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1 Introduction

Conformal field theory plays several distinct roles in our understanding of nature, including

quantum gravity. First, 2D CFT defines the classical solutions of the mysterious system

whose perturbative amplitudes are given by the dynamics of relativistic strings. Second of

all, conformal field theory defines the Hamiltonian of quantum gravity in spaces with neg-

ative cosmological constant and asymptotically anti-de Sitter boundary conditions. Third

of all, conformal field theory describes fixed points of the renormalization group flow that

organizes the behavior of all local quantum systems, including string theory in the low-

energy approximation. Beyond these important roles, CFT appears in many other guises

in various aspects of fundamental physics.

It is therefore of interest to understand as clearly as possible the gross features of the

“landscape” of conformal field theories [3, 20]. Even the case that is by far best explored,

that of two-dimensional CFT, is far from being understood in a systematic way.

Recently multiple independent lines of development have converged to probe the con-

sistency conditions on the space of conformal field theories in extreme limits. In particular,

various papers over recent years have investigated the question of how big a gap can ever

be opened in the spectrum of operator dimensions, above a universal sector defined by

products of stress tensors.

This question is explored under various simplifying assumptions in different articles:

in [4, 8, 9], the two-dimensional case is explored under the assumption of holomorphic

factorization of the Hilbert space; in [18] the two-dimensional case is explored again and

extended superconformal symmetry is assumed; in [5, 6] the authors examine the maximum

possible dimension of the lowest-dimension operator appearing in the operator product
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expansion of two scalar operators whose dimensions are taken as given; in [2] the two-

dimensional case is probed once again and the dimension of the lowest primary operator

is bounded in a completely general CFT satisfying the minimal properties of unitarity and

discrete operator spectrum.

In all cases the result is qualitatively the same: if one fixes the input parameters — in

two dimensions, the central charge, and in the case of [5, 6] the dimensions of the external

scalar operators in the OPE — the lowest-dimension operator that appears can never have

a dimension higher than some universal bound.1 Strengthening the assumptions — adding

special conditions such as supersymmetry or holomorphic factorization — improves the

bound numerically but does not qualitatively change the result.

In each case discussed above, the constraining principle is either modular invariance,

or else associativity of the OPE, which is closely related. Both are consistency conditions

expressing the constraint that the theory must make sense when quantized in two different,

inequivalent channels — that is, foliating the space with two different time-slicings whose

leaves may be orthogonal to one another. It would appear that the condition of covariance

among channels, or democracy among foliations, is a fundamental principle that makes it

impossible to pick and choose the spectrum of a CFT at will. In particular, the condition

of modular invariance, or channel covariance of the OPE, is incompatible with an attempt

to deform the spectrum in an extreme way.

In all cases discussed above, the gap in operator dimensions is the quantity under

examination, that is bounded by the principle of modular invariance, or channel covariance

more generally. There are other “extreme directions” in the space of possible spectra, in

which we suspect it may be impossible to engineer the spectrum of a consistent CFT. In

particular, one expects that a CFT of fixed central charge ought not to have a number

of marginal deformations greater than some universal number depending on the central

charge. That is, for a CFT of central charge ctot and discrete spectrum, it would appear

likely that there may be a fundamental limit on the dimension of moduli space.

This idea is correlated with commonly held beliefs in mathematics and physics. In

physics, the holographic principle of ’t Hooft and Susskind [26, 27, 29] could be vitiated

by limits in which the number of massless species is pushed infinitely large [28, 29]. In

mathematics, it is thought that there is likely an upper bound on the Euler number of

compact Calabi-Yau threefolds [30–32], which would follow immediately from a fully general

bound on the number of marginal operators of a superconformal field theory of central

charge cL = cR = c = 3
2 ĉ = 9.

In this note we derive rigorous bounds on certain state degeneracies: First, a lower

bound on the thermodynamic entropy at the inverse temperature β = 2π that maps to

itself under the modular S-transformation. Second, we prove an upper bound on the

number of marginal operators of a two-dimensional CFT of a given central charge, under

certain conditions. Under the same conditions we also derive an upper bound on the

thermodynamic entropy at inverse temperature β = 2π.

1In [7] the converse is shown: By making the central charge sufficiently large, it is possible to push

the gap to infinity and obtain a consistent limit where the theory contains only a sector of low-dimension

operators.
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The bounds proven herein, though requiring certain conditions to hold that are less

than fully general, provide an illustration of a principle bounding state degeneracies from

above, that the authors hope may apply in a broader set of circumstances.

2 Energy and entropy bounds from modular invariance

2.1 Review of modular invariance

The principle underlying our bounds is modular invariance, in particular invariance under

the modular S-transformation τ → − 1
τ

of the partition function of the CFT on a two-torus

with complex structure τ . The partition function of a two-dimensional CFT on such a

torus can be written as

Z[τ ] = tr
(

exp
{

2πiτ
(

L0 − cR
24

)

− 2πiτ̄
(

L̃0 − cL
24

)}

)

, (2.1)

where L0 and L̃0 are the zeroth right- and left-moving Virasoro generators, cR and cL are

the right- and left-moving central charges, and the complex structure τ lies in the upper half

plane. The torus can be thought of as a quotient of the complex plane C = {σ ≡ σ1 + iσ2}
by the identifications σ ∼ σ + 2π ∼ σ + 2πτ . The generators L0 and L̃0 are related to

energy H and momentum P1 by

L0 = 1
2 (H + P1) + cR

24 ,

L̃0 = 1
2(H − P1) + cL

24 .

We can represent this partition function as a path integral on a torus with metric

(

g11 g12

g12 g22

)

= 1
Im τ

(

1 Re τ

Re τ |τ |2

)

Modular invariance of the partition function is the statement that a local conformal field

theory has nothing to distinguish the various cycles of the two-torus other than the back-

ground metric itself. Therefore, partition functions on two distinct background metrics

differing by a large coordinate transformation should have the same partition function. A

large coordinate transformation acts on the cycles of the torus as

SL(2, ZZ) ∋ Γ =

[

a b

c d

]

,

which induces an action τ 7→ aτ+b
cτ+d

on the complex structure of the torus.

The modular group is generated by two elements, S ≡
[

0 −1

1 0

]

and T ≡
[

1 1

0 1

]

, which

satisfy the relation (ST )3 = −1. For modular invariance to be a good symmetry of the

CFT at the quantum level, it suffices to check that the partition function transforms under

both S and T without anomalous phases.

For purposes of this note, as in [2], we shall not require invariance under the T -

transformation, but only under the S-transformation. Failure of the partition function to
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be invariant under the T -transformation is easily understood in the Hamiltonian framework

as a failure of the momentum P1 to be quantized in integer units; the expression (2.1) is

invariant under τ → τ + 1 if and only if every state in the spectrum has P1 ∈ ZZ.

The S-transformation is both more obscure and more robust.

It is obscure in the sense that it is completely non-manifest in the Hamiltonian for-

malism. That is to say, a Hamiltonian formulation of a quantum theory depends on a

foliation of spacetime, with Hilbert spaces associated to the individual leaves and Hamil-

tonian flow implementing linear transformations between the Hilbert spaces on different

leaves. But the S-transformation is not a canonical transformation, and does not preserve

even a single leaf of any smooth foliation of the torus, even up to Hamiltonian flow. The

S-transformation, even when an exact symmetry of the system, is not realized as an action

on the Hilbert space of quantum states.

On the other hand, the S-transformation is a good symmetry of the quantum the-

ory under very broad conditions: if the theory has a Poincaré-invariant path integral

formulation in terms of local variables, then the path integral automatically respects the

S-transformation at the quantum level. There are many known theories that satisfy all

axioms of CFT except symmetry under the S-transformation; however all such examples

involve imposing projections directly on a Hilbert space and do not have partition functions

defined by a path integral over local variables. In this paper we shall restrict our attention

to modular-invariant CFT, though only invariance under the S-transformation is necessary

for our results to hold.

2.2 Review of previous work

The medium-temperature expansion.

Going forward let us assume that the CFT is described by a unitary quantum mechanics

(i.e., a Hermitean Hamiltonian with a positive definite norm on the Hilbert space), and that

the spectrum of the Hamiltonian in finite volume is discrete. Thus the partition function

can be written as

Z[β] = tr ( exp{−βH}) =
∑

n exp{−βEn} , (2.2)

where En are the discrete, real eigenvalues of the Hamiltonian H of the theory on a circle

of length 2π.

By virtue of Cardy’s formula, the partition function and all of its derivatives are

convergent for any positive β. The pth derivative is equal to a sum of derivatives of

exponentials, that is
(

∂
∂β

)p

Z[β] = (−1)p tr (Hp exp{−βH}) = (−1)p
∑

n Ep
n exp{−βEn} . (2.3)

For purely imaginary complex structure τ = iβ
2π

expression (2.1) reduces to the

usual thermodynamic partition function (2.2) at inverse temperature β. Then the S-

transformation acts on the partition function as

Z[β] → Z[4π2

β
] . (2.4)
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A modular invariant partition function is invariant under this transformation:

Z[β] = Z[4π2

β
] . (2.5)

It follows immediately [2] that

(β∂β)pZ[β]|
β=2π

= 0 . (2.6)

for any positive odd p. Written in terms of the energies En, this can be written

∑

n exp{−2πEn} fp(En) = 0 , (2.7)

where fp(E) is a pth order polynomial defined by

fp(E) ≡ exp{+2πE}
(

β ∂
∂β

)p

exp{−βE}
∣

∣

∣

β=2π
. (2.8)

Explicit expressions for low p are:

f1(E) = −2πE

f3(E) = −(2πE)3 + 3(2πE)2 − (2πE) (2.9)

More generally, if F (x) is any odd function of x, then we define a derived function

fF (E) ≡ exp{+2πE} F
(

β ∂
∂β

)

· exp{−βE}
∣

∣

∣

β=2π
. (2.10)

The polynomials fp are just the derived functions corresponding to F (x) = xp.

For any odd F the derived function fF (E) satisfies

∑

n exp{−2πEn}fF (En) = 0 , (2.11)

where {En} is the spectrum of a modular invariant CFT. For some purposes it is convenient

to think of this condition in terms of a density

ρ(E) ≡ exp{−2πE} ∑n δ(E − En) , (2.12)

which is exp{−2πE} times the usual spectral density. Then we can write the condi-

tion (2.11) as

∫

dE ρ(E) fF (E) = 0 (2.13)

for an f derived from any odd F . By virtue of Cardy’s formula, the partition function is

real analytic as a function of β for any β. Therefore the conditions (2.7) for all odd p are

not only a consequence of invariance under the S-transformation, but when taken together

are sufficient to imply it as well.

The condition (2.7) follows directly from writing

β ≡ 2π exp{s} ,
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noting that the S-transformation acts as s 7→ −s, and expanding the equation (2.5) to pth

order in s. Since we are expanding the partition function in the neighborhood of β = 2π,

which is intermediate between the high-temperature β → 0 and low-temperature β → ∞
régimes, we refer to the expansion in s as the medium-temperature expansion [2]. The

medium-temperature expansion has proven to be useful in deriving general constraints on

the spectrum of a modular invariant conformal field theory [2, 10, 11].

Review of the upper bound on ∆1.

In [2] we used the medium-temperature expansion to prove that any conformal field

theory satisfying unitarity and modular invariance, with a discrete spectrum, satisfies the

bound

∆1 ≤ ctot
12 + 0.48 , (2.14)

where

ctot ≡ cL + cR (2.15)

and ∆1 is the dimension of the primary operator of lowest dimension other than the identity

itself. For ctot < 24− 18
π

≃ 18.270, the proof is completely elementary and does not depend

on any use of representation theory of the Virasoro algebra. We recall the proof here.

Fix a value of the central charge ctot less than 24 − 18
π

. Now consider the cubic

polynomial

F (x) ≡ x (x2 − 4π2E2
0 + 6πE0 − 1) , (2.16)

where E0 is the ground state energy

E0 = − ctot
24 . (2.17)

Using expressions (2.9), the derived polynomial is

fF (E) = f3(E) − (4π2E2
0 − 6πE0 + 1)f1(E)

= −8π3 E (E − E0) (E − E+) ,
(2.18)

where E+ ≡ 3
2π

− E0. By equation (2.13), the quantity

∫∞
E0

fF (E)ρ(E)dE (2.19)

must vanish. The measure ρ(E) is positive and the derived polynomial fF (E) vanishes

at E0 and is negative for E > E+. If all excited energy levels were to be E+ or higher,

then the quantity (2.19) could not vanish, as it would receive only negative contributions.

The lowest excited level E1 must therefore be lower than E+ = 3
2π

− E0. Translating into

operator dimensions via ∆ = E−E0, we find that the lowest-dimension operator other than

the identity can have dimension no higher than ∆+ ≡ E+ − E0 = 3
2π

− 2E0. Using (2.17)

we write the bound as

∆1 < ∆+ ≡ 3
2π

+ ctot
12 . (2.20)
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For ctot < 24 − 18
π

the value of ∆+ is less than 2, and it follows that the operator of

dimension ∆1 cannot be a descendant of the identity; it must therefore be primary or else

the descendant of a primary operator of even lower dimension. So in this range of central

charge, we learn that equation (2.20) can be taken to apply specifically to the dimension

of the lowest primary operator above the identity.

Medium-temperature equations with characters.

For higher central charge a similar bound can be proven using roughly the same ar-

gument, with the contributions to the partition function organized according to full rep-

resentations of the Virasoro algebra rather than individual energy levels. The proof for

ctot > 24 − 18
π

uses some elementary facts about the representation theory of the Vira-

soro algebra, in particular formulae for the characters of the Virasoro algebra for various

representations [12–15].

It is natural to generalize the derived polynomials fp(E) to derived polynomials fp |χ
with respect to characters χ of the Virasoro algebra. In this context, we will only consider

characters restricted to the imaginary axis of their argument, χ(β) with τ = iβ
2π

.

Our simplifying assumptions, that cL, cR > 1 and that there are no holomorphic or

antiholomorphic operators, guarantee that there are only two types of representations of

the Virasoro algebra for a unitary CFT with discrete spectrum [12, 13, 15]:

• the conformal family of the vacuum, generated by the independent states
Q

m,n≥2(L−m)Nm(L̃−n)Ñn |0〉 , (2.21)

and

• the conformal family of a generic primary with dimension ∆, generated by the inde-

pendent states
Q

m,n≥1(L−m)Nm(L̃−n)Ñn |∆〉 , (2.22)

with the Nm, Ñn running over all possible Nm, Ñn ≥ 0 in each case.

Each type of conformal family is then spanned by different monomials in Virasoro

raising operators acting on the primary state, with each monomial raising the energy of

the vacuum by an amount
∑

n n Nn + nÑn. The contributions of the two families to the

partition function are then given by

χv(β) exp{−E0β} (2.23)

for the vacuum family, and

χg(β) exp{−(∆ + E0)β} (2.24)

for the family of the generic primary, with the vacuum and generic characters given by

χv(β) ≡∏n≥2(1 − exp{−nβ})−2 ,

χg(β) ≡∏n≥1(1 − exp{−nβ})−2 ,
(2.25)
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respectively. Then the full partition function can be written as

Z[β] = χv(β) exp{−βE0} + χg(β)(
∑∞

n=1 exp{−βEn}) , (2.26)

where the sum in the second term runs over energies En ≡ ∆n + E0 of primary states

alone. Then invariance under the modular S-transformation β → 4π2/β can be expressed

in terms of energies of primary states. For a given function F (x) and any character χ,

define the derived functions

fF |χ(E) ≡ exp{+2πE}
χ(2π) F (β∂β) · [χ(β) exp{−βE}]|

β=2π
. (2.27)

Then the invariance under the modular S-transformation can be expressed by the condition

that

χv(2π) exp{−2πE0}fF |χv
(E0) +

∑∞
n=1 χg(2π) exp{−2πEn} fF |χg

(En) = 0 , (2.28)

for any odd F . To express this condition in terms of measures, define

ρv(E) ≡ χv(2π) exp{−2πE}δ(E − E0) (2.29)

and

ρg(E) ≡ χg(2π) exp{−2πE}∑∞
n=1 δ(E − En) , (2.30)

where n runs over non-vacuum primary states. Then the condition for modular invariance

is

∫

dE ρv(E)fF |χv
(E) +

∫

dE ρg(E)fF |χg
(E) = 0 (2.31)

for any odd F . For an arbitrary character χ(β), the derived polynomials fp |χ corresponding

to low-order monomials F (x) = xp are

f1 |χ(E) =−(2πE) + 2π
χ′(2π)

χ(2π)

f3 |χ(E) =−(2πE)3 + (2πE)2
(

6π
χ′(2π)

χ(2π)
+ 3

)

(2.32)

−(2πE)

(

12π2 χ′′(2π)

χ(2π)
+12π

χ′(2π)

χ(2π)
+1

)

+

(

8π3 χ′′′(2π)

χ(2π)
+12π2 χ′′(2π)

χ(2π)
+2π

χ′(2π)

χ(2π)

)

In [2] we use this structure to derive a bound on the weight of the lowest non-vacuum

primary dimension ∆1 that applies for arbitrarily high values of the total central charge.

We refer the reader to [2] for details. We want to emphasize, however, that the generalized

proof is not much more complicated than the elementary proof for low central charge that

we have reviewed in the previous subsection.
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2.3 A lower bound for the entropy at medium temperature

The most straightforward consequence of modular invariance is to give a lower, rather than

an upper bound for the thermodynamic entropy of the canonical ensemble, particularly at

inverse temperature β = 2π.

From the first order of the medium-temperature expansion, it follows that a universal

lower bound holds for the thermodynamic entropy at medium temperature β−1 = 1
2π

. The

entropy σ is related to the partition function via

σ = ln(Z) + β 〈E〉 . (2.33)

Using the derived function f1(E) = −2πE in equation (2.7), we have

〈E〉|β=2π = 0 . (2.34)

By unitarity, every contribution to the partition function is positive, so the value of Z is

bounded below by its vacuum contribution exp{−2πE0}, so we have

σ|β=2π ≥ −2πE0 = πctot
12 . (2.35)

We have given an elementary proof of a universal lower bound for the thermodynamic

entropy in a modular invariant 2D CFT at a particular temperature. On the other hand

we shall see in the next section that there can be no fully general upper bound on the

thermodynamic entropy or on the microstate degeneracies that would hold without impos-

ing additional assumptions on the CFT. Understanding the issues involved will help us to

formulate a useful set of additional assumptions on the CFT as we go forward.

3 Meta-problem: why are upper bounds for state degeneracies hard?

In the previous section we reviewed the derivation of an upper bound on the energy of

the first excited energy level. Should it not be possible, then, to prove an upper bound

on entropy — thermodynamic entropy or quantum mechanical degeneracies — using

similar techniques? Let us examine, briefly, a few reasons why the type of argument in the

previous section cannot be generalized very easily to give a fully general upper bound for

entropy or quantum mechanical degeneracies, without imposing additional assumptions

on the CFT as inputs.

(a) The homogeneity problem.

The homogeneity problem is a meta-problem with any candidate for a method to

bound the entropy above, using invariance under the S-transformation. Suppose we had

some equation of type (2.13) that would always be violated if the entropy — the thermo-

dynamic entropy or the quantum mechanical degeneracy, in some energy range, according

to whatever definition — were to be sufficiently high. We can argue by contradiction that

no such equation can ever exist.

Suppose such an equation did exist, that ruled out the possibility of a modular invari-

ant spectrum with effective state degeneracy greater than nmax, by whatever definition.

– 9 –
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But we could always take k copies of a modular invariant spectrum with effective state

degeneracy n < nmax, such that k n > nmax. Taking k copies of a modular invariant spec-

trum automatically yields a modular invariant spectrum, so it is clear that there can be no

direct constraint from modular invariance bounding the effective state degeneracy above,

without using additional inputs.

(b) The continuum problem at the vacuum.

One way around the homogeneity problem is to use the fact that the spectrum under

consideration is not arbitrary, but corresponds to the spectrum of a good CFT, satisfying

all the usual CFT axioms including cluster decomposition. Together with unitarity and the

state-operator correspondence, cluster decomposition implies that there is a unique lowest

state, with energy E0 = − ctot
24 .

Then it may be possible in principle to find an upper bound on the entropy (or the

degeneracy of some states in some range of energy) that evades the homogeneity problem

by using the fact that the degeneracy of the vacuum is never greater than 1.

To exploit this fact, it would be necessary to find an odd function F such that the

derived function fF (E) gets a positive contribution from the vacuum, a negative contri-

bution from the states of interest, and a sum of contributions from all other states that

is bounded above independently. (In particular, it would not do to pick an F such that

fF (E0) = 0, as we did to prove the universal upper bound on E1.)

This type of approach to bounding the entropy suffers from a separate meta-problem

that we shall call the continuum problem. By the continuum problem, we mean that such a

proof could never apply in cases where the spectrum develops an approximate continuum

of states with energies an arbitrarily small amount above the vacuum. In such a case the

continuum would contribute with the same sign as the vacuum (by continuity of f(E))

with an unboundedly large coefficient, due to the presence of an arbitrarily numerous set

of levels in the range between E0 and E0 + ǫ.

Of course, no CFT under our consideration ever has a strict continuum; we are always

assuming that our CFT have a discrete operator spectrum, or equivalently discrete spec-

trum of the Hamiltonian in finite volume. But many CFT are known to come in families

with singular limits where the limiting spectrum has a continuum of some kind. In partic-

ular, many familiar moduli spaces of CFT have limits in which the CFT can be thought

of as a sigma model with volume approaching infinity. So the continuum problem is a

general no-go principle for upper bounds on CFT degeneracies of any sort that do not use

additional consistency conditions of the CFT, or assume a minimum gap in the spectrum

above the vacuum.

(c) The hyperfine structure problem of character corrections.

To evade the continuum problem without assuming a minimum gap in the spectrum

as an input, we could try using other consistency conditions of the CFT; in particular,

we could try using the organization of the spectrum into representations of the Virasoro

algebra. However this approach immediately runs into the problem that the differences

between different characters of the Virasoro algebra are numerically very tiny.

– 10 –
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As in [2], simplify the discussion by assuming that cL and cR are both greater than

1, and that there is no chiral algebra of the theory other than the Virasoro algebra. The

condition (2.31) then treats the vacuum conformal family, which contributes to ρv, differ-

ently from the conformal families of the other primaries, which contribute to ρg. Therefore

it is possible in principle to find odd F such that the derived polynomials fF |χv
(E0) and

fF |χg
(E) contribute with different sign, even when E is arbitrarily close to E0. In practice,

however, it seems difficult to generate a useful bound this way.

An approach to overcoming the continuum problem based on the difference in Virasoro

representations between that of the vacuum and that of the generic primaries lying in

the continuum just above the vacuum, would need to exploit the differences between the

derived functions fF |χv
and fF |χg

, evaluated at E0. But the absolute difference between

the derived functions for the two different types of conformal family is numerically small,

being proportional to exp{−2π} ≃ 1
535 .

For instance, suppose we want to take the lowest-order polynomial possible, F (x) = x1.

Then the two derived polynomials are

f1 |χv
(E) = −2πE + 4π

∑∞
n=2

n exp{−2πn}
1− exp{−2πn}

f1 |χg
(E) = −2πE + 4π

∑∞
n=1

n exp{−2πn}
1− exp{−2πn}

(3.1)

The two differ only by

f1 |χg
(E) − f1 |χv

(E) = 4π exp{−2π}
1− exp{−2π} ≃ 2.35 × 10−2 . (3.2)

Furthermore, a minimal criterion for overcoming the continuum problem is that the value

of lim
E→E0

fF |χg
(E) should have a different sign from fF |χv

(E0). In the case F (x) = x, it

is impossible for the two to differ in sign unless E0 > 0, which would be inconsistent with

positivity of the central charge, and thus with unitarity.

(d) The fine structure problem at large central charge

There is a separate problem in attempting to bound the entropy from above by using

invariance of the partition function under the modular S-transformation, that is partic-

ularly acute when the central charge becomes large. To see the nature of the problem,

consider in particular an attempt to bound the degeneracy of marginal operators in the

limit of large central charge. When the central charge is large, it becomes increasingly

difficult to find derived functions fF (E) that are positive for E = E0, and negative for all

E ≥ E0 + 2. In the limit E0 → −∞ with E/E0 held fixed, the derived function fF (E) is

to good approximation equal to F (−2πE), which is an odd function. For F (x) = xp, we

have

fp(E) = (−2πE)p + O(Ep−1). (3.3)

Thus if we take an odd polynomial F (x) such that fF (E) is positive at E = E0 but negative

at E0 + 2, then it will tend to be positive again by the time it reaches E = −(E0 + 2), if

|E0| is large.

– 11 –
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The even part of the function fF (E) is a kind of “fine structure” of subleading order

at large central charge. But it is only by tuning the form of the function F (x) to enhance

the contribution of the even part of fF relative to the odd part, that one has any hope of

obtaining a derived function with properties that could imply a bound.

(e) The resolutional problem.

The resolutional problem is the difficulty in formulating a suitable definition of the

entropy of marginal operators that is robust against small perturbations of the spectrum.

Certainly it seems quite unlikely that there should be any unitary conformal field theory,

with discrete spectrum and central charges cL = cR = 2, say, with 1010100

marginal opera-

tors, for instance. And yet, if we alter the question slightly to ask whether there might be

a unitary conformal field theory with discrete spectrum and central charges cL = cR = 2,

and 1010100

operators between dimensions 2− ǫ and 2 + ǫ, for arbitrarily small values of ǫ,

the answer is that, yes, there certainly do exist such CFT. Simply consider a sigma model

with target space T 2, with cycles of length 2πR, and the kinetic term for the target space

coordinates Xa normalized as L = 1
4πα′ gij(∂iXa)(∂jXa).

The theory contains scalar primary operators of the form On1,n2
≡: exp{inaXa/R} :,

which have dimension ∆ = α′

2R2 n2
a. For R much larger than

√
α′, the set of operators with

2−ǫ ≤ ∆ ≤ 2+ǫ corresponds to the set of integer pairs (n1, n2) lying in the Euclidean plane

between two spheres centered at the origin, with radii

√

2R2(2−ǫ)
α′ and

√

2R2(2+ǫ)
α′ . The region

of interest is an annular region of radius 2 R√
α′

, circumference 4π R√
α′

and thickness Rǫ
α′ . The

lattice points are distributed with unit density in the plane, so the annular region contains

of order 4πR2ǫ
α′ lattice points. Thus, no matter how small ǫ is chosen to be, the radius R can

always be made sufficiently large that the number of almost-marginal operators — scalar

operators with dimensions between 2 − ǫ and 2 + ǫ can be made as large as desired.

The five problems described above are not entirely logically independent from one

another. The strict version of problem (a) can be solved trivially by assuming cluster

decomposition, but even then this solution is “unstable” against turning into problem (b)

under a small perturbation of the spectrum. Problem (b) can in principle be solved by

organizing the partition function using characters of the Virasoro algebra to separate the

vacuum from the continuum. But in practice one runs into problem (c), that the effect of

the distinct characters at β = 2π is so small that it is not easy to exploit the separateness

of these contributions to derive a bound.

Problems (a)-(c) all concern the difficulty of controlling unwanted contributions

to (2.7)–(2.13) from energy levels near the vacuum E0. Problem (d) concerns the difficulty

of controlling unwanted contributions from energy levels much higher than the marginal

operators at E0 + 2, and problem (e) concerns the difficulty of controlling unwanted con-

tributions from levels arbitrarily close to E0 + 2.

The purpose of discussing these meta-problems is not only to warn ourselves away from

too-naive attempts to prove a bound using modular invariance, but also to guide ourselves

in choosing a favorable set of additional assumptions on the CFT that will allow us to

avoid these persistent difficulties.
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4 Upper bounds for state degeneracies under certain conditions

In this section we will prove a bound on the number of marginal operators in an infrared

stable CFT with cL + cR less than 48. We will also derive an upper bound on the thermo-

dynamic entropy at inverse temperature 2π, under the same conditions. We conclude with

a discussion of the possibility of bounding the number of marginal operators under other

sets of assumptions, such as extended superconformal symmetry.

4.1 A bound on the number of marginal operators

Keeping in mind the meta problems discussed in the section above, we will now choose

some simple assumptions that will allow us to avoid problems (a) through (e). We can

avoid problems (a)-(c) by assuming cluster decomposition, and the absence of a continuum

of states just above E0: in fact the bound is simplest if we restrict our considerations to

infrared stable fixed points of the renormalization group — CFT with no relevant operators

at all other than the identity. We will avoid problem (d) by restricting our considerations

to CFT with moderately low central charge — say, less than 24 on the left and on the right,

so ctot < 48. We need not make any additional assumption in order to evade problem (e)

— in fact we will see that the assumptions of infrared stability and ctot < 48 are enough

to prove a bound; problem (e) is avoided automatically.

Under these assumptions it is possible to prove a bound using only the first order in the

medium-temperature expansion. Let N be the number of primary operators of dimension

2. The degeneracy at energy E0 + 2 is then N + 2, with the 2 extra operators coming from

the left- and right-moving stress tensor. The number N includes both scalar primaries of

weight (1, 1) as well as spin-1 operators of weights (3/2, 1/2) and (1/2, 3/2). The simple

method we are using is not sufficiently refined to distinguish these, but an upper bound

on N necessarily bounds the number of scalar primary operators, so it will not matter too

much that we do not distinguish them.

Taking F (x) = −(x/(2π)) gives fF (E) = E, and we have the equation

0 = E0 exp{−2πE0}
+(E0 + 2)(N + 2) exp{−2π(E0 + 2)}
+
∑

(E0 + ∆) exp{−2π(E0 + ∆)} (4.1)

where the sum in the third term runs over all operators with dimension ∆ > 2. For

ctot < 48, the quantity E0 + 2 = 48−ctot
24 is positive, so the only negative contribution in

equation (4.1) is the first. Multiplying (4.1) through by exp{+2π(E0 + 2)} we obtain

0 < (E0 + 2)(N + 2)

< (E0 + 2)(N + 2) +
∑

(E0 + ∆) exp{−2π(∆ − 2)}
= −E0 exp{+4π} , (4.2)

giving us a bound

N <

(

cL + cR

48 − cL − cR

)

· exp{+4π} − 2 . (4.3)
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ctot Nmax

19 187, 869

20 204, 820

21 223, 026

22 242, 633

23 263, 809

24 286, 749

25 311, 684

26 338, 885

27 368, 678

28 401, 449

29 437, 671

30 477, 916

31 522, 897

32 573, 500

33 630, 850

ctot Nmax

34 696, 394

35 772, 020

36 860, 251

37 964, 525

38 1, 089, 652

39 1, 242, 587

40 1, 433, 754

41 1, 679, 541

42 2, 007, 257

43 2, 466, 059

44 3, 154, 262

45 4, 301, 267

46 6, 595, 278

47 13, 477, 309

48 ∞

Table 1. Maximal number (4.3) of marginal operators in a stable unitary CFT for integer values

of the central charge in the range (4.4).

This result depends on the assumption that there are no operators with dimensions ∆

between 0 and 2. Due to the earlier result [2], reviewed in the second section, this can only

be the case if ctot > 24 − 18
π

≃ 18.27. So the interesting range of central charge, where

a useful bound may be proven from modular invariance at first order in the medium-

temperature expansion, is

∼ 18.27 < ctot < 48 . (4.4)

For integer values of ctot in this range, we give the maximum possible number of marginal

operators in a CFT with no relevant operators in table 1. As an immediate corollary of

our bound, note that the resolutional problem, problem (e) of the previous section, has

resolved itself automatically: through modular invariance as expressed at first order in

the medium-temperature expansion, the assumption of no relevant operators other than

the identity implies the absence of a continuum of states with dimensions near 2. If the

latter did exist, then equation (4.1) would receive an unboundedly large number of positive

contributions going as (E0 + 2 + ǫ) exp{−2π(E0 + 2 + ǫ)}, for ǫ made arbitrarily small,

without offsetting negative contributions; if there were a (near)-continuum close to ∆ = 2

but no states between ∆ = 0 and ∆ = 2, then the first-order medium-temperature condition

for modular invariance could not be satisfied.

4.2 An upper bound on the entropy at medium temperature

To complement our discussion of a lower bound for thermodynamic entropy in the second

section, we would like to establish an upper bound on the thermodynamic entropy of the

canonical ensemble at medium temperature, β = 2π, under certain conditions. We impose
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the same assumptions on our CFT as we did to derive the upper bound on the degen-

eracy of marginal operators in the previous subsection: That is, in addition to unitarity,

cluster decomposition, discrete operator spectrum and invariance under the modular S-

transformation, we also assume that ctot < 48 and that there are no relevant operators

other than the identity.

As in the previous subsection, we need consider only the leading nontrivial order in

the medium-temperature expansion in order to derive an interesting bound. Using the fact

that E0 < 0, we can write E0 = −|E0|, and equation (4.1) can be written as

1 =
∑

n≥1
En

|E0| exp{−2π(En + |E0|)} . (4.5)

We are assuming 0 < ctot < 48, and that 2 ≤ ∆1 < ∆2 < · · · . Then using En = ∆n +E0 =

∆n − ctot
24 , we have

0 ≤ E1 ≤ E2 · · · (4.6)

So the nth term on the right hand side of (4.5) is no smaller than E1

|E0| exp{−2π(En + |E0|)}.
Summing terms, we find

E1

|E0|
∑

n≥1 exp{−2π(En + |E0|)} ≤∑n≥1
En

|E0| exp{−2π(En + |E0|)} = 1 . (4.7)

Multiply each side by |E0|
E1

exp{+2π|E0|} to derive the inequality

∑

n≥1 exp{−2πEn} ≤ |E0|
E1

exp{+2π|E0|} . (4.8)

We may have no information about the specific value of E1, but under our assumptions we

do know that E1 ≥ 2 − |E0| > 0, so

∑

n≥1 exp{−2πEn} ≤ |E0|
2−|E0| exp{+2π|E0|} . (4.9)

Adding the vacuum contribution exp{−2πE0} = exp{+2π|E0|} yields an upper bound for

the full partition function at β = 2π:

Z[2π] =
∑

n≥0

exp{−2πEn}

≤
(

1 +
|E0|

2 − |E0|

)

exp{+2π|E0|} =
48

48 − ctot
exp
{

+
πctot

12

}

. (4.10)

The bound (4.10) on the partition function in turn gives us an upper bound for the ther-

modynamic entropy of the canonical ensemble at medium temperature. Using the fact that

< E >= 0 at β = 2π and combining with the lower bound (2.35), we have:

πctot
12 ≤ σ|β=2π ≤ πctot

12 + ln
(

48
48−ctot

)

. (4.11)
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4.3 Discussion

We have proven a bound on the number of marginal operators for a general unitary CFT

with discrete spectrum, no relevant operators other than the identity, and central charge

in a certain range, cL +cR < 48. We have also proven upper and lower bounds for the ther-

modynamic entropy at inverse temperature 2π, under the same assumptions. Ultimately,

we would like to improve the bounds, both by extracting more refined information, and by

proving similar bounds under weakened hypotheses.

In terms of more refined information, it would be good to be able to bound the number

of scalar marginal operators alone, without including spin-1 operators of weight 2 into the

same count. It seems possible that this could be done by using refined medium-temperature

equations that consider the partition function as a function of τ and τ̄ instead of Im(τ)

alone, and using the stronger condition (τ̄ ∂τ̄ )p1(τ∂τ )p2Z[τ ]|τ=i = 0 for p1 + p2 odd.

As far as weakening the assumptions is concerned, it would be good to be able to

bound the thermodynamic entropy and microscopic state degeneracies for arbitrarily high

central charge. Also, the condition that there be no relevant operators is a strong one, and

it is certainly desirable to derive limits on state degeneracies without this assumption. At-

tempts to weaken either of these two conditions will necessarily meet some of the difficulties

enumerated in the third section. New ideas may be required to circumvent those.

In one particular circumstance, the restriction to theories without relevant operators

seems particularly natural. Two-dimensional CFT with extended supersymmetry and inte-

grally quantized U(1) charges play an important role as theories representing string prop-

agation in spaces with unbroken spacetime SUSY, for instance on Calabi-Yau threefolds.

These CFT may be a particularly tractable special class in which the number of

marginal operators may be bounded. First of all, these theories possess a large chiral alge-

bra — at least N = 2 superconformal symmetry, together with spectral flow generators [25].

They have low central charge, circumventing the fine-structure problem discussed earlier.

As for the continuum problem, conformal sigma models on Calabi-Yau spaces admit non-

thermal boundary conditions under which the partition function can be evaluated, which

project out the contribution from the near-continuum of operators that may be present

with dimension close to 0. Each non-thermal boundary condition for the partition function

nonetheless has simple modular transformation properties. Among the possible boundary

conditions for the partition function are those describing the elliptic genus [24, 25]. In-

teresting work has been done recently [18, 21–23] on the derivation of general consistency

conditions for elliptic genera. Perhaps the medium-temperature techniques discussed here

combined with results such as [18, 21] may yield useful information about the still mostly-

uncharted landscape of Calabi-Yau manifolds. We hope the present note will provide clues

for further progress in that direction and others.
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