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Abstract

The goal of the present paper is to show the transformation formula of Donaldson-
Thomas invariants on smooth projective Calabi-Yau 3-folds under birational trans-
formations via categorical method. We also generalize the non-commutative Donaldson-
Thomas invariants, introduced by B. Szendrői in a local (−1,−1)-curve example, to
an arbitrary flopping contraction from a smooth projective Calabi-Yau 3-fold. The
transformation formula between such invariants and the usual Donaldson-Thomas
invariants are also established. These formulas will be deduced from the wall-
crossing formula in the space of weak stability conditions on the derived category.

1 Introduction

This paper is a sequel of the author’s previous paper [30], and study the generating se-
ries of Donaldson-Thomas (DT for short) type invariants via categorical method. The
main result is to show the transformation formula of our generating series under bira-
tional transformations of Calabi-Yau 3-folds, and the generalized McKay correspondence
introduced by Van den Bergh [7]. We use the space of weak stability conditions on
triangulated categories, which generalizes Bridgeland’s stability conditions [5], and the
wall-crossing formula of the generating series due to Joyce and Song [11], Kontsevich and
Soibelman [15].

1.1 Motivation

Let X be a smooth projective Calabi-Yau 3-fold over C, i.e. the canonical line bundle
∧3T ∗X is trivial. Let

φ : X+ ��� X,
be a birational map between smooth projective Calabi-Yau 3-folds. The purpose of this
paper is to compare curve counting theories on X and X+ via categorical method, i.e.
effectively use an equivalence of bounded derived categories of coherent sheaves by Bridge-
land [4],

Φ: Db(Coh(X+))
∼−→ Db(Coh(X)). (1)
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The problem of comparing curve counting invariants under birational transformations has
been studied in [22], [17], [20], [14] for Gromov-Witten invariants and in [9] for DT in-
variants, via explicit calculations or using J. Li’s degeneration formula. The categorical
approach for the above problem is studied by the author in [31] for (a kind of approxima-
tion of ) Gopakumar-Vafa invariants. In this paper, we give a categorical understanding
of transformation formula of DT invariants under birational maps using the equivalence
(1).

Recall that a flop is a birational map φ : X+ ��� X which fits into a diagram,

X+

f+
���

��
��

��
�

φ �� X

f����
��

��
�

Y,

(2)

where Y is a projective 3-fold with only Gorenstein singularities, f , f+ are birational mor-
phisms isomorphic in codimension one, and the relative Picard numbers of f , f+ are one
respectively. (cf. Definition 2.13.) It is well-known that any birational map φ : X+ ��� X
between smooth projective Calabi-Yau 3-folds is decomposed into a composition of flops,
thus our problem is reduced to the case of a flop. In this case, M. Van den Bergh [7] shows
that there is a sheaf of non-commutative algebras AY on Y and a derived equivalence,

Ψ: Db(Coh(AY ))
∼→ Db(Coh(X)). (3)

(In fact there are two such sheaves of non-commutative algebras pAY for p = 0,−1. Here
we put AY = 0AY . See Theorem 2.22.) We also introduce an analogue of DT-invariant
for the non-commutative scheme (Y,AY ), which generalizes Szendrői’s non-commutative
DT (ncDT for short) invariant for a local (−1,−1)-curve example. It is introduced in [27]
and some other local examples are studied in [35], [23], [24]. Our invariant is interpreted
as a globalization of the local ncDT-invariant. We consider the generating series of our
invariants, and establish the formula which relates global ncDT-invariants of (Y,AY )
to usual DT-invariants of X and X+. This result answers the problem addressed by
Szendrői [27, Section 3.5].

1.2 Donaldson-Thomas theory

Let us briefly recall the Donaldson-Thomas theory. For a smooth projective Calabi-Yau
3-fold X, take β ∈ H2(X,Z) and n ∈ Z. Let In(X, β) be the Hilbert scheme of curves on
X,

In(X, β) =

{
subschemes C ⊂ X, dimC ≤ 1
with [C] = β, χ(OC) = n.

}
.

The moduli space In(X, β) is projective and has a symmetric obstruction theory [28].
The associated virtual fundamental cycle has virtual dimension zero, and the integration
along it defines the DT-invariant,

In,β =

∫
[In(X,β)vir]

1 ∈ Z.
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Another way of defining DT-invariant is to use Behrend’s microlocal function [1]. For an
arbitrary scheme M , Behrend associates a constructible function,

νM : M → Z.

The function νM has the property that if M has a symmetric obstruction theory, then the
integration of the virtual fundamental cycle coincides with the weighted Euler character-
istic, ∫

[Mvir]

1 = χ(M, νM) :=
∑
n∈�

nχ(ν−1
M (n)). (4)

We consider the generating series,

DT(X) :=
∑
n,β

In,βx
nyβ,

DT0(X) :=
∑

n

In,0x
n = M(−x)χ(X), (5)

DT(X/Y ) :=
∑

n,f∗β=0

In,βx
nyβ,

where f : X → Y is a flopping contraction as in the diagram (21), and M(x) is the
MacMahon function,

M(x) =
∏
k≥1

(1− xk)−k.

The formula (5) for DT0(X) is established in [2], [18], [16]. By the MNOP conjecture [21],
the reduced series

DT′(X) =
DT(X)

DT0(X)
, DT′(X/Y ) =

DT(X/Y )

DT0(X)
,

are expected to coincide with the generating series of Gromov-Witten invariants after a
suitable variable change.

1.3 Non-commutative Donaldson-Thomas theory

The following example is worked out by Szendrői [27]. Let Y be the conifold singularity,

Y = (xy + zw = 0) ⊂ C4,

and f : X → Y , f+ : X+ → Y blow-ups at ideals (x, z) ⊂ OY , (x,w) ⊂ OY respectively.
This gives an example of a (local) flop.

X+

f+ ���
��

��
��

�
φ �� X

f����
��

��
��

Y.

(6)
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The exceptional loci of f , f+ are smooth rational curves C ⊂ X, C+ ⊂ X+ whose normal
bundles are isomorphic to O�1(−1)⊕2. There is a local version of the equivalence (3), and
the OY -algebra AY is the path algebra of the following quiver,

e1 • • e2

a1,a2

��
����

b1,b2

��

with relation defined by the derivations of the potential W ,

W = a1b1a2b2 − a1b2a2b1.

For a dimension vector v = (v1, v2) ∈ Z⊕2, the moduli space of framed AY -representations
M = (M•, a•, b•, u) is denoted byMv. Here v = (dimM1, dimM2) and u ∈M1 generates
M1 ⊕M2 as an AY -module. The integration of the virtual fundamental cycle yields the
ncDT invariant,

An,m[C] =

∫
[Mvir

(n,m+n)
]

1 ∈ Z. (7)

The transformation rule between numerical classes on X and dimension vectors on AY is
determined by the equivalence (3). We have the associated generating series,

DT0(AY ) =
∑
n,m

An,m[C]x
nym.

The following formula is conjectured by Szendrői [27] and proved by Young [36], Nagao
and Nakajima [25].

Theorem 1.1. [36], [25] We have the formula

DT0(AY ) = M(−x)2
∏
k≥1

(1− (−x)ky)k
∏
k≥1

(1− (−x)ky−1)k,

= DT(X/Y ) · φ∗DT′(X+/Y ). (8)

Let us return to the situation of an arbitrary flopping contraction f : X → Y from a
smooth projective Calabi-Yau 3-fold X. For β ∈ H2(X,Z) and n ∈ Z, we will introduce
a global version of the ncDT invariant,

An,β ∈ Z,

in Definition 2.37 as a generalization of the invariant (7). The invariant An,β counts cyclic
AY -modules F , satisfying dim Supp Ψ(F ) ≤ 1 and

[Ψ(F )] = β, χ(Ψ(F )) = n,

via the equivalence (3). If f∗β �= 0, then such a cyclic AY -module is not of finite dimen-
sional as a C-vector space. The associated generating series are defined by

DT(AY ) :=
∑
n,β

An,βx
nyβ,

DT0(AY ) :=
∑

n,f∗β=0

An,βx
nyβ.
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1.4 Main result

Let f : X → Y be a flopping contraction from a smooth projective Calabi-Yau 3-fold X
to a singular 3-fold Y , and φ : X+ ��� X its flop as in the diagram (21). Using the results
of [30, Section 8], which relies on the results of [11] and [3], we will prove the following. 1

Theorem 1.2. [Theorem 5.6, Theorem 5.7, Theorem 5.8] We have the following
formula,

DT(X/Y ) = i ◦ φ∗DT(X+/Y ), (9)

DT0(AY ) = DT(X/Y ) · φ∗DT′(X+/Y ), (10)

DT(X)

DT(X/Y )
=

DT(AY )

DT0(AY )
= φ∗

DT(X+)

DT(X+/Y )
. (11)

Here the variable change is φ∗(β, n) = (φ∗β, n) and i(β, n) = (−β, n).

Note that (9) and the equality

DT(X)

DT(X/Y )
= φ∗

DT(X+)

DT(X+/Y )
,

given in (11) are proved by J. Hu and W. P. Li [9] in the case of a flop at a (−1,−1)-
curve, using J. Li’s degeneration formula. Also in this case, the equality (10) is just the
formula (8). The equality (10) together with the first equality of (11) yields

DT(AY ) = DT(X) · φ∗DT′(X+/Y ),

which is interpreted as a global version of the formula (8).
Our proof is based on the analysis of weak stability conditions on the triangulated

category,
DX = 〈OX ,Coh≤1(X)〉tr ⊂ Db(Coh(X)),

i.e. DX is the smallest triangulated subcategory of Db(Coh(X)), which contains OX

and E ∈ Coh(X) with dim Supp(E) ≤ 1. We will construct the generating series of
counting invariants of semistable objects, and see how such series vary under change of
weak stability conditions. We will construct weak stability conditions on DX explicitly,
and apply the wall-crossing formula given in [30, Section 5, Section 8].

1.5 Content of the paper

In Section 2, we introduce some notions which is used in this paper. In Section 3, we
construct weak stability conditions on the triangulated category DX . In Section 4, we
investigate relevant semistable objects. In Section 5, we give a proof of Theorem 1.2. In
Section 6, we prove some technical lemmas.

1At the moment the author writes the first draft of this paper, the result of [3] is not yet written.
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1.7 Notation and convention

In this paper, all the varieties are defined over C. For a triangulated category D, the shift
functor is denoted by [1]. For a set of objects S ⊂ D, we denote by 〈S〉tr ⊂ D the smallest
triangulated subcategory ofD which contains S. Also we denote by 〈S〉ex ⊂ D the smallest
extension closed subcategory of D which contains S. For an abelian category A and a set
of objects S ⊂ A, the subcategory 〈S〉ex ⊂ A is also defined to be the smallest extension
closed subcategory of A which contains S. The abelian category of coherent sheaves is
denoted by Coh(X). We say F ∈ Coh(X) is d-dimensional if its support is d-dimensional.
The bounded derived category of coherent sheaves is denoted by Db(Coh(X)). For an
object E ∈ Db(Coh(X)) and i ∈ Z, we denote by Hi(E) ∈ Coh(X) the i-th cohomology
of E.

2 Preliminaries

In this section, we introduce some notions which will be used in later sections.

2.1 Generalities on weak stability conditions

Here we collect definitions and properties of weak stability conditions on triangulated
categories introduced in [30, Section 2]. This is a generalized notion of Bridgeland’s
stability conditions on triangulated categories [5]. Let D be a triangulated category, and
K(D) the Grothendieck group of D. We fix a finitely generated free abelian group Γ, and
its filtration,

0 � Γ0 � Γ1 · · · � ΓN = Γ, (12)

with each subquotient
Hi = Γi/Γi−1, (0 ≤ i ≤ N)

a free abelian group. We also fix a group homomorphism,

cl : K(D) −→ Γ.

We set H∨i := Hom�(Hi,C) and fix a norm ‖∗‖i on Hi ⊗�R. For an element

Z = {Zi}Ni=0 ∈
N∏

i=0

H∨i ,
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and v ∈ Γ, we set
Z(v) := Zm([v]) ∈ C,

where 0 ≤ m ≤ N satisfies v ∈ Γm \ Γm−1, and [v] is the class of v in Hm. Here we set
Γ−1 = ∅. Also we define ‖v‖ := ‖[v]‖m. Below we write cl(E) ∈ Γ just as E ∈ Γ when
there is no confusion.

Definition 2.1. A weak stability condition on D is a pair σ = (Z,P),

Z ∈
N∏

i=0

H∨i , P(φ) ⊂ D, (φ ∈ R), (13)

where P(φ) is a full additive subcategory of D, which satisfies the following axiom.

• For any φ ∈ R, we have P(φ)[1] = P(φ+ 1).

• For Ei ∈ P(φi) with φ1 > φ2, we have Hom(E1, E2) = 0.

• (Harder-Narasimhan property): For any object E ∈ D, we have the following
collection of triangles:

0 = E0
�� E1

����
��

��
��

�� E2
��

����
��

��
��

· · · �� En = E

�����������

F1

[1]

		���������
F2

[1]



��������

Fn

[1]



��������

such that Fj ∈ P(φj) with φ1 > φ2 > · · · > φn.

• For any non-zero E ∈ P(φ), we have

Z(E) ∈ R>0 exp(iπφ). (14)

• (Support property): There is a constant C > 0 such that for any non-zero
E ∈

⋃
φ∈�P(φ), we have

‖E‖ ≤ C|Z(E)|. (15)

• (Local finiteness condition): There exists η > 0 such that for any φ ∈ R, the
quasi-abelian category P((φ− η, φ+ η)) is of finite length.

Here for an interval I ⊂ R, the subcategory P(I) ⊂ D and the subset Cσ(I) ⊂ Γ are
defined to be

P(I) = 〈P(φ) : φ ∈ I〉ex ⊂ D,
Cσ(I) = im{cl : P(I)→ Γ}. (16)

If I = (a, b) with b− a < 1, then P(I) is a quasi-abelian category (cf. [5, Definition 4.1],)
and P(I) is said to be of finite length if P(I) is noetherian and artinian with respect to
strict epimorphisms and strict morphisms. See [5, Section 4] for more detail.

Another way of defining weak stability conditions is using t-structures. The readers
can refer [5] for bounded t-structures, and their hearts.
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Definition 2.2. Let A ⊂ D be the heart of a bounded t-structure on a triangulated
category D. We say Z ∈

∏N
i=0 H∨i is a weak stability function on A if for any non-zero

E ∈ A, we have

Z(E) ∈ H := {r exp(iπφ) : r > 0, 0 < φ ≤ 1}. (17)

By (17), we can uniquely determine the argument,

argZ(E) ∈ (0, π],

for any 0 �= E ∈ A. For an exact sequence 0 → F → E → G → 0 in A, one of the
following equalities holds.

argZ(F ) ≤ argZ(E) ≤ argZ(G),

argZ(F ) ≥ argZ(E) ≥ argZ(G).

Definition 2.3. Let Z ∈
∏N

i=0 H∨i be a weak stability function on A. We say 0 �= E ∈ A
is Z-semistable (resp. stable) if for any exact sequence 0→ F → E → G→ 0 we have

argZ(F ) ≤ argZ(G), (resp. argZ(F ) < argZ(G).) (18)

The notion of Harder-Narasimhan filtration is defined in a similar way to usual stability
conditions.

Definition 2.4. Let Z ∈
∏N

i=0 H∨i be a weak stability function on A. A Harder-
Narasimhan filtration of an object E ∈ A is a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek−1 ⊂ Ek = E,

such that each subquotient Fj = Ej/Ej−1 is Z-semistable with

argZ(F1) > argZ(F2) > · · · > argZ(Fk).

A weak stability function Z is said to have the Harder-Narasimhan property if any object
E ∈ A has a Harder-Narasimhan filtration.

We will use the following proposition. (cf. [30, Proposition 2.12].)

Proposition 2.5. Let Z ∈
∏N

i=0 H∨i be a weak stability function on A. Suppose that the
following chain conditions are satisfied.

(a) There are no infinite sequences of subobjects in A,

· · · ⊂ Ej+1 ⊂ Ej ⊂ · · · ⊂ E2 ⊂ E1

with argZ(Ej+1) > argZ(Ej/Ej+1) for all j.
(b) There are no infinite sequences of quotients in A,

E1 � E2 � · · ·� Ej

πj� Ej+1 � · · ·

with argZ(ker πj) > argZ(Ej+1) for all j.
Then Z has the Harder-Narasimhan property.
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We have the following proposition. (cf. [5, Proposition 5.3], [30, Proposition 2.13].)

Proposition 2.6. Giving a pair (Z,P) as in (13) satisfying (14) is equivalent to giving
a bounded t-structure A on D and a weak stability function on its heart with the Harder-
Narasimhan property.

The correspondence in the above proposition is given as follows. Given a pair (Z,P)
satisfying (14), we set A to be

A = P((0, 1]) ⊂ D.

Conversely given the heart of a bounded t-structure A ⊂ D and a weak stability function
Z on A, we set P(φ) to be the following full additive subcategory of A,

P(φ) =

{
E ∈ A :

E is Z-semistable with
Z(E) ∈ R>0 exp(iπφ)

}
.

Below we write an element of StabΓ•(D) either as (Z,P) or (Z,A), where (Z,P) is a pair
(13) and (Z,A) is given as in Definition 2.2. Let StabΓ•(D) be the set of weak stability
conditions on D. The following theorem is given in [30, Theorem 2.15], as an analogue
of [5, Theorem 7.1].

Theorem 2.7. [30, Theorem 2.15] The map

Π: StabΓ•(D) � (Z,P) �−→ Z ∈
N∏

i=0

H∨i ,

is a local homeomorphism. In particular each connected component of StabΓ•(D) is a
complex manifold.

We will need the following two lemmas. The first one is proved in [30, Lemma 7.1].

Lemma 2.8. [30, Lemma 7.1] Let A be the heart of a bounded t-structure on D, and
(T ,F) a torsion pair (cf. Definition 2.14,) on A. Let B = 〈F [1], T 〉ex the associated
tilting. (cf. (25).) Let

[0, 1) � t �−→ Zt ∈
N∏

i=0

H∨i ,

be a continuous map such that σt = (Zt,A) for 0 < t < 1 and σ0 = (Z0,B) determine
points in StabΓ•(D). Then we have limt→0 σt = σ0.

The second one is a compatibility of the weak stability conditions via equivalences of
triangulated categories. The proof is straightforward, and we omit the proof.

Lemma 2.9. Let D′ be another triangulated category together with similar additional
data cl′ : K(D′) → Γ′ and a filtration Γ′• as in (12). Suppose that Φ: D → D′ gives an
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equivalence of triangulated categories such that there is a filtration preserving isomorphism
ΦΓ : Γ• → Γ′• which fits into the following commutative diagram,

K(D)
Φ ��

cl

��

K(D′)
cl′

��
Γ

ΦΓ �� Γ′.

(19)

Then there is an isomorphism Φ∗ : StabΓ•(D) → StabΓ′•(D′) such that the following dia-
gram commutes,

StabΓ•(D)
Φ∗ ��

Π
��

StabΓ′•(D′)

Π′
��∏N

i=0 H∨i
(gr Φ−1

Γ )∨
�� ∏N

i=0 H
′∨
i .

2.2 Terminology from birational geometry

In what follows, we assume that X is a smooth projective Calabi-Yau 3-fold over C, i.e.
the canonical line bundle ∧3T ∗X is trivial. (We do not assume the simply connectedness
of X.) Here we introduce standard terminology in birational geometry, for example used
in [12, Definition 1.1].

Let S be a projective variety with a morphism f : X → S. Two divisors D1, D2 on
X are called numerically equivalent over S if and only if D1 · C = D2 · C for any curve
C ⊂ X with f∗[C] = 0. Similarly, one-cycles C1, C2 on X contracted by f are numerically
equivalent if and only if D · C1 = D · C2 for every divisor D on X.

Definition 2.10. We define abelian groups N1(X/S), N1(X/S) to be

N1(X/S) := {Divisors on X}/(numerical equivalence over S),

N1(X/S) := {One-cycles on X contracted by f}/(numerical equivalence).

By the definition, there is the perfect pairing,

N1(X/S)� ×N1(X/S)� � (D,C) �−→ D · C ∈ R.

Definition 2.11. We define the ample cone A(X/S), the complexified ample cone A(X/S)� ,
and the semigroup of effective one-cycles NE(X/S) to be

A(X/S) := {Numerical classes of f -ample R-divisors } ⊂ N1(X/S)�,

A(X/S)� := {B + iω ∈ N1(X/S)� : ω ∈ A(X/S)},
NE(X/S) := {Effective one-cycles contracted by f} ⊂ N1(X/S).

For β, β ′ ∈ N1(X/S), we write β ≥ β ′ if β − β ′ ∈ NE(X/S). When S = Spec C, we
write

N1(X) := N1(X/ SpecC), N1(X) := N1(X/ SpecC),

etc, for simplicity. We set N≤1(X) to be

N≤1(X) := Z⊕N1(X).
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Definition 2.12. A birational morphism f : X → Y is called a flopping contraction if
the following conditions are satisfied.

• f is isomorphic in codimension one, and Y has only Gorenstein singularities.

• We have dim�N
1(X/Y )� = 1.

Let f : X → Y be a flopping contraction. The exceptional locus C ⊂ X is a tree of
rational curves,

C = C1 ∪ C2 ∪ · · · ∪ CN , Ci
∼= P1.

(See for example [7, Lemma 3.4.1].) By the second condition of Definition 2.12, there is
a relative ample divisor H on X such that

N1(X/Y ) = R[H ], A(X/Y ) = R>0[H]. (20)

Definition 2.13. Let f : X → Y be a flopping contraction. A flop of f is a birational
map φ : X+ ��� X, which fits into a diagram

X+

f+
���

��
��

��
�

φ �� X

f����
��

��
�

Y,

(21)

such that f+ is also a flopping contraction with f ◦φ = f+, and φ is not an isomorphism.

It is well-known that a flop is unique if it exists, and any birational map between
smooth projective Calabi-Yau 3-folds is decomposed into a finite number of flops. (cf. [13,
Theorem 1].) For a flop φ : X+ ��� X, we have the linear isomorphisms,

φ∗ : N1(X+/Y )�
∼=−→ N1(X/Y )�, (22)

φ∗ : N1(X
+/Y )�

∼=−→ N1(X/Y )�, (23)

where (22) is the strict transform of divisors, and (23) is the inverse of the dual of (22).
Note that φ∗ takes A(X+/Y ) to −A(X/Y ) and takes NE(X+/Y ) to −NE(X/Y ).

2.3 t-structures and tilting

Let D be a triangulated category, and A ⊂ D the heart of a bounded t-structure on D.
Here we recall the notion of torsion pairs and tilting.

Definition 2.14. [8] Let (T ,F) be a pair of full subcategories of A. We say (T ,F) is a
torsion pair if the following conditions hold.

• Hom(T, F ) = 0 for any T ∈ T and F ∈ F .

• Any object E ∈ A fits into an exact sequence,

0 −→ T −→ E −→ F −→ 0, (24)

with T ∈ T and F ∈ F .
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Given a torsion pair (T ,F) on A, its tilting is defined by

A† :=

{
E ∈ D :

H−1
A (E) ∈ F , H0

A(E) ∈ T ,
Hi
A(E) = 0 for i /∈ {−1, 0}.

}
, (25)

i.e. A† = 〈F [1], T 〉ex in D. Here Hi
A(∗) is the i-th cohomology functor with respect to

the t-structure with heart A. It is known that A† is the heart of a bounded t-structure
on D. (cf. [8, Proposition 2.1].) Later we will need the following lemma.

Lemma 2.15. Let A ⊂ D be the heart of a bounded t-structure on a triangulated category
D. Suppose that A is a noetherian abelian category.

(i) Let T ⊂ A be a full subcategory which is closed under extensions and quotients in
A. Then for F = {E ∈ A : Hom(T , E) = 0}, the pair (T ,F) is a torsion pair on A.

(ii) Let F ⊂ A be a full subcategory which is closed under extensions and subobjects
in A. Then for T = {E ∈ A : Hom(E,F) = 0}, the pair (T ,F) is a torsion pair on A.

Proof. We only show (i), as the proof of (ii) is similar. Take E ∈ A with E /∈ F . Then
there is T ∈ T and a non-zero morphism T → E. Since T is closed under quotients, we
may assume that T → E is a monomorphism in A. Take an exact sequence in A,

0 −→ T −→ E −→ F −→ 0. (26)

By the noetherian property of A and the assumption that T is closed under extensions,
we may assume that there is no T � T ′ ⊂ E with T ′ ∈ T . Then we have F ∈ F and (26)
gives the desired sequence (24).

2.4 Notation of abelian categories

Here we give some notation of abelian categories which will be used in this paper.

Definition 2.16. Let A be a sheaf of OX-algebras on a variety X, which is coherent as
an OX -module. We denote by Coh(A) the abelian category of right coherent A-modules.
For an object E ∈ Coh(A), the support of E is defined to be the support of E as an
OX -module. We set

Coh0(A) = {E ∈ Coh(A) : dim Supp(E) = 0},
Coh≤1(A) = {E ∈ Coh(A) : dim Supp(E) ≤ 1},
Coh≥2(A) = {E ∈ Coh(A) : Hom(Coh≤1(A), E) = 0}.

If A = OX , we write Coh•(OX) as Coh•(X).

By Lemma 2.15, the pair (Coh≤1(A),Coh≥2(A)) is a torsion pair on Coh(A).

Definition 2.17. We define Coh†(A) to be the tilting with respect to (Coh≤1(A),Coh≥2(A)),
i.e.

Coh†(A) = 〈Coh≥2(A)[1],Coh≤1(A)〉ex.
If A = OX , we write Coh†(OX) as Coh†(X).
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2.5 Derived equivalence under flops

Let f : X → Y be a flopping contraction from a smooth projective Calabi-Yau 3-fold
X. (cf. Definition 2.12.) In this situation, Bridgeland [4] associates the subcategories
pPer(X/Y ) on Db(Coh(X)) for p = 0,−1, as follows.

Definition 2.18. We define pPer(X/Y ) ⊂ Db(Coh(X)) for p = 0,−1 to be

pPer(X/Y ) =

{
E ∈ Db(Coh(X)) :

Rf∗E ∈ Coh(Y ),
Hom<−p(E, C) = Hom<−p(C, E) = 0.

}
,

where C = {F ∈ Coh(X) | Rf∗F = 0}. We also define pPer0(X/Y ) and pPer≤1(X/Y ) to
be

pPer0(X/Y ) = {E ∈ pPer(X/Y ) : dim SuppRf∗E = 0},
pPer≤1(X/Y ) = {E ∈ pPer(X/Y ) : dim Supp(E) ≤ 1}.

Remark 2.19. By the definition, it is easy to see that

OX ∈ pPer(X/Y ), p = 0,−1.

It is proved in [4] that pPer(X/Y ) are the hearts of bounded t-structures onDb(Coh(X)),
hence they are abelian categories. The categories pPer≤1(X/Y ) are also the hearts of
bounded t-structures on Db(Coh≤1(X)). (cf. [31, Proposition 5.2].) The generators of
pPer≤1(X/Y ) are described as follows. Let C1, · · · , CN ⊂ X be the irreducible compo-
nents of the exceptional locus of f . We have the following.

Lemma 2.20. The abelian categories pPer≤1(X/Y ) are described as

0Per≤1(X/Y ) = 〈ωf−1(y)[1],OCi
(−1), C̃oh≤1(X)〉ex, (27)

−1Per≤1(X/Y ) = 〈Of−1(y),OCi
(−1)[1], C̃oh≤1(X)〉ex. (28)

Here y ∈ Sing(Y ), 1 ≤ i ≤ N , and C̃oh≤1(X) is defined to be

C̃oh≤1(X) := {F ∈ Coh≤1(X) | Ci � Supp(F ) for all i}.

Proof. This is a straightforward generalization of [7] and the proof is written in [31,
Proposition 5.2].

Let φ : X+ ��� X be the flop of f . (cf. Definition 2.13.) The following theorem is proved
in [4].

Theorem 2.21. [4] There is an equivalence of bounded derived categories of coherent
sheaves,

Φ: Db(Coh(X+))
∼−→ Db(Coh(X)), (29)

which takes −1Per(X+/Y ) to 0Per(X/Y ).
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2.6 Flops and non-commutative algebras

Let f : X → Y be a flopping contraction as in Definition 2.12. By Van den Bergh [7], the
abelian categories pPer(X/Y ) are related to sheaves of non-commutative algebras on Y .

Theorem 2.22. [7] There are vector bundles pE on X for p = 0,−1, which admit derived
equivalences,

pΦ = Rf∗RHom(pE , ∗) : Db(Coh(X))
∼=−→ Db(Coh(pAY )). (30)

Here pAY = f∗End(pE) are sheaves of non-commutative algebras on Y . The equivalences
(30) restrict to equivalences

pΦ: pPer(X/Y )
∼−→ Coh(pAY ). (31)

Proof. Here we briefly recall how to construct pE , which will be needed in the later section.
We treat the case of p = 0 for simplicity. Let LX be a globally generated ample line bundle
on X. We have a surjection of sheaves,

(L−1
Y )⊕a � R1f∗L−1

X ,

for a sufficiently ample line bundle LY on Y and a > 0. Taking the adjunction, we obtain
the short exact sequence,

0 −→ L−1
X −→ 0E ′ −→ f ∗(L−1

Y )⊕a −→ 0. (32)

Then 0E is defined to be
0E = OX ⊕ 0E ′ .

The constructions of −1E ′ and −1E are similar. (See [7] for the detail.)

Remark 2.23. By the construction, the sheaves of algebras pAY are direct sums of locally
projective pAY -modules,

pAY = pA′Y ⊕ pA′′Y , (33)

where pA′Y = pΦ(OX) and pA′′Y = pΦ(pE ′).

Note that the torsion pair (Coh≤1(
pAY ),Coh≥2(

pAY )) induces the torsion pair

(pPer≤1(X/Y ), pPer≥2(X/Y )),

on pPer(X/Y ) via the equivalence pΦ: pPer(X/Y )
∼→ Coh(pAY ).

Definition 2.24. We define the abelian category pPer†(X/Y ) to be the tilting with
respect to the torsion pair (pPer≤1(X/Y ), pPer≥2(X/Y )), i.e.

pPer†(X/Y ) = 〈pPer≥2(X/Y )[1], pPer≤1(X/Y )〉ex.

Remark 2.25. By the construction, the equivalence pΦ: Db(Coh(X))
∼→ Db(Coh(pAY ))

restricts to the equivalence between pPer†(X/Y ) and Coh†(pAY ).
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2.7 Donaldson-Thomas theory

Here we introduce Donaldson-Thomas invariants. For (n, β) ∈ Z ⊕ N1(X), let In(X, β)
be the moduli space of subschemes C ⊂ X with

dimC ≤ 1, [C] = β, and χ(OC) = n.

There is a symmetric perfect obstruction theory on In(X, β) [29], and the associated
virtual cycle,

[In(X, β)vir] ∈ A0(In(X, β)).

Definition 2.26. The Donaldson-Thomas invariant is defined by

In,β :=

∫
[In(X,β)vir]

1 ∈ Z.

Recall that for any scheme M , Behrend [1] associates a canonical constructible func-
tion,

νM : M → Z, (34)

such that if M has a symmetric perfect obstruction theory, we have∫
[Mvir]

1 =
∑
i∈�

iχ(ν−1
M (i)).

Here χ(∗) is the topological Euler characteristic. In this way, the invariant In,β is also de-
fined as a weighted Euler characteristic with respect to the Behrend function on In(X, β).
The relevant generating series are defined as follows.

Definition 2.27. Let f : X → Y be a flopping contraction. We define the generating
series DT(X) and DT(X/Y ) to be

DT(X) :=
∑
n,β

In,βx
nyβ,

DT(X/Y ) :=
∑

n,f∗β=0

In,βx
nyβ.

The reduced series are defined by

DT′(X) :=
DT(X)

DT0(X)
, DT′(X/Y ) :=

DT(X/Y )

DT0(X)
.

Here DT0(X) is given by [2], [18], [16],

DT0(X) :=
∑

n

In,0x
n = M(−x)χ(X),

for the MacMahon function,

M(x) =
∏
k≥1

(1− xk)−k.
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2.8 Pandharipande-Thomas theory

The notion of stable pairs and the associated counting invariants are introduced by Pand-
haripande and Thomas [26] in order to give a geometric interpretation of the reduced DT
theory.

Definition 2.28. [26] A pair (F, s) is a stable pair if it satisfies the following conditions.

• F ∈ Coh≤1(X) is a pure 1-dimensional sheaf.

• s : OX → F is a morphism with 0-dimensional cokernel.

As a convention, the pair (0, 0) is also a stable pair. For (n, β) ∈ Z⊕N1(X), we denote
by Pn(X, β) the moduli space of stable pairs (F, s) with

[F ] = β, χ(F ) = n.

It is proved in [26] that Pn(X, β) is a projective scheme with a symmetric perfect obstruc-
tion theory, by viewing a stable pair (F, s) as a two term complex,

I• = · · · → 0→ OX
s→ F → 0→ · · · ∈ Db(X). (35)

We also call the two term complex (35) as a stable pair. There is an associated virtual
fundamental cycle,

[Pn(X, β)vir] ∈ A0(Pn(X, β)).

Definition 2.29. The Pandharipande-Thomas invariant Pn,β is defined as

Pn,β =

∫
[Pn(X,β)vir]

1 ∈ Z.

The relevant generating series are defined as follows.

Definition 2.30. Let f : X → Y be a flopping contraction. We define the generating
series PT(X) and PT(X/Y ) to be

PT(X) =
∑
n,β

Pn,βx
nyβ,

PT(X/Y ) =
∑

n,f∗β=0

Pn,βx
nyβ.

The following result, which is conjectured in [26, Conjecture 3.3], is proved in [30,
Section 8] using the results of [11] and [3].

Theorem 2.31. [30, Theorem 8.11] We have the formula,

DT′(X) = PT(X),

DT′(X/Y ) = PT(X/Y ).

In particular, we have the equality of the generating series,

DT(X)

DT(X/Y )
=

PT(X)

PT(X/Y )
.
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2.9 Non-commutative Donaldson-Thomas theory

Here we introduce (global) non-commutative DT invariants associated to an arbitrary
flopping contraction f : X → Y . Recall the definition of pPer(X/Y ) in Definition 2.18.

Definition 2.32. An object I ∈ pPer(X/Y ) is called a perverse ideal sheaf if there is
an injection I ↪→ OX in pPer(X/Y ).

The moduli theory of perverse ideal sheaves is studied by Bridgeland [4].

Theorem 2.33. [4, Theorem 5.5] For (n, β) ∈ Z ⊕ N1(X), the functor of families of
perverse ideal sheaves I ∈ pPer(X/Y ) which fit into the exact sequence in pPer(X/Y ),

0 −→ I −→ OX −→ F −→ 0, (36)

satisfying

F ∈ pPer≤1(X/Y ), [F ] = β and χ(F ) = n, (37)

is representable by a projective scheme In(pAY , β).

Remark 2.34. In [4, Theorem 5.5], Bridgeland constructs the moduli space In(pAY , β)
only in the case of p = −1. However the case of p = 0 is reduced to the case of p = −1
by passing to the flop via the equivalence (29).

Remark 2.35. The object F ∈ pPer≤1(X/Y ) in the sequence (36) corresponds to an
pAY -module F ′ which admits surjections,

pAY � pA′Y � F ′, (38)

in Coh(pAY ) via the equivalence (31). In this way, In(pAY , β) is also interpreted as a
moduli space of cyclic pAY -modules of a given numerical type.

By [10], there is a symmetric perfect obstruction theory on In(pAY , β), and the asso-
ciated virtual fundamental cycle,

[In(pAY , β)vir] ∈ A0(In(pAY , β)).

Definition 2.36. The (global) non-commutative Donaldson-Thomas invariant pAn,β is
defined by

pAn,β =

∫
[In(pAY ,β)vir]

1 ∈ Z.

The generating series are defined as follows.

Definition 2.37. We define the generating series DT(pAY ) and DT0(
pAY ) to be

DT(pAY ) =
∑
n,β

pAn,β x
nyβ,

DT0(
pAY ) =

∑
n,f∗β=0

pAn,β x
nyβ.

Remark 2.38. If f : X → Y contracts only single rational curve C ⊂ X with normal
bundle NC/X = OC(−1)⊕2, then the series DT0(

pAY ) coincides with the one introduced by
Szendrői [27] by Remark 2.35.
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3 Weak stability conditions on DX
In what follows, we use the notation introduced in the previous section. Let X be a
smooth projective Calabi-Yau 3-fold with a flopping contraction f : X → Y . (cf. Def-
inition 2.12.) In this section, we study the space of weak stability conditions on the
triangulated subcategory,

DX := 〈OX ,Coh≤1(X)〉tr ⊂ Db(Coh(X)).

We set Γ to be
Γ = Z⊕N1(X)⊕ Z,

and a group homomorphism cl : K(DX)→ C to be

cl(E) = (ch3(E), ch2(E), ch0(E)).

By the definition of DX , it is obvious that ch•(E) has integer coefficients for E ∈ DX ,
thus cl is well-defined.

Remark 3.1. Let IC ⊂ OX be an ideal sheaf of a 1-dimensional subscheme C ⊂ X. We
have IC ∈ DX, and

cl(IC) = (−n,−β, 1) if and only if [C] = β, χ(OC) = n,

by Riemann-Roch theorem. The similar statement also holds for stable pairs (35) and
perverse ideal sheaves.

We denote by rk the projection onto the third factor,

rk: Γ � (s, l, r) �→ r ∈ Z.

We set

Γ0 = Z⊕N1(X/Y ),

Γ1 = Z⊕N1(X).

We have the filtration,

Γ0
i
↪→ Γ1

j
↪→ Γ2 = Γ, (39)

via i(s, l) = (s, l) and j(s, l) = (s, l, 0). Each subquotient Hi = Γi/Γi−1 is

H0 = Z⊕N1(X/Y ), H1 = N1(Y ), H2 = Z,

and there is a natural isomorphism,

(
C×N1(X/Y )�

)
×N1(Y )� × C

∼−→
2∏

i=0

H∨i . (40)

Hence we have the local homeomorphism by Theorem 2.7,

Π: StabΓ•(DX)→
(
C×N1(X/Y )�

)
×N1(Y )� × C. (41)
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3.1 t-structures on DX

In this subsection, we construct t-structures on DX . The notation used here is introduced
in subsection 2.5.

Lemma 3.2. (i) There is the heart of a bounded t-structure AX ⊂ DX, written as

AX = 〈OX ,Coh≤1(X)[−1]〉ex. (42)

(ii) There are hearts of bounded t-structures pBX/Y ⊂ DX for p = 0,−1, written as

pBX/Y = 〈OX ,
pPer≤1(X/Y )[−1]〉ex. (43)

Proof. (i) is proved in [30, Lemma 3.5], so we prove (ii). Let us consider the heart of
a bounded t-structure pPer†(X/Y ) ⊂ Db(Coh(X)), given in Definition 2.24. By the
construction, it is obvious that

pPer†(X/Y )[−1] ∩Db(Coh≤1(X)) = pPer≤1(X/Y )[−1].

Take F ∈ pPer≤1(X/Y ). Since OX ∈ pPer(X/Y ), we have Hom(OX , F [−1]) = 0. Also
we have

Hom(F [i],OX) ∼= Hom(OX , F [3 + i])∨

∼= Hom(OY ,Rf∗F [3 + i])∨

= 0,

for i ≥ −1. Here the first isomorphism follows from the Serre duality, the second one is
an adjunction, and the last one is a consequence of Rf∗F ∈ Coh(Y ) by the definition of
pPer(X/Y ). In particular, we have

OX ∈ pPer≥2(X/Y ) ⊂ pPer†(X/Y )[−1].

Applying Proposition 3.3 below by setting D = Db(Coh(X)), D′ = Db(Coh≤1(X)), A =
pPer†(X/Y )[−1] and E = OX , we obtain the result.

We have used the following proposition, which is proved in [30, Proposition 3.6].

Proposition 3.3. [30, Proposition 3.6] Let D be a C-linear triangulated category and
A ⊂ D the heart of a bounded t-structure on D. Take E ∈ A with End(E) = C and a full
triangulated subcategory D′ ⊂ D, which satisfy the following conditions.

• The category A′ := A ∩ D′ is the heart of a bounded t-structure on D′, which is
closed under subobjects and quotients in the abelian category A.

• For any object F ∈ A′, we have

Hom(E,F ) = Hom(F,E) = 0. (44)

19



Let DE be the triangulated category,

DE := 〈E,D′〉tr ⊂ D.
Then AE := DE ∩ A is the heart of a bounded t-structure on DE, which satisfies

AE = 〈E,A′〉ex.
Remark 3.4. By Lemma 2.20 and (43), the abelian categories pBX/Y are written as

0BX/Y = 〈OX , ωf−1(y),OCi
(−1)[−1], C̃oh≤1(X)[−1]〉ex, (45)

−1BX/Y = 〈OX ,Of−1(y)[−1],OCi
(−1), C̃oh≤1(X)[−1]〉ex. (46)

We have the following lemma, whose proof will be given in Section 6.

Lemma 3.5. (i) The abelian categories AX, pBX/Y are noetherian.
(ii) Any infinite chain of monomorphisms in AX, (resp. pBX/Y ,)

E0 ←↩ E1 ←↩ · · ·Ej ←↩ Ej+1 ←↩ · · · , (47)

with Ej/Ej+1 /∈ Coh0(X)[−1], (resp. Ej/Ej+1 /∈ pPer0(X/Y )[−1],) terminates.

Let us see that pBX/Y is obtained from AX via tilting. Let pF for p = 0,−1 be

0F := {F ∈ Coh≤1(X) | f∗F = 0, Hom(C, F ) = 0},
−1F := {F ∈ Coh≤1(X) | f∗F = 0}.

(See Definition 2.18 for C ⊂ Coh(X).) Then pF fit into torsion pairs

(pT , pF), (48)

on Coh≤1(X) such that pPer≤1(X/Y ) is the associated tilting. (cf. [7, Section 3].) By
Lemma 2.15 and Lemma 3.5, the subcategories pF [−1] ⊂ AX also fit into torsion pairs
on AX , denoted by

(pT ′, pF [−1]). (49)

Lemma 3.6. The abelian category pBX/Y is the tilting with respect to (pT ′, pF [−1]), i.e.

pBX/Y = 〈pF , pT ′〉ex. (50)

Proof. We show the case of p = 0. It is enough to show that the LHS of (50) is contained
in the RHS of (50), since both are hearts of bounded t-structures on DX . By Remark 3.4,
any object in the LHS of (50) is given by a successive extensions of objects OX , ωf−1(y)

for y ∈ Sing(Y ), OCi
(−1)[−1] and objects in C̃oh≤1(X)[−1]. Thus it suffices to show that

these objects are contained in the RHS of (50). We have

Hom(OX ,
0F [−1]) = 0, ⇒ OX ∈ 0T ′, (51)

ωf−1(y)[1] ∈ 0Per≤1(X/Y ), ⇒ ωf−1(y) ∈ 0F (52)

Hom(OCi
(−1)[−1], 0F [−1]) = 0, ⇒ OCi

(−1)[−1] ∈ 0T ′, (53)

Hom(C̃oh≤1(X)[−1], 0F [−1]) = 0, ⇒ C̃oh≤1(X)[−1] ⊂ 0T ′ . (54)

Here (53) follows from the definition of 0F , and (54) follows from f∗F = 0 for any F ∈ 0F .
Hence (50) holds.
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3.2 Constructions of weak stability conditions (neighborhood of
the large volume limit)

Here we construct weak stability conditions on DX , whose corresponding heart of bounded
t-structure is AX . (cf. Lemma 3.2.) The set of weak stability conditions constructed here
is interpreted as a neighborhood of the large volume limit at X in terms of string theory.
Let us take the elements,

B + iω ∈ A(X/Y )� , ω′ ∈ A(Y ), z ∈ H with arg z ∈ (π/2, π).

The data

ξ = (1,−(B + iω),−iω′, z), (55)

in the LHS of (40) determines the element Zξ ∈
∏2

i=0 H∨i via the isomorphism (40). It is
written as

Z0,ξ : Z⊕N1(X/Y ) � (s, l) �→ s− (B + iω)l,

Z1,ξ : N1(Y ) � l′ �→ −iω′ · l′,
Z2,ξ : Z � r �→ zr.

Lemma 3.7. The pairs

σξ = (Zξ,AX), ξ is given by (55), (56)

determine points in StabΓ•(DX).

Proof. We check that (17) holds for any non-zero E ∈ AX . We write cl(E) = (−n,−β, r)
for n ∈ Z, β ∈ N1(X) and r ∈ Z. By (42), we have one of the following.

• We have r > 0. In this case, we have

Zξ(E) = zr ∈ H.

• We have r = 0, β ∈ NE(X) and f∗β �= 0. In this case, we have

Zξ(E) = iω′ · f∗β ∈ H.

• We have r = 0 and β ∈ NE(X/Y ). In this case, we have

Zξ(E) = −n+ (B + iω)β ∈ H.

The proofs to check other properties, i.e. Harder-Narasimhan property, support property
and local finiteness will be given in Section 6.

We define the subspace UX ⊂ StabΓ•(DX) as follows.
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Definition 3.8. We define UX ⊂ StabΓ•(DX) to be

UX := {σξ : σξ is given by (56)}.

For a fixed B0 ∈ N1(X/Y ), we set

UX,B0
:= {σξ ∈ UX : ξ is given by (56) with B = B0}.

By Lemma 2.15, the map ξ �→ σξ is continuous. In particular UX and UX,B0 are
connected subspaces. The map (41) restricts to the homeomorphisms,

Π: UX
∼→ {1} × {−A(X/Y )� } × {−iA(Y )} ×H′, (57)

Π: UX,B0

∼→ {1} × {− (B0 + iA(X/Y ))} × {−iA(Y )} × H′.

where H′ is
H′ = {z ∈ H : arg z ∈ (π/2, π)}.

Remark 3.9. The subspace UX ⊂ StabΓ•(DX) is interpreted as a kind of limiting de-
generation of the neighborhood of the large volume limit in string theory. In fact for
B + iω ∈ A(X)� , let Z(B,ω) : K(X)→ C be

Z(B,ω)(E) =

∫
e−(B+iω) ch(E)

√
tdX ∈ C.

If E ∈ Coh≤1(X)[−1] with cl(E) = (−n,−β, 0), we have

Z(B,ω)(E) = −n+ (B + iω)β,

which coincides with Z0,ξ(cl(E)).

3.3 Construction of weak stability conditions (non-commutative
points)

Here we construct another weak stability conditions, whose corresponding hearts of bounded
t-structures are pBX/Y . (cf. Lemma 3.2.) Let C1, · · · , CN be the irreducible components
of the exceptional locus of a flopping contraction f : X → Y . We denote by Zy the fun-
damental cycle of the scheme theoretic fiber of f at y ∈ Sing(Y ). For p = 0,−1, we set
pV (X/Y ) as follows,

pV (X/Y ) :=

{
B ∈ N1(X/Y )� :

(−1)pB · Ci < 0, (−1)pB · Zy > −1,
for all 1 ≤ i ≤ N and y ∈ Sing(Y )

}
. (58)

For the elements,

B ∈ pV (X/Y ), ω′ ∈ A(Y ),

z0, z1 ∈ H with arg zi ∈ (π/2, π], z1 �= −1, (59)
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the data

ξ = (−z0, z0B,−iω′, z1), (60)

in the LHS of (40) determines the element Zξ ∈
∏2

i=0 H∨i via the isomorphism (40). It is
written as

Z0,ξ : Z⊕N1(X/Y ) � (s, l) �→ z0(−s+Bl),

Z1,ξ : N1(Y ) � l′ �→ −iω′ · l′,
Z2,ξ : Z � r �→ z1r.

Lemma 3.10. The pairs

σξ = (Zξ,
pBX/Y ), ξ is given by (60), (61)

determine points in StabΓ•(DX).

Proof. For simplicity we show the case of p = 0. In order to check (17), it is enough to
show this for generators of 0BX/Y , given in (45). We have

Z2,ξ(OX) = z1 ∈ H,

Z1,ξ(F [−1]) = iω′ · f∗β ∈ H,

Z0,ξ(OCi
(−1)[−1]) = −z0B · Ci ∈ H,

Z0,ξ(ωf−1(y)) = z0(1 +B · Zy) ∈ H,

by our choice of zi and B. Here 0 �= F ∈ C̃oh≤1(X) satisfies cl(F ) = (n, β, 0). Note that

f∗β ∈ N1(Y ) is a non-zero effective class by the definition of C̃oh≤1(X). Therefore the
pair (Zξ,

pBX/Y ) satisfies (17). The Harder-Narasimhan property, the local finiteness and
the support property are proved along with the same argument of Lemma 3.7, and we
leave the readers to check the detail.

We define the subspaces pVX/Y ⊂ pUX/Y ⊂ StabΓ•(DX) as follows.

Definition 3.11. We define pUX/Y , pVX/Y to be

pUX/Y = {σξ : σξ is given by (61)},
pVX/Y = {σξ ∈ pUX/Y : ξ is given by (60) with z0 = −1}.

By Lemma 2.15, the subspaces pUX/Y and pVX/Y are connected. The map (41) restricts
to the homeomorphism,

Π: pVX/Y
∼→ {1} × {− pV (X/Y )} × {−iA(Y )} × H′. (62)
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3.4 Flops and weak stability conditions

Let φ : X+ ��� X be a flop as in the diagram (21), and Φ a standard equivalence given
in (29). Since the kernel of Φ is supported on the fiber product X ×Y X+, (cf. [6,
Proposition 4.2],) Φ restricts to the equivalence

Φ: DX+
∼−→ DX . (63)

Lemma 3.12. The standard equivalence Φ: DX+ → DX restricts to the equivalence be-
tween −1BX+/Y and 0BX/Y .

Proof. Note that Φ induces the equivalences between −1Per(X+/Y ) and 0Per(X/Y ), and
the equivalence between −1Per≤1(X

+/Y ) and 0Per≤1(X/Y ). Hence Φ induces the equiv-
alence,

Φ: −1Per
†
(X+/Y )[−1]

∼−→ 0Per
†
(X/Y )[−1], (64)

where pPer†(X/Y ) is given in Definition 2.24. Since we have

pBX/Y = DX ∩ pPer†(X/Y )[−1],

by Proposition 3.3, we obtain the result by restricting (64) to DX+ and DX .

Similar to Γ•, we set

Γ+
0 = Z⊕N1(X

+/Y ),

Γ+
1 = Z⊕N1(X

+),

Γ+ = Γ+
2 = Z⊕N1(X

+)⊕ Z.

The associated subquotient is denoted by H+
i .

Lemma 3.13. There is a filtration preserving isomorphism ΦΓ : Γ+
• → Γ•, which satisfies

the following.

• The following diagram commutes,

DX+
Φ ��

cl
��

DX

cl
��

Γ+
ΦΓ �� Γ.

(65)

• The induced morphism gr•ΦΓ satisfies

gr0 ΦΓ : Z⊕N1(X
+/Y ) � (z, C)

�→ (z, φ∗C) ∈ Z⊕N1(X/Y )

gr1 ΦΓ : N1(Y ) � D′ �→ D′ ∈ N1(Y ),

gr2 ΦΓ : Z � z′ �→ z′ ∈ Z.
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Proof. First the following diagram is commutative by [31, Proposition 5.2],

Db(Coh≤1(X
+))

Φ ��

(ch3,ch2)

��

Db(Coh≤1(X))

(ch3,ch2)

��
Z⊕N1(X

+)
(id,φ∗) �� Z⊕N1(X).

(66)

Let v = cl Φ(OX+) ∈ Γ and set ΦΓ as

ΦΓ(s, l, r) = (s, φ∗l, 0) + rv.

The commutativity of (66) implies that ΦΓ fits into the commutative diagram (65). Since
v is of the form (∗, ∗, 1), the map ΦΓ is isomorphism. The induced isomorphism gr•ΦΓ is
of the desired form by the construction.

Remark 3.14. In fact one can show that Φ(OX+) ∼= OX , hence cl Φ(OX+) = (0, 0, 1).
However we do not use this fact.

By Lemma 2.9 and Lemma 3.13, we have the commutative diagram,

StabΓ+• (DX+)
Φ∗ ��

Π+

��

StabΓ•(DX)

Π
��∏2

i=0 H+∨
i

(gr Φ−1
Γ )∨

�� ∏2
i=0 H∨i .

(67)

Proposition 3.15. (i) We have

Φ∗(−1VX+/Y ) = 0VX/Y . (68)

(ii) We have pVX/Y ⊂ UX . In particular, we have the inclusion

0VX/Y ⊂ UX ∩ Φ∗UX+ , (69)

and the following subset U ⊂ StabΓ•(DX) is connected,

U := UX ∪ Φ∗UX+ ∪ 0UX/Y ∪ −1UX/Y . (70)

Proof. (i) First note that the strict transform φ∗ : N1(X+/Y ) → N1(X/Y ) induces the
homeomorphism,

φ∗ : −1V (X+/Y )
∼→ 0V (X/Y ).

Hence by the homeomorphism (62), the map (gr Φ−1
Γ )∨ in the diagram (67) induces the

homeomorphism,
Π+

(−1VX+/Y

) ∼−→ Π
(
0VX/Y

)
.

Combined with Lemma 3.12, we obtain (68).
(ii) By (57) and (62), we have

Π
(

pVX/Y

)
⊂ Π (UX).

By Lemma 2.8 and Lemma 3.6, we obtain pVX/Y ⊂ UX . Combined with (i), we conclude
(69) and the connectedness of (70).

25



Remark 3.16. The subspace

UX ∪ Φ∗UX+ ⊂ StabΓ•(DX),

consists of two chambers UX and Φ∗UX+ , which is an analogue of the chamber structure
on the space of stability conditions on Db(Coh≤1(X)). (cf. [32, Theorem 4.11].) The
chamber UX (resp. Φ∗UX+) corresponds to the neighborhood of the large volume limit at
X, (resp. X+,) and the wall 0VX/Y corresponds to the locus of non-commutative points.
See [27, Figure 8].

4 Wall-crossing formula

In this section, we review the main results of [30, Section 8]. As in the previous section,
f : X → Y is a flopping contraction from a smooth projective Calabi-Yau 3-fold X.

4.1 Assumption

Here we recall the wall-crossing formula of generating series of Donaldson-Thomas type
invariants under change of weak stability conditions, given in [30, Section 8]. The formula
is established under some conditions given in Assumption 4.1 below. Let us recall that,
by the result of Lieblich [19], there is an algebraic stack M locally of finite type over C
which parameterizes E ∈ Db(Coh(X)) satisfying

Exti(E,E) = 0, for any i < 0. (71)

LetM0 be the fiber at [0] ∈ Pic(X) of the following morphism,

det :M � E �−→ detE ∈ Pic(X).

For any object E ∈ DX , the corresponding C-valued point [E] ∈ M is contained inM0.
Let A ⊂ DX be the heart of a bounded t-structure on DX . We can consider the following
(abstract) substack,

Obj(A) ⊂M0,

which parameterizes objects E ∈ A. The above stack decomposes as

Obj(A) =
∐
v∈Γ

Objv(A),

where Objv(A) is the stack of objects E ∈ A with cl(E) = v.
Let Γ• be the filtration (39). The wall-crossing formula [30, Section 8] is applied for a

certain connected subset
V ⊂ StabΓ•(DX),

satisfying the following assumption.

Assumption 4.1. [30, Assumption 4.1] For any σ = (Z = {Zi}2i=0,P) ∈ V with
A = P((0, 1]), the following conditions are satisfied.
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• We have

OX ∈ P(ψ),
1

2
< ψ < 1, (72)

and OX is the only object E ∈ P(ψ) with cl(E) = (0, 0, 1).

• We have

Z1(H1) ⊂ R · i. (73)

• For any v, v′ ∈ Γ0 and any other point τ = (W,Q) ∈ V, we have

Z(v) ∈ R>0Z(v′) if and only if W (v) ∈ R>0W (v′). (74)

• For any v ∈ Γ with rk(v) = 1 or v ∈ Γ0, the stack of objects

Objv(A) ⊂M0,

is an open substack of M0. In particular, Objv(A) is an algebraic stack locally of
finite type over C.

• For any v ∈ Γ with rk(v) = 1 or v ∈ Γ0, the stack of σ-semistable objects E ∈ A
with cl(E) = v,

Mv(σ) ⊂ Objv(A),

is an open substack of finite type over C.

• There are subsets 0 ∈ T ⊂ S ⊂ Z⊕N1(X), which satisfy Assumption 4.8 below.

• For any other point τ ∈ V, there is a good path (see Definition 4.2 below) in V which
connects σ and τ .

As for the last condition of Assumption 4.1, the notion of good path is defined as
follows.

Definition 4.2. A path [0, 1] � t �→ σt ∈ V is good if for any t ∈ (0, 1) and v ∈ Γ0

satisfying Zt(v) ∈ R>0Zt(OX), we have either

argZt+ε(v) < argZt+ε(OX), argZt−ε(v) > argZt−ε(OX), or (75)

argZt+ε(v) > argZt+ε(OX), argZt−ε(v) < argZt−ε(OX), (76)

for 0 < ε� 1.
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4.2 Wall-crossing formula of the generating series

Let V ⊂ StabΓ•(DX) be a connected subset satisfying Assumption 4.1. We introduce the
following notion.

Definition 4.3. We say σ = (Z,P) ∈ V is general if there is no v ∈ Γ0 which satisfies
Z(v) ∈ R>0Z(OX).

For general σ, τ ∈ V, take a good path, (cf. Definition 4.2,)

[0, 1] � t �→ σt = (Zt,Pt) ∈ V,

which satisfies σ0 = σ and σ1 = τ . For t ∈ [0, 1], let Wt be the set,

Wt = {v ∈ Γ0 : Zt(v) ∈ R>0Zt(OX)}.

For t ∈ [0, 1] with Wt �= ∅, we set

ε(t) = 1, (resp. ε(t) = −1, )

if (75) (resp. (76)) happens at t for v ∈ Wt. . By the condition (74), the value ε(t) does
not depend on a choice of v ∈ Wt. The main result in [30, Section 8] is summarized as
follows.

Theorem 4.4. [30, Theorem 8.9, Corollary 8.10] Let V ⊂ StabΓ•(DX) be a connected
subset satisfying Assumption 4.1. We have the following.

• For σ = (Z,A) ∈ V and v = (−n,−β, 1) ∈ Γ, (resp. v = (−n,−β, 0) ∈ Γ0,) there
is a counting invariant of σ-semistable objects of numerical type v,

DTn,β(σ) ∈ Q, (resp. Nn,β ∈ Q, )

such that ifMv(σ) is written as [M/Gm] for a C-scheme M with a trivial Gm-action,
we have (cf. Remark 4.5,)

DTn,β(σ) =

∫
[Mvir]

1,

(
resp. Nn,β =

∫
[Mvir]

1.

)
(77)

• Let DT(σ) and DT0(σ) be the series,

DT(σ) =
∑
n,β

DTn,β(σ)xnyβ, (78)

DT0(σ) =
∑

(n,β)∈Γ0

DTn,β(σ)xnyβ. (79)

Then we have the following equalities of the generating series,

DT(τ) = DT(σ) ·
∏

−(n,β)∈Wt,
t∈(0,1).

exp((−1)n−1nNn,βx
nyβ)ε(t), (80)

DT0(τ) = DT0(σ) ·
∏

−(n,β)∈Wt,
t∈(0,1).

exp((−1)n−1nNn,βx
nyβ)ε(t). (81)
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In particular the quotient series

DT′(σ) :=
DT(σ)

DT0(σ)
,

is well-defined and does not depend on a general point σ ∈ V.

Remark 4.5. Suppose that Mv(σ) = [M/Gm] where M is a scheme with a trivial Gm-
action. Then there is a perfect symmetric obstruction theory on M by [10], and hence the
associated virtual cycle also exists.

Remark 4.6. If Mv(σ) is not written as [M/Gm] as in Remark 4.5, then the invariant
DTn,β(σ), (resp. Nn,β,) is defined by the integration of the logarithm of the relevant moduli
stacks in the Hall-algebra. Their precise definitions are given in [30, Definition 8.5].

Remark 4.7. As in [30, Remark 8.7], the invariant Nn,β does not depend on σ ∈ V.
However it may depend on V, so we may write it as Nn,β(V). Let V1,V2 ⊂ StabΓ•(DX) be
connected subsets satisfying Assumption 4.1. If V1 ∪V2 is connected, then the same proof
of [30, Proposition-Definition 5.7] and [30, Remark 8.7] show that

Nn,β(V1) = Nn,β(V2),

i.e. the invariant Nn,β does not depend on σ ∈ V1 ∪ V2.

4.3 Completions of C[N≤1(X)]

In this subsection, we discuss certain completions of the group ring C[N≤1(X)], in which
the generating series DT(σ) and DT0(σ) are defined. For subsets S1, S2 ⊂ N≤1(X) =
Z⊕N1(X), we set

S1 + S2 := {s1 + s2 : si ∈ Si} ⊂ N≤1(X).

The sixth condition of Assumption 4.1 is stated as follows.

Assumption 4.8. [30, Assumption 4.4] In the situation of Assumption 4.1, the sub-
sets 0 ∈ T ⊂ S ⊂ N≤1(X) satisfy the following conditions.

• We have

T + T ⊂ T, S + T ⊂ S. (82)

• For any x ∈ N≤1(X), there are only finitely many ways to write x = y + z for
y, z ∈ S.

• Let ψ ∈ R be as in (72) for σ ∈ V. For I = (ψ − ε, ψ + ε) with 0 < ε� 1, we have

{(n, β) ∈ N≤1(X) : (−n,−β, 1) ∈ Cσ(I)} ⊂ S, (83)

{(n, β) ∈ Γ0 : (−n,−β, r) ∈ Cσ(I), r = 0 or 1} ⊂ T. (84)

Here Cσ(I) ⊂ Γ is defined in (16).
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• There is a family of sets {Sλ}λ∈Λ with Sλ ⊂ S such that S \ Sλ is a finite set and

Sλ + T ⊂ Sλ, S =
⋃
λ∈Λ

(S \ Sλ).

The existence of such S, T are required to give completions of the group ring C[N≤1(X)].
We have the following C-vector space,

C [[S]] :=

⎧⎨
⎩f =

∑
(n,β)∈S

an,βx
nyβ : an,β ∈ C

⎫⎬
⎭ .

The vector spaces C [[T ]], C [[Sλ]] are similarly defined. The product on C[N≤1(X)] gener-
alizes naturally to products on C [[T ]], and C [[S]], C [[Sλ]] are C [[T ]]-modules with C [[Sλ]] ⊂
C [[S]]. There is a topology on C [[S]], induced by the isomorphism,

C [[S]] ∼= lim←−
λ∈Λ

C [[S]] /C [[Sλ]] ,

and the Euclid topology on the finite dimensional vector spaces C [[S]] /C [[Sλ]]. (cf. [30,
Section 4].) For σ ∈ V satisfying Assumption 4.1, the third condition of Assumption 4.8
yields,

DT(σ) ∈ C [[S]] , DT0(σ) ∈ C [[T ]] ,

where DT(σ), DT0(σ) are given in (78), (79).

4.4 Checking assumptions

Let f : X → Y be a flopping contraction. Here we state that the connected subsets UX,B

and pUX/Y (cf. Definition 3.8, Definition 3.11,) satisfy Assumption 4.1. For β ∈ NE(X),
we set m(β) as follows,

m(β) = inf{χ(OC) : dimC = 1 with [C] ≤ β}. (85)

It is well-known that m(β) > −∞. (cf. [34, Lemma 3.10].) We set SX and TX as

SX := {(n, β) ∈ N≤1(X) : β ≥ 0, n ≥ m(β)}, (86)

TX := {(n, β) ∈ Γ0 : β ≥ 0, n ≥ 0}. (87)

Proposition 4.9. For B ∈ pV (X/Y ), (cf. (58),) the subset UX,B ⊂ StabΓ•(DX) satisfies
Assumption 4.1 with S = SX and T = TX .

Proof. The proof will be given in Section 6.

For p = 0,−1, let pE = OX ⊕ pE ′ be the vector bundle on X constructed in the proof of
Theorem 2.22. We denote by r(p) the rank of pE ′. For v = (n, β) ∈ N≤1(X), we set pχ(v)
as

pχ(v) =

∫
X

v · ch pE ′∨,

= r(p)n+ (−1)pc1(LX) · β,
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where LX is a globally generated ample line bundle which defines pE . (See Theorem 2.22.)
For an effective class β ∈ N1(Y ), we set pm(β) as follows,

pm(β) = inf

{
χ(F ) :

F ∈ Coh≤1(Y ), [F ] ≤ β, there is a

surjection of sheaves f∗ pE ′∨ � F.

}
,

as an analogue of (85). The same proof of [30, Lemma 3.10] shows that pm(β) > −∞.
We set pSX/Y and pTX/Y to be

pSX/Y =

{
v = (n, β) ∈ N≤1(X) :

f∗β ≥ 0, n ≥ m(f∗β),
pχ(v) ≥ pm(r(p)f∗β)

}
,

pTX/Y =

{
v = (n, β) ∈ N≤1(X) :

f∗β ≥ 0, n ≥ 0,
pχ(v) ≥ 0

}
,

Proposition 4.10. (i) For B ∈ pV (X/Y ), the subset UX,B ⊂ StabΓ•(DX) satisfies As-
sumption 4.1 with S = pSX/Y and T = pTX/Y .

(ii) The subset pUX/Y ⊂ StabΓ•(DX) satisfies Assumption 4.1 with S = pSX/Y and
T = pTX/Y .

Proof. The proof will be given in Section 6.

5 Proof of the main theorem

In this section, we give a proof of Theorem 1.2. Again f : X → Y is a flopping contraction
from a smooth projective Calabi-Yau 3-fold X, and φ : X+ ��� X its flop.

5.1 Counting invariants of rank zero objects

Let U ⊂ StabΓ•(DX) be the connected subset given by (70), and take

v = (−n,−β, 0) ∈ Γ0.

By Proposition 3.15 (ii), Proposition 4.10, Theorem 4.4 and Remark 4.7, there is a count-
ing invariant of σ-semistable objects of numerical type v,

Nn,β ∈ Q, (88)

which does not depend on σ ∈ U .

Lemma 5.1. We have the following equality.

Nn,β = N−n,−β = N−n,β.

Proof. The first equality is just the definition of N−n,−β in [30, Definition 8.1, Defini-
tion 8.5]. In ordet to show Nn,β = N−n,β, take a data ξ = (1,−iω,−iω′, z) as in (55)
with B = 0. Then it is easy to see that an object E ∈ AX is Zξ-semistable if and only if
E[1] ∈ Coh≤1(X) is a ω-Gieseker semistable sheaf. Therefore the dualizing functor

M(−n,−β,0)(σξ) � E �→ RHom(E,OX) ∈ M(−n,β,0)(σξ),

is an isomorphism, hence Nn,β = N−n,β holds. (See [33, Lemma 4.3].)
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Remark 5.2. By the proof of Lemma 5.1, the invariant (88) coincides with Joyce-Song’s
generalized DT-invariant [11], which counts ω-Gieseker semistable sheaves F ∈ Coh≤1(X),
satisfying [F ] = β, χ(F ) = n.

5.2 Semistable objects of rank one

Let σ = (Z,P) ∈ U ⊂ StabΓ•(DX) be as in the previous subsection, and take

v = (−n,−β, 1) ∈ Γ.

In this subsection, we investigate the moduli stack of σ-semistable objects,

Mv(σ) ⊂ Obj(A),

which is algebraic by Proposition 4.9 and Proposition 4.10. We first note the following
lemma, which follows from (42) and (43) immediately.

Lemma 5.3. For E ∈ AX (resp. E ∈ pBX/Y ) satisfying rk(E) = 1, there is a filtration
in AX, (resp. pBX/Y ),)

0 = E−1 ⊂ E0 ⊂ E1 ⊂ E2 = E, (89)

such that each subquotient Fi = Ei/Ei−1 satisfies

F0, F2 ∈ Coh≤1(X)[−1], (resp. pPer≤1(X/Y )[−1], ) F1 = OX .

In particular if E ∈ AX, there is an exact sequence in AX,

0 −→ IC −→ E −→ F [−1] −→ 0, (90)

where C ⊂ X is a 1-dimensional subscheme with the defining ideal IC ⊂ OX , and F ∈
Coh≤1(X).

Let us fix

B ∈ pV (X/Y ), ω′ ∈ A(Y ), z ∈ H with arg z ∈ (π/2, π), (91)

and deform ω = tH with t ∈ R>0. Here H ∈ A(X/Y ) is an ample generator given in
(20). We obtain a 1-parameter family of weak stability conditions

σξ(t) = (Zξ(t),AX) ∈ UX,B , (92)

(cf. Definition 3.8,) where ξ(t) is

ξ(t) = (1,−(B + itH),−iω′, z), (93)

which is a family of data (55).
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Proposition 5.4. For a fixed v = (−n,−β, 1) ∈ Γ and the data (91), there is t0 ∈ R
such that for t > t0, we have

Mv(σξ(t)) = [Pn(X, β)/Gm],

where Gm acts on Pn(X, β) trivially. In particular, the following holds in C [[SX ]],

lim
t→∞

DT(σξ(t)) = PT(X).

Proof. Take a σξ(t)-semistable object E ∈ AX with cl(E) = (−n,−β, 1). Let

0→ IC → E → F [−1]→ 0,

be an exact sequence as in (90). We have

ch3(F ) ≤ n−m(β), (94)

where m(β) is defined by (85). Suppose that the support of F is 1-dimensional. The
σξ(t)-semistability of E yields,

argZξ(t)(F [−1]) ≥ argZξ(t)(E) = arg z > π/2.

Hence we have f∗ ch2(F ) = 0 and

− ch3(F ) +B ch2(F )

tH · ch2(F )
≤ C < 0, (95)

for c = Re z/ Im z. The inequalities (94) and (95) imply

t ≤ −n+m(β)

cH · ch2(F )
+
b

c
, (96)

where B = bH for b ∈ R. Since 0 < H · ch2(F ) ≤ H · β, there is t0 > 0 (depending only
on v, B and z,) such that (96) implies t ≤ t0. Therefore if we take t > t0, the sheaf F
must be 0-dimensional. Also we have Hom(Ox[−1], E) = 0 for any closed point x ∈ X,
since Ox[−1] is σξ(t)-stable with

π = argZξ(t)(Ox[−1]) > argZξ(t)(E) = arg z.

Then we apply [30, Lemma 3.11] and conclude that E is a stable pair (35).
Conversely take a stable pair E = (OX → F ) ∈ AX with [F ] = β, χ(F ) = n, and an

exact sequence in AX,
0 −→ A −→ E −→ B −→ 0.

Since there is a surjection of sheaves H1(E) � H1(B) and H1(E) is 0-dimensional, the
sheaf H1(B) is also 0-dimensional. If rk(B) = 0, then B = Q[−1] for a 0-dimensional
sheaf Q. Hence the inequality

arg z = argZξ(t)(E) < argZξ(t)(B) = π
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is satisfied. If rk(B) �= 0, we have rk(B) = 1 and rk(A) = 0. By the exact sequence
(90) applied for B ∈ AX , we see that ch3(B) ≤ −m(β). Hence we have A = G[−1] for
G ∈ Coh≤1(X) with

ch3(G) ≤ n−m(β).

Therefore we have

− ch3(G) +B ch2(G)

tH · ch2(G)
≥ −n+m(β)

tH · ch2(F )
+
b

t
, (97)

where B = bH with b ∈ R. Hence there is t0 > 0 such that the RHS of (97) is bigger than
c = Re z/ Im z < 0 for t > t0, i.e.

argZξ(t)(G[−1]) < argZξ(t)(E) = arg z,

for t > t0.

Next let us take ξ = (−z0, z0B,−iω′, z1) as in (59), and the associated weak stabil-
ity condition σξ = (Zξ,

pBX/Y ) ∈ pUX/Y . (cf. Definition 3.11.) We have the following
proposition.

Proposition 5.5. (i) Suppose that arg z0 > arg z1. Then for v = (−n,−β, 1) ∈ Γ with
(n, β) ∈ Γ0, we have

Mv(σξ) =

{
[Spec C/Gm], n = β = 0,

∅, otherwise.

In particular, we have
DT0(σξ) = 1.

(ii) Suppose that arg z0 < arg z1. Then for v = (−n,−β, 1) ∈ Γ, we have

Mv(σξ) = [In(pAY , β)/Gm],

where Gm acts on In(pAY , β) trivially. In particular, we have

DT(σξ) = DT(pAY ).

Proof. (i) Take a σξ-semistable object E ∈ pBX/Y with cl(E) = v, and a filtration

0 = E−1 ⊂ E0 ⊂ E1 ⊂ E2 = E,

in pBX/Y as in (89). For each subquotient Fi, the condition (n, β) ∈ Γ0 implies

F0, F2 ∈ pPer0(X/Y )[−1], F1 = OX .

(cf. Definition 2.18.) Suppose that F0 �= 0. Then we have

argZξ(F0) = arg z0 > arg z1 = argZξ(E),
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which contradicts to the σξ-semistability of E. Hence F0 = 0 and we have the exact
sequence in pBX/Y ,

0 −→ OX −→ E −→ F2 −→ 0. (98)

Since

Hom(F2,OX [1]) ∼= H2RΓ(X,F2)
∨,

= 0,

by the Serre duality and the definition of pPer0(X/Y ), the sequence (98) splits. Hence E
is σξ-semistable if and only if E ∼= OX .

(ii) Let
pHi : Db(Coh(X)) −→ pPer(X/Y )

be the i-th cohomology functor with respect to the t-structure on Db(Coh(X)) with heart
pPer(X/Y ). Take a σξ-semistable object E ∈ pBX/Y with cl(E) = v, and suppose that
pH1(E) is non-zero. We have the surjection in pBX/Y ,

E � pH1(E)[−1],

and the inequality,

argZξ(E) = arg z1 > arg z0 = argZξ(
pH1(E)[−1]),

by our choice of ξ. This contradicts to the σξ-semistablility of E, hence we have pH1(E) =
0. Combined with Lemma 5.3, the object E fits into the exact sequence in pPer(X/Y ),

0→ E → OX → F → 0, (99)

with F ∈ pPer≤1(X/Y ).
On the other hand, take E ∈ pPer(X/Y ) which fits into an exact sequence (99) in

pPer(X/Y ). Note that we have E ∈ pBX/Y with pH1(E) = 0. In order to show that E is
σξ-stable, let us take an exact sequence in pBX/Y ,

0 −→ E1 −→ E −→ E2 −→ 0,

such that Ei �= 0 for i = 1, 2. Suppose that rk(E1) = 1 and rk(E2) = 0, hence E2 ∈
pPer≤1(X/Y )[−1]. The long exact sequence associated to pH•(∗) together with pH1(E) =
0 show that E2 = 0. This is a contradiction, hence rk(E1) = 0 and rk(E2) = 1 holds. In
this case, our choice of ξ yields,

argZξ(E1) = arg z0 < arg z1 = argZξ(E),

which implies that E is σξ-stable.
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5.3 Local transformation formula of the generating series

In this subsection, we show the transformation formula of DT(X/Y ) and DT0(
pAY ).

Theorem 5.6. We have the formula,

DT(X/Y ) =
∏

n>0,β≥0,
f∗β=0

exp((−1)n−1nNn,βx
nyβ). (100)

In particular, we have

DT(X/Y ) = i ◦ φ∗DT(X+/Y ). (101)

Here the variable change is φ∗(n, β) = (n, φ∗β) and i(n, β) = (n,−β).

Proof. Let us take
ξ(t) = (1,−(B + itH),−iω′, z),

as in (91), (93) and a 1-parameter family of weak stability conditions σξ(t) ∈ UX,B as in
(92). By Proposition 5.4, we have

lim
t→∞

DT0(σξ(t)) = PT(X/Y ),

in the topological ring C [[TX ]]. On the other hand, let us consider the element,

ξ(0) = (1,−B,−iω′, z),

which gives data (60) with z0 = −1 in the notation of (60). Note that DT0(σξ(t)) and
DT0(σξ(0)) are contained in C

[[
pTX/Y

]]
by Proposition 4.10. Since σξ(0) is a general point,

we have

lim
t→0

DT0(σξ(t)) = DT0(σξ(0))

= 1,

in C
[[

pTX/Y

]]
. Here the second equality is due to Proposition 5.5 (i). Therefore applying

(81) in Theorem 4.4, we have

PT(X/Y ) =
∏

−(n,β)∈Wt,
0<t<∞

exp((−1)n−1Nn,βx
nyβ)

=
∏

n−Bβ>0,β>0,
f∗β=0

exp((−1)n−1nNn,βx
nyβ)

=
∏

n>0,β>0,
f∗β=0

exp((−1)n−1nNn,βx
nyβ). (102)

Here the second equality follows from,⋃
0<t<∞

Wt = {−(n, β) ∈ Γ0 : n−Bβ > 0, β > 0}
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and the last equality follows from taking the limit B → 0 in pV (X/Y ). Then (100) follows
from (102), Theorem 2.31 and the following formula, (cf. [30, Remark 8.13],)∏

n>0

exp((−1)n−1nNn,0x
n) = M(−x)χ(X). (103)

The formula (101) follows from (100), Lemma 5.1 and the equality χ(X) = χ(X+).

Next we give the formula for DT0(
pAY ).

Theorem 5.7. We have the following equality,

DT0(
pAY ) =

∏
n>0,f∗β=0

exp((−1)n−1nNn,βx
nyβ). (104)

In particular, we have

DT0(
pAY ) = DT(X/Y ) · φ∗DT′(X+/Y ). (105)

Proof. Take data (60),

ξ = (−z0, z0B,−iω′, z1), arg z0 < arg z1,

ξ′ = (−z′0, z′0B,−iω′, z1), arg z′0 > arg z1,

and the associated weak stability conditions σξ, σξ′ ∈ pUX/Y . We consider a family of
weak stability conditions

σξ(t) = (Zξ(t),
pBX/Y ) ∈ pUX/Y ,

which connects σξ and σξ′, where ξ(t) is given by

ξ(t) = tξ + (1− t)ξ′.

By Proposition 5.5, we have

DT0(σξ(0)) = 1, DT0(σξ(1)) = DT0(
pAY ).

Take t0 ∈ (0, 1) which satisfies

t0z0 + (1− t0)z′0 ∈ R>0z1.

We have

Wt0 = {v ∈ N≤1(X) : Zξ(t0)(v) ∈ R>0z1},
= {−(n, β) ∈ N≤1(X) : n− Bβ > 0}.

Hence applying (81) in Theorem 4.4, we obtain

DT0(
pAY ) =

∏
n−Bβ>0,f∗β=0

exp((−1)n−1nNn,βx
nyβ),

=
∏

n>0,f∗β=0

exp((−1)n−1nNn,βx
nyβ).

Here the second equality follows from taking the limit B → 0 in pV (X/Y ). Hence (104)
holds. The formula (105) follows from (103), (104) and Theorem 5.6.
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5.4 Global transformation formula

Finally we show the global transformation formula of our generating functions.

Theorem 5.8. We have the following formula,

DT(X)

DT(X/Y )
=

DT(pAY )

DT0(pAY )
= φ∗

DT(X+)

DT(X+/Y )
. (106)

Proof. Let us take
ξ(t) = (1,−(B + itH),−iω′, z), t ∈ R>0

as in (91), (93) and a 1-parameter family of weak stability conditions σξ(t) ∈ UX,B as in
(92). By Proposition 5.4 and Theorem 2.31, we have

lim
t→∞

DT(σξ(t))

DT0(σξ(t))
=

PT(X)

PT(X/Y )
=

DT(X)

DT(X/Y )
, (107)

in C [[SX ]]. On the other hand, we have

lim
t→0

DT(σξ(t))

DT0(σξ(t))
=

DT(σξ(0))

DT0(σξ(0))
, (108)

since σξ(0) is a general point and limt→0 σξ(t) = σξ(0) by Proposition 3.15. Next let us take
a data (60),

ξ = (−z0, z0B,−iω′, z1), arg z0 < arg z1.

By Theorem 4.4 and Proposition 5.5, we have

DT(σξ(0))

DT0(σξ(0))
=

DT(σξ)

DT0(σξ)
=

DT(pAY )

DT0(pAY )
. (109)

Finally suppose that p = 0, i.e. B ∈ 0V (X/Y ). Note that we have φ−1
∗ (B) ∈ −1V (X+/Y ).

For t < 0, we set
ξ(t) = (1,−φ−1

∗ (B + tiH),−iω′, z),
which gives data (55) for X+. We have the associated 1-parameter family of weak stability
conditions σ+

ξ(t) ∈ UX+,φ−1∗ B, and we set

σξ(t) := Φ∗σ+
ξ(t) ∈ Φ∗(UX+,φ−1∗ B) for t < 0.

By Proposition 3.15, the family σξ(t) is a continuous family for t ∈ (−∞,∞). By Propo-
sition 5.4 and Theorem 2.31, we have

lim
t→−∞

DT(σξ(t))

DT0(σξ(t))
= φ∗

PT(X+)

PT(X+/Y )
= φ∗

DT(X+)

DT(X+/Y )
. (110)

Then the formula (106) follows from (107), (108), (109), (110) and Theorem 4.4.
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6 Some technical lemmas

6.1 Proof of Lemma 3.5

Proof. (i) The noetherian property of AX is proved in [30, Lemma 6.2]. Let us show that
pBX/Y is noetherian. For simplicity, we show the case of p = 0. Take a chain of surjections
in 0BX/Y ,

E0 � E1 � · · ·� Ej � Ej+1 � · · · . (111)

The description (45) shows that 0BX/Y is concentrated on [0, 1] with respect to the stan-
dard t-structure on Db(Coh(X)), and (111) induces a chain of surjections in Coh(X),

H1(E0) � H1(E1) � · · ·� H1(Ej) � H1(Ej+1) � · · · .

Hence we may assume that H1(Ei)
∼=→ H1(Ei+1) for all i. By (43) and the definition of

0Per(X/Y ), we have the exact functor,

Rf∗ : 0BX/Y −→ 〈OY ,Coh≤1(Y )[−1]〉ex. (112)

The proof that AX is noetherian (cf. [30, Lemma 6.2]) is also applied for the singular
variety Y , hence the category 〈OY ,Coh≤1(Y )[−1]〉ex is also noetherian. Therefore we

may assume that Rf∗Ei

∼=→ Rf∗Ei+1 for all i. Consider the exact sequence in 0BX/Y ,

0 −→ Fi −→ E0 −→ Ei −→ 0.

Noting (45) and Rf∗Fi = 0, the object Fi is written as F ′i [−1], where F ′i is given by
successive extensions of sheaves OCk

(−1) with 1 ≤ k ≤ N . Hence we obtain the exact
sequence of sheaves,

0 −→ H0(E0) −→ H0(Ei) −→ F ′i −→ 0.

Since dimCk ≤ 1, we obtain the sequence of coherent sheaves,

H0(E0) ⊂ H0(E1) ⊂ · · · ⊂ H0(Ej) ⊂ · · · ⊂ H0(E0)
∨∨. (113)

Since Coh(X) is noetherian, the above sequence terminates.
(ii) First we show the termination of (47) in AX. Take a sequence (47) in AX , and an

ample divisor ω on X. By (42), we have ch0(E) ≥ 0 and − ch2(E) · ω ≥ 0 for any object
E ∈ AX . Therefore we may assume that ch0(Ei) and ch2(Ei) · ω are constant for all i.
Then Ej/Ej+1 is 0-dimensional, hence it must be zero by the assumption.

Next we show the termination of (47) in pBX/Y . For simplicity we show the case of
p = 0. By the same argument as in (i), we may assume that Gj = E0/Ej+1 in 0BX/Y is
written as G′j [−1], where G′j is given by successive extensions of sheaves OCk

(−1) with
1 ≤ k ≤ N . We have the surjections of sheaves

H1(E0) � · · ·� · · ·� G′2 � G′1.

Since H1(E0) ∈ Coh≤1(X), the above sequence must terminate, and hence (47) also
terminates.
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6.2 Proof of Lemma 3.7

Step 1. The pair σξ = (Zξ,AX) satisfies the Harder-Narasimhan property.

Proof. It is enough to check (a) and (b) in Proposition 2.5. The condition (b) follows
from Lemma 3.5 (i). In order to check (a), take a chain of monomorphisms in AX ,

· · · ⊂ Ej+1 ⊂ Ej ⊂ · · · ⊂ E2 ⊂ E1

with argZ(Ej+1) > argZ(Ej/Ej+1) for all j. By Lemma 3.5 (ii), we have Ej/Ej+1 ∈
Coh0(X) for some j. Then we have argZ(Ej+1) > argZ(Ej/Ej+1) = π, which contradicts
to (17).

Step 2. Let {Pξ(φ)}φ∈� be the slicing corresponding to the pair σξ = (Zξ,AX) via Propo-
sition 2.6. Then {Pξ(φ)}φ∈� is of locally finite.

Proof. We set φ = 1
π

arg z ∈ (1/2, 1) and take 0 < η � 1 satisfying φ ± η ∈ (0, 1).
By Lemma 3.5, it is enough to check that Pξ((θ − η, θ + η)) is of finite length for any
θ ∈ (1− η, 1 + η). Let us consider the pair,

(Z0,ξ,Coh(X/Y )), (114)

where
Coh(X/Y ) = {E ∈ Coh(X) : dim Supp f∗E = 0}.

Then the pair (114) determines a locally finite stability condition on Db(Coh(X/Y )) in
the sense of Bridgeland [5]. (cf. [32, Lemma 4.1].) We write the corresponding slicing on
Db(Coh(X/Y )) by {Q(φ)}φ∈�. By our choice of η, we have

Pξ((θ − η, θ + η)) = Q((θ − η, θ + η)),

for any θ ∈ (1− η, 1 + η). Therefore Pξ((θ − η, θ + η)) is of finite length.

Step 3. The pair σξ = (Zξ,Pξ) satisfies the support property (15).

Proof. Let E ∈ AX be a non-zero object with cl(E) = (−n,−β, r). We introduce an
usual Euclid norm on H2 ⊗�R = R. We have

‖E‖
|Z(E)| =

⎧⎪⎨
⎪⎩

|z|, r > 0,
‖f∗β‖
ω′·f∗β

, r = 0, f∗β �= 0,
n2+‖β‖2

(n−Bβ)2+(ωβ)2
, r = f∗β = 0, n > 0.

Since β is effective or zero, the above description easily implies the support property.

6.3 Proof of Proposition 4.9

The conditions of Assumption 4.1 are obviously satisfied except the fourth, fifth and sixth
conditions. As for the fourth condition, this is proved in [30, Lemma 3.15]. It is enough
to check the fifth and the sixth conditions.
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Step 1. Take σξ ∈ UX,B and v ∈ Γ with rk(v) = 1 or v ∈ Γ0. Then the stack

Mv(σξ) ⊂ Objv(AX),

is an open substack of finite type over C.

Proof. As in the proof of [30, Lemma 3.15], it is enough to check the boundedness of
σξ-semistable objects of numerical type v. This is proved along with the same argument
of [34, Section 3], and we leave the readers to check the detail.

Step 2. The sets SX and TX satisfy Assumption 4.8.

Proof. The first and the second conditions of Assumption 4.8 are obviously satisfied. In
order to prove the third condition, take an object E ∈ Cσξ

(I) with σξ = (Zξ,AX) ∈ UX,B

and cl(E) = (−n,−β, 1). We are going to check that (n, β) ∈ SX . We have the exact
sequence in AX

0 −→ IC −→ E −→ F [−1] −→ 0, (115)

as in (90). Also we have the exact sequence of sheaves,

0 −→ F1 −→ F −→ F2 −→ 0,

with F1 ∈ pT and F2 ∈ pF , where (pT , pF) is a torsion pair on Coh≤1(X) given by (48).
Assume that F2 �= 0. Then we have the surjection E � F2[−1] in AX . Then it is easy to
see that

argZξ(E) > π/2 > argZξ(F2[−1]),

which contradicts to E ∈ Cσξ
(I). Therefore F2 = 0, and F ∈ pT ⊂ pPer≤1(X/Y ) follows.

Also if Rf∗F is not 0-dimensional, we have

argZξ(E) > argZξ(F ) = π/2,

which contradicts to the σξ-semistability of E. Therefore Rf∗F is 0-dimensional, which
means F ∈ pPer0(X/Y ). This implies that

ch3(F ) = lengthRf∗F ≥ 0. (116)

On the other hand, the definition of m(β) implies ch3(OC) ≥ m(β). Hence by (115) and
(116), the inequality n ≥ m(β) holds, i.e. (n, β) ∈ SX .

Also if (n, β) ∈ Γ0, then the curve C in the sequence (115) satisfies f∗[C] = 0, hence
we have H1(OC) = 0. This implies that ch3(OC) = χ(OC) ≥ 0, hence (n, β) ∈ TX holds.
If cl(E) = (−n,−β, 0), then the same argument shows that E = F [−1] for F ∈ pT and
Supp(F ) ⊂ Ex(f). Hence ch3(F ) ≥ 0, and (n, β) ∈ TX follows.

Finally we check the last condition of Assumption 4.8. Let Λ be the set of pairs (k, β ′)
of k ∈ Z and an effective class β ′ ∈ N1(X). For λ = (k, β ′), we set

Sλ = {(n, β) ∈ S : n ≥ k if β ≤ β ′}.

Then {Sλ}λ∈Λ gives a desired family.
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6.4 Proof of Proposition 4.10

Proof. (i) By Proposition 4.9, it is enough to check the third and the fourth condition
of Assumption 4.8. For σξ ∈ UX,B , let us take an object E ∈ Cσξ

(I) with cl(E) =
(−n,−β, 1). We check that (n, β) ∈ pSX/Y . We have an exact sequence in AX ,

0 −→ E ′ −→ E −→ F [−1] −→ 0, (117)

for F ∈ pF and E ′ ∈ pT ′ by the existence of the torsion pair (49). By the condition
E ∈ Cσ(I), we have F [1] ∈ pPer0(X/Y ), hence v = (ch3(F ), ch2(F )) satisfies

ch3(F ) ≥ 0, pχ(v) ≥ 0, (118)

by Lemma 6.1 below. On the other hand, since E ′ ∈ pT ′ ⊂ pBX/Y , we have the exact
sequence in pBX/Y ,

0 −→ A −→ E ′ −→ A′[−1] −→ 0, (119)

with A ∈ pPer≥2(X/Y ) and A′ ∈ pPer≤1(X/Y ). Taking the long exact sequence of
cohomology with respect to the t-structure with heart AX , we see that A ∈ AX and
obtain the following exact sequence in AX ,

0 −→ H−1(B)[−1] −→ A −→ E ′ −→ H0(B)[−1] −→ 0.

By (117) and the condition E ∈ Cσξ
(I), we conclude that Hi(A′) are supported on fibers

of f , hence A′ ∈ pPer0(X/Y ) follows. Therefore v′ = (ch3(A
′), ch2(A

′)) satisfies

ch3(A
′) ≥ 0, pχ(v′) ≥ 0, (120)

by Lemma 6.1. By Lemma 5.3, the object A ∈ pPer(X/Y ) fits into the exact sequence in
pPer(X/Y ),

0 −→ A −→ OX −→ A′′ −→ 0.

Applying Rf∗, we obtain surjections in Coh(Y ),

OY � Rf∗A′′, f∗ pE ′∨ � Rf∗(A′′ ⊗ pE ′∨).

Combining (118) and (120), v = (n, β) satisfies

n ≥ χ(Rf∗A′′) ≥ m(f∗β),
pχ(v) ≥ χ(Rf∗(A′′ ⊗ pE ′∨)) ≥ pm(r(p)f∗β),

which implies (n, β) ∈ pSX/Y . A similar proof shows that if (n, β) ∈ Γ0, (or cl(E) =
(−n,−β, 0),) then (n, β) ∈ TX/Y .

(ii) As for the sixth condition of Assumption 4.8, a similar (and easier) proof to
(i) works, and we omit the detail. Here we check the forth and the fifth conditions of
Assumption 4.1.
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Step 1. For v ∈ Γ with rk(v) = 1 or v ∈ Γ0, the stack of objects

Objv(pBX/Y ) ⊂M0,

is an open substack of M0.

Proof. Note that the category pBX/Y is equivalent to the category,

〈pA′Y ,Coh≤1(
pAY )〉ex,

via the equivalence (30). Then we can apply the same argument of [30, Lemma 3.15] for
the non-commutative scheme (Y, pAY ), and obtain the result.

Step 2. Take σξ = (Zξ,
pBX/Y ) ∈ pUX/Y and v ∈ Γ with rk(v) = 1 or v ∈ Γ0. Then the

substack
Mv(σξ) ⊂ Objv(pBX/Y ),

is an open substack and it is of finite type over C.

Proof. As in the proof of [30, Lemma 3.15], it is enough to show the boundedness of
σξ-semistable objects of numerical type v. This follows by the same argument as in [34,
Section 3], applied for the non-commutative scheme (Y, pAY ). We leave the readers to
check the detail.

We have used the following lemma.

Lemma 6.1. For F ∈ pPer0(X/Y ), set v = (ch3(F ), ch2(F )) ∈ N≤1(X). Then we have

ch3(F ) ≥ 0, pχ(v) ≥ 0.

Proof. For F ∈ pPer0(X/Y ), we have

R Hom(OX ⊕ pE ′, F ) ∈ Coh0(Y ),

by the equivalence (30). Therefore by Riemann-Roch theorem, we have

ch3(F ) = lengthR Hom(OX , F ) ≥ 0,
pχ(v) = lengthR Hom(pE ′, F ) ≥ 0.
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7 Appendix

7.1 The formula for the Euler characteristic version

Applying the result of [30, Section 4] and the method in this paper, we can also show the
Euler characteristic version of our main result.

Definition 7.1. We define D̂T(X), D̂T(X/Y ), D̂T(pAY ), D̂T0(
pAY ) as follows.

D̂T(X) =
∑
n,β

χ(In(X, β))xnyβ,

D̂T(X/Y ) =
∑

n,f∗β=0

χ(In(X, β))xnyβ,

D̂T(pAY ) =
∑
n,β

χ(In(pAY , β))xnyβ,

D̂T0(
pAY ) =

∑
n,f∗β=0

χ(In(pAY , β))xnyβ.

The following theorem can be proved along with the same proof of Theorem 5.6,
Theorem 5.7 and Theorem 5.8, using [30, Theorem 3.13] instead of Theorem 4.4. 2

Theorem 7.2. We have the following formula,

D̂T(X/Y ) = i ◦ φ∗D̂T(X+/Y ),

D̂T0(AY ) = D̂T(X/Y ) · φ∗D̂T
′
(X+/Y ),

D̂T(X)

D̂T(X/Y )
=

D̂T(pAY )

D̂T0(pAY )
= φ∗

D̂T(X+)

D̂T(X+/Y )
.

7.2 Generalization of global ncDT-invariants

The non-commutative Donaldson-Thomas invariant can be defined in a slightly general-
ized context. Let f : X → Y be a projective birational morphism from a smooth projective
Calabi-Yau 3-fold X, satisfying dim f−1(y) ≤ 1 for any closed point y ∈ Y . Here we do
not assume that f is isomorphic in codimension one, so there may be a divisor E ⊂ X
which contracts to a curve on Y . The result of Van den Bergh [7] can be applied in
this situation, i.e. there are vector bundles pE on X for p = 0,−1, which admit derived
equivalences,

pΦ = Rf∗RHom(pE , ∗) : Db(Coh(X))
∼=−→ Db(Coh(pAY )). (121)

The abelian subcategories pPer(X/Y ) ⊂ Db(Coh(X)) is also similarly defined, and pΦ
restrict to equivalences between pPer(X/Y ) and Coh(pAY ). As in subsection 2.9, we can
construct the moduli space of perverse ideal sheaves In(pAY , β), and the counting invariant,

pAn,β =

∫
[In(pAY ,β)vir]

1 ∈ Z.

2The result of [30, Theorem 3.13], hence Theorem 7.2, does not rely on [3].
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The generating series DT(pAY ), DT0(
pAY ), D̂T(pAY ) and D̂T0(

pAY ) are similarly defined
as in Definition 2.37, Definition 7.1. The following theorem can be proved along with the
same proof of Theorem 5.8 and Theorem 7.2.

Theorem 7.3. We have the following formula.

DT(X)

DT(X/Y )
=

DT(pAY )

DT0(pAY )
,

D̂T(X)

D̂T(X/Y )
=

D̂T(pAY )

D̂T0(pAY )
.
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