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Abstract

We study monoids generated by certain Zariski-van Kampen generators in
the 17 fundamental groups of the complement of logarithmic free divisors
in C3 listed by Sekiguchi. They admit positive homogeneous presenta-
tions (Theorem 1). Five of them are Artin monoids and eight of them
are free abelian monoids. The remaining four monoids are not Gaußian
and, hence, are neither Garside nor Artin (Theorem 2). However, we
introduce the concept of fundamental elements for positive homogenously
presented monoids, and show that all 17 monoids posses fundamental el-
ements (Theorem 3).

1 Introduction

A hypersurface D in Cl (l ∈ Z≥0) is called a logarithmic free divisor ([S1]), if
the associated module DerCl(−log(D)) of logarithmic vector fields is a free OCl -
module. Classical example of logarithmic free divisors is the discriminant loci
of a finite reflection group ([S1,2,3,4]). The fundamental group of the comple-
ment of the discriminant loci is presented (Brieskorn [B]) by certain positive
homogeneous relations, called Artin braid relations. The group (resp. monoid)
defined by that presentation is called an Artin group (resp. Artin monoid) of
finite type [B-S], for which the word problem and other problems are solved
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using a particular element ∆, the fundamental elements, in the corresponding
monoid ([B-S],[D],[G]).

In [Se1], Sekiguchi listed up 17 weighted homogeneous polynomials, defining
logarithmic free divisors in C3, whose weights coincide with those of the discrim-
inant of types A3, B3 or H3. Then, the fundamental groups of the complements
of the divisors are presented by Zariski-van Kampen method by [I1] (we recall
the result in §3). It turns out that the defining relations can be reformulated
by a system of positive homogeneous relations in the sense explained in §4 of
the present paper, so that we can introduce monoids defined by them. We show
that, among 17 monoids, five are Artin monoids, and eight are free abelian
monoids. However, four remaining monoids are not Gaussian, and hence are
neither Garside nor Artin (§5). Nevertheless, we show that they carry certain
particular elements similar to the fundamental elements in Artin monoids (§6).

Let us explain more details of the contents. The 17 Sekiguchi-polynomials
∆X(x, y, z) are labeled by the type X ∈ {Ai,Aii, Bi, Bii,Biii,Biv, Bv, Bvi, Bvii, Hi,
Hii, Hiii, Hiv,Hv, Hvi, Hvii, Hviii} (§2). They are monic polynomials of degree 3
in the variable z. We calculate the fundamental group of the complement of
the divisor DX := {∆X(x, y, z) = 0} in C3 by choosing Zariski-pencils l in z-
coordinate direction, which intersect the divisor DX at 3 points. Zariski-van
Kampen method gives a presentation of the fundamental group π1(C3 \ DX , ∗)
with respect to three generators a, b and c presented by a suitable choice of
paths in the pencil counterclockwise turning once around each of three intersec-
tion points.

We rewrite the Zariski-van Kampen relations into a system of positive ho-
mogeneous relations (not unique, §4 Theorem 1), and study the group GX and
the monoid G+

X defined by the relations as well as the localization homomor-
phism π : G+

X →GX , where GX is naturally isomorphic to π1(C3 \ DX , ∗). We
denote by πG+

X the image of G+
X in GX , that is, the monoid generated by the

Zariski-van Kampen generators {a, b, c} in π1(C3 \ DX , ∗).1 The monoid πG+
X

depends on the choice of generators but not on the choice of homogeneous re-
lations, whereas the monoid G+

X does. It turns out that G+
X are Artin monoids

for the types X ∈ {Ai, Bi, Hi,Aii,Biv}, and are free abelian monoids for the
types X ∈ {Biii, Bv, Bvii, Hiv, Hv, Hvi,Hvii, Hviii} so that one has the injectivi-
ties: G+

X → GX . However, for all the remaining four types Bii,Bvi, Hii, Hiii,
the monoids πG+

X does not admit the divisibility theory (see [B-S, §5], or §5
Theorem 2 of present paper). That is, their associated groups are not Gaus-
sian groups [D-P, §2], and, hence, they are neither Artin nor Garside groups
(actually, we have an isomorphism G+

Bvi
' G+

Hiii
and hence πG+

Bvi
' πG+

Hiii
).

On the other hand, as one main result of the present paper, we show that
the monoid G+

X carries some distinguished elements, which we call fundamental
(§6 Theorem 3). Namely, we call an element ∆∈G+

X fundamental (see §6 ) if
there exists a permutation σ∆ of the set {a, b, c}/ ∼ (:=the image of the set
{a, b, c} in G+

X) such that for any d ∈ {a, b, c}/ ∼, there exists ∆d ∈ G+
X such

1We changed the notation from [S-I1]. Namely, G+
X and πG+

X in the present paper are

denoted by MX and G+
X , respectively, in [S-I1].
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that the following relation holds:

∆ = d · ∆d = ∆d · σ∆(d).

The set F(G+
X) of fundamental elements in G+

X form a subsemigroup of G+
X

such that QZ(G+
X)F(G+

X) =F(G+
X)QZ(G+

X) =F(G+
X) (see §6 Fact 3.) where

QZ(G+
X) is the quasi-center of G+

X .2

Since the localization homomorphism induces a map F(G+
X)→F(πG+

X), the
fact F(G+

X) 6=∅ for all 17 monoids (§6 Theorem3) implies F(πG+
X) 6=∅. 3

In §7, we discuss the cancellation condition on the monoid G+
X . In fact, this

condition together with the existence of fundamental elements (shown in §6),
imply that the localization homomorphism π : G+

X →GX is injective. An Artin
monoid or a free abelian monoid satisfies already the cancellation condition ([B-
S]). We show that the monoid G+

Bii
satisfies the cancellation condition (Theorem

4). For the remaining three types Bvi, Hii, Hiii, we do not know whether the
localization homomorphism π is injective or not. That is, we don’t know whether
we have sufficiently many defining relations to assert the cancellation condition
or not.

Finally in §8, we construct non-abelian representations of the groups GBii , GBvi ,
GHii and GHiii into GL2(C) (Theorem 5). Actually, this result is independent
of §5, 6 and 7, and is used in the proof of Theorem 2 in §5.

2An element ∆∈G+
X is called quasi-central ([B-S, 7.1]) if d·∆=∆·σ∆(d) for d ∈ {a, b, c}.

3We ask, more generally, whether the monoid generated by Zariski-van Kampen generators
in the local fundamental group of the complement of a free divisor has always a fundamental
element (see §6 Remark 6.4). In the 4 types Bii, Bvi, Hii, Hiii, we observe that F(πG+

X) is not

singly generated. Therefore, we ask, also, whether the set of fundamental elements F(πG+
X)

is finitely generated over QZ(πG+
X) or not. For an Artin monoid of finite type, F(G+

X) is

generated by a single element ∆ and F(G+
X)=∆Z≥1 ([B-S]).
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2 Sekiguchi’s Polynomial

J. Sekiguchi [Se1,2] listed the following 17 weighted homogeneous polynomials
∆ in three variables (x, y, z) satisfying freeness criterion by K.Saito [S1].

∆Ai(x, y, z) := −4x3y2 − 27y4 + 16x4z + 144xy2z − 128x2z2 + 256z3

∆Aii(x, y, z) := 2x6 − 3x4z + 18x3y2 − 18xy2z + 27y4 + z3

∆Bi(x, y, z) := z(x2y2 − 4y3 − 4x3z + 18xyz − 27z2)
∆Bii(x, y, z) := z(−2y3 + 4x3z + 18xyz + 27z2)
∆Biii(x, y, z) := z(−2y3 + 9xyz + 45z2)
∆Biv(x, y, z) := z(9x2y2 − 4y3 + 18xyz + 9z2)
∆Bv(x, y, z) := xy4 + y3z + z3

∆Bvi(x, y, z) := 9xy4 + 6x2y2z − 4y3z + x3z2 − 12xyz2 + 4z3

∆Bvii(x, y, z) := (1/2)xy4 − 2x2y2z − y3z + 2x3z2 + 2xyz2 + z3

∆Hi(x, y, z) := −50z3 + (4x5 − 50x2y)z2 + (4x7 + 60x4y2 + 225xy3)z
−(135/2)y5 − 115x3y4 − 10x6y3 − 4x9y2

∆Hii(x, y, z) := 100x3y4 + y5 + 40x4y2z − 10xy3z + 4x5z2 − 15x2yz2 + z3

∆Hiii(x, y, z) := 8x3y4 + 108y5 − 36xy3z − x2yz2 + 4z3

∆Hiv(x, y, z) := y5 − 2xy3z + x2yz2 + z3

∆Hv(x, y, z) := x3y4 − y5 + 3xy3z + z3

∆Hvi(x, y, z) := x3y4 + y5 − 2x4y2z − 4xy3z + x5z2 + 3x2yz2 + z3

∆Hvii(x, y, z) := xy3z + y5 + z3

∆Hviii(x, y, z) := x3y4 + y5 − 8x4y2z − 7xy3z + 16x5z2 + 12x2yz2 + z3.

Here, the polynomials are classified into three types A, B and H accord-
ing to whether the numerical data (deg(x), deg(y), deg(z); deg(∆)) is equal to
(2, 3, 4; 12), (2, 4, 6; 18) or (2, 6, 10; 30), respectively. In each type, the polyno-
mials are numbered by small Roman numerals i, ii,. . . etc. We remark that, in
all cases, the polynomial is a monic polynomial of degree 3 in the variable z.

3 Zariski-van Kampen Presentation

Let X be one of the 17 types Ai,Aii,Bi,. . . , Bvii, Hi,. . . ,Hviii. In the present
section, we recall in Table 1 from [I1] [S-I1] the result of the calculation of the
fundamental group π1(SX \ DX , ∗X) of the complement of the free divisor DX

in the space SX by Zarisik-van Kampen method (see [Ch],[T-S] for instance),
where we put SX := C3 and

(3.1) DX := {(x, y, z) ∈ C3 | ∆X(x, y, z) = 0}.
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Table 1.

π1(SAi \ DAi , ∗Ai) ∼=
〈

a, b, c

∣∣∣∣ ab = ba,
bcb = cbc,
aca = cac

〉
.

π1(SAii \ DAii , ∗Aii) ∼=

〈
a, b, c

∣∣∣∣∣ ababab = bababa,
aba = bab,

b = c

〉
.

π1(SBi \ DBi , ∗Bi) ∼=

〈
a, b, c

∣∣∣∣∣
abab = baba,

bc = cb,
aca = cac,
cbac = baca

〉
.

π1(SBii \ DBii , ∗Bii) ∼=

〈
a, b, c

∣∣∣∣∣ ababab = bababa,
bc = ab,
ac = ca

〉
.

π1(SBiii \DBiii , ∗Biii) ∼=

〈
a, b, c

∣∣∣∣∣
a = b,

a = cbab−1c−1,
b = cbacbc−1a−1b−1c−1,
c=cbacbcb−1c−1a−1b−1c−1

〉
.

π1(SBiv \ DBiv , ∗Biv) ∼=

〈
a, b, c

∣∣∣∣∣
acb = cba,

bcba = cbac,
cbac = bacb,

ab = ba

〉
.

π1(SBv \ DBv , ∗Bv) ∼=
〈

a, b, c

∣∣∣∣ a = b = c

〉
.

π1(SBvi \ DBvi , ∗Bvi) ∼=

〈
a, b, c

∣∣∣∣∣ aba = bab,
aca = bac,

acaca = cacac

〉
.

π1(SBvii \ DBvii , ∗Bvii)

∼=

〈
a, b, c

∣∣∣∣∣
a = b−1cbab−1cbab−1cbab−1cba−1b−1c−1ba−1b−1c−1ba−1b−1c−1b,
c = bab−1cbab−1cbab−1cbab−1c−1ba−1b−1c−1ba−1b−1c−1ba−1b−1,

a = ba−1b−1c−1bab−1cbab−1,
cba = bab, cba = bcb, cba = bab−1c−1b−1cbcb

〉
.
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π1(SHi \ DHi , ∗Hi) ∼=

〈
a, b, c

∣∣∣∣∣ ababa = babab,
bc = cb,

aca = cac

〉
.

π1(SHii \ DHii , ∗Hii) ∼=

〈
a, b, c

∣∣∣∣∣ abab = baba,
aca = bac,

acaca = cacac

〉
.

π1(SHiii \ DHiii , ∗Hiii) ∼=

〈
a, b, c

∣∣∣∣∣ aba = bab,
bcba = cbac,
cba = acb

〉
.

π1(SHiv \ DHiv , ∗Hiv) ∼=
〈

a, b, c

∣∣∣∣ a = b = c

〉
.

π1(SHv \ DHv , ∗Hv) ∼=

〈
a, b, c

∣∣∣∣∣
acba = cbac,

bcbac = cbacb,
bacb = cbac,

bc = cb

〉
.

π1(SHvi \ DHvi , ∗Hvi) ∼=

〈
a, b, c

∣∣∣∣∣ abababab = babababa,
ba = cb,
ac = ba

〉
.

π1(SHvii \DHvii , ∗Hvii) ∼=

〈
a, b, c

∣∣∣∣∣
a = cbaca−1b−1c−1,

b = cbacbc−1a−1b−1c−1,
c=cbacbab−1c−1a−1b−1c−1,

b = c

〉
.

π1(SHviii \DHviii , ∗Hviii) ∼=

〈
a, b, c

∣∣∣∣∣ abababa = bababab,
ab = bc,
ac = ca

〉
.

4 Positive Homogeneous Presentation

In the present section, we rewrite the presentations of the fundamental groups in
section 3 to a positive homogeneous form. We, first, prepare some terminology.

Definition. 1. Let G = 〈L | R〉 be a presentation of a group G, where L is
the set of generators (called letters) and R is the set of relations. We say that
the presentation is positive homogeneous, if R consists of relations of the form
Ri = Si where Ri and Si are positive words in L (i.e. words consisting of only
non-negative powers of the letters in L) of the same length.

2. If a positive homogeneous presentation 〈L | R〉 of a group G is given, then
we associate a monoid G+ defined as the quotient of free monoid L∗ generated
by L by the equivalence relation ' defined as follows:

1) two words U and V in L∗ are called elementarily equivalent if either U = V
or V is obtained from U by substituting a substring Ri of U by Si where Ri =Si

is a relation of R (Si = Ri is also a relation if Ri = Si is a relation),
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2) two words U and V in L∗ are called equivalent, denoted by U ' V , if
there exists a sequence U =W0, W1, · · · ,Wn =V of words in L∗ for n∈Z≥0 such
that Wi is elementarily equivalent to Wi−1 for i = 1, · · · , n.

3. The natural homomorphism π : G+ → G will be called the localization
homomorphism. The image of the localization homomorphism is denoted by
πG+.

Note. 1. The monoid πG+ depends on the choice of the generators for the group
G. Even if we choose the same generators for the same group G, the monoid
G+ depends on the choice of the relations R.

2. Due to the homogeneity of the relations, one defines a homomorphism:
l : G −→ Z

by associating 1 to each letter in L. The restriction of the homomorphism on
πG+ and its pull-back to G+ by the composition with the localization homo-
morphism are called length functions. Length functions have the additivity:
l(UV ) = l(U) + l(V ) and the conicity: l(U) = 0 implies U = 1 in the monoids.
The existence of such length functions implies that the monoids G+ and πG+

are atomic ([D-P, §2]) and that πG+ is also a positive homogeneously presented
monoid.

Theorem 1. The fundamental group in Table 1. of type X is naturally isomor-
phic to the following positive homogeneously presented group GX by identifying
the generators {a, b, c} in both groups.
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Ai : GAi :=
〈

a, b, c

∣∣∣∣ ab = ba,
bcb = cbc,
aca = cac

〉
.

Aii : GAii :=
〈

a, b, c

∣∣∣∣ aba = bab,
b = c

〉
.

Bi : GBi :=
〈

a, b, c

∣∣∣∣ abab = baba,
bc = cb,

aca = cac

〉
.

Bii : GBii :=
〈

a, b, c

∣∣∣∣ cbb = bba,
bc = ab,
ac = ca

〉
.

Biii : GBiii :=
〈

a, b, c

∣∣∣∣ a = b,
ac = ca

〉
.

Biv : GBiv :=
〈

a, b, c

∣∣∣∣ ab = ba,
bcb = cbc,
ac = ca

〉
.

Bv : GBv :=
〈

a, b, c

∣∣∣∣ a = b = c

〉
.

Bvi : GBvi:=

〈
a, b, c

∣∣∣∣
aba=bab, bcb=cbc, aca=bac, cab=bca, acb=cac, abb = bbc,
bcca = ccac, bbac = caab, cbbb = bbba, acbcb = bccca,
accbb=bccba, accaa=ccaac, caacc=aacca, baaccba = cbaaccb,
acccc = bcccb, bbaac = cbaab, bbaab = caaaa, caaab = abaac,
a5 = b5 = c5, baaab = aaaac, cccca = bccbb, ccbaac = accbaa

〉
.

Bvii : GBvii :=
〈

a, b, c

∣∣∣∣ a = b = c

〉
.

Hi : GHi :=
〈

a, b, c

∣∣∣∣ ababa = babab,
bc = cb,

aca = cac

〉
.

Hii : GHii :=
〈

a, b, c

∣∣∣∣ RHii

〉
(RHii is given at the end of present Table).

Hiii : GHiii:=

〈
a, b, c

∣∣∣∣
aba=bab, aca=cac, bcb=abc, cba=acb, bca=cbc, baa = aac,
accb = ccbc, aabc = cbba, caaa = aaab, bcaca = accca,
bccaa=accab, bccbb=ccbbc, cbbcc=bbccb, abbccab = cabbcca,
bcccc = accca, aabbc = cabba, aabba = cbbbb, cbbba = babbc,
a5 = b5 = c5, abbba = bbbbc, ccccb = accaa, ccabbc = bccabb

〉
.

Hiv : GHiv :=
〈

a, b, c

∣∣∣∣ a = b = c

〉
.

Hv : GHv :=
〈

a, b, c

∣∣∣∣ a = b = c

〉
.

Hvi : GHvi :=
〈

a, b, c

∣∣∣∣ a = b = c

〉
.

Hvii : GHvii :=
〈

a, b, c

∣∣∣∣ a = b = c

〉
.

Hviii : GHviii :=
〈

a, b, c

∣∣∣∣ a = b = c

〉
.
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RHii :=

{

abab = baba, aca = bac, bcbc = cbcb, acb = cac, bbcaba = abccac,
abbbca = baaaac, bbbabb = abbaaa, baaaaba = abbbbab,
baabbb = aaabaa, abccc = cccab, bbcbab = cccaac,
cccbcaa = bbbccab, bccbbb = cccbcc, bbccab = caaccc,
ccaac = bccaa, ccaab = accaa, ccabaac = accbcaa,
caaccab = bcaacca, aabaaa = bbbaab, bbbaaa = aaabbb,
abaaaab = babbbba, aaabba = bbabbb, baabbaa = aabbaab,
baabaabaa = abbabbabb, aabbaac = babbcaa, aaabc = bcaaa,
abbaabaac = babbabbca, cccaaa = aaaccc, cccbbb = bbbccc,
caacaac = aabccba, bbbcbb = cbbccc, abacbc = cbcaba,
cbbbbcb = bccccbc, cabbbc = accccb, bcccccaa = cbbbcaac,
ccbccc = bbbccb, cbcaaab = bcccaba, caabcb = baccca,
bcbaab = aaccba, baaccbbc = caccabcb, bccabb = accaaa,
babcbab = cabcaca, caabbbbcb = bacccccca, cbaacc = bccbab,
abcbaa = ccbabb, bcbbaa = ccbbab, caacac = babcca,
cbbaaaacc = acacbbcba, caaaacc = aabccca, bcabbcc = aabbcbb,
bbcaabc = cccaabb, cbbcaab = bccabba, bbaabba = abbaabb,
abaabcc = bbabbcb, bacbcab = cabcaba, cbcabca = bcaacab,
caaccbba = bcabcaab, babbcbb = aabccbc, bbcbbb = cccbbc,
bcbbbbc = cbccccb, bccbbabbc = abcabccba, bbabcbbab = cbbabbccc,
cabaaccc = abbcbbab, bacabc = cbcabb, bcabaab = abcabaa,
aaccbcab = bcabaacc, cbaabcc = baccbca, cccbaabc = baaccaba,
bccbaabc = cabacbca, abaabcaba = bbaabcabb, ccbbaaa = aaaccbb,
ccbbaabca = abcabbaac, baabcabba = abacabaab, bcaabb = aaacca,
accbbcc = ccabbcb, bbcabbccc = abbabbccb, bcaaccbc = abcabcca,
cabaabcc = babccbca, babccba = cbbabcb, aabccbca = cabaabcb,
abcbbaaccb = ccbaaacaba, baaccbca = abacbaac, ccbcabaa = abccbaab,
bbcbbabba = ccbccbaab, cbabbcba = accbaacb, aacccbab = cbcaaaba,
cbcaaac = aacccca, baaccca = cccaaab, caaaccb = bcccaaa,
bbaaccc = cccbbaa, acabbabc = cbbabccb, ccabaaa = aaaccab

}

Proof. Except for the types Bii, Bvi, Hii, Hiii, Hviii, the relations are obtained by
elementary reductions of the Zariski-van Kampen relations, and we omit details.

Some new relations for the cases of types Bii, Bvi, Hii, Hiii are obtained by
cancelling common factors from the left or from the right of equivalent expres-
sions of the same fundamental elements (introduced in §6 6.1. See §7 Definition
7.1), where these equivalent expressions of a fundamental element are obtained
with the help of Hayashi’s computer program (see http://www.kurims.kyoto-
u.ac.jp/ saito/SI/). In the following, we sketch how some of them are obtained
by hand calculations. In the proof, “the first relation, the second relation, . . . ”,
mean “the relation which is at the first place, the second place, . . . in Table 1.
of Zariski-van Kampen relations in §3”.

The case for the type Hviii needs to be treated separately because its calcu-
lations are non-trivial. Detailed verifications are left to the reader.

Bii: Using ab = bc, rewrite the LHS ababab (resp. RHS bababa) of the first
relation to bcabbc (resp. babbca). Then, using the commutativity of a and c, we
cancel ba from left and c from right so that we obtain a new relation cbb ' bba.
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Bvi: Using the defining relation aca = bac, rewrite the LHS acaca of the
third relation to acbac so that the relation turns to acbac ' cacac. We cancel
ac from right and obtain a new relation acb ' cac. Using this, one has bcbac '
bcaca ' bacba ' acaba ' acbab ' cacab ' cbacb ' cbcac.

We cancel ac from right and obtain bcb ' cbc. Using this, one has acabc '
bacbc ' babcb ' abacb ' abcac. Cancelling a and c for left and right, we obtain
a new relation cab ' bca. Using this, one has cabba ' bcaba ' bcbab ' cbcab '
cbbca. Cancelling c and a for left and right, we obtain a new relation abb ' bbc.
The second relation of length 4 is obtained by cancelling a from left of the
equality: abbac ' bbcac ' bbacb ' bacab ' acaab.

Hii: Using the defining relation aca = bac, rewrite the LHS acaca of the
third relation to acbac so that the relation turns to acbac ' cacac. We cancel
ac from right so that we obtain a new relation acb ' cac.

Hiii: Multiply b to the second relation from the right, and rewire the LHS to
bcaba (by a use of the defining relation bab = aba and rewrite the RHS to cbcba
(by a use of the defining relation acb = cba). Cancelling by ba from right, we
obtain a new relation bca ' cbc.

Using the length 3 relations, one has acabc ' acbcb ' cbacb ' cbcba '
cabca ' cacbc. Cancelling by bc from right, we obtain a new relation aca ' cac.

Using the length 3 relations, one has bcaac ' cbcac ' cbaca ' acbca '
abcaa ' bcbaa. Cancelling by bc from left, we obtain a new relation aac ' baa.

In the above sequence, the middle term acbca is also equivalent to accbc.
Thus, cancelling c from right, we obtain a new relation accb ' cbca(' bcaa).

Hviii: From the defining relations, we have abababa ' bcbcbca, bababab '
bbcbcbc, and, hence, bcbcbca ' bbcbcbc (1). Multiplying b from the right, we
get bcbcbcbc ' bcbcbcab ' bbcbcbcb (2). In the equality (2), dividing by b from
the left, we get cbcbcbc ' bcbcbcb. Dividing (1) by b from the left, we get
cbcbca ' bcbcbc. The left hand side of this equality is equivalent to cabbca '
acbbca, and the right hand side of the equality is equivalent to abbcbc so that
acbbca ' abbcbc. Dividing by a from the left, we get bbcbc ' cbbca ' cbbac.
Dividing by c from the light, we get cbba ' bbcb(' babb). Multiplying cbcb
from the right, we get cbbacbcb ' bbcbcbcb. The right hand side is equivalent
to bbcbcbcb ' bcbcbcbc ' cbcbcbcc ' cbcbcabc ' cbcbacbc. The left hand side is
equivalent to cbbacbcb ' cbbcabcb ' cbababcb, and hence cbababcb ' cbcbacbc.
Dividing by cb from the left, we get cbacbc ' ababcb. The left hand side is
equivalent to cbacab ' cbaacb. Dividing by cb from the right, we get abab ' cbaa
(3). Mutiplying b from the right, the left hand side is equivalent to ababb '
acbba ' cabba ' cbcba so that cbcba ' cbaab. Dividing by cb from the left, we
get cba ' aab (4). Applying (4) to the equality (3), we get abab ' cbaa ' aaba.
Dividing by a from the left, we get bab ' aba ' bca. Dividing by b from the
left, we get ab ' ca = ac, and hence b ' c.

This completes a proof of Theorem 1.

Notation. For each type X ∈ {Ai, Aii, Bi,Bii, Biii, Biv, Bv,Bvi, Bvii,Hi, Hii, Hiii,
Hiv,Hv, Hvi, Hvii,Hviii}, we denote by GX , G+

X and πG+
X the group, the monoid

and the image of localization π : G+
X →GX , respectively, associated with the

positive homogeneous relations of type X given in Theorem 1.
From the presentations, we immediately observe the followings.

Corollary 1. i) For the type X ∈ {Ai, Aii, Bi, Biv, Hi}, the monoid G+
X and the

group GX is an Artin monoid and an Artin group of type A3, A2, B3, A1 ×A2

and H3, respectively. As a consequence, we have the injectivity: G+
X → GX .

10



ii) For the type X ∈ {Bv, Bvii, Hiv,Hv, Hvi,Hvii, Hviii}, the monoid G+
X and

the group GX is the infinite cyclic monoid Z≥0 and group Z, respectively. The
monoid G+

Biii
and the group GBiii is a free abelian monoid (Z≥0)2 and group Z2

of rank 2. As a consequence, we have the injectivity: G+
X → GX .

iii) The correspondence: {a 7→ b, b 7→ a, c 7→ c} induces an isomorphism:

G+
Bvi

' G+
Hiii

and, hence, also the isomorphisms: GBvi ' GHiii and πG+
Bvi

' πG+
Hiii

. Note that
the isomorphism does not identify the Coxeter elements (c.f. Proposition 6.5).

Proof. We can show that the Zariski-van Kampen relations of one of the two
types can be deduced, up to the transposition of a and b, from that of the other
type. 2

As the consequence of Corollary 1, in the rest of the present paper, we shall
focus our attention to the remaining 4 types Bii, Bvi, Hii and Hiii together with
the “constraint Bvi ' Hiii”.

Corollary 2. The groups GBvi and GHiii do not admit Artin group presentation
with respect to any Zariski-van Kampen type generator system.

Proof. Due to Theorem 1., both groups have the relations: a5 = b5 = c5, which
are invariant by the change of generator system by the braid group B(3).

Remark 4.1. The group GX is naturally isomorphic to the fundamental group,
which does not depend on the choice of Zariski-van Kampen generators {a, b, c},
but the monoid πG+

X depends on that choice (see next Remark 4.2).
Furthermore, the monoid G+

X , a priori, depends on the choice of relations
in Theorem 1. The injectivity in the above corollary follows from cancellation
conditions on G+

X (see [B-S]). We shall show that, also for G+
Bii

in §7, the
cancellation condition holds, implying the injectivity π : G+

Bii
→GBii . Thus, for

these cases as a consequence of the cancellation condition, G+
X does not depend

on the choice of relations in Theorem 1. However, for the remaining types Bvi,
Hii and Hiii, it may be still possible that we need more relations in order to
obtain the injectivity of the localization homomorphism.

Remark 4.2. Recall that we have chosen Zariski pencils for the calculation
of the fundamental group of C3 \ DX in the direction of the z-axis, where z is
the weighted homogeneous coordinate of the highest weight so that the pencils
intersects the divisor DX at three points and, for a generic choice of a pencil,
we get three generators {a, b, c} of the fundamental group(see §1 Introduction).
However, this does not determine {a, b, c} uniquely. It is wellknown that the
ambiguity of the choices of the generators is described by the action of the braid
group B(3) with three strings on the free group F3 generated by {a, b, c}. Here
is a remarkable observation for the type Bii.

Assertion. For any choice of Zariski-van Kampen generator system {a, b, c}
(up to a permutation), the fundamental group admits only one of the following

11



two positive homogeneous presentations I. and II.

I :
〈

a, b, c

∣∣∣∣ cbb = bba,
bc = ab,
ac = ca

〉
.

II :
〈

a, b, c

∣∣∣∣ ababab = bababa,
b = c,

aabab = baaba

〉
.

5 Non-division property of the monoid πG+
X

In the present section, we show that none of the monoids πG+
X of the four types

Bii, Bvi, Hii and Hiii does admit the divisibility theory ([B-S, §4]), and therefore
the monoid is neither Gaussian, Garside nor Artin.

We first recall some terminologies and concepts on the monoid πG+.
An element U ∈ πG+ is said to divide V ∈ πG+ from the left (resp. right),
denoted by U |lV (resp. U |rV ), if there exists W ∈ πG+ such that V = UW
(resp. V =WU). We also say V is left-divisible by U , or V is a right-multiple of
U .

We say that πG+ admits the left (resp. right) divisibility theory, if for any
two elements U, V of πG+

X , there always exists a left (resp. right) least com-
mon multiple, i.e. a left (resp. right) common multiple which divides any other
left (resp. right) common multiple. Since πG+

X can be positive homogeneously
presented, the only invertible elements in the monoid is the unit element, so
that we have the unique left (resp. right) least common multiple, denoted by
lcml(U, V ) (resp. lcmr(U, V )).

Theorem 2. The monoids πG+
Bii

, πG+
Bvi

, πG+
Hii

, πG+
Hiii

admits neither the left-
divisibility theory nor the right divisibility theory.

Proof. We claim a fact, which shall be proven in §8 Theorem 5 ii) independent
of the results of §5, 6 and 7.

Fact 5.1. None of the groups GBii , GBvi , GHii and GHiii is abelian.

Assuming that the monoid πG+
X admits the right divisibility theory, we show

that GX becomes an abelian group: a contradiction! to Fact 5.1. The case for
the left divisibility theory can be shown similarly.

1) πG+
Bii

: It is immediate to see l(lcmr(b, c)) > 2 from the defining relations
in Theorem 1. Then, bba = cbb is a common multiple of b and c of the shortest
length 3, and, hence, should be equal to lcmr(b, c). On the other hand, we have
the following sequence of elementary equivalent words: bcba, abba, acbb, cabb.
That is, bcba = cabb in πG+

Bii
is another common right-multiple of b and c. If

bba = cbb divides bcba = cabb from the left, there exists d ∈ {a, b, c} such that
bcba = bbad. So, in πG+

Bii
, we have cba = bad which is again a common right-

multiple of b and c. Thus, we have the equality: cba = cbb in πG+
Bii

. That is,
a = b in πG+

Bii
. By adding this relation a = b to the set of the defining relations

of the group GBii , we get GBii 'Z. A contradiction!
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2) πG+
Bvi

: Due to the first defining relation in Theorem 1., we have l(lcmr(a, b))
≤ 3. Let us consider 3 cases:

i) l(lcmr(a, b)) = 1. This means l(lcmr(a, b)) = a = b. By adding this
relation to the defining relation of the group GBvi , we get GBvi ' Z. A contra-
diction!

ii) l(lcmr(a, b)) = 2. This means that there exists u, v ∈ {a, b, c} such that
l(lcmr(a, b)) = au = bv. Depending on each choice of u and v, one can show
that this assumption leads to a contradictory conclusion GBvi ' Z. Details are
left to the reader.

iii) l(lcmr(a, b)) = 3. In view of the first two defining relations in Theorem
1., one has aba = bab = aca = bac. By adding this relation to the set of the
defining relations of the group GBvi , we get GBvi 'Z. A contradiction!.

3) πG+
Hii

: Due to the second defining relation in Theorem 1., we have
l(lcmr(a, b)) ≤ 3. Let us consider 3 cases:

i) l(lcm(a, b)) = 1. This means l(lcmr(a, b)) = a = b. By adding this relation
to the defining relation of the group GHii , we get a contradiction GHii ' Z.

ii) l(lcmr(a, b)) = 2. This means that there exists u, v ∈ {a, b, c} such that
l(lcmr(a, b)) = au = bv. Depending on each choice of u and v, one can show
that this assumption leads to a contradictory conclusion GHii ' Z. Details are
left to the reader.

iii) l(lcmr(a, b)) = 3. In view of the first two defining relations, one has
lcmr(a, b) = aca = bac, and it divides abab = baba (from left). This means that
there exists d ∈ {a, b, c} such that cd = ba in GHii . For each case d = a, b or c
separately, one can show that GHii 'Z. A contradiction!.

4) πG+
Hiii

: Due to the isomorphism πGBvi ' πG+
Hiii

(Corollary 1,iii) of The-
orem 1), we can reduce this case to the case 2).

These complete the proof of Theorem 2.

Corollary 5.2. The monoids πG+
Bii

, πG+
Bvi

, πG+
Hii

, πG+
Hiii

are not Gaussian and
hence are niether Gaussian nor Garside (a monoid is Gaussian ([D-P, §2]) if
it is atomic, satisfies the cancellation condition and admits divisibility theory).

6 Fundamental elements of the monoid G+
X

An Artin monoid of finite type has a particular element, denoted by ∆ and
called the fundamental element ([B-S] §6). In this section, we generalize the
concept for positive homogeneously presented monoids.

In view of Theorem 2, we do not naively employ the original definition: the
left and right least common multiple of the generators. Instead of that, analyzing
equivalent defining properties of the fundamental element for Artin monoid case,
we consider two classes of elements in the monoid G+: quasi-central elements
and fundamental elements, forming subsemigroups QZ(G+) and F(G+) in G+,
respectively, with F(G+) ⊂ QZ(G+). The goal of the present section is to show
F(G+

X) 6= ∅ for all types X, implying also F(πG+
X) 6= ∅ for all types X.

Let G+ be a monoid given in §4, i.e. defined by a positive homogeneous
relations on a generator set L. Let us denote by L/ ∼ the quotient set of L
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divided by the equivalence relation generated by the equalities between two
letters (in the relation set R). An element ∆ ∈ G+ is called quasi-central ([B-S]
7.1), if there exists a permutation σ∆ of L/∼ such that

a · ∆ ' ∆ · σ∆(a)

holds for all generators a ∈ L/∼. The set of all quasi-central elements is denoted
by QZ(G+). The following is an immediate consequence of the definition.
Fact 2. The QZ(G+) is closed under the product. For two elements ∆1,∆2 ∈
QZ(G+), we have σ∆1·∆2 = σ∆2 · σ∆1 .

According to Fact 2, we introduce an anti-homomorphism:

σ : QZ(G+) −→ S(L/∼), ∆ 7→ σ∆.

The kernel of σ is the center Z(G+) of the monoid G+.

Next, we introduce the concept of a fundamental element.

Definition 6.1. An element ∆ ∈ G+ is called fundamental if there exists a
permutation σ∆ of L/∼ such that, for any a ∈ L/∼, there exists ∆a ∈ πG+

X
satisfying the following relation:

∆ ' a · ∆a ' ∆a · σ∆(a).

We denote by F(G+) the set of all fundamental elements of G+. Note that
1 ∈ QZ(G+) but 1 6∈ F(G+)

Fact 3. The F(G+) has the following two properties.
i) A fundamental element is a quasi-central element: F(G+) ⊂ QZ(G+).

The associated permutation of L/ ∼ as a fundamental element coincides with
that as a quasi-central element.

ii) Products ∆·∆′ and ∆′ ·∆ of a fundamental element ∆ and a quasi-central
element ∆′ are again fundamental elements whose permutation of L/∼ is given
in Fact 2. We have (∆∆′)a = ∆a∆′, and (∆′∆)a = ∆′∆σ∆′ (a).

F(G+)QZ(G+) = QZ(G+)F(G+) = F(G+).

Proof. i) We have a · ∆ ' a·∆a ·σ∆(a) ' ∆·σ∆(a) for all a∈L/∼.
ii) We prove only the case ∆ · ∆′.
On one side, one has:

∆ · ∆′ ' (a · ∆a) · ∆′ ' a · (∆a · ∆′).

On the other side, one has:
∆ · ∆′ ' (∆a · σ∆(a)) · ∆′ ' ∆a · (σ∆(a) · ∆′) ' ∆a · (∆′ · σ∆′(σ∆(a)))

' (∆a · ∆′) · σ∆′(σ∆(a)) ' (∆a · ∆′) · σ∆∆′(a)).

One basic property of a fundamental element is that it can be a universal
denominator for the localization homomorphism (c.f. §7 Lemma 7.2.2).

Fact 4. Let ∆ be a fundamental element of G+. Then, for any U ∈ G+, U
divides ∆l(U) from left and from right.
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Proof. We prove only for the left division. Right division can be shown similarly.
We show the statement by induction on l(U), where the case l(U) = 1 follows
from the definition of a fundamental element. Let l(U) > 1 and U ' U ′ · a. By
induction hypothesis, we have ∆l(U)−1 ' U ′ · V for some V . Then, multiplying
∆ from right, we have ∆l(U) ' U ′ · V ·∆ ' U ′ ·∆ · σ∆(V ) ' U ′ · a ·∆a · σ∆(V ).
Here, if V is the word v1 · · · vn then σ∆(V ) is a word σ∆(v1) · · ·σ∆(vn)

Remark 6.2. If G+ is an indecomposable Artin monoid (of finite type), then
any non-trivial quasi-central element is fundamental ([B-S] 5.2 and 7.1). That
is, one has the “opposite” inclusion: (QZ(G+)\ {1}) ⊂ F(G+).

Remark 6.3. By definition, any fundamental element is divisible from both left
and right by all generators in L. However, a (non-trivial) quasi-central element
in general may not have this property.

(i) b3 ∈ QZ(G+
Bii

) is central. However, it is not divisible by a and c from the
left and right.

(ii) ababa ∈ G+
Bii

is divisible by all generators from both sides, but it does
not belong to QZ(G+

Bii
).

Definition 6.4 A fundamental element ∆ is called a minimal fundamental
element if any fundamental element dividing ∆ from right or left coincides with
∆ itself.
Remark 6.5 A fundamental element is called prime, if it does not decompose
into a product of two nontrivial quasi-central elements. In general, a minimal
fundamental element may not be prime (see [I2]).

We state the second main result of the present paper.

Theorem 3. The following elements are minimal fundamental elements in G+
X

for any type X. Except for the types Bvi, Hii and Hiii, they are the complete list
of minimal fundamental elements.

Ai : ∆Ai := (cba)2 σ :
(a, b, c

c, b, a

)
Aii : ∆Aii := aba σ :

(a, b=c

b=c, a

)
Bi : ∆Bi := (cba)3 σ :

(a, b, c

a, b, c

)
Bii : ∆Bii,k := (akb)3 (k ≥ 1) σ :

(a, b, c

a, b, c

)
Biii : ∆Biii := ac σ :

(a=b, c

a=b, c

)
Biv : ∆Biv := abcb σ :

(a, b, c

a, c, b

)
Bv : ∆Bv := a σ :

(a=b=c

a=b=c

)
Bvi : ∆Bvi1 := a5 ' b5 ' c5 σ :

(a, b, c

a, b, c

)
∆Bvi2 := (aba)2 σ :

(a, b, c

a, b, c

)
∆Bvi3 := bccabcb σ :

(a, b, c

a, b, c

)
∆Bvi4 := (bbac)2 σ :

(a, b, c

a, b, c

)
∆Bvi5 := (acaca)2 σ :

(a, b, c

a, b, c

)
∆Bvi6 := (cba)3 σ :

(a, b, c

a, b, c

)
15



Bvii : ∆Bvii := a σ :
(a=b=c

a=b=c

)
Hi : ∆Hi := (cba)5 σ :

(a, b, c

a, b, c

)
Hii : ∆Hii1 := (acaca)2 ' (ac)5 σ :

(a, b, c

a, b, c

)
∆Hii2 := (babac)3 ' (cba)5 σ :

(a, b, c

a, b, c

)
Hiii : ∆Hiii1 := a5 ' b5 ' c5 σ :

(a, b, c

a, b, c

)
∆Hiii2 := (aba)2 σ :

(a, b, c

a, b, c

)
∆Hiii3 := accbaca σ :

(a, b, c

a, b, c

)
∆Hiii4 := (bcba)2 σ :

(a, b, c

a, b, c

)
∆Hiii5 := (bcbcb)2 ' (bc)5 σ :

(a, b, c

a, b, c

)
∆Hiii6 := (abc)3 σ :

(a, b, c

a, b, c

)
Hiv : ∆Hiv := a σ :

(a=b=c

a=b=c

)
Hv : ∆Hv := a σ :

(a=b=c

a=b=c

)
Hvi : ∆Hvi := a σ :

(a=b=c

a=b=c

)
Hvii : ∆Hvii := a σ :

(a=b=c

a=b=c

)
Hviii : ∆Hviii := a σ :

(a=b=c

a=b=c

)
Proof. Since the cases for an Artin monoid or a free abelian monoid are classical,
we show only the 4 exceptional cases.

Bii : For the proof of this case , it is sufficient to show that ∆Bii,k are quasi
central elements which are divisible by the generators a, b and c (see Proposition
7.4). Actually, it is easy to show the following:

(akb)3 ' (bak)3 ' (bck)3 ' (ckb)3.

For the proof of the facts that they are quasi-central and they form the complete
list of minimal fundamental elements, one is refered to [I2].

Bvi : Since the monoids of types Bvi and Hiii are isomorphic to each other (see
Remark after Theorem 1 in §4), we may reduce the proof to the case Hiii.

Hii : First, let us show a relation: acaca ' cacac (acaca ' acbac ' cacac),
which shall be used in the sequel.

∆Hii1 := acacaacaca.
∆Hii1 = a(cacaacaca) ' cacacacaca ' (cacaacaca)a.
∆Hii1 ' c(acacacaca) ' acacaacaca ' (acacacaca)c.
∆Hii1 ' acacaacaca ' b(accaacaca) ' acacaacaca ' acacacacac

' accacaccac ' accaacbcac ' accaacbacb ' (accaacaca)b,
∆Hii2 := babacbabacbabac ' ababcbabacbabac.
∆Hii2 = a(babcbabacbabac) ' bababcbabacbabac ' babcacabacbabac

' babcbacbacbabac ' babcbacacababac ' babcbaacbababac
' babcbaacababbac ' babcbabacbabbac ' (babcbabacbabac)a.

∆Hii2 = b(abacbabacbabac) ' ababcbabacbabac ' ababcababcbabac
' ababcababcbaaca ' ababcbabacbaaca ' ababacbaacabaaca
' ababcbaacababac ' ababcbaacbabaac ' ababcbacacabaac
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' ababcacaacabaac ' ababacbaacabaac ' abaacabaacabaac
' abaacababacbaac ' abaacbabaacbaac ' abacacabaacbaac
' abacbacbaacbaac ' abacbacbacacaac ' abacbacacaacaac
' abacbaacbaacac ' abacbaacbabacac ' abacbaacababcac
' abacbabacbabcac ' (abacbabacbabac)b.

∆Hii2 = abacbabacbabacb ' aacababacbabacb ' aacbabaacbabacb
' acacabaacbabacb ' acbacbaacbabacb ' c(acacbaacbabacb)
' acbacbaacbabacb ' acacabaacababcb ' acacababacbabcb
' acacbabaacbabcb ' acacbabacacabcb ' acacbaacaacabcb
' acacbaacabacbcb ' acacbaacababcbc ' (acacbaacbabacb)c.

Hiii :
∆Hiii2 := (aba)2.
∆Hiii2 = a(baaba) ' bababa ' (baaba)a.
∆Hiii2 = b(ababa) ' abaaba ' (ababa)b.
∆Hiii2 = abaaba ' aaacba ' aacbaa ' aacaac

∆Hiii3 := accbaca.
∆Hiii3 = a(ccbaca) ' cbcaaca ' ccbcaca ' (ccbaca)a.
∆Hiii3 = accbaca ' cbcaaca ' b(caaaca).
∆Hiii3 = accbaca ' cbcaaca ' ccbcaca ' caccbca ' cacbcaa

' caaccba ' caacacb ' (caaaca)b.
∆Hiii3 = accbaca ' c(bcaaca).
∆Hiii3 = accbaca ' cbcaaca ' bcaaaca ' (bcaaca)c.
∆Hiii4 := bcbabcba.
∆Hiii4 ' a(bcabcba) ' bcabacba ' (bcabcba)a.
∆Hiii4 = b(cbabcba) ' bcabacba ' cbcbacba ' cbacbcba

' cbabcaba ' (cbabcba)b.
∆Hiii4 ' bcabacba ' c(bcbacba) ' bcbaabca ' bcbaacbc ' bcbacbac.

∆Hiii5 := bcbcbbcbcb.
∆Hiii5 ' abccbbcbcb ' abccbcbcbc ' a(bcbcbcbbc),
∆Hiii5 ' bcbcbcbcbc ' (bcbcbcbbc)a.

∆Hiii5 = b(cbcbbcbcb) ' cbcbcbcbcb ' (cbcbbcbcb)b.
∆Hiii5 ' c(bcbcbcbcb) ' (bcbcbcbcb)c.
∆Hiii6 := (abc)3
∆Hiii6 = a(bcabcabc) ' bcbabcab ' bcabacabc ' bcabcacbc ' (bcabcabc)a
∆Hiii6 ' (abcabcab)c ' abcabcbcb ' abcabbcab ' acbcbbcab

' acabcbcab ' cacbcbcab ' c(abcabcab).
These complete the proof of Theorem 3.

Let us state some observations related to the fundamental elements.
Let G+ be a monoid defined by positive homogeneous relations. Recall (§4

Definition) that πG+ is the image of G+ in the group G by the localization ho-
momorphism π. We define quasi-central elements and fundamental elements of
πG+ exactly by the same defining relations for G+. Let us denote by QZ(πG+)
and F(πG+) the set of quasi-central elements and fundamental elements in
πG+, respectively. Then, the localization homomorphism induces homomor-
phisms: QZ(G+) → QZ(πG+) and F(G+) → F(πG+), which may be neither
injective nor surjective. However, Theorem 3 implies the following fact.
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Corollary 6.4 For any type X, the set of fundamental elements F(πG+
X) is

non-empty.
We note that F(πG+

X) may not be singly generated. Evenmore, it is infinitely
generated for the type Bii (see details [I2]).

Next, we state an observation that a power of the Coxeter element yields a
fundamental element.

Proposition 6.5 Except for the types when the monoid decomposes into direct
products or when we have a nontrivial relation ∼ on L (explicitly, except for
types Aii, Biii, Biv, Bv, Bvii, Hiv, Hv, Hvi, Hvii, Hviii), deg(z)-th power of the Cox-
eter element C := cba (= a homotopy class which turns once around all the
three points CX ∩ l∗1,C counterclockwise) is a fundamental element.

Proof. Except for the type Hiii, the statement is true due to Theorem 3. In the
case of type Hiii, we have:

(cba)5 ' ∆Hiii1∆Hiii5 ' ∆Hiii2∆Hiii6 ' ∆Hiii3∆Hiii4.

Let us give further exmaples of local fundamental groups, where the Coxeter
element plays a similar role as in the 17 cases treated in the present paper. In
order to state the result, we introduce a property:

(P): The local fundamental group of the complement of a logarithmic-free in-
decomposable4 local divisor admits a positive homogeneous presentation by a
suitable choice of Zariski-van Kampen generators such that a power of the Cox-
eter element, defined as a suitable product of the generators whose realizing
path has no self-intersecting point, gives a fundamental element of the monoid
generated by them in the fundamental group.

1. The discriminant of a finite irreducible reflection group satisfies the prop-
erty (P) ([B-S, S2, S3]).

2. The discriminant of a finite irreducible well-generated complex reflection
group ([B-M-R, Be]) satisfies the property (P) if their generators are identified
with certain Zariski-van Kampen generators.

3. The zero-loci of Sekiguchi polynomials define divisors satisfying (P) (The-
orems 1. and 3. of the present paper).

4. A plane curve is locally logarithmic free ([S1]), and, conjecturally, satisfies
(P) (c.f. [K]).

5. The discriminant of elliptic Weyl group is a free divisor ([S4]II), which
satisfies, conjecturally, the property (P), where the hyperbolic Coxeter element
in the elliptic Weyl group ([S4]I,III) can be lifted in the fundamental group to
an element whose power of order mΓ is a fundamental element.
Question. We ask whether the property (P) holds for any indecomposable
logarithmic free local divisor or not.

4A local divisor D in (Cn, O) at the origin is called decomposable if there exist local divisors
Di in (Cni , O) (i = 1, 2) and a local analytic isomorphism (Cn, O) ' (Cn1 , O)×(Cn2 , O) which
induces a local isomorphism D ' (D1×Cn2 ) ∪ (Cn1 ×D2). A local divisor D in (Cn, O) is
called indecomposable if it is not decomposable.
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7 Cancellation conditions on the monoid G+
X

In the present section, we study the cancellation condition on a monoid G+. In
the first half, we show some general consequences on the monoid G+ under the
cancellation condition, or under its weaker version: a weak cancellation condi-
tion. In the latter half, we prove that the monoid G+

Bii
satisfies the cancellation

condition, however, we do not know whether the monoids G+
Bvi

, G+
Hii

and G+
Hiii

satisfy it or not.

Definition 7.1. A monoid G+ is said to satisfy the cancellation condition, if
an equality AXB=AY B for A,B, X, Y ∈M implies X =Y .

It is well-known that an Artin monoid satisfies the cancellation condition
[B-S, Prop.2.3]. Let us state some important consequences of the cancellation
condition on a monoid defined by positive homogeneous relations.

Lemma 7.2. Let G+ be a monoid defined by positive homogeneous relations.
Suppose it satisfies the cancellation condition. Then, we have the following.
1. For any ∆ ∈ QZ(G+), the associated permutation σ∆ of L/∼ extends to an
isomorphism, denoted also σ∆, of G+. The correspondence: ∆ 7→ σ∆ induces
an anti-homomorphism:

QZ(G+) −→ Aut(G+).

2. If F(G+) 6= ∅, then the localization homomorphism π is injective.
3. For any element A∈G and any ∆∈F(G+), there exist B∈πG+ and n∈Z≥0

such that, in G, one has equalities:
A = B · (∆)−n = (∆−n) · σ−n

∆ (B).

Proof. 1. First, we note that the permutation σ∆ induces an isomorphism of the
free monoid (L/∼)∗, denoted also σ∆. Let U and V be words in (L/∼)∗ which
are equivalent by the relations R (i.e. give the same element in G+). Then, by
definition, U∆ ' ∆σ∆(U) and V ∆ ' ∆σ∆(V ) are equivalent. That is, ∆σ∆(U)
and ∆σ∆(V ) give the same element in G+. Then, cancelling ∆ from the left,
we see that σ∆(U) and σ∆(V ) give the same element in G+. Thus σ∆ induces a
homomorphism from G+ to G+. The homomorphism is invertible, since a finite
power of it is an identity. By definition, for any U ∈ G+ and ∆1, ∆2 ∈ QZ(G+),
one has:

U · ∆1∆2 ' ∆1 · σ∆1(U) · ∆2 ' ∆1∆2 · σ∆2(σ∆1(U)).

2. For a localization homomorphism to be injective, it is sufficient to show
that the monoid satisfies the cancellation condition and that any two elements
of the monoid have (at least) one (left and right) common multiple (Öre’s con-
dition, see [C-P]). In view of Fact 4. in §6, for any two elements U, V ∈ G+ and
∆ ∈ F(G+), ∆max{l(U),l(V )} is a common multiple of U and V from both sides.

3. Owing to the previous 2., it is sufficient to show that, for any element
A ∈ G and any ∆ ∈F(G+), there exists k ∈ Z≥0 such that ∆k ·A ∈ πG+. This
can be easily shown by an induction on k(A) ∈ Z≥0 where k(A) is the (minimal)
number of letters of negative power in a word expression of A in (L ∪ L−1)∗.
Details are left to the reader.
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Next, we formulate a weak cancellation condition and its consequences.

Definition 7.2. An element ∆ ∈ G+ is called left (resp. right) weakly cancella-
tive, if an equality ∆ = U · V = U · W (resp. ∆ = V · U = W · U) in G+ for
some U, V,W ∈ G+, implies V = W in G+.

Using the concept of weakly cancellativity, we give a proposition character-
izing fundamental elements.

Proposition 7.4. Let G+ be a monoid defined by positive homogeneous rela-
tions. A quasi-central element ∆ is a fundamental element if, for any s ∈ L,
s∆ is left weakly cancellative and s divides ∆ from the left.

Proof. Since ∆ is divisible by any s ∈ L/ ∼ from the left, we put ∆ = s∆s

for a suitable ∆s. Multiply, σ∆(s) from the right so that we obtain ∆σ∆(s) =
s∆sσ∆(s), where the left hand side is equal to s∆ = ss∆s. Therefore, using the
weakly cancellativity of s∆, dividing by s from the left, we obtain s∆s = ∆sσ(s).
This implies the statemnt.

Notation. For an element ∆ ∈ G+, we put
Divl(∆) := {U ∈ G+ : U |l ∆} and Divr(∆) := {U ∈ G+ : U |r ∆}.

Proposition 7.5. Let a fundamental element ∆ ∈ F(G+) be left weakly can-
cellative. Then the following i), ii), iii) and iv) hold.

i) For any element U ∈ Divl(∆), let Ũ ∈ (L/∼)∗ be a lifting to a word.
Then, the class of σ∆(Ũ) in G+ depends only on the class U but not
on the lifting Ũ . Let us denote the class in G+ by σ∆(U).

ii) The divisor set Divl(∆) is invariant under the action of σ∆. In particular,
the unique longest element ∆ is fixed by σ∆.

iii) The fundamental element ∆ is right weakly cancellative.
iv) We have the equality: Divl(∆) = Divr(∆).

Proof. i) Suppose one has a decomposition ∆ ' U · V for U, V ∈ G+, and let Ũ

be a lifting of U into a word in (L/∼)∗. Then, σ∆(Ũ) is well-defined as a word
and hence induce an element in G+, which we denote by the same σ∆(Ũ). We
claim that ∆ is equivalent to V · σ∆(Ũ). This is shown by induction on l(U). If
l(U) = 1, this is the definition of fundamental elements. Let l(U) > 1, Ũ = Ũ ′ ·a
and ∆ ' Ũ ′ · a · V . By induction hypothesis, we have ∆ ' a · V · σ∆(Ũ ′). Due
to the weak cancellativity, V · σ∆(Ũ ′) is equivalent to ∆a. Then, by definition
of fundamental elements, ∆ is equivalent to V · σ∆(Ũ ′) · σ∆(a) ' V · σ∆(Ũ).

Let Ũ1 and Ũ2 be liftings of U . Then, applying the above result, we see that
∆ is equal to V ·σ∆(Ũ1) and V ·σ∆(Ũ2). Then, applying the weak cancellativity
of ∆, we see that σ∆(Ũ1) and σ∆(Ũ2) define the same element in G+, which we
shall denote by σ∆(U).

ii) In the proof of i), taking U = ∆ and V = 1, we obtain ∆ = σ∆(∆). Then,
since σ∆ is of finite order, we obtain σ∆(Divl(∆)) = Divl(σ∆(∆)) = Divl(∆).

iii) Suppose ∆ = V · U = W · U . Then according to i), we have ∆ =
U · σ∆(V ) = U · σ∆(W ). Then the left cancellation condition implies σ∆(V ) =
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σ∆(W ). On the other hand, according to ii), σ∆(V ) = σ∆(W ) are again ele-
ments of Divl(∆) so that we can apply σ∆ to the equality. Since σ∆ is of finite
order, after repeating this several times, we obtain the equality V = W .

iv) ∆ is left divisible by U if and only if ∆ is right divisible by σ∆(U). That
is, the set Divr(∆) of right divisors of ∆ is equal to σ∆(Divl(∆)) = Divl(∆).

Conjecture. Let Ck of the element in §6 Proposition 6.5. If Ck·ord(σ
Ck ) is

weakly cancellative, then G+ satisfies the cancellation condition.

The following theorem shows that we have already enough relations for type
Bii.

Theorem 4. The monoid G+
Bii

satisfies the cancellation condition.

Proof. We, first, remark the following.

Proposition 7.6. The left cancellation condition on G+
Bii

implies the right can-
cellation condition.

Proof. Consider a map ϕ : G+
Bii

→ G+
Bii

, W 7→ ϕ(W ) := σ(rev(W )), where σ

is a permutation
(a b c

c b a

)
and rev(W ) is the reverse of the word W = x1x2 · · ·xt

(xi is a letter or an inverse of a letter) given by the word xt · · ·x2x1. In view
of the defining relation of G+

Bii
in Theorem 1., ϕ is well defined and is an anti-

isomorphism. If βα ' γα, then ϕ(βα) ' ϕ(γα), i.e., ϕ(α)ϕ(β) ' ϕ(α)ϕ(γ).
Using left cancellation condition, we obtain ϕ(β) = ϕ(γ) and, hence, β ' γ.

The following is sufficient to show the left cancellation condition on G+
Bii

.

Proposition 7.7. Let X and Y be positive words in G+
Bii

of length r ∈ Z≥0.

(i) If uX ' uY for some u ∈ {a, b, c}, then X ' Y .
(ii) If aX ' bY , then X ' bZ, Y ' cZ for some positive word Z.
(iii) If aX ' cY , then X ' cZ, Y ' aZ for some positive word Z.
(iv) If bX ' cY , then there exist an integer k (0≤k<r−1) and a word Z

such that X ' ckbaZ and Y ' akbbZ.
Proof. Let us denote by H(r, t) the statement in Proposition 7.7 for all pairs
of words X and Y such that their word-lengths are r and for all u, v ∈ {a, b, c}
such that uX ' vY and the number of elementary transformations to bring uX
to vY is less or equal than t. It is easy to see that H(r, t) is true if r ≤ 1 or
t ≤ 1.

For r, t ∈ Z>1, we prove H(r, t) under the induction hypothesis that H(s, u)
holds for (s, u) such that either s < r and arbitrary u or s = r and u < t.

Let X, Y be of word-length r, and let u1X ' u2W2 ' · · · ' utWt ' ut+1Y
be a sequence of elementary transformations of t steps, where u1, · · · , ut+1 ∈
{a, b, c} and W2, · · · , Wt are positive words of length r. By assumption t > 1,
there exists an index i∈ {2, ..., t} so that we decompose the sequence into two
steps u1X ' uiWi ' ut+1Y , where each step satisfies the induction hypothesis.

If there exists i such that ui is equal either to u1 or ut+1, then by induction
hypothesis, Wi is equivalent either to X or to Y . Then, again, applying the
induction hypothesis to the remaining step, we obtain the statement for the
u1X ' ut+1Y . Thus, we assume from now on ui 6= u1, ut+1 for 1 < i ≤ t.
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Suppose u1 = ut+1. If there exists i such that {u1 = ut+1, ui} 6= {b, c}, then
each of the equivalence says the existence of α, β∈{a, b, c} and words Z1, Z2 such
that X 'αZ1, Wi'βZ1'βZ2 and Y 'αZ2. Applying the induction hypothesis
for r to βZ1 ' βZ2, we get Z1 ' Z2 and, hence, we obtained the statement
X ' αZ1 ' αZ2 ' Y . Thus, we exclude these cases from our considerations.
Next, we consider the case {u1 =ut+1, ui}= {b, c}. However, due to the above
consideration, we have only the case u2 = u3 = · · · = ut. Then, by induction
hypothesis, we have W2 ' · · ·'Wt. On the other hand, since the equivalences
u1X ' u2W2 and ut+1Y ' utWt are the elementary transformations at the
beginning of the words, there exist again α, β ∈{bb, ba} and words Z1, Z2 with
the similar descriptions as above hold, implying again X'Y .

To complete the proof, we have to examine three more cases (u1, u2, u3) =
(a, b, c), (a, c, b) and (b, a, c) for t = 2, where we shall put W := W2.

(I) Case (a, b, c). We have aX ' bW ' cY .
Since the equivalences are single elementary transformations, there exist words
Z1 and Z2 such that X ' bZ1, W ' cZ1 ' baZ2 and Y ' bbZ2. Applying
the induction hypothesis for r to the two equivalent expressions of W , we see
that there exist k and a word Z3 such that 0 ≤ k < r − 2, Z1 ' akbbZ3

and aZ2 ' ckbaZ3. We can apply k-times the induction hypothesis to the
last two equivalent expressions and we see that there exists a word Z4 such that
Z2 ' ckZ4 and baZ3 ' aZ4. Applying again the induction hypothesis to the last
equivalence relation, there exists a word Z5 such that Z4 ' bZ5 and aZ3 ' cZ5.
Once again applying the induction hypothesis to the last equivalence relation, we
finally obtain Z3 ' cZ6 and Z5 ' aZ6 for a word Z6. Reversing the procedure,
obtain the descriptions:

X ' bZ1 ' bakbbZ3 ' bakbbcZ6,
Y ' bbZ2 ' bbckZ4 ' bbckbZ5 ' bbckbaZ6.

By using the relations of G+
Bii

, we can show bakbbc ' cbbckb and bbckba '
abbckb. So, we conclude that X ' cZ, Y ' aZ for Z ' bbckbZ6.

(II) Case (a, c, b). We have aX ' cW ' bY .
Since the equivalences are single elementary transformations, there exist words
Z1 and Z2 such that X ' cZ1, W ' aZ1 ' bbZ2 and Y ' baZ2. Applying the
induction hypothesis for r to the two equivalent expressions of W , we see that
there exists a word Z3 such that Z1 ' bZ3 and bZ2 ' cZ3. Again applying the
induction hypothesis to the last two equivalent expressions, we see that there
exist an integer k with 0 ≤ k < r− 3 and a word Z4 such that Z2 ' ckbaZ4 and
Z3 ' akbbZ4. Reversing the procedure, obtain the descriptions:

X ' cZ1 ' cbZ3 ' cbakbbZ4 and Y ' baZ2 ' backbaZ4.

It is not hard to show the equivalences cbakbb ' bbackb and backba ' cbackb.
Thus, we obtain X ' bZ, Y ' cZ for Z := backbZ4.

(III) Case (b, a, c). We have bX ' aW ' cY .
By induction hypothesis, there exist words Z1 and Z2 such that X ' cZ1,
W ' bZ1 ' cZ2 and Y ' aZ2. Applying the induction hypothesis for r to
the two equivalent expressions of W , we see that there exist k and a word Z3

such that 0 ≤ k < r − 2, Z1 ' ckbaZ3 and Z2 ' akbbZ3. Thus, we obtain the
descriptions:

X ' cZ1 ' cckbaZ3 and Y ' aZ2 ' aakbbZ3.
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This is the conclusion in Proposition 7.7 (iv) with 0 ≤ k + 1 < r−1, which we
looked for.

This completes the proof of Proposition.

This completes the proof of Theorem 4.

Remark 7.3. The sufficient criterion for the cancellation condition given in
[D-P, Prop. 3.6] is not satisfied by the monoid G+

Bii
.

8 2 × 2-matrix representation of the group GX

We construct non-abelian representations of the groups GBii , GBvi , GHii , GHiii .

Theorem 5. For each type X ∈ {Bii, Bvi, Hii,Hiii}, consider matrices A,B,C
∈ GL(2, C) listed below. Then we have the following i) and ii).

i) The correspondence a 7→ A, b 7→ B, c 7→ C induces representations
ρ : GX −→ GL(2, C).

ii) The image ρ(GX) is not an abelian group if l2 6= 1.

1. Type Bii:

A = u
(

1 l2

0 1

)
, B = v

(
l 0
0 l−1

)
, C = u

(
1 1
0 1

)
,

where l6 = 1 and u, v ∈ C×.

2. Type Bvi:

A = u
(

l 0
0 l−1

)
, B = u

(
a b
c d

)
, C = u

( p q
r s

)
,

A = u
(

1 l2

0 1

)
, B = v

(
l 0
0 l−1

)
, C = u

(
1 1
0 1

)
,

where l10 = 1 (l2 6= 1) and u ∈ C×

a = − 1
l(l2 − 1)

, bc =
−l4 + l2 − 1

(1 − l2)2
, d =

l3

l2 − 1

p = −l4a, q = − b

l4
, r = −l4c, s = − d

l4

3. Type Hii:

A = u
(

l 0
0 l−1

)
, B = u

(
a b
c d

)
, C = u

( p q
r s

)
where u ∈ C× and one of the following two cases holds.

i) l2 + l + 1 = 0 and 3p2 + 3p + 2 = 0

a =
l − 1

3
, d =

−l − 2
3

, bc = −2
3
, q =

−b(l + 2)
3p

, r =
p(1 − l)

3b
, s =

2
3p

.
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ii) l2 − l + 1 = 0 and 3p2 − 3p + 2 = 0.

a =
l + 1

3
, d =

−l + 2
3

, bc = −2
3
, q =

b(−l + 2)
3p

, r =
−p(l + 1)

3b
, s =

2
3p

.

4. Type Hiii:

A = u
(

l 0
0 l−1

)
, B = u

(
a b
c d

)
, C = u

( p q
r s

)
,

where l10 = 1 (l2 6= 1) and u ∈ C×

a = − 1
l(l2 − 1)

, bc =
−l4 + l2 − 1

(l2 − 1)2
, d =

l3

l2 − 1

p = a, q =
b

l4
, r = l4c, s = d

Proof. It is sufficient to prove only for the case u = v = 1.
We present the matrices A,B and C by the indeterminates a, b, c, d, p, q, r, s

and l as in the statement, and then solve the polynomial equation on them
defined by the relations listed in Theorem 1. It is unnecessary to check all re-
lations, since some relations are included in the list because of the cancellation
condition, whereas GL(2, C) is a group where the cancellation condition is au-
tomatically satisfied. However, as we shall see, it is sometimes convenient to
take these “superfluous” relations in account. Detailed calculations are left to
the reader.

1.Type Bii: We need to show CBB = BBA, BC = AB,AC = CA, whose
verifications are left to the reader. We have det(A)=det(C)=u2 6=0, det(B)=

v2 6=0. Since ABA−1B−1 =
(

1 l2(1 − l2)
0 1

)
and BCB−1C−1 =

(
1 l2 − 1
0 1

)
,

ρ(GBii) is abelian if and only if l2 = 1.
2. Type Bvi: We need to show ABA = BAB,ACA = BAC, ACB = CAC.

Actually, solving the (1,1) entry of the equation ABA = BAB, tr(A) = tr(B)
and det(B) = 1, w obtain the expressions for a, b, c, d. Then, using the relation
C = ABA−2B, we obtain the expressions for p, q, r, s. Furthermore, comparing
the (1, 1)-entry of A5 = B5, we get l8 + l6 + l4 + l2 + 1 = 0.

3. Type Hii: We need to show ABAB=BABA,ACA=BAC, ACB=CAC.

ABAB =
(

bc + a2l2 bd + abl2

ac + cd/l2 bc + d2/l2

)
, BABA =

(
bc + a2l2 ab + bd/l2

cd + acl2 bc + d2/l2

)
By these calculations, we have d + al2 = 0. By TrA = TrB = TrC and

det A = det B = det C, we have a + d = l + l−1 = p + s, ad − bc = ps − qr = 1.

a =
l2 + 1

l(1 − l2)
, d =

l(l2 + 1)
l2 − 1

, bc =
−2(l4 + 1)
(l2 − 1)2

ACA =
(

l2p q
r s/l2

)
, BAC =

(
alp + br/l alq + bs/l
clp + dr/l clq + ds/l

)
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q =
b

lp(1 − l2)
, r =

l(l4 + 1)p
b(l2 − 1)

, s =
−2l2

(1 − l2)2p

ACB = CAC ⇔ (1−l+l2) = 0 and 3p2−3p+2 = 0, or , (1+l+l2) = 0 and 3p2+3p+2 = 0

We calculate each cases separately and obtain the result.
4. Type Hiii: We need to show ABA = BAB,CBA = ACB, BCA = CBC.

As in case of Bvi, already the first relation ABA = BAB (in particular tr(A) =
tr(B) and det(B) = 1) implies the expressions for a, b, c, d. Using further the
relation ACA = CAC, we obtain a = p, d = s and bc = qr. Then applying the
relation A2C = BA2, we get q = l4b and r = l−4c. Further, using the relation
CA3 = A3B, we obtain l10 = 1.

Corollary. For X ∈ {Bii, Bvi, Hii,Hiii}, σ(QZ(πG+
X)) consists only of the

identity.

Sketch of Proof. For σ ∈ S(L), we consider a matrix X ∈ Mat(2, C) satisfying
the equations: AX = Xσ(A), BX = Xσ(B), CX = Xσ(C). If σ = 1, then
the solutions are constant × id. If σ 6= 1, then X = 0.

Remark. J.Sekiguchi constructed the following 3 × 3-matrices representation:
a 7→ A, b 7→ B, c 7→ C of the group of type Bii.

A =

 a1 0 0
0 a2 0
0 0 a3

 , B =

 0 0 b1

b2 0 0
0 b3 0

 , C =

 a2 0 0
0 a3 0
0 0 a1

 ,

for a1, a2, a3, b1, b2, b3 ∈ C×.
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