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The large N limit is a very useful tool in various theoretical models. In random matrix theory, Marchenko-
Pastur law is a powerful theorem that governs eigenvalue distribution of large dimension random matrices. We
present an alternative proof of Marchenko Pastur law using Feynman diagrams.

I. INTRODUCTION

In various theoretical models, large N limit has been a very
useful tool, both at a qualitative and a quantitative level [1]. It
works as a great approximation, even when the actual dimen-
sion of the matrix is not a very large number, such as Nc = 3
in QCD [2, 3] and Nf = 3 in neutrino anarchy [4]. It is thus
useful to understand the behavior of large N random matrices
as much as possible.

In random matrix theory, there is a powerful law—
Marchenko-Pastur (MP) law [5]—that governs the asymptotic
eigenvalue distribution of large-dimension random matrices.
In this paper we provide an alternative proof to it.

We first state Marchenko Pastur law in Section II. Then in
Section III, we present a detailed proof of MP law using Feyn-
man diagrams. We extend our proof to symmetric matrix case
in Section IV. Section V is our conclusion.

II. MARCHENKO PASTUR LAW

After the original paper [5], a lot of work followed and the
theorem is sharpened and extended to a few different versions
[6]. In this paper we focus on its following version, which is
most related to large N models in physics.

Let X be a M ×N random complex matrix, whose entries
Xij are generated according to the following conditions:

(1) independent, identical distribution (i.i.d.), (1)

(2) 〈Xij〉X = 0,
〈
X2
ij

〉
X

= 0, and
〈
|Xij |2

〉
X

= 1, (2)

(3)
〈
|Xij |2+ε

〉
X
<∞ for any ε > 0 (3)

where and throughout this paper, we use 〈O〉X to denote
the expectation value of a random variable O under the en-
semble of X . Then construct an M × M hermitian matrix
A = 1

NXX
†, whose eigenvalues are denoted by λk, with

k = 1, 2, ...,M . Then the empirical distribution of these
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eigenvalues is defined as

FM (x) ≡ 1

M

M∑
k=1

I{λk≤x}, (4)

where IB denotes the indicator of an event B:

I{B} =

 1 if B is true

0 if B is false
(5)

Consider the limit N → ∞. If the limit of the ratio M/N is
finite

b ≡ lim
N→∞

M/N ∈ (0,∞), (6)

then 〈FM (x)〉X → F (x), where F (x) denotes the cumula-
tive distribution function of the Marchenko-Pastur distribution
whose density function is

f(x) =
1

2π

√
(x2 − x)(x− x1)

x

1

b
· I{x∈(x1,x2)}

+(1− 1

b
)δ(x) · I{b∈[1,∞)} , (7)

with x1 = (1−
√
b)2 and x2 = (1 +

√
b)2. In the special

case of a square matrix X , namely b = 1, this becomes

f(x) =
1

2π

√
4

x
− 1 · Ix∈(0,4). (8)

In some theoretical models of physics, the large N random
matrix in concern has to be symmetric, with onlyN(N+1)/2
i.i.d. entries, such as the Majorana mass matrix in neutrino
anarchy [7–9]. Using our alternative Feynman diagram ap-
proach, we also prove that MP law still holds for symmetric
matrix X (in Sec. IV).

III. PROOF OF MARCHENKO PASTUR LAW WITH
FEYNMAN DIAGRAMS

A. Stieltjes Transformation

For a single matrix X generated, the distribution density of
eigenvalues is

ρX(E) =
1

M

M∑
k=1

δ(E − λk). (9)
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Our goal is to compute its expectation

ρ(E) ≡ 〈ρX(E)〉X =

∫
dX · ρX(E), (10)

and prove that ρ(E) approaches the MP density function
(Eq. 7) asN →∞. Here we use dX to denote the normalized
measure of X:

dX =
∏
ij

g(Xij)dXij ,

∫
dX = 1, (11)

with g(Xij) denoting the normalized distribution density of
each Xij .

Since ρ(E) is not easy to compute directly, we make use of
a method known in mathematics as “Stieltjes transformation”.
That is, from the identity, where x is a real variable

δ(x) = − 1

π
lim
ε→0+

Im
1

x+ iε
, (12)

we get

ρ(E) =

∫
ρ(x)δ(E − x)dx

= − 1

π
lim
ε→0+

Im

∫
ρ(x)

E + iε− x
dx. (13)

Thus for any distribution density function ρ(x), we can define
its Stieltjes transformation G(z), a complex function as an
integral over the support of ρ(x)

G(z) ≡
∫

ρ(x)

z − x
dx. (14)

Then according to Eq. (13), ρ(x) can be obtained from the
inverse formula

ρ(E) = − 1

π
lim
ε→0+

ImG(E + iε). (15)

For our case, G(z) can be computed as following

G(z) =

∫
ρ(x)

z − x
dx =

∫
1

z − x
〈ρX(x)〉Xdx

=

〈
1

M

M∑
k=1

∫
1

z − x
δ(x− λk)dx

〉
X

=

〈
1

M

M∑
k=1

1

z − λk

〉
X

=

〈
1

M
tr(

1

z −A
)

〉
X

=
1

M

1

z
tr [B(z)] , (16)

where we have defined a matrix B(z) as

B(z) ≡
〈

z

z −A

〉
X

(17)

=

〈 ∞∑
n=0

(
A

z
)n

〉
X

=

〈 ∞∑
n=0

(
1

zN
XX†)n

〉
X

. (18)

This expansion is a valid analytical form of B(z) in the vicin-
ity of z =∞. We will compute B(z) in this vicinity first, and
then analytically continue it to the whole complex plane. Once
B(z) is obtained, G(z) and ρ(E) would follow immediately.
The following several subsections are devoted to calculate this
target function B(z) under the limit N →∞.

B. Group into “Boxes”

Our target function is a sum of various terms, in which a
typical n-term looks like

Bij(z) ⊃ (
1

zN
)n

〈
n∏
p=1

XαpβpX
†
βpαp+1

〉
X

= (
1

zN
)n
〈
Xiβ1

X†β1α2
· · ·XαnβnX

†
βnj

〉
X
, (19)

with an identification α1 ≡ i, αn+1 ≡ j and a sum over
all the dummy indices α2, α3, · · · , αn from 1 to M , and
β1, β2, · · · , βn from 1 to N .

As stated in the condition Eq. (1), different elements Xij

are independent. Therefore any such n-term expectation can
be factorized 〈

Xiβ1
X†β1α2

· · ·XαnβnX
†
βnj

〉
X

= 〈f(Xk1l1)〉X〈f(Xk2l2)〉X · · · , (20)

where each individual expectation 〈f(Xkl)〉X contains only
Xkl and its complex conjugate X∗kl

〈f(Xkl)〉X = 〈(Xkl)
m1(X∗kl)

m2〉X . (21)

Namely that the independence among elements allows us to
group same Xkl (and the complex conjugate) together into
one factor. For future convenience, let us call each such factor
a “box”.

Now in evaluating the n-term (Eq. 19), the sum over the
dummy indices α’s and β’s can be decomposed into two steps.
(1) There are many ways to group the 2n elements into boxes.
We need to sum over all possible grouping configurations. (2)
Under each grouping configuration, all α’s within the same
box are forced equal, so are all β’s, thus some dummy indices
are tied to others and hence no longer free to sum. But generi-
cally there are still some free dummy indices remaining, which
needs to be summed. In summary, this decomposition of sum
can be expressed as∑

α,β

=
∑

grouping configurations

∑
free dummy indices

. (22)

C. Key Statement in Power Counting of N

To evaluate an n-term (Eq. 19) under N → ∞, an ef-
ficient way to count the power of N is definitely crucial.
The suppression factor 1

Nn in front of Eq. (19) contributes
a factor N−n. On the other hand, with the sum decompo-
sition Eq. 22, under each grouping configuration, summing
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over each free dummy index will give us one power of N :
M∑
α=1

δαα = M = bN,
N∑
β=1

δββ = N . From this competition,

we end up with a factorN−(n−nf ), where nf denotes the total
number of free dummy indices under a given grouping config-
uration. There are 2n−1 dummy indices in total: α2, · · · , αn,
β1, · · · , βn, but not all of them are free, because within each
box, the different α’s and β’s are forced into same value re-
spectively. Apparently, nf largely depends on the grouping
configuration.

To study how nf depends on the grouping configuration,
we resort to some graphical analysis. First, let us draw a map
to represent each grouping configuration, where each group-
ing box is drawn as an isolated island. We notice that in the
sequence of Eq. (19)

Xiβ1
X†β1α2

· · ·XαnβnX
†
βnj

, (23)

every dummy index appears twice, i.e. in pair. Each such
dummy index pair could be grouped into the same box, or two
different boxes. If any two boxes share a dummy index pair,
let us connect those two islands by a “bridge” on the map. So
every grouping configuration is described by a map of boxes
(or islands) and a number of bridges connecting them.

Suppose that there are m boxes fully connected by bridges.
Within each box, after all α’s and β’s are identified respec-
tively, we are left with at most 2 free dummy indices. Then
collecting all the m boxes, we get at most 2m free indices.
But to connect all these m boxes, we need at lease m − 1
bridges. If we remove all the redundant bridges and thus chop
the map into a tree map, then each of the remaining m − 1
bridges would effectively reduce one free index out of the
2m. Thus we have arrived at our key statement:

If m boxes are fully connected by bridges, then we can
get at most m+ 1 free dummy indices out of them.

Clearly, the whole sequence Eq. (23) is fully connected by
dummy-index bridges, so we can apply this key statement to
it. Suppose there are nb boxes in total for a grouping configu-
ration, then we get nf ≤ nb + 1. However, this upper bound
is obtained by counting i and j also as dummy indices. But
they are not. So we need to further subtract 1, if i and j are
grouped into the same box; or subtract 2 if they are not. To
sum up, we get

nf ≤

 nb i, j in same box

nb − 1 i, j not in same box
(24)

D. Association with Feynman Diagrams

With the result Eq. (24), we are ready to study what kinds of
grouping configurations can give nonzero contribution. Due
to the condition Eq. (2), each box needs to contain at least two
elements in order not to vanish. But there are in total only
2n elements in an n-term. So if any box has more than two

FIG. 1. Feynman rule propagator

FIG. 2. Feynman rule vertices

elements, then the total number of boxes nb must be less than
n. Consequently, nf ≤ nb < n and the grouping configu-
ration is suppressed by a factor N−(n−nf ). Due to condition
Eq. (3), the coefficient multiplying this factor must be finite.
Thus the contribution from this kind of grouping configura-
tion vanishes under N → ∞. To sum up, only grouping the
elements by pairs can give nonzero contributions.

We can call each such grouped pair a “contraction”. Ac-
cording to the condition Eq. (2), only contracting X and X†

can be nonzero〈
XijX

†
kl

〉
X

= 〈XijX
∗
lk〉X = δilδjk. (25)

Let us call this contraction “propagator”, which corresponds
to the Feynman rule shown in Fig. 1.

Here is also a bonus result: Even under pair grouping con-
figurations where nb = n, i and j must be grouped into the
same box in order to get large enough nf (see Eq. 24). So i
and j must be equal, which means that the matrix B(z) must
be diagonal under N →∞.

Our goal is to evaluate the target function B(z) (Eq. 18).
Since each matrix element has two indices, and each pair of
XX† always comes with a factor 1

zN , we are naturally led to
the Feynman rules of vertices shown in Fig. 2. The arrow flow
is used to distinguish X from X†. This is necessary because
our X is generically not hermitian. Then a typical n-term
(Eq. 19) can be calculated by summing over Feynman dia-
grams corresponding to all the possible contraction structures
of Fig. 3. To give a few examples, we enumerate all nonzero
diagrams contributing to n = 0, n = 1 and n = 2 terms in
Fig. 4.

E. Simplification: Planar Diagrams only for N → ∞

Now we have developed a diagrammatic way of evaluating
Bij(z) as described by Fig. 3, which is well organized and
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FIG. 3. Feynman diagrams of n-term (before specifying contraction structure).

(a) n = 0 term (b) n = 1 term

(c) n = 2 case 1

(d) n = 2 case 2

FIG. 4. Feynman diagram examples.

quite routine. But the actual calculation is still rather com-
plicated, because there are so many ways of contracting the
vertices. Large N limit, however, brings us another great sim-
plification: Any diagram with crossed contractions will vanish
under N →∞. This means that we only need to consider the
type of contraction shown in the first line of the following, but
not that kind shown in the second line.

· · ·Xα2β2X
†
β2α3

Xα3β3X
†
β3α4

Xα4β4X
†
β4α5
· · ·

· · ·Xα2β2X
†
β2α3

Xα3β3X
†
β3α4

Xα4β4X
†
β4α5
· · ·

Once crossed contractions are forbidden, all the propagators
can only form two types of structures: “side by side” as in
the example of Fig. 4(c) or “nesting” as in Fig. 4(d). A com-
bination of these two types gives us a general “planar” dia-
gram. Only planar diagrams have nonzero contributions under
N →∞.

This requirement also follows from our key statement. As-
sume that we have a contraction jumping k couples of ele-
ments:

· · ·X†βp−1αp
XαpβpX

†
βpαp+1

· · ·XαqβqX
†
βqαq+1

Xαq+1βq+1
· · ·

with q = p + k. This contraction identifies αq+1 with αp
and βq with βp. After summing over these non-free dummy
indices αq+1 and βq , we get the result proportional to (with a
finite coefficient)

· · ·X†βp−1αp
·X†βpαp+1

· · ·Xαqβp ·Xαpβq+1
· · · (26)

Now we are only left with n − 1 couples of X and X†. With
the number of boxes nb = n − 1 then, it seems impossible
to make nf = n, according to our previous result Eq. (24).
However, by a careful look at the new sequence Eq. (26), we
realize that it is no longer guaranteed to be fully connected by
bridges. Instead, it consists of two parts: inside the contrac-
tion and outside the contraction, each part fully connected. So
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FIG. 5. Auxiliary functions defined in terms of planar Feynman dia-
grams.

as long as we do not group any element inside with any ele-
ment outside into one box (i.e. no crossed contraction!), we
can only apply our key statement to each part separately. In
this case, we are just lucky enough to save it: we can get up to
k + 1 free dummy indices from the inside part and n− 1− k
from the outside part. Together, we can still make nf = n. On
the other hand, if we do make a contraction crossed with the
first one, then the divided two parts are reconnected through
this contraction box and Eq. (24) can be applied to the whole
sequence Eq. (26): nf ≤ nb = n−1 < n. Therefore diagram
with crossed contractions will vanish under N →∞.

F. Diagrammatic Calculation for N → ∞

Now we are finally ready to calculate our target func-
tion Bij(z) by summing over all the planar Feynman dia-
grams formed from Fig. 3. For convenience, let us define
four functions as shown in Fig. 5, two 1PI (1 Particle Irre-
ducible) functions Σ1ij(z), Σ2ij(z), and two two-point func-
tions B1ij(z), B2ij(z). Here B1ij is nothing but our target
function Bij(z) = B1ij(z).

First, let us study the 1PI functions. Σ1ij(z) sums over all
the 1PI planar diagrams with external single arrows pointing
to the left. Each 1PI planar diagram must have a double-line
contraction coating it at the most outside, with nested inside
anything. Clearly, the sum of the nested part gives nothing but
B2(z). So we get a relation as shown in Fig. 6(a):

Σ1ij =

N∑
βp,βq=1

1

zN
δijδβpβqB2βpβq

=

 1

zN

N∑
βp=1

B2βpβp

 δij ≡ Σ1δij . (27)

We see that Σ1ij(z) is proportional to the identity matrix.
There is a similar relation for Σ2ij(z) (as shown in Fig. 6(b)),

which is also proportional to identity matrix:

Σ2ij =

M∑
αp,αq=1

1

zN
δijδαpαqB1αpαq

=

 1

zN

M∑
αp=1

B1αpαp

 δij ≡ Σ2δij . (28)

Now let us turn to the two point functions B1ij(z) and
B2ij(z). Same as in computing a two-point correlation
function in QFT, all the diagrams contributing to B1ij(z)
(B2ij(z)) can be organized into a geometric series of the 1PI
functions Σ1ij(z) (Σ2ij(z)). Since both Σ1ij(z) and Σ2ij(z)
are proportional to identity matrix, B1ij(z) and B2ij(z) are
also proportional to identity matrix:

B1ij = δij + Σ1ij + Σ1iαΣ1αj + . . .

= (1 + Σ1 + Σ2
1 + . . .)δij =

1

1− Σ1
δij

≡ B1δij , (29)
B2ij = δij + Σ2ij + Σ2iβΣ2βj + . . .

= (1 + Σ2 + Σ2
2 + . . .)δij =

1

1− Σ2
δij

≡ B2δij . (30)

This confirms our bonus result in subsection III D that B1ij

and B2ij have to be diagonal. Going back to Eq. (27) and
Eq. (28), we get

Σ1 =
1

zN

N∑
βp=1

B2βpβp =
B2

zN

N∑
βp=1

δβpβp =
1

z
B2, (31)

Σ2 =
1

zN

M∑
αp=1

B1αpαp =
B1

zN

M∑
αp=1

δαpαp =
b

z
B1. (32)

Combining the work above, we get the following equation
set 

B1 =
1

1− Σ1

B2 =
1

1− Σ2

Σ1 =
1

z
B2

Σ2 =
b

z
B1

(33)

Because we are eventually interested in Bij(z) = B1ij(z) =
B1(z)δij , we eliminate the other three variables and get the
equation of B1(z):

bB2
1 − [z − (1− b)]B1 + z = 0. (34)

Solving this and plugging it into Eq. (16) and Eq. (15), we get
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(a) Σ1ij(z)

(b) Σ2ij(z)

FIG. 6. 1PI diagrams (a) Σ1ij(z), and (b) Σ2ij(z), in terms of two
point full diagrams

the result of ρ(E)

ρ(E) = − 1

π
lim
ε→0+

ImG(E + iε)

=
1

2π

1

b

√
(x2 − E)(E − x1)

E
I{E∈(x1,x2)}

+(1− 1

b
)δ(E)I{b≥1}, (35)

which is exactly what we want to prove (Eq. 7). Note that
there are two solutions for Eq. (34), and one needs be cautious
while choosing the root and taking the limit. It is a straight
forward but slightly tedious procedure. To keep this paper
self contained, we include this procedure as the appendix.

IV. THE CASE OF SYMMETRIC X

In this section, we prove that Marchenko-Pastur law still
holds whenX is symmetric complex matrix and thus not all of
its elements are independent. This is important, for example,
in the case of large N analysis of neutrino anarchy where the
Majorana mass matrix is symmetric.

For symmetric X , we require M = N , thus b = 1. And the
i.i.d. condition Eq. (1) in MP law should be regarded as for
the N(N + 1)/2 free elements only. Then the whole analysis
through Section III works for symmetric X , except that we
need to modify the propagator Eq.(25) into:〈

XijX
†
kl

〉
X

= δilδjk + δikδjl. (36)

This affects our calculation only through Eq.(27) and (28).
However, by plugging (36) in, we can easily see that the new

terms in these two equations vanish under N →∞

Σ1ij(z) =

N∑
βp,βq=1

1

zN
(δijδβpβq + δiβqδβpj)B2βpβq

= δij
1

zN

N∑
βp=1

B2βpβp +
1

zN
B2ji

→ δij
1

zN

N∑
βp=1

B2βpβp ,

Σ2ij(z) =

M∑
αp,αq=1

1

zN
(δijδαpαq + δiαqδαpj)B1αpαq

= δij
1

zN

M∑
αp=1

B1αpαp +
1

zN
B1ji

→ δij
1

zN

M∑
αp=1

B1αpαp .

Therefore in the case of symmetric X , we will be led to the
same result (Eq. 35) as in section III. And here we should take
the M = N , i.e. b = 1 special case of it:

ρ(E) =
1

2π

√
4

E
− 1 · I{E∈(0,4)}. (37)

V. CONCLUSIONS

Method with large N random matrices is greatly used in
various of theoretical models. Marchenko Pastur law is a use-
ful theorem for eigenvalue distribution of largeN random ma-
trices. We provide an alternative proof of Marchenko Pastur
law using Feynman diagrams.

Appendix: Root Selection

Let us start with Eq. (34):

bB2
1 − [z − (1− b)]B1 + z = 0. (A.1)

This equation gives us two analytical solutions, which for the
moment, we formally write as

B1(z) =
z − (1− b)− r(z)

2b
, (A.2)

where we have used r(z) to denote the square root

r(z) ≡
{

[z − (1− b)]2 − 4bz
} 1

2

, (A.3)

and put in by hand a minus sign in front of it, just for fu-
ture convenience. The selection of root is still undone until
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we specify the branch of this multi-value function r(z). The
expression of G(z) follows

G(z) =
1

M

1

z
tr [B(z)] =

1

z
B1(z)

=
1

2b

{
1− 1− b

z
− r(z)

z

}
. (A.4)

Recall that ever since Eq.(18), we have been working within
the vicinity of z = ∞. So we need to pick the correct solu-
tion to Eq.(A.1) which is the analytically continuation ofB(z)
from this vicinity. Checking our definition of G(z) (Eq. 16)
and B(z) (Eq. 17), we see that both of them should be analyt-
ical at z =∞, with the values

lim
z→∞

G(z) = 0, (A.5)

lim
z→∞

B1(z) = 1. (A.6)

This requires r(z)
z be analytical at z =∞ with the value

lim
z→∞

r(z)

z
= 1. (A.7)

To find the form of r(z) satisfying these conditions, we first
notice that the two solutions to the equation [z − (1− b)]2 −
4bz = 0 are both real positive due to b > 0. We denote them
as

x1 = (1−
√
b)2, (A.8)

x2 = (1 +
√
b)2. (A.9)

Then

[r(z)]
2

= [z − (1− b)]2− 4bz = (z− x1)(z− x2). (A.10)

If we define

z − x1 ≡ r1eiθ1 , (A.11)
z − x2 ≡ r2eiθ2 , (A.12)

the root r(z) can be written as

r(z) =
{

[z − (1− b)]2 − 4bz
} 1

2

=
√
r1r2e

i
θ1+θ2

2 . (A.13)

Then specifying the branch is just to specify the values of the
arguments θ1, θ2. For a single branch point, for example x1,
a typical assignment of θ1 would look like Fig. 7. But any
line starting from x1 ending at∞ can serve as the branch cut.
We thus have many choices for each branch cut. However, to
make r(z)

z analytical at z = ∞, we have to overlap these two
branch cuts, both to the left (or equivalently both to the right).
The remaining freedom of globally shifting θ1 or θ2 by integer
multiple of 2π is fixed by condition Eq. (A.7). It turns out the
correct assignment (Fig. 8) is just a repetition of Fig. 7 applied
to both x1 and x2. (If we did not put in a minus sign by hand
in Eq. (A.2), Eq. (A.7) would require us to globally shift the
assignment of θ2 (or θ1) by ±2π in Fig. 8. This would result
in the same minus sign for r(z).)

FIG. 7. Typical argument value assignment for a single branch point.

FIG. 8. Correct value assignment of arguments θ1, θ2 and the result-
ing value of r(z).

Now we can compute ρ(E). From the solution

G(z) =
1

2b

{
1− 1− b

z
− r(z)

z

}
, (A.14)

and the branch structure of r(z) (Fig. 8), we clearly see that
lim
ε→0+

ImG(E+iε) = 0 except whenE falls on the branch cut

of r(z): E ∈ (x1, x2), or E hits the pole of G(z): E = 0. For
the first case, the only contribution to lim

ε→0+
ImG(E+ iε) = 0

comes from r(z), and from Fig. 8 we get

lim
ε→0+

ImG(E + iε) ⊃ − 1

2b

√
r1r2
E

= − 1

2b

√
(x2 − E)(E − x1)

E
I{E∈(x1,x2)}. (A.15)

For the second case, we need to compute the residue of the
pole z = 0

res(G(z = 0)) =
1

2b
{−(1− b)− (−

√
r1r2)}

= − 1

2b

{
1− b−

√
(1− b)2

}
= (1− 1

b
) · I{b≥1},

which gives

lim
ε→0+

ImG(E + iε) ⊃ (1− 1

b
)I{b≥1} · [−πδ(E)] . (A.16)

Combining the two pieces, we eventually get our result

ρ(E) = − 1

π
lim
ε→0+

ImG(E + iε)

=
1

2π

1

b

√
(x2 − E)(E − x1)

E
I{E∈(x1,x2)}

+(1− 1

b
)δ(E)I{b≥1}, (A.17)

with x1 = (1−
√
b)2, x2 = (1 +

√
b)2.
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