clear tr is $\mathrm{GL}_{\mathrm{n}}(\mathrm{F})$-equivariant map. Thus, we have the reduction:

$$
\begin{equation*}
\operatorname{Tr}_{\Gamma}: \mathcal{M}_{n} \operatorname{Pr}(\Gamma)[1, \ldots, 1]:=\operatorname{Rep}_{n} \operatorname{Pr}(\Gamma)[1, \ldots, 1] / \mathrm{GL}_{\mathrm{n}}(\mathrm{~F}) \rightarrow F^{E(\Gamma)} \tag{30}
\end{equation*}
$$

and also, $\mathcal{M}_{n} B_{\mathbf{r}}(\Gamma)[1]:=\operatorname{Rep}_{n} B_{\mathbf{r}}(\Gamma)[1] / / \mathrm{GL}_{\mathrm{n}}(\mathrm{F})=\operatorname{Tr}_{\Gamma}^{-1}\left(\left\{r_{i j}\right\}_{i j \in E(\Gamma)}\right)$.
Consider complete bipartite graph $\Gamma_{k, m}$ with two rows of vertices. There are k vertices and m vertices in upper and lower rows respectively. Denote by p_{1}, \ldots, p_{k} and q_{1}, \ldots, q_{m} the generators of $\operatorname{Pr}\left(\Gamma_{k, m}\right)$ corresponding to vertices of upper and lower rows respectively. Consider subalgebras $A_{<p_{1}, \ldots, p_{k}>}$ and $A_{<q_{1}, \ldots, q_{m}>}$ generated by projectors p_{1}, \ldots, p_{k} and q_{1}, \ldots, q_{m} respectively. It is clear that these subalgebras are $F^{\oplus k}$ and $F^{\oplus m}$ respectively. One can show that $\operatorname{Pr}\left(\Gamma_{k, n}\right)$ is a free product of $F^{\oplus k}$ and $F^{\oplus m}$. Let us recall some facts about varieties of representations.

Lemma 10. (cf. [?]) Let A_{1}, A_{2}, B be a finite-generated algebras. Then we have the following commutative diagram:

Moreover, there is an isomorphism of representation spaces:

$$
\begin{equation*}
\boldsymbol{\operatorname { R e p }}_{n}\left(A_{1} *_{B} A_{2}\right) \cong \boldsymbol{\operatorname { R e p }}_{n}\left(A_{1}\right) \times_{\boldsymbol{\operatorname { R e p }}_{n}(B)} \boldsymbol{\operatorname { R e p }}_{n}\left(A_{2}\right) \tag{32}
\end{equation*}
$$

Corollary 11. Consider dimension vector $\vec{\alpha}=\left(\alpha_{1}=\operatorname{rank} p_{1}, \ldots, \alpha_{k}=\operatorname{rank} p_{k}, \alpha_{k+1}=\operatorname{rank} q_{1}, \ldots, \alpha_{k+m}=\right.$ $\left.\operatorname{rank} q_{m}\right)$. Denote by $\vec{\alpha}_{k}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ and $\vec{\alpha}_{m}=\left(\alpha_{k+1}, \ldots, \alpha_{k+m}\right)$. Assume that $n \geq \sum_{i=1}^{k} \alpha_{i}$ and $n \geq$ $\sum_{i=1}^{m} \alpha_{k+i}$. In this case, we have the following isomorphism of varieties:

$$
\begin{equation*}
\boldsymbol{\operatorname { R e p }}_{n} \boldsymbol{\operatorname { P r }}\left(\Gamma_{k, m}\right)[\vec{\alpha}]=\boldsymbol{\operatorname { R e p }}_{n} F^{\oplus k}\left[\vec{\alpha}_{k}\right] \times \boldsymbol{\operatorname { R e p }}_{n} F^{\oplus m}\left[\vec{\alpha}_{m}\right] \tag{33}
\end{equation*}
$$

Denote by $\mathrm{GL}_{\vec{\alpha}_{k}}(F)$ and $\mathrm{GL}_{\vec{\alpha}_{m}}(F)$ the groups $\mathrm{GL}_{\alpha_{1}}(F) \times \ldots \times \mathrm{GL}_{\alpha_{k}}(F) \times \mathrm{GL}_{n-\sum_{i=1}^{k} \alpha_{i}}(F)$ and $\mathrm{GL}_{\alpha_{k+1}}(F) \times \ldots \times \mathrm{GL}_{\alpha_{k+m}}(F) \times \mathrm{GL}_{n-\sum_{i=1}^{m} \alpha_{k+i}}(F)$ respectively. Then

$$
\begin{equation*}
\operatorname{Rep}_{n} F^{\oplus k}\left[\vec{\alpha}_{k}\right]=\mathrm{GL}_{n}(F) / \mathrm{GL}_{\vec{\alpha}_{k}}(F), \operatorname{Rep}_{n} F^{\oplus m}\left[\vec{\alpha}_{m}\right]=\mathrm{GL}_{n}(F) / \mathrm{GL}_{\vec{\alpha}_{m}}(F) \tag{34}
\end{equation*}
$$

We get that $\operatorname{Rep}_{n} \operatorname{Pr}\left(\Gamma_{k, m}\right)$ is irreducible and we have the following isomorphism of varieties:

$$
\begin{equation*}
\operatorname{Rep}_{n} \operatorname{Pr}\left(\Gamma_{k, m}\right)[\vec{\alpha}]=\mathrm{GL}_{n}(F) / \mathrm{GL}_{\vec{\alpha}_{k}}(F) \times \mathrm{GL}_{n}(F) / \mathrm{GL}_{\vec{\alpha}_{m}}(F) . \tag{35}
\end{equation*}
$$

In particular, we have the formula for dimension of $\operatorname{Rep}_{n} \operatorname{Pr}\left(\Gamma_{k, m}\right)[\vec{\alpha}]$:

$$
\begin{equation*}
\operatorname{dim}_{F} \operatorname{Rep}_{n} \operatorname{Pr}\left(\Gamma_{k, m}\right)[\vec{\alpha}]=2 n^{2}-\sum_{i=1}^{k+m} \alpha_{i}^{2}-\left(n-\sum_{i=1}^{k} \alpha_{i}\right)^{2}-\left(n-\sum_{i=1}^{m} \alpha_{k+i}^{2}\right) . \tag{36}
\end{equation*}
$$

3.3 Algebras $B_{k, n}$ as free products.

Denote by p_{1}, \ldots, p_{n} and $q_{1}, \ldots, q_{k}, k \leq n$ the generators of the algebra $B_{\mathbf{r}}\left(\Gamma_{k, n}\right)$ corresponding to vertices of lower and upper rows respectively. Let Q be an element $\sum_{i=1}^{k} q_{i}$.

We can formulate the following statement for algebra $B_{\mathbf{r}}\left(\Gamma_{k, n}\right)$:
Proposition 12. Any $B_{\mathbf{r}}\left(\Gamma_{k, n}\right)$-representation of rank s has dimension more or equal sn. Assume that there exist sn-dimensional $B_{\mathbf{r}}\left(\Gamma_{k, n}\right)$ - representations of rank s. Let I be an ideal of $B_{\mathbf{r}}\left(\Gamma_{k, n}\right)$ generated by element $\sum_{i=1}^{n} p_{i}-1$. Denote by $B_{k, n}$ the quotient $B_{\mathbf{r}}\left(\Gamma_{k, n}\right) / I$. Then

$$
\begin{equation*}
\sum_{j=1}^{n} r_{i j}=1 \tag{37}
\end{equation*}
$$

for any $i=1, \ldots, k$, and we have the isomorphism of varieties:

$$
\begin{equation*}
\boldsymbol{\operatorname { R e p }}_{s n} B_{k, n}[s] \cong \boldsymbol{\operatorname { R e p }}_{s n} B_{\mathbf{r}}\left(\Gamma_{k, n}\right)[s] . \tag{38}
\end{equation*}
$$

Proof. Straightforward.
It is well-known that any n-dimensional $B_{\mathbf{r}}\left(\Gamma_{k, n}\right)$-representation ρ of rank 1 is an irreducible. Actually, it is easy to check that elements $\rho\left(p_{i}\right), i=1, \ldots, n, \rho\left(p_{i} q_{1} p_{j}\right), i \neq j$ form the basis of matrix algebra. It was proved by Ivanov D.N. ([?]).

Of course, we have the analogous statement for algebra $B_{\mathbf{r}}\left(\Gamma_{n, n}\right)$.
Corollary 13. Any $B_{\mathbf{r}}\left(\Gamma_{n, n}\right)$-representation of rank s has dimension more or equal sn. Assume that there exist sn-dimensional $B_{\mathbf{r}}\left(\Gamma_{n, n}\right)$-representations of rank s. Let J be an ideal of $B_{\mathbf{r}}\left(\Gamma_{n, n}\right)$ generated by elements $\sum_{i=1}^{n} p_{i}-1$ and $\sum_{i=1}^{n} q_{i}-1$. Denote by $B_{n, n}$ the quotient $B_{\mathbf{r}}\left(\Gamma_{k, n}\right) / J$. Then

$$
\begin{equation*}
\sum_{j=1}^{n} r_{i j}=\sum_{i=1}^{n} r_{i j}=1 \tag{39}
\end{equation*}
$$

for any $i, j=1, \ldots, n$, and we have the isomorphism of varieties:

$$
\begin{equation*}
\operatorname{Rep}_{s n} B_{n, n}[s] \cong \operatorname{Rep}_{s n} B_{\mathbf{r}}\left(\Gamma_{n, n}\right)[s] \tag{40}
\end{equation*}
$$

Consider the case of non-trivial n-dimensional representations of $B_{k, n}$ and $B_{n, n}$. It can be shown in usual way that these representations has rank 1 .

Fix a partition of n vertices of lower row into two complement subsets with m vertices and $n-m$ vertices respectively. With respect to this partition, we get the partition of generators p_{1}, \ldots, p_{n} into two non-intersected subsets $p_{i_{1}}, \ldots, p_{i_{m}}$ and $p_{i_{m+1}}, \ldots, p_{i_{n}}$.

We have a natural morphisms: $\phi: B_{\mathbf{r}}\left(\Gamma_{k, m}\right) \rightarrow B_{\mathbf{r}}\left(\Gamma_{k, n}\right) \rightarrow B_{k, n}=B_{\mathbf{r}}\left(\Gamma_{k, n}\right) / I_{P}$ and $\phi^{\prime}: B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right) \rightarrow$ $B_{\mathbf{r}}\left(\Gamma_{k, n}\right) \rightarrow B_{k, n}$ defined by composition of embeddings of graphs and natural projection. Let $r_{j}, j=1, \ldots, k$ be the sum $\sum_{k=1}^{m} r_{i_{k} j}$. Consider the subalgebra $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right):=A_{\left\langle P ; q_{1}, \ldots, q_{k}\right\rangle}$ of algebra $B_{\mathbf{r}}\left(\Gamma_{k, s}\right)$ generated by elements $P=\sum_{j=1}^{m} p_{i_{j}}$ and $q_{i}, i=1, \ldots, k$.

Lemma 14. Algebra $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ has a defining relations: $P^{2}=P, q_{i}^{2}=q_{i}, q_{i} P q_{i}=r_{i} q_{i}, i=1, \ldots, k$.
Proof. As we know (cf. [1]) algebra $B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ has a basis $p_{i_{1}} q_{j_{1}} \ldots p_{i_{s}} q_{j_{s}}$ with $i_{k} \neq i_{k+1}$ and $j_{k} \neq j_{k+1}$ and elements that can be obtained from these products by removing the first and the last factor. Let us show that the elements of the form

$$
\begin{equation*}
1 ; q_{i_{1}} P q_{i_{2}} P \ldots q_{i_{s}} ; \quad P q_{i_{2}} P \ldots q_{i_{s}} ; \quad q_{i_{1}} P q_{i_{2}} P \ldots P ; P q_{i_{2}} P \ldots q_{i_{s}} P \tag{41}
\end{equation*}
$$

with $i_{k} \neq i_{k+1}$ for all $k \leq s-1$ in all these expressions form a basis of the algebra $A=\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$.
Introduce the filtration on A by defining $F_{i} A$ to be the subspace spanned by all elements in the list (41) with the number of factors q_{i} 's and P in the products to be less than or equal to i. Also, we have a filtration $F_{i} B\left(\Gamma_{k, s}\right)$ on $B\left(\Gamma_{k, s}\right)$. The basis in $F_{i} B\left(\Gamma_{k, s}\right)$ is compatible with filtration, hence it gives a basis in $F_{i} B\left(\Gamma_{k, s}\right) / F_{i-1} B\left(\Gamma_{k, s}\right)$ (consisting of products of projectors of length i). Clearly, $F_{i} A \subset F_{i} B\left(\Gamma_{k, m}\right)$, hence we have a map:

$$
\varphi: F_{i} A / F_{i-1} A \rightarrow F_{i} B\left(\Gamma_{k, m}\right) / F_{i-1} B\left(\Gamma_{k, m}\right)
$$

The quotient $F_{i} A / F_{i-1} A$ is generated by expressions in (41) of length precisely i. One can easily see that these elements are mapped into linearly independent elements in $F_{i} B\left(\Gamma_{k, m}\right) / F_{i-1} B\left(\Gamma_{k, m}\right)$, because the image under φ of any two different such elements is a linear combinations of disjoint subsets of elements in the basis for $F_{i} B\left(\Gamma_{k, m}\right) / F_{i-1} B\left(\Gamma_{k, m}\right)$. By induction on i (starting from $F_{0} A$), we get that elements (41) are linearly independent, hence they form a basis in A. Note that the same argument also proves the strict compatibility with filtration:

$$
F_{i} A=A \cap F_{i} B\left(\Gamma_{k, m}\right)
$$

Thus, we get the required statement.
Denote by i the monomorphism: $i_{m}: \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \rightarrow B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$. Let r_{i}^{\prime} be $1-r_{i}$. Consider subalgebra $A_{\left\langle P^{\prime}, q_{1}, \ldots, q_{n}\right\rangle}\left(r_{i}^{\prime}\right)$ of $B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ generated by $P^{\prime}=\sum_{i=m+1}^{n} p_{i}$ and q_{i}. Analogous to lemma 14, this subalgebra isomorphic to $\widetilde{\mathcal{A}}_{k}\left(r_{i}^{\prime}\right)$. Further, there exists isomorphism: $\tau: \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \cong \widetilde{\mathcal{A}}_{k}\left(r_{i}^{\prime}\right)$ defined by correspondence: $P \mapsto 1-P^{\prime}, q_{i} \mapsto q_{i}$. Hence, we have the monomorphism: $i^{\prime}: \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \rightarrow B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ defined by formula:

$$
P \mapsto 1-P^{\prime} \mapsto 1-\sum_{i=m+1}^{n} p_{i}, \quad q_{i} \mapsto q_{i}
$$

One can check that the following diagram:

is commutative.
Proposition 15. Consider the partition of set p_{1}, \ldots, p_{n} into two complement subsets $p_{i_{1}}, \ldots, p_{i_{m}}$ and $p_{i_{m+1}}, \ldots, p_{i_{n}}$ and algebras $B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ and $B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$. Algebra $B_{k, n}$ is a free product of $B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ and $B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ over $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$.
Proof. We have a morphism: $B_{\mathbf{r}}\left(\Gamma_{k, s}\right) *_{\mathcal{A}_{k}\left(r_{i}\right)} B_{\mathbf{r}}\left(\Gamma_{k, n-s}\right) \rightarrow B_{k, n}$. This morphism is surjective, because images of $B_{\mathbf{r}}\left(\Gamma_{k, s}\right)$ and $B_{\mathbf{r}}\left(\Gamma_{k, n-s}\right)$ generate $B_{k, n}$. By definition of morphisms ϕ and ϕ^{\prime}, we get that $p_{i}=\phi\left(p_{i}\right), i=$ $1, \ldots, s ; p_{i+s}=\phi^{\prime}\left(p_{i}\right), i=s+1, \ldots, n ; q_{j}=\phi\left(q_{j}\right)=\phi^{\prime}\left(q_{j}\right)$.

Obviously, $p_{i}^{2}=p_{i}, q_{j}^{2}=q_{j}, p_{i} q_{j} p_{i}=r_{i j} p_{i}, q_{j} p_{i} q_{j}=r_{i j} q_{j}, q_{i} q_{j}=0$ for $i \neq j, p_{i} p_{j}=0$ for $i, j \in\{1, \ldots, s\}$ and for $i, j \in\{s+1, \ldots, n\}$ are relations in free product $B_{\mathbf{r}}\left(\Gamma_{k, s}\right) *_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)} B_{\mathbf{r}}\left(\Gamma_{k, n-s}\right)$.

Let us prove that $p_{i} p_{j}=0$ for all $i \neq j$. Let $i \in\{1, \ldots, s\}$ and $j \in\{s+1, \ldots, n\}$. Evidently, $p_{i}=p_{i} P=$ $p_{i} \sum_{m=1}^{s} p_{m}=p_{i}$ and $p_{j}=(1-P) p_{j}=\sum_{m=s+1}^{n} p_{m} p_{j}=p_{j}$. Hence, $p_{i} p_{j}=p_{i} P(1-P) p_{j}=0$. Analogously, $p_{j} p_{i}=0$. Hence, relations of algebra $B_{k, n}$ are satisfied. Using surjectivity of morphism, we obtain the required statement.

Denote by $\mathcal{A}_{n}\left(r_{i}\right)$ the unital algebra with generators $P ; q_{1}, \ldots, q_{n}$ and relations $P^{2}=P, q_{i}^{2}=q_{i}, q_{i} P q_{i}=$ $r_{i} q_{i}, \sum_{i=1}^{n} q_{i}=1$. Denote by I_{m} and I_{n-m} the ideals generated by element $\sum_{i=1}^{n} q_{i}-1$ in algebras $B_{\mathbf{r}}\left(\Gamma_{n, m}\right)$ and $B_{\mathbf{r}}\left(\Gamma_{n, n-m}\right)$ respectively. Analogous to $\widetilde{\mathcal{A}}_{k}$, we have monomorphism: $i: \mathcal{A}_{n}\left(r_{i}\right) \rightarrow B_{\mathbf{r}}\left(\Gamma_{n, m}\right) / I_{m}=B_{n, m}$, isomorphism $\tau: \mathcal{A}_{n}\left(r_{i}\right) \cong \mathcal{A}_{n}\left(r_{i}^{\prime}\right), r_{i}^{\prime}=1-r_{i}$ and, hence, monomorphism $i^{\prime}: \mathcal{A}_{n}\left(r_{i}\right) \rightarrow B_{\mathbf{r}}\left(\Gamma_{n, n-m}\right) / I_{n-m}=$ $B_{n, n-m}$. Clearly, we have the following commutative diagram:

We get the following statement for algebra $B_{n, n}$:
Corollary 16. Consider the algebra $B_{n, n}$. Fix a partition of the set p_{1}, \ldots, p_{n} into two complement subsets $p_{i_{1}}, \ldots, p_{i_{m}}$ and $p_{i_{m+1}}, \ldots, p_{i_{n}}$. Then algebra $B_{n, n}$ is a free product of algebras $B_{n, m}=B_{\mathbf{r}}\left(\Gamma_{n, m}\right) / I_{m}$ and $B_{n, n-m}=B_{\mathbf{r}}\left(\Gamma_{n, n-m}\right) / I_{n-m}$ over algebra $\mathcal{A}_{n}\left(r_{i}\right)$.
Proof. Analogous to proof of proposition 15.

3.4 Fibred products.

It is clear that morphisms i and i^{\prime} define morphisms $i^{*}: \boldsymbol{\operatorname { R e p }}_{n} B_{\mathbf{r}}\left(\Gamma_{n, m}\right) \rightarrow \boldsymbol{\operatorname { R e p }}_{n} \mathcal{A}_{n}\left(r_{i}\right)$, $i^{\prime *}$: $\boldsymbol{\operatorname { R e p }}_{n} B_{\mathbf{r}}\left(\Gamma_{n, n-m}\right) \rightarrow \boldsymbol{\operatorname { R e p }}_{n} \mathcal{A}_{n}\left(r_{i}\right)$. It is easy that n-dimensional representation of $B_{\mathbf{r}}\left(\Gamma_{n, m}\right)$ is a representation of rank 1. Also, note that representations of algebra $\mathcal{A}_{n}\left(r_{i}\right)$ and $\widetilde{A}_{k}\left(r_{i}\right)$ are parameterized by dimension vectors consisting of ranks of generators. It is easy that morphism i^{*} transforms $B_{\mathbf{r}}\left(\Gamma_{n, m}\right)$-representation of rank 1 to n-dimensional representation of $\mathcal{A}_{n}\left(r_{i}\right)$ with dimension vector $(1, \ldots, 1, m)$, i.e. $\operatorname{rank} q_{i}=1, \operatorname{rankP}=m$. Analogous, we have the similar arguments for algebra $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$. Denote by $\boldsymbol{\operatorname { R e p }} \boldsymbol{p}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m]$ the variety of representations of algebra $\mathcal{A}_{n}\left(r_{i}\right)$ with dimension vector $(1, \ldots, 1, m)$.

Using lemma 10 and proposition 12, we get the following:
Corollary 17. We have the isomorphisms of varieties:

$$
\begin{equation*}
\boldsymbol{\operatorname { R e p }}_{n} B_{k, n}[1]=\boldsymbol{\operatorname { R e p }}_{n} B_{k, n} \cong \boldsymbol{\operatorname { R e p }}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)[1] \times_{\boldsymbol{R e p}_{n}} \widetilde{A}_{k}\left(r_{i}\right)[\hat{1}, m] \quad \operatorname{Rep} \boldsymbol{p}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)[1] \tag{44}
\end{equation*}
$$

-

$$
\begin{equation*}
\boldsymbol{\operatorname { R e p }}_{n} B_{n, n}[1]=\boldsymbol{\operatorname { R e p }}_{n} B_{k, n} \cong \boldsymbol{\operatorname { R e p }}_{n} B_{n, m} \times{\underset{\mathbf{R e p}}{n}}^{\mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m]} \boldsymbol{\operatorname { R e p }}_{n} B_{n, n-m} \tag{45}
\end{equation*}
$$

Remark. Of course, there is a trivial generalization of this fact for case of $s n$-dimensional representations of rank s.

Further, let us study the quotient of fibred product. Let Y_{1}, Y_{2}, Z be an affine G-varieties for some reductive algebraic group G. Assume that we have G-morphisms: $f_{i}: Y_{i} \rightarrow Z, i=1,2$. Thus, $Y_{1} \times_{Z} Y_{2}$ is an affine G-variety too. Therefore, we can consider algebraic quotients $Y_{i} / G, i=1,2$ and Z / G, i.e. $\operatorname{Spec} F\left[Y_{i}\right]^{G}, i=1,2$, $\operatorname{Spec} F[Z]^{G}$. Also, we have an algebraic quotient $Y_{1} \times_{Z} Y_{2} / G=\operatorname{Spec}\left(F\left[Y_{1}\right] \otimes_{F[Z]} F\left[Y_{2}\right]\right)^{G}$. One can construct the following morphism: $p:\left(Y_{1} \times_{Z} Y_{2}\right) / G \rightarrow Y_{1} / G \times{ }_{Z / G} Y_{2} / G$. In this subsection we will study this natural morphism.

Denote by G_{x} the stabilizer of point x. Fix points $y_{1} \in Y_{1}, y_{2} \in Y_{2}$. It is easy that $G_{y_{1}} \subseteq G_{f_{1}\left(y_{1}\right)}$ and $G_{y_{2}} \subseteq G_{f_{2}\left(y_{2}\right)}$. Denote by $G x$ the orbit of point x. Note that morphism: $p:\left(Y_{1} \times_{Z} Y_{2}\right) / G \rightarrow Y_{1} / G \times{ }_{Z / G} Y_{2} / G$ defined by rule: $p: G\left(y_{1}, y_{2}\right) \mapsto\left(G y_{1}, G y_{2}\right)$. Denote by $\pi, \pi_{i}, i=1,2$ the natural morphisms: $\pi: Y_{1} \times_{Z} Y_{2} \rightarrow$ $\left(Y_{1} \times{ }_{Z} Y_{2}\right) / G, \pi_{i}: Y_{i} \rightarrow Y_{i} / G, i=1,2$ and Also, consider subvarieties $Y_{i}^{(0)}=\left\{y_{i} \mid \pi_{i}^{-1}\left(\pi_{i}\left(y_{i}\right)\right)-\right.$ closed orbit $\}$. One can show that $Y_{i}^{(0)} / G$ is a geometric quotient. It is clear that $\pi_{i}\left(Y_{i}^{(0)}\right)$ are open subvarieties of Y_{i} / G.

Lemma 18. Consider point $\left(G y_{1}, G y_{2}\right) \in Y_{1}^{(0)} / G \times_{Z / G} Y_{2}^{(0)} / G$ such that $y_{i} \in Y_{i}^{(0)}, z \in Z$, where $f_{1}\left(y_{1}\right)=$ $f_{2}\left(y_{2}\right)=z$. Assume that $p^{-1}\left(G y_{1}, G y_{2}\right)$ consists of closed orbits. Then fiber $p^{-1}\left(G y_{1}, G y_{2}\right)$ is isomorphic to variety of double classes: $G_{y_{1}} \backslash G_{z} / G_{y_{2}}$.
Proof. One can show that $p^{-1}\left(G y_{1}, G y_{2}\right)=G_{z} \backslash\left(G_{z} / G_{y_{1}} \times G_{z} / G_{y_{2}}\right)$. The rest is trivial.
Corollary 19. Consider a component C of $Y_{1} \times{ }_{Z} Y_{2}$ which contains a point $\left(y_{1}, y_{2}\right), f_{1}\left(y_{1}\right)=f_{2}\left(y_{2}\right)=z$ satisfying to condition: $\left|G_{y_{1}} \backslash G_{z} / G_{y_{2}}\right|=1$. Then restriction of p to C is a birational morphism.

Consider subvariety $\left\{y \in Y_{1} / G \times_{Z / G} Y_{2} / G \mid p^{-1}(y)=\emptyset\right\}$ of $Y_{1} / G \times_{Z / G} Y_{2} / G$. It can be shown that this subvariety can be non-empty. Actually, consider point $\left(y_{1}, y_{2}\right) \in Y_{1} \times_{Z} Y_{2}$ such that $f_{1}\left(y_{1}\right) \neq f_{2}\left(y_{2}\right)$ and $\overline{f_{1}\left(y_{1}\right)^{G}} \cap \overline{f_{2}\left(y_{2}\right)^{G}} \neq \emptyset$. In this case, we get the point $\left(\pi_{1}\left(y_{1}\right), \pi_{2}\left(y_{2}\right)\right) \in Y_{1} / G \times_{Z / G} Y_{2} / G$ such that $p^{-1}\left(\pi_{1}\left(y_{1}\right), \pi_{2}\left(y_{2}\right)\right)=\emptyset$.

Let us apply these arguments to the case of $\boldsymbol{\operatorname { R e p }}_{n} B_{n, n}$. As we know, in this case any n-dimensional non-trivial representations of algebras $B_{n, n}, B_{n, m}$ and $B_{n, n-m}$ of rank 1 are irreducible. Therefore, quotients $\boldsymbol{\operatorname { R e p }}_{n} B_{n, n}, \boldsymbol{\operatorname { R e p }}_{n} B_{n, m}$ and $\boldsymbol{\operatorname { R e p }}_{n} B_{n, n-m}$ by GL$n(F)$ are geometric, i.e. all GL${ }_{n}(F)$ - orbits are closed. Hence, $\boldsymbol{\operatorname { R e p }}_{n}^{(0)} B_{n, n}=\boldsymbol{\operatorname { R e p }}_{n} B_{n, n}, \boldsymbol{\operatorname { R e p }}_{n}^{(0)} B_{n, m}=\boldsymbol{\operatorname { R e p }}_{n} B_{n, m}$ and $\boldsymbol{\operatorname { R e p }}_{n}^{(0)} B_{n, n-m}=\boldsymbol{\operatorname { R e p }}_{n} B_{n, n-m}$.

Consider the variety $\operatorname{Rep}_{n} B_{n, n}$. We have the following morphism: $f_{n}: \mathcal{M}_{n} B_{n, n} \rightarrow$ $\mathcal{M}_{n} B_{n, m} \times_{\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m]} \mathcal{M}_{n} B_{n, n-m}$. We get that

$$
f_{n}^{-1}\left(\rho_{1}, \rho_{2}\right)=G_{\psi} / F^{*}
$$

for $\rho_{1} \in \boldsymbol{\operatorname { R e p }}_{n} B_{n, m}, \rho_{2} \in \boldsymbol{\operatorname { R e p }}_{n} B_{n, n-m}, \psi \in \boldsymbol{\operatorname { R e p }}_{n} \mathcal{A}_{n}\left(r_{i}\right)$ such that $i^{*}\left(\rho_{1}\right)=i^{\prime *}\left(\rho_{2}\right)=\psi$.
We have to study representation theory of the algebras $\mathcal{A}_{n}\left(r_{i}\right)$ and $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ for further studying of morphisms $f_{n}: \mathcal{M}_{n} B_{n, n} \rightarrow \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{n, m}\right) \times_{\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m]} \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{n, n-m}\right)$ and $f_{n}^{\prime}: \mathcal{M}_{n} B_{k, n} \rightarrow$ $\mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)[1] \times{ }_{\mathcal{M}_{n}} \tilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m] \quad \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)[1]$.

4 Deformed preprojective algebra and algebra $\mathcal{A}_{n}\left(r_{i}\right)$.

In this section we will study algebra \mathcal{A}_{n} and its connection with deformed preprojective algebra of some quiver. Namely, we will prove that these algebras are Morita equivalent. Using representation theory of deformed preprojective algebra, we obtain that representation and moduli variety $\operatorname{Rep}_{n} \mathcal{A}_{n}[(\overrightarrow{1}, m)]$ and $\mathcal{M}_{n} \mathcal{A}_{n}[(\overrightarrow{1}, m)]$ are irreducible for any $r_{i} \in F, i=1, \ldots, n, \sum_{i=1}^{n} r_{i}=m$. Also, we will calculate dimensions of $\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m]$. In first subsection we recall notions and facts about deformed preprojective algebra. In second subsection we will prove Morita equivalence of $\mathcal{A}_{n}\left(r_{i}\right)$ and deformed preprojective algebra $\Pi_{\vec{\lambda}}(\mathcal{Q})$ for some quiver \mathcal{Q} and $\vec{\lambda}=\left(-r_{1}, \ldots,-r_{n}, 1\right)$.

4.1 Roots and deformed preprojective algebra.

In this subsection we will recall the main properties and notions of quiver and introduce deformed preprojective algebra. In this subsection, we will consider free-loop quivers. Although, one can generalize all notions and facts in the case of quiver with loops.

Let Q be a quiver with k vertices. Thus, $Q_{0}=\{1, \ldots, k\}$. Assume Q has no loops. The description of quiver Q encoded by $k \times k$-matrix χ_{Q} :

$$
\begin{equation*}
\left(\chi_{Q}\right)_{i j}=\delta_{i j}-\#\{\text { arrows from } i \text { to } j\} \tag{46}
\end{equation*}
$$

Let $\mathbb{Z} Q_{0}$ be a free abelian group generated by vertices. For each vector $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{Z} Q_{0}$ let supp $(\vec{\alpha})=$ $\left\{i \in Q_{0} \mid \quad \alpha_{i} \neq 0\right\}$. We say that $\operatorname{supp}(\vec{\alpha})$ is connected if the full subquiver of Q with vertex set $\operatorname{supp}(\vec{\alpha})$ is connected.

Recall that we have Euler form $\chi_{Q}: \mathbb{Z} Q_{0} \times \mathbb{Z} Q_{0} \rightarrow \mathbb{Z}$ defined by formula:

$$
\begin{equation*}
\chi_{Q}(\vec{\alpha}, \vec{\beta})=\vec{\alpha} \cdot \chi_{Q} \cdot \vec{\beta}^{t}, \vec{\alpha}, \vec{\beta} \in \mathbb{Z} Q_{0} . \tag{47}
\end{equation*}
$$

Its symmetrization is called by Tits form T_{Q}, i.e. $T_{Q}(\vec{\alpha}, \vec{\beta})=\chi_{Q}(\vec{\alpha}, \vec{\beta})+\chi_{Q}(\vec{\beta}, \vec{\alpha})$. Denote by q_{Q} the quadratic form: $q_{Q}(\alpha)=\frac{1}{2} T_{Q}(\vec{\alpha}, \vec{\alpha})=\chi_{Q}(\vec{\alpha}, \vec{\alpha})$. Denote by $\overrightarrow{\epsilon_{i}}$ the coordinate vector corresponding to vertex $i \in Q_{0}$. Denote by Π the set of vectors $\epsilon_{i}, i \in Q_{0}$. The matrix $A_{i j}=T_{Q}\left(\overrightarrow{\epsilon_{i}}, \overrightarrow{\epsilon_{j}}\right)$ is a Generalized Cartan Matrix (at least when Q has no loops), and so there is an associated Kac-Moody Lie algebra. This algebra has a root system associated to it. For vertex $i \in Q_{0}$, there is a reflection:

$$
\begin{equation*}
\operatorname{refl}_{i}: \mathbb{Z} Q_{0} \rightarrow \mathbb{Z} Q_{0}, \quad \operatorname{refl} l_{i}(\vec{\alpha})=\vec{\alpha}-T_{Q}\left(\vec{\alpha}, \overrightarrow{\epsilon_{i}}\right) \overrightarrow{\epsilon_{i}} \tag{48}
\end{equation*}
$$

It is clear $T_{Q}(\vec{\alpha}, \vec{\beta})=T_{Q}\left(\operatorname{refl} l_{i}(\vec{\alpha}), \operatorname{refl}_{i}(\vec{\beta})\right)$ for any $i \in Q_{0}$. The Weyl group is the subgroup $W \subset A u t\left(\mathbb{Z} Q_{0}\right)$ generated by the refl $l_{i}, i \in Q_{0}$. The set $\Phi_{r e}(Q)=\bigcup_{w \in W(Q)} w(\Pi)$ is called real roots. It is easy $q_{Q}(\vec{\alpha})=1$.

The fundamental region is

$$
\begin{equation*}
F_{Q}=\left\{\vec{\alpha} \in \mathbb{N} Q_{0} \mid \quad T_{Q}\left(\vec{\alpha}, \overrightarrow{\epsilon_{i}}\right) \leq 0 \quad \text { for } \quad \text { all } \quad \overrightarrow{\epsilon_{i}} \in \Pi \quad \text { and } \quad \vec{\alpha} \quad \text { has } \quad \text { a connected } \text { support }\right\} \tag{49}
\end{equation*}
$$

The set $\Phi_{i m}(Q)=\bigcup_{w \in W(Q)} w\left(F_{Q}\right) \cup w\left(-F_{Q}\right)$ is called imaginary roots. Clearly, $q_{Q}(\vec{\alpha}) \leq 0$ for any imaginary root $\vec{\alpha}$. Finally, the root system of Q is defined as $\Phi(Q)=\Phi_{r e}(Q) \cup \Phi_{i m}(Q)$. An element $\vec{\alpha} \in \Phi(Q) \cap \mathbb{N} Q_{0}$ is called positive root. A non-zero element $\vec{\alpha} \in \mathbb{Z} Q_{0}$ is called indivisible if $\operatorname{gcd}\left(\alpha_{i}\right)=1$. Clearly any real root is indivisible, and if $\vec{\alpha}$ is a real root, only $\pm \vec{\alpha}$ are roots. On the other hand every imaginary root is a multiple of an indivisible root, and all other nonzero multiples are also roots. Recall the connection between roots and indecomposable representations of quiver.

Theorem 20. (Kac)

- If there is an indecomposable representation of Q with dimension vector $\vec{\alpha}$, then $\vec{\alpha}$ is a root.
- If $\vec{\alpha}$ is a positive real root there is a unique indecomposable representation with dimension vector $\vec{\alpha}$ (up to isomorphism).
- If $\vec{\alpha}$ is a positive imaginary root then there are infinitely many indecomposables with dimension vector $\vec{\alpha}$ (up to isomorphism).

Further, we will define deformed preprojective algebra. For free-loop quiver Q, let us construct a double quiver Q^{d}, that is to an each arrow $a \in Q_{1}$ we add an opposite arrow $a^{*} \in Q_{1}^{d}$. Define commutator c as element $\sum_{a \in Q_{1}}\left[a, a^{*}\right] \in F Q^{d}$. For the weight $\vec{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in F^{k}$ we define deformed preprojective algebra:

$$
\begin{equation*}
\Pi_{\vec{\lambda}}(Q)=F Q^{d} /\left(c-\sum_{i=1}^{k} \lambda_{i} e_{i}\right) \tag{50}
\end{equation*}
$$

Multiply all arrows by non-zero $t \in F^{*}$, we get the isomorphism of preprojective algebras:

$$
\begin{equation*}
\Pi_{\vec{\lambda}}(Q) \cong \Pi_{t \vec{\lambda}}(Q) \tag{51}
\end{equation*}
$$

We know already that vector $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ is a dimension vector of $\Pi_{\vec{\lambda}}$-representation iff $\vec{\lambda} \cdot \vec{\alpha}=\sum_{i=1}^{k} \lambda_{i} \alpha_{i}=0$.
Fix $\varrho \in \operatorname{Rep} Q^{d}[\vec{\alpha}]$. As we know, the space of ϱ decompose into direct sum of $V_{i}=\operatorname{Im} \varrho\left(e_{i}\right), i=1, \ldots, k$ of dimension $\alpha_{i}, i=1, \ldots, k$ respectively. Consider the algebra $\operatorname{End}[\vec{\alpha}]=\oplus \operatorname{End}\left(V_{i}\right)$. We can define momentum map:

$$
\begin{equation*}
\mu_{\vec{\alpha}}: \operatorname{Rep} Q^{d}[\vec{\alpha}] \rightarrow \operatorname{End}[\vec{\alpha}] \tag{52}
\end{equation*}
$$

by following formula:

$$
\begin{equation*}
\mu_{\vec{\alpha}}(\varrho)=\sum_{a \in Q_{1}} \varrho(a) \varrho\left(a^{*}\right)-\varrho\left(a^{*}\right) \varrho(a) \in \operatorname{End}[\vec{\alpha}] . \tag{53}
\end{equation*}
$$

Thus, $\boldsymbol{\operatorname { R e p }} \Pi_{\vec{\lambda}}[\vec{\alpha}]=\mu_{\vec{\alpha}}^{-1}\left(\sum_{i=1}^{k} \lambda_{i} \varrho\left(e_{i}\right)\right)$.
Recall the definition of λ-Schur roots. Let us define $p_{Q}(\vec{\alpha})$ as $1-q_{Q}(\vec{\alpha})$. We have the following inequality:

$$
\begin{equation*}
p_{Q}(\vec{\alpha}) \geq 0 \tag{54}
\end{equation*}
$$

Definition The set $S_{\vec{\lambda}}$ of λ-Schur roots is defined to be a set of $\vec{\alpha} \in \mathbb{N}^{k}$ such that $p_{Q}(\vec{\alpha}) \geq p_{Q}\left(\overrightarrow{\beta_{1}}\right)+\ldots+p_{Q}\left(\overrightarrow{\beta_{r}}\right)$ for all decompositions $\vec{\alpha}=\overrightarrow{\beta_{1}}+\ldots+\overrightarrow{\beta_{r}}$ with $\overrightarrow{\beta_{i}}$ positive roots satisfying to $\vec{\lambda} \cdot \overrightarrow{\beta_{i}}=0$.

We will use the following result from the representation theory of deformed preprojective algebras.
Theorem 21. (Crawley-Boewey) Let $(\vec{\lambda}, \vec{\alpha})$ are such that $\vec{\alpha} \in S_{\vec{\lambda}}$. Then $\boldsymbol{\operatorname { R e p }}_{|\vec{\alpha}|} \Pi_{\vec{\lambda}}[\vec{\alpha}]$ is a reduced and irreducible complete intersection of dimension $|\vec{\alpha}|^{2}-1+2 p_{Q}(\vec{\alpha})$. And general element of $\boldsymbol{\operatorname { R e p }}_{|\vec{\alpha}|} \Pi_{\vec{\lambda}}[\vec{\alpha}]$ is a simple representation. Thus, $\operatorname{dim}_{F} \mathcal{M}_{|\vec{\alpha}|} \Pi_{\vec{\lambda}}[\vec{\alpha}]=2 p_{Q}(\vec{\alpha})$.

4.2 Morita-equivalence of algebra $\mathcal{A}_{n}\left(r_{i}\right)$ and deformed preprojective algebra.

In this subsection we will prove that algebras \mathcal{A}_{n} and preprojective algebra of some quiver are Morita equivalent. Recall the following useful Morita's theorem:

Theorem 22. (Morita) Consider algebra A and left A-ideal I. Let I be a direct summand of free left module A. Assume, we have the identity:

$$
\begin{equation*}
A I A=A \tag{55}
\end{equation*}
$$

Then algebras A and $\operatorname{End}_{A}(I)$ are Morita equivalent. In particular, consider the idempotent $e \in A$. If $A e A=A$, then algebras $e A e$ and A are Morita equivalent.

Consider quiver \mathcal{Q} with $n+1$ vertices, which we denote by v_{1}, \ldots, v_{n}, w. Arrows of the \mathcal{Q} are a_{i} with source w and target v_{i}, i.e. $\left|\mathcal{Q}_{1}\right|=n$ (see picture 1). Adding opposite arrows a_{i}^{*}, we get the double quiver \mathcal{Q}^{d} (see picture 2) and path algebra $F \mathcal{Q}^{d}$.

Picture 1

Picture 2

Let $\vec{\lambda}=\left(\lambda_{v_{1}}, \ldots ., \lambda_{v_{n}}, \lambda_{w}\right)$. Thus, we can construct deformed preprojective algebra $\Pi_{\vec{\lambda}}=\Pi_{\vec{\lambda}}(\mathcal{Q})$. As we know this algebra is a quotient of $F \mathcal{Q}^{d}$ by ideal J generated by element

$$
\begin{equation*}
x=\sum_{i=1}^{n}\left[a_{i}^{*}, a_{i}\right]-\sum_{i=1}^{n} \lambda_{v_{i}} e_{v_{i}}-\lambda_{w} e_{w} \tag{56}
\end{equation*}
$$

Thus, algebra $\Pi_{\vec{\lambda}}$ has the following relations:

$$
\begin{equation*}
a_{i} a_{i}^{*}=-\lambda_{v_{i}} e_{v_{i}}, \sum_{i=1}^{n} a_{i}^{*} a_{i}=\left(\sum_{i=1}^{n} a_{i}^{*}\right)\left(\sum_{i=1}^{n} a_{i}\right)=\lambda_{w} e_{w} \tag{57}
\end{equation*}
$$

and relations of the quiver path algebra.
Denote by E the sum $\sum_{i=1}^{n} e_{v_{i}}$. Note that $\Pi_{\vec{\lambda}} E \Pi_{\vec{\lambda}}=\Pi_{\vec{\lambda}}$. It follows immediately from relations of $\Pi_{\vec{\lambda}}$. Using this fact and Morita's theorem, we get the Morita equivalence of algebras $E \Pi_{\vec{\lambda}} E$ and $\Pi_{\vec{\lambda}}$.

Proposition 23. Assume $\lambda_{w} \neq 0$. Then there is an isomorphism of algebras:

$$
\begin{equation*}
E \Pi_{\vec{\lambda}} E \cong \mathcal{A}_{n}\left(r_{i}\right) \tag{58}
\end{equation*}
$$

where $r_{i}=-\frac{\lambda_{v_{i}}}{\lambda_{w}}, i=1, \ldots, n$. Thus, algebra $\mathcal{A}_{n}\left(r_{i}\right)$ is Morita-equivalent to deformed preprojective algebra $\Pi_{\vec{\lambda}}$.
Proof. Using multiplication by non-zero element, we can suppose that $\lambda_{w}=1, \lambda_{v_{i}}=-r_{i}, i=1, \ldots, n$. Algebra $\Pi_{\vec{\lambda}}$ is a quotient $F \mathcal{Q}^{d} / J$, where $J=F \mathcal{Q}^{d} x F \mathcal{Q}^{d}$. Using Morita equivalence, we get that algebra $E \Pi_{\vec{\lambda}} E$ is a quotient of $E F \mathcal{Q}^{d} E$ by ideal $J^{\prime}=E F \mathcal{Q}^{d} x F \mathcal{Q}^{d} E$. Consider generators of $E F \mathcal{Q}^{d} E$ - ideal J^{\prime}. It is trivial that $x=E x E+e_{w} x e_{w}$, and $e_{w} x e_{w}=\left(\sum_{i=1}^{n} a_{i}^{*}\right)\left(\sum_{i=1}^{n} a_{i}\right)-e_{w}$. Ideal J is generated by $E x E$ and $e_{w} x e_{w}$, and hence, J^{\prime} is generated by $E x E$ and subspace $E F \mathcal{Q}^{d} e_{w} x e_{w} F \mathcal{Q}^{d} E$. Further, it is easy $E F \mathcal{Q}^{d} e_{w}=E F \mathcal{Q}^{d} E\left(\sum_{i=1}^{n} a_{i}\right)$ and $e_{w} E F \mathcal{Q}^{d} E=\left(\sum_{i=1}^{n} a_{i}^{*}\right) E F \mathcal{Q}^{d} E$. Thus, we get that

$$
\begin{equation*}
E F \mathcal{Q}^{d} e_{w} x e_{w} F \mathcal{Q}^{d} E=E F \mathcal{Q}^{d} E\left(\sum_{i=1}^{n} a_{i}\right)\left(\left(\sum_{i=1}^{n} a_{i}^{*}\right)\left(\sum_{i=1}^{n} a_{i}\right)-e_{w}\right)\left(\sum_{i=1}^{n} a_{i}^{*}\right) F \mathcal{Q}^{d} E \tag{59}
\end{equation*}
$$

Therefore, algebra $E \Pi_{\vec{\lambda}} E$ is generated by elements $e_{i}, i=1, \ldots, n$ and $a_{i}^{*} a_{j}$ for all $i, j=1, \ldots, n$ with relations:

$$
a_{i}^{*} a_{i}=r_{i} e_{i}, \quad\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} a_{i}^{*}\right)\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} a_{i}^{*}\right)=\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} a_{i}^{*}\right)
$$

Elements $e_{i}, i=1, \ldots, n$ and $\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} a_{i}^{*}\right)$ are generators of the algebra $E \Pi_{\vec{\lambda}} E$.
Let us consider the map $\psi: \mathcal{A}_{n}\left(r_{i}\right) \rightarrow E \Pi_{\vec{\lambda}} E$ given by correspondence:

$$
\begin{equation*}
q_{i} \mapsto e_{i}, \quad P \mapsto\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{j=1}^{n} a_{j}^{*}\right) \tag{60}
\end{equation*}
$$

Direct checking shows us that ψ is a homomorphism of algebras. Using previous arguments, we get that ψ is isomorphism.

Fix dimension vector $\vec{\alpha}=\left(\alpha_{v_{1}}, \ldots, \alpha_{v_{n}}, \alpha_{w}\right) \in \mathbb{N}_{0}^{n+1}$ such that $(\vec{\alpha}, \vec{\lambda})=0 . \mathcal{M}_{|\vec{\alpha}|} \Pi_{\vec{\lambda}}[\vec{\alpha}]$ the variety of $\vec{\alpha}$-modules of deformed preprojective algebra $\Pi_{\vec{\lambda}}$. Let $\vec{\alpha}_{v}$ be a vector $\left(\alpha_{v_{1}}, \ldots, \alpha_{v_{n}}\right)$ Consider variety $\mathcal{M}_{\left|\vec{\alpha}_{v}\right|} \mathcal{A}_{n}\left(r_{i}\right)[\vec{\alpha}]$ of $\alpha_{v_{1}}+\ldots+\alpha_{v_{n}}$-dimensional \mathcal{A}_{n} - modules with properties:

$$
\operatorname{rank} q_{i}=\alpha_{v_{i}}, i=1, \ldots, n \quad \operatorname{rankP}=\alpha_{w}
$$

Using Morita equivalence, we get the isomorphism of varieties:

$$
\begin{equation*}
\mathcal{M}_{|\vec{\alpha}|} \Pi_{\vec{\lambda}}[\vec{\alpha}] \cong \mathcal{M}_{\left|\vec{\alpha}_{v}\right|} \mathcal{A}_{n}\left(r_{i}\right)[\vec{\alpha}] . \tag{61}
\end{equation*}
$$

Remark. Also, let us consider the unital algebra $\mathcal{C}\left(r_{i}\right)$ with generators $s_{i}, i=1, \ldots, n$ and relations

$$
\begin{equation*}
s_{i}^{2}=r_{i} s_{i}, \quad \sum_{i=1}^{n} s_{i}=1 \tag{62}
\end{equation*}
$$

It can be shown in standard way that this algebra isomorphic to algebra $e_{w} \Pi_{\vec{\lambda}} e_{w}$ and, thus, we get the Morita equivalence of algebras: $\mathcal{C}\left(r_{i}\right)$ and $\Pi_{\vec{\lambda}}$.

For dimension vector $\vec{\alpha}=\left(\alpha_{v_{1}}, \ldots, \alpha_{v_{n}}, \alpha_{w}\right)$ denote by $\mathcal{M}_{\alpha_{w}} \mathcal{C}\left(r_{i}\right)\left[\vec{\alpha}_{v}\right]$ the variety of $\alpha_{w} \times \alpha_{w}$ matrices $S_{i}, i=$ $1, \ldots, n$, such that $\operatorname{rank} S_{i}=\alpha_{v_{i}}$ and satisfying to relations (62).

Using this equivalence, we get the isomorphism of moduli varieties:

$$
\begin{equation*}
\mathcal{M}_{\vec{\alpha}} \Pi_{\vec{\lambda}} \cong \mathcal{M}_{\alpha_{w}} \mathcal{C}\left(r_{i}\right)\left[\vec{\alpha}_{v}\right] \tag{63}
\end{equation*}
$$

4.3 Crawley-Boewey condition for dimension vector $\vec{\alpha}=(1, \ldots, 1, m)$.

In this subsection we will study the properties of variety $\mathcal{M}_{n,(1, \ldots, 1, m)}\left(\mathcal{A}_{n}\right)$ via Morita equivalence with deformed preprojective algebra $\Pi_{\vec{\lambda}}$ of the quiver Q.

Proposition 24. Consider dimension vector $\vec{\alpha}=(1, \ldots, 1, m)$ for $m \in\{2, \ldots, n-2\}$. Then vector $\vec{\alpha}=(1, \ldots, 1, m)$ is a $\vec{\lambda}$-Schur root (i.e. $\vec{\alpha} \in \Sigma_{\vec{\lambda}}$) for any vector $\vec{\lambda}=\left(-r_{1}, \ldots,-r_{n}, 1\right)$ such that $r_{1}+\ldots+r_{n}=m$.
Proof. Recall that we have to prove that $p_{Q}(\vec{\alpha})>p_{Q}\left(\overrightarrow{\beta_{1}}\right)+\ldots+p_{Q}\left(\overrightarrow{\beta_{s}}\right)$ for any non-trivial decomposition $\vec{\alpha}=\vec{\beta}_{1}+\ldots \overrightarrow{\beta_{s}}$, where $\vec{\beta}_{i}, i=1, \ldots, s$ are positive roots and $\left(\overrightarrow{\beta_{i}}, \vec{\lambda}\right)=0$. It is clear that last component of $\vec{\beta}_{i}$ is $m_{i} \in\{0, \ldots, m\}$. Among other components there are $n_{i} 1$'s and $n-n_{i}$ zeroes. We have the following relations: $\sum_{i=1}^{s} m_{i}=m, \sum_{i=1}^{s} n_{i}=n$. It is clear that matrix χ_{Q} has the following form:

$$
\chi_{Q}=\left(\begin{array}{ccccc}
1 & -1 & -1 & \ldots & -1 \tag{64}\\
0 & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

It can be shown in usual way that $p_{Q}(\vec{\alpha})=1-\chi_{Q}(\vec{\alpha}, \vec{\alpha})=(n-m-1)(m-1)$ and $p_{Q}\left(\vec{\beta}_{i}\right)=1-\chi_{Q}\left(\vec{\beta}_{i}, \vec{\beta}_{i}\right)=$ $\left(n_{i}-m_{i}-1\right)\left(m_{i}-1\right)$. Thus, we have to prove the following inequality:

$$
(n-m-1)(m-1)>\sum_{i=1}^{s}\left(n_{i}-m_{i}-1\right)\left(m_{i}-1\right)
$$

Transform it as follows:

$$
(n-m) m-m-(n-m)+1>\sum_{i=1}^{s}\left(n_{i}-m_{i}\right) m_{i}-\sum_{i=1}^{s} n_{i}+s
$$

Finally, we get

$$
\begin{equation*}
(n-m) m>\sum_{i=1}^{s}\left(n_{i}-m_{i}\right) m_{i}+s-1 . \tag{65}
\end{equation*}
$$

for $n_{i}, m_{i} \in \mathbb{N}_{0}$ such that $\sum_{i=1}^{s} n_{i}=n$ and $\sum_{i=1}^{s} m_{i}=m$. Further, let us give some remarks about n_{i} and m_{i}. Fix root $\vec{\beta}_{i}=\left(\beta_{i, 1}, \ldots, \beta_{i, n}, \beta_{i, n+1}=m_{i}\right)$. We have two cases: $m_{i}=0$ or $m_{i}>0$. In the first case, using non-triviality of β_{i}, we get $n_{i}>0$. In the second case, $\vec{\lambda} \cdot \vec{\beta}_{i}=m_{i}+\sum_{l=1}^{n} r_{l} \beta_{i, l}=0$. Hence, $n_{i}>0$. Thus, $n_{i}>0$ for any root $\vec{\beta}_{i}$. Using inequality (54), we obtain:

$$
\left(n_{i}-m_{i}-1\right)\left(m_{i}-1\right)=\left(n_{i}-m_{i}\right) m_{i}-n_{i}+1 \geq 0
$$

Thus, $\left(n_{i}-m_{i}\right) m_{i} \geq 0$. It means that $n_{i} \geq m_{i}$ for all $i=1, \ldots, s$. Also, we have $n-m \geq 2$ and $m \geq 2$.
Let us prove the following lemma.
Lemma 25. Let X, Y be integers and $X, Y \geq 2$. For any $s \geq 2$ and any partitions $X=x_{1}+\ldots+x_{s}$ and $Y=y_{1}+\ldots+y_{s}$ satisfying to conditions:

- $x_{i}, y_{i} \in \mathbb{N}_{0}$,
- $x_{i}^{2}+y_{i}^{2}>0$ for any $i=1, \ldots, s$
we have the following inequality:

$$
\begin{equation*}
X Y>\sum_{i=1}^{s} x_{i} y_{i}+s-1 \tag{66}
\end{equation*}
$$

Proof. of lemma. Fix partition $\theta=\left(X=x_{1}+\ldots+x_{s}, Y=y_{1}+\ldots+y_{s}\right)$. For simplicity, let us denote by $f(\theta)$ the $\sum_{i=1}^{s} x_{i} y_{i}+s-1$. Without loss of generality, let us assume that $x_{i}, y_{i}>0$ for $i=1, \ldots, k_{1}, x_{i}>0, y_{i}=0$ for $i=k_{1}+1, \ldots, k_{2}$ and $x_{i}=0, y_{i}>0$ for $i=k_{2}+1, \ldots, s$:

$$
\begin{gathered}
X=x_{1}+\ldots+x_{k_{1}}+x_{k_{1}+1}+\ldots+x_{k_{2}}+0+\ldots+0 \\
Y=y_{1}+\ldots+y_{k_{1}}+0+\ldots+0+y_{k_{2}+1}+\ldots+y_{s}
\end{gathered}
$$

Denote by X_{0} and Y_{0} the sums $\sum_{i=1}^{k_{1}} x_{i}$ and $\sum_{i=1}^{k_{1}} y_{i}$ respectively. By X_{1} and Y_{1} we denote sums $\sum_{i=k_{1}+1}^{k_{2}} x_{i}$ and $\sum_{i=k_{2}+1}^{s} y_{i}$. It is clear $X=X_{0}+X_{1} \geq 2, Y=Y_{0}+Y_{1} \geq 2$ and $X_{1} \geq k_{2}-k_{1}, Y_{1} \geq s-k_{2}$. Note that $k_{1}+X_{1}+Y_{1}-1 \geq s-1$. Let us prove that

$$
\begin{equation*}
X Y>\sum_{i=1}^{k_{1}} x_{i} y_{i}+k_{1}+X_{1}+Y_{1}-1 \tag{67}
\end{equation*}
$$

Let us write $X Y$ in the following manner:

$$
X Y=\left(X_{0}+X_{1}\right)\left(Y_{0}+Y_{1}\right)=X_{0} Y_{0}+X_{1} Y_{0}+X_{0} Y_{1}+X_{1} Y_{1}
$$

We will consider three cases: $k_{1}>1, k_{1}=1, k_{1}=0$. Let us consider the first case. We have the following inequality: $X_{0} Y_{0} \geq \sum_{i=1}^{k_{1}} x_{i} y_{i}+k_{1}\left(k_{1}-1\right)$ (because of $x_{i} y_{j} \geq 1$ for all $\left.i, j=1, \ldots, k_{1}\right), X_{1} Y_{0} \geq k_{1} X_{1}, X_{0} Y_{1} \geq$ $k_{1} Y_{1}$. Thus, we obtain:

$$
X Y \geq \sum_{i=1}^{k_{1}} x_{i} y_{i}+k_{1}\left(k_{1}-1\right)+k_{1} X_{1}+k_{1} Y_{1}+X_{1} Y_{1}
$$

Therefore, inequality (66) transforms to

$$
k_{1}\left(k_{1}-1\right)+k_{1} X_{1}+k_{1} Y_{1}+X_{1} Y_{1}>k_{1}-1+X_{1}+Y_{1}
$$

We can transform this inequality as follows:

$$
\left(k_{1}+X_{1}-1\right)\left(k_{1}+Y_{1}-1\right)>0
$$

Therefore, first case is proved.
Second case. If $k_{1}=1$, then we have the partitions: $X=x_{1}+x_{2}+\ldots+x_{k_{2}}+0+\ldots+0$ and $Y=$ $y_{1}+0+\ldots+0+y_{k_{2}+1}+\ldots+y_{s}$. Also, $X_{1}=\sum_{i=2}^{k_{2}} x_{i}, Y_{1}=\sum_{i=k_{2}+1}^{s} y_{i}$ and $x_{1}+X_{1} \geq 2, y_{1}+Y_{1} \geq 2$.

It is easy $X Y=x_{1} y_{1}+x_{1} Y_{1}+X_{1} y_{1}+X_{1} Y_{1}$. We can rewrite inequality (67) as follows:

$$
x_{1} Y_{1}+y_{1} X_{1}+X_{1} Y_{1}>X_{1}+Y_{1}
$$

This inequality is true, because $x_{1}+X_{1} \geq 2$ and $y_{1}+Y_{1} \geq 2$.
Last case $k_{1}=0$. We have $X=x_{1}+\ldots+x_{k_{2}}+0+\ldots+0, Y=0+\ldots+0+y_{k_{2}+1}+\ldots+y_{s}$. Inequality (67) transforms to:

$$
X Y>X+Y-1
$$

It is true, because $X, Y \geq 2$. Lemma is proved
To the end of proof of the proposition, let us apply lemma in the case $y_{i}=m_{i}, x_{i}=n_{i}-m_{i}, i=1, \ldots, s$.
Corollary 26. Fix $m \in\{2, \ldots, n-2\}$. For any $r_{1}, \ldots, r_{n} \in F$ such that $r_{1}+\ldots+r_{n}=m$, general representation of algebra $\mathcal{A}_{n}\left(r_{i}\right)$ with dimension vector $(1, \ldots, 1, m)$ is simple. Also, variety $\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[(\overrightarrow{1}, m)]$ and $\boldsymbol{\operatorname { R e p }}_{n} \mathcal{A}_{n}\left(r_{i}\right)[(\overrightarrow{1}, m)]$ are irreducible and have dimensions $2(n-m-1)(m-1)$ and $2(n-m-1)(m-1)+n^{2}-1$ respectively.

Also, using Morita equivalence, we have the following:

Corollary 27. General element of $\boldsymbol{R e p}_{n} \mathcal{A}_{n}\left(r_{i}\right)[(\overrightarrow{1}, m)]$ is a simple representation.
Proof. Using theorem of Crawley-Boewey and proposition 24, we obtain that general $\Pi_{\vec{\lambda}}$-representation of dimension vector $(1, \ldots, 1, m)$ is an irreducible for any $\vec{\lambda}=\left(-r_{1}, \ldots,-r_{n}, 1\right)$ such that $r_{1}+\ldots+r_{n}=m$. Applying Morita-equivalence, we get the required.

Let us calculate automorphism group of n-dimensional $\mathcal{A}_{n}\left(r_{i}\right)$ - representation ρ. Let us introduce the notion graph $G_{n}(\rho)$ of the representation ρ. This graph has n vertices labeled by $i, i=1, \ldots, n$ corresponding to generators $q_{i}, i=1, \ldots, n$. There is edge between vertices i and j iff $\rho\left(q_{i} P q_{j}\right) \neq 0$ or $\rho\left(q_{j} P q_{i}\right) \neq 0$. It is easy that if we have two isomorphic representations ρ^{\prime} and ρ, then $G_{n}(\rho) \cong G_{n}\left(\rho^{\prime}\right)$. It means that we have well-defined notion of graph of $\mathcal{A}_{n}\left(r_{i}\right)$-module.

Proposition 28. Assume that $r_{i} \neq 0$. Consider n-dimensional representation ρ of $\mathcal{A}_{n}\left(r_{i}\right)$ of dimension vector $(1, \ldots, 1, m)$. Then group Aut $_{\mathcal{A}_{n}\left(r_{i}\right)}(\rho)$ is an algebraic torus and the following statements are equivalent:

- $\operatorname{Aut}_{\mathcal{A}_{n}\left(r_{i}\right)}(\rho)=\left(F^{*}\right)^{s}, s \leq m$,
- graph $G_{n}(\rho)$ has s connected components.

Proof. It is easy that vector space of ρ has a basis v_{1}, \ldots, v_{n} such that $q_{i} v_{j}=\delta_{i j} v_{i}$. Further, consider $f \in$ $A u t_{\mathcal{A}_{n}\left(r_{i}\right)}(\rho)$. Then $f\left(v_{i}\right)=\alpha_{i} v_{i}$, where $\alpha_{i} \neq 0$. Thus, $A u t_{\mathcal{A}_{n}\left(r_{i}\right)}(\rho)$ is a subgroup of algebraic torus $\left(F^{*}\right)^{n}$. Assume that $\rho\left(q_{i} P\right) v_{j}=x_{i j} v_{i}$ for some $x_{i j} \in F$ and any i, j. We get the following identity:

$$
\begin{equation*}
f\left(\rho\left(q_{i} P\right) v_{j}\right)=\alpha_{j} \rho\left(q_{i} P\right) v_{j}=\alpha_{j} x_{i j} v_{i} \tag{68}
\end{equation*}
$$

From other hand, we obtain the following:

$$
\begin{equation*}
f\left(\rho\left(q_{i} P\right) v_{j}\right)=f\left(x_{i j} v_{i}\right)=\alpha_{i} x_{i j} v_{i} \tag{69}
\end{equation*}
$$

Hence, $x_{i j}\left(\alpha_{i}-\alpha_{j}\right)=0$ for any i, j. Further, consider graph G_{n} of representation ρ. This graph has n vertices labeled by $q_{i}, i=1, \ldots, n$. There is edge between q_{i} and q_{j} iff $x_{i j} \neq 0$. Note that G_{n} is connected iff $\alpha_{i}=\alpha_{j}$ for any i, j, i.e. $A u t_{\mathcal{A}_{n}\left(r_{i}\right)}(\rho)=F^{*}$. Therefore, we get that $A u t_{\mathcal{A}_{n}\left(r_{i}\right)}(\rho)=\left(F^{*}\right)^{s}$ iff graph G_{n} has s connected components. Also, it can be shown in usual way that if $A u t_{\mathcal{A}_{n}\left(r_{i}\right)}(\rho)=\left(F^{*}\right)^{s}$ then rank $P \geq s$.

Corollary 29. If $r_{i} \neq 0,1, i=1, \ldots, n$ then for any representation ρ graph $G_{n}(\rho)$ has no components consisting of one vertex.

Proof. Assume that one connected component has one vertex. Without loss of generality, number of this vertex is 1 . Then we have the following relations: $q_{1} P q_{j}=0, j=2, \ldots, n$ and $q_{j} P q_{1}=0, j=2, \ldots, n$. Using relation $\sum_{j=1}^{n} q_{j}=1$, we get that $q_{1} P\left(1-q_{1}\right)=0$. Multiply by P from right side, we obtain: $\left(1-q_{1}\right) P q_{1} P$. Calculating trace, we get:

$$
\begin{equation*}
\operatorname{Tr}\left(1-q_{1}\right) P q_{1} P=\operatorname{Tr} P q_{1} P-\operatorname{Tr} q_{1} P q_{1} P=\operatorname{Tr} P q_{1}-r_{1} \operatorname{Tr} P q_{1}=\left(1-r_{1}\right) r_{1} \neq 0 \tag{70}
\end{equation*}
$$

Contradiction.

5 Algebra $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ and its moduli variety.

In this section we will study algebra $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$. Assume that $r_{i} \neq 0, i=1, \ldots, k$.

5.1 Homological properties of algebra $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$.

Denote by $e_{w}, e_{i}, i=1, \ldots, k$ the trivial path in vertices. Denote by $F Q$ the path algebra of quiver Q. Consider two-sided ideal I generated by elements $\alpha_{i, w} \alpha_{w, i}-r_{i} e_{i}$. Denote by Δ_{Q} the element $e_{w}+\sum_{i=1}^{k}\left(e_{i}+\alpha_{i, w}+\alpha_{w, i}\right)$. One can prove that $\widetilde{A}_{k}\left(r_{i}\right)$ is a homotop of S_{Q} with element Δ_{Q}. One can show that Δ_{Q} is well-tempered element (cf.[1]) Consider the quotient $S_{Q}=F Q / I$, where Q is a quiver with vertices labeled by w, v_{1}, \ldots, v_{k}, arrows $\alpha_{i, w}$ and $\alpha_{w, v_{i}}$. Arrows $\alpha_{i, w}, \alpha_{w, i}, i=1, \ldots, k$ connect vertices v_{i}, w and w, v_{i} respectively (see picture). Note that deformed preprojective algebra is a quotient of S_{Q} by relation: $\sum_{i=1}^{n} \alpha_{w, i} \alpha_{i, w}-r_{w} e_{w}$.

Picture 2
Further, consider algebra S_{Q}. Let us apply Morita's theorem to algebra S_{Q} and idempotent e_{w}. It is easy that $S_{Q} e_{w} S_{Q}=S_{Q}$. Thus, algebras S_{Q} and $e_{w} S_{Q} e_{w}$ are Morita equivalent. One can show that algebra $e_{w} S_{Q} e_{w}$ is generated by $s_{i}=\alpha_{w i} \alpha_{i w}, i=1, \ldots, k$. It is easy that

$$
\begin{equation*}
s_{i}^{2}=r_{i} s_{i} . \tag{71}
\end{equation*}
$$

It can be shown in usual way that algebra $e_{w} S_{Q} e_{w}$ is an unital algebra generated by s_{i} satisfying to relations (71). One can show that this algebra is isomorphic to $\operatorname{Pr}(\Gamma[k])$, where $\Gamma[k]$ is complete graph with k vertices. Using subsection 3.1, we obtain that $\operatorname{Pr}(\Gamma[k])$ is a homotop of path algebra of double quiver $\mathbb{Q}_{\Gamma[k]}$ with k vertices. Using properties of homotopes, we get the following proposition:
Proposition 30. Hochschild dimension of $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ is 2.
Proof. Applying theorem (cf [1]) and Morita invariance of Hochshild dimension, we get the required statement.

Of course, we have exact sequence of $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - bimodules:

$$
\begin{equation*}
0 \longrightarrow \widetilde{\mathcal{A}}_{k}^{+}\left(r_{i}\right) \longrightarrow \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \xrightarrow{\epsilon} F \longrightarrow 0 \tag{72}
\end{equation*}
$$

where ϵ is augmentation, i.e. $\epsilon(1)=1, \epsilon(P)=\epsilon\left(q_{i}\right)=0$. Using basis of $\mathcal{A}_{k}\left(r_{i}\right)$, we get that $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - bimodule $\widetilde{\mathcal{A}}_{k}^{+}\left(r_{i}\right)$ is a projective left $\widetilde{A}_{k}\left(r_{i}\right)$ - module, and we have the following isomorphism:

$$
\begin{equation*}
\widetilde{\mathcal{A}}_{k}^{+}\left(r_{i}\right) \cong \oplus_{i=1}^{k} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) q_{i} \oplus \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) P \tag{73}
\end{equation*}
$$

This augmentation has the following modification:

$$
\begin{equation*}
0 \longrightarrow \widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right) \longrightarrow \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \xrightarrow{\epsilon_{A} A} F P \oplus F(1-P) \longrightarrow 0 \tag{74}
\end{equation*}
$$

Algebra $F P \oplus F(1-P)$ is an unital algebra generated by P. "Augmentation" ϵ_{A} is defined by formula:

$$
\begin{equation*}
\epsilon_{A}(1)=1, \epsilon_{A}(P)=P, \epsilon_{A}\left(q_{i}\right)=0 \tag{75}
\end{equation*}
$$

It is easy that ϵ_{A} is a homomorphism of algebras.
Let us prove the following proposition:
Proposition 31. $\widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right)$ is a projective $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - module.
Proof. Let us restrict the ϵ_{A} to $\widetilde{\mathcal{A}}_{k}^{+}\left(r_{i}\right)$. Denote this restriction by ϵ_{A}^{\prime}. Therefore, we have the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow \widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right) \longrightarrow \widetilde{\mathcal{A}}_{k}^{+}\left(r_{i}\right) \xrightarrow{\epsilon_{A}^{\prime}} F P \longrightarrow 0 \tag{76}
\end{equation*}
$$

It is easy that $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right) q_{i} \subset \widetilde{A}_{k}^{++}\left(r_{i}\right)$. Thus, we have the induced map: $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right) P \rightarrow F$. It can be shown in usual way that kernel of this map is a $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - module: $\oplus_{i=1}^{k} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) q_{i} P$. Therefore, we get the following isomorphism of left $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - modules:

$$
\begin{equation*}
\widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right) \cong \oplus_{i=1}^{k} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) q_{i} P \oplus \widetilde{A}_{k}\left(r_{i}\right) q_{i} . \tag{77}
\end{equation*}
$$

Also, we have the similar decomposition of $\widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right)$ as right module. It is easy that $\frac{1}{r_{i}} q_{i} P$ is an idempotent, hence $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right) q_{i} P$ is a projective $\widetilde{A}_{k}\left(r_{i}\right)$ - module. The rest is trivial.

There are two 1-dimensional $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$-modules $F P$ and $F(1-P)$. One can check that $q_{i}, i=1, \ldots, k$ act trivially on $F P, P$ acts as identity operator. Also, $P, q_{i}, i=1, \ldots, k$ act trivially on $F(1-P)$. Proposition 31 show us that exact sequence (76) as projective resolutions of $F P$ respectively. Of course, sequence (72) is a projective resolution of $F(1-P)$.

Also, note that we can find connection between algebra $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ and $\operatorname{Pr}(\Gamma[k])$ more directly. Namely, if we consider the following subspace $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right) P \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$, i.e two-sided ideal of $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ generated by P. It can be shown in usual way that $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right) P \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)=\widetilde{\mathcal{A}}_{k}^{+}\left(r_{i}\right)$. Actually, using relation $q_{i} P q_{i}=r_{i} q_{i}$, we can get all $q_{i}, i=1, \ldots, k$ and hence, we can get any element of $\widetilde{\mathcal{A}}_{k}^{+}\left(r_{i}\right)$. Consider algebra $P \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) P$. One can show that this algebra is isomorphic to $\operatorname{Pr}(\Gamma[k])$. This construction is similar to construction of Morita-equivalence of fundamental group and Poincare grouppoid. Also, if we consider two-sided ideal of $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ generated by $\sum_{i=1}^{k} q_{i}$, then we get the following identity: $\left(\sum_{i=1}^{k} q_{i}\right) \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)\left(\sum_{i=1}^{k} q_{i}\right)=\widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right)$. Also, we obtain that algebra $\left(\sum_{i=1}^{k} q_{i}\right) \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)\left(\sum_{i=1}^{k} q_{i}\right)$ is isomorphic to path algebra $F \mathbb{Q}_{\Gamma[k]}$ of double quiver $\mathbb{Q}_{\Gamma[k]}$ with k vertices.

5.2 Endomorphisms and automorphisms of $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$-modules.

Consider n-dimensional $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$-module V. Applying functor $\operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(-, V)$ to sequence (74), we get the following exact sequence:

$$
\begin{gather*}
0 \longrightarrow \operatorname{Hom}_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)}(F P \oplus F(1-P), V) \longrightarrow V \longrightarrow \operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right), V\right) \tag{78}\\
\longrightarrow \operatorname{Ext}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}^{1}(F P \oplus F(1-P), V) \longrightarrow 0 \tag{79}
\end{gather*}
$$

Also, applying functor $-\otimes_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)} V$ to (74), we get the following exact sequence:

$$
\begin{gather*}
0 \longrightarrow \operatorname{Tor}_{1}^{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(F P \oplus F(1-P), V) \longrightarrow \widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right) \otimes_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)} V \longrightarrow V \tag{80}\\
\longrightarrow(F P \oplus F(1-P)) \otimes_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)} V \longrightarrow 0 \tag{81}
\end{gather*}
$$

Denote by $\operatorname{Ker}_{P}, \operatorname{Ker}_{1-P}, \operatorname{Coker}_{P}$ and $\operatorname{Coker}_{1-P}$ the $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - modules: $\operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(F P, V)$, $\operatorname{Hom}_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)}(F(1-P), V), F P \otimes_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)} V$ and $F(1-P) \otimes_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)} V$ respectively. It is easy that Coker_{P} and Ker_{P}
are direct sum of several copies of $F P$'s, Coker $_{1-P}$ and Ker $_{1-P}$ are direct sum of several copies of $F(1-P)$'s. Denote by Im the image of $\widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right) \otimes_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)} V$ in $V . \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$-module Im has the following description: consider subspace of V generated by $\operatorname{Im} q_{j}, j=1, \ldots, k$ and $\operatorname{Im} P q_{j}, j=1, \ldots, k$. It is easy that this subspace is $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ submodule and one can show that this submodule is Im. It is clear that we have the exact sequence:

$$
\begin{equation*}
0 \longrightarrow \operatorname{Im} \longrightarrow V \longrightarrow \operatorname{Coker}_{P} \oplus \operatorname{Coker}_{1-P} \longrightarrow 0 \tag{82}
\end{equation*}
$$

Lemma 32. Any $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$-endomorphism g of V induces $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$-endomorphisms g^{\prime} and $g^{\prime \prime}$ of Im and $\operatorname{Coker}_{P} \oplus$ Coker $_{1-P}$ respectively. Also, we have the following diagram:

Also, $g^{\prime \prime}$ transforms Coker $_{P}$ into Coker_{P} and Coker $_{1-P}$ into Coker $_{1-P}$.
Proof. It is sufficient to prove that restriction of g to Im is endomorphism of Im. As we know, Im is generated by $\operatorname{Im} P q_{j}$ and $\operatorname{Im} q_{j}$. It is clear that $g\left(P q_{j} v\right)=P q_{j} g(v)$ and $g\left(q_{j} v\right)=q_{j} g(v)$. Therefore, g preserves Im. Denote this endomorphism of Im by g^{\prime}. Thus, we have induced endomorphism $g^{\prime \prime}$ of $\operatorname{Coker}_{P} \oplus \operatorname{Coker}_{1-P}$. Also, it is easy that $g^{\prime \prime}$ preserves Coker $_{P}$ and Coker $_{1-P}$.

Proposition 33. We have the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{P}, V\right) \oplus \operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{1-P}, V\right) \longrightarrow \operatorname{End}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)} V \longrightarrow \operatorname{End}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)} \operatorname{Im} . \tag{84}
\end{equation*}
$$

Moreover, $\operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{P}, V\right)=\operatorname{Hom}_{F}\left(\operatorname{Coker}_{P}, \operatorname{Ker}_{P}\right)$ and $\operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{1-P}, V\right)=\operatorname{Hom}_{F}\left(\operatorname{Coker}_{1-P}, \operatorname{Ker}_{1-P}\right)$.
Proof. Applying functor $\operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(-, V)$ to sequence (82), we get the following sequence:

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{P}, V\right) \oplus \operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{1-P}, V\right) \longrightarrow \operatorname{End}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)} V \longrightarrow \operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(\operatorname{Im}, V) \tag{85}
\end{equation*}
$$

Let us prove that $\operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(\operatorname{Im}, V)=\operatorname{End}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)} \operatorname{Im}$. Applying functor Hom $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)(\operatorname{Im},-)$ to sequence (82), we get the sequence:

$$
\begin{equation*}
0 \longrightarrow \operatorname{End}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)} \operatorname{Im} \longrightarrow \operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(\operatorname{Im}, V) \longrightarrow \operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Im}, \operatorname{Coker}_{P} \oplus \operatorname{Coker}_{1-P}\right) \tag{86}
\end{equation*}
$$

Direct calculations show us that $\operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Im}, \operatorname{Coker}_{P} \oplus \operatorname{Coker}_{1-P}\right)=0 . \quad$ Further, calculate $\operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{P}, V\right)$. Denote by coker $_{P}$ the dimension of Coker $_{P}$. As we know, $\operatorname{Coker}_{P} \cong F P^{\text {coker }_{P}}$. Using projective resolution, we get the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{P}, V\right) \longrightarrow \operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\widetilde{\mathcal{A}}_{k}^{+}\left(r_{i}\right), V\right)^{\text {coker }_{P}} \longrightarrow \operatorname{Hom}_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right), V\right)^{\text {coker }_{P}} \tag{87}
\end{equation*}
$$

It can be shown in usual way that $\operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{P}, V\right)=\operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{P}, \operatorname{Ker}_{P}\right)=\operatorname{Hom}_{F}\left(\operatorname{Coker}_{P}, \operatorname{Ker}_{P}\right)$. One can prove analogous statement for $\operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{1-P}, V\right)$.

Consider n-dimensional $B_{k, n}$-module V. Using diagram (42), we get $B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ - module $\phi^{*} V, B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ - module $\phi^{\prime *} V$ and $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - module $i^{*} \circ \phi^{*} V=i^{\prime *} \circ \phi^{\prime *} V$. Denote these modules by V. Consider $B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ module V. As we know from [1], we have the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}\left(\text { Coker}^{\prime}, \operatorname{Ker}^{\prime}\right) \longrightarrow \operatorname{End}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)} V \longrightarrow F \longrightarrow 0 \tag{88}
\end{equation*}
$$

where Coker' and $\operatorname{Ker}^{\prime}$ are $B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ - modules $\operatorname{Hom}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(F, V)$ and $F \otimes_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)} V$ respectively. Note that this exact sequence is split, i.e. $\operatorname{End}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V)=F \oplus \operatorname{Hom}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}\left(\operatorname{Coker}^{\prime}, \operatorname{Ker}^{\prime}\right)$. It can be shown in usual way that i^{*} Coker $^{\prime}=\operatorname{Coker}_{1-P}$ and $i^{*} \operatorname{Ker}^{\prime}=\operatorname{Ker}_{1-P}$. One can consider the case of algebra $B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$. Namely, we have the exact sequence:

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}_{B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)}\left(\operatorname{Coker}^{\prime \prime}, \operatorname{Ker}^{\prime \prime}\right) \longrightarrow \operatorname{End}_{B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)} V \longrightarrow F \longrightarrow 0 \tag{89}
\end{equation*}
$$

where Coker" and $\mathrm{Ker}^{\prime \prime}$ are $B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ - modules $\operatorname{Hom}_{B_{\mathbf{r}}\left(\Gamma_{k, n-m)}\right)}(F, V)$ and $F \otimes_{B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)} V$ respectively. It can be shown in usual way that $i^{\prime *} \operatorname{Coker}^{\prime \prime}=\operatorname{Coker}_{P}$ and $i^{\prime *} \operatorname{Ker}^{\prime \prime}=\operatorname{Ker}_{P}$. Also, note that

$$
\begin{equation*}
\operatorname{Hom}_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)}(F P, F(1-P))=\operatorname{Hom}_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)}(F(1-P), F P)=0 \tag{90}
\end{equation*}
$$

It is easy that if $s \in \operatorname{Hom}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}\left(\operatorname{Coker}^{\prime}, \operatorname{Ker}^{\prime}\right)$, then we can define element of $\operatorname{End}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V)$ as follows. We have natural morphisms: $V \rightarrow$ Coker $^{\prime}$ and $\operatorname{Ker}^{\prime} \rightarrow V$. Thus, we have the element of $\operatorname{End}_{B_{\mathbf{r}}\left(\Gamma_{k}, m\right)}(V)$ defined as composition:

$$
\begin{equation*}
V \longrightarrow \text { Coker }^{\prime} \xrightarrow{s} \text { Ker }^{\prime} \longrightarrow V \text {. } \tag{91}
\end{equation*}
$$

We will denote this endomorphism by \widehat{s}.
Thus, we can define composition of $s_{1}, s_{2} \in \operatorname{Hom}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}\left(\operatorname{Coker}^{\prime}, \operatorname{Ker}^{\prime}\right)$. Analogously, one can define composition in the case of algebras $B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ and $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$. It is easy that natural morphisms:

$$
\begin{equation*}
\operatorname{End}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V) \rightarrow \operatorname{End}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(V), \operatorname{End}_{B_{\mathbf{r}}\left(\Gamma_{k, n-m)}\right.}(V) \rightarrow \operatorname{End}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(V) \tag{92}
\end{equation*}
$$

are ring monomorphisms.
Proposition 34. Subrings $\operatorname{End}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V)$ and $\operatorname{End}_{B_{\mathbf{r}}\left(\Gamma_{k, n-m)}\right.}(V)$ of $\operatorname{End}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(V)$ commute.
Proof. Actually, consider $\alpha_{1} 1+s_{1} \in \operatorname{End}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V), \alpha_{2} 1+s_{2} \in \operatorname{End}_{B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)}(V)$, where $s_{1} \in$ $\operatorname{Hom}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}\left(\operatorname{Coker}^{\prime}, \operatorname{Ker}^{\prime}\right)=\operatorname{Hom}_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{1-P}, \operatorname{Ker}_{1-P}\right)$ and $s_{2} \in \operatorname{Hom}_{B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)}\left(\operatorname{Coker}^{\prime \prime}, \operatorname{Ker}^{\prime \prime}\right)=$ $\operatorname{Hom}_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\operatorname{Coker}_{P}, \operatorname{Ker}_{P}\right)$. As we know, endomorphism $\widehat{s_{1}} \circ \widehat{s_{2}}$ is defined as composition:

$$
\begin{equation*}
V \longrightarrow \operatorname{Coker}_{P} \xrightarrow{s_{2}} \operatorname{Ker}_{P} \longrightarrow V \longrightarrow \operatorname{Coker}_{1-P} \xrightarrow{s_{1}} \operatorname{Ker}_{P} \longrightarrow V \tag{93}
\end{equation*}
$$

As we know, $\operatorname{Ker}_{P}=\oplus F P$ and $\operatorname{Coker}_{1-P}=\oplus F(1-P)$. Thus, composition $\operatorname{Ker}_{P} \rightarrow V \rightarrow \operatorname{Coker}_{1-P}$ is zero by (90). Hence, $\widehat{s_{1}} \circ \widehat{s_{2}}=0$. Similarly, $\widehat{s_{2}} \circ \widehat{s_{1}}=0$. Therefore,

$$
\begin{equation*}
\left(\alpha_{1} 1+s_{1}\right) \circ\left(\alpha_{2} 1+s_{2}\right)=\alpha_{1} \alpha_{2} 1+\alpha_{1} s_{2}+\alpha_{2} s_{1}=\left(\alpha_{2} 1+s_{2}\right) \circ\left(\alpha_{1} 1+s_{1}\right), \alpha_{i} \in F, i=1,2 . \tag{94}
\end{equation*}
$$

Note that we have the following identity:

$$
\begin{equation*}
\left(\alpha_{1} 1+s_{1}\right) \circ\left(\alpha_{2} 1+s_{2}\right)=\alpha_{1}\left(\alpha_{2} 1+s_{2}\right)+\alpha_{2}\left(\alpha_{1} 1+s_{1}\right)-\alpha_{1} \alpha_{2} 1 \tag{95}
\end{equation*}
$$

Recall the following trivial facts. It is well known that for any algebra A and A-module $V: A u t_{A}(V)$ is a group of units of $\operatorname{End}_{A}(V)$. Also, note that for any algebra A and A - module V group $A u t_{A}(V)$ has central subgroup F^{*}.

Consider the following groups: $A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(V), A u t_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V), A u t_{B_{\mathbf{r}}\left(\Gamma_{k, n-m)}\right)}(V)$ and $A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(\operatorname{Im})$. It is easy that we can consider $\operatorname{Aut}_{B_{\mathbf{r}}\left(\Gamma_{k, n-m)}\right.}(V), \operatorname{Aut}_{\mathrm{Br}_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V)$ as subgroups of $A u t_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)}(V)$. Also, we have a natural group homomorphism: $f: A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(V) \rightarrow A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(\operatorname{Im})$. Fix element $g \in A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(V)$ of the following type:

$$
\begin{equation*}
g=\alpha 1+s_{1}+s_{2}, s_{1} \in \operatorname{Hom}_{F}\left(\operatorname{Coker}_{P}, \operatorname{Ker}_{P}\right), s_{2} \in \operatorname{Hom}_{F}\left(\operatorname{Coker}_{1-P}, \operatorname{Ker}_{1-P}\right) \tag{96}
\end{equation*}
$$

Using formula (95), we get the following factorization of g :

$$
\begin{equation*}
g=\left(\alpha_{1} 1+\frac{1}{\alpha_{2}} s_{1}\right) \circ\left(\alpha_{2} 1+\frac{1}{\alpha_{1}} s_{2}\right) \in A u t_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V) \cdot A u t_{B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)}(V), \tag{97}
\end{equation*}
$$

where $\alpha_{1} \alpha_{2}=\alpha$. Consider quotients $A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(V) / F^{*}, A u t_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V) / F^{*}, A u t_{B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)}(V) / F^{*}$ and $A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(\operatorname{Im}) / F^{*}$. We have natural morphism: $f: A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(V) / F^{*} \rightarrow A u t_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V) / F^{*}$. Formula (97) means that $\operatorname{Ker} f=\operatorname{Aut}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V) / F^{*} \times \operatorname{Aut}_{B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)}(V) / F^{*}$. Using these arguments, we get the following proposition:
Proposition 35. Fix $B_{k, n}$ - module V. Consider V as module over $B_{\mathbf{r}}\left(\Gamma_{k, m}\right), B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ and $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$-module by commutative diagram (42). We have the following immersion of the varieties:

$$
\begin{equation*}
\operatorname{Aut}_{B_{\mathbf{r}}\left(\Gamma_{k, m}\right)}(V) \backslash \operatorname{Aut}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(V) / \operatorname{Aut}_{B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)}(V) \subseteq A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(\operatorname{Im}) / F^{*} \tag{98}
\end{equation*}
$$

We can introduce the notion of graph $G_{k}(\rho)$ of $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - representation ρ. This notion is quite similar to notion of graph of $\mathcal{A}_{n}\left(r_{i}\right)$-representation ρ. Graph $G_{k}(\rho)$ has k vertices labeled by $i, i=1, \ldots, k$. Two vertices i and j are connected by edge iff $\rho\left(q_{i} P q_{j}\right) \neq 0$ or $\rho\left(q_{j} P q_{i}\right) \neq 0$. Also, we have well-defined notion of graph of $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$-module.

Let us formulate the following proposition:
Proposition 36. Assume that $r_{i} \neq 0$. Consider $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$-representation ρ of dimension vector $(1, \ldots, 1, m)$. Suppose that ρ satisfies to condition: space of representation is generated by $\operatorname{Im} \rho\left(q_{i}\right), \operatorname{Im} \rho\left(P q_{i}\right)$. Then group Aut $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ (ρ) is a subgroup of algebraic torus $\left(F^{*}\right)^{k}$. Assume that $\left(F^{*}\right)^{s} \subseteq$ Aut $_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(\rho)$ then graph $G_{k}(\rho)$ has at least s connected components.

Proof. Denote by V_{ρ} the $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - module corresponding to ρ. Consider $f \in A u \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ (ρ). Denote by $v_{i}, i=$ $1, \ldots, k$ the eigenvectors of $\rho\left(q_{i}\right), i=1, \ldots, k$. It is easy that $f\left(v_{i}\right)=\alpha_{i} v_{i}$ for some $\alpha_{i} \in F^{*}, i=1, \ldots, k$. Consider $P v_{i}, i=1, \ldots, k$. Clearly, $f\left(\rho(P) v_{i}\right)=\alpha_{i} \rho(P) v_{i}$. Since space V_{ρ} is generated by $\operatorname{Im} \rho\left(q_{i}\right), \operatorname{Im} \rho\left(P q_{i}\right)$, we get the definition of f on V_{ρ}. Therefore, we have immersion of groups: Aut $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)(\rho) \subset\left(F^{*}\right)^{k}$.

We have the following relation: $\rho\left(q_{i}\right) \rho(P) v_{j}=x_{i j} v_{i}$ for some $x_{i j} \in F$. Applying f, we get the following:

$$
\begin{equation*}
f\left(\rho\left(q_{i}\right) \rho(P) v_{j}\right)=\rho\left(q_{i}\right) \rho(P) f\left(v_{j}\right)=\alpha_{j} \rho\left(q_{i}\right) \rho(P) v_{j}=\alpha_{j} x_{i j} v_{i} \tag{99}
\end{equation*}
$$

From other hand, $f\left(\rho\left(q_{i}\right) \rho(P) v_{j}\right)=f\left(x_{i j} v_{i}\right)=x_{i j} \alpha_{i} v_{j}$. Therefore, $x_{i j}\left(\alpha_{i}-\alpha_{j}\right)=0$. Note that if $x_{i j}=0$, then $\rho\left(q_{i} P v_{j}\right)=\rho\left(q_{i} P q_{j} v_{j}\right)=0$ and $\rho\left(q_{i} P q_{j}\right)=0$. The rest is easy.

Also, let us note the following useful property:
Proposition 37. Consider $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - modules Im and V from exact sequence (82). Then graphs $G_{k}(\operatorname{Im})$ and $G_{k}(V)$ are isomorphic.

Proof. It is easy that $G_{k}(\operatorname{Im}) \subseteq G_{k}(V)$. Thus, We have to show that $G_{k}(V) \subseteq G_{k}(\operatorname{Im})$. Recall that submodule Im is generated by vectors $q_{j} v, v \in V$ and $P q_{j} v, v \in V$. It is easy that if $q_{i} P q_{j} v \neq 0$ for some vector $v \in V$, then $q_{i} P q_{j} v=q_{i} P q_{j}\left(q_{j} v\right) \neq 0$ for some vector $q_{j} v \in \operatorname{Im}$. Thus, if vertices i and j are connected in $G_{k}(V)$, then they are connected in $G_{k}(\mathrm{Im})$ and, hence we have proved the required statement.

5.3 Properties of $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]$.

Consider algebras $\operatorname{Pr}\left(\Gamma_{n, 1}\right), \operatorname{Pr}\left(\Gamma_{k, 1}\right)$. It is easy that $\mathcal{A}_{n}\left(r_{i}\right), \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ are quotients of $\operatorname{Pr}\left(\Gamma_{n, 1}\right)$ and $\operatorname{Pr}\left(\Gamma_{k, 1}\right)$ by relations: $q_{i} P q_{i}-r_{i} q_{i}, i=1, \ldots, n, \sum_{i=1}^{n} q_{i}-1$ and $q_{i} P q_{i}-r_{i} q_{i}, i=1, \ldots, k$ respectively. It can be shown in usual way that $\boldsymbol{\operatorname { R e p }}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m]$ and $\boldsymbol{\operatorname { R e p }}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]$ are fibers of morphisms:

$$
\begin{equation*}
t r_{n, 1}: \boldsymbol{\operatorname { R e p }}_{n} \operatorname{Pr}\left(\Gamma_{n, 1}\right)[\overrightarrow{1}, m] \rightarrow F^{n-1}, t r_{k, 1}: \boldsymbol{\operatorname { R e p }}_{n} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[\overrightarrow{1}, m] \rightarrow F^{k} \tag{100}
\end{equation*}
$$

respectively. Morphisms $t r_{n, 1}$ and $t r_{k, 1}$ are defined by formulas: $\operatorname{tr} r_{n, 1}: \rho \mapsto\left(\operatorname{Tr} \rho\left(P q_{1}\right), \ldots, \operatorname{Tr} \rho\left(P q_{n}\right)\right)$ and $t r_{k, 1}: \rho \mapsto\left(\operatorname{Tr} \rho\left(P q_{1}\right), \ldots, \operatorname{Tr} \rho\left(P q_{k}\right)\right)$. Also, F^{n-1} is a affine space with coordinates r_{1}, \ldots, r_{n} and relation $r_{1}+\ldots r_{n}=m . F^{k}$ is a affine space with coordinates r_{1}, \ldots, r_{k}.

Fix $m \in\{2, \ldots, n-2\}$. Consider following commutative diagram of varieties:

Morphisms $p r_{1}, p r_{2}$ are natural projections defined by formulas: $p r_{1}:\left(q_{1}, \ldots, q_{n}, P\right) \mapsto\left(q_{1}, \ldots, q_{k}, P\right)$ and $p r_{2}:\left(r_{1}, \ldots, r_{n}\right) \mapsto\left(r_{1}, \ldots, r_{k}\right)$. As we know from corollary 11, varieties $\boldsymbol{\operatorname { R e p }}_{n} \operatorname{Pr}\left(\Gamma_{n, 1}\right)[(\overrightarrow{1}, m)]$ and $\boldsymbol{\operatorname { R e p }}_{n} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[(\overrightarrow{1}, m)]$ are irreducible. Clearly, morphisms $p r_{1}$ and $p r_{2}$ are surjective.

Lemma 38. Morphism $\operatorname{tr}_{k, 1}$ are surjective.
Proof. As we know, fibers of morphism $t r_{n, 1}$ are varieties $\operatorname{Rep}_{n} \mathcal{A}_{n}\left(r_{i}\right)[(\overrightarrow{1}, m)]$. Recall that algebra $\mathcal{A}_{n}\left(r_{i}\right)$ and $\Pi_{\vec{\lambda}}$ with vector $\vec{\lambda}=\left(-r_{1}, \ldots,-r_{n}, 1\right)$ are Morita-equivalent. It is well-known that there exists $\Pi_{\vec{\lambda}}$-representation of dimension vector $(1, \ldots, 1, m)$ iff $r_{1}+\ldots+r_{n}=m$. Thus, $\boldsymbol{\operatorname { R e p }}_{n} \mathcal{A}_{n}\left(r_{i}\right)[(\overrightarrow{1}, m)]$ is non-empty for any r_{1}, \ldots, r_{n} such that $r_{1}+\ldots+r_{n}=m$. Composition of morphisms $t r_{\Gamma_{n, 1}} \circ p r_{2}$ is surjective, and, hence, morphism $\operatorname{tr}_{k, 1}$ is surjective.

Proposition 39. Consider general n-dimensional representation ρ with dimension vector $(\overrightarrow{1}, m)$ of algebra $\operatorname{Pr}\left(\Gamma_{k, 1}\right)$. Then we have the following cases:

- if $n>k+m, m>k$, then $\operatorname{dim}_{F} \operatorname{Aut}_{\operatorname{Pr}\left(\Gamma_{k, 1}\right)}(\rho)=(n-m-k)^{2}+(m-k)^{2}+1$,
- if $n \leq m+k, m>k$, then $\operatorname{dim}_{F} A u t_{\mathbf{P r}\left(\Gamma_{k, 1}\right)}(\rho)=(m-k)^{2}+1$,
- if $n>m+k, m \leq k$, then $\operatorname{dim}_{F} \operatorname{Aut}_{\operatorname{Pr}\left(\Gamma_{k, 1}\right)}(\rho)=(n-m-k)^{2}+1$,
- if $n \leq m+k, m \leq k$, then $\operatorname{dim}_{F} A u t_{\operatorname{Pr}\left(\Gamma_{k, 1}\right)}(\rho)=1$.

Proof. Fix representation $\rho \in \operatorname{Rep}_{n} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[\overrightarrow{1}, m]$. Denote by V_{ρ} the $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - module corresponding to ρ. Assume that $r_{i}=\operatorname{Tr} \rho\left(P q_{i}\right) \neq 0$, then we can consider ρ as representation of $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$. In this case, using sequence (84), we get the following:

$$
\begin{equation*}
\operatorname{dim}_{F} A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(V_{\rho}\right) \leq \operatorname{dim}_{F} \operatorname{Hom}_{F}\left(\operatorname{Coker}_{P}, \operatorname{Ker}_{P}\right)+\operatorname{dim}_{F}\left(\operatorname{Coker}_{1-P}, \operatorname{Ker}_{1-P}\right)+\operatorname{dim}_{F} A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}(\operatorname{Im}), \tag{102}
\end{equation*}
$$

where Im is a $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$-submodule of V_{ρ} generated by $\operatorname{Im} \rho\left(q_{j}\right)$ and $\operatorname{Im} \rho\left(P q_{j}\right)$. Consider subvariety $U \subset$ $\boldsymbol{\operatorname { R e p }}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]$ of all representations $\rho \in \boldsymbol{\operatorname { R e p }} \tilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]$ satisfying to conditions:

- $\operatorname{dim}_{F} \operatorname{Coker}_{P}=\operatorname{dim}_{F} \operatorname{Ker}_{P}=m-k$ if $m \geq k$ and zero if $m<k$,
- $\operatorname{dim}_{F} \operatorname{Coker}_{1-P}=\operatorname{dim}_{F} \operatorname{Ker}_{1-P}=n-m-k$ if $n \geq m+k$ and zero if $n<m+k$
- Aut ${\widetilde{\mathcal{A}_{k}\left(r_{i}\right)}} \operatorname{Im}=F^{*}$.

If $A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)} \operatorname{Im}=F^{*}$, then inequality (102) transforms to identity. It can be shown in usual way that subvariety U is dense in $\operatorname{Rep}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]$. Further, since $\operatorname{tr}_{k, 1}$ is surjective, we get that $\operatorname{tr}_{k, 1}^{-1}(U)$ is dense in $\boldsymbol{\operatorname { R e p }}_{n} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[\overrightarrow{1}, m]$.

Corollary 40. Consider variety $\mathcal{M}_{n} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[\overrightarrow{1}, m]$. Then we have the following cases:

- if $n>k+m, m>k$, then $\operatorname{dim}_{F} \mathcal{M}_{n} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[\overrightarrow{1}, m]=2 k(n-1)+2 m(n-m)-k(k-1)-n^{2}+(n-m-k)^{2}+(m-k)^{2}+1=$ $k^{2}-k+1$,
- if $n \leq m+k, m>k$, then $\operatorname{dim}_{F} \mathcal{M}_{n} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[\overrightarrow{1}, m]=2 k(n-1)+2 m(n-m)-k(k-1)-n^{2}+(m-k)^{2}+1=$ $2 k n-k+2 m n-m^{2}-n^{2}-2 m k+1$,
- if $n>m+k, m \leq k$, then $\operatorname{dim}_{F} \mathcal{M}_{n} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[\overrightarrow{1}, m]=2 k(n-1)+2 m(n-m)-k(k-1)-n^{2}+(n-m-k)^{2}+1=$ $-k-m^{2}+2 m k+1$,
- if $n \leq m+k, m \leq k$, then $\operatorname{dim}_{F} \mathcal{M}_{n} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[\overrightarrow{1}, m]=2 k(n-1)+2 m(n-m)-k(k-1)-n^{2}+1=$ $2 k n-k+2 m n-2 m^{2}-k^{2}-n^{2}+1$.

Proposition 41. Variety $\boldsymbol{\operatorname { R e p }}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]$ is irreducible for any $\left(r_{1}, \ldots, r_{k}\right) \in F^{k}$. And, hence, variety $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]$ is irreducible too.

Proof. Fix point $p t=\left(r_{1}, \ldots, r_{k}\right) \in F^{k}$. Recall that $\operatorname{tr}_{\Gamma_{k, 1}}^{-1}(p t)=\boldsymbol{\operatorname { R e p }}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]$. Denote by U^{\prime} the affine space $p r_{2}^{-1}(p t)$. Thus, we obtain the following commutative diagram:

Consider surjective morphism $\operatorname{tr}_{\Gamma_{n, 1}}: \operatorname{tr}_{\Gamma_{n, 1}}^{-1}\left(U^{\prime}\right) \rightarrow U^{\prime}$. Using corollary 26, we obtain that for any point $u=\left(r_{1}, \ldots, r_{n}\right) \in U^{\prime}$, variety $\operatorname{tr}_{\Gamma_{n, 1}}^{-1}(u)=\boldsymbol{R e p}_{n} \mathcal{A}_{n}\left(r_{i}\right)[(\overrightarrow{1}, m)]$ is irreducible and has dimension $2(n-m-1)(m-1)$. Recall the following property of morphisms: if Y is irreducible, morphism $f: X \rightarrow Y$ is a dominant, all fibers are irreducible and has the same dimension, then X is an irreducible variety. Using this property, we get $t r_{\Gamma_{n, 1}}^{-1}\left(U^{\prime}\right)$ is irreducible for any irreducible $U^{\prime} \subseteq F^{n-1}$. Because of morphism $p r_{1}$ is surjective, we obtain that variety $\boldsymbol{\operatorname { R e p }}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]$ is irreducible.

As we know from proposition 26, morphism $t r_{n, 1}$ is equidimensional. One can prove that morphisms $p r_{1}$ and $p r_{2}$ are equidimensional. Using irreducibility of the varieties and surjectivity of the morphisms, we get that morphism $t r_{k, 1}$ is equidimensional.

Consider the following commutative diagram:

where $\pi_{n, 1}, \pi_{k, 1}$ are natural surjective morphisms, morphisms $\operatorname{Tr}_{n, 1}, \operatorname{Tr}_{k, 1}$ are defined obviously. Clearly, $\operatorname{Tr}_{n, 1} \circ \pi_{n, 1}=t r_{n, 1}, \operatorname{Tr}_{k, 1} \circ \pi_{k, 1}=t r_{k, 1}$.

Proposition 42. Morphism $\operatorname{Tr}_{k, 1}$ is equidimensional. For $k<n$ and any $r_{i} \in F, i=1, \ldots, k$

$$
\begin{equation*}
\operatorname{dim}_{F} \operatorname{Rep}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]=k(2 n-k-2)+2 m(n-m) \tag{105}
\end{equation*}
$$

There are several possibilities for $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]$:

- if $n \leq m+k, m \leq k$, then $\operatorname{dim}_{\mathrm{F}} \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]=k(2 n-k-2)+2 m(n-m)-n^{2}+1$.
- if $n>m+k, m \leq k$, then $\operatorname{dim}_{\mathrm{F}} \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]=k(2 n-k-2)+2 m(n-m)-n^{2}+(n-m-k)^{2}+1=$ $(2 k-m-1)(m-1)$,
- if $n \leq m+k, m>k$, then $\operatorname{dim}_{F} \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]=k(2 n-k-2)+2 m(n-m)-n^{2}+(m-k)^{2}+1=$ $(2 k+m-n-1)(n-m-1)$,
- if $n>m+k, m>k$, then $\operatorname{dim}_{\mathrm{F}} \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]=k(2 n-k-2)+2 m(n-m)-n^{2}+(n-m-k)^{2}+(m-k)^{2}+1=$ $(k-1)^{2}$.

Proof. Since $t r_{n, 1}$ and $p r_{2}$ are surjective and equidimensional, we get that $p r_{2} \circ t r_{n, 1}=t r_{k, 1} \circ p r_{1}$ is equidimensional.

Let us formulate the following useful obvious statement: Assume that X, Y, Z are irreducible varieties. Morphisms $f: X \rightarrow Z, g: X \rightarrow Y$ and $h: Y \rightarrow Z$ are surjective morphisms with relation: $f=h \circ g$. Suppose that f is equidimensional. Then h and g are equidimensional.

Using this statement and surjectivity of $p r_{1}$ and $t r_{k, 1}$, we obtain that $p r_{1}$ and $t r_{k, 1}$ are equidimensional. Also, we get that $T r_{k, 1}$ and $\pi_{k, 1}$ are equidimensional. Also, we get that morphism $p_{\mathcal{M}}$ is surjective and equidimensional.

As we know from corollary 11, $\operatorname{dim}_{F} \operatorname{Rep}_{n} \operatorname{Pr}\left(\Gamma_{n, 1}\right)[(\overrightarrow{1}, m)]=n(n-1)+2 m(n-m)$. Using dimension of fiber, we get $\operatorname{dim}_{F} \operatorname{Rep}_{n} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[(\overrightarrow{1}, m)]=n(n-1)+2 m(n-m)-(n-k)(n-k-1)$. Using equidimensionality of $t r_{k, 1}$, we obtain that

$$
\operatorname{dim}_{F} \mathbf{R e p}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]=k(2 n-k-2)+2 m(n-m)
$$

Analogous arguments prove the rest.
Let us come back to algebra $F \mathbb{Q}_{\Gamma[k]}$ from subsection 5.1. Denote by $i, i=1, \ldots, k$ and $\beta_{i j}$ the vertices and arrows of the quiver $\mathbb{Q}_{\Gamma[k]}$. For any $i=1, \ldots, k$, let us denote by e_{i} the projectors corresponding to vertex v_{i}. As we know, we have the following isomorphism of the algebras:

$$
\begin{equation*}
F \mathbb{Q}_{\Gamma[k]} \cong\left(\sum_{i=1}^{k} q_{i}\right) \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)\left(\sum_{i=1}^{k} q_{i}\right) . \tag{106}
\end{equation*}
$$

defined by rule:

$$
\begin{equation*}
e_{i} \mapsto q_{i}, \beta_{i j} \mapsto q_{i} P q_{j} \tag{107}
\end{equation*}
$$

Thus, we have the following isomorphism:

$$
\begin{equation*}
\operatorname{Tr} F \mathbb{Q}_{\Gamma[k]}=F \mathbb{Q}_{\Gamma[k]} /\left[F \mathbb{Q}_{\Gamma[k]}, F \mathbb{Q}_{\Gamma[k]}\right] \cong \operatorname{Tr} \widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right)=\widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right) /\left[\widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right), \widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right)\right] \tag{108}
\end{equation*}
$$

Actually, consider element $q_{i} P$. We have the following identity: $q_{i} P-r_{i} q_{i}=q_{i} P-q_{i} P q_{i}=\left[q_{i} P, q_{i}\right]$. Therefore, any element of type $P q_{i_{1}} P \ldots P q_{i_{s}} P$ can be expressed as follows: $q_{i_{1}} P \ldots P q_{i_{1}}+$ commutators. It is easy that $\operatorname{Tr} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)=F \operatorname{Tr} 1 \oplus F \operatorname{Tr} P \oplus \operatorname{Tr} \widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right)$. Denote by $\mathcal{M} \mathbb{Q}_{\Gamma[k]}[\overrightarrow{1}]$ the variety of $F \mathbb{Q}_{\Gamma[k]}$ - modules of dimension vector $\overrightarrow{1}$. We have the following result:
Proposition 43. - $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m] \subset \mathcal{M} \mathbb{Q}_{k}[\overrightarrow{1}]$.

- if $m \geq k, n \geq m+k$, then $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m] \cong \mathcal{M} \mathbb{Q}_{k}[\overrightarrow{1}]$.

Proof. Prove the first statement. There is a functor: $\theta_{1}: \widetilde{\mathcal{A}}_{\mathrm{k}}\left(\mathrm{r}_{\mathrm{i}}\right)-\bmod \rightarrow \mathrm{F} \mathbb{Q}_{\Gamma[\mathrm{k}]}-\bmod$ defined by correspondence:

$$
\begin{equation*}
\theta_{1}: V \mapsto \operatorname{Hom}_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(\widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \sum_{i=1}^{k} q_{i}, V\right) \tag{109}
\end{equation*}
$$

Consider morphism $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m] \rightarrow \mathcal{M} F \mathbb{Q}_{\Gamma[k]}[\overrightarrow{1}]$ defined by this correspondence. It is well-known from geometric invariant theory that point of moduli variety corresponds to closed orbit. Using this statement, we get that two $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - modules V_{1} and V_{2} such that $\left[V_{1}\right]=\left[V_{2}\right] \in \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ iff their characters are the same, i.e. $\operatorname{Tr}_{V_{1}}(x)=\operatorname{Tr}_{V_{2}}(x)$ for any $x \in \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$. Let us prove that if V_{1} and V_{2} corresponds to fixed $W \in \mathcal{M} F \mathbb{Q}_{\Gamma[k]}[\overrightarrow{1}]$,
then characters of V_{1} and V_{2} are the same. Using isomorphism (108), we get that $\operatorname{Tr}_{V_{1}}(x)=\operatorname{Tr}_{V_{2}}(x)$ for any $x \in \widetilde{\mathcal{A}}_{k}^{++}\left(r_{i}\right)$ and $\operatorname{Tr} 1=n, \operatorname{Tr} P=m$. Thus, we have proved the first statement.

Using isomorphism $F \mathbb{Q}_{\Gamma[k]} \cong \sum_{i=1}^{k} q_{i} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \sum_{i=1}^{k} q_{i}$, we get the functor: $\theta_{2}: \mathrm{F} \mathbb{Q}_{\Gamma[\mathrm{k}]}-\bmod \rightarrow \widetilde{\mathcal{A}}_{\mathrm{k}}\left(\mathrm{r}_{\mathrm{i}}\right)-\bmod$ defined by rule:

$$
\begin{equation*}
\theta_{2}: W \mapsto \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \sum_{i=1}^{k} q_{i} \otimes_{F \mathbb{Q}_{\Gamma[k]}} W \tag{110}
\end{equation*}
$$

Fix $F \mathbb{Q}_{\Gamma[k]}$-module W. In this case $\theta_{2}(W) \in \mathcal{M}_{2 k} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, k]$. We can consider the following $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$-module: $F P^{\oplus(m-k)} \oplus F(1-P)^{\oplus(n-m-k)} \oplus \theta_{2}(W) \in \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]$. Since θ_{1} and θ_{2} are adjoint, we get the required statement.

As we know, we have analogous statement for algebra $B_{\mathbf{r}}(\Gamma)($ cf.BZ $)$. Let $\Delta(\Gamma)$ be a Laplacian of graph Γ. Let us formulate the following useful proposition for $\mathcal{M}_{n} B_{\mathbf{r}}(\Gamma)$ [1]:
Proposition 44. We have the following immersion: $\mathcal{M}_{n} B_{\mathbf{r}}(\Gamma)[1] \subset\left(F^{*}\right)^{r k H_{1}(\Gamma)}$. Variety $\mathcal{M}_{n} B_{\mathbf{r}}(\Gamma)[1]$ is given by condition $\operatorname{rank} \Delta(\Gamma) \leq n$. In particular, if $|V(\Gamma)| \leq n$, then $\mathcal{M}_{n} B_{\mathbf{r}}(\Gamma)[1] \cong\left(F^{*}\right)^{r k H_{1}(\Gamma)}$.

Also, note the following useful property of varieties $\mathcal{M}_{n} B_{\mathbf{r}}(\Gamma)$: if $n_{1} \leq n_{2}$, then there is an immersion: $\mathcal{M}_{n_{1}} B_{\mathbf{r}}(\Gamma)[\alpha] \rightarrow \mathcal{M}_{n_{2}} B_{\mathbf{r}}(\Gamma)[\alpha]$ defined as follows. Fix $B_{\mathbf{r}}(\Gamma)$-module W of dimension n_{1}. Consider direct sum: $W \oplus F^{n_{2}-n_{1}}$, where F is a trivial $B_{\mathbf{r}}(\Gamma)$-module. One can show that this correspondence is an immersion.

Recall that we have morphisms $i: \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \rightarrow B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ and $\phi: B_{\mathbf{r}}\left(\Gamma_{k, m}\right) \rightarrow F \Gamma_{k, m}$. Thus, we have the following useful morphism:

$$
\begin{equation*}
\operatorname{Tr} F \mathbb{Q}_{k} \cong \operatorname{Tr} \widetilde{A}_{k}^{++}\left(r_{i}\right) \rightarrow \operatorname{Tr} B_{\mathbf{r}}^{+}\left(\Gamma_{k, m}\right) \cong \operatorname{Tr} \Gamma_{k, m}, \tag{111}
\end{equation*}
$$

where $\operatorname{Tr} \Gamma_{k, m}$ is a vector space of free loops in the graph $\Gamma_{k, m}$. Also, we have homomorphisms of symmetric algebras:

$$
\begin{equation*}
S^{\bullet} \operatorname{Tr} F \mathbb{Q}_{k}=S^{\bullet} \operatorname{Tr} \widetilde{A}_{k}^{++}\left(r_{i}\right) \rightarrow S^{\bullet} \operatorname{Tr} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)=S^{\bullet} \operatorname{Tr} \Gamma_{k, m} \tag{112}
\end{equation*}
$$

Let us describe this morphism in coordinates. Consider element $i\left(\operatorname{Tr} q_{i_{1}} P \ldots q_{i_{l}} P\right) \in S^{\bullet} \operatorname{Tr} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$. It is easy that

$$
\begin{equation*}
i\left(\operatorname{Tr} q_{i_{1}} P \ldots q_{i_{l}} P\right)=\operatorname{Tr} q_{i_{1}} i(P) \ldots q_{i_{l}} i(P)=\operatorname{Tr} q_{i_{1}}\left(p_{1}+\ldots+p_{m}\right) \ldots q_{i_{l}}\left(p_{1}+\ldots+p_{m}\right) \tag{113}
\end{equation*}
$$

Thus, we get that $i\left(\operatorname{Tr} q_{i_{1}} \ldots P q_{i_{s}} P\right)$ is a product of s elements:

$$
\begin{equation*}
\operatorname{Tr} q_{i_{1}}\left(p_{1}+\ldots+p_{m}\right) \ldots q_{i_{l}}\left(p_{1}+\ldots+p_{m}\right) q_{i_{1}}=c(\mathbf{s}) \operatorname{Tr} q_{i_{1}}\left(p_{1}+\ldots+p_{m}\right) q_{i_{2}} p_{1} q_{i_{1}} \cdot q_{i_{1}} p_{1} q_{i_{2}}\left(p_{1}+\ldots+p_{m}\right) q_{i_{3}} p_{1} q_{i_{1}} \ldots \tag{114}
\end{equation*}
$$

$q_{i_{1}} p_{1} q_{i_{s}}\left(p_{1}+\ldots+p_{m}\right) q_{i_{1}}=c(\mathbf{r}) \operatorname{Tr} q_{i_{1}}\left(p_{1}+\ldots+p_{m}\right) q_{i_{2}} p_{1} \cdot \operatorname{Tr} q_{i_{1}} p_{1} q_{i_{2}}\left(p_{1}+\ldots+p_{m}\right) \ldots \cdot \operatorname{Tr} q_{i_{1}} p_{1} q_{i_{l}}\left(p_{1}+\ldots+p_{m}\right) q_{i_{1}}$, where $c(\mathbf{r})=r_{1,1}^{l-1} r_{1,2} \ldots r_{1, l}$. Analogous statement for $i^{\prime}\left(\operatorname{Tr} q_{i_{1}} \ldots P q_{i_{l}} P\right)$ is true. One can describe formula (114) in terms of path algebras.

5.4 Relation between $\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)$ and $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$.

Also, note the following relation between varieties $\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)$ and $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$. Consider partition of set $(1, \ldots, n)$ into two complement subsets $(1, \ldots, k) \cup(k+1, \ldots, n)$. Consider morphisms of algebras:

$$
\begin{equation*}
i_{1}: \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \rightarrow \mathcal{A}_{n}\left(r_{i}\right), i_{2}: \widetilde{\mathcal{A}}_{n-k}\left(r_{i}\right) \rightarrow \mathcal{A}_{n}\left(r_{i}\right) \tag{115}
\end{equation*}
$$

defined by natural way. For unification, denote by $\widetilde{\mathcal{A}}$ the unital algebra generated by elements P, Q with relations: $P^{2}=P, Q^{2}=Q$. Clearly, $\widetilde{\mathcal{A}} \cong \operatorname{Pr}\left(\Gamma_{1,1}\right)$. We have the following morphisms: $j_{1}: \widetilde{\mathcal{A}} \rightarrow \widetilde{\mathcal{A}}_{k}\left(r_{i}\right), j_{2}: \widetilde{\mathcal{A}} \rightarrow \widetilde{\mathcal{A}}_{n-k}\left(r_{i}\right)$ defined by correspondences: $j_{1}:(P, Q) \mapsto\left(P, q_{1}+\ldots+q_{k}\right), j_{2}:(P, Q) \mapsto\left(P, 1-\sum_{i=k+1}^{n} q_{i}\right)$. It is easy that we have the following commutative diagram:

It can be shown in usual way that

$$
\begin{equation*}
\mathcal{A}_{n}\left(r_{i}\right) \cong \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) *_{\tilde{\mathcal{A}}} \widetilde{\mathcal{A}}_{n-k}\left(r_{i}\right) \tag{117}
\end{equation*}
$$

Therefore, we obtain the following isomorphism of the varieties:

$$
\begin{equation*}
\boldsymbol{\operatorname { R e p }}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m] \cong \operatorname{Rep}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m] \times_{\boldsymbol{\operatorname { R e p }}_{n} \widetilde{\mathcal{A}}[k, m]} \boldsymbol{\operatorname { R e p }}_{n} \widetilde{\mathcal{A}}_{n-k}\left(r_{i}\right)[\overrightarrow{1}, m] \tag{118}
\end{equation*}
$$

where $\operatorname{Rep}_{n} \widetilde{\mathcal{A}}[k, m]$ is a variety of projectors P, Q of rank k, m respectively. Consider $\mathrm{GL}_{n}(F)$ - invariant divisor D_{r} of $\operatorname{Rep}_{n} \widetilde{\mathcal{A}}[k, m]$ defined by relation $\operatorname{Tr} P Q=\sum_{i=1}^{k} r_{i}=r$. It is clear that

$$
\begin{equation*}
\operatorname{Rep}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m] \cong \operatorname{Rep}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m] \times_{D_{r}} \operatorname{Rep}_{n} \widetilde{\mathcal{A}}_{n-k}\left(r_{i}\right)[\overrightarrow{1}, m] \tag{119}
\end{equation*}
$$

Of course, these results are true for another partition with obvious substitutions.
Further, let us consider quotients of these varieties by $\mathrm{GL}_{n}(F)$. We have morphism:

$$
\begin{equation*}
\pi: \mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m] \rightarrow \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m] \times_{\mathcal{D}_{r}} \mathcal{M}_{n} \widetilde{\mathcal{A}}_{n-k}\left(r_{i}\right)[\overrightarrow{1}, m] \tag{120}
\end{equation*}
$$

where \mathcal{D}_{r} is a quotient $D_{r} / \mathrm{GL}_{n}(F)$.
Recall general fact about ring of $\mathrm{GL}_{n}(F)$ - invariant functions. Consider algebra A. Then $\mathcal{O}\left(\mathcal{M}_{n}(A)\right)^{\mathrm{GL}_{n}(F)}$ is generated by functions $\operatorname{Tr} a, a \in A$. Using isomorphism (108), we get that generators of $\mathcal{O}\left(\mathcal{M}_{n}\left(\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)\right)\right)^{\mathrm{GL}_{n}(F)}$ are necklaces in quiver \mathbb{Q}_{k}, i.e. equivalence classes of cycles in quiver \mathbb{Q}_{k}. We will say that necklace is a generating if this necklace has no self-intersections. It can be shown in usual way that we can choose generating necklaces as generators of $\mathcal{O}\left(\mathcal{M}_{k} \mathbb{Q}_{\Gamma[k]}[\overrightarrow{1}]\right)$. We can describe this fact in the following terms:
Corollary 45. Ring $\mathcal{O}\left(\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[(\overrightarrow{1}, m)]\right.$ is generated by elements $\operatorname{Tr} P q_{i_{1}} P q_{i_{2}} \ldots P q_{i_{s}}, s \leq n$. Also, $\mathcal{O}\left(\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)\right)[(\overrightarrow{1}, m)]$ is generated by elements $\operatorname{Tr} P q_{i_{1}} P q_{i_{2}} \ldots P q_{i_{s}}, s \leq k$.

Denote by $t_{\left(i_{1}, \ldots, i_{m}\right)}$ the function $\operatorname{Tr}\left(P q_{i_{1}} P q_{i_{2}} \ldots P q_{i_{m}}\right)$. Using isomorphism (108), we can consider $t_{i_{1}, \ldots, i_{m}}$ as necklace in quiver \mathbb{Q}_{k}, i.e. cycle up to cyclic permutation of vertices. Using irreducibility of variety $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]$, we get the following
Proposition 46. Assume $k \geq 3$. Then field of rational functions $F\left(\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]\right)$ has the following generators: $t_{\left(i_{1}, i_{2}\right)}, t_{\left(i_{1}, i_{2}, i_{3}\right)}, i_{1}, i_{2}, i_{3}=1, \ldots, k, i_{1} \neq i_{2}, i_{1} \neq i_{3}, i_{2} \neq i_{3}$.
Proof. As we know, variety $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[(\overrightarrow{1}, m)]$ is a subvariety of $\mathcal{M}_{n} \mathbb{Q}_{k}[\overrightarrow{1}]$. It can be shown in usual way that generators of $F\left(\mathcal{M}_{n} \mathbb{Q}_{k}[\overrightarrow{1}]\right)$ are necklaces of length less or equal 3. Actually, show that necklace $\operatorname{Tr} \beta_{12} \beta_{23} \beta_{34} \beta_{41}$ can be expressed in terms of necklace of length at more 3 . Consider following element: $\operatorname{Tr} \beta_{12} \beta_{23} \beta_{34} \beta_{41} \cdot \operatorname{Tr} \beta_{13} \beta_{31} \in S^{\bullet} \operatorname{Tr} \mathbb{Q}_{\Gamma[k]}$. Using equivalence relation, we get the following formula: $\operatorname{Tr} \beta_{31} \beta_{12} \beta_{23} \cdot \operatorname{Tr} \beta_{34} \beta_{41} \beta_{13}=\operatorname{Tr} \beta_{12} \beta_{23} \beta_{34} \beta_{41} \cdot \operatorname{Tr} \beta_{13} \beta_{31}$, and hence,

$$
\begin{equation*}
\operatorname{Tr} \beta_{12} \beta_{23} \beta_{34} \beta_{41}=\frac{\operatorname{Tr} \beta_{31} \beta_{12} \beta_{23} \cdot \operatorname{Tr} \beta_{34} \beta_{41} \beta_{13}}{\operatorname{Tr} \beta_{13} \beta_{31}} \tag{121}
\end{equation*}
$$

The rest is easy.
Let $\operatorname{Par}(k, n)$ be the set of partition of set $(1, \ldots, n)$ into two complement subset consisting of k and $n-k$ elements. For any partition $\theta=\left(i_{1}, \ldots, i_{k}\right) \cup\left(i_{k+1}, \ldots, i_{n}\right)$, denote by $\widetilde{\mathcal{A}}_{k}^{\theta}\left(r_{i}\right)$ and $\widetilde{\mathcal{A}}_{n-k}^{\theta}\left(r_{i}\right)$ the algebras generated by $P ; q_{i_{1}}, \ldots, q_{i_{k}}$ and $P ; q_{i_{k+1}}, \ldots, q_{i_{n}}$ respectively. As we know, $\mathcal{A}_{n}\left(r_{i}\right) \cong \widetilde{\mathcal{A}}_{k}^{\theta}\left(r_{i}\right) *_{\tilde{\mathcal{A}}} \widetilde{\mathcal{A}}_{n-k}^{\theta}\left(r_{i}\right)$, where morphisms are defined obviously. Therefore, we have the following morphism:

$$
\begin{equation*}
\pi^{\theta}: \mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m] \rightarrow \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}^{\theta}\left(r_{i}\right)[\overrightarrow{1}, m] \times_{\mathcal{D}_{r}} \mathcal{M}_{n} \widetilde{\mathcal{A}}_{n-k}^{\theta}\left(r_{i}\right)[\overrightarrow{1}, m] \tag{122}
\end{equation*}
$$

It is easy that π defined by formula (120) is π^{θ} for $\theta=(1, \ldots, k) \cup(k+1, \ldots, n)$.
Define morphism Π as follows:

$$
\begin{equation*}
\Pi=\prod_{\theta \in \operatorname{Par}(k, n)} \pi^{\theta}: \mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m] \rightarrow \prod_{\theta \in \operatorname{Par}(k, n)} \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}^{\theta}\left(r_{i}\right)[\overrightarrow{1}, m] \times_{\mathcal{D}_{r}} \mathcal{M}_{n} \widetilde{\mathcal{A}}_{n-k}^{\theta}\left(r_{i}\right)[\overrightarrow{1}, m] \tag{123}
\end{equation*}
$$

Proposition 47. Morphism Π is a birational isomorphism of $\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m]$ on its image, i.e. morphism Π from (123) is a birational immersion.
Proof. Consider open subvariety U of $\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m]$ defined by relations $t_{\left(i_{1}, i_{2}\right)} \neq 0$ for all possible i_{1}, i_{2}. Since variety $\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m]$ is irreducible, then U is dense in it. Using proposition 46, the ring $\mathcal{O}(U)$ is generated by $t_{\left(i_{1}, i_{2}\right)}^{ \pm 1}, t_{\left(i_{1}, i_{2}, i_{3}\right)}$. Denote by U_{θ} the image of U under π^{θ}. Morphism $\pi^{\theta *}: \mathcal{O}\left(U_{\theta}\right) \rightarrow \mathcal{O}(U)$ is an injective. Moreover, $\bigotimes_{\theta} \mathcal{O}\left(U_{\theta}\right)=\mathcal{O}\left(\prod_{\theta} U_{\theta}\right)$ contains all $t_{\left(i_{1}\right)}, t_{\left(i_{1}, i_{2}\right)}^{ \pm 1}, t_{\left(i_{1}, i_{2}, i_{3}\right)}$, and hence, natural morphism: $\mathcal{O}\left(\prod_{\theta} U_{\theta}\right) \rightarrow \mathcal{O}(U)$ is surjective. It means that morphism

$$
\begin{equation*}
\Pi: U \rightarrow \prod_{\theta} U_{\theta} \tag{124}
\end{equation*}
$$

is an immersion. Therefore, we get the required statement.
Remark. Note that we don't require that variety $\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}^{\theta}\left(r_{i}\right)[\overrightarrow{1}, m] \times \mathcal{D}_{r} \mathcal{M}_{n} \widetilde{\mathcal{A}}_{n-k}^{\theta}\left(r_{i}\right)[\overrightarrow{1}, m]$ is irreducible. Of course, these results have obvious generalizations on the case of variety $\mathcal{M}_{n} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[\overrightarrow{1}, m]$.

Also, note the following useful result. Without loss of generality, consider a partition $\{1, \ldots, n\}=$ $\{1, \ldots, m\} \cup\{m+1, \ldots, n\}$. In this case, we have the isomorphisms: $B_{k, n} \cong B_{\mathbf{r}}\left(\Gamma_{k, m}\right) *_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ and $\mathcal{A}_{n}\left(r_{i}\right) \cong \widetilde{\mathcal{A}}_{m}\left(r_{i}\right) *_{\tilde{\mathcal{A}}} \widetilde{\mathcal{A}}_{n-m}\left(r_{i}\right)$. We can define morphisms: $\widetilde{\mathcal{A}}_{m}\left(r_{i}\right) \rightarrow B_{\mathbf{r}}\left(\Gamma_{k, m}\right), \widetilde{\mathcal{A}}_{n-m}\left(r_{i}\right) \rightarrow B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ and $\widetilde{\mathcal{A}} \rightarrow \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ by formulas: $\left(P ; q_{1}, \ldots, q_{m}\right) \mapsto\left(p_{1}+\ldots+p_{k} ; q_{1}, \ldots, q_{m}\right),\left(P ; q_{m+1}, \ldots, q_{n}\right) \mapsto\left(p_{1}+\ldots+p_{k} ; q_{m+1}, \ldots, q_{n}\right)$ and $(P ; Q) \mapsto\left(P ; q_{1}+\ldots+q_{k}\right)$. One can check that we have the following commutative diagram:

Therefore, we have a well-defined morphism:

$$
\begin{equation*}
\widetilde{\mathcal{A}}_{m}\left(r_{i}\right) *_{\tilde{\mathcal{A}}} \widetilde{\mathcal{A}}_{n-m}\left(r_{i}\right) \rightarrow B_{\mathbf{r}}\left(\Gamma_{k, m}\right) *_{\tilde{\mathcal{A}}_{k}\left(r_{i}\right)} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right) \tag{126}
\end{equation*}
$$

Also, we have the following commutative diagram:

Further, let us apply functor Rep to this commutative diagram. Therefore, we obtain the following commutative diagram:

$\boldsymbol{\operatorname { R e p }}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)[1] \times_{\boldsymbol{\operatorname { R e p }}_{n}} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m] \quad \boldsymbol{\operatorname { R e p }}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)[1] \longrightarrow \boldsymbol{\operatorname { R e p }}_{n} \widetilde{\mathcal{A}}_{m}\left(r_{i}\right)[\overrightarrow{1}, k] \times{ }_{\boldsymbol{R e p}_{n}} \widetilde{\mathcal{A}}[m, k] \operatorname{Rep} \tilde{\mathcal{A}}_{n-m}\left(r_{i}\right)[\overrightarrow{1}, k]$
Also, we can take quotient by $\mathrm{GL}_{n}(F)$ - action. Therefore, we get the following proposition:

Proposition 48. We have the following commutative diagram:

Remark. This proposition will play important role in the proof of main result of this paper.

6 Moduli varieties $\mathcal{M}_{n} B_{k, n}$ and $\mathcal{M}_{n} B_{n, n}$.

In this section we will study properties of morphisms $\mathcal{M}_{n} B_{k, n} \rightarrow \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)[1] \times{ }_{\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]} \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ and $\mathcal{M}_{n} B_{n, n} \rightarrow \mathcal{M}_{n} B_{n, m} \times_{\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{\mathrm{i}}, m]} \mathcal{M}_{n} B_{n, n-m}$.

6.1 Description of moduli variety $\mathcal{M}_{n} B_{k, n}$.

In this subsection we will consider representations of $B_{\mathbf{r}}(\Gamma)$ for some graph Γ. Fix $\mathbf{r}=\left(r_{i j} \in F^{*}\right),(i j) \in E(\Gamma)$.
Consider variety $\mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ [1] for $k+m>n$. As we know from BZ, $\mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ is a subvariety of $\left(F^{*}\right)^{(k-1)(m-1)}$. Let us describe this subvariety in terms of the Laplacian of the graph $\Gamma_{k, m}$. Consider matrix of Laplacian Δ of graph $\Gamma_{k, m}$:

$$
\Delta=\left(\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & s_{11} & s_{12} & \ldots & s_{1 m} \tag{130}\\
0 & 1 & \ldots & 0 & s_{21} & s_{22} x_{22} & \ldots & s_{2 m} x_{2 m} \\
\ldots & \ldots \\
0 & 0 & \ldots & 1 & s_{k 1} & s_{k 2} x_{k 2} & \ldots & s_{k m} x_{k m} \\
s_{11} & s_{21} & \ldots & s_{k 1} & 1 & 0 & \ldots & 0 \\
s_{12} & \frac{s 22}{x_{22}} & \ldots & \frac{s_{k 2}}{x_{k 2}} & 0 & 1 & \ldots & 0 \\
\ldots & \ldots \\
s_{1 m} & \frac{s_{2 m}}{x_{2 m}} & \ldots & \frac{s_{k m}}{x_{k m}} & 0 & 0 & \ldots & 1
\end{array}\right)
$$

Denote by E_{k} and E_{m} the identity matrices of size k and m respectively.
Lemma 49. Consider matrix of the following type:

$$
\Delta=\left(\begin{array}{cc}
E_{m} & A \tag{131}\\
B & E_{k}
\end{array}\right)
$$

Then $\operatorname{rank} \Delta \leq n$ iff $\operatorname{rank}\left(B A-E_{k}\right) \leq n-m$.
Proof.

$$
\left(\begin{array}{cc}
E_{m} & -A \tag{132}\\
0 & E_{k}
\end{array}\right) \cdot\left(\begin{array}{cc}
E_{m} & A \\
B & E_{k}
\end{array}\right)=\left(\begin{array}{cc}
E_{m} & 0 \\
B & -B A+E_{k}
\end{array}\right)
$$

Corollary 50. Variety $\mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)[1] \subset\left(F^{*}\right)^{(k-1)(m-1)}$ is defined by condition:

$$
\operatorname{rank}\left(\left(\begin{array}{cccc}
s_{11} & s_{12} & \ldots & s_{1 m} \tag{133}\\
s_{21} & s_{22} x_{22} & \ldots & s_{2 m} x_{2 m} \\
\ldots & \ldots & \ldots & \ldots \\
s_{k 1} & s_{k 2} x_{k 2} & \ldots & s_{k m} x_{k m}
\end{array}\right) \cdot\left(\begin{array}{cccc}
s_{11} & s_{21} & \ldots & s_{k 1} \\
s_{12} & \frac{s_{22}}{x_{22}} & \ldots & \frac{s_{k 2}}{x_{k 2}} \\
\ldots & \ldots & \ldots & \ldots \\
s_{1 n} & \frac{s_{2 n}}{x_{2 n}} & \ldots & \frac{s_{k n}}{x_{k n}}
\end{array}\right)-\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1
\end{array}\right)\right) \leq n-m
$$

Further, apply this lemma to the case of $\mathcal{M}_{n} B_{k, n}$. It can be shown in usual way that rank $\Delta \geq n$. Also, Δ has rank n iff

$$
\left(\begin{array}{cccc}
s_{11} & s_{12} & \ldots & s_{1 n} \tag{134}\\
s_{21} & s_{22} x_{22} & \ldots & s_{2 n} x_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
s_{k 1} & s_{k 2} x_{k 2} & \ldots & s_{k n} x_{k n}
\end{array}\right)\left(\begin{array}{cccc}
s_{11} & s_{21} & \ldots & s_{k 1} \\
s_{12} & \frac{s_{22}}{x_{22}} & \ldots & \frac{s_{k 2}}{x_{k 2}} \\
\ldots & \ldots & \ldots & \ldots \\
s_{1 n} & \frac{s_{2 n}}{x_{2 n}} & \ldots & \frac{s_{k n}}{x_{k n}}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

As we know from subsection 3.3, we have the following relations:

$$
\begin{equation*}
\sum_{j=1}^{n} s_{i j}^{2}=\sum_{j=1}^{n} r_{i j}=1, i=1, \ldots, k \tag{135}
\end{equation*}
$$

Thus, we get $k(k-1)$ equations defining variety $\mathcal{M}_{n} B_{k, n} \subset\left(F^{*}\right)^{(k-1)(n-1)}$.
Remark. Consider case $r_{i j}=\frac{1}{n}$ and $k=n$. It is easy that these equations coincide with equations defining generalized Hadamard matrix.

Let us formulate the following useful proposition:
Proposition 51. For any irreducible component C of $\mathcal{M}_{n} B_{k, n}$, we have the following inequality:

$$
\begin{equation*}
\operatorname{dim}_{F} C \geq(k-1)(n-1)-k(k-1)=(n-k-1)(k-1) \tag{136}
\end{equation*}
$$

Proof. Straightforward.

6.2 The fibred product.

In this subject we will study properties of morphisms: $f_{n}^{\prime}: \mathcal{M}_{n} B_{k, n} \rightarrow \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)[1] \times{ }_{\mathcal{M}_{n}} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]$ ($\mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)[1]$ and $f_{n}: \mathcal{M}_{n} B_{n, n} \rightarrow \mathcal{M}_{n} B_{n, m} \times_{\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\hat{1}, m]} \mathcal{M}_{n} B_{n, n-m}$.

Remark. Note that if $k \leq \frac{n}{2}$, then we can choose m such that $k+m \leq n, k+n-m \leq n$. Using proposition 44, morphism $f_{k, n}(m)$ has the following view:

$$
\begin{equation*}
f_{n}^{\prime}: \mathcal{M}_{n} B_{k, n} \rightarrow\left(F^{*}\right)^{(k-1)(m-1)} \times_{\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]}\left(F^{*}\right)^{(k-1)(n-m-1)} \tag{137}
\end{equation*}
$$

Recall that $\mathcal{M}_{n} B_{k, n}$ is a subvariety defined by equations (134). Consider composition of morphisms: $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \rightarrow B_{\mathbf{r}}\left(\Gamma_{k, m}\right) \rightarrow F \Gamma_{k, m}$. Using proposition 44, we get the following commutative diagram:

If $n<k+m$, then we get the following commutative diagram:

where s_{1} is an immersion. Also, one can consider similar commutative diagram for algebra $B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$. Denote by s_{2} the natural morphism: $\mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)[1] \rightarrow\left(F^{*}\right)^{(k-1)(n-m-1)}$. One can show that we have the following
commutative diagram:

Therefore, we have well-defined fibred product: $\left(F^{*}\right)^{(k-1)(m-1)} \times{ }_{\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{r}\right)[\overrightarrow{1}, m]}\left(F^{*}\right)^{(k-1)(n-m-1)}$ and immersion $S=s_{1} \times s_{2}: M_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)[1] \times \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right) \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)[1] \rightarrow\left(F^{*}\right)^{(k-1)(m-1)} \times{ }_{\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\hat{1}, m]}\left(F^{*}\right)^{(k-1)(n-m-1)}$.

Denote the coordinates of $\left(F^{*}\right)^{(k-1)(n-1)},\left(F^{*}\right)^{(k-1)(m-1)}$ and $\left(F^{*}\right)^{(k-1)(n-m-1)}$ by $x_{2,2}, \ldots, x_{k, n}, z_{2,2}, \ldots, z_{k, m}$ and $y_{2,2}, \ldots, y_{k, n-m}$ respectively. Morphism $p r_{m}$ is defined by formula:

$$
p r_{m}:\left(\begin{array}{ccc}
x_{2,2} & \ldots & x_{k, 2} \tag{141}\\
\ldots & \ldots & \ldots \\
x_{2, n} & \ldots & x_{k, n}
\end{array}\right) \mapsto\left(\left(\begin{array}{ccc}
x_{2,2} & \ldots & x_{k, 2} \\
\ldots & \ldots & \ldots \\
x_{2, m} & \ldots & x_{k, m}
\end{array}\right),\left(\begin{array}{ccc}
\frac{x_{2, m+2}}{x_{2, m+1}} & \ldots & \frac{x_{k, m+2}}{x_{k, m+1}} \\
\ldots & \ldots & \ldots \\
\frac{x_{2, n}}{x_{2, m+1}} & \ldots & \frac{x_{k, n}}{x_{k, m+1}}
\end{array}\right)\right)
$$

We have the following commutative diagram:

Morphism S^{\prime} is a composition of S and natural immersion. Thus, morphism f_{n}^{\prime} is a map of elimination of $k-1$ variables.

Describe fibred product $\mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)[1] \times{ }_{\mathcal{M}_{n}} \widetilde{\mathcal{A}}_{k}\left(r_{r}\right)[\overrightarrow{1}, m] ~ \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)[1]$ as subvariety of the algebraic torus $\left(F^{*}\right)^{(k-1)(m-1)} \times\left(F^{*}\right)^{(k-1)(n-m-1)}$. For simplicity, if $i=1$ or $j=1$, then $x_{i, j}=1, z_{i, j}=1, y_{i, j}=1$. Express these elements in terms of $z_{i, j}$. We will use the following notation:

$$
\begin{equation*}
h_{i_{1}, i_{2}}=\sum_{j=1}^{m} s_{i_{1}, j} s_{i_{2}, j} z_{i_{1}, j} / z_{i_{2}, j}, h_{i_{1}, i_{2}}^{\prime}=\sum_{j=m+1}^{n} s_{i_{1}, j} s_{i_{2}, j} y_{i_{1}, j-m} / y_{i_{2}, j-m} \tag{143}
\end{equation*}
$$

Using formula (114) and definitions of homomorphisms i and i^{\prime}, one can obtain that

$$
\begin{equation*}
i\left(\operatorname{Tr} q_{i_{1}} \ldots P q_{i_{l}} P\right)=c(\mathbf{r}) \cdot h_{i_{1}, i_{2}} h_{i_{2}, i_{3}} \ldots h_{i_{l}, i_{1}}, i^{\prime}\left(\operatorname{Tr} q_{i_{1}} \ldots P q_{i_{l}} P\right)=c^{\prime}(\mathbf{r})(-1)^{s} \cdot h_{i_{1}, i_{2}}^{\prime} h_{i_{2}, i_{3}}^{\prime} \ldots h_{i_{l}, i_{1}}^{\prime} \tag{144}
\end{equation*}
$$

As we know from proposition $43, \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]$ is a subvariety of $\mathcal{M}_{k} \mathbb{Q}_{\Gamma[k]}[\overrightarrow{1}]$. We can associate equation with any necklace $\left(i_{1}, \ldots, i_{s}\right)$ of $\mathbb{Q}_{\Gamma[k]}$ as follows:

$$
\begin{equation*}
c(\mathbf{r}) h_{i_{1}, i_{2}} \ldots h_{i_{s}, i_{1}}=c^{\prime}(\mathbf{r})(-1)^{s} h_{i_{1}, i_{2}}^{\prime} \ldots h_{i_{s}, i_{1}}^{\prime} \tag{145}
\end{equation*}
$$

Using corollary 45, we can choose only generating necklaces.
Similar results for morphism f_{n} are true.

6.3 Subvarieties E_{1} and E_{2}.

Define two subvarieties $E_{1}\left(f_{n}^{\prime}\right)$ and $E_{2}\left(f_{n}^{\prime}\right)$ of the fibred product as follows:

$$
\begin{gather*}
E_{1}\left(f_{n}^{\prime}\right)=\left\{x \in \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right) \times_{\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]} \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right) \mid \operatorname{dim}_{F} f_{n}^{\prime-1}(x) \geq 1\right\} \tag{146}\\
E_{2}\left(f_{n}^{\prime}\right)=\left\{x \in \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right) \times_{\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]} \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right) \mid f_{n}^{\prime-1}(x)=\emptyset\right\} \tag{147}
\end{gather*}
$$

Consider point $x=\left(x_{1}, x_{2}\right) \in \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right) \times_{\mathcal{M}_{n}} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{\mathrm{T}}, m] \quad \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ such that $i^{*}\left(x_{1}\right)=i^{\prime *}\left(x_{2}\right)=$ $x^{\prime} \in \mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]$. Using proposition 36, we get that fiber $f_{n}^{\prime-1}(x)$ is an algebraic torus of dimension less or equal $k-1$. Also, condition $f_{n}^{\prime-1}(x) \subseteq A u t_{\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)}\left(x^{\prime \prime}\right) / F^{*}$, where $x^{\prime \prime}$ is a $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - submodule of x^{\prime} generated by $\operatorname{Im} q_{i}$ and $\operatorname{Im} P q_{i}$ (proposition 36). Using proposition 37, we get that if $\operatorname{dim}_{F} f_{n}^{\prime-1}(x) \geq l-1$ then graph $G_{k}\left(x^{\prime \prime}\right)=G_{k}\left(x^{\prime}\right)$ has at least l connected components. Thus, we have the following filtration of E_{1} :

$$
\begin{equation*}
E_{1}^{(k-1)}\left(f_{n}^{\prime}\right) \subseteq \ldots \subseteq E_{1}^{(1)}\left(f_{n}^{\prime}\right)=E_{1}\left(f_{n}^{\prime}\right) \tag{148}
\end{equation*}
$$

where $E_{1}^{(i)}\left(f_{n}^{\prime}\right)=\left\{x \in E_{1} \mid \operatorname{dim}_{F} f_{n}^{\prime-1}(x) \geq i\right\}$.
For fixed partition $\theta:\{1, \ldots, k\}$ into $s+1$ non-intersecting subsets I_{1}, \ldots, I_{s+1} consider $C^{\prime}(\theta)$ the subvariety of $\left(F^{*}\right)^{(k-1)(m-1)} \times_{\mathcal{M}_{n}} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]\left(F^{*}\right)^{(k-1)(n-m-1)}$ defined by equations:

$$
\begin{align*}
\sum_{i=1}^{m} s_{l_{1}, i} s_{l_{2}, i} z_{l_{1}, i} / z_{l_{2}, i} & =0, \sum_{i=1}^{m} s_{l_{1}, i} s_{l_{2}, i} z_{l_{2}, i} / z_{l_{1}, i}=0 \tag{149}\\
\sum_{i=m+1}^{n} s_{l_{1}, i} s_{l_{2}, i} y_{l_{1}, i-m} / y_{l_{2}, i-m} & =0, \sum_{i=m+1}^{n} s_{l_{1}, i} s_{l_{2}, i} y_{l_{2}, i-m} / y_{l_{1}, i-m}=0 . \tag{150}
\end{align*}
$$

for any $l_{1} \in I_{k_{1}}$ and $l_{2} \in I_{k_{2}}, k_{1} \neq k_{2}$.
Denote by $C(\theta)=S^{-1}\left(C^{\prime}(\theta)\right) \subset \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right) \times_{\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\hat{1}, m]} \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$.
Proposition 52. $E_{1}^{(s)}\left(f_{n}^{\prime}\right) \subset \bigcup_{\theta} C(\theta)$, where θ runs over all partitions of $\{1, \ldots, k\}$ into $s+1$ non-intersecting subsets.

Proof. Using proposition 36, we get that $q_{i} P q_{j}=0$ for any i, j from different subsets. Thus, we have to express condition $q_{i} P q_{j}$ in terms of algebra $B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$. We get that $q_{l_{1}}\left(p_{1}+\ldots+p_{m}\right) q_{l_{2}}=0$. Therefore, $q_{l_{1}}\left(p_{1}+\ldots p_{m}\right) q_{l_{2}} p_{1}=0$ and $\operatorname{Tr}\left(q_{l_{1}}\left(p_{1}+\ldots+p_{m}\right) q_{l_{2}} p_{1}\right)=\sum_{i=1}^{m} s_{i, l_{1}} s_{i, l_{2}} x_{i, l_{1}} / x_{i, l_{2}}=0$. Analogously, one can obtain another equations.

Further, consider subvariety $E_{2}\left(f_{n}^{\prime}\right)$. It is easy that $x=\left(x_{1}, x_{2}\right) \in E_{2}\left(f_{n}^{\prime}\right)$ iff there is non-empty intersection of closures of $\mathrm{GL}_{n}(F)$ - orbits of $i^{*}\left(x_{1}\right)$ and $i^{\prime *}\left(x_{2}\right)$ and $i^{*}\left(x_{1}\right) \neq i^{\prime *}\left(x_{2}\right)$. In this case, there is a semisimple representation $x^{\prime \prime} \in \overline{i^{*}\left(x_{1}\right)} \cap \overline{i^{\prime *}\left(x_{2}\right)}$. Therefore, if $x \in E_{2}\left(f_{n}^{\prime}\right)$ then $x^{\prime \prime}$ has non-trivial stabilizer. It is easy that characters of x and $x^{\prime \prime}$ are the same.
Proposition 53. Let ρ be a representation of $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$. Consider $\mathrm{GL}_{n}(F)$ - orbit of $\rho-O(\rho)$. Assume that there is a semisimple $\widetilde{\mathcal{A}}_{k}\left(r_{i}\right)$ - representation $\rho^{\prime \prime} \in \overline{O(\rho)}$ with non-trivial stabilizer. Then there are two complement subsets I, J of $\{1, \ldots, k\}$ satisfying to condition: $\operatorname{Tr} \rho\left(q_{i_{1}} P \ldots q_{i_{s}} P\right)=0$ if $\left\{i_{1}, \ldots, i_{s}\right\} \cap I \neq \emptyset$ and $\left\{i_{1}, \ldots, i_{s}\right\} \cap J \neq \emptyset$.
Proof. Using proposition 36, we get that there are at least two subsets I, J such that $I \cup J=\{1, \ldots, k\}, I \cap J=\emptyset$ and $\rho^{\prime \prime}\left(q_{i} P q_{j}\right)=\rho^{\prime \prime}\left(q_{j} P q_{i}\right)=0$ for any $i \in I, j \in J$. Thus, $\operatorname{Tr} \rho^{\prime \prime}\left(q_{i_{1}} P \ldots q_{i_{s}} P\right)=0$ if $\left\{i_{1}, \ldots, i_{s}\right\} \cap I \neq \emptyset$ and $\left\{i_{1}, \ldots, i_{s}\right\} \cap J \neq \emptyset$. Since characters of ρ and $\rho^{\prime \prime}$ are the same, we get the required statement.

For fixed partition $\theta:\{1, \ldots, k\}=I \cup J, I \cap J=\emptyset$, we will consider subvariety $D(\theta) \subset$ $\mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right) \times_{\mathcal{M}_{n} \tilde{\mathcal{A}}_{k}\left(r_{i}\right)} \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, n-m}\right)$ defined by equations:

$$
\begin{equation*}
i^{*}\left(\operatorname{Tr} q_{i_{1}} P \ldots q_{i_{s}} P\right)=0=i^{\prime *}\left(\operatorname{Tr} q_{i_{1}} P \ldots q_{i_{s}} P\right) \tag{151}
\end{equation*}
$$

if $\left\{i_{1}, \ldots, i_{s}\right\} \cap I \neq \emptyset$ and $\left\{i_{1}, \ldots, i_{s}\right\} \cap J \neq \emptyset$. Using proposition 53 , we get the following:

Corollary 54. $E_{2}\left(f_{n}^{\prime}\right) \subset \bigcup_{\theta} D(\theta)$, where union taken over all possible partitions of $\{1, \ldots, k\}$ into two non-empty complement subsets I, J.

Fix partition $\theta=I \cup J$. Consider subvarieties $D_{1}^{\prime}(\theta) \subset\left(F^{*}\right)^{(k-1)(m-1)}, D_{2}^{\prime}(\theta) \subset\left(F^{*}\right)^{(k-1)(n-m-1)}$ defined by equations:

$$
\begin{equation*}
h_{i_{1}, i_{2}} \ldots h_{i_{s}, i_{1}}=0 \tag{152}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{i_{1}, i_{2}}^{\prime} \ldots h_{i_{s}, i_{1}}^{\prime}=0 \tag{153}
\end{equation*}
$$

respectively. Denote by $D_{i}(\theta), i=1,2$ the $s_{i}^{-1}\left(D_{i}^{\prime}(\theta)\right), i=1,2$ respectively. It is easy that

$$
\begin{equation*}
D(\theta)=D_{1}(\theta) \times_{\mathcal{M}_{n} \widetilde{\mathcal{A}}_{k}\left(r_{i}\right)[\overrightarrow{1}, m]} D_{2}(\theta) \tag{154}
\end{equation*}
$$

6.4 Combinatorial description of E_{2}.

In this subsection we will introduce the notion of maximal θ-subquivers for fixed partition θ. Using this notion, we get the description of components of $D_{1}(\theta)$ and $D_{2}(\theta)$.

Firstly, consider the following description of the varieties. Consider polynomial ring $F\left[h_{i, j}\right], i \neq j, i, j=$ $1, \ldots, k$. We have a homomorphism of rings: $H_{1}: F\left[h_{i, j}\right] \rightarrow F\left[z_{i, j}\right]$ defined by formulas (143). Thus, we have the morphism of affine varieties: $H_{1}^{*}:\left(F^{*}\right)^{(k-1)(m-1)} \rightarrow F^{k(k-1)}$. Also, we can define morphism: $H_{1}^{*} \circ s_{1}$: $\mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right) \rightarrow\left(F^{*}\right)^{(k-1)(m-1)} \rightarrow F^{k(k-1)}$. We can consider variety $D_{1}^{\prime \prime}(\theta) \subset F^{k(k-1)}$ defined by equations (152). It is easy that $D_{1}^{\prime}(\theta)=\left(H_{1}^{*}\right)^{-1}\left(D_{1}^{\prime \prime}(\theta)\right)$ and $D_{1}(\theta)=\left(H_{1}^{*} \circ s_{1}\right)^{-1}\left(D_{1}^{\prime \prime}(\theta)\right)$. Analogously, define H_{2} : $F\left[h_{i, j}\right] \rightarrow F\left[y_{i, j}\right]$. In this case, $D_{2}^{\prime}(\theta)=\left(H_{2}^{*}\right)^{-1}\left(D_{2}^{\prime \prime}(\theta)\right)$ and $D_{2}(\theta)=\left(H_{2}^{*} \circ s_{2}\right)^{-1}\left(D_{2}^{\prime \prime}(\theta)\right)$.

We have the following combinatorial description of the set of the equations defining of $D_{1}^{\prime \prime}(\theta)$. Consider complete double quiver $\mathbb{Q}_{\Gamma[k]}$. For any subquiver Q of $\mathbb{Q}_{\Gamma[k]}$, denote by $V(Q)$ and $\operatorname{Arr}(Q)$ the sets of vertices and arrows of the quiver Q respectively. We will consider subquivers of $\mathbb{Q}_{\Gamma[k]}$ such that $V(Q)=V\left(\mathbb{Q}_{\Gamma[k]}\right)=\{1, \ldots, k\}$. We can associate with any subquiver $Q \subset \mathbb{Q}_{\Gamma[k]}$ variety $M(Q) \subset(F)^{k(k-1)}$ as follows: $M(Q)$ is a subvariety of $(F)^{k(k-1)}$ defined by equations $h_{i, j}=0$ for $a_{i, j} \in \operatorname{Arr}\left(\mathbb{Q}_{\Gamma[k]}\right) \backslash \operatorname{Arr}(Q)$. It is clear that if $Q^{\prime} \subseteq Q^{\prime \prime}$, then $M\left(Q^{\prime}\right) \subseteq M\left(Q^{\prime \prime}\right)$.

Fix the partition of vertices of the $\mathbb{Q}_{\Gamma[k]}: \theta=I \cup J$. Let us define the notion of θ - subquiver of $\mathbb{Q}_{\Gamma[k]}$. The subquiver Q of $\mathbb{Q}_{\Gamma[k]}$ is said to be a θ-subquiver if $V(Q)=\{1, \ldots, k\}$ and Q satisfy to condition: there are no cycles $c=\left(i_{1}, \ldots, i_{s}\right) \in Q$ such that $\left(i_{1}, \ldots, i_{s}\right) \cap I \neq \emptyset,\left(i_{1}, \ldots, i_{s}\right) \cap J \neq \emptyset$.

We can define partial order on the set of subquivers of $\mathbb{Q}_{\Gamma[k]}$ by natural way. Restrict this partial order to set of θ - subquivers. It leads us to notion of maximal θ - subquiver of $\mathbb{Q}_{\Gamma[k]}$. Denote by $\operatorname{Max}(\theta)$ the set of θ-maximal subquivers of $\mathbb{Q}_{\Gamma[k]}$.
Proposition 55. - For any θ-subquiver $Q \subset \mathbb{Q}_{k}$, we have the following immersion:

$$
\begin{equation*}
M(Q) \subset D_{1}^{\prime \prime}(\theta) \tag{155}
\end{equation*}
$$

- We have the following identity for $D_{1}^{\prime \prime}(\theta)$:

$$
\begin{equation*}
D_{1}^{\prime \prime}(\theta)=\bigcup_{Q \in \operatorname{Max}(\theta)} M(Q) \tag{156}
\end{equation*}
$$

Proof. First statement is easy. Prove the second statement. With any irreducible component C of $D_{1}^{\prime \prime}(\theta)$ we can associate the subquiver $Q(C) \subset \mathbb{Q}_{\Gamma[k]}$ as follows: $a_{i j} \in Q(C)$ iff ideal of component C contains $h_{i j}$. It can be shown in usual way that $Q(C)$ is a θ - subquiver and $C \subset M(Q(C))$. Thus, $D_{1}^{\prime \prime}(\theta) \subset \bigcup M(Q)$, where union is taken over all θ-subquivers. It is easy that we can take only θ-maximal subquivers.

This proposition motivates us to study maximal θ-subquivers. For this purpose, introduce the notion of linear connected component of a quiver \mathbb{Q}. We will say that set of vertices I generates linear connected component if

- for any pair vertices i_{1}, i_{2} there are path from i_{1} to i_{2} and path from i_{2} to i_{1}
- for any vertices $j \notin I, i \in I$ there is no path from j to i or there is not path from i to j.

We can define the equivalence relation on the set of vertices as follows: $i \sim j$ iff there are path from i to j and path from j to i. It is easy that linear connected component is an equivalence class. We will denote by $\{I\}$ the linear connected component (briefly l.c.c.) generating by vertex set I. Consider two l.c.c. $\left\{I_{1}\right\}$ and $\left\{I_{2}\right\}$. We will say that $\left\{I_{1}\right\}>\left\{I_{2}\right\}$ if there is an arrow from some vertex $i_{1} \in I_{1}$ to some vertex $i_{2} \in I_{2}$. It follows from definition of linear connectedness that if this order is well-defined. Let us formulate the following trivial property of l.c.c.:

Proposition 56. - Set of l.c.c. of quiver \mathbb{Q} is partially ordered.

- Quiver \mathbb{Q} is connected iff set of l.c.c. is linear ordered.

Proof. It is easy.
Consider maximal θ-subquiver Q. It is clear that there are no l.c.c. of Q which contains vertices from I and J. Thus, one can consider decomposition of I and J into union of vertex sets of l.c.c. of Q :

$$
\begin{equation*}
I=\cup_{i=1}^{l_{1}} I_{i}, J=\cup_{j=1}^{l_{2}} J_{j} \tag{157}
\end{equation*}
$$

We have the following useful property of maximal θ - subquivers:
Proposition 57. Fix partition $\theta=I \cup J$. Consider θ-subquiver $Q \subset \mathbb{Q}_{\Gamma[k]}$. We have the decomposition of vertex set $\{1, \ldots, k\}$ of Q into union of vertex sets of l.c.c. (157). Q is maximal θ - subquiver of $\mathbb{Q}_{\Gamma[k]}$ iff

- Q is connected.
- Consider a pair of l.c.c. $\left\{K_{1}\right\},\left\{K_{2}\right\}:\left\{K_{1}\right\}>\left\{K_{2}\right\}$. Then for any pair of vertices $v_{1} \in K_{1}, v_{2} \in K_{2}$ there is an arrow from v_{1} to v_{2}.

Proof. It is easy that if Q satisfy to conditions, then Q is a maximal θ-subquiver. Converse statement is easy too.

Remark. Assume that we have the following ordering on the set of l.c.c. of maximal θ - subquiver $Q:\left\{I_{1}\right\}>$ $\ldots>\left\{I_{k_{1}}\right\}>\left\{J_{1}\right\}>\ldots>\left\{I_{k_{1}+1}\right\}>\ldots>\left\{J_{l_{2}}\right\}$. Consider another partition: $\theta^{\prime}: I_{1} \bigcup K, K=\bigcup_{i=2}^{l_{1}} I_{i} \cup \bigcup_{j=1}^{l_{2}} J_{j}$. It is easy that Q is θ^{\prime} - subquiver of \mathbb{Q}_{k}, but not maximal.

Thus, problem of finding $\bigcup D(\theta)$ has the following parts:

- one have to classify all maximal θ-subquivers for any partition θ of $\{1, \ldots, k\}$,
- one have to calculate $\left(H_{1}^{*} \circ s_{1}\right)^{-1}(M(Q)) \subset \mathcal{M}_{n} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)$ for maximal θ-subquiver Q.

Consider the case of $\mathcal{M}_{n} B_{n, n}$. Assume that $r_{i} \neq 0,1$. Subvariety E_{1} has description quite similar to case of $\mathcal{M}_{n} B_{k, n}$. Consider subvariety $E_{2} \subset \mathcal{M}_{n} B_{n, m} \times{ }_{\mathcal{M}_{n} \mathcal{A}_{n}\left(r_{i}\right)[\overrightarrow{1}, m]} \mathcal{M}_{n} B_{n, n-m}$. Also, we have to study all partitions and corresponding them maximal θ-subquivers. Let us note the following property of morphism $H_{1}^{*} \circ s_{1}$ in case of $\mathcal{M}_{n} B_{n, n}$:

Proposition 58. Fix partition θ. Consider maximal θ - subquivers Q with condition: there is a l.c.c. of Q consisting of one vertex. Then $\left(H_{1}^{*} \circ s_{1}\right)^{-1}(M(Q))=\emptyset$.

Proof. Consider maximal θ - subquiver Q with l.c.c. consisting one vertex i. Then for any vertex j we have the following identity $h_{i, j} h_{j, i}=\operatorname{Tr} P q_{i} P q_{j}=0$. In the case of $\mathcal{M}_{n} B_{n, n}$, we have the identity $\sum_{i=1}^{n} q_{i}=1$. Thus, $r_{i}=\operatorname{Tr} P q_{i} P\left(q_{i}+\sum_{j \neq i} q_{j}\right)=\operatorname{Tr} P q_{i} P q_{i}=r_{i}^{2}$. Thus, if $r_{i} \neq 0,1$, then $\left(H_{1}^{*} \circ s_{1}\right)^{-1}(M(Q))=\emptyset$.

This proposition means that we can consider only maximal θ-subquivers with condition: any l.c.c. has more than 1 vertex.

6.5 Varieties $\mathcal{M}_{6} B_{3,6}, \mathcal{M}_{6} B_{6,6}$ and fibred products.

In this subsection we will apply results of subsections 6.2 and 6.3 in the case of $\mathcal{M}_{6} B_{3,6}$ and $\mathcal{M}_{6} B_{6,6}$.
Fix $r_{i j}=\frac{1}{6}$. Thus, $r_{i}=\frac{1}{2}$. Consider case of $\mathcal{M}_{6} B_{3,6}$. Denote by $X(3,6), X(3,3)$ and $Y(3)$ the varieties $\mathcal{M}_{6} B_{3,6}, \mathcal{M}_{6} B\left(\Gamma_{3,3}\right)$ and $\mathcal{M}_{6} \widetilde{\mathcal{A}}_{3}(1 / 2)$ respectively. As we know, $X(3,3)=\left(F^{*}\right)^{4}$ and $Y(3)=\mathcal{M}_{3} \mathbb{Q}_{\Gamma[3]}[1]$. There are only 5 generating necklaces in the quiver $\mathbb{Q}_{\Gamma[3]}$. They correspond to the following elements: $A=\operatorname{Tr} P q_{1} P q_{2}$, $B=\operatorname{Tr} P q_{1} P q_{3}, C=\operatorname{Tr} P q_{2} P q_{3}, \alpha=\operatorname{Tr} P q_{1} P q_{2} P q_{3}$ and $\beta=\operatorname{Tr} P q_{1} P q_{3} P q_{2}$. One can check that $Y(3)$ is defined by equation:

$$
\begin{equation*}
A B C=\alpha \beta \tag{158}
\end{equation*}
$$

In this case, we get the following commutative diagram:

where σ acts on $Y(3)$ by the rule: $\sigma: P \mapsto 1-P$.
Consider fibred product: $X(3,3) \times{ }_{Y(3)} X(3,3)$. Let us formulate the following:
Lemma 59. Any irreducible component of $X(3,3) \times_{Y(3)} X(3,3)$ has dimension more or equal 3.
Proof. Straightforward.
We have natural morphism: $f_{6}^{\prime}: X(3,6) \rightarrow X(3,3) \times_{Y(3)} X(3,3)$. We will study properties of this morphism. Namely, we will calculate varieties $E_{1}\left(f_{6}^{\prime}\right)$ and $E_{2}\left(f_{6}^{\prime}\right)$.

We obtain the following result:
Proposition 60. - Subvariety $E_{1}\left(f_{6}^{\prime}\right)$ consists of finite set of points,

- dimension of any component of $E_{2}\left(f_{6}^{\prime}\right)$ is less or equal 3.

Proof. See Appendix A.
Denote by $C_{i}, i=1, \ldots, s$ and $C_{i}^{\prime}, i=1, \ldots, s^{\prime}$ the components of $X(3,3) \times_{Y(3)} X(3,3)$ and $X(3,6)$ which dimension more or equal to 4 .

Corollary 61. - $s=s^{\prime}$

- there is a bijection $i \leftrightarrow j$ between set $C_{i}, i=1, \ldots, s$ and $C_{j}^{\prime}, j=1, \ldots, s^{\prime}$ such that $\overline{f_{6}^{\prime}\left(C_{i}\right)}=C_{j}^{\prime}$ and restriction of f_{6}^{\prime} to C_{i} is a birational morphism.

Remark We will prove that there is only one 4-dimensional irreducible component of $X(3,3) \times{ }_{Y(3)} X(3,3)$ in the Section ??. Therefore, we get that $X(3,6)$ is a 4 -dimensional and irreducible.

Consider the second case. For simplicity, denote by $X(6,6)$ and $Y(6)$ the varieties $\mathcal{M}_{6} B_{6,6}$ and $\mathcal{M}_{6} \mathcal{A}_{6}(1 / 2)[\overrightarrow{1}, 3]$ respectively. Similar to subsection 10 , we can define involution σ on $Y(6)$. We have the following commutative diagram:

Therefore, we have the morphism: $f_{6}: X(6,6) \rightarrow X(3,6) \times_{Y(6)} X(3,6)$.
Proposition 62. - Variety $E_{1}\left(f_{6}\right)$ consists of finite set of points.

- $\operatorname{dim}_{F} E_{2}\left(f_{6}\right) \leq 3$.

Proof. See Appendix B.

Denote by $C=\bigcup_{i=1}^{s} C_{i}, C^{\prime}=\bigcup_{i=1}^{s^{\prime}} C_{i}^{\prime}$ the union of four-dimensional irreducible components of $X(6,6)$ and the union of four-dimensional irreducible components of $X(3,6) \times_{Y(6)} X(3,6)$ respectively. Using proposition 62, we obtain the following result:

Proposition 63. • $s=s^{\prime}$,

- there is a bijection: $i \leftrightarrow j$ such that $\overline{f_{6}\left(C_{i}\right)}=C_{j}^{\prime}$ and $\left.f_{6}\right|_{C_{i}}, i=1, \ldots, s$ is a birational isomorphism.

Conjecture 64. $s=s^{\prime}=1$, i.e. there is only one four-dimensional irreducible component of $X(6,6)$.
Remark. We will prove that $s>0$ in Section ??.

7 The case of graph $\Gamma_{3,3}$.

In this section we will consider the case of $B_{r}\left(\Gamma_{3,3}\right)$, i.e. $r_{i j}=r$ for $i, j=1,2,3$. Let $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}$ be the generators of $B_{r}\left(\Gamma_{3,3}\right)$. Variety $\mathcal{M}_{6} B_{r}\left(\Gamma_{3,3}\right)[1]$ parameterizes 6 -dimensional $B_{r}\left(\Gamma_{3,3}\right)$-modules of rank 1. Let P and Q be the elements $\sum_{i=1}^{3} p_{i}$ and $\sum_{i=1}^{3} q_{i}$ respectively. Consider unital algebra $\widetilde{\mathcal{A}}_{3}(3 r)$ with generators w_{1}, w_{2}, w_{3}, W with relations: $w_{i}^{2}=w_{i}, W^{2}=W, w_{i} W w_{i}=3 r w_{i}, i=1,2,3$. In this subsection, we will consider the following morphisms of algebras: $\psi_{1,2}: \mathcal{A}_{r}^{3} \rightarrow B_{r}\left(\Gamma_{3,3}\right)$ given by formulas:

$$
\begin{align*}
& \psi_{1}: w_{i} \mapsto q_{i}, W \mapsto P \tag{161}\\
& \psi_{2}: w_{i} \mapsto p_{i}, W \mapsto Q \tag{162}
\end{align*}
$$

It is evident that there is the involution τ on the algebra $B_{r}\left(\Gamma_{3,3}\right)$ defined by rule: $p_{i} \leftrightarrow q_{i}, i=1,2,3$. And hence, $\psi_{2}=\psi_{1} \circ \tau$.

For simplicity, we will use the following notation:

$$
\begin{equation*}
X=\mathcal{M}_{6} B_{r}\left(\Gamma_{3,3}\right)[1], Y(3)=\mathcal{M}_{6} \mathcal{A}_{3}(3 r)[(1,1,1,3)] \tag{163}
\end{equation*}
$$

Also, we can consider variety \mathcal{D} parameterizing $\mathrm{GL}_{6}(\mathrm{~F})$-orbits of pair of the projectors (P, Q) of rank 3 with relation $\operatorname{Tr} P Q=\operatorname{Tr}\left(p_{1}+p_{2}+p_{3}\right)\left(q_{1}+q_{2}+q_{3}\right)=9 r$. In this subsection, we will study properties of morphisms: $X \rightarrow Y(3)$ and $X \rightarrow Y(3) \times_{\mathcal{D}} Y(3)$.

7.1 Preliminary remarks.

Consider algebra $\operatorname{Pr}\left(\Gamma_{k, m}\right)$ with generators $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{m}$. Algebras $\operatorname{Pr}\left(\Gamma_{k, 1}\right), \operatorname{Pr}\left(\Gamma_{1, m}\right)$ and $\operatorname{Pr}\left(\Gamma_{1,1}\right)$ are generated by elements $P=\sum_{i=1}^{k} p_{i}, q_{1}, \ldots, q_{m}, p_{1}, \ldots, p_{k}, Q=\sum_{i=1}^{m} q_{i}$ and P, Q respectively.

One can show that

$$
\begin{equation*}
\operatorname{Pr}\left(\Gamma_{k, m}\right) \cong \operatorname{Pr}\left(\Gamma_{k, 1}\right) *_{\operatorname{Pr}\left(\Gamma_{1,1}\right)} \operatorname{Pr}\left(\Gamma_{1, m}\right) . \tag{164}
\end{equation*}
$$

Thus, we have the isomorphism of varieties:

$$
\begin{equation*}
\boldsymbol{\operatorname { R e p }}_{m+k} \boldsymbol{\operatorname { P r }}\left(\Gamma_{k, m}\right)[\overrightarrow{1}] \cong \boldsymbol{\operatorname { R e p }}_{m+k} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[\overrightarrow{1}, m] \times_{\boldsymbol{\operatorname { R e p }}_{m+k}} \operatorname{Pr}\left(\Gamma_{1,1}\right)[k, m] \quad \boldsymbol{\operatorname { R e p }}_{m+k} \operatorname{Pr}\left(\Gamma_{1, m}\right)[k, \overrightarrow{1}] . \tag{165}
\end{equation*}
$$

For moduli varieties there is the commutative diagram:

The dimension counting shows us that this diagram is not a fibred product. Also, using considering of projections: $\mathcal{M}_{m+k} \operatorname{Pr}\left(\Gamma_{k, m}\right)[\overrightarrow{1}] \rightarrow F^{k m}, \mathcal{M}_{k+m} \operatorname{Pr}\left(\Gamma_{k, 1}\right)[\overrightarrow{1}, m] \rightarrow F^{k}, \mathcal{M}_{m+k} \operatorname{Pr}\left(\Gamma_{1, m}\right)[k, \overrightarrow{1}] \rightarrow F^{m}$ and $\mathcal{M}_{m+k} \operatorname{Pr}\left(\Gamma_{1,1}\right)[k, m] \rightarrow F$, we get the commutative diagram:

Let us come back to the case $k=m=3, r_{i j}=r \neq 0$. In this situation, we can identify algebras $\widetilde{\mathcal{A}}_{m}(3 r)$ and $\widetilde{\mathcal{A}}_{k}(3 r)$ via involution $\tau: p_{i} \leftrightarrow q_{i}, i=1,2,3$. Using notation, we obtain the following commutative diagram:

As we know from proposition $44, \mathcal{M}_{k+m} B_{\mathbf{r}}\left(\Gamma_{k, m}\right)[1]=\left(F^{*}\right)^{(k-1)(m-1)}$. Thus, $X=\left(F^{*}\right)^{4}$. Coordinates of X may be chosen as follows:

$$
\begin{equation*}
x_{1}=\frac{1}{r^{2}} \operatorname{Tr} p_{1} q_{1} p_{2} q_{2}, x_{2}=\frac{1}{r^{2}} \operatorname{Tr} p_{1} q_{1} p_{3} q_{2}, y_{1}=\frac{1}{r^{2}} \operatorname{Tr} p_{1} q_{1} p_{2} q_{3}, y_{2}=\frac{1}{r^{2}} \operatorname{Tr} p_{1} q_{1} p_{3} q_{3} \tag{169}
\end{equation*}
$$

Clearly, $X=\operatorname{Spec} F\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, y_{1}^{ \pm 1}, y_{2}^{ \pm 1}\right]$. It can be shown in usual way that $\tau: x_{1} \mapsto \frac{1}{x_{1}}, y_{2} \mapsto \frac{1}{y_{2}}, x_{2} \mapsto$ $\frac{1}{y_{1}}, y_{1} \mapsto \frac{1}{x_{2}}$. As we know, commutative ring $\mathcal{O}(Y)$ is generated by $a_{\left(i_{1}, i_{2}\right)}=\frac{1}{r^{2}} \operatorname{Tr}\left(P q_{i_{1}} P q_{i_{2}}\right)$ and $a_{\left(i_{1}, i_{2}, i_{3}\right)}=$ $\frac{1}{r^{3}} \operatorname{Tr}\left(P q_{i_{1}} P q_{i_{2}} P q_{i_{3}}\right)$ for $i_{1}, i_{2}, i_{3}=1,2,3$. We take the coefficients $\frac{1}{r^{2}}$ and $\frac{1}{r^{3}}$ for simplicity of calculations. Also, recall from subsection 6.5:

$$
Y=\operatorname{Spec} F\left[a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}, a_{(1,3,2)}\right] /\left\langle a_{(1,2)} a_{(1,3)} a_{(2,3)}=a_{(1,2,3)} a_{(1,3,2)}\right\rangle
$$

Describe the variety \mathcal{D} in terms of traces. Recall that \mathcal{D} is the variety of projectors P and Q of rank 3 and satisfying to condition: $\operatorname{Tr} P Q=9 r$. One can show that $\mathcal{D}=F^{2}=\operatorname{Spec} F\left[\frac{1}{r^{2}} \operatorname{Tr} P Q P Q, \frac{1}{r^{3}} \operatorname{Tr} P Q P Q P Q\right]$.

7.2 Identities for projectors $p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3}$.

In this subsection we prove some identity for projectors $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}$ of rank 1 with conditions: $\operatorname{Tr} p_{i} q_{j}=r$. We have the following formulas:

$$
\begin{equation*}
\frac{1}{r^{2}} \operatorname{Tr} p_{i} q_{j} p_{1} q_{1}=\frac{1}{r^{2}} \operatorname{Tr} p_{1} q_{1} p_{i} q_{j} p_{1} \tag{170}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{r^{2}} \operatorname{Tr} p_{i} q_{1} p_{1} q_{j} p_{1} \frac{1}{r^{2}} \operatorname{Tr} p_{1} q_{1} p_{i} q_{j} p_{1}=1 \tag{171}
\end{equation*}
$$

Note the following useful property of projectors $p_{1}, p_{2}, p_{3} ; q_{i}, q_{j}$ of rank 1 with condition $\operatorname{Tr} p_{i} q_{j}=r$ for all i, j.
Lemma 65. Consider projectors: $p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}$ of rank 1 with condition $\operatorname{Tr} p_{i} q_{j}=r$. Then we have the following identity:

$$
\begin{gather*}
\frac{1}{r^{2}} \operatorname{Tr}\left(p_{1}+p_{2}+p_{3}\right) q_{1}\left(p_{1}+p_{2}+p_{3}\right) q_{2}=\frac{1}{r^{3}} \operatorname{Tr}\left(p_{1}\left(q_{1}+q_{2}\right) p_{2}\left(q_{1}+q_{2}\right) p_{3}\left(q_{1}+q_{2}\right)\right)+1= \tag{172}\\
\frac{1}{r^{3}} \operatorname{Tr}\left(p_{1}\left(q_{1}+q_{2}\right) p_{3}\left(q_{1}+q_{2}\right) p_{2}\left(q_{1}+q_{2}\right)\right)+1
\end{gather*}
$$

Proof. Using relations: $p_{i}=\frac{1}{r^{2}} p_{i} q_{1} p_{1} q_{1} p_{i}$, we get:
$\frac{1}{r^{3}} \operatorname{Tr} p_{1}\left(q_{1}+q_{2}\right) p_{2}\left(q_{1}+q_{2}\right) p_{3}\left(q_{1}+q_{2}\right)=\frac{1}{r^{7}} \operatorname{Tr}\left(p_{1}\left(q_{1}+q_{2}\right) p_{2} q_{1} p_{1} \cdot p_{1} q_{1} p_{2}\left(q_{1}+q_{2}\right) p_{3} q_{1} p_{1} \cdot p_{1} q_{1} p_{3}\left(q_{1}+q_{2}\right) p_{1}\right)=$ $\frac{1}{r^{2}} \operatorname{Tr} p_{1}\left(q_{1}+q_{2}\right) p_{2} q_{1} p_{1} \cdot \frac{1}{r^{3}} \operatorname{Tr} p_{1} q_{1} p_{2}\left(q_{1}+q_{2}\right) p_{3} q_{1} p_{1} \cdot \frac{1}{r^{2}} \operatorname{Tr} p_{1} q_{1} p_{3}\left(q_{1}+q_{2}\right) p_{1}=\left(1+\frac{1}{x_{1}}\right)\left(1+\frac{x_{1}}{x_{2}}\right)\left(1+x_{2}\right)$.
Moreover,

$$
\left(1+\frac{1}{x_{1}}\right)\left(1+\frac{x_{1}}{x_{2}}\right)\left(1+x_{2}\right)=\left(1+x_{1}+x_{2}\right)\left(1+\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)-1
$$

We can transform the right expression into:

$$
\begin{equation*}
\frac{1}{r^{2}} \operatorname{Tr}\left(p_{1}+p_{2}+p_{3}\right) q_{1}\left(p_{1}+p_{2}+p_{3}\right) q_{2}-1 \tag{173}
\end{equation*}
$$

This proves our statement.

Analogously, we get the similar formula for $p_{1}, p_{2}, p_{3}, q_{i}, q_{j}$ for any i, j and for $q_{1}, q_{2}, q_{3} ; p_{i}, p_{j}, i \neq j, i, j=$ $1,2,3$.

Further, let us formulate the following proposition:
Proposition 66. Consider projectors $p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3}$ of rank 1 with condition $\operatorname{Trp}_{i} q_{j}=r$. Denote by P and Q the sums $p_{1}+p_{2}+p_{3}$ and $q_{1}+q_{2}+q_{3}$ respectively. Then we hold the following identity:

$$
\begin{equation*}
\prod_{(i, j) \in\{1,2,3\}}\left(\frac{1}{r^{2}} \operatorname{Tr}\left(P q_{i} P q_{j}\right)-1\right)=\prod_{(i, j) \in\{1,2,3\}}\left(\frac{1}{r^{2}} \operatorname{Tr}\left(Q p_{i} Q p_{j}\right)-1\right) \tag{174}
\end{equation*}
$$

where product is taken over all non-ordered pairs $(i, j) \in\{1,2,3\}$.
Proof. Using relation (172), we obtain the following formula:

$$
\begin{gathered}
\left(\frac{1}{r^{2}} \operatorname{Tr} P q_{1} P q_{2}-1\right)\left(\frac{1}{r^{2}} \operatorname{Tr} P q_{2} P q_{3}-1\right)\left(\frac{1}{r^{2}} \operatorname{Tr} P q_{3} P q_{1}-1\right)= \\
\frac{1}{r^{3}} \operatorname{Tr} p_{1}\left(q_{1}+q_{2}\right) p_{2}\left(q_{1}+q_{2}\right) p_{3}\left(q_{1}+q_{2}\right) \cdot \frac{1}{r^{3}} \operatorname{Tr} p_{1}\left(q_{2}+q_{3}\right) p_{2}\left(q_{2}+q_{3}\right) p_{3}\left(q_{2}+q_{3}\right) \cdot \frac{1}{r^{3}} \operatorname{Tr} p_{1}\left(q_{1}+q_{3}\right) p_{2}\left(q_{1}+q_{3}\right) p_{3}\left(q_{1}+q_{3}\right)= \\
\left(1+\frac{1}{x_{1}}\right)\left(1+\frac{x_{1}}{x_{2}}\right)\left(1+x_{2}\right) \cdot\left(1+\frac{x_{1}}{y_{1}}\right)\left(1+\frac{y_{1}}{x_{1}} \frac{x_{2}}{y_{2}}\right)\left(1+\frac{y_{2}}{x_{2}}\right) \cdot\left(1+y_{1}\right)\left(1+\frac{y_{2}}{y_{1}}\right)\left(1+\frac{1}{y_{2}}\right)= \\
\left(1+\frac{1}{x_{1}}\right)\left(1+\frac{x_{1}}{y_{1}}\right)\left(1+y_{1}\right) \cdot\left(1+\frac{x_{1}}{x_{2}}\right)\left(1+\frac{y_{1}}{x_{1}} \frac{x_{2}}{y_{2}}\right)\left(1+\frac{y_{2}}{y_{1}}\right) \cdot\left(1+x_{2}\right)\left(1+\frac{y_{2}}{x_{2}}\right)\left(1+\frac{1}{y_{2}}\right)= \\
\frac{1}{r^{3}} \operatorname{Tr} q_{1}\left(p_{1}+p_{2}\right) q_{2}\left(p_{1}+p_{2}\right) q_{3}\left(p_{1}+p_{2}\right) \cdot \frac{1}{r^{3}} \operatorname{Tr} q_{1}\left(p_{2}+p_{3}\right) q_{2}\left(p_{2}+p_{3}\right) q_{3}\left(p_{2}+p_{3}\right) \cdot \frac{1}{r^{3}} \operatorname{Tr} q_{1}\left(p_{1}+p_{3}\right) q_{2}\left(p_{1}+p_{3}\right) q_{3}\left(p_{1}+p_{3}\right)=
\end{gathered}
$$ Using proposition 65 , we get the required identity:

$$
\begin{aligned}
& \left(\frac{1}{r^{2}} \operatorname{Tr} P q_{1} P q_{2}-1\right)\left(\frac{1}{r^{2}} \operatorname{Tr} P q_{2} P q_{3}-1\right)\left(\frac{1}{r^{2}} \operatorname{Tr} P q_{3} P q_{1}-1\right)= \\
& \left(\frac{1}{r^{2}} \operatorname{Tr} Q p_{1} Q p_{2}-1\right)\left(\frac{1}{r^{2}} \operatorname{Tr} Q p_{2} Q p_{3}-1\right)\left(\frac{1}{r^{2}} \operatorname{Tr} Q p_{3} Q p_{1}-1\right)
\end{aligned}
$$

7.3 Properties of the map $X \rightarrow Y \times_{\mathcal{D}} Y$.

Denote by u_{1}, u_{2}, u_{3} the following elements:

$$
\begin{gather*}
u_{1}=a_{(1,2)}+a_{(1,3)}+a_{(2,3)}=\frac{1}{r^{2}}\left(\operatorname{Tr} P q_{1} P q_{2}+\operatorname{Tr} P q_{1} P q_{3}+\operatorname{Tr} P q_{2} P q_{3}\right), \tag{175}\\
u_{2}=a_{(1,2,3)}+a_{(1,3,2)}=\frac{1}{r^{3}}\left(\operatorname{Tr} P q_{1} P q_{2} P q_{3}+\operatorname{Tr} P q_{1} P q_{3} P q_{2}\right), \tag{176}\\
u_{3}=\left(a_{(1,2)}-1\right)\left(a_{(1,3)}-1\right)\left(a_{(2,3)}-1\right)=\left(\frac{1}{r^{2}} \operatorname{Tr} P q_{1} P q_{2}-1\right)\left(\frac{1}{r^{2}} \operatorname{Tr} P q_{2} P q_{3}-1\right)\left(\frac{1}{r^{2}} \operatorname{Tr} P q_{3} P q_{1}-1\right) . \tag{177}
\end{gather*}
$$

One can consider elements u_{i} as elements of $F\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, y_{1}^{ \pm 1}, y_{2}^{ \pm 1}\right]$. It can be shown in usual way that $\tau\left(u_{i}\right)=$ $u_{i}, i=1,2,3$.

Element u_{1} is a $\operatorname{Tr} P Q P Q$ up to constant. Expression u_{2} is a linear combination of $\operatorname{Tr} P Q P Q P Q, \operatorname{Tr} P Q P Q$ and constant. Also, element u_{3} is described in proposition 66.

Consider 3-dimensional affine space $\mathcal{U}=\operatorname{Spec} F\left[u_{1}, u_{2}, u_{3}\right]$. There exists a natural surjective map: $\mathcal{U} \rightarrow \mathcal{D}$. There are natural surjective maps: $\Theta: Y \rightarrow \mathcal{U}$.

We obtain that variety $Y \times_{\mathcal{U}} Y$ is a divisor of the $Y \times_{\mathcal{D}} Y, \operatorname{dim}_{F} Y \times_{\mathcal{U}} Y=5, \operatorname{dim}_{F} Y \times_{\mathcal{D}} Y=6$. Thus, we get the following commutative diagram:

Consider natural map: $p r_{12}=(p r, p r \circ \tau): X \rightarrow Y \times_{\mathcal{D}} Y$. Using commutative diagram (178), we obtain the following proposition:

Proposition 67. $p r_{12}(X) \subset Y \times_{\mathcal{U}} Y \subset Y \times_{\mathcal{D}} Y$.
Consider action of symmetric group S_{3} acting by permutations of the projectors p_{i} on the variety X. We have injection: $j: F[X]^{S_{3}} \rightarrow F[X]$ and injection twisted by involution $\tau: \tau \circ j: F[X]^{S_{3}} \rightarrow F[X]$. Thus, we can consider the intersection $F[X]^{S_{3}}$ and $\tau\left(F[X]^{S_{3}}\right)$ in the ring $F[X]$. It is easy $\tau\left(F[X]^{S_{3}}\right)=F[X]^{\tau S_{3} \tau^{-1}}=$ $F[X]^{\tau S_{3} \tau}$. Moreover, group $\tau S_{3} \tau$ acts on the X by permutations of the projectors q_{i}. Therefore, one can check that intersection $F[X]^{S_{3}} \cap \tau\left(F[X]^{S_{3}}\right)=F[X]^{S_{3} \times S_{3}}$, where $S_{3} \times S_{3}$ acts on the X by permutations of p_{i} and q_{j}. Rings $F[X]^{S_{3}}$ and $\tau\left(F[X]^{S_{3}}\right)$ are isomorphic. Identify these rings via isomorphism τ. Also, note that $\tau\left(S_{3} \times S_{3}\right) \tau=S_{3} \times S_{3}$ in the group Aut $\left(\Gamma_{3,3}\right)$. Thus, we have the well-defined involution τ on the $F[X]^{S_{3} \times S_{3}}$ such that we have the following commutative diagram:

where i is standard injection. For i we have the decomposition $j \circ i_{1}$, where $i_{1}: F[X]^{S_{3} \times S_{3}} \rightarrow F[X]^{S_{3}}$ and $j: F[X]^{S_{3}} \rightarrow F[X]$, here S_{3} is the group acting by permutations of p_{i}. Using relation $\tau \circ i \circ \tau=i$, we obtain
the decomposition $i=(\tau \circ j) \circ\left(i_{1} \circ \tau\right)$. Thus, we get the following commutative diagram:

Further, consider immersion: $i_{2}: F[Y] \rightarrow F[X]^{S_{3}}$. It is easy that this immersion is compatible with action another symmetric group S_{3}. Thus, we have the following commutative diagram:

Here θ is the immersion induced by i_{2}, ψ is standard immersion.
Moreover, we can consider the situation of the immersion $i_{1} \circ \tau: F[X]^{S_{3} \times S_{3}} \rightarrow F[X]^{S_{3}}$. In this situation, we have the following commutative diagram:

Actually, using relation $i_{1} \circ \theta=i_{2} \circ \psi$, we get the relation: $\left(i_{1} \circ \tau\right) \circ(\tau \circ \theta)=i_{2} \circ \psi$. Also, direct checking show us that the following diagram:

Here injection: $F[\mathcal{U}] \rightarrow F[Y]^{S_{3}}$ is given by elements u_{1}, u_{2}, u_{3}.
Therefore, we obtain the following commutative diagram:

Further, let us apply to this diagram the functor Spec. Also, let us denote by \mathcal{X}, \mathcal{Y} the varieties $X / S_{3}=$ $\operatorname{Spec} F[X]^{S_{3}}$ and $Y / S_{3}=\operatorname{Spec} F[Y]^{S_{3}}$ respectively. Thus, we get the following proposition:

Proposition 68. There is the following commutative diagram:

where π, π_{1} are standard factorization maps, ϕ is a well-defined map: $X / S_{3} \rightarrow Y$. Also, we have the following identity: $p r=\phi \circ \pi$.

7.4 General fibers of the morphism pr.

In this subsection we will prove that the morphism $p r$ has degree 12.
Let us express the morphism $p r$ in coordinates:

$$
\begin{gather*}
a_{(1,2)}=\left(1+\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)\left(1+x_{1}+x_{2}\right), \tag{186}\\
a_{(1,3)}=\left(1+\frac{1}{y_{1}}+\frac{1}{y_{2}}\right)\left(1+y_{1}+y_{2}\right) \tag{187}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{(2,3)}=\left(1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}}\right)\left(1+\frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}\right) . \tag{188}
\end{equation*}
$$

Analogous to this formula, we obtain the following expressions:

$$
\begin{equation*}
a_{(1,2,3)}=\left(1+x_{1}+x_{2}\right)\left(1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}}\right)\left(1+\frac{1}{y_{1}}+\frac{1}{y_{2}}\right) \tag{189}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{(1,3,2)}=\left(1+\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)\left(1+\frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}\right)\left(1+y_{1}+y_{2}\right) . \tag{190}
\end{equation*}
$$

Fix a general point $P=\left(A=a_{(1,2)}, B=a_{(1,3)}, C=a_{(2,3)}, \alpha=a_{(1,2,3)}, \beta=a_{(1,3,2)}\right)$. Then for calculation of fiber $\operatorname{pr}_{1}^{-1}(P)$ we have to compute a number of solutions of the system of equations (186), (187), (188), (189) and (190) for the point P.

Assume that $A, B, C \neq 0$. Hence, $\alpha, \beta \neq 0$. Thus, we can simplify formulas (189) and (190) as follows:

$$
\begin{align*}
& \left(1+x_{1}+x_{2}\right)\left(1+\frac{1}{y_{1}}+\frac{1}{y_{2}}\right)=\frac{\alpha}{C}\left(1+\frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}\right), \tag{191}\\
& \left(1+\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)\left(1+y_{1}+y_{2}\right)=\frac{\beta}{C}\left(1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}}\right) . \tag{192}
\end{align*}
$$

For the calculation of fiber $\mathrm{pr}^{-1}(P)$, let us compactify of $\left(F^{*}\right)^{4}$. We will choose the following compactification: $\left(F^{*}\right)^{4}$ is an open subvariety of $\mathbb{P}_{t}^{2} \times \mathbb{P}_{z}^{2}$ as follows. We will denote by $\left(\left(t_{0}: t_{1}: t_{2}\right),\left(z_{0}: z_{1}: z_{2}\right)\right)$ the coordinates of $\mathbb{P}_{t}^{2} \times \mathbb{P}_{z}^{2}$. We have the following formulas:

$$
\begin{equation*}
x_{1}=\frac{t_{1}}{t_{0}}, \quad x_{2}=\frac{t_{2}}{t_{0}}, \quad y_{1}=\frac{z_{0}}{z_{1}}, \quad y_{2}=\frac{z_{0}}{z_{2}} . \tag{193}
\end{equation*}
$$

for coordinates of $\left(F^{*}\right)^{4}$ and $\mathbb{P}_{t}^{2} \times \mathbb{P}_{z}^{2}$.

We get the following system of equations:

$$
\begin{gather*}
\left(t_{0}+t_{1}+t_{2}\right)\left(t_{0} t_{1}+t_{1} t_{2}+t_{2} t_{0}\right)=A t_{0} t_{1} t_{2} \tag{194}\\
\left(z_{0}+z_{1}+z_{2}\right)\left(z_{0} z_{1}+z_{1} z_{2}+z_{2} z_{0}\right)=B z_{0} z_{1} z_{2} \tag{195}\\
\left(t_{0} t_{1} z_{2}+t_{1} t_{2} z_{0}+t_{2} t_{0} z_{1}\right)\left(z_{0} z_{1} t_{2}+z_{1} z_{2} t_{0}+z_{2} z_{0} t_{1}\right)=C t_{0} t_{1} t_{2} z_{0} z_{1} z_{2}, \tag{196}\\
\left(t_{0}+t_{1}+t_{2}\right)\left(z_{0}+z_{1}+z_{2}\right)=\frac{\alpha}{C}\left(t_{0} z_{0}+t_{1} z_{1}+t_{2} z_{2}\right) \tag{197}\\
\left(z_{0} z_{1}+z_{1} z_{2}+z_{2} z_{0}\right)\left(t_{0} t_{1}+t_{1} t_{2}+t_{2} t_{0}\right)=\frac{\beta}{C}\left(z_{0} z_{1} t_{0} t_{1}+z_{1} z_{2} t_{1} t_{2}+z_{2} z_{0} t_{2} t_{0}\right) . \tag{198}
\end{gather*}
$$

Under our assumption we can omit the equation (196). We have to compute a intersection number of divisors (194),(195),(197) and (198). After computing we have to except the points at the divisors $t_{0} t_{1} t_{2}=0$ and $z_{0} z_{1} z_{2}=0$. For simplicity, denote by α^{\prime} and β^{\prime} the expressions $\frac{\alpha}{C}$ and $\frac{\beta}{C}$ respectively.

Firstly, let us study equation (194). Consider the rational map:

$$
p: \mathbb{P}_{t}^{2} \longrightarrow \mathbb{P}^{1}
$$

defined by correspondence: $p:\left(t_{0}: t_{1}: t_{2}\right) \mapsto\left(\left(t_{0}+t_{1}+t_{2}\right)\left(t_{0} t_{1}+t_{1} t_{2}+t_{2} t_{0}\right): t_{0} t_{1} t_{2}\right)$. Consider the surface $\mathcal{E} \subset \mathbb{P}_{t}^{2} \times \mathbb{P}^{1}$ which is a closure of graph of the morphism p. This surface is called Beauville elliptic family (cf. [?]). We have the natural projection: $\mathcal{E} \rightarrow \mathbb{P}^{1}$. This projection has 6 sections defined by points $F_{1}(1: 0: 0), F_{2}(0: 1: 0), F_{3}(0: 0: 1), G_{1}(0:-1: 1), G_{2}(1: 0:-1), G_{3}(1:-1: 0)$. It is well-known that fiber $\mathcal{E}_{A}, A \in \mathbb{P}^{1}$ is an elliptic curve, iff $A \neq(0: 1),(1: 1),(9: 1),(1: 0)$. Analogously, second equation defines elliptic curve \mathcal{E}_{B}. Intersection of $\mathcal{E}_{A} \cap\left\{t_{0} t_{1} t_{2}=0\right\}$ is a divisor $2 \sum_{i=1}^{3} F_{i}+\sum_{i=1}^{3} G_{i}$. Denote by \sim_{L} the linear equivalence of divisors. Let us formulate some property of points $F_{i}, G_{i}, i=1,2,3$.

Lemma 69. Assume $A \neq(0: 1),(1: 1),(9: 1),(1: 0)$. Consider elliptic curve \mathcal{E}_{A}. Then we have the following relations for points $F_{i} ; G_{i}, i=1,2,3$:

$$
\begin{gathered}
G_{1}+G_{2}+G_{3} \sim_{L} 3 G_{i}, i=1,2,3 \\
F_{i}+F_{j} \sim_{L} G_{i}+G_{j}, i, j=1,2,3 \\
\quad 2 F_{i} \sim_{L} 2 G_{i}, i=1,2,3
\end{gathered}
$$

Proof. Consider the intersection of line given by equation $(A-1) t_{0}-t_{1}-t_{2}=0$ and \mathcal{E}_{A}. It can be shown in usual way that intersection is triple point G_{1}. Analogously, $G_{i}, i=1,2,3$ are flex points. Therefore, $3 G_{i} \sim_{L} 3 G_{j}$. Points G_{1}, G_{2} and G_{3} lie on the line $t_{0}+t_{1}+t_{2}=0$. Hence, $G_{1}+G_{2}+G_{3} \sim_{L} 3 G_{i}$. Further, points F_{1}, F_{2} and G_{3} lie on the line $t_{2}=0$. Thus, $F_{1}+F_{2}+G_{3} \sim_{L} 3 G_{i}$.

It is well known that for fixed point $P \in \mathcal{E}_{A}$ elements $X-P, X \in \mathcal{E}_{A}$ form the group $\operatorname{Pic}^{0}\left(\mathcal{E}_{A}\right)$. Consider elliptic curve $\mathcal{E}_{A} \subset \mathbb{P}^{2}$. As we know, there is an usual group law on the \mathcal{E}_{A}. Recall that usual group law on the plane elliptic curve is defined by flex point. It is easy that flex points of \mathcal{E}_{A} are $G_{i}, i=1,2,3$. Without loss of generality, let us choose the point G_{1}. $\operatorname{Map} \mathcal{E}_{A} \rightarrow \operatorname{Pic}^{0}\left(\mathcal{E}_{A}\right)$ defined by correspondence: $X \mapsto X-G_{1}$ is an isomorphism of the groups. From relations, we get that elements $0, G_{2}-G_{1}, G_{3}-G_{1}, F_{1}-G_{1}, F_{2}-G_{1}, F_{3}-G_{1}$ form the group \mathbb{Z}_{6}. It is easy that $F_{1}-G_{1}$ is element of second order, $G_{2}-G_{1}, G_{3}-G_{1}$ are elements of third order, $F_{2}-G_{1}, F_{3}-G_{1}$ are elements of sixth order. It is well known that Beauville family

$$
\left(t_{0}+t_{1}+t_{2}\right)\left(t_{0} t_{1}+t_{0} t_{2}+t_{1} t_{2}\right)=A t_{0} t_{1} t_{2}
$$

is the family of the elliptic curves with fixed structure of sixth order (cf. [?]).
Further, let us express the natural action of group S_{3} on the elliptic curve of \mathcal{E}_{A} in terms of automorphisms of the curve. It can be shown in usual way that permutation of x_{0} and x_{1} is the automorphism: $P \mapsto 2 F_{1}-P, P \in$ \mathcal{E}_{A}, cyclic permutation $(0,1,2): x_{0} \mapsto x_{1} \mapsto x_{2} \mapsto x_{0}$ is the automorphism: $P \mapsto P+G_{2}-G_{1}, P \in \mathcal{E}_{A}$. Also, $\operatorname{map} \varsigma: x_{i} \mapsto \frac{1}{x_{i}}, i=0,1,2$ is the automorphism: $\varsigma: P \mapsto P+F_{1}-G_{1}$.

If $A, B \neq 0,1,9, \infty$ first and second equation define the product of elliptic curves $\mathcal{E}_{A} \times \mathcal{E}_{B}$. Equations (197), (198) define divisors $D_{1, \alpha^{\prime}}, D_{2, \beta^{\prime}} \subset \mathcal{E}_{A} \times \mathcal{E}_{B}$ respectively. Recall that product of elliptic curves $\mathcal{E}_{A} \times \mathcal{E}_{B}$ has divisors: $\mathcal{E}_{A} \times p t$ and $p t \times \mathcal{E}_{B}$ which are not numerically equivalent. These divisors are called vertical and horizontal respectively. We will say that divisor D of $\mathcal{E}_{A} \times \mathcal{E}_{B}$ has type (a, b) if $D \cdot\left(p t \times \mathcal{E}_{B}\right)=a$ and $D \cdot\left(\mathcal{E}_{A} \times p t\right)=b$. We obtain that $D_{1, \alpha^{\prime}}$ is divisor of type $(3,3), D_{2, \beta^{\prime}}$ is divisor of type $(6,6)$.
Lemma 70. For any $\alpha^{\prime}, \beta^{\prime} \in \mathbb{P}^{1}$ divisor $D_{1, \alpha^{\prime}}$ is linear equivalent to $3 G_{1} \times \mathcal{E}_{B}+\mathcal{E}_{A} \times 3 G_{1}$, Divisor $D_{2, \beta^{\prime}}$ of $\mathcal{E}_{A} \times \mathcal{E}_{B}$ is reducible and we have the following identity:

$$
\begin{equation*}
D_{2, \beta^{\prime}}=D_{2, \beta^{\prime}}^{\prime}+\sum_{i=1}^{3} F_{i} \times \mathcal{E}_{B}+\sum_{i=1}^{3} \mathcal{E}_{A} \times F_{i} \tag{199}
\end{equation*}
$$

Thus, for any $\alpha^{\prime}, \beta^{\prime} \in \mathbb{P}^{1}$ divisors $D_{1, \alpha^{\prime}}$ and $D_{2, \beta^{\prime}}^{\prime}$ are not linear equivalent, in particular, are not equal.
Proof. First statement is trivial. Consider the divisor $D_{2, \beta^{\prime}}$ of $\mathcal{E}_{A} \times \mathcal{E}_{B}$ defined by (198). It is easy that $\mathcal{E}_{A} \times F_{i}, i=1,2,3$ and $F_{i} \times \mathcal{E}_{B}$ are components of $D_{2, \beta^{\prime}}$. Thus, $D_{2, \beta^{\prime}}=D_{2, \beta^{\prime}}^{\prime}+\sum_{i=1}^{3} F_{i} \times \mathcal{E}_{B}+\sum_{i=1}^{3} \mathcal{E}_{A} \times F_{i}$. Clearly, divisors $D_{1, \alpha^{\prime}}$ and $D_{2, \beta^{\prime}}$ are linear equivalent to $3 G_{1} \times \mathcal{E}_{B}+\mathcal{E}_{A} \times 3 G_{1}$ and $6 G_{1} \times \mathcal{E}_{B}+\mathcal{E}_{A} \times 6 G_{1}$ respectively. Using lemma 69 , we get the following linear equivalences of divisors:

$$
D_{2, \beta^{\prime}}^{\prime} \sim_{L}\left(F_{1}+F_{2}+F_{3}\right) \times \mathcal{E}_{B}+\mathcal{E}_{A} \times\left(F_{1}+F_{2}+F_{3}\right) \nsim 3 G_{1} \times \mathcal{E}_{B}+\mathcal{E}_{A} \times 3 G_{1}
$$

Consider morphism $\varsigma^{\times 2}=\varsigma \times \varsigma: \mathcal{E}_{A} \times \mathcal{E}_{B} \rightarrow \mathcal{E}_{A} \times \mathcal{E}_{B}$. It is easy to see that $\varsigma \times \varsigma$ transforms linear system of divisors $\left\{D_{1, \alpha^{\prime}}\right\}_{\alpha^{\prime} \in \mathbb{P}^{1}}$ into linear system $\left\{D_{2, \beta^{\prime}}\right\}_{\beta^{\prime} \in \mathbb{P}^{1}}$.
Lemma 71. For general A, B, α, β divisors $D_{1, \alpha^{\prime}}$ and $D_{2, \beta^{\prime}}$ are irreducible.
Proof. Using transformation $\varsigma^{\times 2}$, it is enough to prove that $D_{1, \alpha^{\prime}}$ is an irreducible for general α^{\prime}. Consider linear system of divisors $\left\{D_{1, \alpha^{\prime}}\right\}_{\alpha^{\prime} \in \mathbb{P}^{1}}$. By theorem of Bertini, general divisor of this linear system is smooth outside of base locus. Let us compute the base locus of the system. It is given by system of the equations: $\left(t_{0}+t_{1}+t_{2}\right)\left(z_{0}+z_{1}+z_{2}\right)=0$ and $t_{0} z_{0}+t_{1} z_{1}+t_{2} z_{2}=0$ in the variety $\mathcal{E}_{A} \times \mathcal{E}_{B}$. There are 6 points: $(1:-1: 0) \times(0: 0: 1),(1: 0:-1) \times(0: 1: 0),(0: 1:-1) \times(1: 0: 0),(0: 0: 1) \times(1:-1: 0),(0: 1: 0) \times(1: 0:$ $-1),(1: 0: 0) \times(0: 1:-1), 6$ points: $(1:-1: 0) \times(1: 1: w),(1: 0:-1) \times(1: w ; 1),(0: 1:-1) \times(w: 1: 1)$, where w satisfy to relation $(2 w+1)(w+2)=B w$ and 6 points $(1: 1: v) \times(1:-1: 0),(1: v: 1) \times(1:$ $0:-1),(v: 1: 1) \times(0: 1:-1)$, where v satisfy to relation: $(2 u+1)(u+2)=A u$. Consider the point $(1: 0: 0) \times(0: 1:-1)$. Let us prove that general divisor $D_{1, \alpha^{\prime}}$ is smooth in this point. For this purpose, let us consider the affine coordinate chart $V=F_{x_{1}, x_{2}, y_{0}, y_{2}}^{4}$, where $x_{1}=\frac{t_{1}}{t_{0}}, x_{2}=\frac{t_{2}}{t_{0}}, y_{0}=\frac{z_{0}}{z_{1}}, y_{2}=\frac{z_{2}}{z_{1}}$. Consider the intersection $\mathcal{E}_{A} \times \mathcal{E}_{B} \cap V$. Then divisor $D_{1, \alpha^{\prime}}$ in this affine chart is given by the system of the equations:

$$
\begin{gathered}
\left(1+x_{1}+x_{2}\right)\left(x_{1}+x_{2}+x_{1} x_{2}\right)=A x_{1} x_{2} \\
\left(y_{0}+1+y_{2}\right)\left(y_{0}+y_{2}+y_{0} y_{2}\right)=B y_{0} y_{2} \\
\left(1+x_{1}+x_{2}\right)\left(y_{0}+1+y_{2}\right)=\alpha^{\prime}\left(y_{0}+x_{1}+x_{2} y_{2}\right)
\end{gathered}
$$

One can calculate the matrix of the jacobian of this system in the point $(0,0) \times(0,-1)$:

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \tag{200}\\
0 & 0 & B-1 & -1 \\
-\alpha^{\prime} & \alpha^{\prime} & 1-\alpha^{\prime} & 1
\end{array}\right)
$$

It is easy that for general B, α^{\prime} rank of this matrix is 3. Analogously, one can consider another points. Hence, the general divisor $D_{1, \alpha^{\prime}}$ is smooth, and hence, irreducible. Also, divisor $D_{2, \beta^{\prime}}$ is irreducible as transform of $D_{1, \alpha}$.
Corollary 72. Morphism pr is dominant. For general point P fiber $p^{-1}(P)$ consists of finite set of points, moreover $\left|p r^{-1}(P)\right| \leq 12$.
Proof. Actually, we have that $D_{1, \alpha^{\prime}} \cdot D_{2, \beta^{\prime}}=18$ and we have 6 common points in the "infinite" part.

7.5 Varieties Y and its quotient \mathcal{Y}.

In this subsection we will study morphism $\Theta: Y \rightarrow \mathcal{U}$ and morphism $\eta: \mathcal{Y} \rightarrow \mathcal{U}$.
Proposition 73. Morphism $\Theta: Y \rightarrow \mathcal{U}$ is a fibration of curves of genus 4.
Proof. Fix a general point $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$. Fiber $Y_{\mathbf{u}}$ is defined by system of equations:

$$
\begin{gathered}
a_{(1,2)}+a_{(1,3)}+a_{(2,3)}=u_{1}, \\
a_{(1,2,3)}+a_{(1,3,2)}=u_{2}, \\
\left(a_{(1,2)}-1\right)\left(a_{(1,3)}-1\right)\left(a_{(2,3)}-1\right)=u_{3}, \\
a_{(1,2,3)} a_{(1,3,2)}=a_{(1,2)} a_{(1,3)} a_{(2,3)} .
\end{gathered}
$$

Let us compactify these equations in the following way: affine space will be considered as open dense subvariety of \mathbb{P}^{5}. Thus, first two equations define 3 -dimensional linear subspace \mathcal{L} of \mathbb{P}^{5}. Third and second equations define a 2-dimensional subspace \mathcal{V} of $H^{0}\left(\mathbb{P}^{5}, \mathcal{O}(3)\right)$, i.e. pencil of cubics. These pencil has a singular element which is a union of linear space and quadric \mathcal{Q}. Actually, we can express this quadric in terms of local coordinates:

$$
\begin{equation*}
\mathcal{Q}: a_{(1,2,3)} a_{(1,3,2)}-a_{(1,2)} a_{(1,3)}-a_{(1,2)} a_{(2,3)}-a_{(1,3)} a_{(2,3)}+u_{1}-1=u_{3} . \tag{201}
\end{equation*}
$$

Consider projective space \mathbb{P}^{5} with homogenous coordinates $\left(z_{0}: z_{1}: z_{2}: z_{3}: z_{4}: z_{5}\right)$. For simplicity, let us change the variables in the following manner: $a_{(1,2,3)}=\frac{z_{1}}{z_{0}}, a_{(1,3,2)}=\frac{z_{2}}{z_{0}}, a_{(1,2)}=\frac{z_{3}}{z_{0}}, a_{(1,3)}=\frac{z_{4}}{z_{0}}, a_{(2,3)}=\frac{z_{5}}{z_{0}}$. Thus, the we get the following quadric \mathcal{Q} :

$$
\begin{equation*}
z_{1} z_{2}-z_{3} z_{4}-z_{3} z_{5}-z_{4} z_{5}-\left(u_{1}-1-u_{3}\right) z_{0}^{2}=0 \tag{202}
\end{equation*}
$$

and cubic \mathcal{C} :

$$
\begin{equation*}
z_{0} z_{1} z_{2}=z_{3} z_{4} z_{5} \tag{203}
\end{equation*}
$$

Let us prove some properties of the intersection of general quadric and cubic:
Lemma 74. For general $\mathbf{u} \in \mathcal{U}$ intersection \mathcal{Q}, \mathcal{C} and 3-dimensional linear space \mathcal{L} is non-singular.
Proof. Space \mathcal{L} is given by equations:

$$
\begin{equation*}
z_{3}+z_{4}+z_{5}-u_{1} z_{0}=0, z_{1}+z_{2}-u_{2} z_{0}=0 \tag{204}
\end{equation*}
$$

Consider matrix of the jacobian of the equations defining intersection of \mathcal{Q}, \mathcal{C} and \mathcal{L} :

$$
J=\left(\begin{array}{cccccc}
-u_{1} & 0 & 0 & 1 & 1 & 1 \tag{205}\\
-u_{2} & 1 & 1 & 0 & 0 & 0 \\
-z_{1} z_{2} & -z_{0} z_{2} & -z_{0} z_{1} & z_{4} z_{5} & z_{3} z_{5} & z_{3} z_{4} \\
-2\left(u_{1}-1-u_{3}\right) z_{0} & -z_{2} & -z_{1} & z_{4}+z_{5} & z_{3}+z_{5} & z_{3}+z_{4}
\end{array}\right)
$$

Rows of J correspond to variables z_{0}, \ldots, z_{5} respectively. It can be shown in usual way that statement of the lemma is equivalent to condition $\operatorname{rank} J=4$ for general $\mathbf{u} \in \mathcal{U}$. We will denote by $J_{i_{1}, i_{2}, i_{3}, i_{4}}$ the submatrix of J with rows with numbers $i_{1}, i_{2}, i_{3}, i_{4} \in\{1, \ldots, 6\}, i_{1}<i_{2}<i_{3}<i_{4}$. Consider the varieties $V_{i_{1}, i_{2}, i_{3}, i_{4}}$ defined by equations $\operatorname{det} J_{i_{1}, i_{2}, i_{3}, i_{4}}=0, i_{1}, i_{2}, i_{3}, i_{4} \in\{1, \ldots, 6\}$ respectively. It is easy that singularities of the intersection $\mathcal{C} \cap \mathcal{Q} \cap \mathcal{L}$ are in the $\bigcap_{\left(i_{1}, i_{2}, i_{3}, i_{4}\right), 1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq 6} V_{i_{1}, i_{2}, i_{3}, i_{4}}$.

Further, one can show that $\operatorname{det} J_{3,4,5,6}=\operatorname{det} J_{2,4,5,6}=\left(z_{3}-z_{4}\right)\left(z_{4}-z_{5}\right)\left(z_{5}-z_{3}\right)$, $\operatorname{det} J_{2,3,4,5}=$ $\left(z_{4}-z_{3}\right)\left(z_{5}-z_{0}\right)\left(z_{1}-z_{2}\right), \operatorname{det} J_{2,3,4,6}=\left(z_{5}-z_{3}\right)\left(z_{4}-z_{0}\right)\left(z_{1}-z_{2}\right), \operatorname{det} J_{2,3,5,6}=\left(z_{5}-z_{4}\right)\left(z_{3}-z_{0}\right)\left(z_{1}-z_{2}\right)$. It is easy that each of the varieties $V_{i_{1}, i_{2}, i_{3}, i_{4}}$ is a union of the three projective hyperspaces. There are several cases. Consider the case $z_{5}=z_{4}, z_{1}=z_{2}$. In this situation we have the line $l: z_{1}=\frac{u_{2} z_{0}}{2}, z_{2}=\frac{u_{2}}{z_{0}}, z_{3}=-2 z_{5}+u_{1} z_{0}, z_{4}=z_{5}$. And we have to consider the intersection of this line with quadric \mathcal{Q} and cubic \mathcal{C}. One can show that the intersection of the line l, quadric \mathcal{Q} and cubic \mathcal{C} is empty for general u_{1}, u_{2}, u_{3}. One can solve the rest analogously. Lemma is proved

Analogous to lemma, standard arguments show us that intersection of 3-dimensional space and cubic is non-singular 2-dimensional cubic. Also, intersection of 3-dimensional space and quadric is non-singular quadric. Thus, we get the intersection of cubic and quadric in 3-dimensional space. Using lemma and generality of \mathbf{u}, we get that this intersection is complete and non-singular. Thus, cubic defines non-singular divisor of type $(3,3)$ on quadric \mathcal{Q}, i.e. curve of genus 4 .

Further, we will study morphism $\eta: \mathcal{Y} \rightarrow \mathcal{U}$. Action of S_{3} on the ring $\mathcal{O}(Y)$ is defined as follows. Direct calculations show us that permutations $(1,2)$ and $(1,2,3)$ act on the ring $\mathcal{O}(Y)$ by formulas:

$$
\begin{equation*}
(1,2): a_{(1,2)} \mapsto a_{(1,2)}, a_{(1,3)} \leftrightarrow a_{(2,3)}, a_{(1,2,3)} \leftrightarrow a_{(1,3,2)} \tag{206}
\end{equation*}
$$

and

$$
\begin{equation*}
(1,2,3): a_{(1,2)} \mapsto a_{(2,3)}, a_{(2,3)} \mapsto a_{(1,3)}, a_{(1,3)} \mapsto a_{(1,2)}, a_{(1,2,3)} \mapsto a_{(1,2,3)}, a_{(1,3,2)} \mapsto a_{(1,3,2)} \tag{207}
\end{equation*}
$$

We will study $\mathcal{O}(Y)^{S_{3}}$ the ring of S_{3}-invariants. Using Noether's theorem, this ring is finitely generated. Direct calculations show us that we can choose generators of this ring in following way: $u_{1}, u_{2}, u_{3}, v=$ $\left(a_{(1,2,3)}-a_{(1,3,2)}\right)^{2}, w=\left(a_{(1,2)}-a_{(2,3)}\right)\left(a_{(2,3)}-a_{(1,3)}\right)\left(a_{(1,3)}-a_{(1,2)}\right)\left(a_{(1,2,3)}-a_{(1,3,2)}\right)$. There is a relation:

$$
\begin{equation*}
-16 w^{2}+v^{4}+c_{1} v^{3}+c_{2} v^{2}+c_{3} v=0 \tag{208}
\end{equation*}
$$

Here, $c_{i} \in F\left[u_{1}, u_{2}, u_{3}\right], i=1,2,3$.
Using computing system Maple, we get the following formulas:

$$
\begin{gather*}
c_{1}=6 u_{1}+u_{1}^{2}+12 u_{3}-3 u_{2}^{2}-15 \tag{209}\\
c_{2}=96 u_{3}+48 u_{3}^{2}-24 u_{1}-12 u_{2}^{2} u_{1}+3 u_{2}^{4}-24 u_{2}^{2} u_{3}-24 u_{3} u_{1}-16 u_{1}^{2}+8 u_{1}^{3}+30 u_{2}^{2}+8 u_{3} u_{1}^{2}-2 u_{2}^{2} u_{1}^{2}+48, \tag{210}\\
c_{3}=64+192 u_{3}^{2}-48 u_{2}^{2}-384 u_{3} u_{1}-32 u_{3} u_{1}^{3}-u_{2}^{6}+24 u_{2}^{2} u_{1}+64 u_{3}^{3}-96 u_{2}^{2} u_{3}+6 u_{2}^{4} u_{1}+208 u_{1}^{2}-8 u_{1}^{3} u_{2}^{2}- \tag{211}\\
48 u_{3}^{2} u_{2}^{2}+u_{2}^{4} u_{1}^{2}+12 u_{3} u_{2}^{4}+224 u_{3} u_{1}^{2}-8 u_{3} u_{1}^{2} u_{2}^{2}-96 u_{1}^{3}+16 u_{3}^{2} u_{1}^{2}+24 u_{3} u_{1} u_{2}^{2}+16 u_{2}^{2} u_{1}^{2}- \\
192 u_{3}^{2} u_{1}-192 u_{1}+192 u_{3}+16 u_{1}^{4}-15 u_{2}^{4} .
\end{gather*}
$$

Clearly, the affine curve (208) is a non-singular for general $\mathbf{u} \in \mathcal{U}$. Fix general point $\mathbf{u} \in \mathcal{U}$. Also, let us note that after standard compactification of fibre $\mathcal{Y}_{\mathbf{u}}$, we get the quartic curve in \mathbb{P}^{2}. This curve is singular at infinity. For simplicity, let us construct birational morphism $\mathcal{Y} \rightarrow \widetilde{\mathcal{Y}}$ given by the following formula:

$$
\begin{equation*}
u_{i} \mapsto u_{i}, i=1,2,3 \quad v \mapsto v, \quad w \mapsto t=\frac{w}{v}=\frac{\left(a_{(1,2)}-a_{(2,3)}\right)\left(a_{(2,3)}-a_{(1,3)}\right)\left(a_{(1,3)}-a_{(1,2)}\right)}{\left(a_{(1,2,3)}-a_{(1,3,2)}\right)} \tag{212}
\end{equation*}
$$

It easy that variety $\widetilde{\mathcal{Y}}$ is given by equation:

$$
\begin{equation*}
-16 t^{2} v+v^{3}+c_{1} v^{2}+c_{2} v+c_{3}=0 \tag{213}
\end{equation*}
$$

where c_{i} are given by formulas (209),(210),(211). It is clear that this birational isomorphism is compatible with S_{3} - action.

Also, we can transform $\tilde{\mathcal{Y}}$ by the following substitution:

$$
v_{1}=A B C=\frac{u_{2}^{2}-v}{4}
$$

We obtain the following form of the $\widetilde{\mathcal{Y}}$ given by formula:

$$
\begin{equation*}
\left(-u_{2}^{2}+4 v_{1}\right) w^{2}-4 v_{1}^{3}+c_{1}^{\prime} v_{1}^{2}+c_{2}^{\prime} v_{1}+c_{3}^{\prime}=0 \tag{214}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{1}^{\prime}=-15+u_{1}^{2}+12 u_{3}+6 u_{1} \tag{215}
\end{equation*}
$$

$$
\begin{gather*}
c_{2}^{\prime}=4 u_{1}^{2}-24 u_{3}+6 u_{1}-12 u_{3}^{2}-12-2 u_{1}^{3}+6 u_{3} u_{1}-2 u_{3} u_{1}^{2} \tag{216}\\
c_{3}^{\prime}=4\left(u_{3}-u_{1}+\frac{u_{1}^{2}}{4}+1\right)\left(1+u_{3}-u_{1}\right)^{2} . \tag{217}
\end{gather*}
$$

Let us note the following symmetry γ of the variety Y defined by correspondences: $\gamma: a_{(i, j)} \mapsto a_{(i, j)}, i, j=$ $1,2,3$ and $\gamma: a_{(1,2,3)} \mapsto-a_{(1,3,2)}, a_{(1,3,2)} \mapsto-a_{(1,2,3)}$. It is easy that action of γ is compatible with S_{3}-action. Thus, there is an action of γ on the \mathcal{Y} defined by rule: $\gamma: u_{1} \mapsto u_{1}, u_{2} \mapsto-u_{2}, u_{3} \mapsto u_{3}, w \mapsto w, v \mapsto v$, and analogously, we can define action of γ on the $\widetilde{\mathcal{Y}}$. Consider natural projection: $\eta: \widetilde{\mathcal{Y}} \rightarrow \mathcal{U}$. It is easy that we can define action of the involution γ on \mathcal{U} compatible with action on $\widetilde{\mathcal{Y}}$.
Proposition 75. Morphism: $\eta: \widetilde{\mathcal{Y}} \rightarrow \mathcal{U}$ is elliptic fibration. Involution γ provides the isomorphism of fibers $\widetilde{\mathcal{Y}}_{\mathbf{u}}$ and $\widetilde{\mathcal{Y}}_{\gamma(\mathbf{u})}$ for $\mathbf{u} \in \mathcal{U}$.

Proof. Fix general point $\mathbf{u} \in \mathcal{U}$. Consider fiber of the variety $\widetilde{\mathcal{Y}}$ over \mathbf{u} given by formula (214). Consider natural compactification of the curve $\widetilde{\mathcal{Y}}_{\mathbf{u}}$ in the projective plane \mathbb{P}^{2} with homogenous coordinates $\left(t_{0}: t_{1}: t_{2}\right)$. Put $w=\frac{t_{1}}{t_{0}}, v_{1}=\frac{t_{2}}{t_{0}}$. Thus, we get the following cubic curve:

$$
\begin{equation*}
\left(4 t_{2}-u_{2}^{2} t_{0}\right) t_{1}^{2}=-4 t_{2}^{3}+c_{1}^{\prime} t_{2}^{2} t_{0}+c_{2}^{\prime} t_{2} t_{0}^{2}+c_{3}^{\prime} t_{0}^{3} \tag{218}
\end{equation*}
$$

Studying natural projection: $\mathbb{P}^{2} \rightarrow \mathbb{P}_{\left(t_{0}: t_{2}\right)}^{1}$, we obtain that this projection defines the covering of degree 2 of compactification $\widetilde{\mathcal{Y}}_{\mathbf{u}}$ onto \mathbb{P}^{1} with ramification. One can check that for general point \mathbf{u} ramification divisor has degree 4. Using non-singularity and degree of ramification divisor, we get that cubic curve is elliptic. It is easy that automorphism γ preserves the curve.

7.6 Degree of morphism $p r$, function fields $F(X)^{S_{3}}$ and $F(\mathcal{X})$.

In this section we will study birational properties of varieties X / S_{3} and \mathcal{X}. In particular, we will study ramification divisor of morphism ϕ.

Expressing the variable $a_{(1,2,3)}$ from the equation $a_{(1,2)} a_{(2,3)} a_{(1,3)}=a_{(1,2,3)} a_{(1,3,2)}$, we get the following isomorphism of function fields:

$$
\begin{equation*}
F(Y) \cong F\left(a_{(1,2)}, a_{(1,3)}, a_{(1,2,3)}, a_{(1,3,2)}\right) \tag{219}
\end{equation*}
$$

and

$$
\begin{equation*}
F(\mathcal{Y}) \cong F\left(u_{1}, u_{2}, u_{3}, v, t ; 16 t^{2} v-v^{3}-c_{1} v^{2}-c_{2} v-c_{3}=0\right) \tag{220}
\end{equation*}
$$

where $c_{i}, \in F\left[u_{1}, u_{2}, u_{3}\right], i=1,2,3$ and v, t are defined by (212). It is easy that $F(X)=F\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$. Recall that general fiber of $p r$ is less or equal 12. Thus, we have for function fields the following inequality: $|F(X): F(Y)| \leq 12$.

Fix a general point $\left(A=a_{(1,2)}, B=a_{(1,3)}, C=a_{(2,3)}, \alpha=a_{(1,2,3)}, \beta=a_{(1,3,2)}\right.$. Let us study a fibers of the morphisms ϕ and $p r$ over general point for obtaining of ramification divisors. For this purpose, consider the following system of equations (194), (195), (197), (198). Recall that first and second equation define elliptic curves \mathcal{E}_{A} and \mathcal{E}_{B} respectively.

For general $B, \frac{\alpha}{C}, \frac{\beta}{C}$ system of equations (195), (197), (198) defines a curve \mathcal{S}. We can consider this curve as intersection of two divisors D_{1} and D_{2} into 3 -dimensional variety $\mathcal{E}_{B} \times \mathbb{P}^{2}$. We will study the intersection of curve \mathcal{S} and curve \mathcal{E}_{A}. For this purpose, let us project this curve onto \mathbb{P}^{2}. Denote this projection map by $\pi_{\mathbb{P}^{2}}$.

It can be shown in usual way that projection of $\pi_{\mathbb{P}^{2}}$ is a S_{3} - equivariant morphism. Actually, $\left(t_{0}: t_{1}: t_{2}\right) \in$ $\pi_{\mathbb{P}^{2}}(\mathcal{C})$ iff $\sigma\left(t_{0}: t_{1}: t_{2}\right) \in \pi_{\mathbb{P}^{2}}(\mathcal{S})$ for any permutation $\sigma \in S_{3}$. Consider elementary symmetric polynomials: $\sigma_{1}=t_{0}+t_{1}+t_{2}, \sigma_{2}=t_{0} t_{1}+t_{0} t_{2}+t_{1} t_{2}, \sigma_{3}=t_{0} t_{1} t_{2}$ We can choose the coordinate of quotient $\mathbb{P}_{t}^{2} / S_{3}$ as follows $\left(s_{1}=\sigma_{1}^{3}: s_{2}=\sigma_{1} \sigma_{2}: s_{3}=\sigma_{3}\right)$. It is clear that curve \mathcal{E}_{A} transforms into curve given by formula $s_{2}=A s_{3}$. Using Maple, we can check that curve $\pi_{\mathbb{P}^{2}}(\mathcal{S})$ transforms into curve S^{\prime} given by equation:

$$
\begin{equation*}
a_{1} s_{1} s_{3}^{3}+a_{2} s_{2}^{3} s_{3}+a_{3} s_{1} s_{2}^{3}+a_{4} s_{1}^{2} s_{2} s_{3}+a_{5} s_{1} s_{2}^{2} s_{3}+a_{6} s_{1}^{2} s_{3}^{2}+a_{7} s_{1} s_{2} s_{3}^{2}+a_{8} s_{2}^{4}=0 \tag{221}
\end{equation*}
$$

with $a_{i} \in \mathbb{C}[A, B, C, \alpha, \beta, A B C=\alpha \beta]$:

$$
a_{1}=-B^{2} \alpha^{3} \beta^{3}+9 \beta^{3} \alpha^{3} B
$$

$$
\begin{gathered}
a_{2}=-B^{2} C^{2} \beta^{3} \alpha+6 B C^{2} \beta^{3} \alpha+B^{2} C^{3} \beta^{3}+3 \alpha^{3} \beta^{3}+9 C \beta^{3} \alpha^{2}-2 B C \beta^{3} \alpha^{2}, \\
a_{3}=B C^{3} \beta^{2} \alpha-B C^{4} \beta \alpha-B^{2} C^{6}-C^{2} \alpha^{2} \beta^{2}+B C^{3} \alpha^{2} \beta+B^{2} C^{5} \beta-B^{2} C^{4} \alpha \beta+B^{2} C^{5} \alpha, \\
a_{4}=-2 B C^{2} \beta^{2} \alpha^{2}+C \beta^{3} \alpha^{2}-B^{2} C^{4} \alpha^{2}-2 B C^{3} \alpha^{2} \beta+3 C^{2} \alpha^{2} \beta^{2}+B^{2} C^{3} \alpha^{2} \beta, \\
a_{5}=-9 C^{2} \alpha^{2} \beta^{2}-3 B C^{3} \beta^{2} \alpha+14 B C^{2} \beta^{2} \alpha^{2}+B C \beta^{3} \alpha^{2}-\alpha^{3} \beta^{3}-6 C \alpha^{3} \beta^{2}-2 B C^{2} \alpha^{3} \beta \\
-3 B C^{3} \alpha^{2} \beta-6 C \beta^{3} \alpha^{2}+B C \alpha^{3} \beta^{2}+9 B C^{4} \beta \alpha-B^{2} C^{2} \alpha^{2} \beta^{2}-2 B C^{2} \beta^{3} \alpha, \\
a_{6}=3 \alpha^{3} \beta^{3}+6 B C^{2} \alpha^{3} \beta-B^{2} C^{2} \alpha^{3} \beta+9 C \alpha^{3} \beta^{2}-2 B C \alpha^{3} \beta^{2}+B^{2} C^{3} \alpha^{3}, \\
a_{7}=-9 \alpha^{3} \beta^{3}+B^{2} C \beta^{3} \alpha^{2}-3 B C \alpha^{3} \beta^{2}-3 B C \beta^{3} \alpha^{2}+B^{2} C \alpha^{3} \beta^{2}- \\
18 B C^{2} \beta^{2} \alpha^{2}-B \beta^{3} \alpha^{3}, \\
a_{8}=-B^{2} C^{4} \beta^{2}-2 B C^{2} \beta^{2} \alpha^{2}+B^{2} C^{3} \alpha \beta^{2}+C \alpha^{3} \beta^{2}+3 C^{2} \alpha^{2} \beta^{2}-2 B C^{3} \beta^{2} \alpha .
\end{gathered}
$$

Thus, consider the fiber of ϕ over general point (A, B, C, α, β) of variety Y. This fiber is the intersection of curves: $s_{2}=A s_{3}$ and $\pi_{\mathbb{P}^{2}}(\mathcal{S})$. Omitting point $(1: 0: 0)$, we get the following equation:

$$
\begin{equation*}
s_{1}^{2}\left(A a_{4}+a_{6}\right)+s_{1} s_{3}\left(a_{1}+A a_{7}+A^{2} a_{5}+A^{3} a_{3}\right)+s_{3}^{2}\left(A^{3} a_{2}+A^{4} a_{8}\right)=0 \tag{222}
\end{equation*}
$$

It can be shown that intersection of $s_{2}=A s_{3}$ and S^{\prime} is 2 . Thus, intersection of \mathcal{E}_{A} and $\pi_{\mathbb{P}^{2}}(\mathcal{S})$ is 12 . Therefore, we have proved the following proposition:

Proposition 76. Degrees of the morphisms pr and ϕ are 12 and 2 respectively.
Recall that we have the intersection index of $D_{1, \alpha^{\prime}}$ and $D_{2, \beta^{\prime}}^{\prime}$ is 18 . Thus, for general point P there are 6 points of $D_{1, \alpha^{\prime}} \cap D_{1, \beta^{\prime}}^{\prime}$ in the "infinite" part: $t_{0} t_{1} t_{2}=0, z_{0} z_{1} z_{2}=0$. One can calculate the intersection of $D_{1, \alpha}$ with $t_{0} t_{1} t_{2}=0$ and with $z_{0} z_{1} z_{2}=0$. We will study the points up to common permutation of t_{i} and z_{i} There are several points:

- $(1: 0: 0) \times(0:-1: 1)$
- $(1: 0 \quad 0 \quad 0) \times\left(1: z^{\prime}: z^{\prime \prime}\right)$, where $z^{\prime}, z^{\prime \prime}$ are different roots of the equation: $\alpha^{\prime}\left(\alpha^{\prime}-1\right)-\left(\alpha^{\prime}-A\right)\left(\alpha^{\prime}-1\right) z+\left(\alpha^{\prime}-A\right) z^{2}=0$
- $(1:-1: 0) \times(0: 0: 1)$
- $(1:-1: 0) \times(1: 1: z)$, where z is a root of the equation: $(2+z)(2 z+1)=A z$
- $\left(1: z^{\prime}: z^{\prime \prime}\right) \times(1: 0: 0)$, where $z^{\prime}, z^{\prime \prime}$ are different roots of the equation: $\alpha^{\prime}\left(\alpha^{\prime}-1\right)-\left(\alpha^{\prime}-B\right)\left(\alpha^{\prime}-1\right) z+\left(\alpha^{\prime}-B\right) z^{2}=0$
- $(1: 1: z) \times(1:-1: 0)$, where z is a root of the equation: $(2+z)(2 z+1)=B z$

Let us apply the involution $\varsigma^{\times 2}$ to divisor $D_{1, \beta^{\prime}}$. It is easy that $\varsigma^{\times 2}$ preserves the divisors $t_{0} t_{1} t_{2}=0$ and $z_{0} z_{1} z_{2}=0$. One can see that for general $A, B, \alpha^{\prime}, \beta^{\prime}$ there are 6 common points $(1:-1: 0) \times(0: 0: 1),(1: 0:$ $-1) \times(0: 1: 0),(0: 1:-1) \times(1: 0: 0),(1: 0: 0) \times(0: 1:-1),(0: 1: 0) \times(1: 0:-1),(0: 0: 1) \times(1:-1: 0)$. Using proposition 76 , we get that intersection indexes of these 6 common points are 1 for general $\left(A, B, \alpha^{\prime}, \beta^{\prime}\right) \in$ Y.

Remark. As we know, morphism $p r$ is dominant. Note that $p r$ is not surjective. For instance, one can check that if $-A \beta^{\prime}+A B-3 \alpha^{\prime} \beta^{\prime}-\alpha^{\prime} B=0$, then intersection indexes of the 6 common points are 3 , and divisors $D_{1, \alpha^{\prime}}$ and $D_{1, \beta^{\prime}}^{\prime}$ are irreducible. Thus, for point $P_{0} \in\left\{-A \beta^{\prime}+A B-3 \alpha^{\prime} \beta^{\prime}-\alpha^{\prime} B=0\right\}$ the fiber $p r^{-1}\left(P_{0}\right)$ is empty.

Further, let us study function field of the varieties $X, Y, \mathcal{X}, \mathcal{Y}$. We obtain that $F(X)=F\left(Y, x_{1}, x_{2}\right)$, where x_{1}, x_{2} satisfy to $\left(1+x_{1}+x_{2}\right)\left(1+\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)=A$ and equation (222) expressed in the variables x_{1}, x_{2}. Thus, variables y_{1}, y_{2} are rational functions over $a_{(1,2)}, a_{(1,3)}, a_{(1,2,3)}, a_{(1,3,2)}$ and x_{1}, x_{2}. One can show that $F(X)=F\left(Y, x_{1}\right)$, where x_{1} satisfy to polynomial relation of degree 12 over $a_{(1,2)}, a_{(1,3)}, a_{(1,2,3)}, a_{(1,3,2)}$.

As we know, $\left|F(X)^{S_{3}}: F(Y)\right|=2$, i.e. $F(X)^{S_{3}}$ is a quadratic extension of $F(Y)$. Put $h=s_{1} / s_{3}$. h can be described in terms of x_{i} 's as follows:

$$
\begin{equation*}
h=\frac{\left(1+x_{1}+x_{2}\right)^{3}}{x_{1} x_{2}} \tag{223}
\end{equation*}
$$

We have the relation:

$$
\begin{equation*}
h^{2}\left(A a_{4}+a_{6}\right)+h\left(a_{1}+A a_{7}+A^{2} a_{5}+A^{3} a_{3}\right)+A^{3} a_{2}+A^{4} a_{8}=0 \tag{224}
\end{equation*}
$$

Using the isomorphism (219), we obtain the isomorphism of function field

$$
F(X)^{S_{3}}=F\left(x_{1}, x_{2}, y_{1}, y_{2}\right)^{S_{3}} \cong F\left(a_{(1,2)}, a_{(1,3)}, a_{(1,2,3)}, a_{(1,3,2)}, h\right),
$$

where $a_{(1,2)}, a_{(1,3)}, a_{(1,2,3)}, a_{(1,3,2)}, h$ are described in terms of $x_{1}, x_{2}, y_{1}, y_{2}$ by formulas: (186),(189),(190),(223) and h satisfy to relation (224). Denote by d the discriminant of (224). Evidently, $F\left(x_{1}, x_{2}, y_{1}, y_{2}\right)^{S_{3}} \cong$ $F\left(a_{(1,2)}, a_{(1,3)}, a_{(1,2,3)}, a_{(1,3,2)}, \sqrt{d}\right)$. Of course, the choice of d is non-unique. Direct calculations show us that d can be chosen $S_{3} \times S_{3}$ - invariant. Moreover, using Maple, we can choose d as element of $F\left[u_{1}, u_{2}, u_{3}\right]$:

$$
\begin{gather*}
d=325-27 u_{2}^{2}+2 u_{3} u_{1}^{2}+u_{2}^{2} u_{1}^{2}+138 u_{1}^{2}-380 u_{1}+30 u_{2}+326 u_{3}-56 u_{3} u_{1}+u_{3}^{2}-2 u_{3} u_{1} u_{2}-2 u_{1} u_{2}^{2}-4 u_{2}^{3}+ \tag{225}\\
26 u_{2} u_{1}^{2}+30 u_{3} u_{2}-2 u_{1}^{3} u_{2}-86 u_{1} u_{2}-20 u_{1}^{3}+u_{1}^{4} .
\end{gather*}
$$

Thus, we have proved the following proposition:
Proposition 77. - We have the following isomorphism for function fields

$$
\begin{equation*}
F(X)^{S_{3}} \cong F\left(a_{(1,2)}, a_{(1,3)}, a_{(1,2,3)}, a_{(1,3,2)}, \sqrt{d}\right) \tag{226}
\end{equation*}
$$

where d is given by (225),

- There exists the isomorphism of function fields:

$$
\begin{equation*}
F(X)^{S_{3} \times S_{3}}=F(\mathcal{X}) \cong F\left(u_{1}, u_{2}, u_{3}, t, v, \sqrt{d} ; 16 t^{2} v-v^{3}-c_{1} v^{2}-c_{2} v-c_{3}=0\right) \tag{227}
\end{equation*}
$$

Using this proposition, we obtain that fiber $\mathcal{X}_{\mathbf{u}}$ over general point $\mathbf{u} \in \mathcal{U}$ is a union of two isomorphic elliptic curves $C_{1} \cup C_{2}$. This curves correspond to different values \sqrt{d}. Also, it can be shown that the fiber $X_{\mathbf{u}}$ over general point $\mathbf{u} \in \mathcal{U}$ is a union of two isomorphic curves of genus 37 . Let \mathcal{V} be the hypersurface in the affine space $F_{\left(u_{1}, u_{2}, u_{3}, s\right)}^{4}$ defined by equation: $s^{2}=d$, where d is defined by formula (225). There exists a morphism $X \rightarrow \mathcal{V}$, which fibers are connected, and natural projection $\mathcal{V} \rightarrow \mathcal{U}$, which is a covering of degree 2 .
Corollary 78. Consider morphism:

$$
\Phi=\Theta \circ p r: X \rightarrow \mathcal{U}
$$

This morphism has the following Stein factorization: $X \rightarrow \mathcal{V} \rightarrow \mathcal{U}$, i.e. fibers of the maps $X \rightarrow \mathcal{V}$ and $\mathcal{V} \rightarrow \mathcal{U}$ are connected and discrete respectively.

Analogously, we have quite similar Stein decomposition for morphism $\Theta \circ p r \circ \tau$.

7.7 Involutions on the \mathcal{X}.

In this subsection we will study involutions on the variety \mathcal{X} and their properties.
Recall that we have the involution $\tau: X \rightarrow X$ given by rule: $\tau: p_{i} \leftrightarrow q_{i}, i=1,2,3$ and there is a well-defined involution $\tau: \mathcal{X} \rightarrow \mathcal{X}$. We have the birational involutions $j: X / S_{3} \rightarrow X / S_{3}$ defined as automorphisms of the coverings ϕ of degree 2. Also, recall that there is well-defined maps $j: \mathcal{X} \rightarrow \mathcal{X}$.

Consider the involution $\kappa: X \rightarrow X$ defined by formula: $x_{i} \mapsto \frac{1}{x_{i}}, y_{i} \mapsto \frac{1}{y_{i}}, i=1,2$. It can be shown in usual way that we can define involution $\kappa: \mathcal{X} \rightarrow \mathcal{X}$ such that the following diagram:

is commutative.
Let us study the relations between involutions j, κ, τ on the \mathcal{X}. As we know,

$$
F(\mathcal{X}) \cong F\left(u_{1}, u_{2}, u_{3}, v, t, \sqrt{d} ; 16 t^{2} v-v^{3}-c_{1} v^{2}-c_{2} v-c_{3}=0\right)
$$

Proposition 79. Consider the involutions τ, j, κ acting on the variety $\mathcal{X} . \tau \circ \kappa=\kappa \circ \tau$. Let us express action of the involutions in coordinates:

$$
\begin{gather*}
\tau\left(u_{i}\right)=u_{i}, j\left(u_{i}\right)=u_{i}, \kappa\left(u_{i}\right)=u_{i}, i=1,2,3, \tag{228}\\
\tau(\sqrt{d})=-\sqrt{d} \tag{229}\\
j(v)=v, j(t)=t, j(\sqrt{d})=-\sqrt{d} \tag{230}\\
\kappa(t)=-t, \kappa(v)=v, \kappa(\sqrt{d})=-\sqrt{d} . \tag{231}
\end{gather*}
$$

Proof. Consider the involutions τ and κ defined on the X. It is easy that they commutes. Thus, τ and κ commutes as involutions acting on \mathcal{X}. Further, let us consider expression of element \sqrt{d} in coordinates $x_{1}, x_{2}, y_{1}, y_{2}$. One can show that $\tau(\sqrt{d})=-\sqrt{d}, \kappa(\sqrt{d})=-\sqrt{d}$. Direct calculations prove the rest of the statement.

Recall that automorphism of $\phi \circ \tau$ is the involution $\tau \circ j \circ \tau$. Denote by t^{\prime}, v^{\prime} the elements $\tau(t), \tau(v)$ of the function field $F(\mathcal{X})$. It is easy that $\tau \circ j \circ \tau\left(t^{\prime}\right)=t^{\prime}, \tau \circ j \circ \tau\left(v^{\prime}\right)=v^{\prime}, \tau \circ j \circ \tau(\sqrt{d})=-\sqrt{d}$.

Proposition 80. Morphism $p_{12}=(p r, p r \circ \tau): X \rightarrow \widetilde{\mathcal{Y}} \times \mathcal{U} \widetilde{\mathcal{Y}}$ is a birational immersion, i.e. varieties X and $p r_{12}(X)$ are birationally isomorphic.

Proof. It is sufficient to prove that the involutions $j \neq \tau \circ j \circ \tau$. Actually, it means that map $(\psi, \psi \circ \tau): \mathcal{X} \rightarrow$ $\widetilde{\mathcal{Y}} \times \mathcal{U} \widetilde{\mathcal{Y}}$ is a birational immersion and hence, p_{12} is. Consider divisor $D \subset \mathcal{X}$ consisting of points $x \in \mathcal{X}$ such that $j \circ \kappa(x)=x$. Also, consider the divisor $\tau(D)$ consisting of points such that $\tau \circ j \circ \kappa(x) \circ \tau=x$. Using commutativity of κ and τ, we get that $\tau(D)$ is divisor of the points x satisfying to $\tau \circ j \circ \tau \circ \kappa(x)=x$. Divisors D and $\tau(D)$ are given by equations: $t=0$ and $t^{\prime}=0$ respectively. We can consider divisors D^{\prime} and $\tau\left(D^{\prime}\right)$ in X the preimages of D and $\tau(D)$ under natural projection $X \rightarrow \mathcal{X}$ respectively. It is easy D and $\tau(D)$ are given by equations:

$$
\left(1+x_{1}+x_{2}\right)\left(1+\frac{1}{y_{1}}+\frac{1}{y_{2}}\right)\left(1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}}\right)-\left(1+y_{1}+y_{2}\right)\left(1+\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)\left(1+\frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}\right)=0
$$

and

$$
\left(1+x_{2}+y_{2}\right)\left(1+\frac{1}{x_{1}}+\frac{1}{y_{1}}\right)\left(1+\frac{x_{1}}{x_{2}}+\frac{y_{1}}{y_{2}}\right)-\left(1+x_{1}+y_{1}\right)\left(1+\frac{1}{x_{2}}+\frac{1}{y_{2}}\right)\left(1+\frac{x_{2}}{x_{1}}+\frac{y_{2}}{y_{1}}\right)=0
$$

respectively. Further, denote by f and g the elements $\frac{x_{1}}{y_{2}}-\frac{y_{2}}{x_{1}}+\frac{x_{2} y_{1}}{x_{1}}-\frac{x_{1}}{x_{2} y_{1}}+\frac{y_{2}}{x_{2} y_{1}}-\frac{x_{2} y_{1}}{y_{2}}$ and $\frac{x_{2}}{y_{1}}-\frac{y_{1}}{x_{2}}+\frac{x_{1} y_{2}}{x_{2}}-\frac{x_{2}}{y_{2} x_{1}}+\frac{y_{1}}{x_{1} y_{2}}-\frac{x_{1} y_{2}}{y_{1}}$ respectively. It can be shown in usual way that $\tau(f)=-f$ and $\tau(g)=g$. Also, it is easy that divisors D and $\tau(D)$ are given by equation $f+g=0$ and $-f+g=0$ respectively. Consider intersection of D and $\tau(D)$. It is easy that intersection $D \cap \tau(D)$ is given by $f=0$ and $g=0$. Using following expressions for f and g :

$$
f=\left(\frac{1}{y_{2}}-\frac{1}{x_{1}}\right)\left(\frac{x_{1}}{x_{2}}-y_{1}\right)\left(x_{2}-\frac{y_{2}}{y_{1}}\right)=0, g=\left(\frac{1}{y_{1}}-\frac{1}{x_{2}}\right)\left(y_{2}-\frac{y_{1}}{x_{1}}\right)\left(x_{1}-\frac{x_{2}}{y_{2}}\right)=0
$$

we get 9 two-dimensional components of $D \cap \tau(D)$. Thus, $j \neq \tau \circ j \circ \tau$.

As we know, τ provides automorphism of function field $F(\mathcal{X})$. Consider the elements $t^{\prime}=\tau(t), v^{\prime}=\tau(v)$. It is easy that t^{\prime}, v^{\prime} are rational function of variables $t, v, \sqrt{d}, u_{1}, u_{2}, u_{3}$. Proposition 80 shows us that these functions are non-trivially depends on \sqrt{d}.

Fix a general point $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$. As we know, fiber of variety \mathcal{X} over $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right) \in \mathcal{U}$ is a union of isomorphic elliptic curves, i.e. $\mathcal{X}_{\mathbf{u}}=C_{1} \cup C_{2}$ which are corresponds to \sqrt{d} and $-\sqrt{d}$ respectively. Denote by E the fiber $\widetilde{\mathcal{Y}}_{\mathbf{u}}$. Let us identify curves C_{1} and C_{2} by means of the involution j. Also, fix a point $P \in E$, let us denote by (P, \sqrt{d}) and $(P,-\sqrt{d})$ the fiber of morphism $\phi: \mathcal{X}_{\mathbf{u}} \rightarrow \widetilde{\mathcal{Y}}_{\mathbf{u}}$ over point $P \in \widetilde{\mathcal{Y}}_{\mathbf{u}}=E$.

Consider morphism $j \circ \tau$ acting on the \mathcal{X}. As we know, $j \circ \tau\left(u_{i}\right)=u_{i}, j \circ \tau(\sqrt{d})=\sqrt{d}$. Thus, $j \circ \tau$ defines automorphisms of the curves C_{1} and C_{2}. Thus, we obtain two automorphisms of the elliptic curve E. As we know, there are two types of the automorphisms of E :

- shift: $P \mapsto P+S, P \in E$ for fixed element $S \in \operatorname{Pic}^{0}(E)$,
- reflection: $P \mapsto 2 R-P, P \in E$ for fixed point $R \in E$.

Let two automorphisms be of second type. Thus,

$$
j \circ \tau:(P, \sqrt{d}) \mapsto\left(2 R_{+}-P, \sqrt{d}\right) ;(P,-\sqrt{d}) \mapsto\left(2 R_{-}-P,-\sqrt{d}\right)
$$

for some fixed points $R_{+}, R_{-} \in E$. Therefore, $j \circ \tau \circ j \circ \tau$ is identity morphism. Thus, $j=\tau \circ j \circ \tau$, and hence, we get contradiction with proposition 80 .

Let one of the automorphisms is of first type, other is of second type. Thus,

$$
j \circ \tau:(P, \sqrt{d}) \mapsto(2 R-P, \sqrt{d}) ;(P,-\sqrt{d}) \mapsto(P+S,-\sqrt{d})
$$

for some fixed point $R \in E$ and fixed element $S \in \operatorname{Pic}^{0}(E)$. Thus, involution τ is given by formula:

$$
\tau:(P, \sqrt{d}) \mapsto(2 R-P,-\sqrt{d}) ;(P,-\sqrt{d}) \mapsto(P+S, \sqrt{d})
$$

We get contradiction with fact: $\tau^{2}=1$. Actually, automorphism

$$
\tau^{2}:(P, \sqrt{d}) \mapsto(2 R-P+S, \sqrt{d}) ;(P,-\sqrt{d}) \mapsto(2 R-P-S,-\sqrt{d})
$$

is not identity element for any $R \in E$ and $S \in \operatorname{Pic}{ }^{0}(E)$.
Thus, two automorphisms are of first type:

$$
j \circ \tau:(P, \sqrt{d}) \mapsto\left(P+S_{1}, \sqrt{d}\right) ;(P,-\sqrt{d}) \mapsto\left(P+S_{2},-\sqrt{d}\right)
$$

for fixed elements $S_{1}, S_{2} \in \operatorname{Pic}{ }^{0}(E)$. Further, we get the following formula for automorphism τ :

$$
\tau:(P, \sqrt{d}) \mapsto\left(P+S_{1},-\sqrt{d}\right) ;(P,-\sqrt{d}) \mapsto\left(P+S_{2}, \sqrt{d}\right)
$$

Therefore,

$$
\tau^{2}:(P, \sqrt{d}) \mapsto\left(P+S_{1}+S_{2}, \sqrt{d}\right) ;(P,-\sqrt{d}) \mapsto\left(P+S_{2}+S_{1},-\sqrt{d}\right)
$$

And hence, $S_{1}+S_{2} \sim_{L} 0$. Denote by S the element S_{1}. Thus, we obtain the following formula for τ :

$$
\begin{equation*}
\tau:(P, \sqrt{d}) \mapsto(P+S,-\sqrt{d}) ;(P,-\sqrt{d}) \mapsto(P-S, \sqrt{d}) \tag{232}
\end{equation*}
$$

Thus, we have proved the following proposition:
Proposition 81. Consider birational immersion: $\mathcal{X} \rightarrow \widetilde{Y} \times_{\mathcal{U}} \widetilde{Y}$. Fix a general point $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right) \in \mathcal{U}$. Consider fibers $\mathcal{X}_{\mathbf{u}}=C_{1} \cup C_{2}, \widetilde{\mathcal{Y}}_{\mathbf{u}}=E$. Curves C_{1} and C_{2} are divisors in the $E \times E$. Then C_{1} and C_{2} are divisors of type $(P, P+S), P \in E$ and $(P, P-S), P \in E$ for some fixed element $S \in P^{\prime} c^{0}(E)$.

Fix point $\mathbf{u} \in \mathcal{U}$. Thus, there is a point $R \in E$ such that $S \sim_{L} R-P_{0}$, where $P_{0}=(0: 1: 0)$ is inflection point. From irreducibility \mathcal{X} it follows that the point R don't define the section of fibration $\mathcal{Y} \rightarrow \mathcal{U}$. In particular, point R depends on point $\mathbf{u} \in \mathcal{U}$.

8 Case of graph $\Gamma_{3,6}$.

In this section we will study the variety $X(3,6)$ of 6 -dimensional representations of algebra $B_{\frac{1}{6}}\left(\Gamma_{3,6}\right)$.

8.1 Previous remarks.

In this subsection we recall the varieties, which we will study and some their properties and results. Also, we will formulate main results and some ideas of proof.

Let us recall the varieties and their notation:

- $X(6,6)$ is the variety of the projectors $p_{1}, \ldots, p_{6} ; q_{1}, \ldots, q_{6}$ of rank 1 with relations:

$$
p_{i} p_{j}=q_{i} q_{j}=0, \sum_{i=1}^{6} q_{i}=\sum_{i=1}^{6} p_{i}=1, \operatorname{Tr} p_{i} q_{j}=\frac{1}{6}
$$

up to $G L_{6}(F)$ - conjugacy, i.e. $X(6,6):=\mathcal{M}_{6} B_{\frac{1}{6}}\left(\Gamma_{6,6}\right)[1]$.

- $X(3,6)$ is the variety of the projectors $p_{1}, p_{2}, p_{3} ; q_{1}, \ldots, q_{6}$ of rank 1 with relations:

$$
p_{i} p_{j}=q_{i} q_{j}=0, \sum_{i=1}^{6} q_{i}=1, \operatorname{Tr} p_{i} q_{j}=\frac{1}{6}
$$

up to $G L_{6}(F)$ - conjugacy, i.e. $X(3,6):=\mathcal{M}_{6} B_{\frac{1}{6}}\left(\Gamma_{3,6}\right)[1]$.

- $X(3,3)$ is the variety of the projectors $p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3}$ of rank 1 with relations:

$$
p_{i} p_{j}=q_{i} q_{j}=0, \operatorname{Tr} p_{i} q_{j}=\frac{1}{6}
$$

up to $G L_{6}(F)$ - conjugacy, i.e. $X(3,3):=\mathcal{M}_{6} B_{\frac{1}{6}}\left(\Gamma_{3,3}\right)[1]$. As we know, $X(3,3) \cong\left(F^{*}\right)^{4}$.

- $Y(6)$ is the variety of projectors $P ; q_{1}, \ldots, q_{6}$, where P is the projector of rank 3 and q_{1}, \ldots, q_{6} are orthogonal projectors of rank 1 with relations:

$$
\sum_{i=1}^{6} q_{i}=1, q_{i} q_{j}=0, \operatorname{Tr} P q_{i}=\frac{1}{2}
$$

up to $G L_{6}(F)$ - conjugacy, i.e. $Y(6):=\mathcal{M}_{6} \widetilde{A}_{6}\left(\frac{1}{2}\right)[\overrightarrow{1}, 3]$.

- $Y(3)$ is the variety of projectors $P ; q_{1}, q_{2}, q_{3}$, where P is the projector of rank 3 and q_{1}, q_{2}, q_{3} are orthogonal projectors of rank 1 with relations:

$$
q_{i} q_{j}=0, \operatorname{Tr} P q_{i}=\frac{1}{2}
$$

up to $G L_{6}(F)$ - conjugacy, i.e. $Y(3):=\mathcal{M}_{6} A_{3}\left(\frac{1}{2}\right)[\overrightarrow{1}, 3]$

- Y is the variety of projectors $P ; Q$ of rank 3 with relation $\operatorname{Tr} P Q=\frac{3}{2}$

Also we have well-defined action of symmetric groups by permutations of p_{i} and q_{j}. We have the following actions: group $S_{3}^{(p)}$ acts on $X(3,6)$ by permutation of p_{i}. Also, we have the actions of $S_{3}^{(p)}$ and $S_{3}^{(q)}$ on $X(3,3)$ by permutation of p_{i} and q_{i} respectively. Thus, consider the following quotients:

- variety Z is a quotient of $X(3,6)$ by action of group $S_{3}^{(p)}$
- variety \mathcal{X} is a quotient of $X(3,3)$ by action of group $S_{3}^{(p)} \times S_{3}^{(q)}$
- variety $\mathcal{Y}(3)$ is a quotient of $Y(3)$ by action of S_{3}.

Moreover, we have the following natural maps:

- $p r_{1}: X(6,6) \rightarrow X(3,6)$ defined by rule: $\left(p_{1}, \ldots, p_{6} ; q_{1}, \ldots, q_{6}\right) \mapsto\left(p_{1}, p_{2}, p_{3} ; q_{1}, \ldots, q_{6}\right)$,
- $p r_{2}: X(3,6) \rightarrow X(3,3)$ defined by rule: $\left(p_{1}, p_{2}, p_{3} ; q_{1}, \ldots, q_{6}\right) \mapsto\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3}\right)$,
- $\phi_{1}: X(3,6) \rightarrow Y(6)$ defined by rule: $\left(p_{1}, p_{2}, p_{3} ; q_{1}, \ldots, q_{6}\right) \mapsto\left(p_{1}+p_{2}+p_{3} ; q_{1}, \ldots, q_{6}\right)$,
- $\phi_{2}: X(3,3) \rightarrow Y(3)$ defined by rule: $\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3}\right) \mapsto\left(p_{1}+p_{2}+p_{3} ; q_{1}, q_{2}, q_{3}\right)$,
- $\psi_{1}: Y(6) \rightarrow Y(3)$ defined by rule: $\left(P ; q_{1}, \ldots, q_{6}\right) \mapsto\left(P ; q_{1}, q_{2}, q_{3}\right)$,
- $\psi_{2}: Y(3) \rightarrow Y$ defined by rule: $\left(P ; q_{1}, q_{2}, q_{3}\right) \mapsto\left(P ; q_{1}+q_{2}+q_{3}\right)$.

Further, denote some involutions on the varieties:

- involutions $\sigma^{(p)}: p_{i} \leftrightarrow p_{i+3}, i=1,2,3 ; q_{j} \leftrightarrow q_{j}, j=1, \ldots, 6, \sigma^{(q)}: q_{j} \leftrightarrow q_{j+3}, j=1,2,3 ; p_{i} \leftrightarrow p_{i}, i=1, \ldots, 6$, $\tau: p_{i} \leftrightarrow q_{i}, i=1, \ldots, 6$ act on $X(6,6)$. It is easy that $\sigma^{(q)}=\tau \circ \sigma^{(p)} \circ \tau$.
- Also, we can define action of $\sigma^{(q)}$ on $X(3,6)$.
- We can define action of τ on $X(3,3)$,
- involutions $\sigma_{P}: P \mapsto 1-P, q_{j} \leftrightarrow q_{j}, j=1, \ldots, 6$ acts on $Y(6)$. Denote this involution by $\sigma_{P}^{(6)}$. Also we can define action of $\sigma^{(q)}$ on $Y(6)$.
- We can define action of $\sigma_{P}^{(3)}$ on $Y(3)$ by formula: $P \mapsto 1-P$. It is easy that $\sigma_{P}^{(3)} \circ \psi=\psi \circ \sigma_{P}^{(6)}$.
- Involutions $\tau: P \leftrightarrow Q, \sigma_{P}: P \mapsto 1-P, Q \mapsto Q$ and $\sigma_{Q}: P \mapsto P, Q \mapsto 1-Q$. One can check that $\sigma_{P}=\sigma_{Q}$ as involution on Y. We will denote this involution by σ.

It is trivial that action of $\sigma^{(q)}$ on $X(6,6)$ and $X(3,6)$ commute with map $p r_{1}$. Analogously, we have the same properties in another cases.

Also, we have the following commutative diagrams:

$$
\begin{align*}
& X(6,6) \xrightarrow{p r_{1} \circ \sigma^{(p)}} X(3,6) \quad . \tag{233}
\end{align*}
$$

By theorem ??, variety $X(6,6)$ is birational isomorphic to fibred product $X(3,6) \times_{Y(6)} X(3,6)$.

By theorem ??, variety $X(3,6)$ is birational isomorphic to fibred product $\widetilde{X}=X(3,3) \times{ }_{Y(3)} X(3,3)$. Denote by ζ the birational isomorphism: $X(3,6) \rightarrow \widetilde{X}$. Also, we have the following commutative diagram:

where $p^{\prime}, p^{\prime \prime}$ are natural projection. This commutative diagram is a fibred product. There is an action of involution $\sigma^{(q)}$ given by following formula:

$$
\sigma^{(q)}\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)
$$

where $\left(x_{1}, x_{2}\right) \in \widetilde{X}$. It is trivial that $p^{\prime \prime}=p^{\prime} \circ \sigma^{(q)}$.

We have the well-defined map: $\psi: Y(6) \rightarrow Y(3) \times_{Y} Y(3)$.
Further, let us introduce the following varieties and morphisms:

- there is an action of $S_{3}^{(p)}$ on \widetilde{X}. Denote by \widetilde{Z} the quotient $\widetilde{X} / S_{3}^{(p)}$. It is trivial that variety Z and \widetilde{Z} are birationally isomorphic. Denote by $\widetilde{\zeta}$ the birational isomorphism: $Z \rightarrow \widetilde{Z}$. Also, note the following isomorphism:

$$
\begin{equation*}
\widetilde{Z} \cong X(3,3) / S_{3}^{(p)} \times \mathcal{Y}_{(3)} X(3,3) / S_{3}^{(p)} \tag{237}
\end{equation*}
$$

- there is a natural action of group $G=S_{3} \times S_{3} \times S_{3}$ by permutations of $p_{i}, i=1,2,3, q_{i}, i=1,2,3$ and $q_{i}, i=4,5,6$ on \widetilde{X}. Denote the quotient \widetilde{X} / G by $\widetilde{\mathcal{X}}$. It is easy that $\widetilde{\mathcal{X}}$ is a fibred product $\mathcal{X} \times{ }_{\mathcal{Y}(3)} \mathcal{X}$. Also, we have the morphism: $\Phi^{\prime}: \widetilde{\mathcal{X}} \rightarrow \mathcal{Y}(3) \times_{Y} \mathcal{Y}(3)$.
Moreover, we have the following natural morphisms:
- morphism $\phi_{1}: X(3,6) \rightarrow Y(6)$ has the following decomposition:

$$
\begin{equation*}
X(3,6) \xrightarrow{\pi} Z \xrightarrow{\mu} Y(6) \tag{238}
\end{equation*}
$$

where π is a natural projection, μ is a natural morphism.

- also morphism $\Phi: \widetilde{X} \rightarrow Y(3) \times_{Y} Y(3)$ has the following decomposition:

$$
\begin{equation*}
\widetilde{X} \xrightarrow{\tilde{\pi}} \widetilde{Z} \xrightarrow{\tilde{\mu}} Y(3) \times_{Y} Y(3), \tag{239}
\end{equation*}
$$

where $\widetilde{\pi}$ is a natural projection, $\widetilde{\mu}$ is a natural morphism.
It is easy that we have the following commutative diagram:

Further, note the following relation between \widetilde{Z} and $\widetilde{\mathcal{X}}$. Using isomorphism (237), we can define morphism: $\widetilde{Z} \rightarrow \widetilde{\mathcal{X}}$ by natural factorization of action of group $S_{3} \times S_{3}$. These two symmetric group permute $q_{i}, i=1,2,3$ and $q_{i}, i=4,5,6$ respectively. Analogously, we get the morphism: $Y(3) \times_{Y} Y(3) \rightarrow \mathcal{Y}(3) \times_{Y} \mathcal{Y}(3)$. One can show that the following diagram:

is commutative.

Consider the morphism Φ. It is trivial that morphism $\Phi: \widetilde{X} \rightarrow Y(3) \times_{Y} Y(3)$ is a composition of natural projections and ϕ_{2}. Namely, we have the following commutative diagram:

8.2 Previous properties of the variety $X(3,6)$.

In this subsection we will formulate previous properties of $X(3,6)$, which we will use for proof of its irreducibility.
First of all, let us make note about dimension of any irreducible component of $X(3,6)$. As we know from (generalized Hadamard matrices)?? variety $X(3,6)$ is subvariety of $\left(F^{*}\right)^{10}$ given by equations:

$$
\begin{align*}
& 1+z_{1}+\ldots+z_{5}=0,1+t_{1}+\ldots+t_{5}=0 \tag{243}\\
& 1+\frac{1}{z_{1}}+\ldots+\frac{1}{z_{5}}=0,1+\frac{1}{t_{1}}+\ldots+\frac{1}{t_{5}}=0 \tag{244}\\
& 1+\frac{z_{1}}{t_{1}}+\ldots+\frac{z_{5}}{t_{5}}=0,1+\frac{t_{1}}{z_{1}}+\ldots+\frac{t_{5}}{z_{5}}=0 \tag{245}
\end{align*}
$$

where $t_{i}, z_{i}, i=1, \ldots, 5$ are coordinates in $\left(F^{*}\right)^{10}$. There is a description of these coordinates as traces of elements $p_{1} q_{1} p_{i} q_{j}, i=2,3, j=2, \ldots, 6$. Therefore, dimension of any irreducible component of $X(3,6)$ is more or equal 4.

Note that $\operatorname{dim}_{F} X(3,6)=4$ follows from birationality of $X(3,6)$ and \widetilde{X}. Actually, map $\phi_{2}: X(3,3) \rightarrow Y(3)$ is dominant and finite in general point. Thus, we get that $\operatorname{dim}_{F} \widetilde{X}=4$.

Firstly, let us prove the following:
Proposition 82. Image of any irreducible component of \widetilde{X} under p^{\prime} (and, hence under $p^{\prime \prime}$) is dense in $X(3,3)$.
Proof. Evidently, for any irreducible component $p^{\prime}(\tilde{X})$ and $p^{\prime \prime}(\widetilde{X})$ are both dense in $X(3,3)$ or both subvarieties in $X(3,3)$. Consider irreducible component \widetilde{X}_{1} of \widetilde{X}. Assume that $p^{\prime}\left(\widetilde{X}_{1}\right)$ and $p^{\prime \prime}\left(\widetilde{X}_{1}\right)$ are both subvarieties in $X(3,3)$. Then dimension of fibers of the restrictions p^{\prime} and $p^{\prime \prime}$ on \widetilde{X}_{1} are more than 0 . Consider commutative diagram:

$$
\begin{align*}
& \widetilde{X}_{1} \xrightarrow{p^{\prime} \circ \sigma^{(q)}} p^{\prime}\left(\widetilde{X}_{1}\right) \tag{246}\\
& \stackrel{\left.\right|^{\prime \prime}}{ } \begin{array}{l}
p^{\prime \prime} \\
p^{\prime} \circ \phi_{2} \circ \tau \\
p^{\prime}\left(\widetilde{X}_{1}\right) \xrightarrow{\phi_{2} \circ \tau}>Y_{1},
\end{array}
\end{align*}
$$

where variety $Y_{1}=\phi_{2} \circ \tau \circ p^{\prime}\left(\widetilde{X}_{1}\right)$. Then for general point $y \in Y_{1}$ fiber $\left(\phi_{2} \circ \tau\right)^{-1}(y)$ has dimension more than 0 . We studied properties of morphism ϕ_{2} in the section ??. As we know, dimension of fiber $\left(\phi_{2} \circ \tau\right)^{-1}(y)$ is not more than 1. Thus, fibers of the maps $p r^{\prime}$ and $p r^{\prime \prime}$ have dimension 1 . Because of $\operatorname{dim}_{F} \widetilde{X}_{1}=4$, we obtain that $\operatorname{dim}_{F} Y_{1}=2$. Consider the subvariety $S=\left\{y \in Y(3) \mid \operatorname{dim}_{F}\left(\phi_{2}\right)^{-1}(y)=1\right\}$ of the $Y(3)$. Therefore, $Y_{1} \subseteq S$. Let us prove the following lemma, contradicting with $\operatorname{dim}_{F} Y_{1}=2$.
Lemma 83. $\operatorname{dim}_{F} S=1$.
Proof of the lemma. As we know, map ϕ_{2} is given by formulas (186), (187), (188), (189), (190). Consider point $y=\left(A=a_{(1,2)}, B=a_{(1,3)}, C=a_{(2,3)}, \alpha=a_{(1,2,3)}, \beta=a_{(1,3,2)}\right) \in S$. Using results and notation of section ??, we have several cases:

- all curves E_{A}, E_{B}, E_{C} are elliptic,
- only two curves among E_{A}, E_{B}, E_{C} are elliptic,
- only one curve is elliptic.
- all curves are rational.

First case mean that $(A, B, C) \neq(0,1,9)$. As we know, the variety $\left(\phi_{2}\right)^{-1}(y)$ is the intersection $D_{1, \alpha^{\prime}} \cap D_{2, \beta^{\prime}}^{\prime}$ in the product $E_{A} \times E_{B}$. Here $D_{1, \alpha^{\prime}}$ and $D_{2, \beta^{\prime}}^{\prime}$ are defined by formulas (??) and $\alpha^{\prime}=\frac{\alpha}{C}, \beta^{\prime}=\frac{\beta}{C}$. Thus, divisors $D_{1, \alpha^{\prime}}$ and $D_{2, \beta^{\prime}}^{\prime}$ are reducible. As we know, these divisors are of type (3,3). Hence, one of component of $D_{1, \alpha^{\prime}}$ is of type $(1,1)$ or $(1,2)$. It means that curves E_{A} and E_{B} are isomorphic or 2-isogenous. By symmetry, we get the same property for curves E_{A} and E_{C}. By theorem Bertini, general divisor $D_{1, \alpha^{\prime}}$ is irreducible. Thus, there are: one relation between A and B, because of E_{A} and E_{B} are isomorphic or 2-isogenous, one relation between A and C because of E_{A} and E_{B} are isomorphic or 2-isogenous, one relation between α and A, B, C because divisor $D_{1, \alpha^{\prime}}$ is reducible. Thus, we obtain 1-dimensional variety of points $y \in Y(3,3)$ such that $\operatorname{dim}_{F} \phi_{2}^{-1}(y)=1$ and E_{A}, E_{B}, E_{C} are elliptic curves.

Consider the second case. Without loss of generality, suppose that E_{A} and E_{B} are elliptic. Assume that $C \neq 0$, i.e. $C=1$ or 9 . We can consider this case analogous to first one. Assume that $C=0$. Then we have the following relations:

$$
\left(1+\frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}\right)\left(1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}}\right)=0
$$

Assume $1+\frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}=0,1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}} \neq 0$. It means that $\alpha \neq 0, \beta=0$. Consider the equation:

$$
\left(1+x_{1}+x_{2}\right)\left(1+\frac{1}{y_{1}}+\frac{1}{y_{2}}\right)\left(1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}}\right)=\alpha
$$

We can rewrite this equation by means of change the variables: $x_{i} \mapsto \frac{1}{x_{i}^{\prime}}$. We obtain the following equation:

$$
\left(1+x_{1}^{\prime}+x_{2}^{\prime}\right)\left(1+y_{1}+y_{2}\right)=\frac{A B}{\alpha}\left(1+x_{1}^{\prime} y_{1}+x_{2}^{\prime} y_{2}\right)
$$

Arguments similar to first case show that there is the relation between A and B describing isomorphism or 2isogenous of E_{A} and E_{B}. Thus, in this case $\operatorname{dim}_{F} S \leq 1$. Further, suppose that $1+\frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}=0,1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}}=0$. Arguments quite similar to first case show us that E_{A} and E_{B} are isomorphic or 2-isogenous. Thus, we have proved the second case.

Consider third case. Assume $A=0, B=0$ and $1+x_{1}+x_{2}=0,1+\frac{1}{y_{1}}+\frac{1}{y_{2}}=0$. Then $\alpha=0$. We obtain the following equations:

$$
\left(1+\frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}\right)\left(1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}}\right)=C,\left(1+\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)\left(1+y_{1}+y_{2}\right)=\frac{\beta}{C}\left(1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}}\right) .
$$

Solving $1+x_{1}+x_{2}=0,1+\frac{1}{y_{1}}+\frac{1}{y_{2}}=0$, we get that first equation defines non-singular curve of genus 4 for general C. Thus, we obtain $\operatorname{dim}_{F} S \leq 1$ in this case. Analogous arguments prove the rest of third case.

Fourth case mean that $A, B, C=0,1,9$. Thus, we get $\operatorname{dim}_{F} S \leqq 1$. The lemma is proved.
Thus, we get $\operatorname{dim}_{F} Y_{1} \leq 1$. Hence, image of any component of \widetilde{X} under p^{\prime} and $p^{\prime \prime}$ is dense in $X(3,3)$.

8.3 Function fields $F(X(3,3)), F(X(3,3))^{\mathbb{Z}_{3}}, F(X(3,3))^{S_{3}}$ as extensions of $F(Y(3))$.

Firstly, let us study function fields of $X(3,3)$ and its quotients.
Consider action of group S_{3} on $X(3,3)$ by permutations of $p_{i}, i=1,2,3$. There is a normal subgroup $\mathbb{Z}_{3} \triangleleft S_{3}$ and extensions of fields:.

$$
\begin{equation*}
F(Y(3)) \subset F(X(3,3))^{S_{3}} \subset F(X(3,3))^{\mathbb{Z}_{3}} \subset F(X(3,3)) \tag{247}
\end{equation*}
$$

Using subsection ??, we have the isomorphisms:

$$
\begin{gather*}
F(Y(3))=F\left(a_{(1,2,3)}, a_{(1,2)}, a_{(1,3)}, a_{(2,3)}\right), F(X(3,3))^{S_{3}}=F\left(a_{(1,2,3)}, a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, h\right), \tag{248}\\
F(X(3,3))=F\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \tag{249}
\end{gather*}
$$

Also, we have quadratic extension: $F\left(X(3,3)^{S_{3}} \subset F(X(3,3))^{\mathbb{Z}_{3}}\right.$. Thus, $F(X(3,3))^{\mathbb{Z}_{3}}=$ $F\left(a_{(1,2,3)}, a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, h, w\right)$, where w satisfy to quadratic relation. Let us find this relation. As we know, one can choose the generators $a_{(1,2,3)}, a_{(1,2)}, a_{(2,3)}, a_{(1,3)}, h$ of the function field $F(X(3,3))^{S_{3}}$, where $a_{(1,2)}, a_{(1,3)}, a_{(1,2,3)}, a_{(1,3,2)}, h$ are described in terms of $x_{1}, x_{2}, y_{1}, y_{2}$ by formulas: (186),(189),(190),(223) and satisfy to relation (224).

Consider the function field $F(X(3,3))^{\mathbb{Z}_{3}}$. The generators of this field are $a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}, h, w$, where w is given in terms of $x_{1}, x_{2}, y_{1}, y_{2}$ by formula:

$$
w=\left(x_{1}-x_{2}\right)\left(1-\frac{1}{x_{1}}\right)\left(1-\frac{1}{x_{2}}\right) .
$$

Therefore, we get the following relation:

$$
\begin{equation*}
w^{2}=a_{(1,2)}^{2}+18 a_{(1,2)}-27-4\left(h+\frac{a_{(1,2)}^{3}}{h}\right) \tag{250}
\end{equation*}
$$

Thus, $F(\Sigma)_{3}^{\mathbb{Z}}=F(\alpha, h, w)$, where α, h, w satisfy to relations (259) and (250). Further, consider the field $F(X(3,3))$. This field is cubic extension of $F(X(3,3))^{\mathbb{Z}_{3}}$. Let us show that generators of this field are $a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}, h, w, f$, where f is given by formula:

$$
f=x_{1}+\epsilon \frac{x_{2}}{x_{1}}+\epsilon^{2} \frac{1}{x_{2}},
$$

where ϵ is primitive 3-root of unity. Consider the element $g=x_{1}+\epsilon^{2} \frac{x_{2}}{x_{1}}+\epsilon \frac{1}{x_{2}}$. Evidently, $f g \in F(X(3,3))^{\mathbb{Z}_{3}}$. Moreover, $x_{1}+\frac{x_{2}}{x_{1}}+\frac{1}{x_{2}} \in F(X(3,3))^{\mathbb{Z}_{3}}$. It can be shown in usual way that x_{1}, x_{2} can be described in terms of $a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}, h, w, f$. As we know from subsection ??, y_{1}, y_{2} are rational function over $a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}, x_{1}, x_{2}$. One can show that we have the following relation:

$$
\begin{equation*}
f^{3}=1 / 8\left(a_{(1,2)}-3+w\right)^{3}-3(1-\epsilon)\left(h-3 a_{(1,2)}+3\right)-3\left(1-\epsilon^{2}\right)\left(\frac{a_{(1,2)}^{3}}{h}-3 a_{(1,2)}+3\right) \tag{251}
\end{equation*}
$$

Thus, $F(X(3,3)) \cong F\left(a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}, h, w, f\right)$ satisfying to (224), (250), (251).
We have proved the following proposition:
Proposition 84. We have the following isomorphisms of function fields:

$$
\begin{equation*}
F(X(3,3))^{S_{3}}=F\left(a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}, h\right), \tag{252}
\end{equation*}
$$

where $h, a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}$ satisfy to (224),
-

$$
\begin{equation*}
F(X(3,3))^{\mathbb{Z}_{3}}=F\left(a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}, h, w\right) \tag{253}
\end{equation*}
$$

where $w, h, a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}$ satisfy to (224), (250),

$$
\begin{equation*}
F(X(3,3))=F\left(a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}, h, w, f\right) \tag{254}
\end{equation*}
$$

where $f, w, h, a_{(1,2)}, a_{(1,3)}, a_{(2,3)}, a_{(1,2,3)}$ satisfy to (224), (250), (251).

8.4 General fibers of $X(3,3), \quad X(3,3) / \mathbb{Z}_{3}, \quad X(3,3) / S_{3}$ and $Y(3)$ over $F^{3}=$ $F_{\left(a_{(1,2)}, a_{(1,3)}, a_{(2,3)}\right)}$.

Let us consider the variety $Y(3)$. As we know, this variety is given by equation: $a_{(1,2,3)} a_{(1,3,2)}=a_{(1,2)} a_{(2,3)} a_{(1,3)}$, where $a_{(i, j)}=4 \operatorname{Tr} P q_{i} P q_{j}, a_{(i, j, k)}=8 \operatorname{Tr} P q_{i} P q_{j} P q_{k}$. Consider the involution σ_{P} defined early. In the coordinates $a_{(i, j)}, a_{(i, j, k)} \sigma_{P}$-action could be described as follows:

$$
\begin{equation*}
\sigma_{P}: a_{(i, j)} \mapsto a_{(i, j)}, a_{(i, j, k)} \mapsto-a_{(i, j, k)}, i, j, k=1,2,3 \tag{255}
\end{equation*}
$$

We have the following decomposition of p^{\prime} into sequence of the following natural maps:

$$
\begin{equation*}
X(3,3) \xrightarrow{\theta_{1}} X(3,3) / \mathbb{Z}_{3} \xrightarrow{\theta_{2}} X(3,3) / S_{3} \xrightarrow{\theta} Y(3) . \tag{256}
\end{equation*}
$$

Consider affine space $F^{3}=\operatorname{Spec} F\left[a_{(1,2)}, a_{(1,3)}, a_{(2,3)}\right]$. Thus, we have dominant map: $Y(3) \rightarrow F^{3}$. Fix general point $p t=(A, B, C) \in F^{3}$. Consider fibres of the varieties $X(3,3), X(3,3) / \mathbb{Z}_{3}, X(3,3) / S_{3}, Y(3)$ over $p t$. In this situation fiber of $Y(3)$ over $p t$ is affine line F_{α}^{1} with coordinate $\alpha=a_{(1,2,3)}$. Compactify this fiber as projective line \mathbb{P}_{α}^{1}. Let us compactify fibres of $X(3,3), X(3,3) / \mathbb{Z}_{3}, X(3,3) / S_{3}$ and denote they by $\Sigma, \Sigma / \mathbb{Z}_{3}$, Σ / S_{3} respectively. Therefore, we have the following natural maps:

$$
\begin{equation*}
\Sigma \xrightarrow{\theta_{1}} \Sigma / \mathbb{Z}_{3} \xrightarrow{\theta_{2}} \Sigma / S_{3} \xrightarrow{\theta} \mathbb{P}_{\alpha}^{1} . \tag{257}
\end{equation*}
$$

Using subsection 8.3, we have the following description of the function field of the algebraic curve Σ / S_{3} :

$$
\begin{equation*}
F(\Sigma)^{S_{3}} \cong F(h, \alpha) \tag{258}
\end{equation*}
$$

where h and α satisfy to relation:

$$
\begin{equation*}
h^{2} \alpha^{2} p_{1}(\alpha)+h \alpha p_{2}(\alpha)+p_{3}(\alpha)=0 . \tag{259}
\end{equation*}
$$

Polynomials $p_{1}(\alpha), p_{2}(\alpha), p_{3}(\alpha)$ are given by formulas:

$$
\begin{gathered}
p_{1}(\alpha)=\left(A^{2} C+\alpha^{2}-C A \alpha+3 A \alpha\right)\left(B A^{2}-A B \alpha+3 A \alpha+\alpha^{2}\right), \\
p_{2}(\alpha)=-A^{3}\left(9 B \alpha^{2} A+2 \alpha^{4}+6 \alpha^{2} A-B \alpha^{3} A+B \alpha^{2} A^{2}+9 C A \alpha^{2}+3 B C^{2} A \alpha-14 B C A \alpha^{2}-B^{2} C A^{2} \alpha+3 C \alpha^{3}+6 C A^{2} B \alpha\right. \\
+B^{2} C A \alpha^{2}-A C \alpha^{3}+A^{2} C \alpha^{2}+2 B^{2} C^{2} A^{2}+B^{3} \alpha^{2}-9 B^{2} \alpha^{2}-B^{3} \alpha C A+3 B^{2} \alpha C A-C^{2} \alpha B A^{2}-C^{3} \alpha B A+C^{2} \alpha^{2} B A \\
\left.+3 B \alpha^{3}-B^{2} \alpha^{3}+C^{3} \alpha^{2}-C^{2} \alpha^{3}+18 B \alpha^{2} C+B^{2} \alpha^{2} A+C^{2} \alpha^{2} A-9 C^{2} \alpha^{2}\right), \\
p_{3}(\alpha)=A^{6}\left(-C B \alpha+C^{2} B+3 C \alpha+\alpha^{2}\right)\left(B^{2} C-C B \alpha+3 B \alpha+\alpha^{2}\right) .
\end{gathered}
$$

It is easy that equation (259) is the relation (224). Note that degrees of polynomials p_{1}, p_{2}, p_{3} are 4. Consider the following homogenous coordinates $\left(h_{0}: h_{1}\right),\left(\alpha_{0}: \alpha_{1}\right)$ of the product $\mathbb{P}_{h}^{1} \times \mathbb{P}_{\alpha}^{1}$. We have the following identity for affine coordinates $h=\frac{h_{1}}{h_{0}}, \alpha=\frac{\alpha_{1}}{\alpha_{0}}$. Thus, Σ / S_{3} is the divisor of $\mathbb{P}_{h}^{1} \times \mathbb{P}_{\alpha}^{1}$ of type (2,6). Evidently, map $\psi: \Sigma / S_{3} \rightarrow \mathbb{P}_{\alpha}^{1}$ is the natural projection. For general (A, B, C) one can show that Σ / S_{3} has two singularities $((1: 0) \times(0: 1)) \in \mathbb{P}_{h}^{1} \times \mathbb{P}_{\alpha}^{1}$ and $((0: 1) \times(1: 0)) \in \mathbb{P}_{h}^{1} \times \mathbb{P}_{\alpha}^{1}$ which are double points. Hence, genus of Σ / S_{3} is 3. Further, let us calculate the ramification divisor $\mathcal{D}_{\theta} \subset \mathbb{P}_{\alpha}^{1}$ of the morphism ψ. We have studied this divisor in the subsection 7.6. Substitute affine coordinate α by $\frac{\alpha_{1}}{\alpha_{0}}$, we get that \mathcal{D}_{θ} is given by equation:

$$
\begin{equation*}
\alpha_{1}^{2} \alpha_{0}^{2}\left(p_{2}^{2}\left(\alpha_{0}, \alpha_{1}\right)-4 p_{1}\left(\alpha_{0}, \alpha_{1}\right) p_{2}\left(\alpha_{0}, \alpha_{1}\right)\right) \tag{260}
\end{equation*}
$$

One can show that divisor \mathcal{D}_{θ} has several components. Proposition 77 shows that equation (225) is the only one component with multiplicity one. This equation is in the terms of the coordinates $u_{i}, i=1,2,3$. Recall that $u_{1}=A+B+C, u_{2}=\alpha+A B C / \alpha, u_{3}=(A-1)(B-1)(C-1)$. Consider the equations (250), (224). For fixed (A, B, C) we can rewrite relation (250) in the following manner:

$$
\begin{equation*}
w^{2}=A^{2}+18 A-27-4\left(h+\frac{A^{3}}{h}\right) \tag{261}
\end{equation*}
$$

Further, let us consider the following compactification of Σ / \mathbb{Z}_{3}. Curve $\Sigma / \mathbb{Z}_{3} \subset \mathbb{P}_{w}^{1} \times \mathbb{P}_{h}^{1} \times \mathbb{P}_{\alpha}^{1}$ is given by equations (259), (261) in affine coordinates. It is trivial that natural map θ_{2} is induced by projection $\mathbb{P}_{w}^{1} \times \mathbb{P}_{h}^{1} \times \mathbb{P}_{\alpha}^{1} \rightarrow$ $\mathbb{P}_{h}^{1} \times \mathbb{P}_{\alpha}^{1}$. Consider ramification divisor of θ_{2}. Denote it by $\mathcal{D}_{\theta_{2}}$. By definition, $\mathcal{D}_{\theta_{2}} \subset \Sigma / S_{3}$. It is easy that $\mathcal{D}_{\theta_{2}}$ is given by equation:

$$
\begin{equation*}
h_{0} h_{1}\left(\left(A^{2}+18 A-27\right) h_{0} h_{1}-4 h_{1}^{2}-4 A^{3} h_{0}^{2}\right) \tag{262}
\end{equation*}
$$

Finally, consider the following compactification of the curve Σ. Curve $\Sigma \subset \mathbb{P}_{f}^{1} \times \mathbb{P}_{w}^{1} \times \mathbb{P}_{h}^{1} \times \mathbb{P}_{\alpha}^{1}$ is given by the equations (224), (250), (251). Consider the ramification divisor $\mathcal{D}_{\theta_{1}} \subset \Sigma / \mathbb{Z}_{3}$. It is easy that this divisor is given by equation:

$$
\begin{equation*}
w_{0}^{3} h_{0} h_{1}\left(\frac{1}{8}\left((A-3) w_{0}+w_{1}\right)^{3} h_{0} h_{1}-w_{0}^{3}\left(3(1-\epsilon)\left(h_{1}+(-3 A+3) h_{0}\right) h_{1}+3\left(1-\epsilon^{2}\right)\left(A^{3} h_{0}+(-3 A+3) h_{1}\right) h_{0}\right)\right) \tag{263}
\end{equation*}
$$

8.5 Irreducibility of $X(3,6)$.

In this subsection we will prove that variety $X(3,6)$ is irreducible. Using birationality, it is sufficient to prove the irreducibility of \widetilde{X}.

Recall that there is the decomposition of p^{\prime} into sequence of the natural morphism (256). We can define involution $\sigma^{(q)}$ on the $\widetilde{X} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and $\widetilde{X} / S_{3} \times S_{3}$. Thus, we get the following diagram:

We denote by $\theta_{i}, i=1,2$ and θ all maps of factorizations by the same groups. One can show that this commutative diagram and any square is fibred product.

Fix the general point $p t=(A, B, C) \in F^{3}$. Thus, we obtain the following commutative diagram:

Assume that variety \widetilde{X} is reducible, i.e. $\widetilde{X}=\cup_{j=1}^{s} \widetilde{X}_{j}$. Using proposition 82 , we get that for any component \widetilde{X}_{j} variety $p^{\prime}\left(\widetilde{X}_{j}\right)$ is dense in $Y(3)$. Thus, for general point $p t=(A, B, C) \in F^{3}$ curve $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma$ is reducible. Let us prove that $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma$ is irreducible. It will be sufficient for irreducibility of \widetilde{X}.

One can show that curves Σ and Σ / S_{3} are irreducible.

Proposition 85. For general point pt $=(A, B, C) \in F^{3}$, curve $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma$ is irreducible.
Proof. Our proof has the following steps:

- $\Sigma / S_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3}$ is irreducible curve,
- $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3}$ is irreducible curve,
- $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / \mathbb{Z}_{3}$ is irreducible curve,
- $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma$ is irreducible one.

First step. As we know, maps ψ and $\psi \circ \sigma^{(q)}$ are coverings of degree 2. Assume that $\Sigma / S_{3} \times{ }_{F_{\alpha}^{1}} \Sigma / S_{3}$ is reducible. Using proposition 82, we obtain that there are 2 components. Each component gives us the map $\Sigma / S_{3} \rightarrow \Sigma / S_{3}$ such that the following diagram:

Thus, we have the following relation for ramification divisor \mathcal{D}_{θ} :

$$
\begin{equation*}
\sigma_{P}\left(\mathcal{D}_{\theta}\right)=\mathcal{D}_{\theta} \tag{267}
\end{equation*}
$$

Recall that this divisor is defined by equation (225). Recall that this equation is expressed in terms of variables u_{1}, u_{2}, u_{3}, where $u_{1}=A+B+C, u_{2}=\alpha+\beta, u_{3}=(A-1)(B-1)(C-1)$. Using relation $\beta=\frac{A B C}{\alpha}$, we get that $\sigma_{P}\left(u_{i}\right)=u_{i}, i=1,3, \sigma_{P}\left(u_{2}\right)=-u_{2}$. Consider equation (225) as polynomial over u_{2}. One can see that u_{2}-degree of (225) is 3 . Also, for general u_{1}, u_{3} all coefficients of (225) are nonzero. Hence, $\sigma_{P}\left(\mathcal{D}_{\theta}\right) \neq \mathcal{D}_{\theta}$. Contradiction. Therefore, $\Sigma / S_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3}$ is irreducible.

Second step. Consider the curve $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3}$. Assume that this curve is reducible. As we know, ψ : $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3} \rightarrow \Sigma$ is covering of degree 2. Using proposition 82, we get that there are only 2 components of $\Sigma \times_{\mathbb{P}_{\alpha}^{1}}^{\alpha} \Sigma / S_{3}$. Each component is isomorphic to Σ. Consider the covering $\phi_{1}: \Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3} \rightarrow \Sigma / \mathbb{Z}_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3}$. This covering has degree 3 . Under assumption of reducibility of $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3}$, we obtain that curve $\Sigma / \mathbb{Z}_{3} \times \mathbb{P}_{\alpha}^{1} \Sigma / S_{3}$ has two components. Each component is isomorphic to Σ / \mathbb{Z}_{3}. Analogous to first step, we obtain that each component defines the map such that the following diagram:

is commutative. Hence, ramification divisors of the maps $\Sigma / S_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3} \rightarrow \Sigma / S_{3}$ and $\Sigma / \mathbb{Z}_{3} \rightarrow \Sigma / S_{3}$ coincide. It can be shown in usual way that ramification divisor of $\Sigma / S_{3}{ }^{\alpha} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3} \rightarrow \Sigma / S_{3}$ is $\theta^{-1}\left(\sigma_{P}\left(\mathcal{D}_{\theta}\right)\right.$. Thus, coincidence of the divisors means that $\theta^{-1}\left(\sigma_{P}\left(\mathcal{D}_{\theta}\right)\right)=\mathcal{D}_{\theta_{2}}$. And hence, $\sigma_{P}\left(\mathcal{D}_{\theta}\right)=\theta\left(\mathcal{D}_{\theta_{2}}\right)$. Divisor $\mathcal{D}_{\theta_{1}}$ is reducible. Component of $\mathcal{D}_{\theta_{2}}$ with multiplicity one is defined by equation: $\left(A^{2}+18 A-27\right) h_{0} h_{1}-4 h_{1}^{2}-4 A^{3} h_{0}^{2}$. It is easy that for general A, we get that there are two components $h_{1}=t h_{0}$ and $h_{1}=\frac{A^{3}}{t} h_{0}$, where c is a root of equation: $\left(A^{2}+18 A-27\right)=4\left(t+\frac{A^{3}}{t}\right)$. Denote these two components by $\theta\left(\mathcal{D}_{\theta_{2}}\right)^{\prime}$ and $\theta\left(\mathcal{D}_{\theta_{2}}\right)^{\prime \prime}$ respectively. Further, these components are defined by equations:

$$
\begin{gather*}
\alpha^{2} t^{2} p_{1}(\alpha)+\alpha t p_{2}(\alpha)+p_{3}(\alpha)=0, \tag{269}\\
\alpha^{2} A^{6} p_{1}(\alpha)+\alpha A^{3} t p_{2}(\alpha)+p_{3}(\alpha) t^{2}=0, \tag{270}
\end{gather*}
$$

respectively. Hence, $\operatorname{deg} \theta\left(\mathcal{D}_{\theta_{2}}\right)=12$. Recall that $\operatorname{deg} \mathcal{D}_{\theta}=6$. It contradicts with coincidence. Therefore, curve $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3}$ is irreducible. Second step is proved.

Third step. Assume that curve $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / \mathbb{Z}_{3}$ is reducible. Using second step, we get that there are two components of $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / \mathbb{Z}_{3}$. Thus, curve $\Sigma / \mathbb{Z}_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / \mathbb{Z}_{3}$ has two components. Each component defines the isomorphism: $\Sigma / S_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / \mathbb{Z}_{3} \rightarrow \Sigma / S_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / \mathbb{Z}_{3}$ such that the following diagram:

Denote by $\widetilde{\mathcal{D}}_{\theta_{2}}$ the ramification divisor of map: $\Sigma / S_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / \mathbb{Z}_{3} \rightarrow \Sigma / S_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / S_{3}$. Therefore, we have the following relation: $\sigma^{(q)}\left(\widetilde{\mathcal{D}}_{\theta_{2}}\right)=\widetilde{\mathcal{D}}_{\theta_{2}}$. It is easy that $\widetilde{\mathcal{D}}_{\theta_{2}}=\theta^{-1}\left(\mathcal{D}_{\theta_{2}}\right)$. Using universality of fibred product, we obtain that

$$
\begin{equation*}
\theta\left(\mathcal{D}_{\theta_{2}}\right)=\sigma_{P}\left(\theta\left(\mathcal{D}_{\theta_{2}}\right)\right) \tag{272}
\end{equation*}
$$

As we know from second step, $\theta\left(\mathcal{D}_{\theta_{2}}\right)$ has two components $\theta\left(\mathcal{D}_{\theta_{2}}^{\prime}\right.$ and $\theta\left(\mathcal{D}_{\theta_{2}}^{\prime \prime}\right.$, which are given by equations (269) and (270) respectively. We have two cases: $\sigma_{P}\left(\theta\left(\mathcal{D}_{\theta_{2}}^{\prime}\right)=\theta\left(\mathcal{D}_{\theta_{2}}^{\prime}\right)\right.$ and $\sigma_{P}\left(\theta\left(\mathcal{D}_{\theta_{2}}^{\prime}\right)=\theta\left(\mathcal{D}_{\theta_{2}}^{\prime \prime}\right)\right.$. Consider coefficients $p_{6}^{\prime}, p_{5}^{\prime}$ and $p_{6}^{\prime \prime}, p_{5}^{\prime \prime}$ at α^{6} and α^{5} of (269) and (270). One can see that these coefficients of the polynomials (269) and (270) are $p_{6}^{\prime}=t^{2} ; p_{5}^{\prime}=A\left(t(6-B-C)-2 A^{3}\right)$ and $p_{6}^{\prime \prime}=A^{6} ; p_{5}^{\prime \prime}=A^{6}(A(6-B-C)-2 t)$ respectively. It is evident, σ_{P} transforms $p_{5}^{\prime} \mapsto-p_{5}^{\prime}, p_{6}^{\prime} \mapsto p_{6}^{\prime} ; p_{5}^{\prime \prime} \mapsto-p_{5}^{\prime \prime}, p_{6}^{\prime \prime} \mapsto p_{6}^{\prime \prime}$. First case means that $p_{5}^{\prime} p_{6}^{\prime}=0$, second case means that $p_{6}^{\prime \prime} p_{5}^{\prime}+p_{6}^{\prime} p_{5}^{\prime \prime}=0$. One can see that for general (A, B, C) first and second cases are impossible. Third step is proved.

Fourth step. Assume curve $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma$ is reducible. Using third step, we obtain that $\Sigma \times_{\mathbb{P}_{\alpha}^{1}} \Sigma$ has three components. Each component defines map: $\Sigma / \mathbb{Z}_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma \rightarrow \Sigma / \mathbb{Z}_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma$ such that the following diagram:

$$
\begin{equation*}
\Sigma / \mathbb{Z}_{3} \times_{\mathbb{P}_{\alpha}^{1}}^{\Sigma} \stackrel{\mathbb{Z}_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma}{\sigma^{(q)} \circ \theta_{1}} \Sigma / \mathbb{Z}_{3} \times_{\mathbb{P}_{\alpha}^{1}} \Sigma / \mathbb{Z}_{3} \tag{273}
\end{equation*}
$$

is commutative. It can be shown in usual way that

$$
\begin{equation*}
\theta_{2} \circ \theta_{1}\left(\mathcal{D}_{\theta}\right)=\sigma_{P} \circ \theta_{2} \circ \theta_{1}\left(\mathcal{D}_{\theta}\right) \tag{274}
\end{equation*}
$$

Direct checking in style of third step shows that for general A, B, C it is not true. Fourth step is proved.
Corollary 86. Variety $X(3,6)$ is irreducible.

8.6 Properties of the morphism: $\phi_{1}: X(3,6) \rightarrow Y(6)$.

In this subsection we will prove that morphism $\mu: Z \rightarrow Y(6)$ is a birational immersion.
Consider morphism $\psi_{2}: Y(3) \rightarrow Y$. As we know from subsection ??, we have the following decomposition:

$$
\begin{equation*}
Y(3) \stackrel{\psi_{2}^{\prime}}{\longrightarrow} \mathcal{U} \xrightarrow{\psi_{2}^{\prime \prime}} Y \tag{275}
\end{equation*}
$$

where \mathcal{U} is affine space F^{3} with coordinates u_{1}, u_{2}, u_{3} defined in subsection??. Also, note the following property of this decomposition:

One can show that σ_{P} acts on \mathcal{U} by rule: $\sigma_{P}: u_{1} \mapsto u_{1}, u_{2} \mapsto-u_{2}, u_{3} \mapsto u_{3}$. This action coincides with action of γ from subsection ??. Also, recall that we have the following commutative diagram for $X(3,3)$:

Using these diagrams, we obtain that the diagram (242) can be rewritten in the following manner:

Thus, we have proved the following proposition:
Proposition 87. Image of variety \widetilde{X} under map Φ is in the subvariety $Y(3) \times \mathcal{U} Y(3)$, i.e. we have the following commutative diagram:

Corollary 88. Similar statement for varieties $\widetilde{Z}, \tilde{\mathcal{X}}$ and morphisms $\widetilde{\mu}$, Φ^{\prime} are true. Also, we get that the following diagram:

is commutative.
Proposition 89. Morphism $\widetilde{\mu}: \widetilde{Z} \rightarrow Y(3) \times_{Y} Y(3)$ is a birational immersion.
Proof. It is sufficient to prove that morphism Φ^{\prime} is a birational immersion. Consider the following commutative diagram:

where $p r$ is natural projection. As we know, $\operatorname{deg} p^{\prime}=2, \operatorname{deg} \phi_{2}=2$. Hence, we have the following cases: $\operatorname{deg} \Phi^{\prime}=1,2,4$. Let us prove that $\operatorname{deg} \Phi^{\prime}=1$. It is sufficient to prove that map $\operatorname{deg} \Phi^{\prime}=1$, i.e. Φ^{\prime} is a birational immersion.

Fix general point $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right) \in \mathcal{U}$. Denote by $\widetilde{\mathcal{X}}_{\mathbf{u}}, \mathcal{X}_{\mathbf{u}}$ and $\mathcal{E}_{\mathbf{u}}$ the fibers of $\tilde{\mathcal{X}}, \mathcal{X}$ and $\mathcal{Y}(3)$ over \mathbf{u} respectively. Thus, fiber of $\mathcal{Y}(3) \times \mathcal{U} \mathcal{Y}(3)$ over \mathbf{u} is a product $\mathcal{E}_{\mathbf{u}} \times \mathcal{E}_{\mathbf{u}}$. Statement of the proposition means that for general point $\mathbf{u} \in \mathcal{U}$ morphism $\Phi^{\prime \prime}$ is a immersion of the fiber $\widetilde{\mathcal{X}}_{\mathbf{u}}=\mathcal{X}_{\mathbf{u}} \times_{\mathcal{E}_{\mathbf{u}}} \mathcal{X}_{\mathbf{u}}$ into $\mathcal{E}_{\mathbf{u}} \times \mathcal{E}_{\mathbf{u}}$. As we know from subsection ??, for general point $\mathbf{u} \in \mathcal{U}$ curve $\mathcal{E}_{\mathbf{u}}$ is elliptic curve given by (??). Fiber $\mathcal{X}_{\mathbf{u}}$ is the union of divisors $\left(P, P+S_{\mathbf{u}}\right)$ and $\left(P, P-S_{\mathbf{u}}\right), P \in \mathcal{E}_{\mathbf{u}}$ for $S_{\mathbf{u}} \in \operatorname{Pic}^{0}\left(\mathcal{E}_{\mathbf{u}}\right)$. Recall that there is the symmetry γ of $Y(3)$ defined by rule: $a_{(i, j)} \mapsto a_{(i, j)}, a_{(1,2,3)} \mapsto-a_{(1,3,2)}, a_{(1,3,2)} \mapsto-a_{(1,2,3)}$. Identify the fibers $\mathcal{E}_{\mathbf{u}}$ and $\mathcal{E}_{\gamma(\mathbf{u})}$ via γ. It can be shown in usual way that under this identification, involution $\sigma_{P}: \mathcal{Y}(3) \rightarrow \mathcal{Y}(3)$ has the following description:

$$
\begin{equation*}
\sigma_{P}:(P, \mathbf{u}) \mapsto(2 R-P, \gamma(\mathbf{u})) \tag{282}
\end{equation*}
$$

where $(P, \mathbf{u}) \in \mathcal{E}_{\mathbf{u}}, R=(0: 1: 0)$ is inflection point in the compactification of $\mathcal{E}_{\mathbf{u}}$ as cubic curve in \mathbb{P}^{2}. Fix the point $P \in \mathcal{E}_{\mathbf{u}}$. Thus, we obtain the following diagram:

Condition $\operatorname{deg} \Phi^{\prime}=4$ means that all points $2 R-P \mp S_{\mathbf{u}} \pm S_{\gamma(\mathbf{u})}$ coincide. It is clear that it means $2 S_{\mathbf{u}}=0$. But it contradicts with proposition ??. Thus, this case is impossible.

Consider case $\operatorname{deg} \Phi^{\prime}=2$. In this case, we get $2 R-P-S_{\mathbf{u}}-S_{\gamma(\mathbf{u})}=2 R-P+S_{\mathbf{u}}+S_{\gamma(\mathbf{u})}$ and $2 R-P+S_{\mathbf{u}}-S_{\gamma(\mathbf{u})}=2 R-P-S_{\mathbf{u}}+S_{\gamma(\mathbf{u})}$. Assume that $P=R$. Thus, points $R+S_{\mathbf{u}}+S_{\gamma(\mathbf{u})}$ and $R-S_{\mathbf{u}}+S_{\gamma(\mathbf{u})}$ are points of second order of the cubic curve $\mathcal{E}_{\mathbf{u}}$. This pair of points is defined over $\mathcal{O}(\mathcal{U})$. As we know, second order's points of cubic curve are in the line. Therefore, third point of second order defines the section of fibration $\mathcal{Y}(3) \rightarrow \mathcal{U}$. Consider the fibration $\mathcal{Y}(3) \rightarrow \mathcal{U}$. As we know, this fibration is given by equation (??). Points of second order of cubic curve $\mathcal{E}_{\mathbf{u}}$ are intersection of $\mathcal{E}_{\mathbf{u}}$ and line $w=0$ in \mathbb{P}^{2}. Denote this intersection by V. Variety V is given by equation:

$$
\begin{equation*}
-4 v_{1}^{3}+c_{1}^{\prime} v_{1}^{2}+c_{2}^{\prime} v_{1}+c_{3}^{\prime}=0 \tag{284}
\end{equation*}
$$

where $c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime} \in F\left[u_{1}, u_{3}\right]$ are given by formulas (??). As we know, one can transform variety V into (??). It is clear that V is irreducible. Thus, polynomial from formula (284) is irreducible over \mathbb{F} and hence over $\mathbb{F}\left(u_{1}, u_{3}\right)$. Therefore, there are no points of second order of cubic curve $\mathcal{E}_{\mathbf{u}}$ which are sections over \mathcal{U}. Thus, case $\operatorname{deg} \Phi^{\prime}=2$ is impossible. There is only one possible case $\operatorname{deg} \Phi^{\prime}=1$.

Corollary 90. Morphism μ from diagram (238) is a birational immersion.
Let us prove the $\sigma_{P}^{(3)}$-invariance of the image $\Phi(\widetilde{X}) \subset Y(3) \times_{Y} Y(3)$. Recall that there is a well-defined involution $\sigma_{P}^{(3)}$ acting on $Y(3) \times_{Y} Y(3)$. Also, recall that there is a well-defined involution $\sigma_{P}^{(3)}$ on the variety $\mathcal{Y}(3) \times_{Y} \mathcal{Y}(3)$. It is sufficient to prove that $\Phi^{\prime}(\widetilde{\mathcal{X}})$ is $\sigma_{P}^{(3)}$ - invariant for $\sigma_{P}^{(3)}$-invariance of the $\Phi(\widetilde{X})$. Fix general point $\mathbf{u} \in \mathcal{U}$. Consider the fiber of the variety $\mathcal{Y}(3) \times \mathcal{U} \mathcal{Y}(3)$ over \mathbf{u}. As we know, this fiber is a product of isomorphic elliptic curves $\mathcal{E}_{\mathbf{u}} \times \mathcal{E}_{\mathbf{u}}$. Also, consider the fibers $\widetilde{\mathcal{X}}_{\mathbf{u}}$ and $\widetilde{\mathcal{X}}_{\sigma_{P}^{(3)}(\mathbf{u})}$. As we know from proof of the proposition 89 , the fiber $\tilde{\mathcal{X}}_{\mathbf{u}}$ is a union of four elliptic curves of the following type: $\left(P, 2 R-P \pm S_{\mathbf{u}} \pm S_{\gamma(\mathbf{u})}\right)$, where $P \in \mathcal{Y}(3)_{\mathbf{u}}=\mathcal{E}_{\mathbf{u}}, 2 R-P \pm S_{\mathbf{u}} \pm S_{\gamma(\mathbf{u})} \in \mathcal{Y}(3)_{\gamma(\mathbf{u})}=\mathcal{E}_{\mathbf{u}}$. After applying $\sigma_{P}^{(3)}$, we obtain that $\sigma_{P}^{(3)}\left(\widetilde{\mathcal{X}}_{\mathbf{u}}\right)=$
$\left(2 R-P, P \pm S_{\mathbf{u}} \pm S_{\gamma(\mathbf{u})}\right)$, where $2 R-P \in \mathcal{Y}(3)_{\gamma(\mathbf{u})}, P \pm S_{\mathbf{u}} \pm S_{\gamma(\mathbf{u})} \in \mathcal{Y}(3)_{\gamma(\mathbf{u})}$. Let us check that $\sigma_{P}^{(3)}\left(\widetilde{\mathcal{X}}_{\mathbf{u}}\right)=$ $\widetilde{\mathcal{X}}_{\sigma_{P}^{(3)}(\mathbf{u})}=\widetilde{\mathcal{X}}_{\gamma(\mathbf{u})}$.

Let us start from point $2 R-P \in \mathcal{Y}(3)_{\gamma(\mathbf{u})}$. Using properties of $\tilde{\mathcal{X}}$, we obtain the following diagram:

Thus, we obtain that $\sigma_{P}^{(3)}\left(\widetilde{\mathcal{X}}_{\mathbf{u}}\right)=\widetilde{\mathcal{X}}_{\gamma(\mathbf{u})}$, and hence, $\Phi^{\prime}(\widetilde{\mathcal{X}})$ is $\sigma_{P}^{(3)}$ - invariant subvariety of $\mathcal{Y}(3) \times_{Y} \mathcal{Y}(3)$. Therefore, we have proved the following theorem:

Theorem 91. Image $\Phi(\widetilde{X})=\widetilde{\mu}(\widetilde{Z}) \subset Y(3) \times_{Y} Y(3)$ is $\sigma_{P}^{(3)}$ - invariant.

9 Variety of orthogonal pairs in $s l(6)$.

9.1 Previous remarks.

Fix two partitions θ_{1} and θ_{2} of $\{1,2,3,4,5,6\}$ into two complement subsets. Without loss of generality, assume that $\theta_{1}=(1,2,3) \cup(4,5,6)$ and $\theta_{2}=(1,2,4) \cup(3,5,6)$. Denote by ρ the permutation (3,4). Denote by $\Gamma_{3,2}$ the complete bipartite graph with 3 and 2 vertices in upper and down rows respectively.

Recall that we denote by $A_{<t_{1}, \ldots, t_{s}>}$ the subalgebra of $B(\Gamma)$ generated by elements $t_{1}, \ldots, t_{s} \in B(\Gamma)$. Denote by $q_{1}, \ldots, q_{6}, p_{1}, p_{2}, p_{3}$ the generators of $B_{r}\left(\Gamma_{3,6}\right)$. Thus, we have the following natural maps:

$$
\begin{gather*}
j: A_{<q_{1}, q_{2}, p_{1}, p_{2}, p_{3}>} \cong B_{r}\left(\Gamma_{3,2}\right) \rightarrow A_{<q_{1}, q_{2}, q_{3}, p_{1}, p_{2}, p_{3}>} \cong B_{r}\left(\Gamma_{3,3}\right), \tag{286}\\
j^{\prime}: A_{<q_{1}, q_{2}, p_{1}, p_{2}, p_{3}>} \cong B_{r}\left(\Gamma_{3,2}\right) \rightarrow A_{<q_{1}, q_{2}, q_{4}, p_{1}, p_{2}, p_{3}>} \cong B_{r}\left(\Gamma_{3,3}\right), \tag{287}\\
i: A_{\left.<q_{1}, q_{2}, q_{3}, p_{1}, p_{2}, p_{3}\right\rangle} \cong B_{r}\left(\Gamma_{3,3}\right) \rightarrow B_{r}\left(\Gamma_{3,6}\right), i^{\prime}: A_{<q_{1}, q_{2}, q_{4}, p_{1}, p_{2}, p_{3}>} \cong B_{r}\left(\Gamma_{3,3}\right) \rightarrow B_{r}\left(\Gamma_{3,6}\right) \tag{288}
\end{gather*}
$$

defined obviously. It is trivial that we have the following commutative diagram:

Analogously, we have the following commutative diagram:

Consider algebra $B_{3,6}$ which is a quotient of the $B_{\frac{1}{6}}\left(\Gamma_{3,6}\right)$ by ideal I generated by the element $\sum_{i=1}^{6} q_{i}-1$. As we know

$$
\begin{equation*}
B_{3,6} \cong A_{<q_{1}, q_{2}, q_{3}, p_{1}, p_{2}, p_{3}>} *_{A_{<Q ; p_{1}, p_{2}, p_{3}>}} A_{<q_{4}, q_{5}, q_{6}, p_{1}, p_{2}, p_{3}>} \tag{291}
\end{equation*}
$$

where $Q=q_{1}+q_{2}+q_{3}$. Also, we have the isomorphism of algebras:

$$
\begin{equation*}
B_{3,6} \cong A_{\left\langle q_{1}, q_{2}, q_{4}, p_{1}, p_{2}, p_{3}>\right.} *_{A_{\left.<Q^{\prime} ; p_{1}, p_{2}, p_{3}\right\rangle}} A_{\left\langle q_{3}, q_{5}, q_{6}, p_{1}, p_{2}, p_{3}\right\rangle} \tag{292}
\end{equation*}
$$

where $Q^{\prime}=q_{1}+q_{2}+q_{4}$. It is trivial that one can get second isomorphism from first one by composition with automorphism ρ. Identify variety $\mathcal{M}_{6}\left(A_{<q_{1}, q_{2}, q_{3}, p_{1}, p_{2}, p_{3}>} *_{A_{<Q_{i} ; p_{1}, p_{2}, p_{3}>}} A_{<q_{4}, q_{5}, q_{6}, p_{1}, p_{2}, p_{3}>}\right)$ and $\mathcal{M}_{6}\left(A_{<q_{1}, q_{2}, q_{4}, p_{1}, p_{2}, p_{3}>} *_{A_{<Q^{\prime} ; p_{1}, p_{2}, p_{3}>}} A_{<q_{3}, q_{5}, q_{6}, p_{1}, p_{2}, p_{3}>}\right)$ with $X(3,3) \times_{Y(3)} X(3,3)$. It is easy to see that ρ is a birational involution of $X(3,3) \times_{Y(3)} X(3,3)$. Note that second identification is obtained from first one by composition with ρ. Standard arguments shows that isomorphisms (291) and (292) correspond to birational morphisms: $\zeta, \zeta \circ \rho: X(3,6) \rightarrow X(3,3) \times_{Y(3)} X(3,3)$.

It is easy that we have the commutative diagram:

Therefore, we get the natural morphism: $A_{<q_{1}, q_{2}, p_{1}, p_{2}, p_{3}>} *_{A_{<p_{1}, p_{2}, p_{3}>}} A_{<q_{5}, q_{6}, p_{1}, p_{2}, p_{3}>} \rightarrow B_{3,6}$. Using diagram (289), ??, (??), we get the following diagram:

It is easy that there is unique 6 -dimensional module of algebra $A_{<p_{1}, p_{2}, p_{3}>}$ such that rank of p_{i} is 1 . Identifying varieties $\mathcal{M}_{6}\left(A_{<q_{1}, q_{2}, p_{1}, p_{2}, p_{3}>}\right)$ and $\mathcal{M}_{6}\left(A_{<q_{5}, q_{6}, p_{1}, p_{2}, p_{3}>}\right)$ with algebraic torus $X(3,2)=\left(F^{*}\right)^{2}$, we get the natural map: $X(3,6) \rightarrow X(3,2) \times X(3,2)$. Thus, we get the following commutative diagram:

Also, one can take the quotient by symmetric group $S_{3}^{(p)}$. Using commutativity ρ and $S_{3}^{(p)}$, we get the following commutative diagram:

Further, consider the map: $\mathcal{A}_{6}=A_{\left\langle P ; q_{1}, \ldots q_{6}\right\rangle} \rightarrow B_{3,6}$, where $P=p_{1}+p_{2}+p_{3}$. Consider algebra $A_{\left\langle P ; q_{1}, q_{2}\right\rangle}$ and morphism: $A_{\left.<P ; q_{1}, q_{2}\right\rangle} \rightarrow B_{\frac{1}{6}}\left(\Gamma_{3,2}\right)$. Also, consider subalgebra $A_{<P>}=F \oplus F$. It is easy that we have
natural morphisms: $A_{<P>} \rightarrow A_{<P ; q_{1}, q_{2}>}$ and $A_{<P>} \rightarrow A_{<p_{1}, p_{2}, p_{3}, Q>}$ defined obviously. One can define the natural morphism: $A_{<P, q_{1}, q_{2}>} *_{A_{<P>}} A_{<P, q_{5}, q_{6}>} \rightarrow A_{<q_{1}, q_{2}, p_{1}, p_{2}, p_{3}>} *_{A_{<p_{1}, p_{2}, p_{3}>}} A_{<q_{5}, q_{6}, p_{1}, p_{2}, p_{3}>}$. It could be shown in usual way that there is a commutative diagram:

Identify variety of modules $\mathcal{M}_{6}\left(A_{<P, q_{1}, q_{2}>}\right)$ and $\mathcal{M}_{6}\left(A_{\left.<P, q_{5}, q_{6}\right\rangle}\right)$,satisfying to condition: $r k P=3, r k q_{i}=1$, with affine space $Y(2)=F^{1}$, we obtain natural map: $Y(6) \rightarrow Y(2) \times Y(2)$.

Denote by $\pi^{\prime}, \pi_{Y}^{\prime}, \pi^{\prime \prime}$ the natural morphisms $X(3,6) \rightarrow X(3,2) \times X(3,2), Y(6) \rightarrow Y(2) \times Y(2)$ and $X(3,2) \times X(3,2) \rightarrow Y(2) \times Y(2)$ respectively. It is easy that

$$
\begin{gather*}
\pi^{\prime}:\left(p_{1}, p_{2}, p_{3} ; q_{1}, \ldots, q_{6}\right) \mapsto\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}\right) \times\left(p_{1}, p_{2}, p_{3} ; q_{5}, q_{6}\right) \tag{298}\\
\pi_{Y}^{\prime}:\left(P ; q_{1}, \ldots, q_{6}\right) \mapsto\left(P ; q_{1}, q_{2}\right) \times\left(P ; q_{5}, q_{6}\right) \tag{299}
\end{gather*}
$$

and

$$
\begin{equation*}
\pi^{\prime \prime}:\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}\right) \times\left(p_{1}, p_{2}, p_{3} ; q_{5}, q_{6}\right) \mapsto\left(p_{1}+p_{2}+p_{3} ; q_{1}, q_{2}\right) \times\left(p_{1}+p_{2}+p_{3} ; q_{5}, q_{6}\right) \tag{300}
\end{equation*}
$$

Using technics of subsection??, we get the following commutative diagram of varieties:

Also, using standard arguments, we get the following commutative diagram:

where $Q=q_{1}+q_{2}+q_{3}$ and $Q^{\prime}=q_{1}+q_{2}+q_{4}$. Identify varieties $\mathcal{M}_{6}\left(A_{<P, q_{1}, q_{2}, q_{3}>} *_{A_{<P, Q>}} A_{<P, q_{4}, q_{5}, q_{6}>}\right)$ and $\mathcal{M}_{6}\left(A_{<P, q_{1}, q_{2}, q_{4}>} *_{A_{<P, Q^{\prime}>}} A_{\left\langle P, q_{3}, q_{5}, q_{6}\right\rangle}\right)$ with $Y(3) \times_{Y} Y(3)$. Also, we can define birational involution ρ acting on $Y(3) \times_{Y} Y(3)$ transforming one identification to other one. Thus, we have the commutative diagram of varieties:

Consider map: $\widehat{\pi}: \widetilde{X} \rightarrow X(3,2) \times X(3,2)$ defined by rule:

$$
\begin{equation*}
\widehat{\pi}:\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3}\right) \times\left(p_{1}, p_{2}, p_{3} ; q_{4}, q_{5}, q_{6}\right) \mapsto\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}\right) \times\left(p_{1}, p_{2}, p_{3} ; q_{5}, q_{6}\right) \tag{304}
\end{equation*}
$$

It is easy that π^{\prime} is a composition of birational morphism ζ and $\widehat{\pi}$. Thus, we have the following commutative diagram:

Let us consider the quotient of the varieties in the higher row of diagram (305) by action of symmetric group $S_{3}^{(p)}$. There is a commutative diagram:

Denote by Π the composition: $\pi^{\prime \prime} \circ \widehat{\pi}: \widetilde{Z} \rightarrow Y(2) \times Y(2)$. Also, using diagram (296), we get the following commutative diagram:

9.2 Properties of morphism $\widehat{\pi}: \widetilde{X} \rightarrow X(3,2) \times X(3,2)$.

In this subsection we will prove that morphism $\widehat{\pi}$ is dominant and has degree 12 .
As we know, variety \widetilde{X} is a fibred product $X(3,3) \times_{Y(3)} X(3,3)$ and $X(3,3)=\left(F^{*}\right)^{4} . Y(3)$ is a hypersurface in $F_{A, B, C, \alpha, \beta}^{5}$ with coordinates defined by equation $A B C=\alpha \beta$. It is clear that $X(3,2)=\left(F^{*}\right)^{2}$. Define the coordinates in $X(3,3) \times_{Y(3)} X(3,3)$ as follows: $a_{1}=36 \operatorname{Tr} p_{1} q_{1} p_{2} q_{2}, b_{1}=36 \operatorname{Tr} p_{1} q_{1} p_{3} q_{2}, x_{1}=36 \operatorname{Tr} p_{1} q_{1} p_{2} q_{3}, y_{1}=$ $36 \operatorname{Tr} p_{1} q_{1} p_{3} q_{3}, a_{2}=36 \operatorname{Tr} p_{1} q_{5} p_{2} q_{6}, b_{2}=36 \operatorname{Tr} p_{1} q_{5} p_{3} q_{6}, x_{2}=36 \operatorname{Tr} p_{1} q_{4} p_{2} q_{6}, y_{2}=36 \operatorname{Tr} p_{1} q_{4} p_{3} q_{6}$. Then morphism $\widehat{\pi}$ is given by formula:

$$
\begin{equation*}
\widehat{\pi}:\left(a_{1}, b_{1}, x_{1}, y_{1}\right) \times\left(a_{2}, b_{2}, x_{2}, y_{2}\right) \mapsto\left(a_{1}, b_{1}, a_{2}, b_{2}\right) \tag{308}
\end{equation*}
$$

Fix a general point $\left(a_{1}=a, b_{1}=b, a_{2}=c, b_{2}=d\right) \in X(3,2) \times X(3,2)=\left(F^{*}\right)^{4}$. Let us prove that $\widehat{\pi}^{-1}(a, b, c, d)$ is non-empty. It can be shown in usual way that pre-image $\widehat{\pi}^{-1}(a, b, c, d)$ is a solution of the following system of equations:

$$
\begin{align*}
\left(1+a+x_{1}\right)\left(1+\frac{1}{a}+\frac{1}{x_{1}}\right) & =\left(1+c+x_{2}\right)\left(1+\frac{1}{c}+\frac{1}{x_{2}}\right) \tag{309}\\
\left(1+b+y_{1}\right)\left(1+\frac{1}{b}+\frac{1}{y_{1}}\right) & =\left(1+d+y_{2}\right)\left(1+\frac{1}{d}+\frac{1}{y_{2}}\right) \tag{310}\\
\left(1+\frac{a}{b}+\frac{x_{1}}{y_{1}}\right)\left(1+\frac{b}{a}+\frac{y_{1}}{x_{1}}\right) & =\left(1+\frac{c}{d}+\frac{x_{2}}{y_{2}}\right)\left(1+\frac{d}{c}+\frac{y_{2}}{x_{2}}\right) \tag{311}\\
\left(1+a+x_{1}\right)\left(1+\frac{1}{b}+\frac{1}{y_{1}}\right)\left(1+\frac{b}{a}+\frac{y_{1}}{x_{1}}\right) & =-\left(1+c+x_{2}\right)\left(1+\frac{1}{d}+\frac{1}{y_{2}}\right)\left(1+\frac{d}{c}+\frac{y_{2}}{x_{2}}\right) \tag{312}\\
\left(1+\frac{1}{a}+\frac{1}{x_{1}}\right)\left(1+b+y_{1}\right)\left(1+\frac{a}{b}+\frac{x_{1}}{y_{1}}\right) & =-\left(1+\frac{1}{c}+\frac{1}{x_{2}}\right)\left(1+d+y_{2}\right)\left(1+\frac{c}{d}+\frac{x_{2}}{y_{2}}\right) . \tag{313}
\end{align*}
$$

Let us simplify this system. For this purpose, introduce the following variables:

$$
\begin{gathered}
\alpha_{1}=\frac{1+a}{\sqrt{a}}, \alpha_{2}=\frac{1+c}{\sqrt{c}}, \beta_{1}=\frac{1+b}{\sqrt{b}}, \beta_{2}=\frac{1+d}{\sqrt{d}}, \gamma_{1}=\frac{a+b}{\sqrt{a b}}, \gamma_{2}=\frac{c+d}{\sqrt{c d}} \\
x=\frac{x_{1}}{\sqrt{a}}, y=\frac{y_{1}}{\sqrt{b}}, z=\frac{x_{2}}{\sqrt{c}}, w=\frac{y_{2}}{\sqrt{d}} .
\end{gathered}
$$

One can check that there are relations between $\alpha_{i}, \beta_{i}, \gamma_{i}, i=1,2$:

$$
\begin{equation*}
\alpha_{i}^{2}+\beta_{i}^{2}+\gamma_{i}^{2}-\alpha_{i} \beta_{i} \gamma_{i}-4=0, i=1,2 \tag{314}
\end{equation*}
$$

Thus, we obtain the following system:

$$
\begin{align*}
\left(\alpha_{1}+x\right)\left(\alpha_{1}+\frac{1}{x}\right) & =\left(\alpha_{2}+z\right)\left(\alpha_{2}+\frac{1}{z}\right) \tag{315}\\
\left(\beta_{1}+y\right)\left(\beta_{1}+\frac{1}{y}\right) & =\left(\beta_{2}+w\right)\left(\beta_{2}+\frac{1}{w}\right) \tag{316}\\
\left(\gamma_{1}+\frac{x}{y}\right)\left(\gamma_{1}+\frac{y}{x}\right) & =\left(\gamma_{2}+\frac{z}{w}\right)\left(\gamma_{2}+\frac{w}{z}\right) \tag{317}\\
\left(\alpha_{1}+x\right)\left(\beta_{1}+\frac{1}{y}\right)\left(\gamma_{1}+\frac{y}{x}\right) & =-\left(\alpha_{2}+z\right)\left(\beta_{2}+\frac{1}{w}\right)\left(\gamma_{2}+\frac{w}{z}\right) \tag{318}\\
\left(\alpha_{1}+\frac{1}{x}\right)\left(\beta_{1}+y\right)\left(\gamma_{1}+\frac{x}{y}\right) & =-\left(\alpha_{2}+\frac{1}{z}\right)\left(\beta_{2}+w\right)\left(\gamma_{2}+\frac{z}{w}\right) \tag{319}
\end{align*}
$$

Also, let us rewrite two last equations in the following manner:

$$
\begin{align*}
& \left(\alpha_{1}+x\right)\left(\beta_{1}+\frac{1}{y}\right)\left(\gamma_{2}+\frac{z}{w}\right)=-\left(\alpha_{2}+z\right)\left(\beta_{2}+\frac{1}{w}\right)\left(\gamma_{1}+\frac{x}{y}\right) \tag{320}\\
& \left(\alpha_{1}+\frac{1}{x}\right)\left(\beta_{1}+y\right)\left(\gamma_{2}+\frac{w}{z}\right)=-\left(\alpha_{2}+\frac{1}{z}\right)\left(\beta_{2}+w\right)\left(\gamma_{1}+\frac{y}{x}\right) \tag{321}
\end{align*}
$$

Consider the following compactification of these equations: we will consider F^{*} with coordinates x, y, z, w as open dense subvariety of product $\mathbb{P}_{\left(x_{0}: x_{1}\right)}^{1} \times \mathbb{P}_{\left(y_{0}: y_{1}\right)}^{1} \times \mathbb{P}_{\left(z_{0}: z_{1}\right)}^{1} \times \mathbb{P}_{\left(w_{0}: w_{1}\right)}^{1}$. One can describe non-homogenous coordinates in terms of homogenous ones as follows: $x=\frac{x_{1}}{x_{0}}, y=\frac{y_{1}}{y_{0}}, z=\frac{z_{1}}{z_{0}}, w=\frac{w_{1}}{w_{0}}$.

Denote by E_{1}, E_{2} the curves in the product $\mathbb{P}_{\left(x_{0}: x_{1}\right)}^{1} \times \mathbb{P}_{\left(z_{0}: z_{1}\right)}^{1}$ and $\mathbb{P}_{\left(y_{0}: y_{1}\right)}^{1} \times \mathbb{P}_{\left(w_{0}: w_{1}\right)}^{1}$ given by formulas (315) and (316) respectively. It is easy that these curves are elliptic for general $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$. One can prove the following proposition:

Proposition 92. For general $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ elliptic curves E_{1} and E_{2} are not isogenous.
Denote by $R_{00}, R_{01}, R_{10}, R_{11}$ the points $(0: 1) \times(0: 1),(0: 1) \times(1: 0),(1: 0) \times(0: 1),(1: 0) \times(1: 0)$ of curve E_{1} respectively. We will denote by $R_{00}^{\prime}, R_{01}^{\prime}, R_{10}^{\prime}, R_{11}^{\prime}$ the same points of E_{2}. Denote by $Q_{00}, Q_{01}, Q_{10}, Q_{11}$ the points $\left(1:-\alpha_{1}\right) \times\left(1:-\alpha_{2}\right),\left(1:-\alpha_{1}\right) \times\left(-\alpha_{2}: 1\right),\left(-\alpha_{1}: 1\right) \times\left(1:-\alpha_{2}\right),\left(-\alpha_{1}: 1\right) \times\left(-\alpha_{2}: 1\right)$ of curve E_{1}. Also, denote by $Q_{00}^{\prime}, Q_{01}^{\prime}, Q_{10}^{\prime}, Q_{11}^{\prime}$ the points $\left(1:-\beta_{1}\right) \times\left(1:-\beta_{2}\right),\left(1:-\beta_{1}\right) \times\left(-\beta_{2}: 1\right),\left(-\beta_{1}: 1\right) \times(1$: $\left.-\beta_{2}\right),\left(-\beta_{1}: 1\right) \times\left(-\beta_{2}: 1\right)$ of curve E_{2}. It is easy that

$$
\left\{R_{00}, R_{01}, R_{10}, R_{11}\right\}=E_{1} \cap\left\{x_{0} x_{1} z_{0} z_{1}=0\right\},\left\{R_{00}^{\prime}, R_{01}^{\prime}, R_{10}^{\prime}, R_{11}^{\prime}\right\}=E_{2} \cap\left\{y_{0} y_{1} w_{0} w_{1}=0\right\}
$$

Using proposition 92 , we obtain that $N S\left(E_{1} \times E_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, where $N S\left(E_{1} \times E_{2}\right)$ is Neron-Severi group of $E_{1} \times E_{2}$. One can check that there is an involution $\tau: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ defined by

$$
\tau:\left(x_{0}: x_{1}\right) \times\left(y_{0}: y_{1}\right) \times\left(z_{0}: z_{1}\right) \times\left(w_{0}: w_{1}\right) \mapsto\left(x_{1}: x_{0}\right) \times\left(y_{1}: y_{0}\right) \times\left(z_{1}: z_{0}\right) \times\left(w_{1}: w_{0}\right)
$$

Recall that there are divisors of $E_{1} \times E_{2}$ of two types: "horizontal" - $h_{1}=p o i n t \times E_{2}$ and "vertical" $h_{2}=E_{1} \times$ point. Denote by D_{1} and D_{2} the divisors in $E_{1} \times E_{2}$ given by (320), (321). Rewrite these equations in homogenous coordinates. We get D_{1} :

$$
\begin{equation*}
\left(\alpha_{1} x_{0}+x_{1}\right)\left(\beta_{1} y_{1}+y_{0}\right)\left(\gamma_{2} w_{1} z_{0}+w_{0} z_{1}\right)+\left(\alpha_{2} z_{0}+z_{1}\right)\left(\beta_{2} w_{1}+w_{0}\right)\left(\gamma_{1} x_{0} y_{1}+x_{1} y_{0}\right)=0 \tag{322}
\end{equation*}
$$

and D_{2} :

$$
\begin{equation*}
\left(\alpha_{1} x_{1}+x_{0}\right)\left(\beta_{1} y_{0}+y_{1}\right)\left(\gamma_{2} w_{0} z_{1}+w_{1} z_{0}\right)+\left(\alpha_{2} z_{1}+z_{0}\right)\left(\beta_{2} w_{0}+w_{1}\right)\left(\gamma_{1} x_{1} y_{0}+x_{0} y_{1}\right)=0 \tag{323}
\end{equation*}
$$

It is easy that $\tau\left(D_{1}\right)=D_{2}$. Also, denote by D the divisor given by equation (311). We will say that divisor D of $E_{1} \times E_{2}$ is of type (a, b) iff $D \cdot h_{2}=a, D \cdot h_{1}=b$. Let us prove the following proposition:

Proposition 93. D_{1} and D_{2} of $E_{1} \times E_{2}$ are divisors of type $(4,4)$. Divisors D_{1} and D_{2} are reducible:

$$
\begin{equation*}
D_{1}=Q_{00} \times E_{2}+E_{1} \times Q_{11}^{\prime}+D_{1}^{\prime}, D_{2}=Q_{11} \times E_{2}+E_{1} \times Q_{00}^{\prime}+D_{2}^{\prime} \tag{324}
\end{equation*}
$$

where $D_{i}^{\prime}, i=1,2$ are divisors of type (3,3). In particular, $D_{1}^{\prime} \propto_{L} D_{2}^{\prime}$. For general $\alpha_{i}, \beta_{i}, i=1,2$ divisors $D_{1}^{\prime}, D_{2}^{\prime}$ are irreducible. $D_{1}^{\prime} \cdot D_{2}^{\prime}=18$.

Proof. It is easy that $Q_{00} \times E_{2}+E_{1} \times Q_{11}^{\prime}$ is a component of D_{1}. One can check that for general $\alpha_{i}, \beta_{i}, i=1,2$ there are not a vertical and horizontal components in D_{1}^{\prime}. Hence, if $D_{i}^{\prime}, i=1,2$ are reducible, then there are components of type $(1,1)$ or $(1,2)$. But it means that curve E_{1} and E_{2} are isomorphic or 2-isogenous. Using proposition 92, we get the required.
Corollary 94. For general point $(a, b, c, d) \in X(3,2) \times X(3,2)$ pre-image $\widehat{\pi}^{-1}(a, b, c, d)$ is a finite set. Thus, morphism $\widehat{\pi}$ is dominant.

Let us calculate degree of $\widehat{p r}$. For this purpose, consider points of $D_{1}^{\prime} \cdot D_{2}^{\prime}$ which lying in the $x_{0} x_{1} y_{0} y_{1} z_{0} z_{1} w_{0} w_{1}=0$. One can show that there are 4 points: $R_{00} \times R_{00}^{\prime}, R_{11} \times R_{11}^{\prime}, R_{01} \times R_{10}^{\prime}, R_{10} \times R_{01}^{\prime}$. Also, we have to find points of intersection $D_{1}^{\prime} \cap D_{2}^{\prime}$ which lying in D. It can be shown in usual way that there are points $S_{1}=Q_{10} \times Q_{01}^{\prime}, S_{2}=Q_{01} \times Q_{10}^{\prime} \in D_{1}^{\prime} \cap D_{2}^{\prime}$ not lying in D. For general point $(a, b, c, d) \in X(3,2) \times X(3,2)$ intersection multiplicities of these point is 1 . Therefore, we have proved the following:
Proposition 95. Degree of morhism $\widehat{\pi}: \widetilde{X} \rightarrow X(3,2) \times X(3,2)$ is 12.

9.3 Properties of fibration $\Pi=\pi^{\prime \prime} \circ \widehat{\pi}: \widetilde{Z} \rightarrow Y(2) \times Y(2)$.

In this subsection we will prove that general fibre of Π is a surface of general type.
Consider map $\widehat{\pi}: \widetilde{X} \rightarrow X(3,2) \times X(3,2)$. Let us introduce natural compactification of $X(3,2) \times X(3,2)$ as follows. $X(3,2)=\left(F^{*}\right)^{2}$ is an open subvariety of projective space \mathbb{P}^{2}, i.e. compactification of $X(3,2) \times X(3,2)$ is $\mathbb{P}^{2} \times \mathbb{P}^{2}$. Denote by $\pi^{\prime \prime}$ the rational mapping: $\mathbb{P}^{2} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ defined on $X(3,2) \times X(3,2)$..

Also, consider $S_{3}^{(p)}$ - invariant compactification \widetilde{X}^{c} of \widetilde{X} such that there is morphism: $\widehat{\pi}^{c}: \widetilde{X}^{c} \rightarrow \mathbb{P}^{2} \times \mathbb{P}^{2}$. By construction, morphism $\widehat{\pi}^{c}$ coincide with $\widehat{\pi}$ on the open subvarieties \widetilde{X} and $X(3,2) \times X(3,2)$. Degree of $\widehat{\pi}^{c}$ is 12 .

Proposition 96. Ramification divisor $\widehat{D} \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ of $\widehat{\pi}^{c}$ is of type (a, a), $a \geq 22$.
Proof. Let us make the following notes: Denote by $[p t]$, $[$ line $]$ the classes of point and line in \mathbb{P}^{2}. It is well-known that

$$
H_{0}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)=\mathbb{Z}, H_{2}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)=\mathbb{Z} \oplus \mathbb{Z}, H_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}, H_{6}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)=\mathbb{Z} \oplus \mathbb{Z}, H_{8}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)=\mathbb{Z}
$$

Generators of homology groups $H_{0}, H_{2}, H_{4}, H_{6}, H_{8}$ are $[p t] \times[p t] ;[p t] \times[$ line $],[$ line $] \times[p t] ; \mathbb{P}^{2} \times[p t],[$ line $] \times[$ line $],[p t] \times \mathbb{P}^{2} ;$ $\mathbb{P}^{2} \times[$ line $],[$ line $] \times \mathbb{P}^{2}$ and $\mathbb{P}^{2} \times \mathbb{P}^{2}$ respectively. It is well-known that $\operatorname{Pic}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$.

Using obvious symmetry, we get that \widehat{D} is homologically equivalent to $a\left([\right.$ line $] \times \mathbb{P}^{2}+\mathbb{P}^{2} \times[$ line $\left.]\right)$. Let us prove that $a \geq 22$. Fix general line l in \mathbb{P}^{2} and general point $P \in \mathbb{P}^{2}$. Consider the line $l \times P \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$. Consider curve $C=\widehat{p r}^{-1}(l \times P)$. As we know, $\left.\widehat{\pi}\right|_{C}: C \rightarrow l \times P$ is a map of degree 12. Ramification divisor of $\left.\widehat{\pi}\right|_{C}$ is the intersection $\widehat{D} \cap l \times P$. By Hurwitz's formula, we obtain the following formula:

$$
\begin{equation*}
2 g_{C}-2=12(-2)+\operatorname{deg}(\widehat{D} \cap l \times P)=-24+a \tag{325}
\end{equation*}
$$

where g_{C} is genus of curve C. Hence, $a=22+2 g_{C} \geq 22$.
Let us prove the following proposition:
Proposition 97. Fix a general $(A, B) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$. As we know, if $A, B \neq 0,1,9, \infty$ then $\pi^{\prime \prime-1}(A, B)$ is a product of elliptic curves. Denote by $\tilde{X}_{A, B}^{c}$ the fiber of \tilde{X}^{c} over A, B, then fiber $\tilde{X}_{A, B}^{c}$ is a surface of general type.

Proof. Consider map: $\pi^{\prime \prime}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$, where \mathbb{P}^{2} and \mathbb{P}^{1} are compactifications of $X(3,2)$ and $Y(2)$ respectively. It is easy that map: $\pi^{\prime \prime}$ in non-homogenous coordinates is given by formula: $(x, y) \mapsto(1+x+y)\left(1+\frac{1}{x}+\frac{1}{y}\right)$. As we know from subsection??, this map defines the elliptic family. It is well-known that $A, B \neq 0,1,9, \infty$ fiber of this family is elliptic curve. Denote by $E_{A} \times E_{B}$ the fiber of $\pi^{\prime \prime}$ over A, B.

Further, we have the map: $\widehat{\pi}_{A, B}: \widetilde{X}_{A, B}^{c} \rightarrow E_{A} \times E_{B}$. Consider Stein factorization of $\widehat{\pi}_{A, B}$:

$$
\begin{equation*}
\tilde{X}_{A, B}^{c} \xrightarrow{\widehat{\pi}_{1}} X_{A, B}^{c} \xrightarrow{\widehat{\pi}_{2}} E_{A} \times E_{B} \tag{326}
\end{equation*}
$$

Morphisms $\widehat{\pi}_{1}$ and $\widehat{\pi}_{2}$ have connected fibers and discrete fibers respectively. Moreover, surface $X_{A, B}^{c}$ have no rational curves, hence it is minimal surface. Further, ramification divisor of $\widehat{\pi}$ coincides with ramification divisor of $\widehat{\pi}_{2}$. Thus, canonical class $K_{A, B}$ of $X_{A, B}^{c}$ is $\widehat{\pi}_{2}^{-1}(\widehat{D})$ and, using proposition 96 , we get that $K_{A, B}^{2}>0$. Since $X_{A, B}^{c}$ is covering of product of elliptic curves, it is irrational. Thus, $X_{A, B}^{c}$ is a surface of general type (cf.??). Therefore, $\widetilde{X}_{A, B}^{c}$ is surface of general type.

Further, consider $\Pi: \widetilde{Z} \rightarrow Y(2) \times Y(2)$. As we know, morphism Π is a composition of $\widetilde{Z} \rightarrow$ $X(3,2) \times X(3,2) / S_{3}^{(p)}$ and $X(3,2) \times X(3,2) / S_{3}^{(p)} \rightarrow Y(2) \times Y(2)$. Let us consider compactification \widetilde{Z}^{c} such that $\Pi^{c}: \widetilde{Z}^{c} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ is a composition of $\widetilde{Z}^{c} \rightarrow \mathbb{P}^{2} \times \mathbb{P}^{2} / S_{3}^{(p)}$ and $\mathbb{P}^{2} \times \mathbb{P}^{2} / S_{3}^{(p)} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$.

Proposition 98. Fiber of $\mathbb{P}^{2} \times \mathbb{P}^{2} / S_{3}^{(p)}$ over point $(A, B), A, B \neq 0,1,9, \infty$ is a $K 3$ - surface.
Proof. We have to prove that quotient of $E_{A} \times E_{B}$ by action of $S_{3}^{(p)}$ is a K3-surface. One can check that $\mathbb{Z}_{3} \triangleleft S_{3}^{(p)}$ acts on $E_{A} \times E_{B}$ without fixed points. Thus, quotient of $E_{A} \times E_{B}$ by \mathbb{Z}_{3} is a complex torus. Also, one can prove that quotient $S_{3}^{(p)} / \mathbb{Z}_{3}$ acts on $E_{A} \times E_{B} / \mathbb{Z}_{3}$ by formula: $x \mapsto-x, x \in E_{A} \times E_{B} / \mathbb{Z}_{3}$. Thus, quotient $E_{A} \times E_{B} / S_{3}^{(p)}$ is a Kummer surface.

Moreover, we can prove the following proposition:
Proposition 99. For general point $(A, B) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ the fiber $\Pi^{-1}(A, B)=\widetilde{Z}_{A, B}$ is a surface of general type.
Proof. The proof is quite similar to proof of proposition 97.

9.4 Birational involutions of Z.

In this subsection we will study properties of some birational involutions of Z. We will denote by $\operatorname{Bir}(X)$ the group of birational automorphisms of the variety X. Recall that permutation $\rho=(3,4)$ is a well-defined involution of $X(3,6)$. Using ζ, we can define birational involution $\zeta \circ \rho \circ \zeta^{-1} \in \operatorname{Bir}(\tilde{X})$. As we know, actions $\underset{\sim}{\sim} S_{3}$ and S_{6} commute. Therefore, we have the well-defined involution $\rho \in \operatorname{Aut}(Z)$ and birational involution $\widetilde{\zeta} \circ \rho \circ \widetilde{\zeta}^{-1} \in \operatorname{Bir}(\widetilde{Z})$. As we know, $Y(6)$ is S_{6} - variety. One can check that μ is S_{6} - invariant morphism. Thus, we have the following commutative diagram:

Actually, $\psi \circ \mu=\widetilde{\mu} \circ \widetilde{\zeta}$. Using S_{6} - invariance of ρ, we obtain that $\psi \circ \rho \circ \mu=\psi \circ \mu \circ \rho=\widetilde{\mu} \circ \widetilde{\zeta} \circ \rho$. Therefore, we get the required commutativity of diagram (327).

Proposition 100. Assume $z, z^{\prime} \in Z$ such that $\sigma_{P}^{(6)} \circ \mu(z)=\mu\left(z^{\prime}\right)$. Then $\sigma_{P}^{(3)} \circ \widetilde{\mu} \circ \widetilde{\zeta}(z)=\widetilde{\mu} \circ \widetilde{\zeta}\left(z^{\prime}\right)$ and $\sigma_{P}^{(3)} \circ \widetilde{\mu} \circ \widetilde{\zeta} \circ \rho(z)=\widetilde{\mu} \circ \widetilde{\zeta} \circ \rho\left(z^{\prime}\right)$.

Proof. Applying ψ, we obtain that $\psi \circ \sigma_{P}^{(6)} \circ \mu(z)=\psi \circ \mu\left(z^{\prime}\right)$. Further, using relation $\sigma_{P}^{(3)} \circ \psi=\psi \circ \sigma_{P}^{(6)}$, we get that $\sigma_{P}^{(3)} \circ \psi \circ \mu(z)=\psi \circ \mu\left(z^{\prime}\right)$. Using commutativity of diagram (327), we get the required statement. Analogously, we obtain $\sigma_{P}^{(3)} \circ \widetilde{\mu} \circ \widetilde{\zeta} \circ \rho(z)=\widetilde{\mu} \circ \widetilde{\zeta} \circ \rho\left(z^{\prime}\right)$.

As we know, $\widetilde{\mu}: \widetilde{Z} \rightarrow Y(3) \times_{Y} Y(3)$ is a birational morphism and image $\widetilde{\mu}(\widetilde{Z})$ is $\sigma_{P}^{(3)}$-invariant. Thus, we can define birational involution $\widetilde{\mu}^{-1} \circ \sigma_{P}^{(3)} \circ \widetilde{\mu} \in \operatorname{Bir}(\widetilde{Z})$. Using birational morphism: $\widetilde{\zeta}: Z \rightarrow \widetilde{Z}$, we get birational involution $\sigma^{\prime}=\widetilde{\zeta}^{-1} \circ \widetilde{\mu}^{-1} \circ \sigma_{P}^{(3)} \circ \widetilde{\mu} \circ \widetilde{\zeta} \in \operatorname{Bir}(Z)$. Also, we can define involution $\rho^{-1} \circ \sigma^{\prime} \circ \rho \in \operatorname{Bir}(Z)$.

Proposition 101. Morphism $\sigma^{\prime} \circ \rho^{-1} \circ \sigma^{\prime} \circ \rho \in \operatorname{Bir}(Z)$ has finite order.
Proof. Note the following properties of morphism: $\Pi \circ \widetilde{\zeta}: Z \rightarrow Y(2) \times Y(2)$: involution ρ acts on fibres of the morphism: $\Pi \circ \widetilde{\zeta}$. Let us prove that $\Pi \circ \sigma^{\prime}=\Pi$. Actually, we can define involution σ_{P} on $Y(2) \times Y(2)$ by the rule: $P \mapsto 1-P, q_{i} \mapsto q_{i}, i=1,2,5,6$. It is easy that natural morphism $p_{Y}: Y(3) \times_{Y} Y(3) \rightarrow Y(2) \times Y(2)$ satisfies to relation: $p_{Y} \circ \sigma_{P}^{(3)}=\sigma_{P} \circ p_{Y}$. Also, we have the following commutative diagram:

Further, $\Pi \circ \widetilde{\zeta} \circ \sigma^{\prime}=p_{Y} \circ \widetilde{\mu} \circ \widetilde{\zeta} \circ \sigma^{\prime}=p_{Y} \circ \sigma_{P}^{(3)} \circ \widetilde{\mu} \circ \widetilde{\zeta}=\sigma_{P} \circ \Pi \circ \widetilde{\zeta}$. Study action of involution σ_{P} on $Y(2) \times Y(2)$. As we know, $Y(2) \times Y(2)=\mathcal{M}_{6}\left(<P ; q_{1}, q_{2}>\right) \times \mathcal{M}_{6}\left(<P ; q_{5}, q_{6}>\right) \cong F\left[\operatorname{Tr} P q_{1} P q_{2}, \operatorname{Tr} P q_{5} P q_{6}\right]$. One can calculate: $\sigma_{P}\left(\operatorname{Tr} P q_{1} P q_{2}\right)=\operatorname{Tr}(1-P) q_{1}(1-P) q_{2}=\operatorname{Tr} P q_{1} P q_{2}$. Analogously, $\sigma_{P}\left(\operatorname{Tr} P q_{5} P q_{6}\right)=\operatorname{Tr} P q_{5} P q_{6}$ i.e. σ_{P} acts on $Y(2) \times \underset{\sim}{Y}(2)$ trivially. Thus, $\Pi \circ \widetilde{\zeta} \circ \sigma^{\prime}=\Pi \circ \widetilde{\zeta}$. Therefore, involutions σ^{\prime} and ρ act on the fibres of the morphism: $\Pi \circ \widetilde{\zeta}: Z \rightarrow Y(2) \times Y(2)$. Since general fibres of Π are surfaces of general type and birationality of $\widetilde{\zeta}$, we obtain that general fibres of $\Pi \circ \widetilde{\zeta}$ are surfaces of general type too. Recall the following property of surface of general type:
Proposition 102. (cf.??) Let S be a surface of general type. Assume $\nu: S \rightarrow S^{\prime}$ be a birational morphism, where S^{\prime} is a minimal model. Then we have isomorphism: $\nu \circ \operatorname{Bir}(S) \circ \nu^{-1} \cong \operatorname{Aut}\left(S^{\prime}\right)$. Also, there is a constant c such that $|\operatorname{Bir}(S)|=\left|\operatorname{Aut}\left(S^{\prime}\right)\right| \leq c \cdot K_{S^{\prime}}^{2}$.

Therefore, group generated by ρ, σ^{\prime} is finite, and hence, birational automorphism $\sigma^{\prime} \circ \rho^{-1} \circ \sigma^{\prime} \circ \rho$ of Z has finite order.

Let us formulate the following useful proposition:
Proposition 103. We have the following relation for birational involutions σ^{\prime} and $\rho: \sigma^{\prime} \circ \rho=\rho \circ \sigma^{\prime}$.
Proof. See appendix.
Corollary 104. Involution σ^{\prime} commutes with S_{6} acting by permutations of $q_{i}, i=1, \ldots, 6$.
Proof. By proposition 103, σ^{\prime} commutes with $\rho=(34)$. By construction, σ^{\prime} commutes with $S_{3} \times S_{3}$, where S_{3} 's act by permutations of $q_{i}, i=1,2,3$ and $q_{i}, i=4,5,6$ respectively. Thus, σ^{\prime} commutes with (12), (23), (34), (45), (56), and hence with S_{6}.

Let us prove the following important proposition:

Proposition 105. Image $\phi_{1}(X(3,6))=\mu(Z) \subset Y(6)$ is a $\sigma_{P}^{(6)}$-invariant and $\mu^{-1} \circ \sigma_{P}^{(6)} \circ \mu=\sigma^{\prime}$.
Proof. Recall that we proved early that there are birational immersion: $\widetilde{\mu} \circ \widetilde{\zeta}: Z \rightarrow Y(3) \times_{Y} Y(3)$. It means that there is open subvariety $U \subset Z$ such that restriction $\left.\widetilde{\mu} \circ \widetilde{\zeta}\right|_{U}: U \rightarrow Y(3) \times_{Y} Y(3)$ is an immersion. Using commutativity of the upper triangle of the diagram (327), we get that restriction $\left.\mu\right|_{U}: U \rightarrow Y(6)$ is an immersion too. Consider intersection $V=\cap_{\rho_{1} \in S_{6}} \rho_{1}(U)$ - open subvariety of Z. It is clear that $\left.\widetilde{\mu} \circ \widetilde{\zeta} \circ \rho_{1}\right|_{V}$: $V \rightarrow Y(3) \times_{Y} Y(3),\left.\mu\right|_{V}: V \rightarrow Y(6)$ are immersions. Recall following properties:

- for any $v \in V$ there is $v^{\prime} \in V$ such that $\sigma_{P}^{(3)} \circ \widetilde{\mu} \circ \widetilde{\zeta}(v)=\widetilde{\mu} \circ \widetilde{\zeta}\left(v^{\prime}\right)$, i.e. $\sigma^{\prime}(v)=v^{\prime}$.
- $\mu \circ \rho_{1}=\rho_{1} \circ \mu$ for any $\rho_{1} \in S_{6}$.
- $\psi \circ \sigma_{P}^{(6)}=\sigma_{P}^{(3)} \circ \psi$.
- $\sigma_{P}^{(3)} \circ \widetilde{\mu} \circ \widetilde{\zeta} \circ \rho_{1}(v)=\tilde{\mu} \circ \widetilde{\zeta} \circ \rho_{1}\left(v^{\prime}\right)=\widetilde{\mu} \circ \widetilde{\zeta} \circ \rho_{1} \circ \sigma^{\prime}(v)$.

Consider morphisms: $\Pi \widetilde{\mu}=\prod_{\rho_{1} \in S_{6}} \widetilde{\mu} \circ \widetilde{\zeta} \circ \rho_{1}: V \rightarrow \prod_{\rho_{1} \in S_{6}} Y(3) \times_{Y} Y(3)$ and $\prod \psi=\prod_{\rho \in S_{6}} \psi \circ \rho_{1}: Y(6) \rightarrow$ $\prod_{\rho_{1} \in S_{6}} Y(3) \times_{Y} Y(3)$. It is easy that the following diagram:

As we know from ??, morphism $\prod \psi$ is a birational immersion. It is trivial that restriction of $\prod \widetilde{\mu}$ to V is an immersion. Hence, restriction of $\Pi \psi \circ \mu$ to V is an immersion. Consider point $\Pi \tilde{\psi} \circ \mu(v), v \in V$. We will write point $\Pi \tilde{\psi} \circ \mu(v)$ in the following manner: $\Pi \tilde{\psi} \circ \mu(v)=\left(\psi \circ \rho_{1} \circ \mu(v)\right)_{\rho_{1} \in S_{6}}$. Let us prove that $\sigma_{P}^{(6)} \circ \mu(v)=\mu\left(v^{\prime}\right)$.

Commutativity of $\sigma_{P}^{(3)}$ and S_{6} means that $\sigma_{P}^{(3)} \circ \prod \widetilde{\mu}(v)=\left(\sigma_{P}^{(3)} \circ \widetilde{\mu} \circ \widetilde{\zeta} \circ \rho_{1}(v)\right)_{\rho_{1} \in S_{6}}=\left(\widetilde{\mu} \circ \widetilde{\zeta} \circ \rho_{1} \circ \sigma^{\prime}(v)\right)_{\rho_{1} \in S_{6}}=$ $\left(\widetilde{\mu} \circ \widetilde{\zeta} \circ \rho_{1}\left(v^{\prime}\right)\right)_{\rho_{1} \in S_{6}}=\prod \widetilde{\mu}\left(v^{\prime}\right)$. Thus,

$$
\begin{equation*}
\sigma_{P}^{(3)} \circ \prod \widetilde{\mu}(v)=\prod \widetilde{\mu}\left(v^{\prime}\right)=\prod \widetilde{\psi}\left(\mu\left(v^{\prime}\right)\right) \tag{330}
\end{equation*}
$$

Further, using commutativity of diagram (329), we obtain that $\sigma_{P}^{(3)} \circ \prod \widetilde{\mu}(v)=\sigma_{P}^{(3)} \circ \prod \widetilde{\psi} \circ \mu(v)=$ $\left(\sigma_{P}^{(3)} \circ \psi \circ \rho_{1} \circ \mu(v)\right)_{\rho_{1} \in S_{6}}=\left(\psi \circ \sigma_{P}^{(6)} \circ \rho_{1} \circ \mu(v)\right)_{\rho_{1} \in S_{6}}$. Using commutativity of $\sigma_{P}^{(6)}$ and S_{6}, we get that $\left(\psi \circ \sigma_{P}^{(6)} \circ \rho_{1} \circ \mu(v)\right)_{\rho_{1} \in S_{6}}=\left(\psi \circ \rho_{1} \circ \sigma_{P}^{(6)} \circ \mu(v)\right)_{\rho_{1} \in S_{6}}=\Pi \tilde{\psi}\left(\sigma_{P}^{(6)} \circ \mu(v)\right)$. Using (330), we get that $\Pi \widetilde{\psi}\left(\sigma_{P}^{(6)} \circ \mu(v)\right)=\Pi \widetilde{\psi}\left(\mu\left(v^{\prime}\right)\right)$. Since $\Pi \widetilde{\psi}$ is an immersion, we get that $\sigma_{P}^{(6)} \circ \mu(v)=\mu\left(v^{\prime}\right)$. Therefore, we get that for any v there is v^{\prime} such that $\sigma_{P}^{(6)} \circ \mu(v)=\mu\left(v^{\prime}\right)$, i.e. image $\mu(V)$ is $\sigma_{P}^{(6)}$ - invariant. Also, we get the following identity: $\mu^{-1} \circ \sigma_{P}^{(6)} \circ \mu=\sigma^{\prime}$.

10 Appendix A: varieties $E_{1}\left(f_{6}^{\prime}\right)$ and $E_{2}\left(f_{6}^{\prime}\right)$.

In this section we will calculate dimensions of $E_{1}\left(f_{6}^{\prime}\right)$ and $E_{2}\left(f_{6}^{\prime}\right)$.
Let us calculate dimension of $E_{1}\left(f_{6}^{\prime}\right)$. Applying results of subsection 6.3, we get that there is a filtration: $E_{1}^{(2)}\left(f_{6}^{\prime}\right) \subset E_{1}^{(1)}\left(f_{6}^{\prime}\right)=E_{1}\left(f_{6}^{\prime}\right)$. As we know from proposition 52 , we have the following immersion:

$$
\begin{equation*}
E_{1}^{(1)}\left(f_{6}^{\prime}\right) \subset \bigcup_{\theta} C(\theta) \tag{331}
\end{equation*}
$$

where θ runs over all partitions of $\{1,2,3\}$ into union of two non-intersecting subsets. Without loss of generality, assume that $\theta=\{1\} \cup\{2,3\}$. Thus, $C(\theta)$ is defined by equations:

$$
\begin{equation*}
1+z_{22}+z_{23}=0,1+\frac{1}{z_{22}}+\frac{1}{z_{23}}=0,1+z_{32}+z_{33}=0,1+\frac{1}{z_{32}}+\frac{1}{z_{33}}=0 \tag{332}
\end{equation*}
$$

and the same system of equations for $y_{22}, y_{23}, y_{32}, y_{33}$. Let us formulate the following useful evident lemma:

Lemma 106. System of equation:

$$
\begin{equation*}
1+a+b=0,1+\frac{1}{a}+\frac{1}{b}=0 \tag{333}
\end{equation*}
$$

has two solutions: $\left(\epsilon, \epsilon^{2}\right)$ and $\left(\epsilon^{2}, \epsilon\right)$, where ϵ is a 3-th primitive root of unity.
Using this lemma, we get that there are only finite points satisfying to system (332).
In the case $E_{1}^{(2)}\left(f_{6}^{\prime}\right)$, we have the following system:

$$
\begin{equation*}
1+z_{22}+z_{23}=0,1+\frac{1}{z_{22}}+\frac{1}{z_{23}}=0,1+z_{32}+z_{33}=0,1+\frac{1}{z_{32}}+\frac{1}{z_{33}}=0,1+\frac{z_{22}}{z_{32}}+\frac{z_{23}}{z_{33}}=0,1+\frac{z_{32}}{z_{22}}+\frac{z_{33}}{z_{23}}=0 \tag{334}
\end{equation*}
$$

and the same system for y 's.
We get that following proposition:
Proposition 107. Subvariety E_{1} consists of finite set of points.
Further, consider subvariety $E_{2}\left(f_{6}^{\prime}\right)$. Without loss of generality, consider the case $\theta:\{1,2,3\}=1 \cup 2,3$. It can be shown in usual way that there are 4θ-maximal subquivers of $\mathbb{Q}_{\Gamma[3]}$: subquivers Q_{1} and Q_{2} have two l.c.c. with ordering: $\{1\}>\{2,3\}$ and $\{1\}<\{2,3\}$ respectively. Subquivers Q_{3} and Q_{4} have three l.c.c. with ordering: $\{2\}>\{1\}>\{3\}$ and $\{3\}>\{1\}>\{2\}$ respectively.

subquiver Q_{1}

subquiver Q_{2}

subquiver Q_{3}

subquiver Q_{4}

It is easy that morphisms $s_{i}, i=1,2$ are isomorphisms and hence, $D_{i}(\theta)=D_{i}^{\prime}(\theta), i=1,2$. Components $\left(H_{1}^{*}\right)^{-1} M\left(Q_{1}\right)=\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{1}\right)$ and $\left(H_{1}^{*}\right)^{-1} M\left(Q_{2}\right)$ are defined by equations:

$$
\begin{equation*}
1+z_{2,2}+z_{2,3}=0,1+z_{3,2}+z_{3,3}=0 \tag{335}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{z_{2,2}}+\frac{1}{z_{2,3}}=0,1+\frac{1}{z_{3,2}}+\frac{1}{z_{3,3}}=0 \tag{336}
\end{equation*}
$$

respectively. Also, components $\left(H_{1}^{*}\right)^{-1} M\left(Q_{3}\right)$ and $\left(H_{1}^{*}\right)^{-1} M\left(Q_{4}\right)$ are given by equations:

$$
\begin{equation*}
1+\frac{1}{z_{2,2}}+\frac{1}{z_{2,3}}=0,1+z_{3,2}+z_{3,3}=0,1+\frac{z_{3,2}}{z_{2,2}}+\frac{z_{3,3}}{z_{2,3}}=0 \tag{337}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{z_{3,2}}+\frac{1}{z_{3,3}}=0,1+\frac{z_{2,2}}{z_{3,2}}+\frac{z_{2,3}}{z_{3,3}}=0,1+z_{2,2}+z_{2,3}=0 \tag{338}
\end{equation*}
$$

respectively. It is easy that $\operatorname{dim}_{F}\left(H_{1}^{*}\right)^{-1} M\left(Q_{1}\right)=\operatorname{dim}_{F}\left(H_{1}^{*}\right)^{-1} M\left(Q_{2}\right)=2, \operatorname{dim}_{F}\left(H_{1}^{*}\right)^{-1} M\left(Q_{3}\right)=$ $\operatorname{dim}_{F}\left(H_{1}^{*}\right)^{-1} M\left(Q_{4}\right)=1$.

We have similar description of components for $D_{2}(\theta)$. Denote corresponding components of $D_{2}(\theta)$ by $\hat{M}\left(Q_{1}\right)$, $\hat{M}\left(Q_{2}\right), \hat{M}\left(Q_{3}\right)$ and $\hat{M}\left(Q_{4}\right)$. Consider components $M\left(Q_{1}\right)$ and $M\left(Q_{2}\right)$ of $D_{1}(\theta)$. Firstly, let us consider varieties $M\left(Q_{i}\right) \times_{Y(3)} \hat{M}\left(Q_{j}\right), i, j=1,2$. Study subvariety $M\left(Q_{1}\right) \times_{Y(3)} \hat{M}\left(Q_{2}\right) \subset X(3,3) \times_{Y(3)} X(3,3)$. We have the following equations for this subvariety: equations (335), equations of type (336) over y 's:

$$
\begin{equation*}
1+\frac{1}{y_{2,2}}+\frac{1}{y_{2,3}}=0,1+\frac{1}{y_{3,2}}+\frac{1}{y_{3,3}}=0 \tag{339}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1+\frac{z_{2,2}}{z_{3,2}}+\frac{z_{2,3}}{z_{3,3}}\right)\left(1+\frac{z_{3,2}}{z_{2,2}}+\frac{z_{3,3}}{z_{2,3}}\right)=\left(1+\frac{y_{2,2}}{y_{3,2}}+\frac{y_{2,3}}{y_{3,3}}\right)\left(1+\frac{y_{3,2}}{y_{2,2}}+\frac{y_{3,3}}{y_{2,3}}\right) \tag{340}
\end{equation*}
$$

Expressing $z_{2,3}$ and $z_{3,3}$ in terms of $z_{2,2}$ and $z_{3,2}$ respectively, we get that $M\left(Q_{1}\right)$ is an open subvariety of $\left(F^{*}\right)^{2}$. Analogous statement for $\hat{M}\left(Q_{2}\right)$ is true. One can show that equation (340) is not trivial. Thus, we obtain that $\operatorname{dim}_{F} M\left(Q_{1}\right) \times_{Y(3)} \hat{M}\left(Q_{2}\right)=3$. One can consider cases $M\left(Q_{i}\right) \times_{Y(3)} \hat{M}\left(Q_{j}\right),(i, j)=(1,1) ;(2,1) ;(2,2)$ analogously. It is easy that $\operatorname{dim}_{F} M\left(Q_{i}\right) \times_{Y(3)} D_{2}(\theta) \leq 3, i=3,4$ and $\operatorname{dim}_{F} D_{1}(\theta) \times_{Y(3)} \hat{M}\left(Q_{j}\right) \leq 3, j=3,4$.

Therefore, we obtain the following proposition:
Proposition 108. Dimension of any component of $E_{2}\left(f_{6}^{\prime}\right)$ is less or equal to 3.

11 Appendix B: Varieties $E_{1}\left(f_{6}\right)$ and $E_{2}\left(f_{6}\right)$.

11.1 Variety $E_{1}\left(f_{6}\right)$.

In this section we will study E_{1} for morphism f_{6}.
Firstly, let us calculate dimension E_{1}. As we know from results of subsection 53, we have the following filtration of E_{1} :

$$
\begin{equation*}
E_{1}^{(2)}\left(f_{6}\right) \subset E_{1}^{(1)}\left(f_{6}\right)=E_{1}\left(f_{6}\right) \tag{341}
\end{equation*}
$$

Recall that we have to consider partitions of $\{1, \ldots, 6\}$ onto non-intersecting subsets I_{1}, \ldots, I_{s+1} with condition $\left|I_{j}\right| \geq 2$ for all $j=1, \ldots, s+1$. Thus, $s+1 \leq 3$ and we have the following cases:

- partition: $\{1, \ldots, 6\}=I_{1} \cup I_{2}$ and $\left|I_{1}\right|=2,\left|I_{2}\right|=4$.
- partition: $\{1, \ldots, 6\}=I_{1} \cup I_{2}$ and $\left|I_{1}\right|=\left|I_{2}\right|=3$.
- partition: $\{1, \ldots, 6\}=I_{1} \cup I_{2} \cup I_{3}$ and $\left|I_{1}\right|=\left|I_{2}\right|=\left|I_{3}\right|=2$.

Third case corresponds to $E_{1}^{(2)}\left(f_{6}\right)$. It is easy that third case is a partial case of first one. Consider the first case. Without loss of generality, we can consider partition $\theta_{1}=\{1,2\} \cup\{3,4,5,6\}$. Let us calculate dimension of $C\left(\theta_{1}\right)$. Let us write defining equations of $C^{\prime}\left(\theta_{1}\right)=\left(F^{*}\right)^{10} \times_{Y(6)}\left(F^{*}\right)^{10}$:

$$
\begin{align*}
& 1+z_{32}+z_{33}=0,1+\frac{1}{z_{32}}+\frac{1}{z_{33}}=0,1+z_{42}+z_{43}=0,1+\frac{1}{z_{42}}+\frac{1}{z_{43}}=0 \tag{342}\\
& 1+z_{52}+z_{53}=0,1+\frac{1}{z_{52}}+\frac{1}{z_{53}}=0,1+z_{62}+z_{63}=0,1+\frac{1}{z_{62}}+\frac{1}{z_{63}}=0 \tag{343}\\
& 1+\frac{z_{32}}{z_{22}}+\frac{z_{33}}{z_{23}}=0,1+\frac{z_{22}}{z_{32}}+\frac{z_{23}}{z_{33}}=0,1+\frac{z_{42}}{z_{22}}+\frac{z_{43}}{z_{23}}=0,1+\frac{z_{22}}{z_{42}}+\frac{z_{23}}{z_{43}}=0 \tag{344}\\
& 1+\frac{z_{52}}{z_{22}}+\frac{z_{53}}{z_{23}}=0,1+\frac{z_{22}}{z_{52}}+\frac{z_{23}}{z_{53}}=0,1+\frac{z_{62}}{z_{62}}+\frac{z_{63}}{z_{23}}=0,1+\frac{z_{22}}{z_{62}}+\frac{z_{23}}{z_{63}}=0 \tag{345}
\end{align*}
$$

Also, we have analogous system for $y_{i j}$. Further, let us calculate $C(\theta)=S^{-1}\left(C^{\prime}(\theta)\right)$. For this purpose, recall the equations defining $X(3,6)$:

$$
\begin{align*}
& 1+z_{22}+z_{32}+z_{42}+z_{52}+z_{62}=0,1+\frac{1}{z_{22}}+\frac{1}{z_{32}}+\frac{1}{z_{42}}+\frac{1}{z_{52}}+\frac{1}{z_{62}}=0 \tag{346}\\
& 1+z_{23}+z_{33}+z_{43}+z_{53}+z_{63}=0,1+\frac{1}{z_{23}}+\frac{1}{z_{33}}+\frac{1}{z_{43}}+\frac{1}{z_{53}}+\frac{1}{z_{63}}=0 \tag{347}\\
& 1+\frac{z_{22}}{z_{23}}+\frac{z_{32}}{z_{33}}+\frac{z_{42}}{z_{43}}+\frac{z_{52}}{z_{53}}+\frac{z_{62}}{z_{63}}=0,1+\frac{z_{23}}{z_{22}}+\frac{z_{33}}{z_{32}}+\frac{z_{43}}{z_{42}}+\frac{z_{53}}{z_{52}}+\frac{z_{63}}{z_{62}}=0 \tag{348}
\end{align*}
$$

We have similar system over $y_{i j}$. All these equations define $C\left(\theta_{1}\right)$ as subvariety of $\left(F^{*}\right)^{10} \times\left(F^{*}\right)^{10}$. Using lemma 106, we get that

Proposition 109. $C\left(\theta_{1}\right)$ consists of finite set of points. And hence, component of $E_{1}\left(f_{6}\right)$ which corresponds to the first case, consists of finite set of points.

Consider the second case. Without loss of generality, consider the following partition: $\theta_{2}=\{1, \ldots, 6\}=$ $\{1,2,3\} \cup\{4,5,6\}$. We have the following system of equations:

$$
\begin{align*}
& 1+z_{42}+z_{43}=0,1+\frac{1}{z_{42}}+\frac{1}{z_{43}}=0,1+z_{52}+z_{53}=0,1+\frac{1}{z_{52}}+\frac{1}{z_{53}}=0 \tag{349}\\
& 1+z_{62}+z_{63}=0,1+\frac{1}{z_{62}}+\frac{1}{z_{63}}=0,1+\frac{z_{42}}{z_{22}}+\frac{z_{43}}{z_{23}}=0,1+\frac{z_{22}}{z_{42}}+\frac{z_{23}}{z_{43}}=0 \tag{350}\\
& 1+\frac{z_{52}}{z_{22}}+\frac{z_{53}}{z_{23}}=0,1+\frac{z_{22}}{z_{52}}+\frac{z_{23}}{z_{53}}=0,1+\frac{z_{62}}{z_{22}}+\frac{z_{63}}{z_{23}}=0,1+\frac{z_{22}}{z_{62}}+\frac{z_{23}}{z_{63}}=0 \tag{351}\\
& 1+\frac{z_{42}}{z_{32}}+\frac{z_{43}}{z_{33}}=0,1+\frac{z_{32}}{z_{42}}+\frac{z_{33}}{z_{43}}=0,1+\frac{z_{52}}{z_{32}}+\frac{z_{53}}{z_{33}}=0,1+\frac{z_{32}}{z_{52}}+\frac{z_{33}}{z_{53}}=0 \tag{352}\\
& 1+\frac{z_{62}}{z_{32}}+\frac{z_{63}}{z_{33}}=0,1+\frac{z_{32}}{z_{62}}+\frac{z_{33}}{z_{63}}=0 \tag{353}
\end{align*}
$$

We have the same system for $y_{i j}$. Also, we have the system of type (346), (347), (348) for $z_{i j}$ and $y_{i j}$. Using lemma 106, one can prove that

Proposition 110. $C\left(\theta_{2}\right)$ consists of finite set of points. And hence, component of $E_{1}\left(f_{6}\right)$ which corresponds to the second case, consists of finite set of points.

Therefore, we have the following:
Proposition 111. Variety E_{1} consists of finite set of points.

11.2 Variety E_{2} for $\mathcal{M}_{6} B_{6,6}$ and fibred product.

In this subsection we will study E_{2} for morphism f_{6}.
We have to consider the following two cases:

- $\{1, \ldots, 6\}=I_{1} \cup I_{2},\left|I_{1}\right|=2,\left|I_{2}\right|=4$.
- $\{1, \ldots, 6\}=I_{1} \cup I_{2},\left|I_{1}\right|=\left|I_{2}\right|=3$.

Consider the first case. Without loss of generality, fix the following partition: $\theta_{3}:\{1, \ldots, 6\}=$ $\{1,2\} \cup\{3,4,5,6\}$.
Proposition 112. Maximal θ-subquivers have the following view:

Proof. As we know, any l.c.c. of the maximal θ-subquiver Q has at least two vertices. Thus, we have two cases:

- Q has 2 l.c.c. with 2 and 4 vertices,
- Q has 3 l.c.c., any l.c.c. has 2 vertices.

Considering of different ordering on the set of l.c.c. gives us the proof.

Subquiver $Q_{i}, i=1,2$ has two l.c.c. Also, there are orderings of l.c.c.: $\{1,2\}>\{3,4,5,6\}$ of Q_{1} and $\{1,2\}<\{3,4,5,6\}$ of Q_{2}. Subquiver Q_{3} have three l.c.c. with ordering: $\left\{i_{3}, i_{4}\right\}>\{1,2\}>\left\{i_{5}, i_{6}\right\}$.

Subvarieties $M\left(Q_{1}\right)$ and $M\left(Q_{2}\right)$ of $D_{1}^{\prime \prime}(\theta)$ are defined by equations:

$$
\begin{gather*}
1+z_{3,2}+z_{3,3}=0,1+z_{4,2}+z_{4,3}=0,1+z_{5,2}+z_{5,3}=0,1+z_{6,2}+z_{6,3}=0, \tag{354}\\
1+\frac{z_{3,2}}{z_{2,2}}+\frac{z_{3,3}}{z_{2,3}}=0,1+\frac{z_{4,2}}{z_{2,2}}+\frac{z_{4,3}}{z_{2,3}}=0,1+\frac{z_{5,2}}{z_{2,2}}+\frac{z_{5,3}}{z_{2,3}}=0,1+\frac{z_{6,2}}{z_{2,2}}+\frac{z_{6,3}}{z_{2,3}}=0, \tag{355}
\end{gather*}
$$

and

$$
\begin{align*}
& 1+\frac{1}{z_{3,2}}+\frac{1}{z_{3,3}}=0,1+\frac{1}{z_{4,2}}+\frac{1}{z_{4,3}}=0,1+\frac{1}{z_{5,2}}+\frac{1}{z_{5,3}}=0,1+\frac{1}{z_{6,2}}+\frac{1}{z_{6,3}}=0, \tag{356}\\
& 1+\frac{z_{2,2}}{z_{3,2}}+\frac{z_{2,3}}{z_{3,3}}=0,1+\frac{z_{2,2}}{z_{4,2}}+\frac{z_{2,3}}{z_{4,3}}=0,1+\frac{z_{2,2}}{z_{5,2}}+\frac{z_{2,3}}{z_{5,3}}=0,1+\frac{z_{2,2}}{z_{6,2}}+\frac{z_{2,3}}{z_{6,3}}=0 \tag{357}
\end{align*}
$$

respectively.
Without loss of generality, assume that $i_{3}=3, i_{4}=4, i_{5}=5, i_{6}=6$. In this case, subvariety $M\left(Q_{3}\right)$ is given by system of equations:

$$
\begin{align*}
& 1+\frac{1}{z_{3,2}}+\frac{1}{z_{3,3}}=0,1+\frac{1}{z_{4,2}}+\frac{1}{z_{4,3}}=0,1+\frac{z_{2,2}}{z_{3,2}}+\frac{z_{2,3}}{z_{3,3}}=0,1+\frac{z_{2,2}}{z_{4,2}}+\frac{z_{2,3}}{z_{4,3}}=0 \tag{358}\\
& 1+z_{5,2}+z_{5,3}=0,1+z_{6,2}+z_{6,3}=0,1+\frac{z_{5,2}}{z_{2,2}}+\frac{z_{5,3}}{z_{2,3}}=0,1+\frac{z_{6,2}}{z_{2,2}}+\frac{z_{6,3}}{z_{2,3}}=0 \tag{359}\\
& 1+\frac{z_{5,2}}{z_{3,2}}+\frac{z_{5,3}}{z_{3,3}}=0,1+\frac{z_{6,2}}{z_{3,2}}+\frac{z_{6,3}}{z_{3,3}}=0,1+\frac{z_{5,2}}{z_{4,2}}+\frac{z_{5,3}}{z_{4,3}}=0,1+\frac{z_{6,2}}{z_{4,2}}+\frac{z_{6,3}}{z_{4,3}}=0 \tag{360}
\end{align*}
$$

Consider subvariety $M\left(Q_{1}\right)$. Let us formulate the following useful lemma:
Lemma 113. Consider system of equations over a_{1}, a_{2} :

$$
\begin{equation*}
1+a_{1}+a_{2}=0,1+\frac{a_{1}}{x_{1}}+\frac{a_{2}}{x_{2}}=0, a_{i}, x_{i} \in F^{*} \tag{361}
\end{equation*}
$$

- If ($x_{1} \neq 1$ and $x_{2} \neq 1$ and $x_{1} \neq x_{2}$, then this system has unique solution,
- if $\left(x_{1}, x_{2}\right)=(1,1)$, then solution of system has the following view: $\left(a_{1},-1-a_{1}\right), a_{1} \neq 0,-1$,
- if $x_{1}=x_{2} \neq 1$ or $x_{1}=1$ or $x_{2}=1$, then system has no solution.

Proof. Straightforward.

Corollary 114. We have the similar statement for system:

$$
\begin{equation*}
1+\frac{1}{a_{1}}+\frac{1}{a_{2}}=0,1+\frac{x_{1}}{a_{1}}+\frac{x_{2}}{a_{2}}=0 \tag{362}
\end{equation*}
$$

Consider natural morphism: $p: S\left(Q_{1}\right) \rightarrow\left(F^{*}\right)_{z_{2,2}, z_{2,3}}^{2}$. Using this lemma, we obtain that if $z_{2,2} \neq z_{2,3}$, then preimage of p over $\left(z_{2,2}, z_{2,3}\right)$ is unique and preimage of p over $(1,1)$ is 4 -dimensional. Thus, $M\left(Q_{1}\right)$ has two-dimensional component $M^{(2)}\left(Q_{1}\right)$ and four-dimensional component $M^{(4)}\left(Q_{1}\right)$. Consider two-dimensional component $M^{(2)}\left(Q_{1}\right)$. Using lemma, we get the following equations for $\left(H_{1}^{*}\right)^{-1} M^{(2)}\left(Q_{1}\right)$:

$$
\begin{equation*}
z_{3,2}=z_{4,2}=z_{5,2}=z_{6,2}, z_{3,3}=z_{4,3}=z_{5,3}=z_{6,3} \tag{363}
\end{equation*}
$$

Consider $\left(H_{1}^{*} \circ s_{1}\right)^{-1}\left(M^{(2)}\left(Q_{1}\right)\right)$. Using equations (346),(347),(348), we get the following system of equations:

$$
\begin{equation*}
1+z_{2,2}+4 z_{3,2}=0,1+\frac{1}{z_{2,2}}+\frac{4}{z_{3,2}}=0,1+z_{2,3}+4 z_{3,3}=0,1+\frac{1}{z_{2,3}}+\frac{4}{z_{3,3}}=0 \tag{364}
\end{equation*}
$$

$$
\begin{equation*}
1+\frac{z_{2,3}}{z_{2,2}}+4 \frac{z_{3,3}}{z_{3,2}}=0,1+\frac{z_{2,2}}{z_{2,3}}+4 \frac{z_{3,2}}{z_{3,3}}=0 . \tag{365}
\end{equation*}
$$

One can check that this system has no solutions. Thus, $\left(H_{1}^{*} \circ s_{1}\right)^{-1} M^{(2)}\left(Q_{1}\right)=\emptyset$.
Consider four-dimensional component $M^{(4)}\left(Q_{1}\right)$. In this case, we have relation for $\left(H_{1}^{*}\right)^{-1} M^{(4)}\left(Q_{1}\right): z_{2,2}=$ $z_{2,3}=1$. Using equations (346),(347),(348), we get the following system of equations for $\left(H_{1}^{*} \circ s_{1}\right)^{-1} M^{(4)}\left(Q_{1}\right)$:

$$
\begin{align*}
& 2+z_{3,2}+z_{4,2}+z_{5,2}+z_{6,2}=0,2+\frac{1}{z_{3,2}}+\frac{1}{z_{4,2}}+\frac{1}{z_{5,2}}+\frac{1}{z_{6,2}}=0 \tag{366}\\
& 2+z_{3,3}+z_{4,3}+z_{5,3}+z_{6,3}=0,2+\frac{1}{z_{3,3}}+\frac{1}{z_{4,3}}+\frac{1}{z_{5,3}}+\frac{1}{z_{6,3}}=0 \tag{367}\\
& 2+\frac{z_{3,2}}{z_{3,3}}+\frac{z_{4,2}}{z_{4,3}}+\frac{z_{5,2}}{z_{5,3}}+\frac{z_{6,2}}{z_{6,3}}=0,2+\frac{z_{3,3}}{z_{3,2}}+\frac{z_{4,3}}{z_{4,2}}+\frac{z_{5,3}}{z_{5,2}}+\frac{z_{6,3}}{z_{6,2}}=0 \tag{368}
\end{align*}
$$

and

$$
\begin{equation*}
1+z_{3,2}+z_{3,3}=0,1+z_{4,2}+z_{4,3}=0,1+z_{5,2}+z_{5,3}=0,1+z_{6,2}+z_{6,3}=0 \tag{369}
\end{equation*}
$$

Show that equations (367) and (368) follow from (369) and (366). Denote by $S \subset\left(F^{*}\right)^{4}$ the surface defined by equations (366). For this purpose, let us prove that transformation $z_{i, 2} \mapsto-1-z_{i, 2}, i=3,4,5,6$ is a birational involution of S. It is easy that $2+\left(-1-z_{3,2}\right)+\ldots+\left(-1-z_{6,2}\right)=-2-z_{3,2}-\ldots-z_{6,2}=0$. We get the following second equation from (366):

$$
2-\frac{1}{1+z_{3,2}}-\ldots-\frac{1}{1+z_{6,2}}
$$

Transforming this expression, we obtain:

$$
\begin{gathered}
2\left(1+z_{3,2}\right) \ldots\left(1+z_{6,2}\right)-\left(1+z_{3,2}\right)\left(1+z_{4,2}\right)\left(1+z_{5,2}\right)-\ldots-\left(1+z_{4,2}\right)\left(1+z_{5,2}\right)\left(1+z_{6,2}\right)= \\
z_{3,2} z_{4,2} z_{5,2} z_{6,2}\left(2+\frac{1}{z_{3,2}}+\frac{1}{z_{4,2}}+\frac{1}{z_{5,2}}+\frac{1}{z_{6,2}}\right)-\left(2+z_{3,2}+z_{4,2}+z_{5,2}+z_{6,2}\right)=0 .
\end{gathered}
$$

Also, consider equation: $1+z_{i, 2}+z_{i, 3}=0, i=3,4,5,6$. Transform it as follows: $1+\frac{z_{i, 2}}{z_{i, 3}}+\frac{1}{z_{i, 3}}=0, i=3,4,5,6$. We get that $\frac{z_{i, 2}}{z_{i, 3}}=-1-\frac{1}{z_{i, 3}}, i=3,4,5,6$. Thus,

$$
2+\frac{z_{3,2}}{z_{3,3}}+\ldots+\frac{z_{6,2}}{z_{6,3}}=2+\left(-1-\frac{1}{z_{3,3}}\right)+\ldots\left(-1-\frac{1}{z_{6,3}}\right)=-2-\frac{1}{z_{3,3}}-\ldots-\frac{1}{z_{6,3}}=0
$$

One can prove that $2+\frac{z_{3,3}}{z_{3,2}}+\ldots+\frac{z_{6,3}}{z_{6,2}}=0$ analogously. Therefore, we have proved the following proposition:
Proposition 115. $\left(H_{1}^{*} \circ s_{1}\right)^{-1}\left(M\left(Q_{1}\right)\right)$ is birationally isomorphic to surface $S \subset\left(F^{*}\right)^{4}$ defined by equations (366).

This surface is a hessian of nonsingular cubic surface ([?]). Consider natural projection: $p_{1}: S \rightarrow\left(F^{*}\right)_{z_{3,2}, z_{4,2}}^{2}$. It is easy that degree of p_{1} is 2 .

Lemma 116. - If $\left(z_{3,2}, z_{4,2}\right)$ satisfy to $2+z_{3,2}+z_{4,2} \neq 0,2+\frac{1}{z_{3,2}}+\frac{1}{z_{4,2}} \neq 0$, then $\left|p_{1}^{-1}\left(z_{3,2}, z_{4,2}\right)\right|$ is 1 or 2,

- if $\left(z_{3,2}, z_{4,2}\right)$ satisfy to $2+z_{3,2}+z_{4,2}=0,2+\frac{1}{z_{3,2}}+\frac{1}{z_{4,2}} \neq 0$ or $2+z_{3,2}+z_{4,2} \neq 0,2+\frac{1}{z_{3,2}}+\frac{1}{z_{4,2}}=0$, then $p_{1}^{-1}\left(z_{3,2}, z_{4,2}\right)=\emptyset$,
- if $\left(z_{3,2}, z_{4,2}\right)$ satisfy to $2+z_{3,2}+z_{4,2}=0,2+\frac{1}{z_{3,2}}+\frac{1}{z_{4,2}}=0$, then $\operatorname{dim}_{F} p_{1}^{-1}\left(z_{3,2}, z_{4,2}\right)=1$.

Proof. Straightforward.
Proposition 117. Surface S is an irreducible K3-surface.

Proof. Assume that S is reducible. Since S is defined by two equations in $\left(F^{*}\right)^{4}$, then dimension of every component is at least 2 . Using lemma 116 , we get that dimension of every component is 2 . Consider natural compactification $\widetilde{S} \subset \mathbb{P}^{4}$ of the surface S. It is easy that if \widetilde{S} is reducible, then singular locus of \widetilde{S} has dimension at least 1. It can be checked in usual way that singular locus of \widetilde{S} is finite set. Contradiction. Thus, S is an irreducible surface. Further, one can show that singular locus of \widetilde{S} consists of ordinary double points. It is well-known that quartic surface with isolated double points is a $K 3$ - surface.

Also, one can prove analogous results in the case of Q_{2}.
Further, consider $\left(H_{1}^{*}\right)^{-1} M\left(Q_{3}\right)$. Using corollary 114, we get that if $\left(z_{2,2}, z_{2,3}\right) \neq(1,1)$ and $z_{2,2} \neq z_{2,3}$, then $z_{i, 2}, z_{i, 3}, i=3,4,5,6$ can be expressed as rational functions of $z_{2,2}, z_{2,3}$, and $z_{3,2}=z_{4,2}, z_{3,3}=z_{4,3}, z_{5,2}=$ $z_{6,2}, z_{5,3}=z_{6,3}$. Namely,

$$
\begin{gather*}
z_{3,2}=z_{4,2}=\frac{z_{2,2}-z_{2,3}}{z_{2,3}-1}, z_{5,2}=z_{6,2}=\frac{z_{2,2}\left(z_{2,3}-1\right)}{z_{2,2}-z_{2,3}}, \tag{370}\\
z_{3,3}=z_{4,3}=-\frac{z_{2,2}-z_{2,3}}{z_{2,2}-1}, z_{5,3}=z_{6,3}=-\frac{z_{2,3}\left(z_{2,2}-1\right)}{z_{2,2}-z_{2,3}} . \tag{371}
\end{gather*}
$$

Also, we have the following transformation:

$$
\begin{equation*}
1+\frac{z_{5,2}}{z_{3,2}}+\frac{z_{5,3}}{z_{3,3}}=\frac{z_{2,2}^{2}-6 z_{2,2} z_{2,3}+z_{2,3}^{2}+z_{2,2} z_{2,3}^{2}+z_{2,2}+z_{2,3}+z_{2,3} z_{2,2}^{2}}{\left(z_{2,2}-z_{2,3}\right)^{2}}=0 \tag{372}
\end{equation*}
$$

Thus, $\left(H_{1}^{*}\right)^{-1} M\left(Q_{3}\right) \subset D_{1}^{\prime}(\theta)$ is a curve given by equation:

$$
\begin{equation*}
z_{2,2}^{2}-6 z_{2,2} z_{2,3}+z_{2,3}^{2}+z_{2,2} z_{2,3}^{2}+z_{2,2}+z_{2,3}+z_{2,3} z_{2,2}^{2}=0 \tag{373}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\operatorname{dim}_{F}\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{3}\right) \leq 1 \tag{374}
\end{equation*}
$$

Remark.

It can be shown in usual way that $\left(H_{1}^{*}\right)^{-1} M\left(Q_{3}\right)$ is an irreducible singular rational curve with singularity $(1,1)$.
It is clear that we have similar results for $D_{2}(\theta)$. Denote by $\hat{M}\left(Q_{1}\right), \hat{M}\left(Q_{2}\right)$ and $\hat{M}\left(Q_{3}\right)$ components of $D_{2}(\theta)$ corresponding to maximal θ-subquivers Q_{1}, Q_{2} and Q_{3}. Using arguments similar to studying of $M\left(Q_{i}\right), i=1,2$, we get that components $\left(H_{2}^{*} \circ s_{2}\right)^{-1}\left(\hat{M}\left(Q_{i}\right)\right), i=1,2$ are $K 3$ surfaces. This $K 3$ surface is given by equations (366) in variables $y_{i, 2}, i=3,4,5,6$. Denote this surface by S^{\prime}. Also, denote by p_{1}^{\prime} the projection $S^{\prime} \rightarrow\left(F^{*}\right)_{y_{3,2}, y_{4,2}}^{2}$ We would like to prove that $\operatorname{dim}_{F} E_{2}\left(f_{6}\right) \leq 3$. Since $\operatorname{dim}_{F}\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{3}\right) \leq 1$, we can consider only subvarieties $\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{i}\right) \times_{Y(6)}\left(H_{2}^{*} \circ s_{2}\right)^{-1} \hat{M}\left(Q_{j}\right), i, j=1,2$. Without loss of generality, consider subvariety $\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{i}\right) \times_{Y(6)}\left(H_{2}^{*} \circ s_{2}\right)^{-1} \hat{M}\left(Q_{j}\right) \subset X(3,6) \times_{Y(6)} X(3,6)$. Consider the following composition of morphisms:

$$
\begin{array}{r}
\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{1}\right) \times_{Y(6)}\left(H_{2}^{*} \circ s_{2}\right)^{-1} \hat{M}\left(Q_{2}\right) \xrightarrow{\subseteq}\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{1}\right) \times\left(H_{2}^{*} \circ s_{2}\right)^{-1} \hat{M}\left(Q_{2}\right) \tag{375}\\
\downarrow_{p_{1} \times p_{1}^{\prime}} \\
v \\
\left(F^{*}\right)_{z_{3,2}, z_{4,2}}^{2} \times\left(F^{*}\right)_{y_{3,2}, y_{4,2}}^{2}
\end{array}
$$

Show that $\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{1}\right) \times_{Y(6)}\left(H_{2}^{*} \circ s_{2}\right)^{-1} \hat{M}\left(Q_{2}\right)$ does not coincide with $\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{1}\right) \times\left(H_{2}^{*} \circ s_{2}\right)^{-1} \hat{M}\left(Q_{2}\right)$. Consider divisor of $\left(F^{*}\right)_{z_{3,2}, z_{4,2}}^{2} \times\left(F^{*}\right)_{y_{3,2}, y_{4,2}}^{2}$ given by equation:

$$
\begin{equation*}
\left(1+\frac{z_{3,2}}{z_{4,2}}+\frac{z_{3,3}}{z_{4,3}}\right)\left(1+\frac{z_{4,2}}{z_{3,2}}+\frac{z_{4,3}}{z_{3,3}}\right)=\left(1+\frac{y_{3,2}}{y_{4,2}}+\frac{y_{3,3}}{y_{4,3}}\right)\left(1+\frac{y_{4,2}}{y_{3,2}}+\frac{y_{4,3}}{y_{3,3}}\right) \tag{376}
\end{equation*}
$$

where $z_{3,3}=-1-z_{3,2}, z_{4,3}=-1-z_{4,2}$ (it follows from (354)), $y_{3,3}=-\frac{y_{3,2}}{y_{3,2}+1}, y_{4,3}=-\frac{y_{4,2}}{y_{4,2}+1}$ (356). Thus, we get:

$$
\begin{equation*}
\left(1+\frac{z_{3,2}}{z_{4,2}}+\frac{1+z_{3,2}}{1+z_{4,2}}\right)\left(1+\frac{z_{4,2}}{z_{3,2}}+\frac{1+z_{4,2}}{1+z_{3,2}}\right)=\left(1+\frac{y_{3,2}}{y_{4,2}}+\frac{1+y_{3,2}}{1+y_{4,2}}\right)\left(1+\frac{y_{4,2}}{y_{3,2}}+\frac{1+y_{4,2}}{1+y_{3,2}}\right) \tag{377}
\end{equation*}
$$

Denote by T the divisor of $\left(F^{*}\right)_{z_{3,2}, z_{4,2}}^{2} \times\left(F^{*}\right)_{y_{3,2}, y_{4,2}}^{2}$ given by (377). It is easy that

$$
\begin{equation*}
p_{1} \times p_{1}^{\prime}\left(\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{1}\right) \times_{Y(6)}\left(H_{2}^{*} \circ s_{2}\right)^{-1} \hat{M}\left(Q_{2}\right)\right) \subseteq T . \tag{378}
\end{equation*}
$$

As we know $\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{1}\right) \times\left(H_{2}^{*} \circ s_{2}\right)^{-1} \hat{M}\left(Q_{2}\right)=S \times S^{\prime}$ is an irreducible variety and $p_{1} \times p_{1}^{\prime}$ is dominant. Thus, we get that $\operatorname{dim}_{F}\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{1}\right) \times_{Y(6)}\left(H_{2}^{*} \circ s_{2}\right)^{-1} \hat{M}\left(Q_{2}\right) \leq 3$. Using similar arguments, one can show that $\operatorname{dim}_{F}\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{i}\right) \times_{Y(6)}\left(H_{2}^{*} \circ s_{2}\right)^{-1} \hat{M}\left(Q_{j}\right) \leq 3, i, j=1,2$. Therefore, we have proved the following proposition:

Proposition 118. Dimension of any component of $E_{2}\left(f_{6}\right)$ which corresponds to the first case, is less or equal to 3.

Consider the second case. Without loss of generality, we can fix the partition $\theta:\{1,2,3\} \cup\{4,5,6\}$.
Proposition 119. There are only two maximal θ-subquivers:

Proof. Consider maximal θ-subquiver Q As we know, any l.c.c. of Q has at least two vertices. Thus, we have only two l.c.c. and every l.c.c. has three vertices. Considering different ordering on the set of l.c.c. gives us the proof.

One can show that $\left(H_{1}^{*}\right)^{-1} M\left(Q_{1}\right)$ is given by equations:

$$
\begin{align*}
& 1+z_{4,2}+z_{4,3}=0,1+\frac{z_{4,2}}{z_{2,2}}+\frac{z_{4,3}}{z_{2,3}}=0,1+\frac{z_{4,2}}{z_{3,2}}+\frac{z_{4,3}}{z_{3,3}}=0 \tag{379}\\
& 1+z_{5,2}+z_{5,3}=0,1+\frac{z_{5,2}}{z_{2,2}}+\frac{z_{5,3}}{z_{2,3}}=0,1+\frac{z_{5,2}}{z_{3,2}}+\frac{z_{5,3}}{z_{3,3}}=0 \tag{380}\\
& 1+z_{6,2}+z_{6,3}=0,1+\frac{z_{6,2}}{z_{2,2}}+\frac{z_{6,3}}{z_{2,3}}=0,1+\frac{z_{6,2}}{z_{3,2}}+\frac{z_{6,3}}{z_{3,3}}=0 . \tag{381}
\end{align*}
$$

$\left(H_{1}^{*}\right)^{-1} M\left(Q_{2}\right)$ is defined by equations:

$$
\begin{align*}
& 1+\frac{1}{z_{4,2}}+\frac{1}{z_{4,3}}=0,1+\frac{z_{2,2}}{z_{4,2}}+\frac{z_{2,3}}{z_{4,3}}=0,1+\frac{z_{3,2}}{z_{4,2}}+\frac{z_{3,3}}{z_{4,3}}=0 \tag{382}\\
& 1+\frac{1}{z_{5,2}}+\frac{1}{z_{5,3}}=0,1+\frac{z_{2,2}}{z_{5,2}}+\frac{z_{2,3}}{z_{5,3}}=0,1+\frac{z_{3,2}}{z_{5,2}}+\frac{z_{3,3}}{z_{5,3}}=0 \tag{383}\\
& 1+\frac{1}{z_{6,2}}+\frac{1}{z_{6,3}}=0,1+\frac{z_{2,2}}{z_{6,2}}+\frac{z_{2,3}}{z_{6,3}}=0,1+\frac{z_{3,2}}{z_{6,2}}+\frac{z_{3,3}}{z_{6,3}}=0 \tag{384}
\end{align*}
$$

Prove the following useful lemma:
Lemma 120. Consider the following system of equations over variables a_{1}, a_{2} :

$$
\begin{equation*}
1+a_{1}+a_{2}=0,1+\frac{a_{1}}{x_{1}}+\frac{a_{2}}{x_{2}}=0,1+\frac{a_{1}}{y_{1}}+\frac{a_{2}}{y_{2}}=0, a_{i}, x_{i}, y_{i} \in F^{*} \tag{385}
\end{equation*}
$$

Then we have the following cases:

- if

$$
\operatorname{rank}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{386}\\
1 & \frac{1}{x_{1}} & \frac{1}{x_{2}} \\
1 & \frac{1}{y_{1}} & \frac{1}{y_{2}}
\end{array}\right)=2
$$

then system (385) has at more one solution

- if $x_{1}=x_{2}=y_{1}=y_{2}=1$ (i.e. rank of matrix is 1), then system (385) has the following solutions: $\left(a_{1}, a_{2}=-1-a_{1}\right), a_{1} \neq 0,-1$.
- if

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{387}\\
1 & \frac{1}{x_{1}} & \frac{1}{x_{2}} \\
1 & \frac{1}{y_{1}} & \frac{1}{y_{2}}
\end{array}\right) \neq 0
$$

then system (385) has no solution.
Proof. Straightforward.
Corollary 121. Consider system over variables a_{1}, a_{2} :

$$
\begin{equation*}
1+\frac{1}{a_{1}}+\frac{1}{a_{2}}=0,1+\frac{x_{1}}{a_{1}}+\frac{x_{2}}{a_{2}}=0,1+\frac{y_{1}}{a_{1}}+\frac{y_{2}}{a_{2}}=0 . \tag{388}
\end{equation*}
$$

Then we have the following statements:

- if

$$
\operatorname{rank}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{389}\\
1 & x_{1} & x_{2} \\
1 & y_{1} & y_{2}
\end{array}\right)=2
$$

then system (388) has at more one solution

- if $x_{1}=x_{2}=y_{1}=y_{2}=1$ (i.e. rank of matrix is 1), then system (388) has the following solutions: $\left(a_{1}, a_{2}=-\frac{a_{1}}{1+a_{1}}\right), a_{1} \neq 0,-1$.
- if

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{390}\\
1 & x_{1} & x_{2} \\
1 & y_{1} & y_{2}
\end{array}\right) \neq 0
$$

then system (388) has no solution.
For studying $\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{1}\right)$, we will study two cases:

$$
\operatorname{rank}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{391}\\
1 & x_{1} & x_{2} \\
1 & y_{1} & y_{2}
\end{array}\right)=2
$$

- $x_{1}=x_{2}=y_{1}=y_{2}=1$

Consider the first case. In this case, we have the following relations: $z_{4,2}=z_{5,2}=z_{6,2}, z_{4,3}=z_{5,3}=z_{6,3}$. We have the following system of equations for $\left(H_{1}^{*} \circ s_{1}\right)^{-1} M\left(Q_{1}\right)$:

$$
\begin{align*}
& 1+z_{2,2}+z_{3,2}+3 z_{4,2}=0,1+\frac{1}{z_{2,2}}+\frac{1}{z_{3,2}}+\frac{3}{z_{4,2}}=0 \tag{392}\\
& 1+z_{2,3}+z_{3,3}+3 z_{4,3}=0,1+\frac{1}{z_{2,3}}+\frac{1}{z_{3,3}}+\frac{3}{z_{4,3}}=0 \tag{393}
\end{align*}
$$

$$
\begin{equation*}
1+\frac{z_{2,3}}{z_{2,2}}+\frac{z_{3,3}}{z_{3,2}}+3 \frac{z_{4,3}}{z_{4,2}}=0,1+\frac{z_{2,2}}{z_{2,3}}+\frac{z_{3,2}}{z_{3,3}}+3 \frac{z_{4,2}}{z_{4,3}}=0 \tag{394}
\end{equation*}
$$

and equations (382). Prove that this system has no solutions. One can check the following identity:

$$
\begin{equation*}
\left(z_{2,2}+z_{3,2}\right)\left(\frac{1}{z_{2,3}}+\frac{1}{z_{3,3}}\right)\left(\frac{z_{2,2}}{z_{2,3}}+\frac{z_{3,2}}{z_{3,3}}\right)=\left(z_{2,3}+z_{3,3}\right)\left(\frac{1}{z_{2,2}}+\frac{1}{z_{3,2}}\right)\left(\frac{z_{2,3}}{z_{2,2}}+\frac{z_{3,3}}{z_{3,2}}\right) \tag{395}
\end{equation*}
$$

Using this identity, we get the following equation:

$$
\begin{equation*}
\left(1+3 z_{4,2}\right)\left(1+\frac{3}{z_{4,3}}\right)\left(1+3 \frac{z_{4,3}}{z_{4,2}}\right)-\left(1+3 z_{4,3}\right)\left(1+\frac{3}{z_{4,2}}\right)\left(1+3 \frac{z_{4,2}}{z_{4,3}}\right)=0 \tag{396}
\end{equation*}
$$

Simplifying this equation, we obtain the following three cases:

- $z_{4,2}=1$,
- $z_{4,3}=1$,
- $z_{4,3}=z_{4,2}$.

Assume that $z_{4,3}=1$. In this case, we get that $z_{4,2}=-2, \frac{1}{z_{2,3}}+\frac{1}{z_{3,3}}=-4, \frac{1}{z_{2,2}}+\frac{1}{z_{3,2}}=\frac{1}{2}, 1-\frac{2}{z_{2,2}}+\frac{1}{z_{2,3}}=0$ and $1-\frac{2}{z_{3,2}}+\frac{1}{z_{3,3}}=0$. Summarizing two last equations, we get

$$
\begin{equation*}
0=2-2\left(\frac{1}{z_{2,2}}+\frac{1}{z_{3,2}}\right)+\left(\frac{1}{z_{2,3}}+\frac{1}{z_{3,3}}\right)=2-2 \cdot \frac{1}{2}+(-4)=-3 \tag{397}
\end{equation*}
$$

Contradiction. Analogous arguments show that $\left(H_{1}^{*}\right)^{-1} M\left(Q_{1}\right)=\emptyset$ and $\left(H_{1}^{*}\right)^{-1} M\left(Q_{2}\right)=\emptyset$. Thus, we have proved the following proposition:

Proposition 122. Component of $E_{2}\left(f_{6}\right)$ corresponds to the second case, is empty.
Therefore, we have proved the following
Proposition 123. $\operatorname{dim}_{F} E_{2}\left(f_{6}\right) \leq 3$.

12 Appendix C.

12.1 Local properties of standard orthogonal pair.

In this subsection we will construct point $z_{0} \in Z$ such that $\sigma^{\prime} \circ \rho^{-1} \circ \sigma^{\prime} \circ \rho$ acts on the tangent space $T_{z_{0}} Z$ trivially. This point corresponds to standard orthogonal pair up to permutation of rows.

Let us formulate conditions for point $z_{0} \in Z$ allowing to deduce that $\sigma^{\prime} \circ \rho^{-1} \circ \sigma^{\prime} \circ \rho$ acts on the tangent space $T_{z_{0}} Z$ trivially. Firstly, let us formulate conditions for determination of action $\mathrm{d} \sigma^{\prime}$ on the tangent space $T_{z_{0}} Z$. Fix some point $p t \in X(6,6)$. Denote by $z^{\prime}, z^{\prime \prime}$ the images $p r_{1}(p t), p r_{1} \circ \sigma^{(p)}(p t) \in X(3,6)$ and z_{0}, z_{1} the image of $z^{\prime}, z^{\prime \prime}$ under natural projection $\pi: X(3,6) \rightarrow Z$. Then $\sigma_{P}^{(6)}\left(\mu\left(z_{0}\right)\right)=\mu\left(z_{1}\right) \in \mu(Z)$ and using proposition 100, we get that $\sigma_{P}^{(3)} \circ \widetilde{\mu} \circ \widetilde{\zeta}\left(z_{0}\right)=\widetilde{\mu} \circ \widetilde{\zeta}\left(z_{1}\right)$. Thus, $\sigma^{\prime}\left(z_{0}\right)=z_{1}$. Consider differential of σ^{\prime} at point z_{0}. We have the following formula:

$$
\begin{equation*}
\left.\mathrm{d} \sigma^{\prime}\right|_{z_{0}}=(\mathrm{d} \widetilde{\zeta})^{-1} \circ(\mathrm{~d} \widetilde{\mu})^{-1} \circ \mathrm{~d} \sigma_{P}^{(3)} \circ \mathrm{d} \widetilde{\mu} \circ \mathrm{~d} \widetilde{\zeta}: T_{z_{0}} Z \rightarrow T_{z_{1}} Z \tag{398}
\end{equation*}
$$

Therefore, for definition of $\mathrm{d} \sigma^{\prime}$ we need bijectivity of $\mathrm{d} \widetilde{\zeta}$ and injectivity of $\mathrm{d} \widetilde{\mu}$. Recall that $\mu \circ \zeta(Z)=\widetilde{\mu}(\widetilde{Z})$ is $\sigma_{P}^{(3)}$-invariant subvariety of $Y(3) \times_{Y} Y(3)$. It can be shown in usual way that $\mathrm{d} \sigma_{P}^{(3)}$ is an isomorphism. Thus, $\mathrm{d} \sigma_{P}^{(3)}\left(T_{\widetilde{\mu} \circ \widetilde{\zeta}\left(z_{0}\right)}\right)=T_{\widetilde{\mu} \circ \widetilde{\zeta}\left(z_{1}\right)}$.

Note the following remarks.

- Assume that $\operatorname{dim}_{F} T_{z^{\prime}} X(3,6)=\operatorname{dim}_{F} T_{\zeta\left(z^{\prime}\right)} \widetilde{X}=\operatorname{dim}_{F} T_{z_{1}} Z=\operatorname{dim} T_{z_{0}} Z=4$, i.e. $z^{\prime}, \zeta\left(z^{\prime}\right), z_{1}, \pi\left(z^{\prime}\right)={\underset{\sim}{\sim}}_{0}$ are smooth points of $X(3,6), \widetilde{X}, Z$ and \widetilde{Z} respectively. Using diagram (240), we obtain that $\mathrm{d} \widetilde{\pi} \circ \mathrm{d} \zeta=\mathrm{d} \widetilde{\zeta} \circ \mathrm{d} \pi$. Thus, if $\mathrm{d} \widetilde{\pi}, \mathrm{d} \zeta$ and $\mathrm{d} \pi$ are isomorphism, then $\mathrm{d} \widetilde{\zeta}$ is isomorphism too.
- If point $z^{\prime} \in X(3,6)$ is smooth and stabilizer of z^{\prime} under action of $S_{3}^{(p)}$ is trivial, then point $\pi\left(z^{\prime}\right)=z_{0} \in Z$ is smooth and map $\mathrm{d} \pi$ is an isomorphism. Analogously, if point $\zeta\left(z^{\prime}\right) \in \widetilde{X}$ is smooth and stabilizer of $\zeta\left(z^{\prime}\right)$ under action of $S_{3}^{(p)}$ is trivial, then point $\widetilde{\zeta}\left(z_{0}\right)$ is smooth and $\mathrm{d} \widetilde{\pi}$ is an isomorphism.
- Using (240), we get the decomposition: $\mathrm{d} \Phi=\mathrm{d} \widetilde{\mu} \circ \mathrm{d} \widetilde{\pi}$. Thus, if $\mathrm{d} \Phi$ is injective and $\mathrm{d} \widetilde{\pi}$ is an isomorphism, then $\mathrm{d} \widetilde{\mu}$ is injective.

Thus, if we take non-singular point $z^{\prime} \in X(3,6)$ such that stabilizer $\mathrm{St}_{S_{3}^{(p)}}\left(z^{\prime}\right)=1, \mathrm{~d} \zeta$ is an isomorphism, $\mathrm{d} \Phi$ is an immersion , then $\mathrm{d} \sigma^{\prime}$ is well-defined morphism: $T_{z_{0}} Z \rightarrow T_{z_{1}} Z$.

Firstly, let us check that morphism $\mathrm{d} \zeta$ is an isomorphism. For this purpose, let us describe the maps in suitable coordinates. Morphism: $\left(p r_{1}, p r_{1} \circ \sigma^{(p)}\right): X(6,6) \rightarrow X(3,6) \times_{Y(6)} X(3,6)$ is birational. In terms of matrices, this birational morphism means decomposition of matrix of size 6×6 into two matrices of size 3×6, i.e. morphism: $p r=\left(p r_{1}, p r_{1} \circ \sigma^{(p)}\right): X(6,6) \rightarrow X(3,6) \times_{Y(6)} X(3,6)$ is defined in terms of matrices by the following formula:

$$
\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \tag{399}\\
1 & x_{11} & \ldots & x_{15} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{51} & \ldots & x_{55}
\end{array}\right) \mapsto\left(\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & x_{11} & x_{12} \\
\ldots & \ldots & \ldots \\
1 & x_{51} & x_{52}
\end{array}\right),\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \frac{x_{14}}{x_{13}} & \frac{x_{15}}{x_{13}} \\
\ldots & \ldots & \ldots \\
1 & \frac{x_{54}}{x_{53}} & \frac{x_{55}}{x_{53}}
\end{array}\right)\right)
$$

In terms of matrices, birational morphism: $\zeta: X(3,6) \rightarrow \widetilde{X}=X(3,3) \times_{Y(3)} X(3,3)$ means the decomposition of matrix of type 3×6 into two matrices of type 3×3 in the following manner:

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \tag{400}\\
1 & x_{11} & x_{12} \\
\cdots & \cdots & \cdots \\
1 & x_{51} & x_{52}
\end{array}\right) \mapsto\left(\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & x_{11} & x_{12} \\
1 & x_{21} & x_{22}
\end{array}\right),\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \frac{x_{41}}{x_{31}} & \frac{x_{42}}{x_{32}} \\
1 & \frac{x_{51}}{x_{31}} & \frac{x_{52}}{x_{32}}
\end{array}\right)\right)
$$

Consider diagram (235). Recall that $Y(3)$ is the subvariety of F^{5} defined by equation $A B C=\alpha \beta$. Morphism $\phi_{2} \circ \tau$ is defined by formulas:

$$
\begin{gather*}
A=\left(1+x_{11}+x_{21}\right)\left(1+\frac{1}{x_{11}}+\frac{1}{x_{21}}\right) \tag{401}\\
B=\left(1+x_{12}+x_{22}\right)\left(1+\frac{1}{x_{12}}+\frac{1}{x_{22}}\right) \tag{402}\\
C=\left(1+\frac{x_{11}}{x_{12}}+\frac{x_{21}}{x_{22}}\right)\left(1+\frac{x_{12}}{x_{11}}+\frac{x_{22}}{x_{21}}\right) \tag{403}\\
\alpha=\left(1+x_{11}+x_{21}\right)\left(1+\frac{1}{x_{12}}+\frac{1}{x_{22}}\right)\left(1+\frac{x_{12}}{x_{11}}+\frac{x_{22}}{x_{21}}\right) \tag{404}\\
\beta=\left(1+\frac{1}{x_{11}}+\frac{1}{x_{21}}\right)\left(1+x_{12}+x_{22}\right)\left(1+\frac{x_{11}}{x_{12}}+\frac{x_{21}}{x_{22}}\right) \tag{405}
\end{gather*}
$$

We get the analogous formulas for $\frac{x_{41}}{x_{31}}, \frac{x_{51}}{x_{31}}, \frac{x_{42}}{x_{32}}, \frac{x_{52}}{x_{32}}$. Involution $\sigma_{P}^{(3)}$ is defined by rule: $\sigma_{P}^{(3)}: A \mapsto A, B \mapsto$ $B, C \mapsto C, \alpha \mapsto-\alpha, \beta \mapsto-\beta$. Thus, for fixed point $t=\left(t_{1}, t_{2}\right) \in \widetilde{X}=X(3,3) \times{ }_{Y(3)} X(3,3)$ such that $\phi_{2} \circ \tau\left(t_{1}\right)=\sigma_{P}^{(3)} \circ \phi_{2} \circ \tau\left(t_{2}\right)=y \in Y(3)$ we have the following isomorphism:

$$
\begin{equation*}
T_{t=\left(t_{1}, t_{2}\right)} \tilde{X}=\operatorname{Ker}\left(\mathrm{d} \phi_{2} \circ \mathrm{~d} \tau,-\mathrm{d} \sigma_{\mathrm{P}}^{(3)} \circ \mathrm{d} \phi_{2} \circ \mathrm{~d} \tau\right): T_{t_{1}} X(3,3) \oplus T_{t_{2}} X(3,3) \rightarrow T_{y} Y(3) \tag{406}
\end{equation*}
$$

Consider the point $p t \in X(6,6)$ given by matrix:

$$
p t=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \tag{407}\\
1 & \epsilon & \epsilon^{2} & -1 & \epsilon^{4} & \epsilon^{5} \\
1 & -1 & 1 & -1 & 1 & -1 \\
1 & \epsilon^{5} & \epsilon^{4} & -1 & \epsilon^{2} & \epsilon \\
1 & \epsilon^{4} & \epsilon^{2} & 1 & \epsilon^{4} & \epsilon^{2} \\
1 & \epsilon^{2} & \epsilon^{4} & 1 & \epsilon^{2} & \epsilon^{4}
\end{array}\right), \epsilon^{6}=1
$$

In this case,

$$
z^{\prime}=p r_{1}(p t)=\left(\begin{array}{ccc}
1 & 1 & 1 \tag{408}\\
1 & \epsilon & \epsilon^{2} \\
1 & -1 & 1 \\
1 & \epsilon^{5} & \epsilon^{4} \\
1 & \epsilon^{4} & \epsilon^{2} \\
1 & \epsilon^{2} & \epsilon^{4}
\end{array}\right), z^{\prime \prime}=p r_{1} \circ \sigma^{(p)}(p t)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \epsilon & \epsilon^{2} \\
1 & -1 & 1 \\
1 & \epsilon^{5} & \epsilon^{4} \\
1 & \epsilon^{4} & \epsilon^{2} \\
1 & \epsilon^{2} & \epsilon^{4}
\end{array}\right)=z^{\prime}
$$

Lemma 124. z^{\prime} is a smooth point of $X(3,6)$, i.e. $\operatorname{dim}_{F} T_{z^{\prime}} X(3,6)=4$.
Proof. As we know, $X(3,6)$ is a subvariety of $\left(F^{*}\right)^{10}$ defined by equations (243), (244), (245). Thus, tangent space $T_{z^{\prime}} X(3,6)$ is a kernel of matrix:

$$
\left(\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \tag{409}\\
\epsilon & -1 & \epsilon^{5} & \epsilon & \epsilon^{5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & \epsilon^{5} & -1 & \epsilon & \epsilon^{5} & \epsilon \\
\epsilon^{4} & 1 & \epsilon^{2} & \epsilon^{4} & \epsilon^{2} & 1 & 1 & 1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & \epsilon^{5} & -1 & \epsilon & \epsilon^{2} & \epsilon^{4}
\end{array}\right)
$$

One can check that rank of this matrix is 6 . Hence, z^{\prime} is a smooth point.
Recall that there are two-dimensional deformations of $p t$:

$$
T(a, b)=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \tag{410}\\
1 & a \epsilon & b \epsilon^{2} & -1 & a \epsilon^{4} & b \epsilon^{5} \\
1 & -a & b & -1 & a & -b \\
1 & a \epsilon^{5} & b \epsilon^{4} & -1 & a \epsilon^{2} & b \epsilon \\
1 & \epsilon^{4} & \epsilon^{2} & 1 & \epsilon^{4} & \epsilon^{2} \\
1 & \epsilon^{2} & \epsilon^{4} & 1 & \epsilon^{2} & \epsilon^{4}
\end{array}\right), T^{\prime}(c, d)=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & c \epsilon & \epsilon^{2} & -c & \epsilon^{4} & c \epsilon^{5} \\
1 & -1 & 1 & -1 & 1 & -1 \\
1 & d \epsilon^{5} & \epsilon^{4} & -d & \epsilon^{2} & d \epsilon \\
1 & c \epsilon^{4} & \epsilon^{2} & c & \epsilon^{4} & c \epsilon^{2} \\
1 & d \epsilon^{2} & \epsilon^{4} & d & \epsilon^{2} & d \epsilon^{4}
\end{array}\right)
$$

where $a, b, c, d \in F^{*}$. As we know, $T(a, b) \cap T^{\prime}(c, d)=p t$ in $X(6,6)$. It is well-known that $\operatorname{dim}_{F} T_{p t} X(6,6)=4$ (cf.??). One can check that we have the following isomorphism of tangent spaces:

$$
\begin{equation*}
T_{p t} T(a, b) \oplus T_{p t} T^{\prime}(c, d)=T_{p t} X(6,6) \tag{411}
\end{equation*}
$$

Calculate $p_{1}(T(a, b))=t(a, b) \in X(3,6), p r_{1} \circ \sigma^{(p)}(T(a, b))=t(a, b) \in X(3,6) ; p r_{1}\left(T^{\prime}(c, d)\right)=t^{\prime}(c, d) \in$ $X(3,6), p r_{1} \circ \sigma^{(p)}(T(c, d))=t^{\prime}\left(\frac{1}{c}, \frac{1}{d}\right) \in X(3,6)$, where $t(a, b)$ and $t^{\prime}(c, d)$ have the following type:

$$
t(a, b)=\left(\begin{array}{ccc}
1 & 1 & 1 \tag{412}\\
1 & a \epsilon & b \epsilon^{2} \\
1 & -a & b \\
1 & a \epsilon^{5} & b \epsilon^{4} \\
1 & \epsilon^{4} & \epsilon^{2} \\
1 & \epsilon^{2} & \epsilon^{4}
\end{array}\right), t^{\prime}(c, d)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & c \epsilon & \epsilon^{2} \\
1 & -1 & 1 \\
1 & d \epsilon^{5} & \epsilon^{4} \\
1 & c \epsilon^{4} & \epsilon^{2} \\
1 & d \epsilon^{2} & \epsilon^{4}
\end{array}\right)
$$

It is easy that $t(a, b) \cap t^{\prime}(c, d)=z^{\prime}$ in $X(3,6)$. Also, we have the following isomorphism for tangent spaces:

$$
\begin{equation*}
T_{z^{\prime}} t(a, b) \oplus T_{z^{\prime}} t^{\prime}(c, d)=T_{z^{\prime}} X(3,6) . \tag{413}
\end{equation*}
$$

Calculate image of $z^{\prime}, t(a, b), t^{\prime}(c, d)$ under morphism ζ :

$$
\begin{gather*}
\zeta(t(a, b))=\left(t_{1}(a, b)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & a \epsilon & b \epsilon^{2} \\
1 & -a & b
\end{array}\right), t_{2}(a, b)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \frac{1}{a \epsilon} & \frac{1}{b \epsilon^{2}} \\
1 & -\frac{1}{a} & \frac{1}{b}
\end{array}\right)\right) \tag{414}\\
\zeta\left(t^{\prime}(c, d)\right)=\left(t_{1}^{\prime}(c, d)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & c \epsilon & \epsilon^{2} \\
1 & -1 & 1
\end{array}\right), t_{2}^{\prime}(c, d)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \frac{c}{d \epsilon} & \epsilon^{4} \\
1 & -1 & 1
\end{array}\right)\right) \tag{415}\\
\zeta\left(z^{\prime}\right)=\left(\zeta\left(z^{\prime}\right)_{1}=t_{1}(1,1)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \epsilon & \epsilon^{2} \\
1 & -1 & 1
\end{array}\right), \zeta\left(z^{\prime}\right)_{2}=t_{2}(1,1)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \epsilon^{5} & \epsilon^{4} \\
1 & -1 & 1
\end{array}\right)\right) \tag{416}
\end{gather*}
$$

Let us note the following property of point $\zeta\left(z^{\prime}\right)$:
Lemma 125. $\zeta\left(z^{\prime}\right) \in \widetilde{X}$ is a smooth point.
Proof. Let us calculate tangent space $T_{\zeta\left(z^{\prime}\right)} \widetilde{X}$. Let $y \in Y(3)$ be the point $\phi_{2} \circ \tau\left(\zeta\left(z^{\prime}\right)_{1}\right)=\sigma_{P}^{(3)} \circ \phi_{2} \circ \tau\left(\zeta\left(z^{\prime}\right)_{2}\right)$. As we know from (406), we have to calculate $\mathrm{d} \phi_{2}$ at point $\zeta\left(z^{\prime}\right)_{1}$ and $\mathrm{d} \sigma_{P}^{(3)} \circ \mathrm{d} \phi_{2} \circ \mathrm{~d} \tau$ at point $\zeta\left(z^{\prime}\right)_{2}$. As we know, $X(3,3) \cong\left(F^{*}\right)^{4}$ and $Y(3) \subset F^{5}$. It is easy that map: $\left(\mathrm{d} \phi_{2} \circ \tau,-\mathrm{d} \sigma_{P}^{(3)} \circ \mathrm{d} \phi_{2} \circ \mathrm{~d} \tau\right): T_{\zeta\left(z^{\prime}\right)_{1}} X(3,3) \oplus T_{\zeta\left(z^{\prime}\right)_{2}} X(3,3)=$ $F^{8} \rightarrow T_{y} Y(3) \subset F^{5}$ is defined by matrix 8×5. Let us order variables as follows: rows correspond to coordinates A, B, C, α, β, columns correspond to coordinates $x_{11}, x_{21}, x_{12}, x_{22}, \frac{x_{41}}{x_{31}}, \frac{x_{51}}{x_{31}}, \frac{x_{42}}{x_{32}}, \frac{x_{52}}{x_{32}}$ of $X(3,3) \times X(3,3)$. It is easy that $\mathrm{d} \sigma_{P}^{(3)}: T_{y} Y(3) \rightarrow T_{\sigma_{P}^{(3)}(y)} Y(3)$ is a matrix:

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \tag{417}\\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right)
$$

It can be shown in usual way that matrices of $\mathrm{d} \phi_{2} \circ \mathrm{~d} \tau$ at points $\zeta\left(z^{\prime}\right)_{1}$ and $\zeta\left(z^{\prime}\right)_{2}$

$$
\left(\begin{array}{cccc}
0 & \frac{\epsilon^{2}-1}{\epsilon} & 0 & 0 \tag{418}\\
0 & 0 & 2\left(1-\epsilon^{2}\right) & \frac{\epsilon^{2}-1}{\epsilon} \\
0 & -\frac{\epsilon^{2}-1}{\epsilon} & 0 & -\frac{\epsilon^{2}-1}{\epsilon} \\
0 & 0 & 2 & 2 \epsilon^{4} \\
0 & 0 & 2 \epsilon^{2} & 2 \epsilon^{5}
\end{array}\right),\left(\begin{array}{cccc}
\frac{1-\epsilon^{4}}{\epsilon^{4}} & 0 & 0 & 0 \\
0 & 0 & -\frac{\epsilon^{2}-1}{\epsilon} & 0 \\
-\frac{\epsilon^{2}-1}{\epsilon} & 0 & -\frac{\epsilon^{2}-1}{\epsilon} & 0 \\
0 & 0 & -2 \epsilon^{2} & -2 \\
0 & 0 & -2 \epsilon & -2 \epsilon
\end{array}\right)
$$

Therefore, matrix of $\left(\left.\mathrm{d} \phi_{2} \circ \mathrm{~d} \tau\right|_{\zeta\left(z^{\prime}\right)_{1}},-\left.\mathrm{d} \sigma_{P}^{(3)} \circ \mathrm{d} \phi_{2} \circ \mathrm{~d} \tau\right|_{\zeta\left(z^{\prime}\right)_{2}}\right)$ has the following view:

$$
\left(\begin{array}{cccccccc}
0 & \frac{\epsilon^{2}-1}{\epsilon} & 0 & 0 & -\frac{1-\epsilon^{4}}{\epsilon^{4}} & 0 & 0 & 0 \tag{419}\\
0 & 0 & 2\left(1-\epsilon^{2}\right) & \frac{\epsilon^{2}-1}{\epsilon} & 0 & 0 & \frac{\epsilon^{2}-1}{\epsilon} & 0 \\
0 & -\frac{\epsilon^{2}-1}{\epsilon} & 0 & -\frac{\epsilon^{2}-1}{\epsilon} & \frac{\epsilon^{2}-1}{\epsilon} & 0 & \frac{\epsilon^{2}-1}{\epsilon} & 0 \\
0 & 0 & 2 & 2 \epsilon^{4} & 0 & 0 & -2 \epsilon^{2} & -2 \\
0 & 0 & 2 \epsilon^{2} & 2 \epsilon^{5} & 0 & 0 & -2 \epsilon & -2 \epsilon
\end{array}\right)
$$

One can see that rank of submatrix generated by second, third, forth and eighth columns is 4 . Thus, point $\zeta\left(z^{\prime}\right)$ is a smooth.

Using this lemma and some trivial computations, we get the following isomorphism of vector spaces:

$$
\begin{equation*}
T_{\zeta\left(z^{\prime}\right)} \widetilde{X}=T_{\zeta\left(z^{\prime}\right)} \zeta(t(a, b)) \oplus T_{\zeta\left(z^{\prime}\right)} \zeta\left(t^{\prime}(c, d)\right) \tag{420}
\end{equation*}
$$

Thus, $\left.\mathrm{d} \zeta\right|_{z^{\prime}}$ is an isomorphism
Secondly, consider morphism: $\mathrm{d} \Phi: T_{\zeta\left(z^{\prime}\right)} \widetilde{X} \rightarrow T_{\Phi \circ \zeta\left(z^{\prime}\right)} Y(3) \times_{Y} Y(3)$. As we know, morphism Φ is defined by the rule: $\Phi\left(\zeta\left(z^{\prime}\right)\right)=\left(\phi_{2}\left(\zeta\left(z^{\prime}\right)_{1}, \phi_{2}\left(\zeta\left(z^{\prime}\right)_{2}\right)\right)\right.$, where ϕ_{2} is given by formulas:

$$
\begin{gather*}
A=\left(1+x_{11}+x_{12}\right)\left(1+\frac{1}{x_{11}}+\frac{1}{x_{12}}\right) \tag{421}\\
B=\left(1+x_{21}+x_{22}\right)\left(1+\frac{1}{x_{21}}+\frac{1}{x_{22}}\right) \tag{422}\\
C=\left(1+\frac{x_{11}}{x_{21}}+\frac{x_{12}}{x_{22}}\right)\left(1+\frac{x_{21}}{x_{11}}+\frac{x_{22}}{x_{12}}\right) \tag{423}\\
\alpha=\left(1+\frac{1}{x_{11}}+\frac{1}{x_{12}}\right)\left(1+x_{21}+x_{22}\right)\left(1+\frac{x_{11}}{x_{21}}+\frac{x_{12}}{x_{22}}\right) \tag{424}\\
\beta=\left(1+x_{11}+x_{12}\right)\left(1+\frac{1}{x_{21}}+\frac{1}{x_{22}}\right)\left(1+\frac{x_{21}}{x_{11}}+\frac{x_{22}}{x_{12}}\right) . \tag{425}
\end{gather*}
$$

It is easy that $T_{\zeta\left(z^{\prime}\right)} \widetilde{X} \subset F^{8}$ and $T_{\Phi \circ \zeta\left(z^{\prime}\right)} Y(3) \times_{Y} Y(3) \subset F^{10}$. Therefore, $\mathrm{d} \Phi$ is defined by matrix of type 8×10. It is easy that $\left.\mathrm{d} \Phi\right|_{\zeta\left(z^{\prime}\right)}=\left.\left.\mathrm{d} \phi_{2}\right|_{\zeta\left(z^{\prime}\right)_{1}} \oplus \mathrm{~d} \phi_{2}\right|_{\zeta\left(z^{\prime}\right)_{2}}$ One can calculate that $\mathrm{d} \phi_{2}$ at points $\zeta\left(z^{\prime}\right)_{1}$ and $\zeta\left(z^{\prime}\right)_{2}$ are given by matrices:

$$
\left(\begin{array}{cccc}
0 & -2 \epsilon & 0 & 0 \tag{426}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 \epsilon^{2} & 2 \epsilon^{5} & -2 & 2 \epsilon^{4} \\
2 \epsilon^{5} & 2 & 2 & 2 \epsilon^{5}
\end{array}\right),\left(\begin{array}{cccc}
0 & 2 \frac{\epsilon^{2}-1}{\epsilon^{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 \epsilon^{4} & -2 \epsilon^{4} & -2 & 2 \epsilon^{2} \\
-2 \epsilon^{4} & 2 & 2 & -2 \epsilon^{4}
\end{array}\right)
$$

One can check that intersection of the kernel of matrix of $\left.\mathrm{d} \Phi\right|_{\zeta\left(z^{\prime}\right)}=\left.\left.\mathrm{d} \phi_{2}\right|_{\zeta\left(z^{\prime}\right)_{1}} \oplus \mathrm{~d} \phi_{2}\right|_{\zeta\left(z^{\prime}\right)_{2}}$ and $T_{\zeta\left(z^{\prime}\right)} \widetilde{X}$ is 0 . Thus, restriction of $\mathrm{d} \Phi$ to $T_{\zeta\left(z^{\prime}\right)} \widetilde{X}$ is injective.

Thirdly, one can check that $\mathrm{St}_{S_{3}^{(p)}}\left(z^{\prime}\right)$ is trivial. Thus, $T_{z_{0}} Z$ is 4-dimensional. As we know, $p r_{1} \circ \sigma^{(p)}(p t)=z^{\prime}$. And hence, $\mu\left(z_{0}\right)=\sigma_{P}^{(6)}\left(\mu\left(z_{0}\right)\right)$. Using proposition 100, we get that $\sigma_{P}^{(3)} \circ \widetilde{\mu} \circ \widetilde{\zeta}\left(z_{0}\right)=\widetilde{\mu} \circ \widetilde{\zeta}\left(z_{0}\right)$. Therefore, we obtain that $\mathrm{d} \sigma^{\prime}\left(T_{z_{0}} Z\right)=T_{z_{0}} Z$. It is easy that there is a decomposition of $T_{z_{0}} Z$ into direct sum of $V_{+}=$ $\mathrm{d} \pi\left(T_{\zeta\left(z^{\prime}\right)} \zeta(t(a, b))\right)$ and $V_{-}=\mathrm{d} \pi\left(T_{\zeta\left(z^{\prime}\right)} \zeta\left(t^{\prime}(c, d)\right)\right)$. One can check that V_{+}and V_{-}are subspaces corresponding to eigenvalue 1 and -1 of $\mathrm{d} \sigma^{\prime}$ respectively.

Finally, consider involutions σ^{\prime} and $\rho^{-1} \circ \sigma^{\prime} \circ \rho$ of Z. Using proposition 100, we get the following identities:

$$
\begin{equation*}
\sigma^{\prime}(\pi(t(a, b)))=\pi(t(a, b)), \sigma^{\prime}\left(\pi\left(t^{\prime}(c, d)\right)\right)=\pi\left(t^{\prime}\left(\frac{1}{c}, \frac{1}{d}\right)\right) \tag{427}
\end{equation*}
$$

for σ^{\prime}. And

$$
\begin{equation*}
\rho^{-1} \circ \sigma^{\prime} \circ \rho(\pi(t(a, b)))=\pi(t(a, b)), \rho^{-1} \circ \sigma^{\prime} \circ \rho\left(\pi\left(t^{\prime}(c, d)\right)\right)=\pi\left(t^{\prime}\left(\frac{1}{c}, \frac{1}{d}\right)\right) \tag{428}
\end{equation*}
$$

Therefore, $\sigma^{\prime} \circ \rho^{-1} \circ \sigma^{\prime} \circ \rho$ acts on $\pi(t(a, b))$ and $\pi\left(t^{\prime}(c, d)\right)$ trivially. And hence, $\mathrm{d}\left(\sigma^{\prime} \circ \rho^{-1} \circ \sigma^{\prime} \circ \rho\right)$ acts on $T_{z_{0}} Z$ trivially. Thus, we have proved the following proposition:

Proposition 126. $\mathrm{d}\left(\sigma^{\prime} \circ \rho^{-1} \circ \sigma^{\prime} \circ \rho\right)$ acts on $T_{z_{0}} Z$ trivially.
As we know from ??, morphism $\sigma^{\prime} \circ \rho^{-1} \circ \sigma^{\prime} \circ \rho$ has finite order. Let us formulate following well-known property of morphism of finite order:

Proposition 127. (cf.??) Let γ be the automorphism of finite order of variety V. Assume that $v \in V$ such that $\gamma(v)=v$ and $\mathrm{d} \gamma: T_{v}(V) \rightarrow T_{v}(V)$ is identity linear map. Then γ is identity.

References

[1] Bondal A., Zhdanovskiy I., Representation theory for system of projectors and discrete Laplace operator, Preprint of IPMU, IPMU13-0001
[2] Boykin P.O., Sitharam M., Tiep P.H., Wocjan P. Mutually unbiased bases and orthogonal decompositions of Lie algebras, Quantum Inf. Comput. 7(2007), 371-382.
[3] Crawley-Boevey W., Noncommutative deformations of Kleinian singularities, Duke Math.J. 92(3)(1998), pp.605-635
[4] Crawley-Boevey W., Geometry of the moment map for representations of quvers, Compositio Math. 126(2001), 257-293
[5] Gan W.L., Ginzburg V., Deformed preprojective algebras and symplectic reflection for wreath products, J.Algebra, 283(2005), 350-363.
[6] U. Haagerup, Orthogonal maximal abelian *-subalgebras of the nn matrices and cyclic n-roots, Operator Algebras and Quantum Field Theory (Rome), 1996 (Cambridge, MA: International Press) pp 296-322.
[7] Kostrikin, A. I.; Kostrikin, I. A.; Ufnarovskii(, V. A. Orthogonal decompositions of simple Lie algebras (type A_{n}). (Russian) Analytic number theory, mathematical analysis and their applications. Trudy Mat. Inst. Steklov. 158 (1981), 105120, 229.
[8] Kostrikin A.I., Kostrikin I.A., Ufnarovsky V.A.; On the uniqueness of orthogonal decompositions of Lie algebras of type A_{n} and C_{n} "Matematiceskie issledovanija 74 (1983): 80-105.
[9] Kostrikin A.I., Pham Huu Tiep, Orthogonal decompositions and Integral lattices, Walter de Gruyter, 1994.
[10] Matolcsi M., Szollosi F., Towards a classification of 6×6 complex hadamard matrices, Open.Syst. Inf.Dyn. 15, 93(2008)
[11] K.Nomura, Type II Matrices of size five, Graphs and Combinatorics March 1999, Volume 15, Issue 1, pp 79-92.
[12] qig.itp.uni-hannover.de/qiproblems/Main Page
[13] Szollosi F., Complex Hadamard matrices of order 6: a four-parameter family, J. Lond. Math. Soc 85: 616-632 Part 3 (2012) arXiv:http:1008.0632
[14] Thompson J. A conjugacy theorem for E_{8}. J. Algebra, 1976, 38, N2, p.525-530. http://chaos.if.uj.edu.pl/ karol/hadamard/

[^0]: *Steklov Institute of Mathematics, Moscow, and Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan, and HSE Laboratory of algebraic geometry, Moscow, and The Institute for Fundamental Science, Moscow, and Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna
 ${ }^{\dagger}$ MIPT, Moscow, and HSE Laboratory of algebraic geometry, Moscow

