G-minimal varieties are quantum minimal

SERGEY GALKIN

Abstract. We show that G-minimal Fano varieties are quantum minimal.

The aim of this note is to provide a conceptual explanation (theorem 15, remarks 23|24) for all discovered (so far) phenomena of minimality in quantum cohomology. In particular we show that 8 known differential operators of type $D 3$ (see example 39) that do not correspond to any minimal Fano threefolds, do actually come from geometry of G-Fano threefolds.

Let X be a smooth $(n-1)$-dimensional variety embedded by linear system $\mathcal{L}^{\otimes k}$. Assume that X admits action of some finite (possibly trivial) group G. Consider cohomology algebra $H=H^{\bullet}(X, \mathbb{Q})$, its subalgebra H_{a} of algebraic cycles, its G-invariant subalgebra H_{a}^{G}, and subring H_{L} generated by $L=c_{1}(\mathcal{L}): H_{L}=\mathbb{Q}[L] / L^{n} \subset H$.

Inclusions $H_{L} \subset H_{a}^{G} \subset H_{a} \subset H$ imply inequalities

$$
\begin{equation*}
n=\operatorname{dim} H_{L} \leqslant \operatorname{dim} H_{a}^{G} \leqslant \operatorname{dim} H_{a} \leqslant \operatorname{dim} H \tag{1}
\end{equation*}
$$

Definition 2. Variety X is called homologically minimal (or just minimal) if its cohomology H is n-dimensional, and algebraically G-minimal if $\operatorname{dim} H_{a}^{G}=n$.
Remark 3. Variety X is called G-Fano if $H^{2}(X, \mathbb{Q})^{G}$ is 1-dimensional, i.e. $H^{2}(X, \mathbb{Q})^{G}=\mathbb{Q} c_{1}(X)$ and anticanonical line bundle is ample. Obviously, algebraically G-minimal Fano varieties are G-Fano, and G-Fano varieties of dimension $\leqslant 3$ are algebraically G-minimal.

For classes $\gamma_{i} \in H^{\bullet}(X)$ and $\beta \in H_{2}(X, \mathbb{Z})$ let $\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3}\right\rangle_{\beta}$ be 3 -pointed genus- 0 Gromov-Witten invariant (naively equal to number of rational curves of homology class β passing through three cycles Poincare-dual to classes γ_{i} if β is effective class and 0 otherwise).
Definition 4. Very small (algebraic) quantum cohomology of X is a trivial $\mathbb{Q}[q]$ - module $q H_{a}(X)=H_{a}(X)[q]$ with multiplication \star defined by

$$
\begin{equation*}
\int_{[X]}\left(\gamma_{1} \star \gamma_{2}\right) \cup \gamma_{3}=\sum_{\beta \in H_{2}(X, \mathbb{Z})}\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3}\right\rangle_{\beta} q^{c_{1}(X) \cdot \beta} \tag{5}
\end{equation*}
$$

Ring $q H(X)$ is a commutative associative unital ring, and it is homogeneous with degree of q equal to 1 and degree of $\gamma \otimes 1$ equal to half of usual degree of $\gamma \in H^{\bullet}(X)$.
Definition 6. Minimal quantum cohomology $q H_{m}(X)$ is a subring of very small quantum cohomology generated by $c_{1}(X) \otimes 1$ and q.
Definition 7. Quantum rank $N(X)$ of X is the rank of $q H_{m}(X)$ as $\mathbb{Q}[q]$-module.
Fano variety X is called quantum maximal if $N(X)=\operatorname{dim} H_{a}$ i.e. $q H_{m}(X)=q H_{a}(X)$.
Fano variety X is called quantum minimal if $N(X)=n$.
Some reconstruction theory for quantum minimal varieties is developed in [10].
Remark 8. Upper bound for quantum rank is obvious and congruence $c_{1}(X)^{\star k}=c_{1}(X)^{\cup k} \bmod q$ implies that $N(X)$ cannot be less than n.
Example 9. Variety X is algebraically minimal \Longleftrightarrow it is both quantum minimal and maximal.
Grassmannian $G(2,4)$ is quantum minimal, but not maximal.
Grassmannian $G(2,5)$ is quantum maximal, but not minimal.
Grassmannian $G(2,6)$ is neither quantum minimal, nor quantum maximal.

[^0]More generally Grassmannians $G(k, p)$ for prime values of p (e.g. $G(2,5)$) are quantum maximal (see corollary 14) and algebraically G-minimal varieties are quantum minimal (see theorem 15).
Definition 10 (see also [5]). Quantum characteristic polynomial of variety X is the characteristic polynomial of the operator $\star c_{1}(X)$ acting on the vector space $q H_{a}(X) \otimes \mathbb{Q}(q)$. (Anticanonical) spectrum of variety X is the set of roots of its quantum characteristic polynomial.
Lemma 11. Quantum rank $N(X)$ is not less than number of distinct non-zero elements in the spectrum of X.
Proof. By definition $N(X)$ is the degree of the minimal polynomial for operator $\star c_{1}(X)$ acting on $q H_{a}(X) \otimes \mathbb{Q}(q)$.

Corollary 12. If variety X is quantum minimal then number of distinct non-zero elements in its spectrum is not more than $n=\operatorname{dim} X+1$.
Corollary 13. If the spectrum of variety X is simple i.e. all eigenvalues of $\star c_{1}(X)$ are distinct and non-zero, then variety X is quantum maximal.
Corollary 14. Grassmannians $G(k, p)$ are quantum maximal for prime values of p.
Proof. By [4] roots of quantum characteristic polynomial of $G(k, p)$ are proportional to sums of the elements in all different k-tuples of distinct p-th roots of unity. For prime values of p all these numbers are distinct, so previous corollary 13 implies $G(k, p)$ is quantum maximal.
Theorem 15. If Fano variety X is algebraically G-minimal then X is quantum minimal.
This theorem holds because quantum multiplication respects the group action:
Lemma 16. For any $g \in G, \gamma_{1}, \gamma_{2} \in q H_{a}(X)$ we have $g^{*} \gamma_{1} \star g^{*} \gamma_{2}=g^{*}\left(\gamma_{1} \star \gamma_{2}\right)$, where action of G on $H_{a}[q]$ is defined by the base change i.e. $g^{*} q=q$.

Corollary 17. Vector space $H_{a}^{G}[q]$ is closed with respect to \star-multiplication.
Proof of the corollary 17. If $g^{*} \gamma_{1}=\gamma_{1}$ and $g^{*} \gamma_{2}=\gamma_{2}$ then $g^{*}\left(\gamma_{1} \star \gamma_{2}\right)=g^{*} \gamma_{1} \star g^{*} \gamma_{2}=\gamma_{1} \star \gamma_{2}$.
Corollary 18. Minimal quantum cohomology $q H_{m}(X)$ is a subring of $H_{a}^{G}[q]$.
Proof. Anticanonical class is algebraic and G-invariant, so $c_{1}(X) \in H_{a}^{G}[q]$ and by corollary 17 the whole subring $q H_{m}(X)$ generated by $c_{1}(X)$ lies in $H_{a}^{G}[q]$.

Proof of the lemma 16. Since Gromov-Witten invariants are well defined and are indeed invariant with respect to the isomorphims for all classes $\beta \in H_{2}(X)$ and $\gamma_{i} \in H^{\bullet}(X)$. one has

$$
\begin{equation*}
\left\langle g^{*} \gamma_{1}, \ldots, g^{*} \gamma_{n}\right\rangle_{\beta}=\left\langle\gamma_{1}, \ldots, \gamma_{n}\right\rangle_{g_{*} \beta} \tag{19}
\end{equation*}
$$

Anticanonical class $c_{1}(X)$ is G-invariant, so any automorphism preserves anticanonical degrees:

$$
\begin{gather*}
g^{*} c_{1}(X)=c_{1}(X) \tag{20}\\
c_{1}(X) \cdot \beta=\left(g^{-1}\right)^{*} c_{1}(X) \cdot \beta=c_{1}(X) \cdot g_{*} \beta \tag{21}
\end{gather*}
$$

For fixed γ_{1}, γ_{2} and arbitrary γ_{3} using equalities 19, 20, 21 we derive:

$$
\begin{align*}
\int_{[X]}\left(g^{*} \gamma_{1} \star g^{*} \gamma_{2}\right) \cup \gamma_{3}=\sum_{\beta}\left\langle g^{*} \gamma_{1}, g^{*} \gamma_{2}, \gamma_{3}\right\rangle_{\beta} q^{c_{1}(X) \cdot \beta}= & \sum_{\beta}\left\langle\gamma_{1}, \gamma_{2},\left(g^{-1}\right)^{*} \gamma_{3}\right\rangle_{g_{*} \beta} q^{c_{1}(X) \cdot g_{*} \beta}= \tag{22}\\
& \left.=\int_{[X]}\left(\gamma_{1} \star \gamma_{2}\right) \cup g^{-1}\right)^{*} \gamma_{3}=\int_{[X]}\left(g^{*}\left(\gamma_{1} \star \gamma_{2}\right)\right) \cup \gamma_{3}
\end{align*}
$$

This proves the lemma.
Proof of the theorem 15. By corollary 18 minimal quantum cohomology $q H_{m}(X)$ is contained inside $H_{a}^{G}[q]$. That implies $N(X) \leqslant \operatorname{dim} \widehat{H_{a}^{G}}$, but by definition of algebraic G-minimality $\operatorname{dim} H_{a}^{G}=n$, so $N(X) \leqslant n$ i.e. X is quantum minimal.

Remark 23. Actually theorem 15 can be considered as a particular manifestation of monodromy action for family $[X / G] \rightarrow[p t / G]$ over stack $[p t / G]$ with fibers X. Geometrically deformation invariance of Gromov-Witten is invariance of correlators with respect to Gauss-Manin connection.

Remark 24. There are two frameworks for quantum cohomology - symplectic and algebraic. One may notice neither of these definitions were used in the proof. Geometrical part is hidden behind the equalities $19,20,21$ and the fact that correlators are invariant with respect to algebraic or symplectic isomorphisms.

Moreover, one can even apply the theorem in the case of non-geometric action of the Galois group (or mixed geometric and Galois action) on variety X and it's cohomologies (e.g. $H_{e t}\left(X, \mathbb{Q}_{l}\right)$) if X is defined over \mathbb{Q} (or over some number field). This is true since in algebraic framework is motivic and everything is defined over the base field of $X: M_{g, n}(X, \beta)$, evaluation map $e v: M_{g, n}(X, \beta) \rightarrow X^{n}, \psi$-classes and the virtual fundamental class.
Remark 25. Since quantum cohomology is deformation-invariant we deduce from corollary 18 that minimal quantum cohomology $q H_{m}(X)$ is contained in the intersection of all G-invariant algebraic cycles for all possible complex structures and actions of groups on X.

We'd like to note that since quantum rank $N(X)$ doesn't depend on any action of group G, corollary 18 says that knowledge of quantum cohomology provides us with a lower bound for dimension of G-invariant cohomology for any G. In small dimensions this gives bound for G-invariant Picard number $\rho^{G}=\operatorname{dim} H^{2}(X, \mathbb{Q})^{G}$. In particular
Lemma 26. For any action $G: X$ we have lower bound $\operatorname{dim} H_{a}(X)^{G} \geqslant N(X)$.
For any action $G: S$ of group on del Pezzo surface we have lower bound $\rho^{G}(S) \geqslant N(X)-2$
For any action $G: V$ of group on Fano threefold we have lower bound $\rho^{G}(V) \geqslant \frac{N(X)}{2}-1$.
In practice bound of lemma 26 is sharp in a sense that there exists some deformation and action of some group $G: X^{\prime}$ with inequality becoming equality. Manin argues 1 that quantum cohomology should be promoted to quantum motive and this promotion turns every algebraic variety into a sort of homogeneous space (over operad of motives of moduli stacks of curves). Motivated by this insight we propose the following conjecture (which should be a "consequence of quantum Torelli"):
Conjecture 27. For any deformation class of Fano threefolds the bounds 26 are sharp i.e. there exists some family of threefolds in this class over some base such that monodromy-invariant part of cohomology coincides with minimal quantum cohomology (after change of scalars).

In collaboration [1] we compute minimal quantum cohomology of Fano threefolds and, in particular, verify the conjecture 27.

Quantum differential equation and its solution.
Let t be a coordinate on $\mathbf{G}_{m}=\operatorname{Spec} \mathbb{C}\left[t, t^{-1}\right]$ and $D=t \frac{d}{d t}$.
Definition 28. Quantum differential equation (QDE) is a trivial vector bundle over \mathbf{G}_{m} with fibre H and connection

$$
\begin{equation*}
D \Phi=L \star \Phi \tag{29}
\end{equation*}
$$

where $\Phi \in H[[t]]$.
Definition 30. Let $\mathcal{G}_{X}(t)=[p t]+\sum_{n \geqslant 1} \mathcal{G}_{n}(X) t^{n}$ be the unique analytic solution of 29 with initial condition $\mathcal{G}_{X}(0)=[p t]$. Define G-series as

$$
\begin{equation*}
G_{X}(t)=\int_{[X]} \mathcal{G}_{X}(t)=1+\sum_{n \geqslant 1} g_{n}(X) t^{n} \tag{31}
\end{equation*}
$$

Define regularized G-series as Fourier-Laplace transform of G-series:

$$
\begin{equation*}
\hat{G}_{X}(t)=1+\sum_{n \geqslant 1} n!\cdot g_{n}(X) t^{n} \tag{32}
\end{equation*}
$$

Definition 33. Scalar $Q D E$ is a differential operator of minimal degree (in D) annihilating $G_{X}(t)$, and scalar $R Q D E$ (scalar regularized QDE) is a differential operator of minimal degree annihilating \hat{G}_{X}).
Proposition 34. Degree of scalar $Q D E(X)$ equals to quantum rank $N(X)$.

Examples.

Let S_{d} be a del Pezzo surface of degree $d=1, \ldots, 9$ which is a blowup of projective plane in $(9-d)$ points in generic position, and $Q=\mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{3}-$ a smooth quadric surface. Anticanonical linear system maps S_{d} to \mathbb{P}^{d} and for $d \geqslant 3$ this map is embedding. (-1 -curves are exceptional curves of blowups and strict transforms of lines passing through 2 points of blowup, conics passing through 5 points of blowup, etc

[^1]Example 35. Surface $S_{8}=\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)\right)$ has unique (-1)-curve C. Uniqueness implies C is G-invariant for any action $G: S_{8}$, hence space $H^{2}\left(S_{8}, \mathbb{Q}\right)^{G}$ is two-dimensional since it contains two linearly independent elements $c_{1}\left(S_{8}\right)$ and C.

Example 36. Similarly, intersection graph for (-1)-curves on S_{7} is A_{3} and so the middle (-1)-curve C (one that intersects other two (-1)-curves) is G-invariant for any action $G: S_{7}$, and space $H^{2}\left(S_{7}, \mathbb{Q}\right)^{G}$ contains twodimensional space generated by $K_{S_{7}}$ and C. Action of $\mathbb{Z} / 2 \mathbb{Z}$ on S_{7} induced from line-interchanging involution on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ swaps two (-1)-curves different from C, so $\operatorname{dim} H^{\mathbb{Z} / 2 \mathbb{Z}}\left(S_{7}\right)=4$.
Theorem 37 (see [2]). Del Pezzo surface S_{d} of degree d is G-Fano $\Longleftrightarrow S$ is \mathbb{P}^{2}, Q or $d \leqslant 6$.
Corollary 38. Del Pezzo surfaces $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, \mathbb{P}^{1} \times \mathbb{P}^{1}$ and \mathbb{P}^{2} are quantum minimal.
Example 39. There are 8 deformation classes of G-Fano threefolds Y with $\operatorname{dim} H^{2}(Y, \mathbb{Q})>1,6$ has index one: Y_{20} of degree 20, Y_{24} of degree 24, Y_{28} of degree $28, Y_{30}$ of degree $30, U_{12}$ and V_{12} of degree 12. and two has index equal to two: $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $W \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ of degree 48 .

They produce 8 equations of type $D 3$ [6].
Let t be a coordinate on $G_{m}=\operatorname{Spec} \mathbb{C}\left[t, t^{-1}\right]$ and $D=t \frac{d}{d t}$.
Scalar $\operatorname{RQDE}\left(Y_{20}\right)$ has the form

$$
\begin{align*}
\mathcal{D}_{Y_{20}}=D^{3}-t \cdot 2 D(D+1)(2 D+1)-t^{2} & \cdot 112(D+1)^{3}- \tag{40}\\
& -t^{3} \cdot 184(D+1)(D+2)(2 D+3)-t^{4} \cdot 336(D+1)(D+2)(D+3)
\end{align*}
$$

Acknowledgement. This article is an extended first part of an older preprint 3] that was prepared during my visit in 2008 to Johannes Gutenberg Universitaet by SFB/TR 45 program, and informal visit to IHES. I thank Duco van Straten and Vasily Golyshev for invitations, support and inspiring discussions on differential equations. Thanks to Ivan Cheltsov, Yuri Prokhorov and Constantin Shramov for the discussions of G-Fano varieties.

References

[1] Tom Coates, Alessio Corti, Sergey Galkin, Vasily Golyshev, Alexander Kasprzyk: Quantum differential equations of Fano threefolds, in preparation: http://coates.ma.ic.ac.uk/fanosearch/
[2] Igor Dolgachev and Vasily Iskovskikh: Finite subgroups of the plane Cremona group, arXiv:math/0610595
[3] Sergey Galkin: Two instances of fake minimal Fano threefolds (2008), http://sergey.ipmu.jp/fakefano.pdf
[4] Sergey Galkin and Vasily Golyshev: Quantum cohomology of Grassmannians and cyclotomic fields, Russian Mathematical Surveys (2006), 61(1):171
[5] Vasily Golyshev: Spectra and strains, arXiv:0801.0432
[6] Vasily Golyshev and Jan Stienstra: Fuchsian equations of type DN, arXiv:math/0701936
[7] Kenji Matsuki: Weyl groups and birational transformations among minimal models, 1995
[8] Shigefumi Mori and Shigeru Mukai: Classification of fano 3-folds with $b_{2} \geqslant 2$, Manuscr. Math., 36:147-162 (1981) Erratum 110: 407 (2003)
[9] Yu. G. Prokhorov, G-Fano threefolds I, $I I$, arXiv:1012.4959 arXiv:1101.3854
[10] Victor Przyjalkowski: Minimal Gromov-Witten ring, arXiv:0710.4084.

[^0]: Date: May 29, 2012.
 This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. This work was supported by Grant-in-Aid for Scientific Research (10554503) from Japan Society for Promotion of Science. This is an update for the first part of my earlier SFB/TR 45 preprint 3 .

[^1]: ${ }^{1}$ in his lecture at IHES dedicated to Grothendieck's anniversary

