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Abstract

We raise a question if the Riesz transform on Tn or Zn is characterized by the “maximal
semigroup symmetry” that they satisfy? We prove that this is the case if and only if the
dimension is one, two or a multiple of four. This generalizes a theorem of Edwards and
Gaudry for the Hilbert transform on T and Z in the one-dimensional case, and extends
a theorem of Stein for the Riesz transform on Rn. Unlike the Rn case, we show that
there exist infinitely many, linearly independent multiplier operators that enjoy the same
maximal semigroup symmetry as the Riesz transforms on Tn and Zn if the dimension n
is greater or equal to three and is not a multiple of four.
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1. Introduction

Classical multipliers such as the Hilbert transform on R or the Riesz
transform on Rn are translation invariant operators with additional “symme-
tries” that can be formulated in terms of group representations (see (1.1.1)
below). E.M. Stein proved that a covariance property under the conformal
group characterizes the Riesz transform on Rn up to scalar multiplication,
see Fact 1.3. Extending his idea, we provided in [KN1] a general framework
to characterize specific operators on Rn by a covariance property with re-
spect to arbitrary (finite-dimensional) representation of a subgroup of the
affine transformation group. The object of this paper is its discrete analog,
concerning the characterization of bounded translation invariant operators
on Zn and Tn by means of algebraic conditions (semigroup symmetry).

To be more explicit, we begin with a brief review on translation invariant
operators and symmetry for the Rn case. A bounded operator T : L2(Rn) →
L2(Rn) is said to be translation invariant if T ◦ τs = τs ◦ T for any s ∈ Rn,
where τs is the translation defined by (τsf)(x) := f(x− s) for f ∈ L2(Rn).

A further invariance is defined not for a single operator, but for a family
of operators. Suppose T = {T1, . . . , TN} is a family of linearly independent,
bounded translation invariant operators on L2(Rn). Then the “symmetry”
of T may be formulated as follows:

Condition 1.1. Tj ◦ lg, (1 ≤ j ≤ N) is a linear combination of lg ◦
T1, . . . , lg ◦ TN as long as g belongs to some subgroup of GL(n,R).

Here, (lgf)(x) := f(g−1x) for g ∈ GL(n,R) and f ∈ L2(Rn).
In a coordinate-free fashion, we regard T as a bounded translation in-

variant operator
T : L2(Rn) → V ⊗ L2(Rn),
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where V is an N -dimensional complex vector space. Suppose that H is a
subgroup of GL(n,R) and that π : H → GLC(V ) is a group homomorphism.
Then Condition 1.1 may be reformulated by means of the pair (H,π), as
the following covariance with respect to the group H:

(π(g)⊗ lg) ◦ T = T ◦ lg for any g ∈ H. (1.1.1)

We denote by BH(L2(Rn), V ⊗ L2(Rn)) the vector space of bounded trans-
lation invariant operators T satisfying (1.1.1).

The conformal group CO(n) of the Euclidean space Rn is defined by

CO(n) := {g ∈ GL(n,R) : tgg ∈ R× · In}.

It is isomorphic to the direct product group R+ ×O(n), and the projection
to the second factor is given by a group homomorphism

π : CO(n) → O(n), g 7→ | det g|−1/ng. (1.1.2)

We recall the definition of the (classical) Riesz transform on Rn:

Definition 1.2. For 1 ≤ p < ∞, we define translation invariant opera-
tors on Lp(Rn) by

Rj(f)(x) = lim
ϵ→0

cn

∫
|y|>ϵ

yj
|y|n+1

f(x− y)dy, for j = 1, . . . , n,

with cn = Γ(n + 1/2)/π(n+1)/2. Then the Riesz transform on Rn is defined
to be R = (R1, . . . , Rn).

Now, Stein’s characterization of Riesz transforms ([S, Section 3.1]) can
be formulated as follows:

Fact 1.3. Let H := CO(n) acting on V := Rn, and π : H → GL(n,C)
as in (1.1.2). Then the space BH(L2(Rn), V ⊗ L2(Rn)) is one-dimensional,
and spanned by the Riesz transform R on Rn.

We write (Rn)∧ (≃ Rn) for the dual space of Rn. In [KN1, Corollary
2.1.2], Fact 1.3 is extended to the following:

Fact 1.4. Let H be a subgroup of GL(n,R) such that its contragredient
action has a dense orbit O in (Rn)∧. We write H1 for the stabilizer of H at
a point p in O. Then for any representation π : H → GLC(V ),

dimBH(L2(Rn), V ⊗ L2(Rn)) ≤ dimV H1 ,

where
V H1 := {v ∈ V : π(h)v = v for any h ∈ H1}.
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We note that dimV H1 is independent of the choice of p ∈ O.
In particular, a family of bounded operators is determined uniquely up to

a scalar multiple if dimV H1 ≤ 1. This assumption is fulfilled, for example,
if

(1) dimV = 1 (in this case, the translation invariant operator T is given
by the convolution with a kernel which is the Fourier transform of a
bounded relative invariant of a prehomogeneous vector space in the
sense of M. Sato, see [Sa])

or

(2) (H,H1) is a reductive symmetric pair and V is an arbitrary (finite-
dimensional) irreducible representation of H.

In Stein’s example (see Fact 1.3), (H,H1) = (CO(n),O(n−1)) is a reductive
symmetric pair.

The Riesz transform on Tn and Zn is defined as translation invariant
operator L2(Fn) → Cn ⊗ L2(Fn), (F = T,Z) in Definitions 2.5 and 4.11
respectively, in an analogous fashion to the Rn case. We shall observe that
for the Riesz transform on T and Z (namely, the Hilbert transform on T and
Z) the algebraic structure to formulate the invariance condition (1.1.1) fits
better with semigroups rather than groups.

In [EG], Edwards and Gaudry proved a discrete analog of Fact 1.3 for
n = 1, giving a characterization of the Hilbert transforms on T and Z by
“semigroup symmetry”.

The goal of this article is to formulate the maximal semigroup symmetry
for vector-valued translation invariant operators on Tn and Zn in general and
to investigate to what extent Edwards–Gaudry’s characterization works for
the Riesz transforms on Tn and Zn in higher dimensions.

As a higher dimensional generalization of Edwards and Gaudry’s results,
we need to adapt the general framework, Condition 1.1 in the Rn case. For
a formulation of “invariant multipliers” on Tn(= Rn/Zn) or Zn one natural
way is to use only injective linear transformations that preserve the lattice
Zn. Namely, the semigroup

Mreg(n,Z) := {g ∈ M(n,Z) : det g ̸= 0}.

Unlike the R case, we note

Mreg(n,Z) ⫌ GL(n,Z) := {g ∈ M(n,Z) : g is an automorphism of Zn}.

In the introduction we discuss only Tn for simplicity of the exposition.
The semigroup Mreg(n,Z) acts on L2(Tn) by

(Lgf)(x) := f(tgx) for f ∈ L2(Tn).
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Here we have used the operator Lg in the Tn case instead of the previous
lg : f(t) 7→ f(g−1t) in the Rn case because g−1t is not necessarily well-defined
for t ∈ Tn if det g ̸= ±1.

Definition 1.5 (semigroup symmetry). Let T : L2(Tn) → V ⊗L2(Tn),
be a bounded linear operator. We say T is

translation invariant if T ◦ τα = (id⊗τα) ◦ T for all α ∈ Rn;

nondegenerate if C-span{Tf(t) : f ∈ L2(Tn), t ∈ Tn} is equal to V .

A semigroup symmetry for T is a pair (G, π) where G is a subsemigroup of
Mreg(n,Z), and π : G → GLC(V ) is a semigroup homomorphism such that

(π(g)⊗ Lg) ◦ T = T ◦ Lg, for any g ∈ G. (1.1.3)

We define a partial order of semigroup symmetries by (G′, π′) ≺ (G, π) if
G′ ⊂ G and π′ = π|G. By Zorn’s lemma, there exists a maximal element of
this partial order. Actually, it is unique as the following construction shows.

Definition-Proposition 1.6 (maximal semigroup symmetry). For a
nondegenerate translation invariant operator T : L2(Tn) → V ⊗ L2(Tn)
there exists a unique maximal semigroup symmetry. In fact, let G be a
subset of Mreg(n,Z) consisting of all g for which there exists A ∈ GLC(V )
satisfying (A⊗Lg)◦T = T ◦Lg. Then G is a semigroup, and A is determined
uniquely by g ∈ G. The correspondence G → GLC(V ), g 7→ A defines
a semigroup homomorphism, which we denote by π. Then (G, π) is the
maximal semigroup symmetry for the operator T .

Remark 1.7. An analogous notion is defined for l2(Zn), but it is slightly
more involved, see Section 4.2.

Example 1.8. Let GT = CO(n,Z) := CO(n) ∩ M(n,Z), GR = CO(n)
and π(g) = | det g|−1/ng. Let GZ = CO(n,Z) and ρ(g) = | det g|n+1/n tg−1.
Then (GT, π) and (GR, π) are the maximal semigroup symmetries for the
Riesz transforms on Tn and Rn respectively and the pair (GZ, ρ) is the max-
imal semigroup symmetry for the Riesz transforms on Zn, see Propositions
2.6 and 4.12. Note that GR is in fact a group, but GT and GZ are just
semigroups.

Definition-Proposition 1.6 asserts that any nondegenerate translation in-
variant operator gives rise to the unique semigroup symmetry. Conversely,
we may ask:

Question 1.9. Does the maximal semigroup symmetry recover the orig-
inal operator?
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Fact 1.3 asserts that this is the case for the Riesz transform on Rn for all
dimensions n. Edwards and Gaudry proved that this is also the case for the
Hilbert transform on the circle T and on Z (namely, the Riesz transform on
the torus Tn and on Zn for n = 1), see Fact 2.1 and Fact 4.2, respectively.

Here are the main results of this article.

Theorem A. If the dimension n = 1, 2 or a multiple of four, then the
maximal semigroup symmetry given by the pair (CO(n,Z), | det g|−1/ng) and
(CO(n,Z), | det g|n+1/n tg−1) characterizes the Riesz transforms on Tn and
Zn respectively.

Theorem B. Suppose n ≥ 3 and n ̸≡ 0 mod 4. Then there exist in-
finitely many linearly independent multipliers on Tn and Zn respectively sat-
isfying the same semigroup symmetry with the Riesz transform.

Theorem A contains the aforementioned results of Edwards and Gaudry
as special cases when n = 1. Theorem B shows that the features of invariant
multipliers for Tn and Zn are very different from Stein’s theorem in the Rn

case.
In Section 5, we introduce a stronger invariance condition (saturated

semigroup symmetry), and prove that this condition characterizes the Riesz
transforms on Tn and Zn for arbitrary n.

Notation: N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}, N− = {−1,−2, . . . }, R× =
{r ∈ R : r ̸= 0}, R+ = {r ∈ R : r > 0}, Q× = Q ∩ R×, Q+ = Q ∩ R+,
and Mreg(n,Z) = {g ∈ M(n,Z) : det g ̸= 0} (semigroup), CO(n,Z) =
CO(n) ∩M(n,Z) (semigroup).

2. Maximal semigroup symmetry of translation invariant
operators on Tn

In Sections 2 and 4, we shall appeal to the general framework in Intro-
duction to discuss if the maximal symmetry gives a characterization of the
Riesz transforms on Tn = Rn/Zn and Zn.

2.1. The Hilbert transform on the circle T We begin with a quick
review on Edwards and Gaudry’s characterization of the Hilbert transform
on T in the one-dimensional case.

We define the Fourier transform on T = R/Z, F : L2(T) → l2(Z) by

F(f)(α) :=

∫
T
f(t)e−2πiαt dt (α ∈ Z).

Given a bounded function m on Z, we define a multiplier operator Tm :
L2(T) → L2(T) by

F(Tmf)(α) = m(α)F(f)(α).

6



Clearly the operator Tm is translation invariant, that is,

Tm ◦ τs = τs ◦ Tm for any s ∈ T,

where τsf(t) := f(t − s). Conversely, any translation invariant operator
bounded on L2(T), is of the form Tm for some m ∈ l∞(Z). In particular, the
Hilbert transform on T, to be denoted by H, is defined to be the multiplier
operator Tm with m defined by

m(α) :=


−i if α ∈ N+,

0 if α = 0,

i if α ∈ N−.

Let us examine the additional invariance conditions that the Hilbert
transform H satisfies. For a ∈ Z \ {0}, we define dilations Da on L2(T) and
l2(Z) by

Daf(t) := f(at) if f ∈ L2(T) (2.1.1)

DaF (α) := F (aα) if F ∈ l2(Z) (2.1.2)

respectively. Then
Da ◦ F ◦Da = F . (2.1.3)

In other words,

(F ◦Daf)(β) =

{
(Ff)(a−1β) β ∈ aZ
0 β ∈ Z \ aZ.

Then it is easy to see that the Hilbert transform H on T satisfies the
identity

H ◦Da = sgn(a)Da ◦H for any a ∈ Z \ {0}. (2.1.4)

Conversely, suppose that a multiplier operator Tm satisfies (2.1.4). By com-
position with Da ◦ F , we obtain the identity

Da ◦ F ◦ Tm ◦Da = sgn(a)F ◦ Tm

because of (2.1.3). In terms of the multiplier m, this amounts to

Da(m(α)F(Daf)(α)) = sgn(a)m(α)F(f)(α) for any f ∈ L2(T).

Using (2.1.3) again, we have

m(aα)F(f)(α) = sgn(a)m(α)F(f)(α),

for any f ∈ L2(T). Hence m(aα) = sgn(a)m(α) for any a ∈ Z \ {0} and
α ∈ Z. The substitution α = 0 and a = −1 shows that m(0) = 0 and
substituting α = 1 shows that m is a constant multiple of the sign function.
This is essentially the argument of Edwards and Gaudry who proved:
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Fact 2.1 ([EG, Theorem 6.8.3]). Suppose Tm is a multiplier operator
on L2(T), associated to m ∈ l∞(Z). If Tm satisfies the identity

Tm ◦Da = sgn(a)Da ◦ Tm for all a ∈ Z \ {0},

then m is a constant multiple of the sign function. Hence Tm is a constant
multiple of the Hilbert transform.

It should be noted that the above relative invariance is the maximal
semigroup symmetry with the subgroup Mreg(1,Z) ∼= Z \ {0} in the sense of
Definition-Proposition 1.6.

2.2. Covariance of vector-valued multipliers on Zn In this subsec-
tion, we translate the semigroup symmetry of translation invariant operators
on Tn into a covariance of vector-valued multipliers on Zn ∼= (Tn)̂ by using
the Fourier transform.

Let Tn be the n-torus Rn/Zn. Then the standard inner product on Rn

induces a pairing

⟨ , ⟩ : Zn × Tn → T, (α, x) 7→
n∑

i=1

αixi.

We define the Fourier transform

F : L2(Tn) → l2(Zn) (2.2.1)

by (Ff)(α) :=
∫
Tn f(x)e

−2πi⟨α,x⟩dx for α ∈ Zn. The Fourier transform F is
a unitary operator between the two Hilbert spaces up to scaling.

Let V be a finite-dimensional vector space over C. Given a bounded
function m : Zn → V, we define a linear operator

l2(Zn) → V ⊗ l2(Zn), g 7→ (α 7→ g(α)m(α)),

which is obviously a bounded operator. Via the Fourier transform, we get
a bounded linear operator

Tm : L2(Tn) → V ⊗ L2(Tn), f 7→ F−1(mFf).

The operator Tm is called a multiplier operator, and is translation invariant.
Conversely, any translation invariant bounded operator is of the form Tm

with some bounded function (multiplier) m : Zn → V by the general theory
of translation invariant operators. By definition, we have F(Tmf)(α) =
m(α) ⊗ Ff(α). By abuse of notation we shall write simply F(Tmf) =
m⊗Ff.

Proposition 2.2. Let H be a subsemigroup of Mreg(n,Z) and π : H →
GLC(V ) a semigroup homomorphism. The multiplier operator Tm:L2(Tn) →
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V ⊗ L2(Tn) satisfies the condition (1.1.3) for the pair (H,π) if and only if
the multiplier m : Zn → V satisfies

m(gα) = π(g)m(α) for all α ∈ Zn and all g ∈ H. (2.2.2)

For the proof of Proposition 2.2, we use the following two lemmas. (An
alternative proof will also be given at the end of this subsection.) We denote
by tg the transposed matrix of g. Clearly tg ∈ Mreg(n,Z) if and only if
g ∈ Mreg(n,Z).

Lemma 2.3. For g ∈ Mreg(n,Z) and α ∈ g−1Zn,

∑
m∈Zn/tgZn

e−2πi⟨α,m⟩ =

{
| det g| if α ∈ Zn,

0 if α /∈ Zn.

Proof. Since m 7→ e−2πi⟨α,m⟩ is a character of the finite group Z/tgZn,
the formula follows from Schur’s orthogonality relation and from the identity
♯(Zn/tgZ) = | det g|.

The formula of F ◦ Lg on Tn for g ∈ GL(n,Z) can be obtained easily as
the formula of the Fourier transform on Rn for affine transforms. However,
for g ∈ Mreg(n,Z), we need to note that Lg : L2(Tn) → L2(Tn) is not
surjective.

Lemma 2.4. For g ∈ Mreg(n,Z) and β ∈ Zn,

F(Lgf)(β) =

{
(Ff)(g−1β) if β ∈ gZn,

0 if β /∈ gZn.

Proof.

F(Lgf)(β) =

∫
Rn/Zn

f(tgx)e−2πi⟨β,x⟩dx

= | det g|−1

∫
Rn/tgZn

f(y)e−2πi⟨β,tg−1y⟩dy

= | det g|−1
∑

m∈Zn/tgZn

∫
Rn/Zn

f(y +m)e−2πi⟨g−1β,y+m⟩dy.

= | det g|−1
∑

m∈Zn/tgZn

e−2πi⟨g−1β,m⟩
∫
Rn/Zn

f(y)e−2πi⟨g−1β,y⟩dy.

By using Lemma 2.3, we get the lemma.
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Proof of Proposition 2.2. Via the Fourier transform, we see that the
condition (1.1.3) is equivalent to the following condition by Lemma 2.4:

π(g)h(g−1β)m(g−1β) = m(β)h(g−1β) for any β ∈ gZn and h ∈ l2(Zn),

for all g ∈ H. This is clearly equivalent to the condition (2.2.2).

Alternative proof of Proposition 2.2. Assume that Tm satisfies
(1.1.3). Then specializing to the function f(t) := e2πi⟨α,t⟩ and setting t = 0
we obtain

π(g)(Tm(e2πi⟨α,·⟩)(0)) = Tm(e2πi⟨α,
tg·⟩)(0) = Tm(e2πi⟨gα,·⟩)(0).

Since m(α) = Fκ(α), which can be rewritten as (κ ∗ e2πi⟨α,·⟩)(0) and by
definition this is equal to Tm(e2πi⟨α,·⟩)(0), we obtain π(g)m(α) = m(gα).
Conversely, if π(g)m(α) = m(gα). Then the same argument gives

π(g)(Tm(e2πi⟨α,·⟩)(0)) = Tm(e2πi⟨α,
tg·⟩)(0). (2.2.3)

By definition, Tm(Lge
2πi⟨α,·⟩)(s) = Tm(e2πi⟨α,

tg·⟩)(s) = τ−sTm(e2πi⟨α,
tg·⟩)(0).

Since Tm is translation invariant, this is equal to Tm(τ−se
2πi⟨α,tg·⟩)(0) =

Tm(e2πi⟨α,
tg·+tgs⟩)(0). Using the linearity of Tm we can rewrite this as

e2πi⟨α,
tgs⟩Tm(e2πi⟨α,

tg·⟩)(0). By (2.2.3) we obtain e2πi⟨α,
tgs⟩π(g)Tm(e2πi⟨α,·⟩)(0).

By linearity, we have

π(g)Tm(e2πi⟨α,·+
tgs⟩)(0) = π(g)Tm(τ−tgse

2πi⟨α,·⟩)(0).

Using the translation invariance again, we see that this equals

π(g)τ−tgsTm(e2πi⟨α,·⟩)(0) = π(g)Tm(e2πi⟨α,·⟩)(tgs) = π(g)LgTm(e2πi⟨α,·⟩)(s).

Thus we have proved the identity Tm ◦Lg = π(g)Lg ◦Tm for functions of the
type e2πi⟨α,·⟩. By linearity and continuity of Tm this implies that the identity
holds in general since trigonometric polynomials are dense in L2(Tn).

2.3. Riesz transform on Tn As a higher dimensional generalization
of the Hilbert transform, the Riesz transforms R1, . . . , Rn on the n-torus
Tn = Rn/Zn are defined as below.

Definition 2.5 ([SW, Section VII.3]). We define Rj : L
2(Tn) → L2(Tn)

(1 ≤ j ≤ n) to be the multiplier operator Tmj where

mj(α) =

{
−i

αj

∥α∥ if α ̸= 0,

0 if α = 0.

The resulting bounded linear operator R = (R1, . . . , Rn) : L
2(Tn) → Cn ⊗

L2(Tn) is said to be the Riesz transform on Tn. It is a discrete analogue of
the Riesz transform on Rn.
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Let us find what kind of symmetry the Riesz transform satisfies, and
then discuss whether or not such an invariance condition recovers the Riesz
transform up to scalar.

We recall that CO(n,Z) is the semigroup given by CO(n) ∩M(n,Z).

Proposition 2.6. The maximal symmetry of the Riesz transform R on
Tn is given by the pair (H,π) where

H := CO(n,Z),

π : H → GL(n,C), g 7→ | det g|−
1
n g.

Proof. It is easy to see that the Riesz transform satisfies the condition:

Lg ◦R = | det g|−
1
n g ◦R ◦ Lg for any g ∈ CO(n,Z), (2.3.1)

namely, (π(g) ⊗ Lg) ◦ R = R ◦ Lg for all g ∈ CO(n,Z). It remains to prove
that (H,π) is the maximal semigroup symmetry. For this we use Proposition
2.2. Let g ∈ Mreg(n,Z) and suppose that there exists A ∈ GL(n,C) such
that mR(gα) = AmR(α), for all α ∈ Zn. We shall show that g ∈ CO(n,Z).
Indeed, as mR(α) = −i α

∥α∥ we obtain gα
∥gα∥ = A α

∥α∥ . Taking norms, this

implies in particular that A ∈ O(n) since ∥Aα∥ = ∥α∥, for all α ∈ Zn. We
write g = (g⃗1, . . . , g⃗n) and A = (A⃗1, . . . , A⃗n). Then for α = ei we obtain A⃗i =
g⃗i

∥g⃗i∥ , that is, A is of the form (λ1g⃗1, . . . , λng⃗n). Now, by putting α = ei + ej
we find that λi = λj because g⃗1, . . . , g⃗n are linearly independent. So A = λg,

but it is also in O(n) hence λ = | det g|−
1
n . Hence g ∈ CO(n)∩M(n,Z) = H,

and A = π(g). Therefore (H,π) is the maximal semigroup symmetry of the
Riesz transform.

3. Proof of main theorems for Tn

In this section, we complete the proof of Theorems A and B for the n-torus
Tn.

3.1. From semigroup to group invariance Owing to Proposition 2.2
the analytic problem (Question 1.9) reduces to an algebraic invariance of
multipliers m : Zn → V. Under certain mild conditions, we can extend this
algebraic semigroup symmetry to a larger group invariance.

In this subsection, we formulate this in Lemma 3.5 which includes the
following proposition as a special case:

Proposition 3.1. Let π : CO(n,Z) → GLC(V ) be a semigroup homo-
morphism and m : Zn → V a function satisfying

m(gα) = π(g)m(α) for all g ∈ CO(n,Z) and α ∈ Zn.

11



Then there exist unique extensions π̃ : CO(n,Q) → GLC(V ) (group homo-
morphism) and m̃ : Qn → V of π and m, respectively, satisfying

m̃(gα) = π̃(g)m̃(α) for all g ∈ CO(n,Q) and α ∈ Qn.

In order to deal with a general setting, let H be a subsemigroup in
Mreg(n,Z) and define H̃ to be the subgroup in GL(n,Q) generated by g and
g−1 for g ∈ H.

Example 3.2. (1) ˜Mreg(n,Z) = GL(n,Q).

(2) ˜CO(n,Z) = CO(n,Q)

Proof. The first statement follows from the fact that kIn ∈ Mreg(n,Z)
for any k ∈ N+. To see the second statement, we first observe an obvious

inclusion: ˜CO(n,Z) ⊂ CO(n,Q). Conversely, let g ∈ CO(n,Q). Then there
exists k ∈ Z such that kg ∈ CO(n,Z). It follows that g = (kIn)

−1(kg) ∈
˜CO(n,Z).

Here is the universality for the extension H ⇝ H̃ : any semigroup homo-
morphism π : H → GLC(V ) extends to a group homomorphism π̃ : H̃ →
GLC(V ) (see [B, Chapter 1 §2.4, Theorem 1 and Remark 2]).

Suppose that H is a subsemigroup of Mreg(n,Z). Since H̃ is a subgroup
of GL(n,Q), we can define a subset UH of Qn by

UH := H̃Zn = {hv : h ∈ H̃, v ∈ Zn}.

We note that Zn ⊂ UH .

Lemma 3.3. Let H be a subsemigroup of Mreg(n,Z), π : H → GLC(V )
a semigroup homomorphism, and m : Zn → V a function satisfying (2.2.2).
We further assume that there is a map A : N+ → GLC(V ) satisfying the
following two conditions: for any k ∈ N+,

A(k)π(g) = π(g)A(k) for all g ∈ H,

m(kα) = A(k)m(α) for all α ∈ Zn. (3.1.1)

Then m extends uniquely to a function m̃ : UH → V satisfying

m̃(gα) = π̃(g)m̃(α) for all g ∈ H̃ and α ∈ UH . (3.1.2)

Remark 3.4. The extension m̃ is not necessarily bounded even though
we assume the multiplier m to be bounded.

12



Proof of Lemma 3.3. We set

Y := {(g, α) ∈ H̃ × Zn : gα ∈ Zn}.

We have an obvious inclusion H × Zn ⊂ Y because H ⊂ Mreg(n,Z).
First let us prove

m(gα) = π̃(g)m(α) (3.1.3)

for (g, α) ∈ Y with g−1 ∈ H. Since g−1 ∈ H and gα ∈ Zn, we have from the
identity (2.2.2) that

m(α) = m(g−1gα) = π(g−1)m(gα).

As π(g−1) is invertible, this can be rewritten as π̃(g)m(α) = m(gα). Hence
(2.2.2) holds under the assumption g ∈ H or g ∈ H−1.

For the general case, let (g, α) ∈ Y. We write g ∈ H̃ as g = g1 · · · gN
(g1, . . . , gN ∈ H ∪H−1), and will show (3.1.3) by induction on N . Suppose
(g, α) ∈ Y . We set g′ := g2 · · · gN . Since g′ ∈ GL(n,Q), we can find k ∈ N+

such that kg′α ∈ Zn. Since both (g1, g
′kα) and (g′, kα) belong to Y , we

have from the inductive hypothesis that

m(g1g
′kα) = π̃(g1)m(g′kα),

m(g′kα) = π̃(g′)m(kα).

Therefore we get

m(kgα) = m(g1g
′kα) = π̃(g1)π̃(g

′)m(kα) = π̃(g)m(kα).

By the assumption (3.1.1), this implies A(k)m(gα) = π̃(g)A(k)m(α). As
A(k) commutes with π(g) for all g ∈ H, it commutes also with π̃(g) for all
g ∈ H̃. Hence we get the identity A(k)m(gα) = A(k)π̃(g)m(α). Since A(k)
is invertible we obtain m(gα) = π̃(g)m(α). Thus we have shown that (3.1.3)
holds for all (g, α) ∈ Y .

We are ready to define m̃ by the relative invariance

m̃(gα) = π̃(g)m(α)

for α ∈ Zn and g ∈ H̃. To see that m̃ is well-defined, let gα = hβ. Then
α = g−1hβ, hence m(α) = m(g−1hβ) = π(g−1h)m(β) because (g−1h, β) ∈
Y. Thus we have

m̃(gα) = π̃(g)m(α) = π̃(h)m(β) = m̃(hβ),

which proves that m̃ is well-defined. In this way, m̃ is defined for all elements
in UH and the invariance (3.1.2) is now clear.
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Lemma 3.5. Let H be a subsemigroup of Mreg(n,Z), π : H → GLC(V ) a
semigroup homomorphism, and m : Zn → V a map satisfying (2.2.2). If H
contains kIn for all k ∈ N+ then there exists a unique extension m̃ : Qn → V
of m satisfying

m̃(gα) = π̃(g)m̃(α) for all g ∈ H̃ and α ∈ Qn.

Proof. The assumption of Lemma 3.3 is fulfilled by putting A(k) :=
π(kI). Then m̃ extends to Qn = H̃Zn.

3.2. Reduction to number theory Let

pn : CO(n,Q) → Qn \ {0} (3.2.1)

be the projection by taking the first column vector. We prove that the
conclusion of Theorem A holds if pn is surjective. In the next subsection we
determine explicitly for which n, pn is surjective.

Lemma 3.6. Let T : L2(Tn) → Cn ⊗ L2(Tn) be a bounded translation
invariant operator satisfying (2.3.1). If pn is surjective then T is a constant
multiple of the Riesz transform on Tn.

Proof. Owing to Proposition 2.2, Lemma 3.6 is reduced to the following
combinatorial lemma with ν = −1/n.

Lemma 3.7. Let ν ∈ C. Suppose m : Zn → Cn satisfies

m(gα) = |det g|νgm(α) (3.2.2)

for any α ∈ Zn and g ∈ CO(n,Z). Let e1 :=
t(1, 0, . . . , 0). Then

(1) m(0) = 0 and m(e1) ∈ Ce1.
(2) If pn : CO(n,Q) → Qn \ {0} is surjective, then there exists c ∈ C

such that
m(α) = c ∥α∥nνα (α ∈ Zn \ {0}).

Proof of Lemma 3.7. (1) For j = 1, 2, . . . , n, we denote by g(j) the
diagonal matrix diag(1, . . . , 1,−1, 1, . . . , 1) whose jth entry is −1. Then
g(j) ∈ CO(n,Z) and g(j)e1 = e1 (2 ≤ j ≤ n). Applying g = g(j) to (3.2.2), we
get m(e1) = m(g(j)e1) = g(j)m(e1). Hence the jth entry of m(e1) vanishes
for 2 ≤ j ≤ n. Thus we have shown m(e1) = ce1 for some c ∈ C. The same
argument with 1 ≤ j ≤ n applied to m(0) shows m(0) = 0.

(2) By (1), we have m(e1) = ce1 for some c ∈ C. By Proposition 3.1,
m extends uniquely to a function m̃ : Qn → Cn satisfying (3.2.2) for any
g ∈ CO(n,Q) and α ∈ Qn. Take any α ∈ Qn \{0}. If pn is surjective, we can
find g ∈ CO(n,Q) such that pn(g) = α, that is, ge1 = α. Applying (3.2.2),
we get

m̃(α) = | det g|νgm̃(e1) = c | det g|νge1 = c | det g|να.
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On the other hand, taking the norms of the identity ge1 = α, we have
| det g| = ∥α∥n because g ∈ CO(n,Q). Thus m̃(α) is of the form c ∥α∥nνα.
Now taking m = m̃|Zn , we get the second statement.

3.3. Proof of Theorem A for Tn In this subsection, we classify all
the positive integers n such that pn : CO(n,Q) → Qn \ {0} is surjective
(see Proposition 3.8). In particular, the equivalence of (i) and (ii) completes
the proof of Theorem A by virtue of Lemma 3.6. To state the invariance
conditions in Proposition 3.8 we introduce an equivalence relation ∼ on Qn

by
x ∼ y ⇔ x = gy for some g ∈ CO(n,Q).

This equivalence relation on Qn induces the one on its subset Zn \ {0}, and
we write Zn \ {0}/∼ for the set of equivalence classes.

Proposition 3.8. The following four conditions on n ∈ N+ are equiva-
lent:

(i) n = 1, 2 or a multiple of four.

(ii) pn : CO(n,Q) → Qn \ {0} is surjective.

(iii) #(Zn \ {0}/∼) = 1.

(iv) #(Zn \ {0}/∼) < ∞.

The rest of this subsection is devoted to the proof of Proposition 3.8.
We define a subgroup Λ of Q× by

Λ := {|det g|
2
n : g ∈ CO(n,Q)}. (3.3.1)

Lemma 3.9. For x, y ∈ Qn \ {0}, the following two conditions are equiv-
alent:

(i) x ∼ y, that is, there exists g ∈ CO(n,Q) such that y = gx.

(ii)
∥y∥2

∥x∥2
∈ Λ.

Proof. The key to the proof is the understanding of the image of det :
CO(n,Q) → Q×. Suppose g ∈ CO(n,Q). Then tgg = αIn for some α > 0.
Taking the determinant, we get | det g|2 = αn. Therefore for x ∈ Qn,

∥gx∥2 = | det g|
2
n ∥x∥2. (3.3.2)

Now the implication (i) ⇒ (ii) is clear.

(ii) ⇒ (i) We take g ∈ CO(n,Q) such that |det g|
2
n = ∥y∥2

∥x∥2 . This implies

∥y∥ = ∥gx∥ by (3.3.2). By Witt’s theorem (see [Se, Section IV.1 Theorem 3]
for instance), there exists h ∈ O(n,Q) such that y = hgx. Hence x ∼ y.
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We say that two quadratic forms on Qn are equivalent if they are con-
jugate by an element in GL(n,Q). The following elementary lemma clarifies
the role of the set Λ in our context.

Lemma 3.10. For a ∈ Q×, the following two conditions are equivalent:

(i) a ∈ Λ.

(ii) The quadratic forms ∥x∥2 =
∑n

i=1 x
2
i and a∥x∥2 on Qn are equivalent.

Proof. (i) ⇒ (ii) Let a ∈ Λ. By the definition (3.3.1) of Λ : a =

| det g|
2
n for some g ∈ CO(n,Q). This implies tgIng = aIn, and therefore the

quadratic forms ∥x∥2 and a∥x∥2 on Qn are conjugate by g ∈ CO(n,Q).

(ii) ⇒ (i) Suppose the quadratic form a∥x∥2 is conjugate to ∥x∥2, that
is, aIn = tgIng for some g ∈ GL(n,Q), which implies that g ∈ CO(n,Q).

Then we have a = | det g|
2
n ∈ Λ.

Proposition 3.11. Let

A :=
{ ∏
pj :prime
ej∈Z

p
ej
j : ej is odd only if pj = 2 or ≡ 1 mod 4

}
.

Then we have the following characterization of Λ

Λ =


(Q×)2 if n is odd,

A if n ≡ 2 mod 4,

Q+ if n ≡ 0 mod 4.

Proof. Owing to Lemma 3.10, it suffices to find a necessary and suf-
ficient condition on a ∈ Q× such that the quadratic forms ∥x∥2 and a∥x∥2
are equivalent on Qn. For this, we recall that the Hasse–Minkowski theo-
rem says that two quadratic forms over Q are equivalent if and only if they
have the same signature, discriminant modulo the squares (Q×)2 in Q× and
invariants ϵp for all prime numbers p, see [Se, IV, 3.3, Corollary to Theo-
rem 9]. We recall that the Hilbert symbol (a, b)p is defined to be 1 if the
equation z2 − ax2 − by2 = 0 has a nontrivial solution in Q3

p, and −1 oth-
erwise. Then ϵp is defined by ϵp(f) =

∏
i<j(ai, aj)p for a quadratic form

f ∼ a1X
2
1 + · · ·+ anX

2
n.

The signatures of ∥x∥2 and a∥x∥2 coincide if and only if a > 0 because
∥x∥2 is positive definite.

The discriminants of ∥x∥2 and a∥x∥2 are given by 1 and an, respectively.
They coincide in Q×/(Q×)2 if and only if an ∈ (Q×)2. For n odd this means
that a itself must be a square. For n even this does not give any restriction.
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Finally, we consider the invariants ϵv. For ∥x∥2 we have ϵv = 1 and for

a∥x∥2 it is (a, a)
n(n−1)/2
v .

Case I: n is odd. Then we have seen above that a is a square, thus
(a, a) = 1 according to [Se, Section III.1.1 Proposition 2 i)]. Hence for n
odd the only condition is that a is a square. Therefore Λ = (Q×)2.

Case II: n ≡ 0 mod 4. Since n(n−1)
2 is even, so (a, a)

n(n−1)/2
v = 1. Thus all

the invariants are the same as long as a > 0. Thus we have Λ = Q+.

Case III: n ≡ 2 mod 4. Since n(n−1)
2 is odd, (a, a)

n(n−1)/2
v = (a, a)v. Let

a = 2α0 · pα1
1 · · · · · pαk

k . For a prime number p,

(a, a)p =


(−1)αiϵ(p) if p = pi for some i (1 ≤ i ≤ k),

(−1)ϵ(p
α1
1 · ...pαk

k ) if p = 2,

1 otherwise

where ϵ is defined by ϵ(u) = (u − 1)/2 mod 2, see [Se, III, 1.2 Theorem 1]
for instance. Thus to have (a, a)p = 1 for all prime numbers p, it is necessary
and sufficient to have{

αi ≡ 0 mod 2 whenever pi ≡ 3 mod 4 (1 ≤ i ≤ k),

pα1
1 · · · · · pαk

k ≡ 1 mod 4.

None of the conditions give any restriction on α0 and the last condition
follows from the first because 32 ≡ 1 mod 4. Hence we conclude that the
set Λ consists of all rational numbers of the form 2α0 · pα1

1 · · · · · pαk
k where

the powers αi are even if pi ≡ 3 mod 4. Therefore Λ = A.

Alternative proof of Proposition 3.11. We would like to present a
second proof based on some results by Dieudonné, see [D]. This proof of
Proposition 3.11 is shorter but less direct. As before the situation imme-
diately reduces to the case when n is even. In our setting where we are
considering the equivalence of the quadratic forms ∥x∥2 and a∥x∥2 on Qn,
[D, Theorems 2 and 3] can be reformulated as the statement that the sub-
group Λ = Q+ for n ≡ 0 mod 4, and Λ is equal to the group of nonzero
norms in the algebraic extension Q + Q[i] for n ≡ 2 mod 4. The latter set
consists of rational numbers c for which there exist rational solutions to the
equation a2+ b2 = c, see also the remark in [D, page 404]. The Diophantine
equation a2 + b2 = c has an integer solution if and only if ordp c is even for
every prime p ≡ 3 mod 4, see [IR, Section 17.6, Corollary 1]. Here ordp c
is the largest nonnegative integer k such that pk|c by pk+1 ∤ c. This proves
Proposition 3.11 because the rational solutions differ from the integer solu-
tions only by a square in the denominator.
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Remark 3.12. There is a natural isomorphism

R+ ×O(n)
∼→ CO(n), (λ, g) 7→ λg (3.3.3)

for all dimensions n. Further, the isomorphism (3.3.3) induces an isomor-
phism

Q+ ×O(n,Q)
∼→ CO(n,Q)

if n is odd because | det g|1/n ∈ Q for all g ∈ CO(n,Z) by Proposition 3.11.

Corresponding to the isomorphism (3.3.3) we have an inclusion:

N+ ×O(n,Z) ↪→ CO(n,Z),

where we set O(n,Z) := O(n) ∩M(n,Z).

Remark 3.13. The semigroup CO(n,Z) is strictly larger than the sub-
semigroup N+ ×O(n,Z) for any n ≥ 2.

Proof. The element g ∈ CO(n,Z) belongs to the subsemigroup only if
| det g|1/n ∈ N+. For even n = 2k, the element

g :=

(
1 −1
1 1

)
⊕ · · · ⊕

(
1 −1
1 1

)
belongs to CO(2k,Z) but |det g|1/n =

√
2 /∈ N+ for k ≥ 1. Hence this

element does not belong to the subsemigroup.
For n odd, we have seen in Remark 3.12 that CO(n,Q) = Q+×O(n,Q).

Taking the intersection with M(n,Z) we obtain CO(n,Z) = (Q+×O(n,Q))∩
M(n,Z). Since O(n,Q) is dense in O(n,R), see for example [Sch], Q× ·
pn(CO(n,Z)) = pn(CO(n,Q)) is dense in Rn. On the other hand, O(n,Z) is
the set of permutation matrices with signs. Thus Q× · pn(N+ × O(n,Z)) is
not dense in Rn. Therefore N+×O(n,Z) is a proper subset of CO(n,Z).

Proof of Proposition 3.8. First we observe that the condition (ii) is
equivalent to:

e1 ∼ x for any x ∈ Qn \ {0},
which is then equivalent also to the following condition by Lemma 3.9:

(ii)′ ∥x∥2 ∈ Λ for any x ∈ Qn \ {0}.

(i) ⇒ (ii)′: This implication is trivial if n = 1. For n = 2, suppose

x = t(x1, x2) ∈ Q2 \ {0}. Then g :=

(
x1 −x2
x2 x1

)
∈ CO(2,Q) and p2(g) = x.

This shows that p2 is surjective. For n ≡ 0 mod 4, (ii)′ holds immediately
by Λ = Q+ (see Proposition 3.11).

(ii) ⇒ (iii): If pn is surjective, then any element in Qn \ {0} is in the
same equivalence class as e1. This implies (iii).

(iii) ⇒ (iv) Obvious.
(iv) ⇒ (i) This follows from Lemma 3.14 below.
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Lemma 3.14. For n odd or n ≡ 2 mod 4 and larger than 2, we have
#(Zn \ {0}/ ∼) = ∞.

Proof. Suppose first that n is odd. We define a sequence of integers pj
by setting p1 := 1 and using the recursive relation:

pj :=

j−1∏
i=1

(1 + p2i ).

Then for any i ̸= j,
GCD(1 + p2j , 1 + p2i ) = 1. (3.3.4)

We set γj :=
t(1, pj , 0, . . . , 0). By Lemma 3.9 and Proposition 3.11,

γi ∼ γj ⇒

√
1 + p2i
1 + p2j

∈ Q×. (3.3.5)

By (3.3.4), this implies that 1 + p2j = a2 for some integer a. But this is

impossible because pj <
√

1 + p2j < pj + 1. Hence γi ≁ γj . Thus we

conclude #(Zn \ {0}/ ∼) = ∞ if n is odd.
Suppose now that n > 2 and n ≡ 2 mod 4. Let pk be the kth prime such
that pk ≡ 3 mod 4, that is,

p1 = 3, p2 = 7, p3 = 11, p4 = 19, . . . .

By a theorem of Lagrange (see [Se, Section IV, Appendix Corollary 1] for
example), we can find four integers ak, bk, ck, dk such that

a2k + b2k + c2k + d2k = pk.

We set
γk := t(ak, bk, ck, dk, 0, . . . , 0) ∈ Zn.

Then
∥γj∥2
∥γi∥2 =

pj
pi

/∈ Λ by Proposition 3.11. Therefore γi ≁ γj for any i ̸= j

by Lemma 3.9. Hence there exist infinitely many γj ∈ Zn which are not
equivalent to each other.

Remark 3.15. As we see from Theorems A and B and from Proposition
3.8, the surjectivity of pn : CO(n,Q) → Qn\{0} is a necessary and sufficient
condition on n, such that the maximal semigroup symmetry characterizes
R. Let us consider the stronger condition of surjectivity of pn replacing Q by
Z. By using the fields R,C,H and O, we see that pn : CO(n,Z) → Zn \ {0}
is surjective if n = 1, 2, 4 and 8 respectively. This gives a partial result of
Theorem A in the cases n = 1, 2, 4 and 8. This was the original approach
when we started this project.
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3.4. Proof of Theorem B for Tn In order to prove Theorem B, we
use Proposition 2.2 and construct, for any ν ∈ R, infinitely many, linearly
independent multipliers m : Zn → Cn for n ≥ 3, n ̸≡ 0 mod 4 satisfying
the condition

m(gα) = | det g|νgm(α), for all α ∈ Zn and g ∈ CO(n,Z). (3.4.1)

The case ν = −1/n will be used in the proof of Theorem B for Tn, and
ν = −(n + 1)/n for Zn, see Section 4. Proposition 3.1 gives a guiding
principle to introduce the following function mβ.

Lemma 3.16. Fix β ∈ Zn and ν ∈ R. Then the map mβ : Zn → Cn

given by

mβ(α) =

{
|det g|να if α = gβ for some g ∈ CO(n,Q)

0 if α ≁ β

is well-defined and satisfies (3.4.1). Further,

Suppmβ = {α ∈ Zn : α ∼ β}. (3.4.2)

Proof. If β = 0 then mβ ≡ 0 and the statement is obvious.

Suppose β ̸= 0. If β = g1α = g2α for g1, g2 ∈ CO(n,Q), then g1g
−1
2 β =

β. Taking the norm, we see | det(g1g−1
2 )| = 1 because g1g

−1
2 ∈ CO(n,Q).

Therefore we have |det g1|να = |det g2|να, and thus mβ(α) is well-defined.

Let us verify that mβ satisfies (3.4.1). Suppose g ∈ CO(n,Z). For α such
that α ≁ β, we also have gα ≁ β. Hence mβ(α) = mβ(gα) = 0, and (3.4.1)
holds. For α such that α ∼ β, we take g′ ∈ CO(n,Q) such that α = g′β. By
definition,

mβ(α) = | det g′|να,
mβ(gα) = | det(gg′)|νgα.

Hence mβ(gα) = | det g|νgmβ(α), and therefore (3.4.1) holds. Thus Lemma
3.16 is proved.

Lemma 3.17. Retain the notation of Lemma 3.16. Suppose γj ∈ Zn

(j = 1, 2, . . .) satisfies γi ≁ γj for any i ̸= j. Then mγj (j = 1, 2, . . .) are
linearly independent.

Proof. The supports of the mγj ’s are disjoint for j = 1, 2, . . . by (3.4.2).
It then follows that mγj (j > 1, 2, . . .) are linearly independent.

Proof of Theorem B. Clear from Lemma 3.17 and from the equivalence
(i) ⇔ (iv) in Proposition 3.8.
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4. Translation invariant operators on Zn

So far, we have discussed the maximal semigroup symmetry for the Riesz
transforms on Tn. In this section, we consider an analogous question for the
Zn case.

4.1. One-dimensional case In this subsection we review the charac-
terization results for the Hilbert transform on Z obtained by Edwards and
Gaudry in [EG].

Let

κ(α) =

{
0 if α = 0,
1
πα if α ̸= 0.

Then the Hilbert transform H for Z is defined to be the operator on l2(Z)
as the convolution with h, that is, Hf = κ ∗ f. Then H : l2(Z) → l2(Z) is a
translation invariant bounded linear operator.

Remark 4.1. Here we follow the definition given in [EG]. Note that
κ(α) is the natural correspondent to the Hilbert kernel on R. This kernel
differs slightly from the Fourier transform of −i sgn θ, whose kernel can be
written as (−1)α−1

2 κ(α).

We recall from (2.1.2) thatDa : l2(Z) → l2(Z) is a dilation for a ∈ Z\{0}.
Edwards and Gaudry proved the following characterization of the Hilbert

transform on Z :

Fact 4.2 ([EG, Theorem 6.8.5]). Let T be a translation invariant oper-
ator on l2(Z) which, for every a ∈ Z \ {0}, satisfies the relation

T (Daf) = aDaT (f)

for all functions f ∈ l2(Z) with support in aZ. Then T is a constant multiple
of the Hilbert transform.

The restriction of the invariance condition to functions with support in
aZ did not appear in the characterization theorem for the Rn-case (Fact 1.3)
or the Tn-case (Fact 2.1). However, it cannot be relaxed in the Z-case as
the next fact shows.

Fact 4.3 ([EG, Lemma 6.8.4]). If T is a translation invariant operator
on l2(Z) such that

T ◦Da = σ(a)Da ◦ T (4.1.1)

for all a ∈ Z \ {0}, where σ(a) is a nonzero complex-valued function on
Z \ {0}. Then σ ≡ 1 and T is a constant multiple of the identity.

We shall analyze Fact 4.3 for the higher dimensional case in the next
subsection.
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4.2. Maximal semigroup symmetry For β ∈ Zn, we define the transla-
tion operator τβ : l2(Zn) → l2(Zn) by (τβf)(α) = f(α−β). For g ∈ M(n,Z),
let Lg : l2(Zn) → l2(Zn) be the linear map defined by Lgf(α) = f(tgα). Let
V be a finite-dimensional complex vector space.

Definition 4.4. A bounded linear operator T : l2(Zn) → V ⊗ l2(Zn) is
said to be

(1) translation invariant if T ◦ τβ = (id⊗τβ) ◦ T, for all β ∈ Zn;

(2) nondegenerate if C- span{Tf(α) : f ∈ l2(Zn), α ∈ Zn} is equal to V .

Any translation invariant operator, T : l2(Zn) → V ⊗ l2(Zn), can be
obtained as the convolution with some kernel κ : Zn → V

Tf(α) = κ ∗ f(α) =
∑
β∈Zn

f(β)κ(α− β), f ∈ l2(Zn).

Then T is nondegenerate if and only if κ(Zn) spans the vector space V over
C. From now on assume that T is translation invariant and nondegenerate.

We will make frequent use of Kronecker’s delta function

δγ(α) =

{
1 if α = γ,

0 if α ̸= γ,

in the present section.
For g ∈ M(n,Z) and A ∈ GLC(V ), we consider the following conditions

on the pair (g,A):

(C0) (A⊗ Lg) ◦ Tf = T ◦ Lgf, for all f ∈ l2(Zn).

(C1) (A⊗ Lg) ◦ Tf = T ◦ Lgf, for all f ∈ l2(Zn) with Supp f ⊂ tgZn.

(C2) (A⊗ Lg) ◦ Tδ0 = T ◦ Lgδ0.

(C3) Aκ(tgα) = κ(α), for all α ∈ Zn.

Obviously (C0) implies (C1).

Lemma 4.5. The three conditions (C1), (C2), and (C3) are equivalent.

Proof. First it is obvious that (C1) implies (C2).
(C2) ⇒ (C3): Since Lgδ0 = δ0 for any g ∈ M(n,Z), the implication is

clear from Tδ0 = κ.
(C3) ⇒ (C1): Take any f ∈ l2(Z) such that Supp f ⊂ tgZn. Then

(A⊗ Lg)Tf(α) = A
∑
β∈Zn

f(β)κ(tgα− β).
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Since the support of f is contained in tgZn, the right-hand-side is equal to

A
∑
γ∈Zn

f(tgγ)κ(tg(α− γ))

and by the condition (C3) this is

=
∑
γ∈Zn

f(tgγ)κ(α− γ) = T (Lgf)(α),

which gives the condition (C1).

Lemma 4.6. Assume that T is nondegenerate and satisfies the condition
(C3) for the two pairs (g,A) and (g,A′) with A,A′ ∈ GLC(V ). Then A = A′.

Proof. Since A is invertible we have by condition (C3) A−1κ(α) =
κ(tgα). Since κ(Zn) spans V , A−1 is uniquely determined by g.

The characterization theorem of Edwards and Gaudry (Fact 4.2) leads
us to the following definition.

Definition 4.7 (semigroup symmetry). Let T : l2(Zn) → V ⊗ l2(Zn) be
a translation invariant bounded operator. A semigroup symmetry for T is a
pair (G, π) where G is a subsemigroup of Mreg(n,Z), and π : G → GLC(V ) is
a semigroup homomorphism such that T satisfies the equivalent conditions
(C1), (C2) and (C3) for (g, π(g)), g ∈ G.

Among the semigroup symmetries for T we define a partial order (G′, σ) ≺
(G, π) if G′ ⊂ G and σ(g) = π(g) for g ∈ G′.

The following proposition assures the existence of the unique maximal
semigroup symmetry for a nondegenerate translation invariant operator.

Proposition 4.8 (maximal semigroup symmetry). Given a translation
invariant and nondegenerate bounded linear V -valued operator T : l2(Zn) →
V ⊗l2(Zn). We define G to be a subset of Mreg(n,Z) consisting of g for which
there exists A ∈ GLC(V ) such that (g,A) satisfies one of the equivalent
conditions, (C1)–(C3). Then G is a semigroup. Further, A is unique for
each g ∈ G. The correspondence g 7→ A defines a semigroup homomorphism
π : G → GLC(V ). The pair (G, π) gives the maximal semigroup symmetry
for T.

Proof. The uniqueness for A follows directly from Lemma 4.6 because
T is nondegenerate. The remaining statement is clear.
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We end this subsection with some comments on the semigroup sym-
metry, namely, the reason why we have adopted (C1) but not (C0). In
fact, the equivalence (C1)–(C3) in Lemma 4.5 asserts that (G, π) is a max-
imal semigroup symmetry for the translation invariant bounded operator
T : l2(Zn) → V ⊗ l2(Zn) in the sense of condition (C1) if and only if (G, π)
is a maximal pair with the following algebraic condition: π(g)κ(tgα) = κ(α)
for all α ∈ Zn and g ∈ G. On the other hand, it turns out that the condition
(C0) is too strong, as Fact 4.3 already suggests in the one-dimensional case.
In fact, we have the following proposition asserting that there does not exist
an interesting operator T satisfying (C0) if g runs over a “sufficiently large”
subsemigroup H:

Proposition 4.9. Let T be a translation invariant bounded operator
from l2(Zn) to V ⊗ l2(Zn) such that the following diagram

l2(Zn) V ⊗ l2(Zn)

l2(Zn) V ⊗ l2(Zn)

-T

?
Lg

?
π(g)⊗Lg

-T

(4.2.1)

commutes for all g ∈ H, that is, the condition (C0) holds for (g, π(g)) for all
g ∈ H. If H satisfies

∩
g∈H

tgZn = {0} then TF = v ⊗ F for some element
v ∈ V.

For the proof we use the following:

Lemma 4.10. Suppose T : l2(Zn) → V ⊗l2(Zn) is a translation invariant
bounded linear operator with kernel κ : Zn → V. If the condition (C0) holds
for (g,A) for some A ∈ GLC(V ), then Suppκ ⊂ tgZn.

Proof of Lemma 4.10. Take γ /∈ tgZn. Lgδγ = 0, and thereforeATδγ(
tgα) =

0, for all α ∈ Zn by (C0). Since A ∈ GLC(V ) we obtain Tδγ(
tgα) = 0, which

is equivalent to κ(tgα− γ) = 0 for all α ∈ Zn. This implies that

Suppκ ⊂
∩

γ /∈tgZn

(Zn \ (tgZn − γ)) = Zn \
∪

γ∈tgZn

(tgZn − γ) = tgZn.

Proof of Proposition 4.9. By Lemma 4.10, the support of the kernel
κ must be contained in the set tgZn. Therefore Suppκ ⊂

∩
g∈H

tgZn = {0}.
Hence T must be of the form in the statement of the proposition.
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4.3. Maximal semigroup symmetry of Riesz transform for Zn

The results obtained in this section are similar to the ones obtained for Tn,
but there is a new feature to take into account, see Fact 4.2 and Fact 4.3.

Definition 4.11. The Riesz transforms for Zn are defined by convolving
with the kernels Kj (1 ≤ j ≤ n),

Kj(α) =


Γ(n+1

2
)

π
n+1
2

αj

∥α∥n+1 if α ̸= 0,

0 if α = 0.

This is the discrete version of the corresponding kernel for the Riesz trans-
forms on Rn, see Definition 1.2.

For j = 1, this coincides with the Hilbert transform of Edwards and
Gaudry, see Section 4.1.

Proposition 4.12. The maximal semigroup symmetry of the Riesz
transform on Zn is given by (CO(n,Z), ρ), where

ρ : CO(n,Z) → GL(n,C), g 7→ | det g|(n+1)/n tg−1.

Proof. Clearly, (CO(n,Z), ρ) is a semigroup symmetry for κ = (K1, . . . ,Kn).
Thus the proposition follows directly from the following lemma.

Lemma 4.13. Let κ = (K1, . . . ,Kn) be the kernel of the Riesz transform.
Assume there exist A ∈ GLC(V ) and g ∈ Mreg(n,Z) such that

Aκ(α) = κ(tgα), for all α ∈ Zn.

Then g ∈ CO(n,Z) and A = | det g|−(n+1)/n tg.

Proof. Since κ(α) = Cn
α

∥α∥n+1 , where Cn is a nonzero constant depend-

ing only on the dimension n, Aκ(α) = κ(tgα) implies that

A
α

∥α∥n+1
=

tgα

∥tgα∥n+1
. (4.3.1)

For 1 ≤ i ≤ n, we denote by tgi the ith column vector of tg. Applying the

equation (4.3.1) to α = ei, the ith unit vector, we get Aei =
(tg)i

∥(tg)i∥n+1 . For

n = 1 this is what we wanted to prove, so let n > 1. Then

A

(
ei + ej√

2

)
=

(
tgi

∥tgi∥n+1
+

tgj
∥tgj∥n+1

)
1√
2
,

whereas equation (4.3.1) with α = ei + ej gives

A

(
ei + ej√

2

)
=

(
√
2)n+1

√
2

tgi +
tgj

∥tgi + tgj∥n+1
.
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Since g ∈ Mreg(n,Z), tgi and
tgj are linearly independent. Comparing the

coefficients of tgi and tgj in the two expressions, we obtain ∥tgi + tgj∥ =√
2∥tgi∥ =

√
2∥tgj∥. Then we have ∥tgi+ tgj∥2 = ∥tgi∥2+∥tgj∥2, which implies

(gi, gj) = 0. Hence g ∈ CO(n,Z). Then | det g| = ∥gi∥n for all i. Since
Aei =

tgi/∥tgi∥n+1 (1 ≤ i ≤ n), we get A = | det g|−(n+1)/n tg.

Proof of Theorems A and B in the Zn case. The maximal semigroup
symmetry for the Riesz transform on Zn imposes the invariance condition
on the convolution kernel κ : Zn → V (see (C3))

| det g|(n+1)/ntg−1κ(tgα) = κ(α)

for all α ∈ Zn and g ∈ CO(n,Z) by Proposition 4.12. This is equivalent to

κ(gα) = |det g|−(n+1)/ngκ(α) (4.3.2)

for all α ∈ Zn and g ∈ CO(n,Z). By Lemma 3.7 with ν = −(n + 1)/n and
Proposition 3.8, any κ satisfying (4.3.2) must be a scalar multiple of the
convolution kernel of the Riesz transform if n = 1, 2 or n ≡ 0 mod 4. Hence
Theorem A for Zn is proved.
Suppose n > 2 and n ̸≡ 0 mod 4. By Lemma 3.17 with ν = −(n + 1)/n
and the equivalence (i) ⇔ (iv) in Proposition 3.8, there exists infinitely
many linearly independent κ’s satisfying (4.3.2). Then the corresponding
translation invariant operators are linearly independent because the convo-
lution kernel determines uniquely the operators (to see this one may apply
δγ ∈ l2(Zn)).

5. Saturated semigroup symmetry

For n > 2 and n ̸≡ 0 mod 4, we have seen in Theorem B that there
are infinitely, many linearly independent translation invariant operators that
satisfy the maximal semigroup symmetry of the Riesz transforms for Tn and
Zn. We may ask what are other invariance conditions that can single out the
Riesz transforms on Tn and Zn. In this section, we introduce a little more
technical condition (saturated semigroup symmetry) which characterizes the
Riesz transforms on Tn and Zn (up to scalar) for all dimensions n.

5.1. Characterization of the Riesz transform on Tn We define the
following set

Ξ := {(g, α) ∈ CO(n)× Zn : gα ∈ Zn}.

Let fα(x) := e2πi⟨α,x⟩ for α ∈ Zn. For any (g, α) ∈ Ξ, the function Ltgfα is
well-defined as a function on Tn by

(Ltgfα)(x) := e2πi⟨α,
tgx⟩ = e2πi⟨gα,x⟩.
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We say that a bounded translation invariant operator T : L2(Tn) → Cn ⊗
L2(Tn) satisfies a saturated semigroup symmetry for Ξ if it satifies the iden-
tity

(Tfα)(0) = | det g|−1/ng(T (Ltgfα)(0)) (5.1.1)

for all pairs (g, α) ∈ Ξ.
We recall from Proposition 3.1 and Example 3.2 that the invariance condi-
tion m(gα) = | det g|−1/ng(m(α)) extends to invariance under the set

Y := {(g, α) ∈ CO(n,Q)× Zn : gα ∈ Zn} .

We note Y ⊊ Ξ. We shall characterize the Riesz transforms on Tn and Zn

by using the larger set Ξ.
Then the Riesz transform on Tn can be recovered from the saturated

semigroup symmetry for Ξ for any dimension n:

Theorem 5.1. If T : L2(Tn) → Cn⊗L2(Tn) is a bounded translation in-
variant operator satisfying the identity (5.1.1) for all pairs (g, α) ∈ Ξ. Then
T = cR, for some c ∈ C, where R = (R1, . . . , Rn) is the Riesz transform on
Tn.

Proof. As in the proof of Proposition 2.2, the multiplier m : Zn → Cn

for the operator T satisfies

m(α) = | det g|−1/ngm(tgα).

The result then follows from Lemma 5.2 below.

Lemma 5.2. Fix ν ∈ R. If a function F : Zn → Cn satisfies the condition

F (gα) = | det g|νgF (α), for all pairs (g, α) ∈ Ξ,

then F is unique up to multiplication with a scalar.

Proof. Since for any α ∈ Zn there exists an element g ∈ CO(n) such
that (g, e1) ∈ Ξ and α = ge1 the proof follows in the same way as in the
proof of Lemma 3.7.

5.2. Characterization of the Riesz transform on Zn In a similar
way as in the previous subsection, the Riesz transform on Zn is recovered
from the saturated semigroup symmetry for Ξ for all dimension n:

Theorem 5.3. Let T : l2(Zn) → Cn ⊗ l2(Zn) be a bounded translation
invariant operator satisfying the identity

Ltg(Tδ0)(α) = | det g|−
n−1
n g(Tδ0(α)), (5.2.1)

for all pairs (g, α) ∈ Ξ. Then T = cR for some c ∈ C, where R = (R1, . . . , Rn)
denotes the Riesz transform on Zn.
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Proof. The condition (5.2.1) is equivalent to that of the corresponding
kernel κ : Zn → Cn of T, namely

κ(gα) = | det g|−
n−1
n gκ(α). (5.2.2)

Then Lemma 5.2 implies that κ must be a constant multiple of the Riesz
transform on Zn.
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