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Abstract

We propose a mechanism for relaxing a constraint on the number of messen-
gers in low-energy gauge mediation models. The Landau pole problem for the
standard-model gauge coupling constants in the low-energy gauge mediation can be
circumvented by using our mechanism. An essential ingredient is a large positive
anomalous dimension of messenger fields given by a large Yukawa coupling in an
conformal field theory at high energies. The positive anomalous dimension reduces
the contribution of the messengers to the beta function of the standard-model gauge
couplings.



1 Introduction

The low-energy-scale gauge mediation with the gravitino mass m3/2 < O(10) eV is very

attractive, since it does not suffer from any cosmological gravitino problem [1]. In such

a low-energy gauge mediation, the messengers have their masses of the order 102 − 103

TeV. If the number of messengers, Nmess, is large, the gauge coupling constants of the

standard model easily blow up below the GUT scale, i.e. the gauge coupling constants

hit Landau poles below the GUT scale. The requirement of the perturbative unification

of the gauge coupling constants, thus, leads to a constraint on the number of messengers.

It is known [2] that Nmess < 5 for the messengers being 5 + 5∗ of SU(5)GUT if the masses

of messengers are smaller than about 103 TeV.

The above constraint becomes more severe if one considers strongly interacting mes-

sengers in direct (see [3] and references therein) or semi-direct [4, 5] gauge mediation

models, for instance. This is because the messengers receive most likely negative anoma-

lous dimensions from the hidden strong gauge interactions and hence the standard-model

gauge couplings run faster (see Section 2).

In this paper we point out that it is not always the case if the theory is embedded into

a conformal field theory at high energies. We show several examples where hidden sector

interactions induce even positive large anomalous dimensions for messengers. In those

example models one may have Nmess ≥ 5 without ruining the perturbative unification.

A crucial ingredient is an introduction of a large Yukawa coupling of the messengers to

some other hidden sector fields.

2 Relaxing the constraint on Nmess

In this section we describe our mechanism for relaxing the constraint on the number of

messengers. In supersymmetric (SUSY) gauge theories, the β function of a gauge coupling

is exactly given by the so-called NSVZ β function [6],

β(g) = µ
∂

∂µ
g2 = − g4

8π2

3t(A) − ∑
i(1 − γi)t(i)

1 − t(A)g2/8π2
, (1)

where t(A) and t(i) are the Dynkin indices for the adjoint representation and the represen-

tation of matter fields i, γi an anomalous dimension of matter i, and µ a renormalization
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scale. Let us consider the β functions of the standard-model (SM) gauge couplings. From

the β function (1), we can see that the effective messenger number contributing to the

SM β functions is give by

N eff
mess ≡

∑
i∈mess

(1 − γi)tGUT(i), (2)

where the sum is taken over messenger fields, and tGUT(i) the Dynkin indices for the GUT

gauge group SU(5)GUT. Here, we have assumed that the messengers form a complete

representation of the SU(5)GUT.

Now let us suppose that the messengers are charged under some hidden gauge group

(with the gauge coupling g) and have a Yukawa interaction (with the Yukawa coupling

λ) with some hidden matters. Then, the anomalous dimension of the messengers is given

by, at the one-loop level,

γ ∼ − g2

8π2
+

|λ|2

8π2
. (3)

(Here, we have neglected the contributions from the SM gauge interactions.) Then, from

Eqs. (2) and (3), we can see that the hidden gauge interaction increases the effective

messenger number, N eff
mess, while the hidden Yukawa interaction decreases it.

In direct (see [3] and references therein) or semi-direct [4, 5] gauge mediation models

and also in composite messenger models (e.g. [7]), the messenger fields are supposed to be

charged under hidden gauge groups. Thus, the messenger fields have negative anomalous

dimensions and the effective messenger number increases. Thus, the Landau pole problem

discussed in the Introduction becomes more severe (for a more quantitative discussion, see

Appendix A). However, if we introduce large Yukawa interactions in the messenger sector,

the anomalous dimensions of the messengers can become positive and we can decrease

the effective messenger number, N eff
mess. For this mechanism to be efficient, it is desirable

that the hidden gauge theory of the messengers is embedded into a conformal field theory,

because the messengers can have large positive anomalous dimensions over a wide range

of energy scales. (Otherwise, the large Yukawa coupling hits its own Landau pole below

the GUT scale.)

In the rest of this section we give example models which realize the above mechanism.

We will see that the models have direct applications to low-energy gauge mediation models
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in the next section.

The models are based on an SU(NC) hidden gauge group. We first introduce NQ mes-

senger quarks and anti-quarks, Qi
α and Q̃α

i , with i = 1, · · · , NQ and α = 1, · · · , NC . The

messengers Qi
α and Q̃α

i transform as fundamental and anti-fundamental representations

of SU(NC), respectively. We restrict our discussion to the case of NQ = 5, for simplicity,

and assume that the quarks Qi
α and anti-quarks Q̃α

i transform as 5∗ and 5 of SU(5)GUT,

respectively. We introduce a mass term mQQi
αQ̃α

i for the messengers Qi
α and Q̃α

i . Notice

that NC is identified with the number of the messengers, Nmess. The generalization to

other gauge theories such as SP (NC) or SO(NC) is straightforward and hence we do not

discuss it in this paper.

To embed the theory into a conformal field theory giving the messengers positive

anomalous dimensions, we introduce NP pairs of quarks and anti-quarks, P p
α and P̃α

p with

p = 1, · · · , NP , and an adjoint quark chiral multiplet, Aα
β with α, β = 1, · · · , NC . We

introduce their mass terms,

Wmass = mP P p
αP̃α

p + mAAα
βAβ

α. (4)

We assume, mP , mA > mQ, for the additional quarks, P p
α and P̃α

p , and the adjoint quark

Aα
β to decouple from the strong dynamics at the messenger mass scale. We also introduce

a Yukawa coupling,

WYukawa =
√

2λQi
αAα

βQ̃β
i . (5)

The introduction of the Yukawa coupling is important for our mechanism to work, as

explained above.

We find that the theory has a infrared conformal fixed point for a given appropriate

value of NC and that of NP . We show, in Appendix B, the detailed determination of the

infrared fixed points and of the anomalous dimensions of the messenger fields. We give

the obtained anomalous dimensions γQ of the messenger fields Q and Q̃ and the effective

messenger numbers N eff
mess = (1 − γQ)NC for various sets of (NC , NP ) in Table 1. We

see that the models have the effective messenger numbers N eff
mess < 5 for many sets of

(NC , NP ), even if the actual messenger number Nmess = NC ≥ 5.
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NP = 2 NP = 3 NP = 4 NP = 5 NP = 6
NC = 5 0.303 (3.48) 0.156 (4.22) 0.062 (4.69) × ×
NC = 6 0.452 (3.29) 0.300 (4.20) 0.191 (4.85) 0.110 (5.34) 0.048 (5.71)
NC = 7 × 0.411 (4.13) 0.301 (4.90) 0.214 (5.50) 0.144 (5.99)
NC = 8 × 0.494 (4.05) 0.388 (4.89) 0.302 (5.58) 0.230 (6.16)
NC = 9 × × 0.458 (4.88) 0.375 (5.63) 0.303 (6.27)

Table 1: The anomalous dimensions γQ of messenger fields Q, Q̃ and the effective mes-
senger numbers N eff

mess (in parentheses) at the conformal fixed points. Models marked with
× do not have a desirable fixed point.

3 Applications to low-energy gauge mediation mod-

els

In this section we discuss applications of our mechanism to various gauge mediation

models. The applications have three categories, (I) application to direct gauge mediation,

(II) that to semi-direct gauge mediation and (III) that to composite messenger models. We

consider a representative model for each categories to illustrate our mechanism discussed

in Section 2.

3.1 Direct gauge mediation

Let us consider direct gauge mediation models [8, 9, 10, 11, 12] in which a subgroup of the

flavor symmetry of the Intriligator-Seiberg-Shih (ISS) model [13] is gauged by SU(5)GUT.

The model is based on the SU(NC) gauge theory with NF pairs of quarks QI
α and anti-

quarks Q̃α
I . Here, I and α run from I = 1 to I = NF and from α = 1 to α = NC ,

respectively. We assume, for simplicity, that they have a common mass

W = mQI
αQ̃α

I . (6)

We have a global flavor symmetry SU(NF )F .

If the numbers of color and flavor satisfy the relation NC +1 ≤ NF < 3
2
NC , this theory

has a weakly coupled dual magnetic description at low energies. The dual magnetic theory

is described in terms of mesons ΦI
J and dual quarks ϕa

I , ϕ̃I
a. Here, a = 1, · · · , ÑC is the

index of a dual gauge group SU(ÑC = NF − NC)mag. The superpotential of this theory
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is given by

W = hϕa
IΦ

I
J ϕ̃J

a − hµ2ΦI
I . (7)

Without a loss of generality, the Yukawa coupling constant h and the dimension one

parameter µ can be taken to be real and positive.

At the tree level, the equation of motion of Φ gives the F -term of Φ,

−(F †
Φ)J

I = hϕa
I ϕ̃

J
a − hµ2δJ

I . (8)

The right hand side of this equation cannot be zero, since the rank of the matrix ϕa
I ϕ̃

J
a

is no greater than NF − NC and the unit matrix δJ
I has rank NF (> NF − NC). Thus

some components of (F †
Φ)J

I are non-zero and SUSY is broken. If non-perturbative effects

of SU(ÑC)mag are taken into account, however, SUSY is dynamically restored [13]. So

the SUSY breaking vacua are metastable.

Around the SUSY-breaking local minima of the potential, the fields ϕ, ϕ̃ and Φ can

be expanded like

ϕa
I =

(
µδa

p + δχa
p δρa

i

)
, ϕ̃I

a =

(
µδp

a + δχ̃p
a

δρ̃i
a

)
, ΦI

J =

(
δY p

q δZ̃p
j

δZi
q δΦi

j

)
, (9)

where p = I for 1 ≤ I ≤ NF − NC and i = I for NF − NC + 1 ≤ I ≤ NF . These vevs

break the global flavor symmetry SU(NF )F down to SU(NF − NC)F × SU(NC)F . To

make this model a direct gauge mediation model, we embed the SU(5)GUT gauge group

into a subgroup of SU(NC)F or SU(NF − NC)F . Let us consider the theory above the

mass scale µ for each case [8].

1. If SU(5)GUT ⊂ SU(NC)F , in the magnetic theory, fields charged under SU(5)GUT

are (a part of) δρ, δρ̃, δZ, δZ̃ in the (anti-)fundamental representation of SU(NC)F

and δΦ in the adjoint representation of SU(NC)F . Then, the contribution to the β

function of the SU(5)GUT gauge coupling is given by N (mag)
mess = 2(NF − NC) + NC =

2NF − NC
1. (Note that the adjoint representation of SU(NC)F decomposes into

an adjoint representation of SU(5)GUT, NC − 5 flavors of fundamental and anti-

fundamental representations of SU(5)GUT, and some singlets.) In the electric theory

1Nmess is not equal to the one contributing to the gaugino and sfermion soft masses. In this paper we
are defining Nmess only by the contribution to the gauge coupling β function.
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N (ele)
mess = NC . From the inequalities NC ≥ 5 and NC + 1 ≤ NF < 3

2
NC , we obtain

N (mag)
mess ≥ 7 and N (ele)

mess ≥ 5.

2. If SU(5)GUT ⊂ SU(NF−NC)F , in the magnetic theory, fields charged under SU(5)GUT

are (a part of) δχ, δχ̃, δZ, δZ̃ in the (anti-)fundamental representation of SU(NF −
NC)F and δY in the adjoint representation of SU(NF −NC)F . (This counting is ap-

plicable above the mass scale µ. Below µ, the SM gauge group is in the diagonal

subgroup of SU(NF −NC)F ×SU(ÑC)mag.) Then, the contribution to the β function

of the SU(5)GUT gauge coupling is given by N (mag)
mess = (NF −NC)+NC +(NF −NC) =

2NF − NC . In the electric theory N (ele)
mess = NC . From the inequalities NF − NC ≥ 5

and NC + 1 ≤ NF < 3
2
NC , we obtain N (mag)

mess > 20 and N (ele)
mess > 10.

In the case SU(5)GUT ⊂ SU(NF −NC)F , Nmess is too large, so we concentrate on the

case SU(5)GUT ⊂ SU(NC)F . In this model, SUSY breaking is mediated to the MSSM

sector by the fields δρ, δρ̃, δZ, δZ̃. The superpotential becomes

W = hϕa
IΦ

I
J ϕ̃J

a − hµ2ΦI
I

= hµ(δρa
i δZ

i
a + δρ̃i

aδZ̃
a
i ) + hρa

i Φ
i
j ρ̃

j
a − hµ2Φi

i + · · · , (10)

where dots represent terms irrelevant for the gauge mediation. Φi
i has a non-vanishing

F -term, and then δρ and δρ̃ have SUSY-breaking masses. This is the type of gauge

mediation studied in Ref. [14]. R-symmetry breaking is rather non-trivial in this model

and one has to consider some modification of the theory. See [8, 9, 10, 11, 12] for details.

Even in the case SU(5)GUT ⊂ SU(NC)F , Nmess ≥ 5 in both the electric and magnetic

theory. In fact, the messenger number Nmess is smaller in the electric theory than in

the magnetic theory, which was considered as a solution to the Landau pole problem in

Ref. [15]. However, the analyses of Ref. [2] suggest that the two-loop effects from the

MSSM sector make it difficult to maintain the perturbative GUT unification. Further-

more, the messenger fields are charged under the strong hidden gauge group SU(NC) in

the electric theory 2. Thus as explained in Section 2, this model suffers from the severe

2In the magnetic theory, SU(5)GUT charged fields have both the SU(ÑC)mag gauge interaction (if
ÑC ≥ 2) and the Yukawa interaction in the superpotential (7). Then it is non-trivial whether the total
effect of these interactions decreases or increases the effective messenger number, compared with the naive
messenger number Nmag

mess.
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Landau pole problem when the messenger mass scale is of order 105 GeV. Notice that

such a small mass ∼ 105 GeV for the messenger is required in the models [9, 10, 11],

since MSSM gaugino masses vanish at the leading order of SUSY-breaking scale (see

also Ref. [16]). Thus the SUSY-breaking scale and the messenger mass scale must be

comparable, of order 105 GeV.

We now consider a modification of the model to avoid the Landau pole problem. In

the electric theory, we add a chiral field Aα
β which transforms in the adjoint representation

of SU(NC) gauge group. We introduce the new terms in the superpotential

W ⊃
√

2λQi
αAα

βQ̃β
i + mAAα

βAβ
α, (11)

where i = NF − NC + 1, · · · , NF . This is in fact the model considered in Section 2,

with the identification P p
α|Section 2 = Qp

α (p = 1, · · · , NF − NC), NQ|Section 2 = NC and

NP |Section 2 = NF −NC . We take NC = 5 and 2 ≤ NF −NC ≤ 4 in the following discussion.

The dynamics of the model is as follows. At high energies, we assume that the theory

is near the conformal fixed point. Then, as discussed in Section 2, the effective messenger

number N eff
mess is smaller than 5 (see Table 1). Below the mass scale mA, the adjoint field

A decouples from the dynamics, and the theory exits from the conformal fixed point and

the confinement occurs. Then at the low energies the model can be described by the

weakly coupled magnetic theory. SUSY is broken as in the ISS model, and the direct

gauge mediation works.

However, the low energy theory is not completely the same as the original ISS model.

Integration of the adjoint field A generates a superpotential

W ⊃ − λ2

2mA

[
(Qi

αQ̃α
j )(Qj

βQ̃β
i ) − 1

NC

(Qi
αQ̃α

i )(Qj
βQ̃β

j )
]

= −λ2Λ2

2mA

[
δΦi

jδΦ
j
i −

1

NC

δΦi
iδΦ

j
j

]
,

(12)

where Λ is the confinement scale of the electric theory defined by Qi
αQ̃α

j = ΛΦi
j. When

NC = NQ|Section 2 = 5, this term gives mass to the traceless part of δΦ, i.e. the part which

transforms in the adjoint representation of SU(NC)F = SU(5)GUT. The traceless part of

δΦ does not take part in SUSY breaking and gauge mediation, but this field contributes

to the β functions of the SM gauge coupling constants. So below the mass scale λ2Λ2/mA,

the “messenger number” contributing to the β function is Nmess = 2(NF − NC). Thus,
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if we take NF − NC = 2, the messenger number Nmess is smaller than 5 for the energy

scale below λ2Λ2/mA in the magnetic theory. On the other hand, above the scale mA, the

theory is electric and N eff
mess is small because of the mechanism of Section 2. Furthermore,

Λ is roughly related to mA by the equation Λ ∼ mA exp(−8π2/(3NC − NF )g2
∗), where g∗

is the gauge coupling constant of SU(NC) at the fixed point. Then, if the fixed point

is strongly coupled, which is the case in the present model, mA and λ2Λ2/mA are of the

same order. Thus the dangerous energy scale between λ2Λ2/mA and mA is narrow and

the perturbative unification of the SM gauge couplings is maintained.

In the case 2 < NF −NC ≤ 4, Nmess is larger than 5 in the magnetic theory. However,

if we take mA sufficiently low to ensure that the theory is in the electric theory over a

wide range of energy scale, the Landau pole may be avoided. For example, consider the

case NF − NC = 3. For simplicity, we use the following approximation; we approximate

λ2Λ2/mA ∼ mA, and above the scale mA, N eff(ele)
mess = 4.2 taken from Table 1 and below

the scale mA, N eff(mag)
mess = 2(NF − NC) = 6. Furthermore, we suppose that all the MSSM

sparticles have masses not far from the Z boson mass, mZ ' 91 GeV. Then, the SM

QCD coupling constant g3 at the GUT scale MGUT ∼ 1016 GeV is , at the one-loop level,

given by

8π2

g2
3(MGUT)

' 8π2

g2
3(mZ)

+ 3 log
(

Mmess

mZ

)
+ (3 − N eff(mag)

mess ) log
(

mA

Mmess

)
+(3 − N eff(ele)

mess ) log
(

MGUT

mA

)
, (13)

where Mmess is the messenger mass scale which we take Mmess ∼ 105 GeV for a low-scale

gauge mediation, and 8π2/g2
3(mZ) ' 53.2 from experiments. Requiring g2

3(MGUT)/4π <∼ 1,

we obtain the constraint on mA as

mA <∼ 108 GeV. (14)

Thus, mA can be taken much larger than Mmess ∼ 105 GeV.

3.2 Semi-direct gauge mediation

We consider a SUSY-breaking model based on an SU(5)hid gauge symmetry. It is known [17]

that the SUSY is broken when we introduce only two matter multiplets, V α and Xαβ in
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the representations 5∗ and 10 of SU(5)hid, respectively. We now introduce NF pairs

of fundamental quarks Qi
α and anti-quarks Q̃α

i . Here, i = 1, · · · , NF and α = 1, · · · , 5
and they belong to (N∗

F,5) and (NF,5∗) representations of the SU(NF )F × SU(5)hid,

respectively. We introduce a common bare mass term for the messengers, for simplicity,

W = mQQi
αQ̃α

i . (15)

We gauge a subgroup of SU(NF ) under the GUT gauge group [18]. This is the set

up for the semi-direct gauge mediation in the SU(5)hid SUSY-breaking model 3 . The

bi-fundamental messenger fields Q and Q̃ link the SU(5)hid hidden gauge sector and the

MSSM sector, thus SUSY-breaking is mediated to the MSSM sector. In particular, when

NF ≥ 6, it can be shown that the theory has a conformal fixed point above the mass scale

mQ. Then, after the decoupling of the messengers Q and Q̃, the theory exits from the

conformal fixed point and the SUSY breaking occurs. This is a conformal gauge mediation

model proposed in Ref. [18]. However, we only impose NF ≥ 5 in this paper.

In the above model, the messenger fields are charged under the strong SU(5)hid gauge

group. Thus, as discussed in Section 2, the effective messenger number N eff
mess is larger

than 5. Thus this theory suffers from the Landau pole problem. To avoid the problem,

we introduce a chiral field Aα
β transforming in the adjoint representation of SU(5)hid. We

introduce a superpotential,

W ⊃
√

2λQi
αAα

βQ̃β
i + mAAα

βAβ
α, (16)

for the mechanism explained in Section 2 to work. In fact, this model is not the same

as the example model described in Section 2, but we can study the conformal fixed point

of this theory by using a-maximization technique explained in Appendix B. The result is

listed in Table 2. One can see that there is no Landau pole problem for NF = 5, 6 and 7.

3In semi-direct gauge mediation, a messenger number is not necessarily larger than or equal to 5.
For example, in the models of Ref. [5], the messenger number is minimally 2, so there is no Landau
pole problem. However, in semi-direct gauge mediation, sparticle masses (especially gaugino masses) are
suppressed by hidden sector loops [18, 5], so if one wants to bulid a model in which the gravitino is very
light (< O(10) eV), the hidden sector gauge theory should be strongly coupled. Because the gauge theory
should be strongly coupled even when we add messenger fields, the hidden sector gauge group should
be somehow large, as in the above SU(5)hid model. Then the model may suffer from the Landau pole
problem.
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NF γQ γA γV γX N eff
mess

5 0.264 −0.528 −0.656 −0.901 3.68
6 0.160 −0.320 −0.527 −0.731 4.20
7 0.063 −0.126 −0.308 −0.438 4.69

Table 2: The anomalous dimensions of the fields of the model. γQ is the anomalous
dimension of Q and Q̃. γA, γV and γX are the anomalous dimensions of A, V and X
respectively. The fact that the anomalous dimensions of Q and Q̃ are the same is not
obvious because the model is chiral, but a-maximization shows that is the case. N eff

mess is
defined by N eff

mess = 5(1 − γQ).

The dynamics of the model is as follows. We take mA > mQ. Then above the mass

mA, we assume that the theory is near the conformal fixed point. Below the threshold of

A, the SU(5)hid gauge coupling becomes larger, and it blows up (when NF = 5) or goes

to another fixed point discussed above (when NF ≥ 6). In any case, after the decoupling

of the messenger fields Q and Q̃, SUSY is broken [19, 17].

In fact, the low energy theory after the decoupling of A is not the same as the original

semi-direct gauge mediation of Ref. [18]. As in Eq. (12) of the previous subsection, the

integration of A generates a superpotential

W ⊃ − λ2

2mA

[
(Qi

αQ̃α
j )(Qj

βQ̃β
i ) − 1

5
(Qi

αQ̃α
i )(Qj

βQ̃β
j )

]
. (17)

The presence of this superpotential is very interesting, since this term explicitly breaks

R symmetry of the original semi-direct gauge mediation model, which may be useful for

a generation of gaugino masses [20]. On the other hand, however, this term generates

SUSY preserving vacua at
〈
QQ̃

〉
∼ mAmQ/λ2, making the SUSY breaking vacuum at〈

QQ̃
〉

= 0 metastable.

3.3 Composite messenger model

We consider a strong SU(5)hid gauge theory with 5 pairs of fundamental quarks Qi
α and

anti-quarks Q̃α
i . Here, i and α run from 1 to 5 and they belong to (5∗,5) and (5,5∗)

representations of the SU(5)GUT × SU(5)hid, respectively. Those 5 pairs of quarks play a

role of messengers. We take a superpotential for the messengers,

W = hXQi
αQ̃α

i , (18)
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where X = M+Fθ2 is a SUSY-breaking spurion field. This model is the so-called minimal

gauge mediation (see [3] and references therein), aside from the fact that the messengers

are charged under the strong gauge group SU(5)hid.

The reason that we introduce the SU(5)hid gauge interaction is to confine the mes-

senger quarks and anti-quarks, Q and Q̃, forming composite fields. One of the composite

states can be a candidate for the dark matter of the universe [7]. In fact we have, at low

energies, mesons

M i
j = Qi

αQ̃α
j , (19)

and baryons

B = det Q, B̃ = det Q̃, (20)

with the constraint

det M − BB̃ = Λ10, (21)

where Λ is the dynamical scale of SU(5)hid. The baryon B and anti-baryon B̃ are long-

lived, since we have an approximate baryon number conservation [7]. Then, they can be

a candidate for the dark matter.

Above the energy scale Λ, the messenger number is 5, and because the messengers are

charged under the strong gauge group, the effective messenger number N eff
mess is larger than

5 as explained in Section 2. Below the energy scale Λ, the traceless part of M i
j transforms

in the adjoint representation of SU(5)GUT, so the messenger number (in the definition of

this paper) is also 5. Thus this model suffers from the Landau pole problem.

For the mechanism of Section 2 to work, we introduce additional NP flavors of quarks

P p
α and P̃ α

p in the representation 5 and 5∗ of SU(5)hid, respectively. Here p is the flavor

index, p = 1, · · · , NP . We further introduce an adjoint field Aα
β of SU(5)hid, and introcuce

a superpotential

W ⊃
√

2λQi
αAα

βQ̃β
i + mP P p

αP̃α
p + mAAα

βAβ
α, (22)

for the additional fields, as in Section 2. Then the messenger model becomes the same

as the model in Section 2. The effective messenger number above the mass mP and mA

12



is given in Table 1 with NC equal to 5. We see that the Landau pole problem can be

avoided by taking mP and mA appropriately small.

The dynamics of the model is as follows. We assume that mP and mA are of the

same order, mP ∼ mA, for simplicity, and the theory is near the conformal fixed point

above the threshold of these fields. After the decoupling of P, P̃ and A, the SU(5)hid

gauge coupling becomes strong and the gauge theory confines the color degrees of freedom,

making composite fields described above.

However, we have to take care of the following point. When the theory is on the

conformal fixed point, the Yukawa coupling in Eq. (18) becomes smaller as we lower the

renormalization scale. Suppose that the theory is on the conformal fixed point from the

energy scale M∗ down to m∗ (∼ mA ∼ mP ). Then, neglecting all effects other than the

fixed point dynamics, the Yukawa coupling h at the scale m∗ is

h|m∗ ∼
(

m∗

M∗

)γQ

h|M∗ . (23)

We show that the requirement m3/2 < 16 eV [1] leads to a constraint on NP . For

the messenger quarks not to be tachyonic 4, the SUSY-breaking scale F must satisfy

hF < (hM)2. Then, the gaugino mass is constrained as

Mg̃ ' n
α

4π

hF

hM
< n

α

4π

√
hF , (24)

where α is the SM gauge coupling fine structure constant corresponding to the gaugino g̃,

and n is a “messenger number” contributing to the gaugino masses (in the present model,

n = 5). Then, the gravitino mass is constrained as

m3/2 =
F√
3MPl

>
(4πα−1n−1Mg̃)

2

√
3hMPl

= 16 eV

(
3.4 × 10−3

h

) (
α−1

60

Mg̃

100 GeV

)2

, (25)

where MPl ' 2.4 × 1018 GeV is the reduced Planck mass. Note the dependence 1/h of

this lower bound. Thus, to achieve the light gravitino mass, h should not be too small,

and thus γQ should not be too large. In particular, the model with NP = 2 may not be

favored, although the effective messenger number N eff
mess is the smallest in this case.

4The messenger fields are strongly coupled in the present model, but here we pretend as if they can
be treated as weakly coupled fundamental quarks, for simplicity. In fact, it is known that the gaugino
masses are not so affected by strong interactions, due to the gaugino screening mechanism [21].
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Appendix A Effective messenger number in asymp-

totically free gauge theories

In this appendix we study how strong gauge interactions make the Landau pole problem

of the SM gauge coupling severe. Suppose that messenger fields transform under the

representation r + r̄ of some strong gauge group G. At the one-loop level, the gauge

coupling g of the gauge group G is given by

8π2

g2(µ)
=

8π2

g2
0

+ b log(µ/M0), (A.1)

where b is the coefficient of the one-loop β function, and g0 is the gauge coupling at the

scale M0. We define t ≡ log(µ/M0) and g2(µ)/8π2 ≡ hg(µ) for simplicity. Then the above

equation is rewritten as

hg(t) = (h−1
g0 + bt)−1. (A.2)

The anomalous dimension of the messenger fields is, at the one-loop level, given by

γ(t) = −2C2(r)hg(t) = −2C2(r)(h
−1
g0 + bt)−1, (A.3)

where C2(r) is the quardratic Casimir of the representation r.

Taking into account Eq. (1), we define the averaged value of the anomalous dimension

between µ = M0 and µ = M1 as

γ̃ ≡ 1

t1

∫ t1

0
dtγ(t) = −2C2(r)

b

log(1 + bhg0t1)

t1
, (A.4)

where t1 = log(M1/M0). Then the averaged effective messenger number is

Ñ eff
mess = (1 − γ̃)Nmess, (A.5)
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where Nmess is “the tree level value” of the messenger number.

For example, consider the case G = SU(5), r = 5, b = 3 · 5 − 5 = 10, M0 = Mmess ∼
106 GeV, and M1 = MGUT ∼ 1016 GeV. If we further assume that the coupling is very

strong at M0, e.g. γ(µ = M0) ' −1, we obtain

γ̃ ' −0.080, Ñ eff
mess = (1 − γ̃)5 ' 5.40. (A.6)

The SM gauge couplings receive a contribution Ñ eff
mess log(MGUT/Mmess) from the messen-

ger fields. Defining M ′
eff by the equation

Ñ eff
mess log(MGUT/Mmess) = Nmess log(MGUT/M ′

mess), (A.7)

we obtain

Mmess

M ′
mess

=
(

MGUT

Mmess

) Ñeff
mess

Nmess
−1

∼ 6. (A.8)

The lower bound on the messenger mass scale becomes larger by this factor due to strong

gauge interactions.

Appendix B Details on conformal fixed point

In this appendix, we describe how to find a conformal fixed point and compute anomalous

dimensions of matter fields, taking the model of Section 2 as an example. We do not

restrict the number of flavors of Q, NQ, equal to 5 in this appendix.

Let us first discuss the existence of the infrared fixed point in the model in Section 2.

For a time being we consider only the theory where the perturbative calculation for

the β function is reliable. At the perturbative level, one can discuss the existence of a

conformal fixed point by explicitly considering the renormalization group equations, as

was first done in Ref. [22]. The NSVZ β function of the gauge coupling g and the β

function of the Yukawa coupling λ of the model in Section 2 are given by

βg = µ
∂

∂µ
g2 = − g4

8π2

3NC − (1 − γA)NC − (1 − γQ)NQ − (1 − γP )NP

1 − NCg2/8π2
, (B.1)

βλ = µ
∂

∂µ
λ2 = (γA + 2γQ)λ2, (B.2)
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where we have taken λ to be real without a loss of generality, and γA, γQ and γP are the

anomalous dimensions of A, Q, and P respectively. At the one-loop level, they are given

by 5

γA ' NQλ2 − 2NCg2

8π2
, γQ ' N2

C − 1

NC

λ2 − g2

8π2
, γP ' −N2

C − 1

NC

g2

8π2
. (B.3)

By taking a large N limit, NC , NQ, NP À 1 with NQ/NC ∼ O(1), NP /NC ∼ O(1) and

n ≡ 3NC −NC −NQ−NP ∼ O(1), one can find a solution to the equations βg = 0, βλ = 0

with the couplings g and λ being very small (Banks-Zaks like fixed point). The result is

λ2

8π2
' 4n

(2NC − NQ)2 + NP (2NC + NQ)
,

g2

8π2
' NQ + 2NC

4NC

λ2

8π2
, (B.4)

and

γQ ' (2NC − NQ)n

(2NC − NQ)2 + NP (2NC + NQ)
, γP ' − (2NC + NQ)n

(2NC − NQ)2 + NP (2NC + NQ)
, (B.5)

with γA = −2γQ. It is also easy to check that the fixed point is infrared stable. The

coupling constants (or more precisely, ’t Hooft couplings) of the theory are small, so we

can trust perturbative calculation. Thus we consider that the existence of a conformal

fixed point in the above limit is established, and the fixed point values of the anomalous

dimensions are given by Eq. (B.5).

However, we are interested in the case where the coupling is strong, so that the anoma-

lous dimension γQ is quite large and any perturbative calculation is not reliable at all. A

very astonishing fact of supersymmetric conformal field theory is that anomalous dimen-

sions of fundamental fields can be determined exactly, even in strongly coupled theories.

The general method is called a-maximization [24]. In N = 1 superconformal field theories,

there is an R symmetry which appears in superconformal algebra (which is an extension

of ordinary supersymmetry algebra). In some theories there may be a unique anomaly

free R symmetry, and if the theories are in the conformal window [25], the R symmetry

must be the one which appears in the superconformal algebra. However, in general there

is a family of anomaly free R symmetries (as in the model of Section 2; see below), and

5See e.g. Section 5.5 of Ref. [23]. Note that our convention for the anomalous dimension is larger than
that used in Ref. [23] by factor 2.
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A Q, Q̃ P, P̃
R −2x 1 + x 1 + N−1

P (2NC − NQ)x

Table 3: R charges of the fields. x is a parameter that parametrize the ambiguity of the
definition of R symmetry.

we cannot determine from symmetry argument alone which R symmetry is the supercon-

formal one 6. According to Ref. [24], the superconformal R symmetry is the one which

(locally) maximizes the following combination of t’ Hooft anomalies,

∑
i

[3(Ri − 1)3 − (Ri − 1)], (B.6)

where the sum is taken over fermions of a theory and Ri − 1 is the R charge of the

fermion in chiral field i. This condition determines the R charge Ri of the chiral field i.

Furthermore, the scaling dimension Di and the anomalous dimension γi of chiral field i is

related to the R charge Ri by the equation

1 +
γi

2
= Di =

3

2
Ri. (B.7)

The first equality in Eq. (B.7) is almost the definition of the anomalous dimension in

conformal field theory. For the second equality, see e.g. [26]. From Eq. (B.7), we can

determine the anomalous dimension γi from the R charge Ri.

Let us apply the above method to the model of Section 2. We, here, neglect all masses

for the fields, and assume that the model is in the conformal window for certain values

of NC , NQ and NP . The R charges of the fields are shown in Table 3. We have imposed

that Q and Q̃ (P and P̃ ) have the same R charge. Even then, the R charges of the fields

are not uniquely determined. We have parametrized the ambiguity of R charges by x.

Then, we define the following function of x,

a(x) ≡
∑

i

[3(Ri − 1)3 − (Ri − 1)]

= (N2
C − 1)[3(−2x − 1)3 − (−2x − 1)] + 2NCNQ[3x3 − x]

+2NCNP [3(N−1
P (2NC − NQ)x)3 − (N−1

P (2NC − NQ)x)]. (B.8)

6In this paper we do not consider the case where the superconformal R symmetry is an accidental
symmetry of a low energy theory.
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NP = 2 NP = 3 NP = 4 NP = 5 NP = 6
NC = 5 0.273 0.143 0.059 × ×
NC = 6 0.422 0.280 0.179 0.104 0.046
NC = 7 × 0.391 0.287 0.205 0.138
NC = 8 × 0.478 0.376 0.292 0.223
NC = 9 × × 0.448 0.366 0.296

Table 4: The values of γQ obtained in Eq. (B.5) by perturbative calculation. This table
should be compared with Table 1, where the exact value of γQ is listed. NQ is taken to
be 5.

Then, the condition for the local maximization of a(x) is given by

∂a(x)

∂x
= 0,

∂2a(x)

∂x2
< 0. (B.9)

Solving these equations is quite straightforward. Using the solution for x, the anomalous

dimesion of e.g. Q is given by γQ = 3RQ−2 = 3x+1. The value of γQ is listed in Table 1.

As a check, we list the one-loop value of γQ obtained in Eq. (B.5) in Table 4. Note that

the agreement between Table 1 and 4 is quite good, and becomes better as the coupling

becomes weaker.

For what values of (NC , NQ, NP ) the model has a conformal fixed point is a rather non-

trivial question. In conformal field theory, it is known that all gauge invariant operators

of a theory have scaling dimensions greater than or equal to 1 [27]. As a criterion of the

existence of a conformal fixed point, we require that all gauge invariant chiral (primary)

operators have scaling dimensions greater than or equal to 1. Such a criterion was first

used in Ref. [25] to find a conformal fixed point in SUSY QCD. Especially, in the case

of the present models, we have imposed that the scaling dimensions of gauge invariant

chiral operators tr A2 and P aP̃b satisfy the conditions

Dtr A2 = 2
(
1 +

γA

2

)
≥ 1, (B.10)

DPP̃ = 2
(
1 +

γP

2

)
≥ 1. (B.11)

In this paper we assume that if these conditions are satisfied, the model has a conformal

fixed point.
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