LAURENT PHENOMENON FOR LANDAU-GINZBURG POTENTIAL

SERGEY GALKIN, ALEXANDR USNICH

Abstract

We prove that the Laurent polynomial $W=x+y+\frac{1}{x y}$ enjoys an excessive Laurent phenomenon: there are infinitely many birational coordinate changes that send W to a Laurent polynomial, and there is a recursive way to produce them as consecutive mutations. Then we show that the Laurent polynomials obtained by our construction (as well as their Newton polytopes) are in one-to-one correspondence with Markov triples i.e. with natural solutions of the equation $a^{2}+b^{2}+c^{2}=3 a b c$.

1. Introduction

Let us first briefly recall the results of $\mathbb{1}$. Let $S \subset \mathbb{Z}^{2}$ be the set of primitive vectors in \mathbb{Z}^{2}, i.e. vectors with coprime coordinates. For a vector $u \in S$ we define a piecewice linear mutation to be an automorphism of the set \mathbb{Z}^{2} given by the formula:

$$
\mu_{u}^{t}: v \mapsto v+\max (\langle u, v\rangle, 0) u
$$

where $\langle u, v\rangle$ is a antisymmetric bilinear form on \mathbb{Z}^{2}, normalized by $\langle(1,0),(0,1)\rangle=1$.
For a vector $u \in S$ we define a mutation in the direction u as a birational automorphism of \mathbb{P}^{2} given by the formula:

$$
\mu_{(m, n)}: x^{a} y^{b} \mapsto x^{a} y^{b}\left(1+x^{n} y^{-m}\right)^{a n-b m}
$$

There is a tropicalisation map that associates a piecewise-linear automorphism of $f^{t} \in P L\left(\mathbb{Z}^{2}\right)$ to every birational transformation $f \in \operatorname{Aut} \mathbb{C}(x, y)$ (we aditionally assume that f preserves the volume form $\omega=\frac{d x}{x} \wedge \frac{d y}{y}$). In particular, the piecewise-linear transformations $\mu_{(m, n)}^{t}$ are the tropicalisations of the birational transformations $\mu_{(m, n)}$.

The geometric meaning of the tropicalization is the following. Suppose we have a toric surface X given by the fan T. Then $T^{\prime}=\mu_{v}^{t}(T)$ is another fan, defining toric surface X^{\prime}. Let D_{v} be the toric divisor on X corresponding to the vector v, and s is the point on D_{v} with coordinate -1 . Let D_{-v}^{\prime} be the toric divisor on X^{\prime} corresponding to the vector $-v$, and s^{\prime} is the point on D_{-v}^{\prime} with coordinate -1 . Then by the results of [1], there is a surface \widetilde{X} and maps

$$
\begin{array}{r}
\pi: \widetilde{X} \rightarrow X \\
\pi^{\prime}: \widetilde{X} \rightarrow X^{\prime}
\end{array}
$$

where π is the blow-up of X at s, and π^{\prime} is the blow-up of X^{\prime} at s^{\prime}. This gives a resolution of birational isomorphism

$$
\mu_{v}=\pi^{\prime} \circ \pi^{-1}
$$

Moreover strict transform of toric divisors from X to \widetilde{X} equals strict transform of toric divisors from X^{\prime}. The correspondence between toric divisors is given by the map μ^{t}. Namely we have:

$$
\pi_{s t}^{*} D_{t}=\pi_{s t}^{*} D_{\mu_{v}^{t}(t)}
$$

where $\pi_{s t}^{*}$ denotes strict transform.

2. Mutations

2.1. Properties of potential. Consider a toric surface X with rational function F, called potential. Let us introduce a curve C defined by the formula:

$$
C-\sum_{t} n_{t} D_{t}=(F)
$$

where $\sum_{t} n_{t} D_{t}$ is the part of (F) supported on toric divisors. The open toric orbit has specific toric coordinates x, y, which we use as rational coordinates on X. We denote D_{t} the divisor corresponding to the ray $t \in \mathbb{Z}^{2}$, as well

[^0]as all its strict transforms. If $t=(a, b)$, then the function $\frac{x^{b}}{y^{a}}$ gives a rational function $D_{t} \rightarrow \mathbb{P}^{1}$, which we call the canonical coordinate. We consider it up to taking its inverse. Each toric divisor has the point, where canonical coordinate equals -1 . We denote the set of all such points by Ω.

To such a pair (X, C) we associate a set of vectors $V \subset \mathbb{Z}^{2}$ with multiplicities, which will encode the way the curve C intersects toric divisors. If the curve C intersects divisor corresponding to a vector v transversally, then vector v enters V the number of times equal to the multiplicity of intersection. If the intersection of C with such divisor is not transversal, then we count the correct multiplicities using blow-ups. Let $s \in D_{v} \subset X$ be a point where the canonical coordinate equals -1 , and C intersects D_{v} in s. Then we make a blow-up of X in s, and we denote E_{1} the exceptional curve of the blow-up. Then we blow-up the point of intersection of E_{1} and the strict transform of D_{v}, and we denote E_{2} the exceptional curve of the blow-up. We continue by induction, so that E_{k} is the exceptional curve of the blow-up at intersection of E_{k-1} and the strict transform of D_{v}. We denote n_{k} the index of intersection of the strict transform of C with the curve $E_{k} \backslash\left(E_{k} \cap E_{k+1}\right)$. In the last formula we just remove one point of intersection of E_{k} with E_{k+1}. Of course, there will be only finite number of E_{k} which intersect C, so we need to consider only finite number of blow-ups. Then vector $k v$ enters set V with multiplicity n_{k}.
2.2. The case of \mathbb{P}^{2}. We consider a Laurent polynomial $W=x+y+\frac{1}{x y}$.

The curve defined by the equation $W=0$ is an elliptic curve, intersecting toric divisors at toric points. Let us consider a toric surface X_{0} given by fan:

$$
(2,-1),(1,-1),(0,-1),(-1,-1),(-1,0),(-1,1),(-1,2),(0,1),(1,0)
$$

This surface is a blow-up of \mathbb{P}^{2} at 6 points, and the strict transform of $W=0$ is the smooth elliptic curve C_{0} that intersects transversally 3 toric divisors $D_{(2,-1)}, D_{(-1,-1)}, D_{(-1,2)}$. In particular, the set V for the pair $\left(X_{0}, C_{0}\right)$ is $V_{0}=\{(2,-1),(-1,-1),(-1,2)\}$.

By analogy with cluster mutations, we define the seed to be a triple $(X, F,(u, v, w))$, where X is a toric surface, F is a rational function on X, called potential, and (u, v, w) is a triple of vectors in \mathbb{Z}^{2}. The seed can be mutated in either of three directions u, v or w. The cluster mutation μ_{u} in the direction of u is defined as:

$$
\begin{gathered}
u^{\prime}=\mu_{u}^{\text {seed }}(u)=-u \\
v^{\prime}=\mu_{u}^{\text {seed }}(v)=\mu_{u}^{t}(v) \\
w^{\prime}=\mu_{u}^{\text {seed }}(w)=\mu_{u}^{t}(w)
\end{gathered}
$$

X^{\prime} is the toric surface, whose fan is obtained from the fan of X by applying μ_{u}^{t}. The function F^{\prime} is the pull-back of F under birational isomorphism μ_{v}. Note, that if compose mutation in direction u with mutation in direction $-u$, then we obtain the seed, which is related to the original seed by the action of a unipotent element of $S L(2, \mathbb{Z})$.

We choose initial seed $\left(X_{0}, W, V_{0}\right)$, and then we start to apply mutations in different directions. In this way we obtain the set of seeds.

Theorem 1. The function F in all the seeds is a Laurent polynomial.
Proof. Given a seed $(X, F,(u, v, w))$ we can define curve C by the equation

$$
C-\Sigma_{t} n_{t} D_{t}=(F)
$$

where $\Sigma_{v} n_{v} D_{v}$ is the part corresponding to toric divisors. Recall, that there is surface \widetilde{X} and maps

$$
\begin{aligned}
\pi & : \widetilde{X} \rightarrow X \\
\pi^{\prime} & : \widetilde{X} \rightarrow X^{\prime}
\end{aligned}
$$

where π is a blow-up of the point on $D_{v} \subset X$, and π^{\prime} is a blow-up of the point on $D_{v^{\prime}} \subset X^{\prime}$.
For the seed $\left(X^{\prime}, F^{\prime},\left(u^{\prime}, v^{\prime}, w^{\prime}\right)\right)$ we have the curve C^{\prime} given by

$$
C^{\prime}-\Sigma_{t} n_{t}^{\prime} D_{t}=\left(F^{\prime}\right)
$$

Now we prove the following
Lemma 2. - The intersection of C^{\prime} with toric divisors belongs to the set Ω;

- If $t \in\left\{u^{\prime}, v^{\prime}, w^{\prime}\right\}$, then the intersection index k_{t}^{\prime} of C^{\prime} with D_{t} is such that $k_{t}^{\prime} \geqslant n_{t}^{\prime}$;
- C^{\prime} is an effective divisor;
- C^{\prime} is the union of an elliptic curve A^{\prime} and rational curves;
- A^{\prime} can only intersect 3 toric divisors $D_{u^{\prime}}, D_{v^{\prime}}$ and $D_{w^{\prime}}$, and the intersection is transversal.

Proof. Note that the statement is true for the initial seed. We have

$$
C_{0}-\sum_{t \in T} D_{t}=(W)
$$

Now we suppose that the statement of the lemma is true for $(X, F,(u, v, w))$, and we verify it for $\left(X^{\prime}, F^{\prime},\left(u^{\prime}, v^{\prime}, w^{\prime}\right)\right)$. The birational transformation $\mu_{u}: X \rightarrow X^{\prime}$ is decomposed as a blow-up π and blow-down π^{\prime}. Let E be the exceptional curve of π, and E^{\prime} the exceptional curve of π^{\prime}. After blowing up π at the intersection of C and D_{u} we have:

$$
\left(\pi^{*} F\right)=\pi_{s t}^{*} C+\left(k_{u}-n_{u}\right) E+\Sigma_{v} n_{v} D_{v}
$$

The divisor $C^{\prime \prime}=\pi^{*} C+\left(k_{u}-n_{u}\right) E$ is effective, because $k_{u} \geqslant n_{u}$. From the other side

$$
\begin{equation*}
\left(\pi^{*} F^{\prime}\right)=\left(\pi^{*} F\right)=\left(\pi^{\prime}\right)_{s t}^{*} C^{\prime}+\left(k_{-u}^{\prime}-n_{-u}\right) E^{\prime}+\Sigma_{v^{\prime}} n_{v^{\prime}} D_{v^{\prime}} \tag{3}
\end{equation*}
$$

In 11 we proved, that canonical coordinates on toric divisors are preserved by μ_{u}. It implies that the set $\Omega \subset X$ of points with coordinate -1 maps by μ_{u} to the corresponding set on X^{\prime}, except for points on divisors D_{u}, D_{-u}, where we are making blow-ups. But C^{\prime} can intersect D_{u}, D_{-u} only at the set Ω, which proves the first statement of the lemma.

From 3 we deduce that

$$
C^{\prime \prime}=\left(\pi^{\prime}\right)_{s t}^{*} C^{\prime}+\left(k_{-u}^{\prime}-n_{-u}\right) E^{\prime}
$$

As divisor $C^{\prime \prime}$ is effective, we have that $k_{-u}^{\prime} \geqslant n_{-u}$. The intersection index of C^{\prime} with D_{t} for $t \notin\{u,-u\}$ is the same as the corresponding intersection of C. This implies the second statement of the lemma. Moreover as strict transform of C^{\prime} is effective, then C^{\prime} is effective as well.

We also have:

$$
C^{\prime}=\pi_{*}^{\prime} \circ\left(\pi_{s t}^{*} C+\left(k_{v}-n_{v}\right) E\right)
$$

which implies that C^{\prime} contains elliptic curve $A^{\prime}=\pi_{*}^{\prime} \circ \pi_{s t}^{*}(A)$, and possibly additional rational curve $\pi^{\prime}(E)$, which proves the third statement. C^{\prime} intersects toric divisors

The strict transform $\pi_{s t}^{*}(A)$ only intersects divisors D_{v}, D_{w}. So divisor $A^{\prime}=\pi_{*}^{\prime} \circ \pi_{s t}^{*}(A)$ can only intersect $D_{u^{\prime}}, D_{v^{\prime}}, D_{w^{\prime}}$.

This lemma implies that the divisor F defines effective curve on the open toric orbit, in other words it has poles only on the locus of toric divisors. Therefore, F is a Laurent polynomial.

Lemma 4. Suppose that (u, v, w) are vectors from the seed in the counter-clock-wise order. Consider the triple of positive integers

$$
(a, b, c)=(\langle u, v\rangle,\langle v, w\rangle,\langle w, u\rangle)
$$

We claim that

- (a, b, c) are positive numbers for all the seeds.
- (a, b, c) satisfy Markov's equation $a^{2}+b^{2}+c^{2}=a b c$
- for each positive solution of Markov's equation $a^{2}+b^{2}+c^{2}=a b c$ there is a seed with the respective pairings

Proof. For the starting seed $\left(X_{0}, W, V_{0}\right)$ we have $(a, b, c)=(3,3,3)$. Mutation μ_{u} sends (u, v, w) to $(v,-u, w+$ $\langle u, w\rangle u)$. The triple (a, b, c) goes to

$$
(a, c, a c-b)
$$

Note, that transformation $(a, b, c) \mapsto(a, c, a c-b)$ is the same, as the law for producing Markov numbers. This triple verify the formula:

$$
a^{2}+b^{2}+c^{2}=a b c
$$

For fixed a, c it is a quadratic equation on b. So we can find another root by formula: $b^{\prime}=a c-b$ or $b^{\prime}=\frac{a^{2}+c^{2}}{b}$. The second formula implies that this numbers are always positive.

This lemma implies, that vectors (u, v, w) from the seed are not colinear. From the other side Lemma 2 implies that elliptic curve A intersects toric divisors only at D_{u}, D_{v}, D_{w}. Let e_{u}, e_{v}, e_{w} be the corresponding indexes of intersection. Then the intersection theory on toric surfaces implies, that

$$
e_{u} u+e_{v} v+e_{w} w=0
$$

As we know that (u, v, w) are not colinear, we deduce that e_{u}, e_{v}, e_{w} are non-zero, thus A has non-zero intersection with D_{u}, D_{v}, D_{w}. In particular, vectors (u, v, w) can be reconstructed from (X, F).

The potential $W=x+y+\frac{1}{x y}$ can be interpreted as a mirror image of a complex projective plane $\mathbb{C P}^{2}$. By results of Cho-Oh the Laurent polynomial W equals to the disc-counting function $m_{0}\left(L_{C l}\right)$ for the Clifford torus $L_{C l}$, a monotone special Lagrangian torus on \mathbb{P}^{2} given as a central fiber of the moment map $\mathbb{P}^{2} \rightarrow \Delta$. By theorem 1 and lemma 4 we proved that there are infinitely many birational transformations $f:(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ such that a priori rational function $W^{\prime}=f^{*} W$ is a Laurent polynomial. Each W^{\prime} of this kind can also be considered as a non-standard mirror image of \mathbb{P}^{2}.We conjecture that for each W^{\prime} there exists a monotone special Lagrangian torus L^{\prime} on $\mathbb{C P}^{2}$ such that $W^{\prime}=m_{0}\left(L^{\prime}\right)$ i.e. W^{\prime} is Fukaya-Oh-Ohta-Ono's generating function for Maslov index 2 holomorphic discs on \mathbb{P}^{2} with boundary on L^{\prime}.

References

[1] Alexandr Usnich: Symplectic automorphisms of $\mathbb{C P}^{2}$ and the Thompson group T, arXiv:math/0611604
[2] John Alexander Cruz Morales and Sergey Galkin: Upper bounds for mutations of potentials, arXiv:1301.4541 SIGMA 9 (2013), 005, 13 pages.
[3] John Alexander Cruz Morales, Sergey Galkin, and Alexandr Usnich: Mutations of potentials, in preparation.

[^0]: This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, Grant-in-Aid for Scientific Research (10554503) from Japan Society for Promotion of Science, and Swiss National Foundation for Sciences.

