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ABSTRACT
Dwarf spheroidal galaxies (dSphs) are promising targets for the gamma-ray dark mat-
ter (DM) search. In particular, DM annihilation signal is expected to be strong in some
of the recently discovered nearby ultra-faint dSphs, which potentially give stringent
constraints on the O(1) TeV WIMP DM. However, the various non-negligible system-
atic uncertainties complicate the estimation of the astrophysical factors relevant for
the DM search in these objects. Among them, the effects of foreground stars partic-
ularly attract attention because the contamination is unavoidable even for the future
kinematical survey. In this article, we assess the effects of the foreground contamina-
tion on the astrophysical J-factor estimation by generating mock samples of stars in
the four ultra-faint dSphs and using a model of future spectrographs. We investigate
various data cuts to optimize the quality of the data and apply a likelihood analysis
which takes member and foreground stellar distributions into account. We show that
the foreground star contaminations in the signal region (the region of interest) can be
estimated with statistical uncertainty by interpolating the foreground star distribu-
tion in the control region where the foreground stars dominate the member stars. Such
regions can be secured at future spectroscopic observations utilizing a multiple object
spectrograph with a large field of view; e.g. the Prime Focus Spectrograph mounted
on Subaru Telescope. The above estimation has several advantages: The data-driven
estimation of the contamination makes the analysis of the astrophysical factor sta-
ble against the complicated foreground distribution. Besides, the uncertainties of the
astrophysical factor are treated statistically.

Key words: galaxies: dwarf – galaxies: kinematics and dynamics – γ-rays: galaxies
– instrumentation: spectrographs – dark matter – astroparticle physics

1 INTRODUCTION

Various astrophysical observations such as the dynam-
ics of galaxy clusters (Zwicky 1933), rotation curves
of spiral galaxies (Rubin, Thonnard & Ford 1978;
Rubin, Ford & Thonnard 1980), and gravitational lens-
ing (McLaughlin 1999; Lokas & Mamon 2003; Clowe et al.
2006; Bradac et al. 2006), strongly indicate the existence
of dark matter (DM) in the astronomical objects. A recent
global fit of the Cosmic Microwave Background (CMB),
Large Scale Structure (LSS), and Supernovae (SNe) obser-
vations (Ade et al. 2016) reveal that quarter of the total
energy of the universe consists of DM. One of the most
attractive candidates of DM is weakly interacting massive
particle (WIMP), which naturally explains the observed
dark matter density with its annihilation channels into

lighter standard model particles. Particularly, the WIMP
dark matter with ≲ O(1)TeV has drawn attention in the
context of the physics beyond the standard model such as
supersymmetry (see e.g. Jungman, Kamionkowski & Griest
1996 also Murayama 2007; Feng 2010).

Gamma-ray indirect detection experiment, which aims
to observe gamma-rays induced by the DM annihilation, has
a strong sensitivity to this O(1)TeV WIMP. Among vari-
ous astronomical objects, dwarf spheroidal satellite galaxies
(dSphs) associated with the Milky Way are the ideal tar-
gets due to its small distance (∼ 10 − a few hundred kpc
from the solar system) and dense DM environment with
low astrophysical background. However, recent studies
show that expected signal flux coming from the dSphs
is significantly affected by various uncertainties such as
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2 K. Ichikawa et al.

the statistical procedure (Martinez et al. 2009), DM dis-
tribution (Geringer-Sameth et al. 2015; Bonnivard et al.
2015; Hayashi et al. 2016), stellar distribution (Ullio & Valli
2016), unresolved binary stars ( Mateo, Olszewski & Walker
2008; Koch et al. 2007; Minor 2013; Simon & Geha
2007a; Simon et al. 2011a; McConnachie & Cote 2010;
Koposov et al. 2011; Kirby et al. 2013; Simon et al. 2015)
and foreground contamination (Bonnivard et al. 2016;
Ichikawa et al. 2017).

Although future deep spectroscopic surveys would mit-
igate most of these systematic uncertainties, the foreground
contamination remains problematic because the fraction of
the foreground would not be suppressed or even become
worse in the future observation. In Ichikawa et al. (2017)
(hereafter KI17), we have investigated the effects of the fore-
ground contamination for classical dSphs and found that
even for the case of classical dSphs, in which the foreground
fraction is less than 5 %, the contamination can lead to an
overestimation of the signal flux by a factor of ∼ 3. In KI17,
we resolve this foreground effect by introducing a multi-
component fit in which the distributions of the member stars
and foregrounds are mixed.

The situation is more problematic for ultra-faint dSphs
(UFDs). The UFDs were discovered after SDSS II and con-
tains smaller number of the stars inside the system. Al-
though recent kinematical analyses (Bonnivard et al. 2015;
Ackermann et al. 2015; Geringer-Sameth et al. 2015) indi-
cate that the signal flux coming from the UFDs can be much
stronger than that from the classical dSphs, the uncertain-
ties of these signal fluxes are much larger due to the lack of
the knowledge of the kinematics inside the system. In par-
ticular, a recent study (Bonnivard et al. 2016) reveals that
the foreground contamination can significantly affect the es-
timation of the signal flux by two orders of magnitude at
most. Therefore, precise analysis of the foreground effect for
the UFDs is required and will play an essential role in the
future deeper spectroscopic surveys.

In this paper, we test the foreground effect for the UFDs
by generating realistic stellar mock data and applying the
likelihood analysis developed in KI17. We also compare the
results with those obtained by the other conventional analy-
ses. The organization of this paper is as follows. In Sec. 2, we
review the formula of the gamma-ray signal flux and defines
the so-called J-factor. In Sec. 3, we provide the procedure
of our analysis. The results of the fits are given in Sec. 4.
Finally, we summarize our discussion in Sec 5.

2 SIGNAL FLUX AND J-FACTOR

The gamma-ray signal flux of DM annihilation stemmed
from the dSphs can be expressed by the following formula:

Φ(E,∆Ω) =


C⟨σv⟩
4πm2

DM

∑
f

b f

(
dNγ

dE

)
f

 × J(∆Ω) . (1)

The coefficient C is 1/2 for Majorana and 1/4 for Dirac dark
matter. Dark matter mass is defined by mDM. The product
of the total annihilation cross section σ and the relative ve-
locity v is averaged with the velocity distribution function
(represented by ⟨. . . ⟩). The branching fraction of the an-
nihilation channel f is denoted by b f , while the differential

number density of photons from a given final-state f is given
by (dNγ/dE) f .

The factor J after the parenthesis in the right-hand side
(so-called J-factor) reflects the amount of the squared DM
density inside the cone with a solid angle ∆Ω:

J(∆Ω) =
[ ∫
∆Ω

dΩ
∫
l.o.s.

dl ρ2(l,Ω)
]
. (2)

Here we define the dark matter profile at a distance l and
angle Ω by ρ(l,Ω). The integration of l is performed along
the line-of-sight.

As we have discussed in KI17, the dominant uncertainty
of the signal flux comes from the J-factor. This is because
while the parenthesis in Eq. (1) is well controlled by the cal-
culation of particle physics, the estimation of the J-factor
is limited by the number of the kinematical stellar data of
the dSphs. Although the size of the uncertainty of the J-
factor is still under discussion,1 the error bar can be a few
orders of magnitude larger for the UFDs. To suppress both
the statistical and systematical uncertainties, future deep
spectroscopic observation is mandatory.

Currently, velocity along the line of sight (v) and the
projected distance from the centre of the dSph (R) are used
for the DM profile estimation. This information can be uti-
lized to construct a velocity dispersion curve of the stars in
the dSph. This observed dispersion curve can be obtained
by projecting the 3-dimensional dispersion curve along the
line-of-sight. Under the assumption of the spherical symme-
try, the projected velocity dispersion at a projected radius
of R can be written by

σ2
l.o.s(R) =

2
Σ∗(R)

∫ ∞

R
dr

(
1 − βani(r)

R2

r2

)
ν∗(r)σ2

r (r)√
1 − R2/r2

, (3)

where r denotes the un-projected distance from the cen-
tre of the dSph, and Σ∗(R) is the projected spatial stellar
distribution obtained by integrating the stellar distribution
ν∗(r) along the projected direction. The anisotropy param-
eter βani is defined by βani = 1 − (σ2

θ /σ
2
r ) where we de-

fine the radial, azimuthal, and polar components of the 3-
dimensional dispersion curve as σr , σθ , and σϕ, respectively,
in a spherical coordinate and take σθ = σϕ for the spherical
symmetry.

The dispersion curve is related to the gravitational po-
tential (i.e. the dark matter profile) of the dSph by the
second moment of the Boltzmann equation of the stel-
lar phase-space distribution, which is called Jeans equa-
tion (Binney & Tremaine 2008). Under the assumption of
constant βani, the radial velocity dispersion σr (r) can be
expressed as (van der Marel 1994; Mamon &  Lokas 2005)

σ2
r (r) =

1
ν∗(r)

∫ ∞

r
ν∗(r ′)

(
r ′

r

)2βani GM(r ′)
r ′2

dr ′ . (4)

Here G is the gravitational constant, and M(r) is the
enclosed mass of the dark matter halo. Note M(r) ≡∫ r

0 4πr ′2ρDM(r ′)dr ′ under the spherical assumption. From
Eq. (3) and Eq. (4), we can estimate the DM profile ρDM by

1 This is due to the various biases in the estimation: the statis-

tical procedure, DM halo model, stellar distribution, unresolved

binaries and foreground contamination, as reviewed in KI17.
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Foreground effect on the J-factor estimation 3

constructing the dispersion curve σl.o.s.(R) from the dataset
of observed {v, R}.

3 ANALYSIS

In this section, we introduce the mock-based analysis de-
veloped in KI17. In our analysis, we first generate realistic
mock dSph stellar data including foreground stars. We sam-
ple this stellar data by accounting for a spectroscopic ca-
pability, which provides realistic mock samples of a future
observation. We next attempt to decrease the foreground
fraction by imposing a selection rule. In this paper, we con-
sider two approaches: naive cuts and selection by using the
membership probability. Finally, we perform the halo pro-
file estimation by using two types of the likelihood functions,
which have single and mixed component(s) in their distri-
bution function respectively. In Sec. 4, we will provide the
results of the analyses by three combinations of the selec-
tions and fits: naive cut + mixed component fit, member-
ship selection + single component fit, and naive cut + single
component fit. They correspond to the KI17, conventional
and the most naive approaches, respectively.

3.1 Mock dSphs

As models of the mock dSphs, we consider the
four UFDs (Ursa Major II, Coma Berenices, Segue 1, and
Ursa Major I), in which the observation suggests abun-
dant DM (Hayashi et al. 2016; Bonnivard et al. 2015;
Ackermann et al. 2015; Geringer-Sameth et al. 2015). We
estimate their dark matter halo profiles by the method of
Geringer-Sameth et al. (2015) based on the data provided
by the kinematical observations (Simon & Geha 2007b;
Simon et al. 2011b) 2 and use the obtained DM profiles for
the inputs of the dSph mocks.

In our analysis, the generalized dark matter halo density
profile (Hernquist 1990; Dehnen 1993; Zhao 1996) is adopted
as the input dark matter profile for the mock data and fit of
the likelihood analysis:

ρDM(r) = ρs(r/rs)−γ(1 + (r/rs)α)−(β−γ)/α , (5)

where r denotes the (un-projected) distance from the cen-
tre of the dSphs, and parameters ρs, rs represent the typical
density and scale of the halo respectively, while parameters
α, β, γ determine the shape of the halo density profile. We
also assume Plummer profile (Plummer 1911) for the mem-
ber stellar distribution:

ν∗(r) = (3/4πr3
e ) (1 + (r/re)2)−5/2 . (6)

Here re denotes the projected half-light radius of the dSph
and we normalize the stellar distribution ν∗(r) to satisfy∫

4πr2ν∗(r)dr = 1. The input parameters are shown in Ta-

ble 1.3

2 The data of Simon & Geha (2007b) was kindly provided by

Josh Simon (private communication).
3 In order to construct the kinematical data by using the

method of Cuddeford (1991) consistently, we set the range of the
anisotropy βani to be βani < 0. See, e.g., Ciotti & Morganti (2010)

for the limitation of the halo parameters in the analytical solution

of the Jeans equation.

The mock stellar data of each dSph is con-
structed by assigning the colour, chemical abundance, and
kinematical information. Synthetic colour-magnitude di-
agrams are generated by utilizing the PARSEC stellar
isochrones (Bressan et al. 2012) to represent observed prop-
erties of each dSph. In detail, we first randomly draw a
stellar initial mass from the Salpeter initial mass func-
tion. For that mock star, the age is drawn from an uni-
form distribution in the range 1010.10-1010.12 years, moti-
vated by the fact that the UFDs analysed in this work have
been reported to be dominated by an old stellar popula-
tion (de Jong et al. 2008). Similarly, the value of metallic-
ity ([Fe/H]) is drawn from a Gaussian distribution with the
mean and dispersion approximately consistent with those
estimated by Kirby et al. (2011) and Norris et al. (2010).
Based on a theoretical isochrone for the given age and [Fe/H]
values obtained above, the absolute magnitude, colour and
surface gravity corresponding to the stellar initial mass are
assigned. The apparent magnitude and observed colour are
then calculated by adopting the distance modulus from
McConnachie (2012b) and adding typical photometric er-
rors as well as the Galactic extinction. At this point, the star
is discarded if it is fainter than the i-band limiting magni-
tude of 22.5. The mock stars are repeatedly generated un-
til the number of member stars brighter than the limiting
magnitude estimated by Martin et al. (2008) is reached. An
example of the resulting CMD is shown in Fig 1. To build
50 mock data for each dSph, the whole process is repeated
50 times by adding a Gaussian noise consistent with the
uncertainty in the number of member stars estimated by
Martin et al. (2008). The position and velocity of each star
are assigned consistently with the input dark matter po-
tential using the method of Cuddeford (1991) with the as-
sumptions of the constant velocity anisotropy and spherical
distribution. The non-member stars belonging to the Milky
Way galaxy are also included, which are generated by the
Besançon model (Robin et al. 2003).

3.2 Spectrograph

In our analysis, we adopt the same detector capability
in KI17 (see Table 3 in KI17). The observing param-
eters are based on the capability of the Prime Focus
Spectrograph (PFS) attached to 8.2 m Subaru telescope.
PFS is the next generation spectrograph of the SuMiRe
project (Takada et al. 2014; Sugai et al. 2015; Tamura et al.
2016) and the science operation is planned to start around
2019 − 2020. The key advantages of PFS are its large field-
of-view (∼ 1.38◦ diameter), 2394 fibers, and the wide wave-
length coverage (380− 1260 nm) mounted on the large aper-
ture telescope. One of the main targets is the classical
dSphs (Fornax, Sculptor, Draco, Ursa Minor, and Sextans),
for which line-of-sight velocities of stars are measured with
a precision dv of ∼ 3 km/s down to magnitudes deeper than
i ∼ 21 covering a wide area well beyond their tidal radii.
The unique capability of PFS has also an advantage in ob-
serving ultra-faint dwarf galaxies, increasing the sample size
by a factor of 2 or more and simultaneously covering the
target galaxy and the foreground/background Milky Way
stars. The latter aspect is crucial in efficiently taking the
effect of contaminating stars into account as in the analysis
presented later in this paper.
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4 K. Ichikawa et al.

Model dSph d [kpc] re [pc] log10

(
ρs

[M⊙/pc3]

)
log10

(
rs
[pc]

)
α β γ − log10(1 − βani) log10

(
JInput

[GeV2/cm5]

)
Ursa Major II 32 149 -0.370 2.62 2.36 3.28 0.0328 -0.975 19.70

Coma Berenices 44 64 -0.283 2.27 2.87 6.79 0.178 -0.894 18.74
Segue 1 36 29 0.306 1.93 0.973 3.94 1.15 -0.00155 19.66

Ursa Major I 97 732 0.587 1.97 2.89 8.04 0.302 -0.625 18.52

Table 1. The input parameters of each dSph. The distances from the earth and projected half-light radii are shown by d and
re (McConnachie 2012a). The DM halo and kinematical parameters ρs , rs , α, β, γ, and βani are determined by fitting the stellar

data provided by Simon & Geha (2007b) for UrsaMajor II, ComaBerenices, UrsaMajor I and Simon et al. (2011b) for Segue 1 under the

same procedure as Geringer-Sameth et al. (2015). The JInput shows the J-factors calculated within an angular radius of 0.5degree under
the input DM halo parameters and distance.

To take the spectroscopic capabilities into account, we
smear the mock velocity, surface gravity (log g) and metal-
licity ([Fe/H]) data with widths corresponding to the ex-
pected measurement errors, 3 km/s, 0.5 dex and 0.5 dex, re-
spectively and select the stars which locate at r < d sin θROI,
reflecting the limitation of the region of interest. Here d de-
notes the distance of each dSph and θROI is the angular
radius of the region of interest.

The depth of the survey depends on the exposure time.
We adopt three cases of the upper bound of the magnitude
(imax = 21, 21.5 and 22). In the first case, we demonstrate
the current sensitivity reach.4 The second case (imax = 21.5)
is for a deeper survey with an integration time of several
nights. The third case is for an ultimate reach.

3.3 Data selection

Before the likelihood analysis, the foreground contamination
in the mock data can be largely reduced by using the infor-
mation of its position, velocity, surface gravity, metallicity,
and colour-magnitude. We here adopt two approaches to the
data reduction: naive cut approach and more sophisticated
membership selection.

3.3.1 Naive cut

In this approach, we impose the cuts of the velocity, surface
gravity, metallicity, and colour-magnitude on the dataset
and optimize them by (roughly) tuning the boundaries of
the cuts by eye. The velocity cut is a ±60 [km/s] range from
each bulk velocity vdSph. The lower and upper bounds of
the surface gravity g and metallicity [Fe/H] are given in Ta-
ble 2 for each dSph, while the region of the colour-magnitude
diagram is shown in Fig. 1. Note that we choose these bound-
aries to include most of the stars in clumps. Although harder
cuts can be imposed to reduce the fraction of the foreground
stars, the cut eliminates scattered member stars and the re-
constructed velocity distribution can be distorted and derive
a bias of the halo estimation. We provide the numbers of the
member and foreground stars after the cuts in the ‘Naive cut’
column in Table 3.

4 Since the size of the UFDs is smaller than that of the classical

dSphs, the kinematical data provided by the current observations

is deeper than the classical dSphs (i ∼ 19.5).

3.3.2 Membership selection

The latter strategy utilizes the membership probability of
each star. The membership probability is defined by the
probability to find a member star at a given position, ve-
locity, surface gravity, and, metallicity. We calculate this
membership probability by a conventional approach given
by Walker et al. (2009). In the calculation, the distributions
of the foreground stars are also taken into account. The dis-
tributions of the velocity, surface gravity, and metallicity
except for the foreground velocity distribution are modeled
by R-independent single Gaussians, while the foreground ve-
locity distribution is fixed without free parameters and the
spatial distributions are more generally parametrized. The
detail of this process is given in Walker et al. (2009) and the
appendix of KI17. We select stars within 95% confidence
level of the membership probability. We provide the num-
bers of the member and foreground stars after this selection
in the ‘Membership selection’ column in Table 3. Compared
with the case of the ‘Naive cut’, much higher purities of the
data is obtained by this procedure, while some fraction of the
member star is eliminated. We here stress that this approach
assumes the constant velocity dispersion in the membership
probability assignment. The member stars eliminated in the
selection are mostly due to the constant velocity-dispersion
bias and therefore affect the estimation of the J-factors.

3.4 Kinematical fit

In this section, we provide two types of the analysis for the
kinematical fit. The first one is the single component fit, in
which all the data is regarded as member star. The second
one is the mixed component approach developed in KI17,
in which the member and foreground distribution are simul-
taneously fitted. For both the fits, we apply the unbinned
likelihood analysis to the halo estimation.

3.4.1 Single Component fit

The single component fit is performed by assuming that the
data used for the fit contains only member stars, which im-
plies that the likelihood function is given by

−2 lnLs = −2
∑
i

ln( fMem(vi, Ri)) , (7)

where fMem(v, R) is the distribution function of the member
stars. The index i runs all the stars in the mock data set. We
assume that the velocity distributions of the member stars
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Foreground effect on the J-factor estimation 5

dSph vdSph [km/s] rmax [pc] log10(g/[cm/s2])lower log10(g/[cm/s2])upper [Fe/H]lower [Fe/H]upper

Ursa Major II -116.5 294 0.2 4.9 −4.5 −1.5
Coma Berenices 98.1 238 0.1 4.7 −4.3 −1.5

Segue 1 208.5 139 0.9 5.1 −6.1 −1.2
Ursa Major I -55.3 732 0.0 3.7 −4.9 −0.9

Table 2. The bulk velocity, the truncation radius and cut conditions for each dSph. The status of the mock dSphs. The bulk velocity of

UrsaMajor II, ComaBerenices, and UrsaMajor I is from Simon & Geha (2007a) and Segue 1 from Simon et al. (2011a). The truncation
radii are from Geringer-Sameth et al. (2015). See the text for more details.

Condition Raw Naive cut Membership selection

dSph θROI [degree] imax [mag] NMem NFG NMem NFG NMem NFG

Ursa Major II 0.65 21 80 829 76 75 54 5
21.5 150 988 141 103 89 4
22 233 1149 214 132 131 4

Coma Berenices 0.65 21 35 579 34 58 29 2

21.5 58 743 55 85 44 2

22 92 898 85 110 66 1

Segue 1 0.65 21 26 585 23 65 23 1

21.5 46 704 40 86 41 1
22 66 922 58 130 57 1

Ursa Major I 0.65 21 42 680 37 32 26 1
21.5 55 831 48 39 34 1

22 63 953 56 44 38 1

Table 3. The averaged numbers of the member (foreground) stars are given by NMem (NFG). The Raw column shows the numbers of

the stars after the colour-magnitude cut and the cut of the region of interest. The details of the naive cuts and membership selection are
given in the text.

can be approximated by a single Gaussian and hence the
distribution functions can be expressed as

fMem(v, R) = 2πRΣ∗(R)CMem G[v; vMem, σl.o.s(R)] . (8)

Here G[x; µ, σ] denotes the Gaussian distribution of a vari-
able x with a mean value µ and a standard deviation σ.
We note that the parameter vMem represents the bulk ve-
locity of the dSph and mostly converges to the input bulk
velocity vdSph. The distribution functions are normalized

by CMem to satisfy
∫ rROI

0 dR
∫ vupper

vlower
dv fMem(v, R) = 1 where

rROI ≡ d sin θROI.

3.4.2 Mixed Component fit

In the mixed component fit, the stellar distribution is con-
sidered to be the sum of the foreground and member star
distribution. The likelihood function Lm is defined by intro-
ducing the membership fraction parameter s as follows

−2 lnLm = −2
∑
i

ln(s fMem(vi, Ri) + (1 − s) fFG(vi, Ri)) , (9)

where fFG(v, R) is the distribution function of the foreground
stars. We model the foreground distribution function by the
production of the three Gaussians, corresponding to the fore-
ground thin disc, thick disc, and halo components:

fFG(v, R) = 2πR CFG

3∏
j=1

G[v; vFGj, σFGj ] , (10)

with vFGj , σFGj ( j = 1, 2, 3) being parameters of the dis-
tribution. Here we assume that the parameters σFGj are
independent of R in contrast to the dispersion of the mem-
ber star. The constant CFG denotes the normalization factor
to satisfy

∫ rROI

0 dR
∫ vupper

vlower
dv fFG(v, R) = 1.

For the sake of the convergence of the mixed component
fit, we constrain the parameters vFGj , and σFGj by using
the data in the control region (i.e., the region in which the
number of the member stars is negligible). In KI17, we de-
duce the foreground velocity distribution by using the data
out of the region of the velocity cut and interpolate it to
the signal region. For the UFD case, on the other hand,
since the bulk velocities of these dSphs are not as large as
that of classical dSphs, the foreground estimation by using
the control region in the velocity distribution does not ef-
ficiently work. Instead, we define the control regions in the
distribution of the spatial position by setting an annulus
centred at each dSph galaxy from the radius of the signal
region to the PFS threshold, θ = 0.65◦. Here, the radii of
the signal regions are chosen to be 2re, 4re, 4re, and re for
Ursa Major II, Coma Berenices, Segue 1, and Ursa Major I re-
spectively, based on their half-light radii re.

When we perform a fit to the control region, we take into
account the effect of the thin and thick disc components of
the foreground stars in addition to the halo component, be-
cause the disc components remain after surface gravity and
metallicity cuts in case of UFDs. This contrasts to the case of
classical dSphs, where the foreground stars mainly belong to
the halo component after the naive cut. In order to represent
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Figure 1. The colour-magnitude map for each dSph. We im-

pose the colour-magnitude cut by the blue shaded region. The
red (blue) dots show the members (foreground) stars. The stars

on the map are residuals after the cuts of the ROI, velocity, and

log g.

the three foreground components we assume the foreground
distribution can be expressed by a sum of three Gaussian
functions. We first perform fits by the three Gaussian model
for control region data on which colour-magnitude, imax and
ROI cuts are imposed, and obtain the best-fitting values and
standard deviations of each Gaussian. Then we perform sec-
ondary fits for the control region data with all naive cuts
(colour-magnitude, imax, ROI, surface gravity and [Fe/H])
imposed on, using the best-fitting Gaussians achieved in the
first fit as the priors. Here we obtain the best-fitting values

and standard deviations of vFGj , σFGj , which are defined
as vFG0j , σFG0j , dvFGj , and dσFGj respectively. Finally we
use this information as a prior for vFGj , σFGj by multiply-
ing

∏
j=1,2,3 G[vFGj ; vFG0j, dvFGj ] G[σFGj ; σFG0j, dσFGj ]

to the likelihood function L in Eq.(9).

3.4.3 Fit algorithm

The likelihood function (multiplied by the foreground priors
for the mixed component fit) are searched by performing
the Metropolis-Hastings algorithm (Metropolis et al. 1953;
Hastings 1970) of the Markov Chain Monte Carlo (MCMC)
method. The parameter set of the single component fit con-
sists of the five free parameters of the dark matter halo
(ρs, rs, α, β, γ), one velocity anisotropy parameter βani and
one nuisance parameters (vMem), while the mixed compo-
nent fit also has the other seven nuisance parameters (s,
vFGj , σFGj). In the MCMC method, the halo parameters
are searched under the flat/log-flat priors within the range
of −4 < log10(ρs/[M⊙/pc3]) < 4, −2 < log10(rs/[kpc]) < 5,

0.5 < α < 3, 3 < β < 10, 0 < γ < 1.2 and −1 < log10(1−βani) <
1.

3.5 Strategy

Using 50 mocks for each case (imax = 21, 21.5, and 22),
we test three types of the J-factor estimation: the method
of KI17 (naive cut + mixed component fit), Conventional
analysis (membership selection + single component fit), and
Contaminated fit (naive cut + single component fit). We
here stress that in the KI17 approach, the velocity distribu-
tion of the foreground is parametrized by the fit and there-
fore the error bar of the J-factor involves the uncertainty of
the foreground distribution, while we fix the spatial stellar
distributions of member and foreground stars in the like-
lihood. This contrasts with the Conventional approach in
which a fixed model of the foreground velocity distribution
and parametrized spatial distributions are used in the selec-
tion.

4 RESULTS

4.1 J-factor and velocity dispersion curves

Fig. 2 shows the results of these three approaches, namely,
the method of KI17, the Conventional analysis, and the
Contaminated fit by blue, orange, and green bars, re-
spectively. Here we give the averaged median values of
log10(J/[GeV2/cm5]) for each fit by the dots. The lighter
error bars show the averages of the widths of the 68 % quan-
tiles, while the darker ones show the square roots of the
68 % quantiles and the standard deviations of the median
values, written in an additional way to the lighter ones. The
grey dashed lines show the input values. For each dSph,
three bars with the same colours correspond to the case of
imax = 21, 21.5, and 22 with θROI = 0.65 respectively, from
the left. All J-factors are calculated within an angular ra-
dius of 0.5 degree (i.e., ∆Ω = 2.4×10−4 sr), which is the stan-
dard size for the J-factor calculation. We here choose the
most conservative radius, given by Geringer-Sameth et al.
(2015).
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Figure 2. The J-factors obtained by the fits are plotted. The blue, orange, and green dots show the J-factor estimations of KI17,
Conventional and Contaminated analysis. The lighter error bars of each point show the average of the 68 % quantile, while the darker

ones show the square root of the 68 % quantiles and the standard deviation of the median values. The grey dashed lines show the input

values. For each dSph, three bars with the same colours correspond to the case of imax = 21, 21.5, and 22 with θROI = 0.65 respectively,
from the left.

In the Contaminated analysis (green bars in Fig 2), the
overestimation of the J-factor becomes more than an order of
the magnitude. This is because the dispersion curve inflates
due to the foreground contamination which mainly locate at
the outer region with a large velocity dispersion (∼ 30 − 40
km/s). Since the fraction of the foreground contaminating
stars is more than 50 %, the overestimation is much larger
than that of the classical case.

On the other hand, the J-factors seem to be success-
fully reproduced by the Conventional approach (orange bars
in Fig 2). However, since this approach assumes a constant
velocity dispersion in its membership calculation, the dis-
persion curve after the selection is more or less flattened
than the input one, which lead to a small bias to the J-
factor estimation. To elucidate this bias, we pick up mock
samples with noticeable bias effects and show these velocity
dispersion curves in the left column of Fig. 3. We also pro-
vide the typical uncertainty in the dispersion curve and its
sample-to-sample scatter for the 50 mocks in the right col-
umn of the same figure. The red lines show the median value
of the dispersion curves obtained by the fit of the Conven-
tional approach (averaged by the 50 mocks), while the green
band shows the (averaged) 68 % quantile. The median val-
ues of the dispersion curves also fluctuate sample by sample,
reflecting the quality of the sample. We show this fluctua-
tion by the orange shaded regions which are obtained by the
square root sum of the standard deviation of the median val-
ues of the 50 mocks and the 68 % quantiles. The input dis-
persion curves are also shown by the grey dashed lines. Es-
pecially for Ursa Major II, one can see from the figures that
the constant velocity-dispersion bias non-negligibly flattens
the shape of the curve and derive an underestimation of the
J-factor by a factor of five at most. Meanwhile, since the
changes of the dispersions curves of the other dSphs are not

as large as the Ursa Major II case, the flattened biases are
not obvious. We here stress that this bias becomes stronger
for a larger size of the stellar data, as can be seen in the
three orange bars for Ursa Major II in Fig 2.

We also note the results for the Ursa Major I case. Al-
though the number of the stars in Ursa Major I does not
significantly differ from the other dSphs (see Table 3), both
the Contaminated and KI17 approaches cannot determine
the J-factor as precisely as those of the other dSphs. Es-
pecially, in the Contaminated approach in spite of the fact
that the outer region of the Ursa Major I is more precisely
determined than the other dSphs, the J-factor obtained by
this fit poorly converges. It implies that the relation between
the input DM halo shape and the stellar distribution of the
Ursa Major I realizes a difficult situation for the J-factor es-
timation. Though it might be because the most of the stars
exist at a distance R over the peak of the input dispersion
curve,5 the condition is not solidly determined and we left
this analysis to future work.

KI17 approach (blue bars in Fig 2) also provides suc-
cessful J-factor estimations. Interestingly, their error bars
except for the Ursa Major I case are smaller and the median
values of the J-factors are closer to the input values than
those obtained by the Conventional approach. The systemat-
ical bias appearing at the Ursa Major II of the Conventional
procedure also vanishes in this approach. These results im-
ply that the KI17 method effectively uses larger statistics
without any bias even facing 50− 100 % foreground contam-
ination.

As a demonstration of the mixed fit, we choose suitable

5 Although this relation is the same as Segue 1, the fluctuation

in the Ursa Major I case can be obvious due to the larger position

of the peak (∼ 100 pc).
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Figure 3. Left panel: The examples of the dispersion curve obtained by the Conventional approach for the case of θROI = 0.65, imax =

21.5 for UrsaMajor II, ComaBerenices, Segue 1, and UrsaMajor I from top to bottom). To demonstrate the flattening bias discussed in

the text, we choose representative examples in the mock samples and show these velocity dispersion curves. The binned dispersions of the

mock data after the membership selection are shown by the red dots with error bars. The orange line shows the dispersion curve of the
best-fitting. The dashed line is obtained from the input parameter of the dSph dark matter halo. Right panel: The distribution of the

dispersion curve obtained by the fit of the Conventional approach. The red lines show the median value of the dispersion curves (averaged

by the 50 mocks). The green bands show the (averaged) 68% quantile. The median value of the dispersion curve also fluctuate sample
by sample, reflecting the quality of the sample. The fluctuations by the quality of the samples are shown by the orange shaded regions,

which are obtained by the square root sum of the standard deviation of the median values of the 50 mocks and the 68% quantiles. The

input dispersion curves are also shown by the grey dashed lines.

examples which reproduces the input dispersion curves well
and show them in the left column of Fig. 4. Since the data
consist of the mixture of the member and foreground stars,
the dispersion curve largely inflates at the outer region by
the foreground stars, while the inner most bins are mostly
dominated by the member stars and give dispersions with
a small error bars. Thanks to the foreground prior, the fit
is not too much affected by these outer and inner bins and
balanced to lead a valid estimation.

We also give the distribution of the dispersion curve
obtained by the fit in the right column of the same figure.
Compared with the distribution of the Contaminated ap-
proach, the width of the 68 % quantile is larger in the outer
region, while it becomes smaller in the inner region (except
for the Ursa Major I case). The results of the J-factor estima-

tion implies that the width in the inner region preferentially
affects the uncertainties of the J-factors. We also note that
the median dispersion curve of the Ursa Major II case suc-
cessfully follows the input curve at R ∼ 250 pc, in contrast
with that of the Contaminated approach.

4.2 Implication to gamma-ray detections

We finally demonstrate the foreground effect to the sensi-
tivity lines of the gamma-ray indirect detection. For the
sensitivity lines, we consider the observation of the the next-
generation telescope, Cherenkov Telescope Array (CTA). We
here assume 50 hours observation of line plus continuum sig-
nal from each UFD as a benchmark, following the assump-
tion used by Lefranc et al. (2016). Through the calculation
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Figure 4. Left panels: Examples of the dispersion curve of θROI = 0.65, imax = 21.5 case for the mixed fit (UrsaMajor II, ComaBerenices,
Segue 1, UrsaMajor I, from top to bottom). The binned dispersions of a mock data after the naive cut are shown by the blue dots with
error bars. The blue lines show the mixed-component dispersion curve obtained by the best-fitting, while the orange lines show the

dispersion curves of the member stars of the dSphs, calculated from Eq. (4) by inputting the best-fitting parameters. The dashed orange
lines are obtained by using the mock parameter of the dSph dark matter halo in Table 1 and the foreground prior parameters vFG0 j ,

σFG0 j . Right panels: The same figures as the right panels of Fig 3 but obtained by the fit of the KI17 approach.

we assume Wino DM, promising candidate of triplet DM. We
calculate the signal photon flux in Eq. (1) by the branching
ratios of Wino DM b f , extracted from Lefranc et al. (2016),
and the continuum spectrum (dNγ/dE) f of each branch-
ing, calculated by using PPPC 4 DM ID (Cirelli et al.
(2011)). The signal photon flux and the instrument re-
sponse functions (IRFs) of CTA are merged to construct
the likelihood for each UFD. Here we assume the ob-
served photon number in ith bin N i

obs
are equal to esti-

mated mean background N i
bkg

. in order to achieve expected

mean sensitivities. The IRFs and N i
bkg

are calculated by

Cherenkov Telescope Array Observatory gGmbH (2017).
The upper panel of Fig.5 shows sensitivity lines of pho-

ton cross section ⟨σv⟩γγ achieved by combined likelihood

analysis of 50 hours observation for each UFD. 6 Here we

6 For the ”pure” photon model where b
pure
γγ = 1, for instance, its

assume the 50 hours observation for four UFDs. The sensi-
tivity line obtained by the Contaminated approach is about
100 times severe than other methods, as expected from J-
factors in Fig. 2. It clearly shows the importance of a careful
estimation of the J-factors, since otherwise the dark matter
model will be constrained too aggressively. Conventional and
KI17 approaches avoid such a problem and there is no sig-
nificant difference between them at the level of the present
observational depth. The difference will appear when the J-
factors are estimated at more deeper observation, as can be
expected from the J-factors in Fig. 2 . In the lower panel of
Fig.5 we show the improvement of the sensitivity with the
KI17 method by increasing the observation depth. We note

sensitivity ⟨σv⟩pureγγ is obtained by (1+bWino
γZ /2bWino

γγ )⟨σv⟩Wino
γγ ,

where ⟨σv⟩Wino
γγ is the sensitivity of Wino DM in Fig.5. This

reinterpretation is verified because the continuum spectrum of

Wino DM barely affect to its sensitivity lines.
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Figure 5. Sensitivity lines of Wino DM annihilating into two

photons ⟨σv⟩γγ . All coloured lines are achieved by combined
likelihood analysis of 50 hours observation for each UFD. The

black line is the photon cross section of Wino DM extracted by
Lefranc et al. (2016). In particular, Upper panel: Sensitivity

lines at imax = 21.5. Each line assumes the J-factor values re-

produced by the KI17, Conventional and Contaminated analysis
(blue, orange and green). Lower panel: Sensitivity lines achieved

by the KI17 analysis at imax = 21, 21.5, and 22 (blue, purple and

red).

that the sensitivity lines become lower as the J-factor values
converge to the inputs due to good convergence property
of the KI17 method and the improvement of sensitivity be-
comes gentle around imax = 21.5. From the view point of the
thermal Wino dark matter search where its mass is predicted
to be about 3 TeV (Hisano et al. 2007), it will be crucial to
choose the observational depth at around imax = 21.5, as
can be seen in the panel.

5 SUMMARY

In this paper, we have investigated the effect of the fore-
ground contamination on the estimation of astrophysical fac-

tor, using the mock kinematical data of the four representa-
tive ultra-faint dwarf spheroidal galaxies. This is because we
cannot completely distinguish the foreground stars from the
dSph’s member stars even if imposing several data cuts. We
have adopted our developed fitting analysis, KI17, utilizing
the future spectroscopic survey, PFS. Such a multi-object
spectrograph with large field of view enables us to observe
numerous number of stellar spectra required the KI17 anal-
ysis.

For comparison, we have performed three types of the J-
factor estimation: the KI17 methods, the Conventional anal-
ysis and the Contaminated fit. As the result of the analysis,
the J-factor value estimated by the Contaminated analysis
is up to a few hundred times larger than the input value
and its confidence interval is significantly small, because all
stellar data after naive cut are regarded as member star
even including the foreground contamination. On he other
hand, the KI17 and Conventional analysis can reproduce the
input J-factor value within 1σ confidence levels except for
Ursa Major II.

For the case of Ursa Major II, the Conventional ap-
proach underestimates the J-factor value with respect to the
input value. This is because the Conventional approach as-
sumes the line-of-sight velocity dispersion profile to be con-
stant over the whole radius, although the observed velocity
dispersion curve of Ursa Major II is non-negligibly flat and
flares up at larger radii. It leads the member stars in the
outer region to be neglected for the consistency with the
assumption. Therefore we stress that the constant velocity-
dispersion bias may have a large impact on the J-factor es-
timation.

The likelihood function of the KI17 method includes the
information of both the foreground stars and the member
ones together with the parameters describing their distribu-
tion functions and the properties of the foreground stars are
roughly determined by the photometric and spectroscopic
observations of the stars in the control region. It allows this
method to treat correctly and statistically the effect of the
foreground contamination for the observational data. There-
fore, our statistical method should become powerful tool for
the J-factor estimate of the MW dSphs in the PFS-era and
it is worthwhile to calculate the conservative sensitivity of
WIMP DM.
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