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Cosmological constraints on rapid roll inflation
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We obtain cosmological constraints on models of inflation which exhibit rapid roll solutions. Rapid
roll attractors exist for potentials with large mass terms and are thus of interest for inflationary
model building within string theory. We constrain a general ansatz for the power spectrum arising
from rapid roll inflation that, in the small field limit, can be associated with tree level hybrid
potentials with variable mass terms and nonminimal gravitational coupling ξRφ2. We consider
perturbations generated through modulated reheating and/or curvaton mechanisms in place of the
observationally unacceptable primary spectra generated by inflaton fluctuations in these models.
The lack of a hierarchy amongst higher-order k-dependencies of the power spectrum results in models
with potentially large runnings, allowing us to impose tight constraints on such models using CMB
and LSS data. In particular, we find ns < 1 and |α| < 0.01. We conclude with a concrete realization
of rapid roll inflation within warped throat brane inflation that is in good agreement with current
data.

I. INTRODUCTION

Recent years have seen steady progress in the devel-
opment of inflation within string theory [1–5]. Infla-
tion in string theory is beset by the η-problem [6, 7],
in which dimension 6, Planck-suppressed operators in-
duce corrections to the inflaton mass of order the Hubble
scale, δm ∼ O(H). Such models are characterized by the

parameter η = M2
Pl

V ′′

V ∼ O(1), preventing slow roll in-
flation. These corrections generically arise in the volume
stabilization of brane inflation [7], and a compelling so-
lution to this problem remains an active area of research.
This problem is compounded in models based on warped
throat compactications in which the length of the throat
restricts the maximal field range [8]. It was earlier re-
alized by Linde that it is possible to achieve significant
efoldings of expansion even in the presence of large mass
terms [9] if the field enters a stage of rapid roll inflation.
This choice of terminology will become clear below.

In this paper, we obtain observational constraints on
models of inflation that undergo a period of rapid roll in-
flation. Typical examples of such potentials are those ap-
pearing in models of tree-level hybrid inflation, in which
the field evolves along the rapid roll attractor, asymptot-
ically approaching the minimum. These potentials give
observationally unacceptable density perturbations, and
so we consider perturbations generated through other
mechanisms, such as modulated reheating or the curva-
ton scenario. The light fields necessary for generating the

∗Electronic address: takeshi.kobayashi@ipmu.jp
†Electronic address: shinji.mukohyama@ipmu.jp
‡Electronic address: brian.powell@ipmu.jp

primordial perturbations in these scenarios are abundant
in string theory, making such mechanisms natural in this
setting.

We derive an analytical expression for the power spec-
trum, P (k), arising from potentials of the form

V = V0

[

1 +
1

2
v2

φ2

M2
Pl

+ O
(

φ4

M4
Pl

)]

(1)

in which the field is restricted to the range φ ≪ MPl.
The formalism we develop is applicable to both mini-
mally and nonminimally coupled scalar fields. The key
result is that the power spectrum arising from modulated
reheating and/or curvatons does not possess a hierar-
chy amongst low-order and high-order k-dependencies,
in contrast to inflaton-generated perturbations. In fact,
the higher-order runnings of the spectrum are completely
determined by the spectral index, ns, and first-order run-
ning, α = dns/dlnk, in the regime where Eq. (1) is jus-
tified. Using the latest CMB and LSS data, we perform
a Bayesian analysis on this power spectrum. We com-
pare these constraints with those obtained on a general

ansatz for the power spectrum, P (k) ∝ k(ns−1)+ 1
2
αln k

k0 ,
where the parameters ns and α are allowed to vary freely.
The spectrum arising from rapid roll inflation is highly
constrained relative to the generic parameterization, fa-
voring ns < 1 and small running, |α| < 0.01.

Lastly, we present a concrete realization of rapid roll
inflation within the context of warped throat brane in-
flation. We find that it is possible to obtain sufficient
inflation in the presence of a range of mass terms, and
the predictions of the model are in good agreement with
the observational constraints we obtain in this paper.

In Section II, we review the concept of rapid roll infla-
tion. In section III, we discuss the generation of perturba-
tions in these models through either modulated reheating
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or curvatons, and derive an analytic expression for P (k).
In section IV we present the details of the Bayesian anal-
ysis, and report our constraints on the power spectrum.
In Section V, we present a specific realization of rapid
roll inflation within string theory.

II. RAPID ROLL INFLATION

In this section we review the phenomenon of rapid roll
inflation. To illustrate this concept, consider a potential
of the form

V (φ) = V0 +
1

2
m2φ2. (2)

This is a prototypical hybrid-type potential, in which in-
flation ends when an auxiliary field develops a tachyonic
instability around φ ≈ 0. The equation of motion of a
homogeneous scalar field in an FRW universe with this
potential is

φ̈ + 3Hφ̇ + m2φ = 0. (3)

When H ≈ const. we obtain the solution

φ(t) = φ+er+Ht + φ−er−Ht (4)

r± = ±
√

9

4
− m2

H2
− 3

2
, (5)

where m2

H2 < 9
4 . This is true for the potential Eq. (2) in

the limit φ ≪ MPl. The general solution is a superposi-
tion of both branches of Eq. (4) but at late times the field
evolves along the r+ branch. If we choose m2 = 2H2, we
obtain

φ(t) =
φ0

a(t)
, (6)

or, equivalently,

φ̇(t) = −Hφ(t). (7)

The dynamics defined by the solution Eq. (7) is termed
rapid roll inflation. It tells us that the logarithmic vari-
ation of φ is set by the Hubble scale, or, ∆φ ≈ φ in a
Hubble time, ∆t = H−1. This is in contrast to slow roll

inflation, for which |φ̇| ≪ |Hφ|. The number of efolds of
expansion obtained during rapid roll is

N =

∫

Hdt = −
∫

dφ

φ
= ln

φi

φf
, (8)

where φi and φf are the field values at the beginning and
end of inflation. The spectral index of perturbations is
given by ns −1 = 2r+, and is therefore blue for this class
of models [10].1

1 The horizon crossing formalism breaks down here, and care must
be taken when evaluating the spectrum [10, 11].

Rapid roll solutions exist for more general potentials.
The inflationary dynamics can be described by

cHφ̇(t) ≃ −V ′(φ) (9)

with 3M2
PlH

2 = V whenever the conditions ǫ ≪ 1 and
|η̄| ≪ 1 are satisfied. Here

ǫ =
M2

Pl

2

(

V ′

V

)2

, (10)

η̄ = η +
c2

3
− c, (11)

η = M2
Pl

V ′′

V
(12)

where c is a constant of order unity. The solution Eq.
(9) reduces to Eq. (7) for the potential Eq. (2) with
m2 = 2H2. In fact, the rapid roll solution Eq. (9) is a
dynamical attractor [12], the stability of which we prove
in the appendix.

Rapid roll inflation can also be manifested in models
of inflation driven by nonminimally coupled scalar fields.
Consider the action of a nonminimally coupled scalar,

S =

∫

d4x
√−g

[

R

2M2
Pl

− 1

2
∂µφ∂µφ − V (φ) − 1

2
ξRφ2

]

.

(13)
In an FRW universe with ds2 = −dt2 + a(t)2dx2, the
resulting equations of motion are

3M2
PlH

2 =
1

2
φ̇2 + 6ξHφφ̇ + 3ξφ2H2 + V (φ), (14)

M2
PlḢ = −1

2
(1 − 2ξ)φ̇2 − 4ξHφφ̇ − 12ξ2H2φ2

− ξφV ′(φ) + ξ(1 − 6ξ)φ2Ḣ, (15)

φ̈ + 3Hφ̇ + 6ξ(Ḣ + 2H2)φ + V ′(φ) = 0. (16)

The value ξ = 1
6 is known as conformal coupling. In this

limit, the non-potential terms on the right hand side of
Eq. (14) can be written as a perfect square,

3M2
PlH

2 = (φ̇ + Hφ)2 + V (φ). (17)

Then, for constant potential, V (φ) = V0, the rapid roll

solution φ̇ = −Hφ gives a de Sitter universe,

3M2
PlH

2 = V0. (18)

The existence of rapid roll solutions in this model are
best understood by recalling that for Ḣ ≈ 0, the Ricci
scalar R ≈ 12H2. Then for ξ = 1

6 , the coupling term in

Eq. (13) forms an effective mass term ∝ H2φ2, and we
recover the potential Eq. (2). This model was first inves-
tigated in [13], where the conformal term was interpreted
as the Hubble scale mass correction arising from volume
stabilization in the KKLMMT [7] model,

V (φ) = V0

[

1 −
(

MPl∆

φ

)4
]

, (19)
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where ∆ is a dimensionless constant. This potential is
flat except for very small values of φ, and so the de Sitter
solution holds across much of the inflationary trajectory.
As in the minimally coupled case, rapid roll attractor
solutions exist for more general potentials [13]. In this
paper, we seek constraints on rapid roll inflation arising
from potentials of the form Eq. (2) with arbitrary non-
minimal coupling strengths.

III. PRIMORDIAL PERTURBATIONS

In this section we derive an analytic expression for the
power spectrum generated by the rapid roll models in-
troduced in the last section. An important aspect of this
work is that we consider perturbations not generated by
the inflaton itself, but rather from a mechanism such as
modulated reheating [14, 15] or curvatons [16–18]. We do
this for several reasons. The first is that spectra arising
from the minimally coupled inflaton with potential Eq.
(2) or flat potentials with nonminimal couplings ξ ≈ 1/6
are blue (ns > 1) with small tensors and thus not obser-
vationally viable [23]. In addition to phenomenological
motivations, such mechanisms are also attractive from
a theoretical point of view. In particular, string theory
provides natural candidates for the light moduli fields
that generate perturbations in these alternative scenar-
ios. The low energy scales required to suppress the in-
flaton perturbations on CMB scales are well tolerated
by string inflation models, particularly brane inflation in
warped throat compactifications. String inflation is also
a pertinent place to realize the rapid roll inflation models
considered in this paper.

A. Modulated Reheating and Curvatons

In order to reheat the universe, the inflaton field must
undergo decays whose end products are the particles of
the Standard Model. In supersymmetric and string the-
ories, the couplings that facilitate these decays are not
constants, but functions of scalar fields in the theory. If
these fields are light during inflation (m ≪ H), they will
fluctuate in space with the result that the coupling con-
stants (and hence decay rates) will become functions of
space. Different parts of the universe thus decay and re-
heat at different times – the resulting spatial modulations
in the reheat temperature give rise to energy density per-
turbations,

δTRH

TRH
∝ δρ

ρ
. (20)

For a light modulus field χ, one finds [14]

δρ

ρ
∝ δχ

M
, (21)

where M is some mass scale. The key result is that
the power spectrum of the resulting fluctuations is then

∝ H2/M2, where M can be taken sufficiently smaller
than MPl to ensure that the inflaton perturbations are
subdominant.

The primordial density perturbation may also be gen-
erated via the curvaton mechanism [16–18]. The curva-
ton, σ, is a light scalar during inflation with an associated
vacuum fluctuation, δσ. These fluctuations constitute a
superhorizon isocurvature perturbation that grows dur-
ing a post-inflationary radiation dominated phase. After
curvaton decay, the perturbation is converted into an adi-
abatic mode with amplitude [16]

Pδ ∝ 1

π2

(

H

σ

)2

. (22)

If the curvaton is sufficiently light during inflation, σ =
const as a result of the Hubble drag and Pδ ∼ H2. As in
the case of modulated reheating by decaying light par-
ticles, the power spectrum is completely determined by
the evolution of the Hubble parameter.

B. Power Spectrum

We now obtain an analytic expression for the power
spectrum of curvature perturbations of a nonminimally
coupled scalar field with a potential of the form

V = V0

[

1 +

∞
∑

n=1

v2n

(2n)!
xn

]

, (23)

x ≡ φ2

M2
Pl

, (24)

where V0 and v2n are constants, and we suppose that
x ≪ 1. The scalar field satisfies the equations of motion
Eqs. (14)-(16). Let us define ∆1 and ∆2 by

∆1 ≡ 3M2
PlH

2

V0
−
[

1 +

N+1
∑

n=1

α2nxn

]

,

∆2 ≡ φ̇

Hφ
+

N
∑

n=0

β2nxn, (25)

where N is non-negative integer, and α2n and β2n are
constants to be determined. We shall determine α2n with
(n = 1, · · · , N + 1) by demanding that

∆1 = O(xN+2). (26)

On the other hand, we demand that ∆2 satisfies

∆̇2

H
+ γ∆2 = O(xN+1) (27)

for a positive constant γ. This condition uniquely deter-
mines β2n (n = 1, · · · , N) and γ (> 0). Note that the
positivity of γ is required by the stability of Eq. (27):
∆2 → O(xN+1) as a → ∞.
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We now set N = 0 to obtain the lowest order result.
We follow the three steps to complete the program: First,
we eliminate Ḣ , H2 and φ̈ in Eqs. (26) and (27) by
using Eqs. (15), (14) and (16), respectively. Next, we

determine γ by demanding that the coefficient of φ̇ in
Eq. (27) after the first step should vanish. Lastly, we
expand Eqs. (26) and (27) with respect to x and solve
them order by order.

The result is

α2 =

(

1

2
− 2ξ

)

β0 − ξ,

β0 =
3 ±

√

9 − 12(v2 + 4ξ)

2
,

γ = 3 − 2β0. (28)

Since γ is required to be positive, we need to choose the
“−” sign for β0. Thus,

α2 =

(

1

4
− ξ

)

[

3 −
√

9 − 12(v2 + 4ξ)
]

− ξ, (29)

β0 =
3 −

√

9 − 12(v2 + 4ξ)

2
, (30)

γ =
√

9 − 12(v2 + 4ξ). (31)

The attractor equation Eq. (27) with N = 0 and γ > 0
implies that ∆2 → O(ǫ1) as a → ∞. Thus, we have

φ̇ + β0Hφ ≃ 0. This gives

φ ≃ φ0

(

a

a0

)−β0

, (32)

where φ0 and a0 are the values of φ and a at t = t0.

Then, Eq. (26) with N = 0 implies that

P (k) ∝ 3M2
PlH

2

V0

∣

∣

∣

∣

k=aH

≃ 1 + α2
φ2

0

M2
Pl

(

k2

a2
0H

2

)−2β0

≃ 1 + α2
φ2

0

M2
Pl

(

3M2
Plk

2

a2
0V0

)−2β0

(33)

By choosing a0 to be the scale factor at the pivot scale
k = k0, we obtain

P (k) ≃ P (k0)

1 + α2
φ2

0

M2
Pl

[

1 + α2
φ2

0

M2
Pl

(

k

k0

)−2β0

]

, (34)

where φ0 is the field value at the pivot scale. This can
be written more concisely in the form

P (k) =
P (k0)

1 + A

[

1 + A

(

k

k0

)−B
]

, (35)

with

A = α2
φ2

0

M2
Pl

=

{(

1

4
− ξ

)

[

3 −
√

9 − 12(v2 + 4ξ)
]

− ξ

}

φ2
0

M2
Pl

,

(36)

B = 2β0 = 3 −
√

9 − 12(v2 + 4ξ). (37)

A unique aspect of power spectra arising from rapid
roll inflation is the lack of a hierarchy amongst higher-
order time derivatives of the Hubble parameter and
higher-order k-dependencies of the power spectrum.
Such hierarchies do exist in slow roll inflation, with the
result that higher-order runnings are suppressed. For
example, in the case of nearly conformal inflation with
ξ = 1/6 + δξ on a flat potential (v2n = 0), we have

A = −[δξ + O(δξ2)]
φ2

0

M2
Pl

, (38)

B = 2(1 + 12δξ) + O(δξ2). (39)

Then, the spectral index and runnings of the power spec-
trum Eq. (35) are

ns − 1 ≃ 2δξ
φ2

0

M2
Pl

, (40)

(

d

dlnk

)2

lnP (k)

∣

∣

∣

∣

∣

k=k0

≃ −4δξ
φ2

0

M2
Pl

, (41)

...
(

d

dlnk

)m

lnP (k)

∣

∣

∣

∣

k=k0

≃ −(−2)mδξ
φ2

0

M2
Pl

. (42)

Note that all the derivatives are of the same order in δξ

and
φ2

0

M2
Pl

, with higher-order runnings increasing in mag-

nitude. It is therefore not possible to model these spectra
as a Taylor expansion in lnk, necessitating the use of Eq.
(35) for imposing constraints.

In the case of perturbations generated through mod-
ulated reheating/curvatons, it is important to mention
that minimally coupled models, have power spectra pro-
portional to the Hubble parameter formulated in the Ein-
stein frame, P (k) ∝ H2

E. In contrast, nonminimally cou-
pled models have spectra related to the Jordan frame
Hubble parameter, P (k) ∝ H2

J . While this distinction
is not very important when determining the duration of
inflation (HE and HJ differ by a factor φ2/M2

Pl), it is of
importance for the observables, which are themselves of
the order φ2/M2

Pl.

IV. COSMOLOGICAL CONSTRAINTS

We now obtain cosmological constraints on the power
spectrum of curvature perturbations derived in the last
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section, Eq. (35). In order to ensure that the inflaton
perturbations are suppressed on CMB scales, and for ad-
ditional reasons that will become apparent in Section V,
we consider low-scale inflation. We therefore do not in-
clude a gravitational wave contribution to the tempera-
ture anisotropy. We utilize Markov Chain Monte Carlo
to obtain Bayesian parameter constraints from the 5th-
year WMAP cosmic microwave background data [19–23]
and the 4th release SDSS Luminous Red Galaxy (LRG)
galaxy power spectrum data [24]. We use the CosmoMC

[25] code with a modified version of CAMB [26] in order to
compute the Cℓ-spectra arising from Eq. (35). MCMC
techniques [27–30] generate samples from the likelihood
of model parameters, L(d|θ), where d represents the n-
dimensional data and θ the n-dimensional parameter vec-
tor. Via Bayes Theorem, the likelihood function relates
any prior knowledge about the parameter values, π(θ),
to the posterior probability distribution,

p(θ|d) =
L(d|θ)π(θ)

P (d)
=

L(d|θ)π(θ)
∫

L(d|θ)π(θ)dθ
. (43)

The posterior probability distribution function of a single
parameter θi is obtained by marginalizing p(θ|d) over the
remaining parameters,

p(θi|d) =

∫

p(θ|d)dθ1 · · ·dθi−1dθi+1 · · ·dθn−1. (44)

We adopt a four parameter base cosmology: the baryon
density Ωbh

2, the cold dark matter density Ωch
2, the

ratio of the sound horizon to the angular diameter dis-
tance at decoupling, θs, and the optical depth to reioniza-
tion, τ . The power spectrum Eq. (35) is constrained by
varying the parameters P (k0), A, and B directly in the
Markov chains, at the pivot scale k0 = 0.002 hMpc−1.
We also marginalize over the contribution from the
Sunyaev-Zeldovich effect by varying the amplitude ASZ

[23, 31], assume purely adiabatic initial fluctuations, im-
pose spatial flatness, and adopt a top-hat prior on the
age of the universe: t0 ∈ [10, 20] Gyrs.

The posterior probability distribution in the directions
of A and B is expected to be non-Gaussian. This is
because the lines A = 0 and B = 0 give exactly scale
invariant spectra, providing good fits to the data. The
posterior thus has a high likelihood spine across the full
prior of A along B = 0, and conversely across the full
prior of B along A = 0. These spines are very narrow,
since, for example, as one moves to larger values of B
along the A = 0 line, a small step δA gives a strongly
non-power law spectrum. Therefore, while the poste-
rior along these directions has high mean likelihood, the
marginalized likelihood tends to be small. Sampling from
this distribution thus poses a challenge, and we there-
fore utilize multicanonical sampling [32, 33] in lieu of
the more standard Metropolis-Hastings algorithm. Mul-
ticanonical sampling is useful for probing into the tails
of non-Gaussian distributions. We measure convergence
across eight chains using the Gelman-Rubin R statistic
(R < 1.1).

The power spectrum Eq. (35) is not a freely tunable
function. One requirement on the form of the spectrum is
that the spacetime must be inflationary while astrophys-
ical scales are generated. Otherwise, causally generated
quantum fluctuations would not be stretched to super-
horizon scales. Defining the parameter ǫ = −Ḣ/H2, and
with P (k) ∝ H2, we have

ǫ =
1

2

dlnP (k)

dlnk

[

1

2

dlnP (k)

dlnk
− 1

]−1

, (45)

with

dlnP (k)

dlnk
= −AB

(

k

k0

)−B
[

1 + A

(

k

k0

)−B
]−1

. (46)

This is enforced by simply requiring that ǫ < 1 across the
range of scales probed by cosmological observations, cor-
responding to wavenumbers ∆lnk ≈ 10. Combinations of
A and B which violate this condition are rejected from
the sample by assigning such models very low likelihood.

As a means of comparison with the conventional pa-
rameterization, we transform the parameters A and
B into the spectral parameters ns(k0) and α(k0) =
dns(k0)/dlnk,

ns(k0) = 1 − AB

1 + A
, (47)

α(k0) =
AB2

(1 + A)2
. (48)

While the prior π(A, B) is chosen to be flat, the prior dis-
tribution π(ns, α) that results from this transformation
is not. The Jacobian of the transformation

π(A, B) =

∣

∣

∣

∣

∂(A, B)

∂(ns, α)

∣

∣

∣

∣

π(ns, α), (49)

is in fact zero at the point (ns = 1, α = 0), and so the
prior is not well-defined at this point. While this presents
a formal difficulty, it is of little consequence in practice
since the Markov chains do not sample the neighborhood
of this point with sufficient precision for the results to be
affected by the prior in this area. We have verified that
the posterior distribution is dominated by the likelihood
across the prior range of ns and α, and so π(ns, α) is
effectively flat in this region.

Figure 1 displays the 1-σ (68% CL) and 2-σ (95% CL)
error contours for the rapid roll model compared to the
constraints obtained on ns and α when they are allowed
to vary as free parameters (hereafter referred to as the
plr model), as done in standard analyses by adopting the
form

ln
P (k)

P (k0)
= (ns − 1)ln

k

k0
+

1

2
αln2 k

k0
. (50)

The rapid roll model is significantly more predictive than
the model-independent, plr spectrum with a preference
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FIG. 1: Marginalized constraints on rapid roll inflation as
compared to constraints obtained on the spectral parame-
ters in the standard definition (plr) Eq. (50). The blue
contours denote 68% and 95% CL for the plr model with
WMAP5+SDSS+ACBAR. The filled (orange-yellow) con-
tours denote the same for the rapid roll model. The black
dashed contours are constraints on rapid roll inflation with
only WMAP5+SDSS.

Model ns(k0) α(k0) −2lnL̂

rapid roll 0.972+0.022
−0.031 −5.01 × 10−3+0.01

−0.001 2693.5

plr 1.04+0.16
−0.21 −0.035+0.024

−0.025 2691.2

TABLE I: Marginalized 2-σ errors on the spectral parameters
for the rapid roll model and the standard parameterization
for WMAP5+SDSS+ACBAR.

for ns < 1 and small running. The marginalized con-
straints are given in Table 1. The tight constraints on
the rapid roll parameters are a result of the correlations
between ns, α, and the infinite tower of higher-order k-
dependent terms (e.g. Eq. (40)). The running of the
running, β = dα/dlnk, and all terms of higher-order, are
completely determined by ns and α. For example,

β =
α2

ns − 1
, (51)

and so as the running is increased (for ns 6= 1), β like-
wise increases in magnitude. The tight constraints on α
are therefore a direct result of the data’s intolerance to a
large β. The constraints on the upper (lower) value of ns

are a result of the data’s requirement that blue spectra
be accompanied by significant negative (positive) run-
ning, as indicated by the black contours in Figure 1. The
magnitude of running permitted in the rapid roll model
is insufficient to accommodate very tilted spectra.

Of the spectra lying within the 2-σ envelope, the most
distinctive are those that exhibit a relatively abrupt in-

300 1000 2000
l

0

1000

2000

3000

4000

5000

l(
l+

1)
C

l/2
π

 µ
K

WMAP
ACBAR

FIG. 2: Best-fit plr model (red solid) as compared to a rapid
roll spectrum lying at the edge of the 95% CL (red dashed).
WMAP 5-year data (black points) and the 2008 ACBAR data
(purple points) are included. The inclusion of ACBAR data
imposes additional constraints on rapid roll models which ex-
hibit higher-order running on small scales.

crease in power on small scales at around 0.02 hMpc−1.
This k-dependence is a result of higher-order runnings.
Since the WMAP data becomes noise-dominated at
around the second peak, the addition of small-scale CMB
measurements might have an effect on constraints. In
Figure 2 we present the CTT

ℓ -spectrum of the best fit
plr model (solid line) along with a model lying on the
outskirts of the 2-σ envelope (dashed line) when only
WMAP5+SDSS are used. As suggested by Figure 2 and
confirmed in Figure 1, the inclusion of the latest ACBAR
data-set [34] yields a distinctive improvement over the
WMAP+SDSS only constraints, ruling-out such spectra
at greater than 95% CL.

We also note that the rapid roll model does a poorer
job of fitting the data than the plr model, with a dif-
ference in effective chi-square, ∆χ2 = −2∆lnL ≈ 2, be-
tween them. Of course, this is not to say that the plr
model is necessarily preferred by the data, since a proper
comparison must also incorporate the number of degrees
of freedom available to each model. However, this is not
as simple as just counting the tunable parameters (both
models have 8 – with 3 defining the power spectrum),
since this number is not representative of model complex-

ity, the quantity of interest when performing Bayesian
model selection [35]. Rather, one should identify the
number of parameters that are sufficiently constrained
by the data, giving an effective number of parameters, C
[35, 36],

C = χ2(θ) − χ2(θ̂), (52)

where θ, is the parameter vector, the bar indicates an
average, and the hat denotes the best-fit value. Using this
prescription, we find that the plr model has 7 effective
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degrees of freedom, while the rapid roll model has 6.7.2

The fact that the rapid roll model has fewer effective
parameters can be understood by examining the ansatz
Eq. (35). As mentioned, both A and B give high mean
likelihood across the full range of their respective priors.
While the marginalized distribution of these parameters
is well localized, there exist directions in the prior volume
along which these parameters are unconstrained. The
effective complexity criterion therefore does not count A
and B as two free parameters, but rather a little less
than this. It is therefore appropriate to conclude that
current data does not single-out a preferred model, and
it will be necessary for future experiments to improve our
understanding of the power spectrum.

V. RAPID ROLL D-BRANE INFLATION

As a simple example of minimally coupled rapid-roll
inflation (see also the appendix), let us consider D3/D3
brane inflation in a warped throat [7]. In this model,
inflation is driven while a D3-brane is attracted towards
an D3 sitting at the throat tip. The radial position r of
the D3 plays the role of the inflaton through φ ≡

√
T3r,

and the warped tension of the D3 sources inflation. It is
known that the inflaton receives a large mass from mod-
uli stabilization effects, preventing slow-roll. Here, we
also take into account corrections due to the throat cou-
pling to the bulk Calabi-Yau space, which can be anal-
ysed using gauge/gravity duality [41] (see also [42–44])3.
We consider the case where the leading bulk effect arises
from a non-chiral operator of dimension ∆ = 2 in the
dual CFT, where the inflaton potential takes the form

V (φ) = 2h4
0T3

{

1 − 3h4
0T3

8π2φ4
+ β

(

φ

MPl

)2
}

, (53)

where h0 is the warping at the tip of the throat, T3 is the
brane tension, and the second term denotes the D3-D3
Coulombic interaction. When the bulk effects are ab-
sent, β = 1/3 as was derived in the original KKLMMT
paper [7]. The bulk effect introduces a negative contri-
bution to the inflaton mass-squared, i.e. makes β smaller
than 1/3.

We restrict ourselves to the region φ2 ≪ M2
Pl. When

the Coulombic attraction is negligible compared to the
mass term:

M2
Plh

4
0T3

βφ6
≪ 1, (54)

2 The Sunyaev-Zeldovich amplitude ASZ is poorly constrained by
the data and therefore does not contribute to this figure.

3 There can also be additional contributions from moduli stabi-
lization, as was investigated in [37–40] in order to fine-tune the
inflaton potential.

we obtain rapid-roll inflation with

3M2
PlH

2
inf ≃ 2h4

0T3. (55)

From Eqs. (10) and (12) one can estimate

ǫ ≃ 2β2 φ2

M2
Pl

, η ≃ 2β. (56)

Then, setting

c =
3 +

√
9 − 24β

2
, (57)

the inflationary attractor Eq. (9) gives

H

φ̇
≃ −3 +

√
9 − 24β

12β

1

φ
. (58)

We note that the coefficient of 1/φ agrees with −1/β0

from Eq. (30) by setting ξ = 0 and v2 = 2β. Upon
estimating the number of efoldings that can be obtained,
one should note that the inflaton field range is bounded
by the length of the throat [8]. Specifically, for throats
supported by N units of D3-brane charge, the bound
gives φUV ∼

√
T3R, where R4 ∼ gsNα′2 [46]. Also, the

end of inflation can be identified with the time when Eq.
(54) breaks down, which gives

φend ∼
(

M2
Plh

4
0T3

β

)1/6

. (59)

Hence the maximum number of efoldings that can be
obtained is

Nmax =

∫ φend

φUV

H
dφ

φ̇

≃ 3 +
√

9 − 24β

12β
ln

(

β1/6N1/4g
1/4
s α′1/2

h
2/3
0 L

)

. (60)

Here we have used T3 ∼ 1/(gsα
′2) and MPl ∼ L3/(gsα

′2)
where L is the typical length scale of the six-dimensional
bulk. The efolding number Eq. (60) depends sensitively
on the mass parameter β, hence, one sees that even a
slight effect from the bulk can change the duration of
inflation drastically.

On the other hand, inflation should have started before
the present Hubble scale exited the horizon. Therefore
the required number of efoldings is at least

N ≃ ln

(

1029 V
1/4
inf

MPl

)

≃ ln

(

1029 h0g
3/4
s α′3/2

L3

)

, (61)

where we have assumed instantaneous (p)reheating, i.e.
the universe was dominated by radiation right after in-
flation ended until matter-radiation equality. (This is
realized in the case where there are D-branes left after
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FIG. 3: Contour plot of log10(φH/φUV ), where φH is the
inflaton field value when the present Hubble scale exited the
horizon. φH is estimated by assuming that the inflaton poten-
tial Eq. (53) is valid throughout. The horizontal and vertical
axes denote, respectively, β and log10 h0. The other param-

eters are set to gs = 0.1, N = 1000, and L/α′1/2 = 10.
Necessary number of efoldings can be obtained in the shaded
region.

inflation, since closed strings generated from D3-D3 an-
nihilation soon decay into lighter states such as gravi-
tons, KK modes, and open string modes on the residual
D-branes, and then thermalize. See e.g. [45].)

In Figure 3, we present the ratio between the field
range required to obtain sufficient inflation and the al-
lowed range in the β - log10 h0 plane. For example,
if we take gs = 0.1, N = 103, L/α′1/2 = 10, and

h0 = 10−11 (which set the inflation energy scale V
1/4
inf and

the local string scale h0/α′1/2 to be of order 1 TeV, and
MPlα

′1/2 ∼ 104), then the necessary number of efoldings
can be obtained when β . 0.2 is satisfied. As can be seen
from Eqs. (60) and (61), smaller h0 and β is preferred
for enough inflation to occur.

The inflaton field value when the pivot scale exited the
horizon can similarly be estimated from Eqs. (60) and
(61),

φ0

MPl
∼
(

Vinf

βM4
Pl

)1/6
(

1028 V
1/4
inf

MPl

)

12β

3+
√

9−24β

. (62)

Note that for the pivot scale, the term inside the log in
Eq. (61) differs by an order of magnitude.

The spectral index and its running of the Hubble-
squared during inflation can be estimated from Eq. (35)
with ξ = 0 and v2 = 2β, or from Eqs. (A20) and (A21),

ns − 1 ≃ −18

c2
· 2β2 φ2

M2
Pl

, (63)

n
s

α

0.9 0.95 1 1.05
−0.015

−0.01

−0.005

0

0.005

0.01

0.015
β = 0.001
β = 0.3

FIG. 4: Prediction of the rapid roll brane model Eq. (65) for
the values β = 0.001 and β = 0.3 compared to the constraints
obtained in Section IV.

dns

d ln k
≃ 36

c2
(3 − c) · 2β2 φ2

M2
Pl

, (64)

where the right hand sides are given at the moment of
horizon crossing Eq. (62). One clearly sees a linear rela-
tion between Eqs. (63) and (64),

dns

d ln k
≃ −

(

3 −
√

9 − 24β
)

(ns − 1). (65)

In Figure 4, we compare this prediction to the con-
straints obtained in Section IV. We plot the prediction
Eq. (65) for the two values β = 0.3 and β = 0.001 to
illustrate the range of values of α and ns consistent with
current data. For fixed β, each prediction is a function of
φ0 which depends on the inflationary energy scale. The
rapid roll brane inflation model is in good agreement with
current data for a wide range of β.

Finally, we mention that even though we have treated
D-brane inflation as a minimally coupled model with
Hubble scale mass, interpreting the mass as arising from
the inflaton’s conformal coupling to gravity does not
make much difference for the inflaton dynamics and the
efolding number that can be obtained. However, it does
make distinct differences for the spectral index and its
running of the Hubble-squared, for reasons discussed at
the end of Section III. One can explicitly see this for the
D-brane inflation case by comparing the above results
with that of [12].

VI. CONCLUSIONS

We have obtained cosmological constraints on rapid
roll models of inflation. Rapid roll solutions exist as at-
tractors for tree-level hybrid-type potentials with a range
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of mass terms, with both minimal and nonminimal grav-
itational couplings. Such solutions are therefore relevant
to model building in string theory. We considered pertur-
bations generated through modulated reheating and/or
the curvaton scenario instead of the observationally unac-
ceptable inflaton-generated perturbations in these mod-
els. We obtained an analytic expression for the power
spectrum in this case,

P (k) =
P (k0)

1 + A

[

1 + A

(

k

k0

)−B
]

, (66)

observing a lack of a hierarchy amongst lower-order
and higher-order k-dependencies. We have performed a
Bayesian analysis on this power spectrum using the lat-
est CMB and LSS data. The higher-order runnings are
fully determined by ns and α, and so these parameters
are tightly constrained relative to general power-law +
running spectra. We find that rapid roll models are con-
strained to have ns < 1 and small running, |α| < 0.01.
These tight predictions make possible the falsifiability of
rapid roll inflation with upcoming CMB missions. The
higher-order runnings that occur in these spectra might
also be further constrained via upcoming astrophysical
probes, such as the 21-cm line of neutral hydrogen clouds.

We also construct a realistic model of rapid roll brane
inflation. We find that it is possible to obtain suffi-
cient inflation even in the presence of the large mass
terms that arise from moduli stabalization in these mod-
els. The power spectrum generated by this model is in
good agreement with the constraints obtained in this
work, across a range of mass scales. Therefore, while
the inflaton-generated perturbations of such models are
not observationally viable, the spectra generated through
other means, such as modulated reheating or curvatons,
breathe new life into these constructions. Additionally,
the tight constraints imposed on these spectra suggest
that future CMB data has the potential to further re-
strict them, or rule such models out entirely.
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Appendix A: Discussions on Minimally Coupled

Rapid-Roll Inflation

We investigate the dynamics of a rapid-rolling infla-
ton which minimally couples to gravity. The calculations

carried out in this appendix is analogous to that of [12]
where a conformally coupled inflaton was studied.

1. Conditions for Rapid-Roll Inflation

We consider a minimally coupled inflaton with the La-
grangian

L =
√−g

[

M2
Pl

2
R − 1

2
gµν∂µφ∂νφ − V (φ)

]

. (A1)

Choosing a flat FRW background, we obtain the Fried-
mann equation

3M2
PlH

2 =
1

2
φ̇2 + V (φ), (A2)

and the equation of motion of φ,

φ̈ + 3Hφ̇ + V ′(φ) = 0. (A3)

We claim that during inflation, the inflaton dynamics is
well described by the following approximations

3M2
PlH

2 ≃ V, (A4)

cHφ̇ ≃ −V ′, (A5)

where c is a dimensionless constant.
Let us define the following parameters,

ǫ ≡ M2
Pl

2

(

V ′

V

)2

, η̄ ≡ η +
c2

3
− c, (A6)

where

η ≡ M2
Pl

V ′′

V
. (A7)

Then the necessary conditions for the approximate rela-
tions (A4) and (A5) to hold can be derived, respectively,
as

3

c2
ǫ ≪ 1,

3

c2
|3ǫ − η̄| ≪ 1. (A8)

Note that we have taken a time-derivative of both sides
of the approximate relation (A5) and then substituted it
into (A3) in order to derive the necessary condition for
(A5). When c ∼ O(1), the necessary conditions (A8)
reduce to simple forms

ǫ ≪ 1, |η̄| ≪ 1. (A9)

This shows that the parameters which should be mini-
mized in order to realize inflation are ǫ and η̄ (instead of
ǫ and η). The constant c in (A5) is the largest constant
that minimizes η̄, as we will show in the next section.
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2. Stability of the Attractor

Let us define β to parametrize the validness of the
attractor (A5) as

cHφ̇ = −V ′(1 + β). (A10)

We derive an evolution equation of β in this section.
Some useful relations are

Σ ≡ 3M2
PlH

2

V

=
1

2

{

1 +

√

1 +
12(1 + β)2

c2
ǫ

}

= 1 + O(ǫ), (A11)

φ̇2

V
= 2 (Σ − 1) ,

Ḣ

H2
= −3(Σ− 1)

Σ
. (A12)

Then by time-differentiating both sides of (A10), one ob-
tains

β̇

H
=

3

Σ

{

1 − 2Σ +
1 + β

c
η

}

(1 + β) + c

= β(3 − 2c) + β2(3 − c) + O(ǫ, η̄). (A13)

Once β becomes small, the far right hand side is domi-
nated by the linear term (i.e. β(3 − 2c)). One can see
that as long as

3 − 2c < 0, (A14)

β damps as the universe expands, and eventually its value
settles down to that corresponding to the source terms,

β = O(ǫ, η̄). (A15)

Hence the the condition (A14) is required for the relations
(A4) and (A5) to be an inflationary attractor.

Next we study the values of c chosen for inflation. As
we stressed in the previous section, c is a constant which
minimizes η̄/c2.

Case Study: negligible η

This corresponds to the familiar slow-roll inflation.
Here η̄/c2 = 0 gives c = 3, which realizes the slow-
roll approximations. It is clear that the stability con-
dition (A14) is satisfied.

Case Study: non-negligible constant η

η̄/c2 = 0 is solved by

c =
3 ±√

9 − 12η

2
≡ c±. (A16)

Since 3 − 2c± = ∓√
9 − 12η ≶ 0, one sees from (A14)

that the larger solution c+ is chosen for the inflationary
attractor,

c =
3 +

√
9 − 12η

2
. (A17)

It should also be noted that η ≤ 3/4 needs to be satisfied.

3. Scale Dependence of H2

By using the relations in the previous section and con-
sidering β to be damped to (A15), one can compute the
time differentiations of the Hubble parameter,

Ḣ

H2
= − 9

c2
ǫ + O(η̄ǫ, ǫ2), (A18)

1

H

(

Ḣ

H2

)·

= −18

c2
(c − 3)ǫ + O(η̄ǫ, ǫ2). (A19)

Especially, the spectral index and its running of the
Hubble-squared are (k = aH),

ns − 1 =
d lnH2

d ln k
= 2

Ḣ

H2

(

1 +
Ḣ

H2

)−1

= −18

c2
ǫ + O(η̄ǫ, ǫ2), (A20)

dns

d ln k
= 2

(

1 +
Ḣ

H2

)−3
1

H

(

Ḣ

H2

)·

=
36

c2
(3 − c)ǫ + O(η̄ǫ, ǫ2). (A21)

These expressions can alternatively be derived directly
from Eq. (35).
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