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0 Introduction

Let X be a smooth projective irreducible curve over a finite field Fq, and
let Bun(X) be the category of vector bundles on X. The Hall algebra of
Bun(X), denoted H, is an associative non-commutative algebra whose elements
are finitely supported functions on the set of isomorphism classes of objects of
Bun(X). The functions take value in a field k of characteristic 0; in this intro-
duction we assume k = C. The multiplication is given by counting short exact
sequences of bundles. In other words, elements of H are unramified automorphic
forms for all the groups GLr over the function field Fq(X), and multiplication
is given by the parabolic pseudo-Eisenstein series map.

This algebra is an object of remarkable depth which exhibits connections
with other areas of mathematics. It was first considered in [15] where func-
tional equations for Eisenstein series were interpreted as quadratic relations in
H. Already in the simplest case X = P1 the algebra H is identified with the
“pointwise Borel subalgebra” of the quantum affine algebra Uq(ŝl2). Next, in
the case when X is an elliptic curve, one can identify a natural “spherical” sub-
algebra in Cherednik’s double affine Hecke algebra with a certain subalgebra
Hsph ⊂ H (which is also called spherical) [31]. There are further deep relations
of Hsph in this case with Macdonald polynomials and the Hilbert scheme of the
plane [32]. Even more recently, an analog of Hsph for higher genus curves was
studied in [33].

The goal of this paper is to give a description of the full algebra H in
terms of automorphic Rankin-Selberg L-functions associated to unramified cusp
eigenforms on (all the groups GLr over the function field of) X. We consider
the set of all such forms as a 1-dimensional scheme Σ with countably many
components (similarly to the set of quasi-characters of the idele group in the
classical theory of Tate). The value at 1 of the Rankin-Selberg L-function defines
then a rational function LHom : Σ × Σ → C. We use this rational function to
construct a Feigin-Odesskii shuffle algebra, similarly to [7]. Our main result,
Theorem 3.10, identifies H with this “Rankin-Selberg shuffle algebra”. This
extends the result of [33] for the subalgebra in H generated by line bundles.
In particular, we embed H into Cqcom[Sym(Σ)], the space of regular symmetric
functions of variables from Σ, i.e., of groups of variables from C∗, see Corollary
3.16. Here the subscript “qcom” means that we take the direct sum of the space
of regular functions on individual irreducible components.

Applying the Langlands correspondence for the groups GLr over functional
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fields established by Lafforgue [16], we then give a purely Galois-theoretic in-
terpretation of the algebra H in Corollary 3.15.

From the point of view of relations, our result means that all the relations
in H are governed by the zeroes of the Rankin-Selberg functions (as it is the
zeroes of the defining functions which affect the relations in Feigin-Odesskii
algebras). Note that starting from the elliptic case, quadratic relations are no
longer sufficient to describe H (or even Hsph), see [4, 28]. The situation is
parallel to that of quantum affine algebras, see [5], where one has to impose
certain loop analogs of the Serre relations for semisimple Lie algebras. As an
application, we give a simple proof of the fact that the algebra H for an elliptic
curve splits into an infinite tensor product of commuting algebras analogous to
Hsph. This result was also obtained by Fratila [8].

The importance of desribing the full algebra H is that it comes with a nat-
ural basis (formed by individual vector bundles) and it is interesting to study
the symmetric polynomials on Σ corresponding to these bundles. For intance,
the basis of bundles is obviously orthogonal with respect to the orbifold scalar
product. The corresponding scalar product on Cqcom[Sym(Σ)] can be found
by the classical “Maass-Selberg relations” (evaluation of the scalar product of
two pseudo-Eisenstein series, cf. [22, §II.2.1]). Algebraically, they give the
L2-scalar product on Cqcom[Sym(Σ)] corresponding to some rational function
weight formed out of the LHom functions, in a way remindful of the scalar
products considered by Macdonald [18]. So the symmetric polynomials associ-
ated to the individual bundles, form an orthogonal system, thus presenting an
exciting generalization of the setup of [18].

The paper is organized as follows. In Section 1 we develop the formalism of
shuffle algebras in the generality we need (that of a scheme with infinitely many
components, such as the scheme Σ of cusp eigenforms). Most earlier treatments
worked with defining functions c(s, t) defined on a 1-dimensional algebraic group
such as Gm and depending only on the ratio of variables: c(s, t) = c(s/t). We
also develop a formalism of rational algebras and bialgebras of which H will be
later shown to give an example.

Section 2 provides background on the Hall algebra of the category of all
coherent sheaves on X (not just vector bundles). In particular, torsion sheaves
form the classical unramified Hecke algebra A. It is convenient for us to view
the spectrum W = Spec(A) as a Witt scheme (or, rather, the product of the
classical Witt schemes of [24], one for each point of X). The interpretation of
points of a Witt scheme as power series produces at once the L-factors and the
L-series corresponding to a cusp A-eigenform. In addition, the well known ring
structure on the Witt scheme corresponds to forming the Rankin-Selberg tensor
product L-functions.

In Section 3 we introduce the scheme Σ as a subscheme in W , and the
sub-semigroup in W (with respect to the additive structure) generated by Σ of
W plays a key role in our construction. We take care to reformulate the basic
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results of the automorphic theory (such as, e.g., the multiplicity one theorem) in
a purely algebraic, rather than the more traditional analytic, way. In particular,
we use the support of a module M over the commutative ring A instead of the
joint spectrum of operators in a Hilbert space. Our modules M consist of finitely
supported functions on Bun, so they don’t contain actual Hecke eigenforms, but
the corresponding eigenvalues show up in SuppA(M). We formulate our main
results in §3.4 and give an application to elliptic curves in §3.5.

Finally, Section 4 is devoted to the proof of Theorem 3.10. To summarize
the argument, let us indicate the main ingredients of the proof.

(1) We interpret the multiplication in the Hall algebra as given by Eisenstein
series and the comultiplication as given by the constant term. This is done
in §3.1.

(2) We reformulate the spectral decomposition theorem for unramified auto-
morphic forms on GLn(A) as saying that the subspace Hcusp ⊂ H of cusp
forms generates H as an algebra. This is done in Proposition 4.1.

(3) We use the constant term of Eisenstein series to map the Hall algebra into
the space of rational functions of an auxiliary variety which is a product
of several copies of Σ. This done in Proposition 4.15 , using Theorem 4.9.

(4) In particular, the injectivity of the map in (4), denote it ω, is a consequence
of the positivity of the orbifold Hermitian scalar product.

(5) Finally, image of map ω is described by the Maass-Selberg relations which
express the constant term of Eisenstein series as a sum over the Weyl
group.

In other words, we interpret the classical results on functional equation and
constant terms of Eisenstein series as saying that H, although highly noncom-
mutative, can nevertheless be seen as a commutative and cocommutative rational
bialgebra in a certain meromorphic symmetric monoidal category in the sense
of [35]. This is the contents of Theorem 4.9. This identifies the Hall multiplica-
tion with a shuffle product, using the fact that the constant term is an algebra
homomorphism.

M.K. would like to thank Universities Paris-7 and Paris-13 as well as the
Max-Planck Institut für Mathematik in Bonn for hospitality and support during
the work on this paper. His work was partially supported by an NSF grant and
by the World Premier International Research Center Initiative (WPI Initiative),
MEXT, Japan.
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1 Generalities on shuffle algebras.

This section is a reminder on shuffle algebras. This material is mostly standard,
so we will be sketchy. An algebra will always be an associative algebra, with
unit unless otherwise specified. Let k be a field of characteristic zero.

1.1 Disjoint union schemes.

Let Σ be a scheme which is a disjoint union of irreducible affine algebraic vari-
eties over k. Denote by π0(Σ) the set of connected components of Σ. The ring
of regular functions on Σ is

k[Σ] =
∏

S∈π0(Σ)

k[S].

Note that if π0(Σ) is infinite, then Σ is not an affine scheme, in particular
Σ 6= Spec(k[Σ]). Let QCoh(Σ) be the category of quasicoherent sheaves of
OΣ-modules. For F ∈ QCoh(Σ) denote

Γqcom(Σ,F) =
⊕

S∈π0(Σ)

Γ(S,F)

the space of sections with quasicompact support. For F = OΣ we get the
k-algebra

kqcom[Σ] =
⊕

S∈π0(Σ)

k[S].

If π0(Σ) is infinite, this algebra has no unit, but for any finite number of elements
a1, a2, . . . , an ∈ kqcom[Σ] there is an idempotent e ∈ kqcom[Σ] such that eai = ai
for all i. The following is straightforward, compare with [1], §1.1.

Proposition 1.1. The functor F 7→ Γqcom(Σ,F) identifies QCoh(Σ) with the
category of kqcom[Σ]-modules M such that for any finite number of elements
m1,m2, . . . ,mn ∈ M there is an idempotent e ∈ kqcom[Σ] such that emi = mi

for all i.

Proof. Left to the reader.

1.2 Symmetric powers.

Since every component of Σ is an affine scheme, we have a well-defined sym-
metric power scheme Symn(Σ) = Σn/Sn for n > 0. It is clear that

kqcom[Symn(Σ)] = (kqcom[Σ]⊗n)Sn

is the symmetric power of the k-vector space kqcom[Σ], with the obvious k-
algebra structure. The component decomposition of Symn(Σ) is given by

Symn(Σ) =
∐
λ

∏
S∈π0(Σ)

Symλ(S)(S),
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where λ runs over the set of maps π0(Σ) → N such that
∑
S λ(S) = n. We

denote
Sym(Σ) =

∐
n>0

Symn(Σ).

It is a commutative monoid in the category of schemes with respect to the
operation

p : Sym(Σ)× Sym(Σ)→ Sym(Σ)

whose components are the usual symmetrization maps

pm,n : Symm(Σ)× Symn(Σ)→ Symm+n(Σ).

Note that p is an affine and finite morphism of schemes. As Sym(Σ) is a monoid
scheme, QCoh(Sym(Σ)) is a monoidal category under convolution. Explicitly,
an object ofQCoh(Sym(Σ)) is a sequence F = (Fn) with Fn ∈ QCoh(Symn(Σ)),
and for two such objects F and G their convolution is given by

F ~ G = p∗(F � G), (F ~ G)n =
⊕
i+j=n

(pij)∗(Fi � Gj).

The unit object 1 of QCoh(Sym(Σ)) is equal to k on Sym0(Σ) = pt and to 0
elsewhere. Note that p being an affine morphism, we have

Γqcom(Sym(Σ),F ~ G) = Γqcom(Sym(Σ),F)⊗k Γqcom(Sym(Σ),G).

Next, let
σ : Sym(Σ)× Sym(Σ)→ Sym(Σ)× Sym(Σ)

be the permutation. We have pσ = p. Thus QCoh(Sym(Σ)) is a symmetric
monoidal category with the symmetry

RF,G = p∗(PF,G) : F ~ G = p∗(F � G) −→ (pσ)∗(G � F) = G ~ F ,

where PF,G is the obvious isomorphism F � G → σ∗(G � F).

1.3 Rational sections.

For any component S ⊂ Σ (which is an irreducible algebraic variety over k), we
denote by k(S) the field of rational functions on S and by Srat = Spec(k(S)) the
generic point of S. We view Srat as an open subscheme of S with the embedding
map jS : Srat → S. For a quasicoherent sheaf F on S let Frat = (jS)∗j

∗
S(F) be

the sheaf of rational sections of F over S. We extend this notation by defining
Σrat and Frat, for F ∈ QCoh(Σ), in the obvious way. In particular we have the
rings

k(Σ) = Γ(Σ,Orat) =
∏

S∈π0(Σ)

k(S), kqcom(Σ) = Γqcom(Σ,Orat) =
⊕

S∈π0(Σ)

k(S).

For F ,G ∈ QCoh(Σ), a morphism F → Grat will be called a rational morphism
from F to G.

6



1.4 Rational braidings.

Let c = c(s, t) be an invertible element of the ring k(Σ×Σ). Thus c is the datum,
for each components S, T ⊂ Σ, of a non-zero rational function in k(S × T ). We
extend c to an invertible element in k(Sym(Σ)× Sym(Σ)) by putting

c

(∑
s

ns · s,
∑
t

mt · t
)

=
∏
s,t

c(s, t)nsmt . (1.1)

For F ,G ∈ QCoh(Sym(Σ)) we define a rational morphism

RcF,G : F ~ G → (G ~ F)rat

to be the composition of RF,G : F ~ G → G ~ F with the rational morphism
p∗(cF,G) where cF,G : F � G → (F � G)rat is the multiplication by c.

Proposition 1.2. The morphisms RcF,G are natural in F ,G and they satisfy
the rational analogs of the braiding axioms, i.e., we have

RcE~F,G = (RcE,G ~ IdF ) ◦ (IdE ~R
c
F,G), RcE,F~G = (IdF ~R

c
E,G) ◦ (RcE,F ~ IdG),

RcF,1 = Rc1,F = IdF .

Proof. Left to the reader.

1.5 Bialgebras in braided categories.

Let M be a monoidal category with multiplication ⊗ and unit object 1. An
algebra inM is an object A with morphisms µ : A⊗A→ A, e : 1→ A satisfying
the usual associativity and unit axioms. A coalgebra in M is an object C with
morphisms ∆ : C → C ⊗ C, ε : C → 1 satisfying the usual coassociativity
and counit axioms. For M = Vect, the category of k-vector spaces, an algebra
(resp. a coalgebra) in M is the same as a k-algebra (resp. k-coalgebra) in the
usual sense. Assume that M has a braiding R = (RX,Y : X ⊗ Y → Y ⊗ X).
Then the tensor product A⊗B of two algebras is again an algebra with respect
to the multiplication

A⊗B ⊗A⊗BId⊗R⊗Id// A⊗A⊗B ⊗B
µ⊗µ // A⊗B

and to the unit e⊗ e. Similarly, the tensor product of two coalgebras is again a
coalgebra with comultiplication

C ⊗D ∆⊗∆ // C ⊗ C ⊗D ⊗DId⊗R⊗Id// C ⊗D ⊗ C ⊗D

and counit ε⊗ ε. The following is well-known, see e.g.,[19, 37].
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Proposition 1.3. Let A be an algebra in M which is also a coalgebra in M.
Then µ is a morphism of coalgebras if and only if ∆ is a morphism of algebras.
Indeed, both conditions are equivalent to the commutativity of the diagram

A⊗A⊗A⊗AId⊗R⊗Id// A⊗A⊗A⊗A
µ⊗µ // A⊗A

A⊗A

∆⊗∆

OO

µ // A.

∆

OO

1.6 Rational algebras and coalgebras.

As QCoh(Sym(Σ)) is monoidal we can speak of algebras and coalgebras in it.
We now modify the constructions in Section 1.5 using the rational braiding Rc.

Definition 1.4. A rational algebra in QCoh(Sym(Σ)) is an object A with mor-
phisms µ : A~A → Arat and e : 1→ A satisfying the usual axioms, but at the
level of rational sections. A rational coalgebra in QCoh(Sym(Σ)) is an object C
with morphisms ∆ : C → (C ~ C)rat and ε : C → 1 satisfying the usual axioms
at the level of rational sections.

If A is an algebra in QCoh(Sym(Σ)), then A = Γqcom(Sym(Σ),A) is a k-
algebra. IfArat is a rational algebra inQCoh(Sym(Σ)), then the space of sections
Arat = Γqcom(Sym(Σ),Arat) is a k-algebra. If C is a coalgebra in QCoh(Sym(Σ))
then C = Γc(Sym(Σ), C) is a coalgebra. On the other hand, if Crat is a rational
coalgebra in QCoh(Sym(Σ)), then Crat = Γqcom(Sym(Σ), Crat) is, in general, not
a coalgebra because Γqcom(Sym(Σ), (C~C)rat) is usually bigger than Crat⊗kCrat.

Rational morphisms of rational algebras or coalgebras are defined in the
obvious way. Given two rational algebras A, B in QCoh(Sym(Σ)), their product
A~ B is made into a rational algebra in the same way as in Section 1.5. Note
that A~B will be a rational algebra even if A, B are genuine algebras, because
RcB,A is a rational morphism. Dually, given two rational coalgebras C, D, their
product C ~D is made into a rational coalgebra in the same way as in Section
1.5.

Proposition 1.5. Let A be a rational algebra in QCoh(Sym(Σ)) which is also
a rational coalgebra. Then µ is a rational morphism of rational coalgebras if
and only if ∆ is a rational morphism of rational algebras.

Proof. Use a diagram similar to that in Proposition 1.3 but whose arrows are
now rational morphisms.

Definition 1.6. A rational bialgebra is a rational algebra and coalgebra in
QCoh(Sym(Σ)) such that µ is a rational morphism of rational coalgebras.
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1.7 The shuffle product on the tensor algebra.

Let P ∈ QCoh(Sym(Σ)) and P~n = P ~ P ~ · · ·~ P (n times). We denote

T (P) =
⊕
n>0

P~n

the tensor algebra of P. We will sometimes write T n(P) for the direct sum-
mand P~n. We now define a multiplication (shuffle product) on T (P) which is
different from the obvious tensor multiplication.

For a permutation σ ∈ Sn we denote by `(σ) its length. We have a ratio-
nal map Rcσ : P~n → (P~n)rat. These maps are uniquely determined by the
following properties

• for σ = (i, i+ 1) we have Rc(i,i+1) = IdP~(i−1) ~RcP,P ~ IdP~(n−i−1) ,

• for `(στ) = `(σ) + `(τ) we have Rcστ = Rcσ ◦Rcτ .

Let n = r+s. A permutation is called a (r, s)-shuffle if σ(i) < σ(j) whenever
1 6 i < j 6 r or r + 1 6 i < j 6 n. Let Shr,s ⊂ Sn be the set of (r, s)-shuffles.

For n = r + s we define the shuffle product

µr,s =
∑

σ∈Shr,s

Rcσ : P~r ~ P~s −→ P~n
rat .

Proposition 1.7. The shuffle product µ =
∑
r,s µr,s is associative, and so

makes T (P) into a rational algebra in QCoh(Sym(Σ)).

Proof. To see associativity, we need to compare the two rational morphisms

µr+s,t ◦ (µr,s ~ 1), µr,s+t ◦ (1~ µs,t) : P~r ~ P~s ~ P~t −→ P~(r+s+t),

for each r, s, t > 0. For this, call an (r, s, t)-shuffle a permutation σ ∈ Sr+s+t
such that σ(i) < σ(j) whenever

1 6 i < j 6 r, or r + 1 6 i < j 6 r + s, or r + s+ 1 6 i < j 6 r + s+ t.

Using the braiding property of Rc, we see that both rational morphisms above
are equal to

∑
σ R

c
σ, where σ runs over the (r, s, t)-shuffles.

Next, for n = r + s let ∆r,s : P~n → P~r ~ P~s be the identity map. Define a
morphism ∆ : T (P)→ T (P)~ T (P) by ∆ =

∑
r,s ∆r,s.

Proposition 1.8. The morphism ∆ is coassociative. Together with the shuffle
product it makes T (P) into a rational bialgebra in QCoh(Sym(Σ)).

Proof. To see coassociativity, note that both morphisms

(∆~ 1) ◦∆, (1~∆) ◦∆ : T (P) −→ T (P)~ T (P) ∗ T (P)
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have components ∆r,s,t : P~(r+s+t) → P~r~P~s~P~t, which are the identity
maps. To see compatibility of µ and ∆, consider the (r, s)-graded component
of the pentagonal diagram in Proposition 1.3 for A = T (P). This component
consists of the 2-arrow path

P~r ~ P~s µr,s−→ P~(r+s)
rat

∑
∆n1,n2−→

⊕
n1+n2=r+s

(P~n1 ~ P~n2)rat

and the 3-arrow path

P~r ~ P~s
∑

∆r1,r2
~∆s1,s2−→

⊕
r1+r2=r
s1+s2=s

P~r1 ~ P~r2 ~ P~s1 ~ P~s2 −→

∑
1~RP~r2 ,P~s1~1

−→
⊕

(P~r1 ~ P~s1 ~ P~r2 ~ P~s2)rat −→∑
µr1,s1~µr2,s2−→

⊕
n1+n2=r+s

(P~n1 ~ P~n2)rat.

Fix n1, n2 with n1 + n2 = r+ s and look at the two rational morphisms P~r ~
P~s → P~n1~P~n2 represented by the composition of arrows of each path and
then projection to the (n1, n2)-summand. Each of these two rational morphisms
is a certain sum of operators of the form Rcσ, σ ∈ Sn, n = r + s = n1 + n2.
We claim that the summands in the two sums can be identified. This is an
elementary combinatorial verification which we sketch briefly.

In the 2-arrow path, the arrow µr,s is a sum over the (r, s)-shuffles; we view
a shuffle σ as a word formed by rearrangement of letters a1, ..., ar, b1, ..., bs such
that the order of the a’s, as well as the order of the b’s, is preserved. The
following arrow, ∆n1,n2

gives only one summand which consists of partitioning
our word σ into two consecutive segments σ1 and σ2, of lengths n1 and n2.
Since σ is a shuffle, σ1 involves some initial segment of the a’s, say a1, ..., ar1
and some initial segment of the b’s, say b1, ..., bs1 , so r1 + s1 = n1. Moreover,
σ1 is an (r1, s1)-shuffle. Similarly, σ2 is an (r2, s2)-shuffle for r2 + s2 = n2. We
also have r1 + r2 = r and s1 + s2 = s. The pair of an (r1, s1)-shuffle σ1 and
an (r2, s2)-shuffle σ2 gives a summand in the composition of the 3-arrow path
on the diagram. It remains to verify that this establishes a bijection between
the two sets of summands and that the corresponding summands are equal in
virtue of the braiding axioms. We leave this to the reader.

Remark 1.9. The above arguments are quite general. In particular, they are
applicable to any additive braided monoidal category (M,⊗,⊕, R) and to any
object P on M. In this case T (P) =

⊕
n>0 P⊗n is a bialgebra in M with

respect to µ and ∆ defined as above. The case when M is the category of
modules over a triangular Hopf algebra, is well known [27]. From this point
of view, our case corresponds to the more general framework of meromorphic
braided categories [35], of which

(
QCoh(Sym(Σ)),~,⊕, Rc

)
is an example.
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1.8 The shuffle algebra.

Let P ∈ QCoh(Sym(Σ)). Set

Shn(P) = Im
{∑
σ∈Sn

Rcσ : P~n −→ P~n
rat

}
.

This is a quasicoherent subsheaf of the quasicoherent sheaf (P~n)rat over Sym(Σ).
Note that

∑
σ∈Sn R

c
σ is the n-fold multiplication µ(n−1) : T (P)~n → T (P) re-

stricted to P~n = T 1(P)~n. Write

Sh(P) =
⊕
n>0

Shn(P) ⊂ T (P)rat.

Proposition 1.10. (a) Sh(P) is closed under the multiplication in T (P)rat. It
is an algebra, not just a rational algebra, in the category QCoh(Sym(Σ)).

(b) The comultiplication ∆ : T (P)rat → (T (P)~ T (P))rat takes Sh(P) into
(Sh(P)~ Sh(P))rat, thus making Sh(P) into a rational bialgebra.

Proof. (a) Since T (P) is associative, the iterated multiplications satisfy

µ
(
µ(r−1)(P~r)~ µ(s−1)(P~s)

)
= µ(r+s−1)(P~(r+s)),

whence the statement.
(b) The monoidal structure ~ being the composition of the tensor product

(over k) and the pushdown under the affine morphism p, it is right exact in both
arguments. Thus the image of the ~-product of two morphisms coincides with
the ~-product of the images. In particular, Shr(P) ~ Shs(P) is the image of
the map

µ(r−1) ~ µ(s−1) : P~r ~ P~s −→ (P~r ~ P~s)rat.

Let now n = r + s and let us prove that

∆r,s : P~n
rat → (P~r ~ P~s)rat

(which is the identity morphism) takes Shn(P) = Im(µ(n−1)) to Im(µ(r−1) ~
µ(s−1))rat. This follows from the commutativity of the diagram

(P~r ~ P~s)rat
µ(r−1)~µ(s−1)

// (P~r ~ P~s)rat

P~n µ(n−1)

//

∇r,s

OO

P~n
rat ,

∆r,s

OO

where ∇r,s =
∑
σ∈Shr,s Rσ.

Definition 1.11. The rational bialgebra Sh(P) = Shc(P) in QCoh(Sym(Σ)) is
called the shuffle algebra generated by P.
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Since the multiplication in Sh(P) is a regular map, the vector space

Sh(P) = Γqcom(Sym(Σ),Sh(P))

is a k-algebra. This k-algebra is also called the shuffle algebra.

Example 1.12. (a) Suppose that c is identically equal to 1. Then Rc = R is the
standard permutation. The braided monoidal category

(
QCoh(Sym(Σ)),~, Rc

)
is symmetric, and Sh(P) = S(P) is the symmetric algebra of P in this cate-
gory. The k-algebra Sh(P) is the usual symmetric algebra of the vector space
Γqcom(Σ,P); in particular, it is commutative.

(b) Let c be arbitrary. Since Σ = Sym1(Σ), we can view OΣ as an object
of QCoh(Sym(Σ)) whose sheaf of rational sections over Sym(Σ) is identified
with OΣrat

. For P = OΣ and n > 0 we have P~n = OΣn viewed as a sheaf over
Symn(Σ) (extended by zero to the whole of Sym(Σ)). Write Sh(Σ, c) = Sh(OΣ).
We have

Γqcom(Sym(Σ),P~n) = kqcom[Σn], Γqcom(Sym(Σ),P~n
rat ) = kqcom(Σn),

the spaces of regular (resp. rational) functions φ(t1, . . . , tn) of n variables from
Σ which are 6= 0 only on finitely many components. For n = r + s the shuffle
product µr,s : P~r ~ P~r → P~n

rat yields a map

kqcom(Σr)× kqcom(Σs)→ kqcom(Σn)

which takes (φ, ψ) into the rational function

µr,s(φ, ψ)(t1, . . . , tn) =
∑

σ∈Shr,s

[∏
i,j

c(ti, tj)
]
φ(tσ(1), . . . , tσ(r))ψ(tσ(r+1), . . . , tσ(n)),

where the product runs over the pairs (i, j) with i < j and σ(i) > σ(j). The
algebra Sh(P) is then the subalgebra of

⊕
n>0 kqcom(Σn) generated by the space

kqcom[Σ].

Remark 1.13. More generally, the shuffle algebra can be defined for any ob-
ject P of any abelian meromorphic braided category M in the sense of [35].
An interesting example of such an M can be constructed for any local non-
archimedean field F . This is the category of sequences (Vn)n>0 where Vn is
an admissible representation of GLn(F ). The monoidal structure is given by
parabolic induction, and the rational braiding is given by the principal series
intertwiners, cf. [35]. (See also [14] for the case of finite fields.) Let C0(F×) be
the space of compactly supported locally constant functions on F× = Gm(F ),
and let P be the sequence consisting of C0(F×) in degree 1 and of 0 in other
degrees. Then the component Shn(P) of the categorical shuffle algebra Sh(P)
is the Schwartz space of the basic affine space for GLn(F ) as constructed by
Braverman and Kazhdan [3].

12



1.9 The antisymmetric and coboundary cases.

Assume that c is antisymmetric, i.e., c(s, t)c(t, s) = 1. Then the rational braid-
ing Rc is a (rational) symmetry, i.e., RcG,FR

c
F,G = Id for any F ,G. The shuffle

algebra Sh(P) is then a rational analogue of the construction of the symmetric
algebra of an object in a symmetric monoidal category. In particular, we have
the following fact whose proof is straightforward and left to the reader.

Proposition 1.14. Let A = Sh(P), and denote M = RcA,A : A~2 → A~2
rat.

Then:
(a) The multiplication µ in A is M -commutative, i.e., µ◦M : A~A → Arat

takes values in A and coincides with µ.
(b) The rational comultiplication ∆ in A is M -cocommutative, i.e., ∆ =

M ◦∆ : A → A~2
rat.

Example 1.15. Assume that Σ is of the form Σ =
⊔
i∈I Σi where each Σi ' Gm

with coordinate ti. A datum of an antisymmetric c as above is then a datum of
non-zero rational functions cij(ti, tj), i, j ∈ I with cij(ti, tj)cji(tj , ti) = 1. For
i ∈ I and d ∈ Z denote by Ei,d the element tdi ∈ k[Σi], considered as an element
of the algebra Sh(Σ, c). Consider the formal generating series

Ei(t) =
∑
d∈Z

Ei,dt
d ∈ Sh(Σ, c)[[t, t−1]]. (1.2)

Proposition 1.14 implies that the Ei(t) satisfy the quadratic commutation rela-
tions

Ei(t)Ej(s) = cij(t, s)Ej(s)Ei(t). (1.3)

They are to be understood in the following sense: write cij(t, s) as a ratio
of Laurent polynomials Pij(t, s)/Qij(t, s) and compare the coefficients at each
power tasb in the equation

Qij(t, s)Ei(t)Ej(s) = Pij(t, s)Ej(s)Ei(t)

which is a formal consequence of (1.3).

Note that an antisymmetric c as above can be seen as a 1-cocycle of the
group Z/2 with coefficients in the multiplicative group k(Σ × Σ)×, on which
it acts by permutation. Representing this cocycle as a coboundary amounts
to realizing c as multiplicative antisymmetrization of some invertible rational
function λ = λ(s, t) ∈ k(Σ× Σ)×, i.e., in the form

c(s, t) = λ(s, t)−1 λ(t, s). (1.4)

For instance, if Σ is irreducible and of positive dimension, then such realization
is always possible in virtue of Hilbert’s Theorem 90 applied to the field extension
k(Σ2)/k(Sym2(Σ)) with Galois group Z/2. So we refer to the case (1.4) as the
coboundary case. As in (1.1), we extend λ to a rational function on Sym(Σ) ×
Sym(Σ) by multiplicativity. In the coboundary case there is an alternative
realization of Sh(P), motivated by the following.

13



Example 1.16. Suppose that λ(s, t) ∈ k[Σ× Σ]× is an invertible regular func-
tion. In this case

(
QCoh(Sym(Σ)),~, Rc

)
is a genuine symmetric monoidal

category. Moreover, it is equivalent (as a symmetric monoidal category) to(
QCoh(Sym(Σ)),~, R

)
, where R = R1 is the standard permutation. Indeed,

by definition, an equivalence should consist of a functor Φ plus natural isomor-
phisms

φF,G : Φ(F ~ G) −→ Φ(F)~ Φ(G)

which take the braiding Rc to R. We take Φ = Id and φF,G to be the multipli-
cation by λ−1.

This implies that for any P we have an isomorphism Ψ : S(P) → Sh(P)
where S(P) is the usual symmetric algebra of P defined using the symmetry R.
It is defined, on the level of global sections, by

Ψ(a1 · ... · an) =
∑
σ∈Sn

[∏
i<j

λ(tσ(i), tσ(j))
−1

]
aσ(1) ⊗ ...⊗ aσ(n).

Note that Ψ is an isomorphism of objects but not of algebras. Indeed, Sh(P)
is commutative with respect to the symmetry Rc but does not have to be com-
mutative in the usual sense (symmetry R). So using the identification Ψ, we
get a new product on S(P), referred to as the symmetric shuffle product. The
construction below is obtained by extracting the formula for this product from
the structure of Ψ and extending it to the case when λ is rational.

Assuming λ rational, we define a rational morphism

ξm,n : Sm(P)~ Sn(P) −→ Sm+n(P)rat, m, n > 0

where Sm(P) is the usual symmetric power of P (defined using the symmetry
R = R1). At the level of global sections it is given by

ξm,n(a⊗ b) =
1

m!n!
Symm

[
a⊗ b

∏
16i6m
16j6n

λ(si, tj)

]
. (1.5)

Here Symm means symmetrization over the symmetric group Sm+n and λ−1(si, tj)
is regarded as a rational function on Sym(Σ)m×Sym(Σ)n depending on the ith
coordinate of the first factor and the jth coordinate of the second factor.

Proposition 1.17. (a) The ξm,n are associative and make S(P) into a rational
associative algebra in

(
QCoh(Sym(Σ)),~).

(b) The shuffle algebra Sh(P) (defined using the braiding Rc) is isomorphic
with the subalgebra in S(P)rat generated by P ⊂ S1(P)rat.

Proof. Use the rational analog of the isomorphism Ψ from Example 1.16 and
verify that it takes the multiplication ξm,n to the shuffle product µm,n.
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Example 1.18. As in Example 1.12(b), let us take P = OΣ considered as
an object of QCoh(Sym(Σ)). Then (1.5) defines a multiplication on SR :=⊕

n>0 kqcom(Σn)Sn , the space of symmetric rational functions of arguments in
Σ. We denote by SSh(Σ, λ) and call the symmetric shuffle algebra associated to
Σ and λ the subalgebra in SR generated by kqcom[Σ]. Proposition 1.17 implies
that SSh(Σ, λ) is isomorphic to Sh(Σ, c).

Proposition 1.19. In the situation of Example 1.18, assume that each com-
ponent of Σ is a smooth curve over k. Assume also that λ is regular every-
where except for, possibly, first order poles on the (components of the) diagonal
∆ ⊂ Σ× Σ. Then

SSh(Σ, λ) ⊂
⊕
n

kqcom[Σn]Sn

is contained in the space of regular symmetric functions of variable in Σ (with
quasicompact support). Moreover, for each n the image of the degree n compo-
nent of SSh(Σ, λ) is an ideal in the ring kqcom[Σn]Sn .

Proof. Consider the symmetrization morphism

pn : Σn −→ Symn(Σ).

The direct image (trace) of a rational function F under pn is simply the average
pn∗(F ) =

∑
σ∈Sn σ(F ). As Σ is a disjoint union of curves, the relative dualizing

sheaf of p is the sheaf of functions with at most first order poles along the
diagonals {ti = tj}. This means that if F is such a function, then pn∗F , the
average of F under the symmetric group, is a regular function on Symn(Σ).

Now, let f1, ..., fn ∈ kqcom[Σ]. Their product in SSh(Σ, λ) is

pn∗

([∏
i<j

λ(ti, tj)

]
f1(t1) · fn(tn)

)
,

i.e., pn∗ of a function belonging to the dualizing sheaf, so, by the above, the
product is a regular function. To see that the image of the product map

kqcom[Σ]⊗n → kqcom[Σn]Sn

is an ideal, we notice that this map is linear over the ring of the symmetric
functions acting on the source and target.

1.10 Generalized shuffle algebras.

Let S be a N-graded semigroup scheme. This means that S =
∐
n>0 Sn is a

scheme which is a disjoint union of algebraic varieties of finite type over k with
S0 = Spec(k), and that there is an addition morphism

p : S×S→ S
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which is graded and such that the obvious inclusion

Spec(k) = S0 → S

is a unit. We’ll assume that p is locally a finite morphism. This means that for
each connected component S of S the restriction of p to p−1(S) is finite. Now,
fix an invertible element c in kqcom(S×S) which is a rational bihomomorphism
S×S→ A1

k. Then kqcomp(S) is an algebra for the shuffle product

µr,s : kqcomp(Sr)× kqcomp(Sr)→ kqcomp(Sr+s)

which takes (φ, ψ) into the rational function

µr,s(φ, ψ) = p∗
(
(φ� ψ) · c

)
.

The associativity follows from the fact that c is a rational bihomomorphism.
The generalized shuffle algebra Sh(S, c) associated with S and c is then the
subalgebra of kqcom(S) generated by the space kqcom[S1].
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2 The Hall algebra of a curve.

2.1 Orbifolds

By an orbifold we mean a groupoid M such that, first, M is essentially small,
i.e., the isomorphism classes of M form a set M , and, second, for any object
x ∈ M the group Aut(x) is finite. For an orbifold M let F(M) be the space
of isomorphism invariant functions f : Ob(M) → k (which we can view as
functions on the setM); let F0(M) ⊂ F(M) be the subspace of functions with
finite support. For an object x ∈M we denote by 1x ∈ F0(M) the characteristic
function of (the isomorphism class of) x.

The space F(M) is identified with the algebraic dual of F0(M) via the
orbifold scalar product

(f, g) =
∑
x∈M

f(x)g(x)

|Aut(x)|
. (2.1)

If k = C we have the positive definite Hermitian scalar product

(f, g)Herm =
∑
x∈M

f(x)g(x)

|Aut(x)|
. (2.2)

A functor of orbifolds φ :M→N defines the inverse image map

φ∗ : F(N )→ F(M), (φ∗g)(x) = g(φ(x))

and an orbifold direct image map

φ∗ : F0(M)→ F0(N ), φ∗(1x) =
|Aut(φ(x))|
|Aut(x)|

1φ(x).

We say that φ is proper, if for any x ∈ N the preimage φ−1(x) consists of
finitely many isomorphism classes. In this case φ∗ takes F0(N ) into F0(M), and
φ∗ extends to a map F(M) → F(N ). Moreover, the maps φ∗, φ

∗ are adjoint
with respect to (2.1). Given functors of orbifolds

N ′ v // N M
φoo ,

the fiber product orbifold N ′ ×N M is the category such that

• an object is a triple (n′,m, α) with n′ ∈ N ′, m ∈ M and α is an isomor-
phism v(n′)→ φ(m) in M,

• a morphism (n′1,m1, α1) → (n′2,m2, α2) is a pair of morphisms β : n′1 →
n′2, γ : m1 → m2 such that the following square in N commutes

v(n′1)
α1 //

v(β)

��

φ(m1)

φ(γ)

��
v(n′2)

α2 // φ(m2).
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A square of orbifolds and their functors

M′ u //

φ′

��

M

φ

��
N ′ v // N

(2.3)

is called homotopy commutative if there is a natural transformation T : φu⇒ vφ′

of functors M′ → N . In this case T induces a functor εT : M′ → N ′ ×N M.
We say that the square is homotopy cartesian if εT is an equivalence. We have
the following base-change formula, which can be viewed as a particular case of
[38, Lemma 2.6].

Proposition 2.1. If in a homotopy cartesian square (2.3) the arrows are proper
then we have the base change property u∗(φ

′)∗ = φ∗v∗ : F0(N ′)→ F0(M).

2.2 Hall algebras

An abelian category A is called finitary if it is essentially small and if for any
objects A,B the group ExtiA(A,B) is finite and equal to 0 for almost all i. For
a finitary abelian category A we have an orbifold M(A) with the same objects
as A and morphisms being the isomorphisms in A. We set

〈A,B〉 =

√∏
i>0

|ExtiA(A,B)|(−1)i , ((A,B)) = 〈A,B〉 · 〈B,A〉. (2.4)

Let [A] be the Grothendieck group of A. For A ∈ A let [A] ∈ [A] be its class.
We have the Z-bilinear forms

〈•, •〉, ((•, •)) : [A]× [A]→ R×,
〈[A], [B]〉 = 〈A,B〉, ((α, β)) = 〈α, β〉 · 〈β, α〉,

(2.5)

called, respectively, the Euler and the Cartan form. Assume that k contains
all the square roots appearing in the values of the Euler form. Set H(A) =
F0(M(A)). It is a k-algebra, called the Hall algebra of A. The product is given
by

(f ∗ g)(C) =
∑
A⊂C

〈C/A,A〉 · f(A) · g(C/A), (2.6)

where the sum is over all subobjects A′ in C. Alternatively, on the basis vectors
the multiplication has the form

1A ∗ 1B = 〈B,A〉
∑
C

gCAB · 1C , (2.7)

where gCAB is the number of subobjects A ⊂ C such that A′ ' A and C/A′ ' B.
Note that gCAB is finite and that, for fixed A and B, gCAB = 0 for all but finitely
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many C, up to isomorphism. Let SES(A) be the orbifold whose objects are all
short exact sequences in A

0→ A→ C → B → 0, (2.8)

and morphisms are isomorphisms of such sequences. We have three functors

p1, p, p2 : SES(A)→ A

associating to a sequence its three terms. We get a diagram of functors, with
(p1, p2) being proper

M(A)×M(A) SES(A)
(p1,p2)oo p //M(A). (2.9)

Note that H(A)⊗H(A) = F0(M(A)×M(A)). The following is straightforward.

Proposition 2.2. The multiplication µ in H(A) is identified with the map

F0(M(A)×M(A))→ F0(M(A)), f 7→ p∗
(
(p1, p2)∗(f · 〈B,A〉)

)
,

where 〈B,A〉 is the function M(A)×M(A)→ k, (A,B) 7→ 〈B,A〉.

The k-algebra H(A) is [A]-graded

H(A) =
⊕
α∈[A]

H(α)(A) (2.10)

where H(α)(A) = {f ∈ H(A) ; f(A) = 0 unless [A] = α}. If E ⊂ A is an exact
subcategory, i.e., a full subcategory closed under extensions, then we have a k-
subalgebra H(E) ⊂ H(A) formed by the functions f such that supp(f) ⊂M(E).
Let Aop be the opposite category of A. If E ⊂ A is as above, then Eop is an exact
subcategory in Aop, and we have H(Eop) = H(E)op, the k-algebra opposite to
H(E). By a perfect duality on a category E we mean an equivalence of categories
D : E → Eop such that D2 ' 1E .

Proposition 2.3. (a) Let E be an exact subcategory in a finitary abelian cat-
egory A, and D : E → Eop be a perfect duality. Then the operator f 7→ f∗,
f∗(E) = f(D(E)) is a k-linear anti-involution on the k-algebra H(E).

(b) If k = C the operator f 7→ f?, f?(E) = f(D(E)) is a C-antilinear
anti-involution on H(E).

The space Ĥ(A) = F(M(A)) is, in general, not a k-algebra. It is the alge-
braic dual of H(A) by the orbifold scalar product. Similarly, let H(A)⊗̂H(A) =
F(M(A) ×M(A)) be the algebraic dual of H(A) ⊗H(A). The Hall multipli-
cation on H(A) gives, by dualization, the map

∆ = ∆A : Ĥ(A)→ H(A)⊗̂H(A), (∆(f), g ⊗ h) = (f, g ∗ h). (2.11)
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In terms of the diagram (2.9) we have ∆(f) = (p1, p2)∗(p
∗f · 〈B,A〉). Note also

that

∆(1C) =
∑
A⊂C
〈C/A,A〉 |Aut(A)| · |Aut(C/A)|

|Aut(C)|
1A ⊗ 1C/A, (2.12)

where the sum is over all subobjects of A. We will say that an abelian category
A is cofinitary, if each object of A has only finitely many subobjects. If A is
finitary and cofinitary, then both functors in (2.9) are proper, and ∆ restricts
to the Hall algebra

∆ : H(A)→ H(A)⊗H(A).

The Cartan form on [A] makes the category Vect[A] of [A]-graded k-vector

spaces E =
⊕

α∈M(A)E
(α) into a braided monoidal category. The braiding is

given by

RE,F : E ⊗ F → F ⊗ E, e⊗ f 7→ ((deg(e),deg(f))) · f ⊗ e,

where deg(e),deg(f) ∈ [A] are the degrees of e, f . In particular, one can speak
about bialgebras in Vect[A] with respect to this braiding. An abelian category
is called hereditary if it has homological dimension at most 1.

Theorem 2.4 (Green [9]). Let A be an abelian category which is finitary, cofini-
tary and hereditary. Then H(A) is a braided bialgebra in Vect[A], i.e., ∆ is a
morphism of k-algebras, where the multiplication in H(A)⊗H(A) is given by(

1A ⊗ 1B
) (

1C ⊗ 1D
)

= ((B,C)) ·
(
1A ∗ 1C

)
⊗
(
1B ∗ 1D

)
. (2.13)

2.3 The Hall algebra of a curve

From now on, let X be a smooth connected projective curve over Fq. For any
closed point x ∈ X the field Fq(x) is a finite extension of Fq. Let deg(x) be
its degree. Let Coh(X) be the category of coherent sheaves on X. This is an
abelian category which is finitary and hereditary, but not cofinitary. Consider
the following full subcategories:

• Bun(X) is the exact category of vector bundles on X; we write Bun(X)
for the set of isomorphism classes of objects of Bun(X).

• T ors(X) is the abelian category of torsion sheaves, it is cofinitary,

• T orsx(X) is the abelian category of torsion sheaves supported at x.

Note that we have a decomposition into a direct sum of categories

T ors(X) =
⊕
x∈X
T orsx(X).

20



Let K(X) = [Coh(X)]. The Euler form on K(X) takes values in Q(
√
q). Assume

that
√
q ∈ k. We consider the following Hall algebras

Hcoh = H(Coh(X)), H = H(Bun(X)),

A = H(T ors(X)), Ax = H(T orsx(X)).

We denote by pbun : Hcoh → H the projection given by

pbun(1F ) = 1F , if F is a bundle, pbun(1F ) = 0, otherwise.

The rank and the degree of vector bundles yield a map

(rk,deg) : K(X)→ Z2.

The Euler form on K(X) factors through Z2 and is given by

logq〈(r, d), (r′, d′)〉 =
1

2

(
rd′ − r′d+ (1− gX)rr′

)
, (2.14)

where gX is the genus of X. We have bigradings

Hcoh =
⊕

(r,d)∈Z2
+

H
(r,d)
coh , H =

⊕
(r,d)∈Z2

+

H(r,d), (2.15)

where Z2
+ = {(r, d) ; (r, d) > (0, 0)}, with the inequalities understood with

respect to the lexicographic order on Z2. The bigrading on the k-subalgebra H
is the induced one. We write

H
(r)
coh =

⊕
d∈Z

H
(r,d)
coh , H(r) =

⊕
d∈Z

H(r,d).

There is a perfect duality on Bun(X) given by F 7→ F∗ (the dual vector
bundle). So, by Proposition 2.3 the k-algebra H has an involutive antiautomor-
phism

H → H, f 7→ f∗, f∗(F) = f(F∗). (2.16)

2.4 The comultiplication

If M is an orbifold and ς : Ob(M) → Zl is any map, we let Fς(M) be the set
of isomorphism invariant functions f : Ob(M) → k for which ς(supp(f)) is a
finite set. For any n > 1, consider the map

ς : Ob(M(Coh(X)×n)→ Z2, (F1, . . . ,Fn) 7→
(∑

i

rk Fi,
∑
i

deg Fi
)

and set H⊗̃ncoh = Fς(M(Coh(X)×n). We will abbreviate H̃coh = H⊗̃1
coh. For any

n we have a bigrading

H⊗̃ncoh =
⊕

(r,d)∈Z2
+

(
H⊗̃ncoh

)(r,d)
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and H⊗̃ncoh is the graded algebraic dual of H⊗ncoh. There is an obvious chain of

(strict) inclusions H⊗ncoh ⊂ H⊗̃ncoh ⊂ H⊗̂ncoh. We equip H⊗ncoh with the following
twisted multiplication(
1E1⊗· · ·⊗1En

)
∗
(
1F1⊗· · ·⊗1Fn

)
=
(∏
i>j

((Ei,Fj))
) (

1E1 ∗1F1

)
⊗· · ·⊗

(
1En ∗1Fn

)
.

With respect to this product H⊗ncoh is a (Z2
+)n-graded k-algebra.

Proposition 2.5. (a) The k-algebra structure on H⊗ncoh extends to an associative

k-algebra structure on H⊗̃ncoh,

(b) For any i = 1, . . . , n−1 the map Id⊗i−1⊗∆coh⊗Id⊗n−1−i takes H⊗̃n−1
coh

into H⊗̃ncoh,

(c) The iterated comultiplication ∆(n−1) : H̃coh → H⊗̃ncoh is a morphism of
k-algebras.

Proof. Let n > 1, and let (r, d), (r′, d′) ∈ Z2
+. To show that the multiplication

map (H⊗̃n)(r,d) ⊗ (H⊗̃n)(r′,d′) → (H⊗̃n)(r+r′,d+d′) is well-defined, we need to
establish the following fact : for any n-tuple of coherent sheaves (F1, . . . ,Fn)
satisfying

∑
i rk Fi = r + r′,

∑
i deg Fi = d + d′ , the number of isomorphism

classes of n-tuples of subsheaves G1 ⊂ F1, . . . ,Gn ⊂ Fn satisfying
∑
i rk Gi =

r,
∑
i deg Gi = d, is finite. This in turn may easily be deduced by induction

from the following two facts :

(i) for any coherent sheaf F and any fixed r 6 rk F the possible degrees of
subsheaves of F of rank r is bounded above,

(ii) for any coherent sheaf F and any fixed (r, d) ∈ Z2
+ satisfying r 6 rk F ,

the number of subsheaves of F of rank r and degree d is finite.

This proves (a). Statement (b) is clear since Id⊗i−1 ⊗∆coh ⊗ Idn−1−i takes

H⊗̂n−1
coh to H⊗̂ncoh and preserves the total Z2

+-grading. Finally, we prove (c).
Because of the coassociativity of ∆coh, it is enough to verify this for the case
n = 2. Green’s proof of Theorem 2.4 extends to this case, even though Coh(X)
is not coinitary– see e.g. [29] for details.

Let H⊗̂n ⊂ H⊗̂ncoh, resp. H⊗̃n ⊂ H⊗̃ncoh be the subspace of functions supported

on Bun(X)n, and let pn : H⊗̂ncoh → H⊗̂n, pn : H⊗̃ncoh → H⊗̃n be the obvious
projections. We denote by

∆(n−1) = pn ◦∆
(n−1)
coh : H −→ H⊗̃n. (2.17)

the composition of ∆
(n−1)
coh and the projection on the bundle part. Note that

∆(n−1) is not an algebra homomorphism.

2.5 The Hecke algebra

The Euler form is identically equal to 1 on [T ors(X)]. Since T ors(X) is cofini-
tary, we see that A is a k-bialgebra in the usual sense. So is each Ax, x ∈ X. We
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have an identification of k-bialgebras A =
⊗

x∈X Ax (restricted tensor product).
There is a perfect duality on T ors(X) given by

F 7→ Ext1OX (F ,OX). (2.18)

Since F ' Ext1OX (F ,OX) (not canonically), the k-algebras A is commutative.
Since the comultiplication is dual to the multiplication with respect to the orb-
ifold scalar product on A, we deduce that A is cocommutative as well. The
same holds for the k-bialgebra Ax for any x ∈ X.

One can in fact be much more precise. The completion ÔX,x of the local ring
of x is a complete discrete valuation ring with residue field Fqx , qx = qdeg(x).
Let Ox be the skyscraper sheaf at x with stalk Fqx . The k-algebra Ax can be

seen as the “classical” Hall algebra of the category of finite ÔX,x-modules [17].
In particular the elements

bx,r = q
r(r−1)

2
x 1O⊕rx , r > 1,

are free polynomial generators of Ax, and their coproduct is given by

∆(bx,r) =

r∑
i=0

bx,i ⊗ bx,r−i, bx,0 = 1. (2.19)

The counit is given by ε(1F ) = 0 if F 6= 0.
The algebra A is called the Hecke algebra. For F ∈ T ors(X) we have the

Hecke operator

TF : Ĥ → Ĥ, (TFf)(V ) =
∑
V ′

〈F , V ′〉 f(V ′), (2.20)

where the sum runs over all subsheaves (necessarily locally free) V ′ ⊂ V such

that V/V ′ is isomorphic to F . Here we view Ĥ as the space of all functions
on the set of isomorphism classes in Bun(X). We also define the dual Hecke
operator

T ∗F : Ĥ → Ĥ, (T ∗Ff)(V ) =
∑
U

〈F , V 〉 f(U), (2.21)

where U runs over overbundles of V such that U/V ' F , taken modulo isomor-
phisms identical on V . Observe that

TF (1) = T ∗F (1) = ε(1F )1. (2.22)

Proposition 2.6. (a) Both TF and T ∗F preserve H and H̃.
(b) T ∗F is adjoint of TF w.r.t. the orbifold scalar product (2.1). If k = C,

then T ∗F is also adjoint of TF w.r.t. the Hermitian scalar product (2.2).
(c) For f ∈ H we have TF (f) = pbun(f ∗ 1F ).
(d) For f ∈ H we have T ∗F (f) = (TF∗(f

∗))∗, where f∗ is as in (2.16), and
where F∗ is the dual in the sense of (2.18).
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(e) We have TF1TF2 =
∑
F g
F
F2,F1

TF , and so Ĥ, H̃ and H are right A-

modules. The subspaces Ĥ(r), H̃(r) and H(r) are submodules. By (d) the same

statement is true for T ∗F . This yields left A-modules structures on Ĥ, H̃, H,

Ĥ(r), H̃(r), H(r).

Proof. This proposition is well-known. Let us give a proof for the comfort of
the reader. Consider the action maps

γ∗ : A⊗ Ĥ → Ĥ, γ(1F ⊗ f) = T ∗F (f),

γ : Ĥ ⊗A→ Ĥ, γ(f ⊗ 1F ) = TF (f).
(2.23)

Let S be the orbifold of short exact sequences

0→ V ′ → V → F → 0 (2.24)

with V, V ′ ∈ Bun(X) and F ∈ T ors(X), with obvious projections

p, p′ : S →M(Bun(X)), q : S →M(T ors(X)).

Then γ is given by
γ(f) = p′∗

(
(p, q)∗(f) · 〈F , V ′〉

)
, (2.25)

where we regard f ∈ Ĥ⊗A as a function onM(Bun(X))×M(T ors(X)). Since
(p, q) is proper, we have γ(H ⊗A) ⊂ H. Similarly γ∗ is given by

γ∗(f) = p∗
(
(q, p′)∗(f) · 〈F , V 〉

)
, (2.26)

which implies (a), (b). Next, (c) is obvious from comparing (2.26) with the
formula for the Hall multiplication, which involves an orbifold similar to S but
without the requirement that V ∈ Bun(X), see Proposition 2.2. To see part
(d), notice that sending a short exact sequence (2.24) into

0→ V ∗ → V ′∗ → Ext1(F ,OX)→ 0

defines a perfect duality on the orbifold S, interchanging the projections p, p′

and composing q with the duality (2.18). Finally, (e) follows from associativity
of the Hall multiplication, together with the obvious identity

pbun(f ∗ g) = pbun(pbun(f) ∗ g). (2.27)

The left (resp. right) A-module structure on H yields left (resp. right) A-
module structures on H⊗H and H⊗̃H via the comultiplication ∆ : A→ A⊗A.

Proposition 2.7. (a) The multiplication µ : H⊗H → H is a morphism of left
(as well as right) A-modules.

(b) The comultiplication ∆ : H → H⊗̃H is a morphism of left (as well as
right) A-modules.
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Proof. Let us first prove (a). By Proposition 2.6 (d) it suffices to consider the
right A-module structure. Let V, V ′ ∈ Bun(X) and let F ∈ T ors(X). By
Proposition 2.6 (c) we have TF (1V ′ ∗ 1V ) = pbun(1V ′ ∗ 1V ∗ 1F ). Using (2.27) it
suffices to check the following formula :

1V ∗ 1F =
∑
F1⊂F

|Aut(F1)||Aut(F2)|
|Aut(F)|

1F1
∗ T ∗F2

(1V ), F2 = F/F1. (2.28)

This may be proved along the lines of [33], Proposition 1.2. We give here a
different proof, using orbifolds. Both sides of (2.28) are linear operators λ, ρ :
H ⊗A→ Hcoh. Let C be the orbifold of short exact sequences

0→ V → E → F → 0, (2.29)

with V ∈ Bun(X), E ∈ Coh(X), F ∈ T ors(X) and the obvious projections

M(Bun(X))×M(T ors(X)) C
(pV ,pF )oo pE //M(Coh(X)) .

Then we have
λ(f) = (pE)∗

(
(pV , pF )∗(f) 〈F , V 〉

)
.

Next, let D be the orbifolds of diagrams

0 0

0 // V // E //

OO

F2
//

OO

0

E

OO

F

OO

F1

OO``

0

OO

0

__

(2.30)

with V,E ∈ Bun(X), E ∈ Coh(X), F ,F1,F2 ∈ T ors(X) and the obvious pro-
jections

M(Bun(X))×M(T ors(X)) D
(πV ,πF )oo πE //M(Coh(X)) .

Then we have

ρ(f) = (πE)∗
(
(πV , πF )∗(f) 〈F2, V 〉 〈E,F1〉

)
.

25



We now construct a functor ϕ : C → D giving a commutative diagram of
orbifolds

C
(pV ,pF )

uu

pE

%%
ϕ

��

M(Bun(X))×M(T ors(X)) M(Coh(X))

D
(πV ,πF )

ii

πE

99

by associating to a sequence as in (2.29) the diagram as in (2.30) where F1 =
Etors is the maximal torsion subsheaf in E and the surjection E → F identifies
F1 with a subsheaf in F . The statement follows from the

Lemma 2.8. We have ϕ∗(1) = 〈E,F1〉2. Hence ϕ∗(〈F , V 〉) = 〈F2, V 〉 〈E,F1〉.

Proof. It is enough to prove the first equality, as the second is obtained by using
bi-multiplicativity of the Euler form. Note that ϕ is bijective on isomorphism
classes and injective on morphisms. On the other hand, for any short exact
sequence C as in (2.29) we have

|AutD ϕ(C)| = |Hom(E,F1)| · |AutC(C)|,

as we can have automorphisms of E = E ⊕ F1 sending E to F1. Note finally
that |Hom(E,F1)| = 〈E,F1〉2, since Ext1(E,F1) = 0. This proves the lemma,
and statement (a).

Statement (b) follows from (a) by duality. Namely, using the notation in
(2.23), it is enough to prove that

∆(γ∗(a⊗ f)) =
∑

γ∗(a1 ⊗ f1)⊗ γ∗(a2 ⊗ f2), (2.31)

where a ∈ A, f ∈ H and ∆(a) =
∑
a1 ⊗ a2, ∆(f) =

∑
f1 ⊗ f2. To prove this,

we take the scalar product with an arbitrary x⊗ y ∈ H ⊗H. Propositions 2.6,
2.7 yield(

∆(γ∗(a⊗ f)), x⊗ y
)

=
(
γ∗(a⊗ f), xy)

)
=
(
f, γ(xy ⊗ a)

)
=
∑(

f, γ(x⊗ a1)γ(y ⊗ a2)
)

=
∑(

∆(f), γ(x⊗ a1)⊗ γ(y ⊗ a2)
)

=
∑(

γ∗(a1 ⊗ f1)⊗ γ∗(a2 ⊗ f2), x⊗ y
)
.
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2.6 The k-algebra Hcoh as a cross-product

Let B be a Hopf k-algebra, R be a k-algebra which is a right B-module with
action (r, b) 7→ r / b such that the multiplication in R is a morphism of right
B-modules. Then the cross-product k-algebra B nR is the vector space B ⊗R
with the multiplication

(b⊗ r)(b′ ⊗ r′) =
∑

bb′1 ⊗ (r / b′2)r′, ∆(b′) =
∑

b′1 ⊗ b′2. (2.32)

See [20], §6.1, for background. We apply this to B = A, R = H and the action
given by

f / 1F = TF (f), F ∈ T ors(X). (2.33)

Proposition 2.9. The cross-product k-algebra AnH is isomorphic to Hcoh.

Proof. By (2.28) the map ι : AnH → Hcoh, a⊗ x 7→ a ∗ x is an algebra homo-
morphism. Since every coherent sheaf F on X has a unique torsion subsheaf
Ftors such that the quotient is locally free, the multiplication in Hcoh yields an
isomorphism of vector spaces

A⊗H −→ Hcoh (2.34)

i.e., ι is an isomorphism.

2.7 The local Witt scheme

For x ∈ X we set Wx = Spec(Ax). We call Wx the local Witt scheme at x. For
a character (k-algebra homomorphism) χ : Ax → R we write

Bχ(t) = 1 +
∑
r>1

br(χ) tr ∈ R[[t]], br(χ) = χ(bx,r). (2.35)

This yields an isomorphism Hom(Ax, R) = 1+tR[[t]]. As Ax is a cocommutative
Hopf k-algebra, Wx is a commutative affine group scheme. The group structure
comes from the comultiplication ∆ in Ax, which is given by (2.19)

Proposition 2.10. The group scheme Wx is isomorphic to the classical Witt
scheme, i.e., for any commutative k-algebra R the group of R points Wx(R) is
identified with Hom(Ax, R) = 1 + tR[[t]].

See [24] for background on the Witt scheme. Following the tradition, we denote
the group operation in Wx additively, by the symbol �.

The following is rather standard. Its proof is left to the reader.

Lemma 2.11. Let R be a commutative Hopf k-algebra, so that G = Spec(R) is
an affine group scheme.

(a) Group k-schemes morphisms G→W are in bijection with series φ(t) ∈
1 + tR[[t]] which are group-like, i.e., such that ∆φ(t) = φ(t)⊗ φ(t).
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(b) Group k-schemes bihomomorphisms G × G → W are in bijection with
series Φ(t) ∈ 1 + t(R⊗R)[[t]] such that the following holds in (R⊗R⊗R)[[t]]

(1⊗∆)Φ(t) = Φ12(t)Φ13(t), (∆⊗ 1)Φ(t) = Φ13(t)Φ23(t).

We say that a character χ : Ax → R has rank 6 r (resp. rank r) if Bχ(t) is a
polynomial of degree 6 r (resp. of degree r with invertible highest coefficient).
Rank 6 r (resp. rank r) characters form a closed (resp. locally closed) subscheme
W6r
x (resp. W r

x ) in Wx of the form

W r
x = Spec(A(r)

x ), A(r)
x = k[b1, . . . , br, b

−1
r ]

with W r
x = W6r

x = Spec(k[b1, . . . , br]). We also introduce the ramified covering

W̃ r
x = Spec(k[λ±1

1 , . . . , λ±1
r ])→W r

x , (λ1, . . . , λr) 7→ B(t) =
∏
i

(1− λit).

For a rank r character χ let {λ1(χ), . . . , λr(χ)} be the corresponding roots of
Bχ(t) (defined up to permutation). We have an involution χ 7→ χ∗ on W r

x

defined by
λi(χ

∗) = λi(χ)−1, bi(χ
∗) = br−i(χ)br(χ)−1.

For a character χ : Ax → k the Euler factor corresponding to χ is defined as
the inverse of the corresponding series

L(χ; t) =
1

Bχ(t)
=

r∏
i=1

1

1− λi(χ)t
. (2.36)

Here the last equality holds if χ is of rank r. The k-algebra Ax is graded by
deg(bx,n) = n. This grading yields a Gm-action on Wx. Since ∆ is homogeneous,
this action is by group-scheme automorphisms. For F ∈ T orsx(X) we denote
by `(F) its length. Note that λ ∈ k× takes a character χ : Ax → k into the
character

χλ` : 1F 7→ χ(1F )λ`(F),

and that we have

Bχλ`(t) = Bχ(λt), L(χλ`, t) = L(χ, λt). (2.37)

2.8 The global Witt scheme

We define the global Witt scheme of X as the (infinite) product of the local ones

WX =
∏
x∈X

Wx = Spec(A).
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This is an commutative affine group scheme with respect to the componentwise
operation. We have a locally closed subscheme

W r
X =

∏
x∈X

W r
x

of rank r characters, with the involution

χ = (χx)x∈X 7→ χ∗ = (χ∗x)x∈X .

We also set
A(r) =

∏
x∈X

A(r)
x

so that W r
X = Spec(A(r)).

For a character χ : A→ k we define the L-series

L(χ, t) =
∏
x∈X

L(χx, t
deg(x)) ∈ 1 + tk[[t]].

This infinite product converges in 1 + tk[[t]] since the number of points of X of
any fixed degree is finite. We consider the Gm-action on WX corresponding to
the grading of A by the degree. For F ∈ T orsx(X) we have

deg(F) = dx `(F).

So our action of Gm is the product of actions on the Wx, where λ ∈ Gm acts
on Wx via the action of λdx in the previous sense. On the level of characters, λ
takes a character χ into

λdegχ : 1F 7→ λdeg(F)χ(1F ), F ∈ T ors(X).

On the level of L-series we have

L(λdegχ, t) = L(χ, λt).

2.9 The local Witt scheme as a ring scheme

As well known [24], the Witt scheme Wx is not just a group, but a ring scheme.
Let � be the multiplication in Wx. The morphism � : Wx × Wx → Wx is
uniquely determined by its restrictions

� : W6r
x ×W6s

x →W6rs
x ,

which are given by( r∏
i=1

(1− λit)
)
�
( s∏
j=1

(1− µjt)
)

=

r∏
i=1

s∏
j=1

(1− λiµjt).
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The neutral elements for �, � are given by the series 0 = 1 and 1 = 1 − t
respectively. The subscheme W 1

x ⊂Wx is a subgroup for �, which is isomorphic
to Gm. It is formed by polynomials of the form

[[λ]]x = 1− λt ∈W 1
x , [[λ]]x � [[µ]]x = [[λµ]]x, λ, µ ∈ Gm.

The action by Witt multiplication of W 1
x on Wx is the action considered in

(2.37)
[[λ]]x �B(t) = B(λt).

Let us now describe � explicitly. Consider the following series

Ψ(t) =
∑

F∈T orsx(X)

t`(F) |Aut(F)| (1F ⊗ 1F ) ∈ 1 + t(Ax ⊗Ax)[[t]].

Proposition 2.12. (a) The series Ψ(t) defines a bihomomorphism

U : Wx ×Wx →Wx.

(b) The bihomomorphism U is Wx-bilinear, i.e.,

U(χ� χ′, χ′′) = U(χ′, χ� χ′′) = χ� U(χ′, χ′′),

so U(χ, χ′) = χ� χ′ � κx for a Z-point κx of Wx.
(c) The point κx is given by Bκx(t) = (1 + t)/(1 + qxt).

Proof. For part (a) we must check that the series Ψ(t) satisfies the conditions
of Lemma 2.11. This is a consequence of the following lemma, which is proved
as in [15, (4.2)].

Lemma 2.13. For a commutative k-algebra R and a k-algebra homomorphism
χ : Ax → R, the series

Ψχ(t) =
∑

F∈T orsx(X)

t`(F)|Aut(F)|χ(F) 1F

is a group-like element in (R⊗Ax)[[t]].

To see part (b), it is enough to assume that χ ∈ W6r
x for some r, as the

union of the W6r
x is Zariski dense in Wx. by (a), we reduce to the case when

χ = [[λ]]x ∈ W 1
x = Gm. Since the action of [[λ]]x by � in Wx is the same as

the action B(t) 7→ B(λt) on power series and since the latter action corresponds
to the grading of Ax, our statement reduces to the (obvious) fact that the nth
coefficient of Ψ(t) has degree exactly n in each of the tensor variables.

We now establish part (c). The point κx can be found as U(1,1). Since 1
is the series 1− t, we have

Bκx(t) =
∑
F
α(F) · |Aut(F)| · t`(F),

30



where α : Ax → Q is the character sending bx,1 = 1Ox to (−1) and bx,n = 1O⊕nx
to 0, if n > 2. Now, modulo the ideal generated by the 1O⊕nx , n > 2, we have
1F ∼= 0 for any torsion sheaf not of the form OX/mnx for some n > 0, and,
moreover, we have 1OX/mnx

∼= (1Ox)∗n (the nth power in the Hall algebra). This
implies

Bκx(t) =

∞∑
n=0

(−1)n · |Aut(OX/mnx)| · tn =

= 1 +

∞∑
n=1

(−1)n(qnx − qn−1
x )tn =

1 + t

1 + qxt
,

as claimed.

Definition 2.14. For two characters χ, χ′ of Ax the Rankin-Selberg tensor
product Euler factor is the Euler factor L(χ� χ′, t), see (2.36). If χ is of finite
rank the Rankin-Selberg LHom Euler factor is

LHom(χ, χ′; t) = L(χ∗ � χ′; t).

Remark 2.15. For any r, the map (χ, χ′) 7→ LHom(χ, χ′; t) is a regular function
on W r

x ×Wx with values in 1 + tk[[t]].

2.10 The global Witt scheme as a ring scheme

The global Witt schemeWX =
∏
x∈XWx is a ring scheme for the componentwise

product, still denoted �. We consider the embedding

Gm →WX , λ 7→ [[λ]] = ([[λdeg(x)]]x)x∈X .

The �-multiplication by Gm under this embedding is the action on WX cor-
responding to the grading by the degree. Given two characters χ = (χx) and
χ′ = (χ′x) of A, we define their Rankin-Selberg tensor product L-series by

L(χ� χ′; t) =
∏
x∈X

L(χx � χ
′
x; tdeg(x)),

and, when χ is of finite rank, the LHom-series by

LHom(χ, χ′; t) =
∏
x∈X

LHom(χx, χ
′
x; tdeg(x)).

Let us introduce one extra copy Wabs of the classical Witt scheme, which we
do not identify with any of the Wx. Lemma 2.11 is applicable to morphisms to
Wabs. We have the map

SP : WX ×WX −→Wabs,

SP
(
(Bx(t))x∈X , (B′x(t))x∈X

)
=

∏
x∈X

(Bx �B
′
x)(tdeg(x)). (2.38)

called the Witt scalar product. By multiplying, over all x ∈ X, the statements
of Proposition 2.12, we get
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Proposition 2.16. (a) Let χ : A→ k be any character. Then the series

Ψχ(t) =
∑

F∈T ors(X)

tdeg(F) · |Aut(F)| · χ(F) · 1F ∈ A[[t]]

is group-like. The group-scheme homomorphism WX → Wabs corresponding to
Ψχ by Lemma 2.11 takes χ′ to κ � SP(χ, χ′), where κ is the k-point of WX

corresponding to the series

Bκ(t) =
ζX(−t)
ζX(−qt)

.
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3 The automorphic picture

3.1 The adelic interpretation of H and A

As before, let X be a smooth connected projective curve over Fq. We denote
by K = Fq(X) be the field of rational functions on X. Let k be a field of
characteristic zero containing

√
q.

Let Kx be the completion of K at x ∈ X. Let A ⊂
∏′
x∈X Kx be the ring

of adèles of X and let Ô =
∏′
x∈X Ôx be the subring of integer adèles. Here as

usual
∏′

stands for the restricted product. For an adèle a = (ax) we write

ord(a) =
∑
x∈X

ord(ax) deg(x).

Recall that the set of isomorphism classes of Bunr(X) is

Bunr(X) ' GLr(K) \GLr(A)/GLr(Ô).

For g ∈ GLr(A) let Eg be the corresponding vector bundle. Its degree is
deg(Eg) = ord(det(g)). For g ∈ GLr(A), h ∈ GLr(A) we abbreviate the Euler
form

〈g, h〉 = 〈Eg, Eh〉.

Recall that H and A denote the Hall algebra of Bun(X) and T ors(X). Thus

Ĥ(r) is the space of unramified automorphic forms of GLr(A), i.e., of functions

f : GLr(A) → k which are left GLr(K)-invariant and right GLr(Ô)-invariant.
The subspace H(r) consists of functions with compact support modulo GLr(K).

The right action of A on Ĥ(r) factors through the homomorphism A → A(r),
with A(r) being identified with the convolution algebra of functions on GLr(Ô)\
GLr(A)/GLr(Ô) with compact support. For i 6 r the element 1O⊕ix ∈ A
corresponds to the double coset of the matrix

diag(πx, . . . , πx, 1, . . . , 1)

where πx ∈ Kx, a local parameter at x, is counted i times.
The Hall algebra H =

⊕
rH

(r) of Bun(X) is
⊕

r F0(M(Bunr(X))), where
M(Bunr(X)) is the quotient groupoid associated with Bunr(X), i.e., the quo-

tient of the set GLr(A) by the group GLr(K)×GLr(Ô). The multiplication is
given by inverse and direct image along the diagram of functors of orbifolds

M(Bunr(X))×M(Buns(X)) M(Bunr,s(X))
poo q //M(Bunr+s(X)) ,

where M(Bunr,s(X)) is the groupoid associated with the quotient

Pr,s(K) \ Pr,s(A)/Pr,s(Ô)

and Pr,s is the parabolic subgroup.
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The comultiplication ∆ : Ĥ → H⊗̂2 is given by p∗q
∗. It is interpreted as the

constant term of automorphic forms. More precisely, the component

∆r,s : Ĥ(n) −→ H(r)⊗̂H(s), n = r + s, (3.1)

is given by the integral

∆r,s(f)(g, h) = 〈g, h〉
∫
f

(
g u
0 h

)
du,

where u runs over Nr,s(K) \ Nr,s(A), Nr,s is the unipotent subgroup, and du

is the Haar measure on Nr,s(A) such that the volume of Nr,s(Ô) is equal to 1.
To check this, it is enough to observe that the integral relatively to the Haar
measure is adjoint to the obvious pull-back relatively to the orbifold scalar
product, since the Haar leasur is normalzed so that the volume of Nr,s(Ô) is 1.

Definition 3.1. An automorphic form f ∈ Ĥ(r) is called cuspidal if ∆s,t(f) = 0
for any s, t > 0 or, equivalently, if f is primitive, i.e., if ∆(f) = f ⊗ 1 + 1⊗ f.

3.2 Cusp eigenforms as points of a scheme

Let Ĥcusp, resp. Ĥ
(r)
cusp, resp. H

(r,d)
cusp be the space of primitive elements in Ĥ,

resp. Ĥ(r), resp. Ĥ(r,d). Let

Hcusp =
⊕
r>0

H(r)
cusp, H(r)

cusp =
⊕
d∈Z

H(r,d)
cusp

be the intersection of Ĥcusp with H, i.e., the space of cuspidal functions with
finite support. It is a k-vector space graded by the rank and further by the
degree. By Proposition 2.6 each Ĥ(r) is an A-module, and H(r) is a submodule,
the action factoring through A→ A(r).

Lemma 3.2. (a) The subspaces Ĥ
(r)
cusp ⊂ Ĥ(r) as well as H

(r)
cusp ⊂ H(r) are left

and right A-submodules.

(b) For each r, d the space Ĥ
(r,d)
cusp coincides with H

(r,d)
cusp , i.e., each cuspidal

function on Bun(r,d)(X) has finite support.

(c) Each space H
(r,d)
cusp is finite dimensional.

Proof. The first claim follows from Proposition 2.7 and (2.22), because for
∆(f) = f ⊗ 1 + 1⊗ f we have

∆(γ∗(a⊗ f)) =
∑

γ∗(a1 ⊗ 1)⊗ γ∗(a2 ⊗ f) +
∑

γ∗(a1 ⊗ f)⊗ γ∗(a2 ⊗ 1)

= ε(a1)⊗ γ∗(a2 ⊗ f) + γ∗(a1 ⊗ f)⊗ ε(a2)

= 1⊗ γ∗(a⊗ f) + γ∗(a⊗ f)⊗ 1.

The second and third claims are consequences of the following more precise

fact: there is a finite subset C ⊂ Bun(r,d)(X) such that each f ∈ Ĥ(r,d)
cusp vanishes

outside C. This fact is a particular case of [22], Corollary I.2.9.
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Let H(r), H(r)
cusp be the quasicoherent sheaves on W r

X ⊂ WX corresponding

to H(r), H
(r)
cusp respectively. Thus, we have

H(r) = Γ(W r
X ,H(r)), H(r)

cusp = Γ(W r
X ,H(r)

cusp).

Let Σ(r) ⊂W r
X be the scheme-theoretic support of H

(r)
cusp, i.e., we set

Σ(r) = Spec
(
A(r)/Ann(H(r)

cusp)
)
,

where Ann denote the annihilator of a module. Then we have also

H(r)
cusp = Γ(Σ(r),H(r)

cusp).

As H
(r)
cusp =

⊕
d∈ZH

(r,d)
cusp has the grading by the degree, we see that Σ(r) is invari-

ant under the Gm-action on WX , and H(r)
cusp is a Gm-equivariant quasicoherent

sheaf.

Let R be a commutative k-algebra. By an R-valued cusp eigenform on
Bunr(X) we mean a non zero function f : Bunr(X)→ R such that

• f is primitive for ∆,

• there is a character χf ∈WX(R) such that Ta(f) = χf (a) f for all a ∈ A.

Remark 3.3. A character of the form χf as above gives rise to a character
πχf : Pic(X)→ R× such that for any line bundle L on X we have

f(V ⊗ L) = πχf (L) f(V ), V ∈ Bunr(X).

Indeed, the Hecke operator Tx,r = TO⊕rx sends a function f : Bunr(X) → R to
the function V 7→ f(V ⊗OX OX(x)∗) where OX(x) is the line bundle formed by
functions with at most first order pole at x.

The following is an algebraic reformulation of the strong multiplicity one
theorem for unramified cusp forms on GLr which says, see [34], that the joint
spectrum of the Hecke operators on the space of such forms is simple.

Proposition 3.4. (a) The sheaf H(r)
cusp is a free sheaf of OΣ(r)-modules of rank

1.
(b) For any field extension R of k, the R-valued cusp eigenforms on Bunr(X),

considered modulo scalar multiples, are in bijection with Σ(r)(R). The bijection
takes an eigenform f to the character χf .

(c) The scheme Σ(r) is an algebraic variety over k.
(d) The extension of scalars Σ(r)⊗k k̄ is a union of finitely many Gm-orbits.

Proof. Consider the restricted dual

Q =
⊕
d∈Z

(H(r,d)
cusp )∗.

35



Its left A-module structure is dual to the right A-module structure on H
(r)
cusp.

Let fun : Bunr(X)→ Q be the map whose value at a vector bundle V of degree

d is the functional on H
(r,d)
cusp given by evaluation at V . The following is then

obvious.

Lemma 3.5. (a) The function fun is cuspidal, i.e. we have

∆(fun) = fun ⊗ 1 + 1⊗ fun ∈ Q⊗ Ĥ⊗̂Ĥ.

It commutes with the A-action, i.e., for each a ∈ A and V ∈ Bunr(X) we have

(Tafun)(V ) = a · (fun(V )),

where the action on the right is given by the A-module structure on Q.
(b) For any A-module M and any cuspidal function f : Bunr(X)→M which

commutes with the A-action as above, there is a unique morphism of A-modules
φ : Q→M such that f = φ ◦ fun.

We call fun the universal cusp form. Consider a particular case of (b) when
M is an commutative A-algebra, i.e., a commutative k-algebra R equipped with
an algebra homomorphism χ : A→ R. We get:

Corollary 3.6. Let R be a commutative k-algebra and let χ : A → R be a
character. The set of R-valued cusp eigenforms with character χ is identified
with HomA(Q,R).

We now prove part (a) of Proposition 3.4. This part just means that H
(r)
cusp is

a cyclic A(r)-module. This is equivalent to saying that Q is a cyclic A(r)-module.
Choose a point x ∈ X, of degree dx. Then the Hecke operator Tx,r is invertible
in A(r) and the subalgebra in A(r) generated by this operator and its inverse
is isomorphic to the Laurent polynomial ring k[z±1]. Note that tensoring with
OX(x) identifies Bunr,d(X) with Bunr,d+rdx(X). So Remark 3.3 together with

Lemma 3.2(c) show that H
(r)
cusp and Q are finitely generated k[z±1]-modules. Let

Q be the coherent sheaf on G′m = Spec k[z±1] corresponding to Q. As Q is a
graded module over k[z±1], the sheaf Q is G′m-equivariant. This implies that Q
is a vector bundle. The algebra A(r) acts on Q by bundle endomorphisms. In
this situation the claim that Q is cyclic over A(r) is equivalent to the claim that
the fiber ofQ at some point z0 ∈ G′m is a cyclic A(r)-module. We take z0 = 1 and
take Q∗1, the dual space to the fiber. To prove that Q∗1 is a cyclic A(r)-module,
it is enough to assume that k = C, the assumption we make until the end of
the proof of (a). Similarly to Corollary 3.6, we see that Q∗1 = HomC[z±1](Q,C)
is identified with the (finite-dimensional) space of cusp forms f : Bunr(X)→ C
such that f(V ⊗ OX(x)) = f(V ) for each vector bundle V . In this case the
classical form of the multiplicity one theorem, see [34], Thm. 5.5, implies that
Q∗1 is a direct sum of 1-dimensional invariant subspaces on which A(r) acts by
distinct characters. This, in turn, implies that Q∗1 is cyclic, establishing part
(a).
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Let us now prove part (b). Suppose R/k is a field extension and we have
a character χ ∈ Σ(r)(R). It makes R into an A(r)-algebra, denote it Rχ. In
particular, Rχ is an A(r)-module. By Corollary 3.6, nonzero cusp eigenforms
with this character are the same as nonzero morphisms of A(r)-modulesQ→ Rχ.
By the proof of (a) above Q is cyclic, so Q ' k[Σ(r)] as an A-module by definition
of Σ(r). Now, nonzero morphisms of A(r)-modules k[Σ(r)] → Rχ form a torsor
over R×.

As for parts (c) and (d), it is enough to establish them for k = C. In this case
they follow from the description of Q as a G′m-equivariant vector bundle on G′m
with A(r)-action as given in the proof of (a): the fiber of Q over the point z = 1,
and therefore over any other point, splits into a direct sum of A(r)-eigenspaces
with distinct characters.

Proposition 3.4 is proved.

3.3 Rankin-Selberg L-functions

The disjoint union Σ =
∐
r Σ(r) of the algebraic varieties Σ(r) is a scheme of

the kind considered in Section 1.1. Since Σ(r) is closed in W r
X ⊂ WX , we have

a morphism of schemes
α : Σ −→WX . (3.2)

Proposition 3.4 implies that this morphism is a categorical monomorphism, i.e.,
an injection on R-points for any commutative k-algebra R. For χ ∈ Σ(r)(R),
χ′ ∈ Σ(s)(R) we have the Rankin-Selberg L-series, see Section 2.10,

LHom(χ, χ′; t) = L(χ∗ � χ′; t) ∈ 1 + tR[[t]].

If R is a field, then χ, χ′ correspond to some cusp eigenforms f , g. Therefore
the properties of Rankin-Selberg L-functions give the following.

Proposition 3.7. Let R be a field, and χ ∈ Σ(r)(R), χ′ ∈ Σ(s)(R) as above.
(a) The series LHom(χ, χ′; t) represents a rational function in t satisfying

the functional equation

LHom(χ′, χ; 1/qt) = εχ,χ′ (q
1/2t)2(1−gX)rs LHom(χ, χ′; t),

εχ,χ′ = π(χ∗ � χ′)(Ω1
X).

(b) If r 6= s, then LHom(χ, χ′; t) is a polynomial of degree 2(gX − 1)rs.

Proof. It is enough to assume that R = C. In this case the proof is a matter of
comparing our conventions and notations to those of the papers [12] [13] dealing
with the general theory of Rankin-Selberg convolutions. However, these papers
do not specifically emphasize the case of a function field and rational, rather
than just meromorphic, nature of L-functions. A summary of this case, based,
among other sources, on the the preprint [25], can be found in [16], Appendice
B.

More precisely, Théorème B9 of [16] implies the rationality in part (a) as well
as the general form of the functional equation, with a monomial ε(χ, χ′; t) deter-
mined by χ and χ′. The identification of this monomial with εχ,χ′ (q

1/2t)2(1−gX)rs
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is implied by local calculations (Lemme B1 of [16]) which realize ε(χ, χ′; t) as a
product of rs factors, each determined by one “Hecke eigenvalue” for χ and χ′.
Each of these factors, in turn, is identified with the local epsilon-factor of the
Tate theory corresponding to an unramified character of A∗ and some chosen
additive character ψ : A/K → C∗. The identification εχ,χ′ = π(χ∗ � χ′)(Ω1

X) is

obtained, as in [6], by taking ψ(a) = ψ0

(∑
x∈X trFqx/Fq Resx(axω)

)
, where ω

is a rational section of Ω1
X , and ψ0 : Fq → C∗ is a nontrivial character. Further,

the fact that LHom(χ, χ′; t) is a polynomial for r 6= s, follows from part (iii) of
[16], Théorème B9. The exact value of the degree of this polynomial is found
from the functional equation in (a).

From Remark 2.15, we deduce

Corollary 3.8. The correspondence

(χ, χ′) 7→ LHom(χ, χ′) := LHom(χ, χ′; 1)

descends to a rational function on Σ(r) × Σ(s) defined over k.

By combining these functions for all r, s, we get a rational function LHom ∈
k(Σ×Σ). The dependence on t can be recovered using the Gm-action in either
argument

LHom(t−degχ, χ′) = LHom(χ, tdegχ′) = LHom(χ, χ′; t).

We introduce a rational function c ∈ k(Σ× Σ) by

c(χ, χ′) = qrs(1−gX) LHom(χ, χ′)

LHom(qdegχ, χ′)
. (3.3)

The functional equation for the LHom-functions implies that c is antisymmetric

c(χ′, χ) = c(χ, χ′)−1.

Definition 3.9. A theta characteristic on X is a line bundle Θ (defined over
Fq) such that Θ⊗2 = Ω1

X .

If the curve X has a theta characteristic then c has a coboundary representation

c(χ, χ′) = λ(χ, χ′)λ(χ′, χ)−1, λ(χ, χ′) = θχ,χ′ LHom(χ, χ′), (3.4)

where θχ,χ′ is the value of π(χ∗ � χ′) on the class of Θ in Pic(X).
One can obtain other coboundary representations by multiplying λ with

rational functions on Σ × Σ, symmetric under permutation. We will use one
such particular representation. Note that the function

f(t) = t−1(1− qt)(1− q−1t) (3.5)
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satisfies f(t−1) = f(t). Define now a rational function t ∈ k(Σ× Σ)∗ by

t(χ, χ′) =

{
1, if χ, χ′ lie in different Gm-orbits;

(χ′ : χ) ∈ Gm, if χ, χ′ lie in the same Gm-orbit.
(3.6)

Put
λ̃(χ, χ′) = f

(
t(χ, χ′)

)
· λ(χ, χ′). (3.7)

Then
c(χ, χ′) = λ̃(χ, χ′)λ̃(χ′, χ)−1,

but as we will see later, λ̃ has better singularity behavior on Σ× Σ.

3.4 The main theorem.

Recall the scheme Σ and the rational function c ∈ k(Σ × Σ) in (3.3). We can
now formulate our main result.

Theorem 3.10. The k-algebra H is isomorphic to the shuffle k-algebra Sh(Σ, c).
If X has a theta-characteristic, then H is isomorphic to the symmetric shuffle
k-algebra SSh(Σ, λ).

The proof will be given in Section 4. We now reformulate Theorem 3.10 by
using the Langlands correspondence for GLr over function fields as established
by L. Lafforgue [16]. This correspondence uses l-adic local systems, so we fix a
prime l not dividing q.

We denote by LS(X) the category of lisse sheaves of Ql-vector spaces on
(the étale topology of) X, see [21]. We refer to objects of this category as local

systems on X. Let LS(r)(X) ⊂ LS(X) be the subcategory of local systems of
rank r. For such a local system L and a point x ∈ X we denote by Fr(x,L) :
Lx → Lx the action of the Frobenius Frx ∈ Gal(Fqx/Fqx) on the stalk of L at
x. The L-function of L is defined by the infinite product

L(L, t) =
∏
x∈X

1

det(1− Fr(x,L) · tdeg(x))
∈ Ql[[t]]. (3.8)

It is known that L(L, t) converges, that it is a rational function by [11, chap.
XIV], see also [21, chap. 13], and that it satisfies the following functional equa-
tion by [6]

L(L∨, 1/qt) = εL(q1/2t)(2−2gX)rL(L, t), (3.9)

where L∨ is the dual local system, and

εL · q(1−gX)r = det
(
Fr : H•(X ⊗ Fq,L)→ H•(X ⊗ Fq,L)

)
.

It was shown by Deligne [6] that

εL =
∏
x∈X

det(Fr(x,L))cx ,
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where
∑
cx · x is any divisor representing Ω1

X ∈ Pic(X). It is also known that
if L is irreducible, then L(L, t) is a polynomial.

Let D
(r)
0 be the set of isomorphism classes of irreducible local systems L ∈

LS(r)(X) such that det(L) has finite order, i.e., det(L)⊗d is a trivial local system

for some d > 1. Let also Σ
(r)
0 (Ql) ⊂ Σ(r)(Ql) consist of those automorphic

characters χ : A→ Ql for which the corresponding character πχ : Pic(X)→ Q×l
is of finite order. Lafforgue’s result is as follows [16, Théorème VI.9].

Theorem 3.11. There exist bijections

Σ
(r)
0 (Ql) −→ D

(r)
0 , χ 7→ Lχ

for each r > 1 such that for any χ ∈ Σ
(r)
0 (Ql), χ′ ∈ Σ

(s)
0 (Ql) we have

LHom(χ′, χ, t) = L(Hom(Lχ′ ,Lχ), t).

In particular, by taking χ′ to be the point 1 of the Witt scheme, we have

L(χ, t) = L(Lχ, t) for each r and each χ ∈ Σ
(r)
0 (Ql).

Proposition 3.12. The subset Σ
(r)
0 (Ql) ⊂ Σ(r)(Ql) intersects any orbit of the

Gm-action.

Proof. Indeed, fix a line bundle L on X of non-zero degree. Then Pic(X)/LZ

is a finite abelian group. Therefore a homomorphism φ : Pic(X) → Q×l has
a finite order if and only if φ(L) is a root of unity. So given χ ∈ Σ(r)(Ql),
taking λ = πχ(L)−1/deg(L), we have (λdeg · χ)π(L) = 1, and therefore λdeg · χ ∈
Σ

(r)
0 (Ql).

We now extend D
(r)
0 to a variety over Ql similar to Σ(r), which is a disjoint

union of Gm-orbits. For this, choose a point x ∈ X and recall that LS(r)(X) is
equivalent to the category of continuous representations πet

1 (X,x)→ GLr(Ql),
where πet

1 (X,x) is the étale fundamental group of X with base point x.We use
the same notation for the corresponding objects of the two categories. Recall
further that we have a surjective homomorphism

πet
1 (X,x)

d−→ Gal(Fq/Fq) = Ẑ.

and the unramified Weil group of X is defined to be

πWeil
1 (X,x) = d−1(Z) ⊂ πet

1 (X,x).

Note that for each x ∈ X we have a well-defined conjugacy class {Frx} ⊂
πWeil

1 (X,x), with d({Frx}) = deg(x). So for any r-dimensional representation
V of πWeil

1 (X,x) over Ql we define the L-series L(V, t) in the same way as in
(3.8).
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Unlike local systems, representations of πWeil
1 (X,x) admit fractional Tate

twists. That is, for each such representation (V, ρV ) with ρV : πWeil
1 (X,x) →

GL(V ) and each λ ∈ Q×l we have a new representation V (λ), identified with V
as a vector space, with ρV (λ) taking g into ρV (g) · λd(g). It follows that

L(V (λ), t) = L(V, λt). (3.10)

Let now D(r) be the set of isomorphism classes of irreducible r-dimensional
representations of πWeil

1 (X,x) over Ql which are of the form V (λ) where V ∈
D

(r)
0 and λ ∈ Q×l . It follows from Theorem 3.11 and Proposition 3.12 that D(r)

is a finite union of free orbits of the Q×l -action by fractional Tate twists. We
consider D(r) as an algebraic variety over Ql, the corresponding disjoint union
of copies of Gm. The properties of L-functions of étale local systems together
with (3.10) imply that the correspondence

(V,W ) 7→ L(Hom(V,W )) := L(Hom(V,W ), 1)

define a rational functon LHom on D(r) ×D(s) for any r, s > 1.
We set D =

∐
r>1D

(r). As mentioned above, it decomposes in a canoni-
cal way as a disjoint union of copies of Gm. Thus it is a scheme of the type
considered in Section 1.1, and we have a rational function LHom ∈ Ql(D×D)×.

Remark 3.13. The function LHom is regular everywhere except for the first
order poles on the diagonal and the q-shifted diagonal

∆ = {(χ, χ)}, ∆q = {(χ, q−deg · χ)} ⊂ D ×D.

This follows from the fact that L(L, t) is a polynomial for an irreducible local
system L not of the form Q

l
(λ), while

L(Q
l
, t) = ζX(t) =

P (t)

(1− t)(1− qt)
,

with P (t) a polynomial of degree 2gX .

Lafforgue’s theorem can be reformulated as follows.

Theorem 3.14. Let k be a subfield of Ql containing
√
q. There is an isomor-

phism Σ ⊗k Ql → D of schemes over Ql commuting with the Gm-action and
sending the rational function LHom ∈ k(Σ× Σ) to LHom.

Defining a rational function

δ ∈ Ql(D ×D), δ(V,W ) = q(1−gX)rs LHom(V,W )

LHom(V (q),W )
,

we see that
δ(V,W ) = δ(W,V )−1. (3.11)
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If X has a theta-characteristic Θ, then

δ(V,W ) = µ(V,W )µ(W,V )−1,

where
µ(V,W ) = q(1−gX)rsηHom(V,W )(Θ)LHom(V,W )

and ηHom(V,W ) is the character of Pic(X) corresponding to the determinant of
the local system Hom(V,W ). Define further the rational function t ∈ k(D×D)
simularly to (3.6) by

t(V,W ) =

{
1, if V,W lie in different Gm-orbits;

λ ∈ Gm, if W = V (λ) lie in the same Gm-orbit,
(3.12)

and put
µ̃(V,W ) = f

(
t(V,W )

)
· µ(V,W ).

By Remark 3.13, the function µ̃ is regular on D ×D except for first order pole
on each component of the diagonal.

Lafforgue’s theorem implies a purely Galois-theoretical realization of the Hall
algebra of vector bundles.

Corollary 3.15. Let k = Ql. The Hall algebra H is isomorphic to the shuffle
algebra ShQl(D, δ). If X has a theta-characteristic, then H is isomorphic to the

symmetric shuffle algebra SShQl(D, µ̃).

Transferring the information about singularities of LHom back into the auto-
morphic situation (where the purely automorphic Proposition 3.7 gives a weaker
statement), we conclude that:

Corollary 3.16. Suppose that X has a theta-characteristic. The function λ̃ ∈
k(Σ×Σ)∗ defined in (3.7), is regular on Σ×Σ except for the first order pole at
each component of the diagonal. Therefore, by Theorem 3.10 and Proposition
1.19, we have an embedding

H ' SSh(Σ, λ̃) ⊂
⊕
n≥0

kqcom[Σn]Sn

of H into the space of regular symmetric functions on Σ. The image of H is
the direct sum, over n ≥ 0, of ideals in the rings kqcom[Σn]Sn .

Example 3.17. In the particular case where X = P1 we have Σ = Σ1 = Gm
since there is only one cusp form. The zeta function is ζ(t) = 1/(1− t)(1− qt).
Hence the rational function λ̃ in k(Gm ×Gm)× is given by

λ̃(t, t′) = (t− q−1t′)/(t− t′).

Thus H is the shuffle algebra SSh(Σ, λ̃), which coincides with one half of the

Drinfeld-Jimbo quantum goup of affine type A
(1)
1 , as already proven in [15].

42



Remark 3.18. The orbifold scalar product on H corresponds, in this embed-
ding, to the scalar product of pseudo-Eisenstein series which is classically found
by the “Maass-Selberg relations”, cf. [22, §II.2.1]. In our language they cor-
respond to the L2-scalar product on

⊕
n≥0 kqcom[Σn]Sn , corresponding to a

measure on some real locus of Sym(Σ) with the weight of the measure found as
a product of the LHom-functions, similarly to the scalar products on symmetric
polynomials considered in [18]. On the other hand, H has a natural orthogo-
nal basis, formed by vector bundles themselves. This means that we represent
vector bundles by orthogonal polynomials.

3.5 Example : elliptic curves.

In this subsection we assume that X is an elliptic curve, i.e., gX = 1. In this
case the Hall algebra was studied extensively, see [4, 28, 30, 31, 32]. These
papers emphasized, in particular, the so-called spherical subalgebra Hsph ⊂ H

generated by the characteristic functions of Picd(X), d ∈ Z. Our results imply
that H splits into an infinite tensor product of simpler pairwise commuting
k-algebras, one of which is Hsph. This is based on the following fact.

Proposition 3.19. Let L be an irreducible local system of Q̄l-vector spaces on
X such that L(λ) is nontrivial for any λ ∈ Q̄l. Then L(L, t) = 1 identically.

Proof. Denote X = X ⊗ Fq. The following is a direct consequence of the iso-

morphism πet
1 (X) = Ẑ⊕ Ẑ.

Lemma 3.20. Let N be an irreducible local system of Q̄l-vector spaces on X
which is nontrivial. Then rk(N ) = 1 and Hi(X,N ) = 0 for all i.

The lemma implies, in particular, that Ext1(N ,N ′) = 0, if N ,N ′ are two
non-isomorphic irreducible local systems on X. As before, let L be irreducible,
and let r = rk(L). Denoting by L the local system on X pulled back from L,
we then conclude that

L '
r−1⊕
i=0

(Fri)∗N , (3.13)

where N is a 1-dimensional local system on X such that (Frr)∗N ' N , and r is
the minimal number with this property. If r > 1, this implies that Hi(X,L) = 0
for all i, and so L(L, t) = 1 by the cohomological interpretation of L-functions.
If r = 1, this means that L = N is such that Fr∗(N ) ' N . If N is nontrivial,
we conclude as before. If N = Ql is trivial, then the descent of N to a local

system L on X is given by a homomorphism φ : Ẑ = Gal(Fq/Fq) → Q×l . If λ
is the image of 1 under φ, then L = Ql(λ) is a Tate twist of the trivial local
system. Proposition 3.19 is proved.
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Corollary 3.21. Let L,M be two irreducible local systems on X. If M is not

isomorphic to L(λ) for any λ ∈ Q×l , then L(Hom(L,M), t) = 1 identically. If
M' L(λ), then

L
(
Hom(L,M), t

)
=

∏
ε∈ n
√

1

ζX(ελt), r = rk(L).

Proof. The first statement follows by decomposing L andM and in (3.13), and
then applying Lemma 3.20. To prove the second statement, it is enough to
assume λ = 1, i.e., M = L. Then, in the notation of (3.13), we have

Hom(L,L) ' P ⊕
r−1⊕
i=0

End((Fri)∗N ), (3.14)

where P is a local system without any cohomology which therefore does not
contribute to the L-function. Now, each summand End((Fri)∗N ) is a trivial 1-
dimensional local system, but these summands are permuted by the Frobenius
in a cyclic way. So, as a module over Gal(Fq/Fq) = Ẑ, the second summand in
(3.14) is identified with the tensor product of the trivial local system Ql and

of Ql[Z/r], the group algebra of the cyclic group Z/r. Denoting by Ql(ε) the

1-dimensional representation of Ẑ, in which 1 acts by ε, we have an isomorphism
of Ql[Ẑ]-modules

Ql[Z/r] =
⊕
ε∈ r
√

1

Ql(ε),

and therefore we conclude that

Hom(L,L) ' P ⊕
⊕
ε∈ r
√

1

Ql(ε),

where Ql(ε) is the Tate twist of the trivial local system by ε, and L(P, t) = 1.
This implies the corollary.

For r > 1 we introduce the rational function of two variables t, s ∈ Gm

cX,r(t, s) =
∏
ε∈ r
√

1

ζX(εt/s)

ζX(εqt/s)
.

Theorem 3.22. Let k be an algebraically closed field of characteristic 0. Then
the algebra H is isomorphic to the infinite tensor product

H '
⊗

S∈π0(Σ)

Sh(Gm, cX,r(S)),

where S runs over connected components of Σ and r(S) is the rank of (the cusp
forms corresponding to points of) S.
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Proof. It is enough to take k = Ql. By Corollary 3.15, we have that H =
Sh(D, δ), with π0(D) identified with π0(Σ). Further, if S, S′ are different com-
ponents of D, then by Corollary 3.21, the restriction of δ to S×S′ is identically
equal to 1. The restriction of δ to each S × S is identified with the function
cX,r(S) on Gm ×Gm, again by Corollary 3.21. This implies our statement.

Example 3.23. If r(s) = 1, then Sh(Gm, cX,r(S)) is isomorphic to the spherical
Hall algebra Hsph of [4], as shown in [31]. The components of π0(Σ) with
r(S) = 1 correspond to characters of Pic(X) modulo tensoring with characters
of the form λdeg. So their number is equal to |Pic0(X)|. The tensor product
decomposition of Theorem 3.22 contains therefore |Pic0(X)| commuting copies
of Hsph. The subalgebra generated by these copies is a particular case of the
principal Hall algebra defined in [33] for curves of any genus.
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4 The spectral decomposition of H and the proof
of Theorem 3.10.

4.1 Spectral decomposition in geometric terms.

Let us recall the relation between Hall products and Eisenstein series observed
in [15]. Let f ∈ Σ(r)(k) be a cusp eigenform. By Lemma 3.2(b), the restriction
of f to each Bunr,d(X) has finite support. Let

Ef,d =
∑

V ∈Bunr,d(X)

f(V ) · 1V ∈ H(r,d) (4.1)

be the corresponding element of H, and

Ef (t) =
∑
d∈Z

Ef,dt
d ∈ H(r)[[t, t−1]] (4.2)

be the formal generating series of the Ef,d. Let f = (f1, ..., fm), fi ∈ Σ(ri)(k)
be a sequence of cusp eigenforms, and r =

∑
ri. The Hall product

Ef (t) = Ef1(t1) ∗ · · · ∗ Efm(tm) ∈ H(r)[[t±1
1 , ..., t±1

m ]] (4.3)

considered as a function on Bunr(X), is the Eisenstein series corresponding to
f1, ..., fm. In particular, its value at any rank r bundle V , is a series in the
t±1
i . It is known that this series is the expansion of a rational function in the

region |t1| � · · · � |tm|, and that this function (or rather the collection of these
functions for all V ) satisfies a functional equation (recalled in 4.21 below). If
k = C, by a pseudo-Eisenstein series one means a contour integral of the form∫

|ti|=εi
Ef (t)φ(t)d∗t

where φ is a Laurent polynomial and |ε1| � · · · � |εm|, see [22], §II.1.10-
11. Thus pseudo-Eisenstein series are finite linear combinations of the products
Ef1,d1 ∗ · · · ∗ Efm,dm .

Now, the algebraic version of the spectral decomposition theorem for un-
ramified automorphic forms on GLn(A) can be formulated as follows.

Proposition 4.1. The subspace Hcusp ⊂ H generates H as an algebra.

Proof. This was shown in [15], Thm. 3.8.4. For convenience of the reader, we
provide another argument here. It is enough to assume that k = C. Let H ′ ⊆ H
be the subalgebra generated by Hcusp. We will prove by induction on the rank

r that H ′
(r)

= H(r). This is obvious for r = 1 since H
(1)
cusp = H(1). Let r > 1

and let us assume that H ′
(s)

= H(s) for any s < r. Let d ∈ Z and let x ∈ H(r,d)

be orthogonal to H ′ with respect to the Hermitian orbifold pairing (2.2). For
any (r1, d1), (r2, d2) with r1, r2 > 1 such that r = r1 + r2, d = d1 + d2 we have

∆(r1,d1),(r2,d2)(x) ∈ (H ′
(r1) ⊗H ′(r2)

)⊥
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by the Hopf property of the pairing. Since H ′
(r1)

= H(r1), H ′
(r2)

= H(r2), and
since the pairing is nondegenerate, it follows that ∆r1,r2(x) = 0 for all r1, r2 > 1.

But then x ∈ H
(r)
cusp ⊂ H ′. Since the pairing is positive definite we conclude

that x = 0. We have shown that (H ′
(r)

)⊥ = {0}. This means that H ′
(r)

= H(r)

because H(r) is a (countable-dimensional) pre-Hilbert space.

Recall from Section 3.3 the scheme Σ =
⊔
r Σ(r), with

Σ(r) = SuppA(r)(H(r)
cusp) ⊂ W r

X ⊂ WX ,

and the monomorphism α : Σ→WX formed by closed embeddings of Σ(r) into
W r
X . Next, recall that the coproduct on A yields an abelian group structure �

on WX = Spec(A). Iterated addition in this group structure, together with the
morphism α, yields morphisms

αr1,...,rn : Σ(r1) × ...× Σ(rn) −→W r
X , r = r1 + · · · rn, (4.4)

which gives rise to a morphism

a : Sym(Σ) −→WX . (4.5)

Let Π be the set of maps ν : Z>1 → Z>0 such that ν(s) = 0 for s � 0. For
ν ∈ Π we denote

|ν| =
∑
s>1

ν(s), wt(ν) =
∑
s>1

sν(s), Symν(Σ) :=
∏
s>1

Symν(s)(Σ(s)). (4.6)

Then for r > 0 we have the disjoint union decomposition

Symm(Σ) =
∐
|ν|=m

Symν(Σ),

and the restriction of a to Symν(Σ) defines a morphism

aν : Symν(Σ)→W
wt(ν)
X .

Proposition 4.2. The morphism a is injective on k-points.

Proof. It is enough to assume that k = C. Our statement means that any finite
set of C-points σi ∈ Σ(ri) ⊂ WX is linearly independent over Z in the group
WX(C). But such independence follows from the result of Jacquet and Shalika
([13], Thm. 4.2).

Next, we prove that aν is a closed morphism, i.e., it takes Zariski closed sets
into Zariski closed sets. Indeed, each aν is obtained by descent of some pr1,...,rn
under the finite morphism

∏
i Σ(ri) → Symν(Σ). So it is enough to show that

each pi1,...,ir is closed. Let ∆r1,...,rn denote the degree (r1, . . . , rn) component
A(r) →

⊗
iA

(ri) of the iterated comultiplication map ∆(n−1).
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Proposition 4.3. For any r1, ..., rn the Witt addition morphism

waddX :
∏
i

W ri
X −→W r

X , r = r1 + ...+ rn,

is an integral morphism, i.e., the map ∆r1,...,rn makes
⊗

iA
(ri) into an integral

ring extension of A(r).

The proposition implies that aν is closed, since any integral morphism is
closed, see e.g., [10, Proposition 6.1.10], and since

∏
i Σ(ri) is a closed subset in

the source of waddX .

Proof of the proposition. Note that waddX is the Cartesian product, over all
x ∈ X, of similar morphisms waddx :

∏
iW

ri
x → W r

x . Each W ri
x is the scheme

of polynomials with constant term 1 and degree exactly ri, and waddx is given
by multiplication of polynomials. So each waddx is a finite morphism, and
waddX , being a projective limit of finite morphisms, is integral.

The fact that each aν is closed together with Proposition 4.2 means that
for any component S ⊂ Sym(Σ) the restriction a|S : S → a(S) is a regular
birational morphism, bijective on k-points. In particular, the morphism aν is a
regular birational homomorphism from Symν(Σ) to a closed subscheme Sν in

W
wt(ν)
X . We write

Sr =
∐
|ν|=r

Sν , S =
∐
r>0

Sr.

First, let us quote a few simple properties of the scheme S (the proof is left
to the reader).

Proposition 4.4. We have
(a) S1 = Σ,
(b) the subscheme S ⊂WX is a sub-semigroup of WX ,
(c) the map a factors to a morphism of semigroups Sym(Σ)→ S.

Next, we prove the following.

Proposition 4.5. We have an equality of schemes

SuppA(r)(H(r)) = Sr.

Proof. By Proposition 4.1 it is enough to show that for r1, . . . , rn as in (4.4) we
have

SuppA(r)

(
H(r1)

cusp ∗ · · · ∗H(rn)
cusp

)
= αr1,...,rn

(
Σ(r1) × · · · × Σ(rn)

)
. (4.7)

By Proposition 2.7, the Hall multiplication gives a surjective A(r)-module ho-
momorphism

H(r1)
cusp ⊗ · · · ⊗H(rn)

cusp −→ H(r1)
cusp ∗ · · · ∗H(rn)

cusp,
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where the source is made into a A(r)-module via the map ∆r1,...,rn : A(r) →⊗
iA

(ri) in Proposition 4.3 and the target is regarded as a A(r)-submodule of
H(r). Thus we have

SuppA(r)

(
H(r1)

cusp ∗ · · · ∗H(rn)
cusp

)
⊂ SuppA(r)

(
H(r1)

cusp ⊗ · · · ⊗H(rn)
cusp

)
=

= waddX

(
SuppA(r1)⊗···A(rn)

(
H(r1)

cusp ⊗ · · · ⊗H(rn)
cusp

))
,

(4.8)

the last equality following from the fact that the ring embedding ∆r1,...,rn corre-
sponds to the integral morphism of schemes waddX from Proposition 4.3. Since
the right hand sides in (4.7) and (4.8) coincide, this proves the inclusion ⊂ in
(4.7).

We now prove the reverse inclusion in (4.7). For this we can assume that
k = C. For a cusp eigenform f ∈ Σ(r)(C) let Hf ⊂ Hcusp be the span of the
Ef,d, d ∈ Z. It is enough to prove that for any sequence of cusp eigenforms
fi ∈ Σ(ri)(C), i = 1, ..., n, we have the exact equality

suppA
(
Hf1 ∗ · · · ∗Hfn

)
= αr1,···rn(S1 × · · · × Sn), (4.9)

where Si be the Gm-orbit of fi in WX . In other words, we have to prove that
for any a ∈ A not vanishing identically on the RHS of (4.9), the Hecke operator
Ta cannot annihilate each Ef1,d1 ∗ · · · ∗Efn,dn , i.e., cannot annihilate the series
Ef1(t1) ∗ · · · ∗Efn(tn) identically. On the other hand, denoting by χi ∈WX(C)
the character of A corresponding to the eigenform fi, we see from Proposition
2.7 that

Ta
(
Ef1(t1) ∗ · · · ∗ Efn(tn)

)
= φa(t1, . . . , tn)Ef1(t1) ∗ · · · ∗ Efn(tn), (4.10)

where the Laurent polynomial φa(t1, . . . , tn) is defined as the value of a at the

C[t±1
1 , · · · t±1

n ]-point (χ1t
−deg
1 ) � · · · � (χnt

−deg
n ) of WX . Our assumption on a

means that φa is not identically zero. Now, identical vanishing of (4.10) is not
possible because the Eisenstein series represents a nonzero rational function in
t1, . . . , tn. Proposition 4.5 is proved.

Let H,H(r) be the quasicoherent sheaves on WX corresponding to the A-
modules H,H(r), so that H =

⊕
r>0H(r). The above proposition implies that

each H(r) is supported on a finite union of (Zariski closed) components of S.
Therefore we can regard H(r) and H as quasicoherent sheaves on S.

For any connected component S ⊂ S let HS be the induced sheaf on S,
and H(S) := Γ(S,HS). Note that Propositions 3.4 and 4.1 imply that HS is a
coherent, not just quasicoherent, sheaf on the algebraic variety S. By definition,
we have an isomorphism of vector spaces

H = Γqcom(S,H) =
⊕

S∈π0(S)

H(S), (4.11)

while H(r) is a similar, finite, sum taken over S ⊂ Sr.
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Proposition 4.6. The decomposition (4.11) is a multiplicative grading, i.e.,

H(S) ∗H(S′) ⊂ H(p(S × S′))

where p : S×S→ S is the addition morphism.

Proof. Suppose H(S) ⊂ H(r) and H(S′) ⊂ H(r′). Then, similarly to the proof
of Proposition 4.5, we have

SuppA(r+r′)

(
H(S) ∗H(S′)

)
⊂ SuppA(r+r′)

(
H(S)⊗H(S′)

)
= p(S × S′),

as p corresponds to the morphism ∆r,r′ : A(r+r′) → A(r) ⊗ A(r′) which is an
integral extension of rings.

Now, recall (see Section 1.2) that the category QCoh(S) has a monoidal
structure ~. The following is then straightforward.

Proposition 4.7. The Hall multiplication on H localizes to a morphism µ :
H~H → H which makes H into an associative algebra in (QCoh(S),~).

4.2 Rational completion of H⊗n.

We call the rational completion of H the vector space

Hrat =
⊕

S∈π0(S)

k(S)⊗k[S] H(S) = Γqcom(S,Hrat).

Here Hrat is defined as in Section 1.3. The space Hrat is an associative algebra,
but it is not a priori identified with any space of functions on Bun(X). We
will prove later (see Corollary 4.16) that the canonical map H → Hrat is an
embedding. More generally, for n > 1 we denote

H⊗nrat = Γqcom(S, (H~n)rat) =

=
⊕

S1,...,Sn∈π0(S)

k(S1 × · · · × Sn)⊗k[S1×···×Sn] H(S1)⊗ · · ·H(Sn).

The twisted multiplication in H⊗n, see (2.4), gives H⊗nrat a structure of an asso-
ciative algebra.

Recall the completions H̃,H⊗̃n of H,H⊗n defined in Section 2.4. Fix con-
nected components S1, . . . , Sn of S of weights ri = wt(Si) and set

H̃S1,...,Sn =
⊕
d∈Z

H̃
(r,d)
S1,...,Sn

where r =
∑
ri and

H̃
(r,d)
S1,...,Sn

=
∏

d1+...+dn=d

H(S1)(r1,d1) ⊗ · · · ⊗H(Sn)(rn,dn).
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We have H̃S1,...,Sn ⊂ H⊗̃n. The algebra k[S1 × · · · × Sn] acts on H̃S1,...,Sn ,

preserving H(S1) ⊗ · · · ⊗ H(Sn). We call an element u ∈ H̃S1,...,Sn rational if
there exists a ∈ k[S1 × · · · × Sn], a 6= 0 such that au ∈ H(S1) ⊗ · · · ⊗ H(Sn).

We denote by H̃S1,...,Sn,rat the set of rational elements of H̃S1,...,Sn . There is a
natural k[S1 × · · · × Sn]-module map

H̃S1,...,Sn,rat → (H(S1)⊗ · · · ⊗H(Sn))⊗k[S1×···×Sn] k(S1 × · · · × Sn).

We set
H⊗̃nrat =

⊕
S1,...,Sn

H̃S1,...,Sn,rat.

The sum ranges over all n-tuples of connected components of S.

Proposition 4.8. The following hold

(a) H⊗̃nrat is a subalgebra of H⊗̃n,

(b) the natural map H⊗̃nrat → H⊗nrat is an algebra homomorphism.

Proof. To prove (a) it is enough to show that for any (S1, . . . , Sn), (S′1, . . . , S
′
n)

we have
µ(H̃S1,...,Sn,rat ⊗ H̃S′1,...,S

′
n,rat) ⊂ H̃S′′1 ,...,S

′′
n ,rat,

where if Si ∈ Sn and S′i ∈ Sm then S′′i = p(Si × S′i) ∈ Sn+m (see Proposition

4.6). Let u, u′ be respective elements of H̃S1,...,Sn,rat, H̃S′1,...,S
′
n,rat. There exists

a ∈ k[S1 × · · · × Sn] and a′ ∈ k[S′1 × · · · × S′n] such that

au ∈ H(S1)⊗ · · · ⊗H(Sn), a′u′ ∈ H(S′1)⊗ · · · ⊗H(S′n).

Since k[S1 × · · · × Sn] ⊗ k[S′1 × · · · × S′n] is, via ∆, an integral extension of
k[S′′1 × · · · × S′′n], there exists a′′ ∈ k[S′′1 × · · · × S′′n] such that

∆(a′′)(u⊗ u′) ∈
(
H(S1)⊗ · · · ⊗H(Sn)

)
⊗
(
H(S′1)⊗ · · · ⊗H(S′n)

)
.

Since the multiplication map µ is a morphism of A-modules and since H(Si) ∗
H(S′i) ⊂ H(S′′i ) for all i, we obtain

a′′(u ∗ u′) ∈ H(S′′1 )⊗ · · · ⊗H(S′′n)

as wanted. Statement (b) is obvious.

4.3 The Hall algebra as a braided commutative bialgebra.

We now give a Hopf-algebraic interpretation of the classical package of theorems
about principal series intertwiners and constant terms of Eisenstein series [22].
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Theorem 4.9. (a) The comultiplication ∆ : H → H⊗̃2 takes values in H⊗̃2
rat

and so gives rise to a coassociative map ∆ : H → H⊗2
rat . This map makes the

sheaf H into a rational coalgebra in the monoidal category (QCoh(S),~). Let
µ : H~H → Hrat and ∆ : H → H~2

rat denote the multiplication and the rational
comultiplication in H.

(b) There is an operator M : H⊗2
rat → H⊗2

rat with the following properties
(b1) M commutes with the A-action defined via ∆ : A→ A⊗ A. In partic-

ular, it gives rise to a rational morphism M : H~2
rat → H~2

rat.
(b2) M is involutive and satisfies the Yang-Baxter equation

M ◦M = Id : H~2
rat −→ H~2

rat

M12 ◦M23 ◦M12 = M23 ◦M12 ◦M23 : H~3 −→ H~3
rat.

(b3) µ is M -commutative, i.e., µ ◦M maps into H and is equal to µ.
(b4) ∆ is M -cocommutative, i.e., ∆ = M ◦∆.
(b5) µ and ∆ are M -compatible, i.e., ∆ is a homomorphism of algebras, if

the multiplication in H~2
rat is given by

(H~H)rat ~ (H ∗H)rat
1⊗M⊗1−→ (H~H~H~H)rat

µ⊗µ−→ (H~H)rat.

So the situation is quite similar to that of rational bialgebras, see Proposition
1.14, except at this stage the operator M is defined on just one object H ~H
and is not yet given as a part of a braiding on any ambient category.

The rest of this section is devoted to the proof of Theorem 4.9. Note that it
is enough to establish all the statements for the case k = C which we assume.

We begin with statement (a). Because H is generated by cuspidal elements,

it is enough to show that ∆(x) ∈ H⊗̃2
rat for any x = Ef1,d1 ∗ · · · ∗ Efm,dm , where

fi is a cusp eigenform on Bunri(X), and di ∈ Z for i = 1, . . . ,m. Define Ef (t)
as in (4.3). Set r =

∑
ri and fix r′, r′′ such that r′ + r′′ = r. The element

∆r′,r′′(x) is the coefficient of td11 · · · tdmm in the constant term of the Eisenstein
series Ef (t) with respect to the standard parabolic subgroup

Pr′,r′′ =

(
GLr′ 0

Matr′′,r′ GLr′′

)
. (4.12)

Now, the constant term of any Eisenstein series with respect to any parabolic
subgroup is given by the classical formula of Langlands (see, e.g., [22], II.1.7),
which for the case of Pr′,r′′ specializes to

∆r′,r′′(Ef (t)) =
∑

m′+m′′=m

∑
(i1,...,im′ )
(j1,...,jm′′ )

∏
iα>jβ

qriαrjb (1−gX) LHom(fiα , fjβ , tiα/tjβ )

LHom(fiα , fjβ , tiα/qtjβ )
×

×
(
Efi1 (ti1) ∗ · · · ∗ Efi

m′
(tim′ )

)
⊗
(
Efj1 (tj1) ∗ · · · ∗ Efj

m′′
(tjm′′ )

)
.

(4.13)
Here (i1, ..., im′ , j1, ..., jm′′) run over all permutations of {1, 2, ...,m} such that∑
iν = r′ and

∑
jν = r′′. The equality in (4.13) is understood as an equality
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of formal power series, when we expand the rational functions on the right
hand side in the domain |t1| � ... � |tm|. There exists a Laurent polynomial
P (t) ∈ C[t±1

1 , . . . , t±1
m ] such that ∆r′,r′′(P (t)Ef (t)) is a C[t±1

1 , . . . , t±1
m ]-linear

combination of the(
Efi1 (ti1) ∗ · · · ∗ Efi

m′
(tim′ )

)
⊗
(
Efj1 (tj1) ∗ · · · ∗ Efj

m′′
(tjm′′ )

)
.

Recall that Ef (t) is an eigenfunction of the Hecke algebra with character

χEf (t) = (χf1 · t
−deg
1 )� · · ·� (χfm · t−deg

m )

(addition in the Witt scheme). We can find a ∈ C[p(S1 × · · · × Sm)] such
that aEf (t) = P (t)Ef (t), where Si ⊂ Σ(ri) is the connected component of fi.
Considering the coefficient of td11 · · · tdmm and using the fact that ∆ is a morphism
of A-modules, we deduce that a∆(x) ∈ H ⊗ H. Note that the action of a on
thesummand(

Efi1 (ti1) ∗ · · · ∗ Efi
m′

(tim′ )
)
⊗
(
Efj1 (tj1) ∗ · · · ∗ Efj

m′′
(tjm′′ )

)
factors through the map

C[p(S1 × · · · × Sm)]→ C[p(Si1 × · · · × Si′m)]⊗ C[p(Sj1 × · · · × Sjm′′ )]

induced by ∆ : A → A ⊗ A. This implies that ∆(x) ∈ H⊗̃2
rat as wanted, and

proves (a).

The remainder of this section deals with (b). Before giving the definition
of the operator M , we recall a few notations. As before, A and K denote the
ring of adeles of and field of rational functions on the curve X. Fix r, s > 1 and
consider the subgroup

Ξr,s =

(
GLr(K) 0

Mats,r(A) GLs(K)

)
⊂ GLr+s(A).

Then the Iwasawa decomposition defines an identification

θr,s : Ξr,s\GLr+s(A)/GLr+s(Ô
)
−→ Bunr(X)× Buns(X) '

'
(
GLr(K)\GLr(A)/GLr(Ô)

)
×
(
GLs(K)\GLs(A)/GLs(Ô)

) (4.14)

Using it, we define a linear isomorphism

ε̂r,s : (H⊗̂2)(r,s) = F
(
Bunr(X)× Buns(X)

)
−→ F

(
Ξr,s\GLr+s(A)/GLr+s(Ô

)
)

by putting
(ε̂r,sf)([g]) = 〈E′′, E′〉f(E′, E′′),

where g ∈ GLr+s(A), [g] is its double coset in the source of (4.14), E′ ∈
Bunr(X), E′′ ∈ Buns(X) are such that θr,s([g]) = (E′, E′′) and 〈E′′, E′〉 is
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the Euler form. The restriction of ε̂r,s to functions with finite support defines
an isomorphism

εr,s : H(r) ⊗H(s) −→ F0

(
Ξr,s\GLr+s(A)/GLr+s(Ô

)
).

Recall further ([22], II.1.10), the (pseudo-)Eisenstein series map

Eisr,s : F0

(
Ξr,s\GLr+s(A)

)
−→ F0

(
GLr+s(K)\GLr+s(A)

)
,(

Eisr,s(f)
)
(g) =

∑
γ∈Pr,s(K)\GLr+s(K)

f(γg), where Pr,s =

(
GLr 0

Mats,r GLs

)
.

It is equivariant with respect to the right action of GLr+s(A) and so induces

a map between the spaces of invariants under GLr+s(Ô). By comparing the
definitions, we see at once that :

Proposition 4.10. The composition

H(r) ⊗H(s) εr,s−→ F0

(
Ξr,s\GLr+s(A)

)GLr+s(Ô) Eisr,s−→
Eisr,s−→ F0

(
GLr+s(K)\GLr+s(A)

)GLr+s(Ô)
= H(r+s)

is equal to the Hall multiplication ∗.

Our operator M is essentially given by the classical principal series inter-
twiner ([22], II.1.6). Recall that the latter is the GLr+s(A)- equivariant operator

Mr,s : F0

(
Ξr,s\GLr+s(A)

)
−→ F

(
Ξs,r\GLr+s(A)

)
, (4.15)

defined by

(Mr,sf)(g) =

∫
Z∈Matr,s(A)

f

((
Z 1r
1s 0

)
· g
)
dZ, (4.16)

where dZ =
∏
i,j dzij and

∫
A/K

dzij = 1. Compare also with the discussion

in [14] for the case of a finite field. As above, Mr,s induces an operator on

GLr+s(Ô)-equivariant vectors

Mr,s : H(r) ⊗H(s) −→ F
(

Ξs,r\GLr+s(A)/GLr+s(Ô)
)

=

= F(Buns(X)× Bunr(X)) = H(s)⊗̂H(r).
(4.17)

Proposition 4.11. (a) The operator Mr,s commutes with the A-action defined
via ∆ : A→ A⊗A.

(b) The operator Mr,s takes values in H⊗̃2
rat .

Proof. To prove (a), recall thatA(r+s) is the Hecke algebra of the groupGLr+s(A)

by the subgroup GLr+s(Ô). The action of A(r+s) on H(r)⊗̂H(s) defined via
∆ : A(r+s) → A(r) ⊗ A(s) coincides with the standard Hecke algebra action
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on the GLr+s(Ô)-invariant subspace in F(Ξr,s\GLr+s(A)). Since the opera-
tor Mr,s in (4.15) is a morphism of GLr+s(A)-modules, its restriction to the
invariant subspace commutes with the Hecke algebra action.

We now turn to (b). Let us first prove that Mr,s takes values in H(s)⊗̃H(r).
For E ∈ Bunr(X) and F ∈ Buns(X) we write

Mr,s(1E ⊗ 1F ) =
∑

F ′∈Buns(X)
E′∈Bunr(X)

cF
′E′

EF (1E′ ⊗ 1F ′).

It is enough to show that cF
′,E′

EF = 0 unless

deg(F ′) + deg(E′) = deg(E) + deg(F ) (4.18)

Indeed, let E,F correspond to a ∈ GLr(A) and b ∈ GLs(A) and let f in (4.16)
correspond to 1E ⊗ 1F , i.e., take f to be the characteristic function of the

double coset of g0 =

(
a 0
0 b

)
∈ GLr+s(A) modulo Ξr,s and GLr+s(Ô). For any

element h of this double coset we have ord det(h) = ord det(a) = ord det(b).

Therefore for any g in (4.16) such that f

((
Z 1r
1s 0

)
· g
)
6= 0 we have that

ord det(g) = ord det(a) + ord det(b). This proves (4.18).

Let us now recall the standard formulation of the rationality properties sat-

isfied by the Mr,s-operators. Let fi ∈ H
(ri)
cusp, i = 1, ...,m and f ′j ∈ H

(sj)
cusp,

j = 1, ..., n, be two sequences of cusp eigenforms, with characters χi and χ′j
respectively, and let r =

∑
ri and s =

∑
sj . Define Ef (t), Ef ′(t

′) as in (4.3).
Their values at any bundle on X are series in t = (t1, ..., tm), t′ = (t′1, ..., t

′
n),

converging in
|t1| � · · · � |tm|, |t′1| � · · · � |t′n| (4.19)

to rational functions.

Lemma 4.12. For t, t′ in (4.19) the integral (4.16) defining Mr,s(Ef (t) ⊗
Ef ′(t

′)) converges to

Mr,s(Ef (t)⊗Ef ′(t
′)) = Ef ′(t

′)⊗Ef (t)·
m∏
i=1

n∏
j=1

q(1−gX)risj
LHom(χ′j , χi; t

′
j/ti)

LHom(χ′j , χi, t
′
j/qti)

.

(4.20)

Proof. This is standard, we just indicate the main steps. We write r = (r1, ..., rm),
s = (s1, ..., sn) and consider the standard ”block-lower triangular” parabolic
subgroup Pr,s ⊂ GLr+s corresponding to the ordered partition of r + s into
r1, ..., rm, s1, ..., sn. Let Ur,s be the unipotent radical of Pr,s and Lr,s the Levi
subgroup. We write Ξr,s = Lr,s(K)Ur,s(A). We have the similar subgroups Ps,r

etc. defined by the ordered partition of r + s into s1, ..., sn, r1, ..., rn. Let wr,s

be the minimal length element of Sr+s, the Weyl group of GLr+s, transforming
Pr,s into Ps,r.
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Notice that Ef (t)⊗Ef ′(t
′) is obtained by Eisenstein series summation from

the element

Ef ,f”(t, t′) =

m⊗
i=1

Efi(ti)⊗
n⊗
j=1

Ef ′j (tj)

which can be regarded as a function on Ξr,s\GLr+s(A)/GLr+s(Ô). We have
the principal series intertwiner for GLr+s(A) corresponding to wr,s which gives
a map

Mwr,s : F(Ξr,s)\GLr+s(A) −→ F(Ξs,r)\GLr+s(A).

It is enough to prove that Mwr,s(Ef ,f”(t, t′)) converges in the domain (4.19) to
Ef ′,f (t

′, t) times the product of rational functions in (4.20). This is obtained by
splitting Mwr,s first, into the tensor product over x ∈ X, of local intertwiners

Mwr,s,x for unramified principal series representations of GLr+s(K̂x). The claim
is that each local intertwiner contributes the product over i, j of the ratios of
the Euler factors at x for the LHom functions in (4.20), times a constant coming
from comparing the Haar measure da on A normalized by

∫
A/K

da = 1 and the

product of the Haar measures dax on K̂x, normalized by
∫
Ôx dax = 1. This

constant accounts for the power of q in (4.20). Now, to prove the claim about
each local intertwiner, one represents it as the composition of rs intertwiners
corresponding to simple reflections in Sr+s. For each simple reflection the cal-

culation becomes elementary, reducing to the case of GL2(K̂X), and yields a
factor involving one eigenvalue of some χi and one eigenvalue of some χ′j ; the
product of these factors over all the eigenvalues gives the ratio of the two Euler
factors as in (4.20).

By Lemma 4.12, Mr,s maps H(S)⊗H(S′) to H(S′)⊗̃H(S) for any compo-
nents S, S′ of S. Because the functions LHom are rational, there are Laurent
polynomials P (t, t′), Q(t, t′) such that

Q(t, t′) ·Mr,s(Ef (t)⊗ Ef ′(t
′)) = P (t, t′) · (Ef ′(t

′)⊗ Ef (t
′)).

Arguing as in the proof of Theorem 4.9 (a) above, we see that there exists
elements a ∈ C[p(S1 × · · · × Sm)] and b ∈ C[p(S′1 × · · · × S′n)] such that

(a⊗ b)(Ef (t)⊗ Ef ′(t
′)) = Q(t, t′)Ef (t)⊗ Ef ′(t

′).

Since ∆ : A → A ⊗ A is an integral extension we can find c ∈ A(r+s) such
that c(Ef (t) ⊗ Ef ′(t

′)) = Q′(t, t′)Ef (t) ⊗ Ef ′(t
′) for some Laurent polynomial

Q′(t, t′) divisible by Q(t, t′). Because Mr,s commutes with the action of A(r+s),
it follows that

cMr,s(Ef (t)⊗ Ef ′(t
′)) = P ′(t, t′)Ef ′(t

′)⊗ Ef (t)

for some nonzero Laurent polynomial P ′(t, t′). But then for any tuple (d1, . . . , dm, d
′
1, . . . d

′
n),

we have

cMr,s((Ef1,d1 ∗ · · · ∗ Efm,dm)⊗ (Ef ′1,d′1 ∗ · · · ∗ Ef ′n,d′n)) ∈ H(s) ⊗H(r)
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which implies that

Mr,s((Ef1,d1 ∗ · · · ∗ Efm,dm)⊗ (Ef ′1,d′1 ∗ · · · ∗ Ef ′n,d′n)) ∈ H⊗̃2
rat .

This finishes the proof of Proposition 4.11.

We are now in position to define the operator M : H⊗2 → H⊗2
rat . On each

H(r) ⊗H(s) it is given by the composition H(r) ⊗H(s) → H⊗̃2
rat → H⊗2

rat .
Property (b1) is established in Proposition 4.11 (a). The property M ◦M =

Id from part (b2) follows from (4.20) and the functional equations satisfied by
the LHom-functions, see (3.9), (3.11). As for the Yang-Baxter equation, it may
be deduced directly from (4.20), or from the fact that the two sides, considered
as operators on each H(r)⊗H(s)⊗H(t), are given by integration over the same
domain (appropriate Schubert cell in the group GLr+s+t, represented in two
different ways as a product of smaller Schubert cells). This proves (b2).

Let us now prove (b3). As before, it suffices to compare the values of µ and
µ◦M on elements of H⊗H which are some Laurent coefficients of Ef (t)⊗Ef ′(t

′).
In this case the statement expresses the functional equation for Eisenstein series
on the group GLr+s(A) with respect to the element wr,s of Sr+s described in
the proof of Lemma 4.12, namely

Ef (t)∗Ef ′(t
′) = Ef ′(t

′)∗Ef (t)·
m∏
i=1

n∏
j=1

q(1−gX)risj
LHom(χ′j , χi; t

′
j/ti)

LHom(χ′j , χi, t
′
j/qti)

. (4.21)

In the same vein, (b4) follows from the functional equation of the LHom-
functions and the formula (4.13).

Finally, (b5) is another consequence of the formula for the constant term of
an Eisenstein series. Indeed, we need to prove that for any r1 + r2 = r, any
u ∈ H(r1), v ∈ H(r2), and any decomposition r = r′ + r′′ we have

∆r′,r′′(u ∗ v) =
∑

∆r11,r12(u) ∗̃∆r21,r22(v),

where ∗̃ is the M -twisted multiplication on (H ⊗ H)rat and the sum is over
rij ∈ Z+ such that

r11 + r12 = r1, r21 + r22 = r2,

r11 + r21 = r, r12 + r22 = r′.

As before, it is enough to assume that u (resp. v) is the product of an initial
(resp. final) segment in some product Ef1,d1 ∗ · · ·Efm,dm , and in this case the
statement follows from (4.20) and (4.13). This finishes the proof of Theorem
4.9.

Let us sketch, for the reader’s convenience, an alternative proof of Theo-
rem 4.9 which does not directly make use of the machinery or results of [22].

Recall that Hcoh is a topological bialgebra with coproduct ∆coh : Hcoh → H⊗̃2
coh.

If f is a cuspidal eigenform then

∆coh(Ef (t)) = 1⊗ Ef (t) + Ef (t)⊗Ψf (t)
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where
Ψf (t) =

∑
T

=
∑
T
tdegT χf (T )|Aut T |1T (4.22)

where the sum ranges over all torsion sheaves T on X (see [15], Section (3.2)).
Observe that Ψf (t) = Ψχf (t) where χf is the caharacter of A associated to f ,
and where Ψρ(t) is defined as in Section 2.

Langlands’ formula (4.13) for the constant term of Eisenstein series may
now be deduced from the following Lemma using Proposition 2.6 and standard
properties of bialgebras.

Lemma 4.13. Let f, g be cuspidal eigenforms. Then

Eg(t) ∗Ψf (t′) =
LHom(f, g, t′/t)

LHom(f, g, t′/qt)
Ψf (t′) ∗ Eg(t).

Proof. This follows from (4.22) and the definition of the LHom function, see
[15], Section 4.1. Note that the formulas here differ slightly from those of [15]
since we do not twist the coproduct as in loc. cit.

Next, we define the principal intertwiner map as follows :

Mr,s : H(r) ⊗H(s) → H(s)⊗̃H(r)

u⊗ v 7→ p2(∆coh,0,r(u) ∗∆coh,s,0(v))
(4.23)

where p2 : H⊗̃2
coh → H⊗̃2 is the projection map, and where ∗ is the twisted

multiplication on H⊗̃2
coh (see Section 2.4). Formula (4.20) is also a formal con-

sequence of Lemma 4.13 and standard properties of bialgebras. The remaining
statements of Theorem 4.9 are deduced, as above, from (4.13) and (4.20).

4.4 The Hermitian scalar product and proof of Theorem
3.10.

Consider the grading of H by “degree of non-cuspidality”

H =
⊕
n>0

Hn, Hn = Im
{
µ(n−1) : (Hcusp)⊗n → H

}
,

Hn =
⊕

S∈π0(Sn)

H(S).
(4.24)

Here H(S) is as in (4.11). In particular, H0 = k and H1 = Hcusp. For each
n > 0 the tensor product H⊗n has then a natural Zn+-grading. Note that the
action of the Hecke algebra A on H⊗n preserves this Zn+-grading and therefore
induces a Zn+-grading on H⊗nrat .

Lemma 4.14. For any n > 0, consider the Z+-grading on H⊗n by total degree.
Then the iterated comultiplication ∆(n−1) : H → H⊗nrat preserves the grading.
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Proof. It is enough to consider the case n = 2. Further, it is enough to assume
that k is algebraically closed, so H is generated by the elements Ef,d ∈ H1 as in
(4.1). So it is enough to prove that ∆(Ef1,d1 ∗ · · ·Efm,dm) lies in the component
of H⊗2

rat of total degree m. This follows from (4.13).

Let
ωn = p1,···1 ◦∆n−1 : Hn −→ (H1)⊗nrat

be the composition of ∆n−1 and the projection on the component of multidegree
(1, ..., 1). Let

ω =
⊕
n>0

ωn : H −→
⊕
n

(H1)⊗nrat ,

be the direct sum of the ωn. Theorem 3.10 follows from the next fact.

Proposition 4.15. (a) There is a unique rational bihomomorphism c̃ : S×S→
A1
k whose restriction to Σ × Σ is equal to the function c ∈ k(Σ × Σ)× given by

(3.3).
(b) The map ω takes the Hall multiplication in H into the shuffle multipli-

cation corresponding to c̃.
(c) ω is a monomorphism of vector spaces.

Proof. Part (a) is obvious. Indeed, start with c : Σ × Σ → A1
k and extend

it to c : Sym(Σ) × Sym(Σ) → A1
k by bi-homomorphicity. Then, let c̃ be the

pushforward of c. It is still a rational bihomomorphism.
Part (b) is equivalent to the formula for the constant term of Eisenstein

series with respect to general parabolic subgroups in GLr. It can be deduced
from Theorem 4.9 (b5). Indeed, we assume that k is algebraically closed and

look at generators Efi,di for fi ∈ H(ri)
cusp, i = 1, ...,m. Then the M -compatibility

of the product and coproduct in H together with (4.13) implies the constant
term formula in the form

∆(n−1)
(
Ef1(t1) ∗ · · · ∗ Efn(tn)

)
=

=
∑
σ∈Sn

[ ∏
i<j

σ(i)−1>σ−1(j)

qrirj(1−gX) LHom(fj , fi, tj/ti)

LHom(fj , fi, tj/qti)

](
Efσ(1)(tσ(1))⊗ · · ·

· · · ⊗ Efσ(n)
(tσ(n))

)
,

(4.25)
which is precisely the formula for the shuffle product on the generators. Since
both the Hall product and the shuffle product are associative, claim (b) follows.

To see part (c), it is enough to assume k = C, which we will. Let F =∑
fi1 ∗ · · · ∗ fin be a nonzero element of Hn, so fiν ∈ H1 = Hcusp. To

show that ∆(n−1)(F ) is nonzero, it is enough to consider it as an element

of H⊗̃n ⊂ F(Bun(X)n) and to find φ ∈ F0(Bun(X)n) = H⊗n such that
(∆(n−1)(F ), φ)Herm 6= 0 (orbifold Hermitian product (2.2) of functions on the
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orbifold Bun(X)n). Let us take φ =
∑
fi1 ⊗ · · · ⊗ fin . Then the adjointness of

the product and coproduct gives

(∆(n−1)(F ), φ)Herm = (F, F )Herm > 0

as the Hermitian product (2.2) is positive definite.

Note that the shuffle algebra Sh(Σ, c) is the same as the generalized shuffle
algebra Sh(S, c̃).

Corollary 4.16. For any component S of S, the k[S]-module H(S) is torsion
free.

Proof. Indeed, if S = (S1, . . . , Sn) ∈ π0(Sn) then ωn restricts to an embedding

ωn : H(S)→
⊕
σ

(
H(Sσ(1))⊗ · · · ⊗H(Sσ(n))

)
rat

(4.26)

where the sum ranges over all permutations σ of {1, . . . , n}. By proposition 2.7,
ωn is a morphism of A-modules, where A acts on (H1)⊗nrat via ∆(n−1). In partic-
ular, the restriction of ωn to H(S) is a morphism of k[S]-modules, where k[S]
acts on the right hand side of (4.26) via the embedding

k[S]→
⊕
σ

k[Sσ(1)]⊗ · · · ⊗ k[Sσ(n)]

which is the composition of ∆(n−1) and the projections A(ri) → k[Si]. It remains
to observe that this action of k[S] on the right hand side of (4.26) is torsion free
by definition of (H⊗n1 )rat.
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[3] Braverman, A., Kazhdan, D. On the Schwartz space of the basic affine
space, Selecta Math. (N.S.) 5 (1999), 11-28.

[4] Burban, I., Schiffmann, O. On the Hall algebra of an elliptic curve,
preprint arXiv: math.AG/0505148.

[5] Chari, V., Pressley, A., A Guide to Quantum Groups, Cambridge Univer-
sity Press, Cambridge, 1995.
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