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Abstract. We prove that the Laurent polynomial W = x+ y+ 1
xy

enjoys an excessive Laurent phenomenon: there

are infinitely many birational coordinate changes that send W to a Laurent polynomial, and there is a recursive way

to produce them as consecutive mutations. Then we show that the Laurent polynomials obtained by our construction

(as well as their Newton polytopes) are in one-to-one correspondence with Markov triples i.e. with natural solutions
of the equation a2 + b2 + c2 = 3abc.

1. Introduction

Let us first briefly recall the results of [1]. Let S ⊂ Z2 be the set of primitive vectors in Z2, i.e. vectors with
coprime coordinates. For a vector u ∈ S we define a piecewice linear mutation to be an automorphism of the set

Z2 given by the formula:
µtu : v 7→ v + max(〈u, v〉, 0)u,

where 〈u, v〉 is a antisymmetric bilinear form on Z2, normalized by 〈(1, 0), (0, 1)〉 = 1.
For a vector u ∈ S we define a mutation in the direction u as a birational automorphism of P2 given by the

formula:
µ(m,n) : xayb 7→ xayb(1 + xny−m)an−bm

There is a tropicalisation map that associates a piecewise-linear automorphism of f t ∈ PL(Z2) to every birational

transformation f ∈ AutC(x, y) (we aditionally assume that f preserves the volume form ω = dx
x ∧

dy
y ). In particular,

the piecewise-linear transformations µt(m,n) are the tropicalisations of the birational transformations µ(m,n).

The geometric meaning of the tropicalization is the following. Suppose we have a toric surface X given by the
fan T . Then T ′ = µtv(T ) is another fan, defining toric surface X ′. Let Dv be the toric divisor on X corresponding
to the vector v, and s is the point on Dv with coordinate −1. Let D′−v be the toric divisor on X ′ corresponding to

the vector −v, and s′ is the point on D′−v with coordinate −1. Then by the results of [1], there is a surface X̃ and
maps

π : X̃ → X,

π′ : X̃ → X ′,

where π is the blow-up of X at s, and π′ is the blow-up of X ′ at s′. This gives a resolution of birational isomorphism

µv = π′ ◦ π−1.
Moreover strict transform of toric divisors from X to X̃ equals strict transform of toric divisors from X ′. The

correspondence between toric divisors is given by the map µt. Namely we have:

π∗stDt = π
′∗
stDµt

v(t)
,

where π∗st denotes strict transform.

2. Mutations

2.1. Properties of potential. Consider a toric surface X with rational function F , called potential. Let us
introduce a curve C defined by the formula:

C −
∑
t

ntDt = (F ),

where
∑
t ntDt is the part of (F ) supported on toric divisors. The open toric orbit has specific toric coordinates

x, y, which we use as rational coordinates on X. We denote Dt the divisor corresponding to the ray t ∈ Z2, as well

This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, Grant-in-Aid

for Scientific Research (10554503) from Japan Society for Promotion of Science, and Swiss National Foundation for Sciences.
1



as all its strict transforms. If t = (a, b), then the function xb

ya gives a rational function Dt → P1, which we call the

canonical coordinate. We consider it up to taking its inverse. Each toric divisor has the point, where canonical
coordinate equals −1. We denote the set of all such points by Ω.

To such a pair (X,C) we associate a set of vectors V ⊂ Z2 with multiplicities, which will encode the way the
curve C intersects toric divisors. If the curve C intersects divisor corresponding to a vector v transversally, then
vector v enters V the number of times equal to the multiplicity of intersection. If the intersection of C with such
divisor is not transversal, then we count the correct multiplicities using blow-ups. Let s ∈ Dv ⊂ X be a point
where the canonical coordinate equals −1, and C intersects Dv in s. Then we make a blow-up of X in s, and we
denote E1 the exceptional curve of the blow-up. Then we blow-up the point of intersection of E1 and the strict
transform of Dv, and we denote E2 the exceptional curve of the blow-up. We continue by induction, so that Ek
is the exceptional curve of the blow-up at intersection of Ek−1 and the strict transform of Dv. We denote nk the
index of intersection of the strict transform of C with the curve Ek\(Ek∩Ek+1). In the last formula we just remove
one point of intersection of Ek with Ek+1. Of course, there will be only finite number of Ek which intersect C, so
we need to consider only finite number of blow-ups. Then vector kv enters set V with multiplicity nk.

2.2. The case of P2. We consider a Laurent polynomial W = x+ y + 1
xy .

The curve defined by the equation W = 0 is an elliptic curve, intersecting toric divisors at toric points. Let us
consider a toric surface X0 given by fan:

(2,−1), (1,−1), (0,−1), (−1,−1), (−1, 0), (−1, 1), (−1, 2), (0, 1), (1, 0).

This surface is a blow-up of P2 at 6 points, and the strict transform of W = 0 is the smooth elliptic curve C0

that intersects transversally 3 toric divisors D(2,−1), D(−1,−1), D(−1,2). In particular, the set V for the pair (X0, C0)
is V0 = {(2,−1), (−1,−1), (−1, 2)}.

By analogy with cluster mutations, we define the seed to be a triple (X,F, (u, v, w)), where X is a toric surface,
F is a rational function on X, called potential, and (u, v, w) is a triple of vectors in Z2. The seed can be mutated
in either of three directions u,v or w. The cluster mutation µu in the direction of u is defined as:

u′ = µseedu (u) = −u,

v′ = µseedu (v) = µtu(v),

w′ = µseedu (w) = µtu(w).

X ′ is the toric surface, whose fan is obtained from the fan of X by applying µtu. The function F ′ is the pull-back
of F under birational isomorphism µv. Note, that if compose mutation in direction u with mutation in direction
−u, then we obtain the seed, which is related to the original seed by the action of a unipotent element of SL(2,Z).

We choose initial seed (X0,W, V0), and then we start to apply mutations in different directions. In this way we
obtain the set of seeds.

Theorem 1. The function F in all the seeds is a Laurent polynomial.

Proof. Given a seed (X,F, (u, v, w)) we can define curve C by the equation

C − ΣtntDt = (F ),

where ΣvnvDv is the part corresponding to toric divisors. Recall, that there is surface X̃ and maps

π : X̃ → X,

π′ : X̃ → X ′,

where π is a blow-up of the point on Dv ⊂ X, and π′ is a blow-up of the point on Dv′ ⊂ X ′.
For the seed (X ′, F ′, (u′, v′, w′)) we have the curve C ′ given by

C ′ − Σtn
′
tDt = (F ′).

Now we prove the following

Lemma 2. q The intersection of C ′ with toric divisors belongs to the set Ω;q If t ∈ {u′, v′, w′}, then the intersection index k′t of C ′ with Dt is such that k′t > n
′
t;q C ′ is an effective divisor;q C ′ is the union of an elliptic curve A′ and rational curves;q A′ can only intersect 3 toric divisors Du′ ,Dv′ and Dw′ , and the intersection is transversal.
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Proof. Note that the statement is true for the initial seed. We have

C0 −
∑
t∈T

Dt = (W ).

Now we suppose that the statement of the lemma is true for (X,F, (u, v, w)), and we verify it for
(X ′, F ′, (u′, v′, w′)). The birational transformation µu : X → X ′ is decomposed as a blow-up π and blow-down π′.
Let E be the exceptional curve of π, and E′ the exceptional curve of π′. After blowing up π at the intersection of
C and Du we have:

(π∗F ) = π∗stC + (ku − nu)E + ΣvnvDv.

The divisor C ′′ = π∗C + (ku − nu)E is effective, because ku > nu. From the other side

(3) (π∗F ′) = (π∗F ) = (π′)∗stC
′ + (k′−u − n−u)E′ + Σv′nv′Dv′ .

In [1] we proved, that canonical coordinates on toric divisors are preserved by µu. It implies that the set Ω ⊂ X
of points with coordinate −1 maps by µu to the corresponding set on X ′, except for points on divisors Du, D−u,
where we are making blow-ups. But C ′ can intersect Du, D−u only at the set Ω, which proves the first statement
of the lemma.

From 3 we deduce that

C ′′ = (π′)∗stC
′ + (k′−u − n−u)E′.

As divisor C ′′ is effective, we have that k′−u > n−u. The intersection index of C ′ with Dt for t /∈ {u,−u} is the
same as the corresponding intersection of C. This implies the second statement of the lemma. Moreover as strict
transform of C ′ is effective, then C ′ is effective as well.

We also have:

C ′ = π′∗ ◦ (π∗stC + (kv − nv)E),

which implies that C ′ contains elliptic curve A′ = π′∗ ◦ π∗st(A), and possibly additional rational curve π′(E), which
proves the third statement. C ′ intersects toric divisors

The strict transform π∗st(A) only intersects divisors Dv, Dw. So divisor A′ = π′∗ ◦ π∗st(A) can only intersect
Du′ , Dv′ , Dw′ . �

This lemma implies that the divisor F defines effective curve on the open toric orbit, in other words it has poles
only on the locus of toric divisors. Therefore, F is a Laurent polynomial.
�

Lemma 4. Suppose that (u, v, w) are vectors from the seed in the counter-clock-wise order. Consider the triple of
positive integers

(a, b, c) = (〈u, v〉, 〈v, w〉, 〈w, u〉).
We claim thatq (a, b, c) are positive numbers for all the seeds.q (a, b, c) satisfy Markov’s equation a2 + b2 + c2 = abcq for each positive solution of Markov’s equation a2 + b2 + c2 = abc there is a seed with the respective pairings

Proof. For the starting seed (X0,W, V0) we have (a, b, c) = (3, 3, 3). Mutation µu sends (u, v, w) to (v,−u,w +
〈u,w〉u). The triple (a, b, c) goes to

(a, c, ac− b).
Note, that transformation (a, b, c) 7→ (a, c, ac − b) is the same, as the law for producing Markov numbers. This
triple verify the formula:

a2 + b2 + c2 = abc.

For fixed a, c it is a quadratic equation on b. So we can find another root by formula: b′ = ac − b or b′ = a2+c2

b .
The second formula implies that this numbers are always positive. �

This lemma implies, that vectors (u, v, w) from the seed are not colinear. From the other side Lemma 2 implies
that elliptic curve A intersects toric divisors only at Du, Dv, Dw. Let eu, ev, ew be the corresponding indexes of
intersection. Then the intersection theory on toric surfaces implies, that

euu+ evv + eww = 0.

As we know that (u, v, w) are not colinear, we deduce that eu, ev, ew are non-zero, thus A has non-zero intersection
with Du, Dv, Dw. In particular, vectors (u, v, w) can be reconstructed from (X,F ).
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The potential W = x + y + 1
xy can be interpreted as a mirror image of a complex projective plane CP2. By

results of Cho–Oh the Laurent polynomial W equals to the disc-counting function m0(LCl) for the Clifford torus
LCl, a monotone special Lagrangian torus on P2 given as a central fiber of the moment map P2 → ∆. By theorem
1 and lemma 4 we proved that there are infinitely many birational transformations f : (x, y) → (x′, y′) such that
a priori rational function W ′ = f∗W is a Laurent polynomial. Each W ′ of this kind can also be considered as
a non-standard mirror image of P2.We conjecture that for each W ′ there exists a monotone special Lagrangian
torus L′ on CP2 such that W ′ = m0(L′) i.e. W ′ is Fukaya–Oh–Ohta–Ono’s generating function for Maslov index 2
holomorphic discs on P2 with boundary on L′.
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