
LOCAL L AND EPSILON FACTORS IN HECKE EIGENVALUES

SATOSHI KONDO AND SEIDAI YASUDA

Abstract. Formulas (Theorems 4.2 and 5.1) which express the local L-factor
and the local epsilon factor of an irreducible admissible representation of GLd

over a non-archimedean local field in terms of the eigenvalues of some explicitly

given Hecke operators are derived.

(A partial result appeared in our preprint RIMS-1499, RIMS, Kyoto University,
April 2005.)

1. Introduction

The aim of this article is to derive formulas (Theorems 4.2 and 5.1) which express
the local L-factor and the local epsilon factor of an irreducible admissible repre-
sentation of GLd over a non-archimedean local field in terms of the eigenvalues of
some explicitly given Hecke operators.

We need some notations to state our result. Let K be a nonarchimedean local
field. Let O be the ring of integers and fix a uniformizer $ ∈ O. Let d ≥ 1. Let
(π, V ) be an irreducible admissible representation of G = GLd(K) where V is a
complex vector space. We let ωπ denote the central character. By the classification
theorem ([18], see [15, Théorème 3, p.211] also for the notations used below) of
admissible representations of G, the representation π is of the form L(∆1, . . . ,∆m)
where ∆1, . . . ,∆m are segments such that ∆i does not precede ∆j if m ≥ i > j ≥ 1.
Each L(∆i) is an essentially square integrable representation of GLdi(K). Then
d = (d1, . . . , dm) is a partition of d = d1 + · · ·+dm. We set πi = |det |si⊗L(∆i) for
each i where si = (

∑
j<i dj−

∑
i<j dj)/2. Then π is the unique irreducible quotient

of the (unnormalized) induced representation ξ = Ind(G,Pd; Inf(π1 ⊗ · · · ⊗ πm))
where Pd is the parabolic subgroup corresponding to d. We note that we use
different normalization for the induced representation from [15], and the si’s as
above compensate the difference. Let c =

∑m
i=1 condπi be the sum of (the exponent

of ) conductors of πi and c′ be the conductor of ωπ.
Let Kc ⊂ GLd(O) denote the subgroup of elements (xij)1≤i,j≤d ∈ GLd(O) such

that (xid)1≤i≤d is congruent to (0, . . . , 0, 1) modulo ($c). We let H = H(G,Kc)
denote the Hecke algebra of Kc-biinvariant (C-valued) functions on G. For 0 ≤
i ≤ d, we let Ti ∈ H denote the characteristic function of the double coset
Kcdiag($, · · · , $, 1, · · · , 1)Kc where $ appears i times and 1 appears d− i times.
(We write diag(a1, . . . , ad) for the diagonal matrix with diagonal entries a1, . . . , ad.)
We let T (c′) ∈ H denote the characteristic function of the double coset Kcx$−c′Kc
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(see Section 5.1 for the definition of x$−c′ ). Let W denote the representation
space of ξ. Then using the theory of new vectors ([8]), we know (Lemma 4.1) that
dimCW

Kc = 1, and the action of Hecke operators on this space gives a representa-
tion χW : H → C×.

We fix an additive character ψ : K → C× of conductor 0. (The conductor of
an additive character ψ is the largest integer a such that ψ($−aO) = 1.) We let
L(s, π) and ε(s, π, ψ) denote the L-factor and the epsilon factor of π as defined in
[7].

Let q denote the cardinality of the residue field O/$O. We are ready to state
our main result (Theorems 4.2 and 5.1).

Theorem 1.1. Let the notations be as above. If c ≥ 1, then

L(s, π) =

(
d−1∑
r=0

(−1)rχW (Tc,r)q
r(r−1)

2 −r( d−1
2 +s)

)−1
.

If c ≥ 1 and c′ ≥ 1, then

ε(s, π, ψ) = q(−c+c
′)sε(s, ωπ, ψ)ωπ($c′)χW (T (c′)).

If c ≥ 1 and c′ = 0, then

ε(s, π, ψ) =
q−cs+1

q − 1
χW (T (0)).

The formula of the L-factor of an unramified representation, i.e., the case c = 0,
is well-known (for example, see [3, Lecture 7]), and its prototype is found in [16,
p.394, THEOREM 3]. In the generic case, there is a formula, established in [8, p.
208, Théorème], which expresses such local L-factor in terms of a certain integral
of the Whittaker function associated with a new vector. However, it does not seem
to the second author that Theorem 4.2 is an immediate consequence of [8, p. 208,
Théorème]. For the epsilon factor, we did not find a reference.

The result on the L-factor (for generic, not necessarily unramified representa-
tions) will be used in our other paper [9] where we compute a certain zeta integral.
We do not have any application of the result on the epsilon factor.

Let us remark on the proof. Even though the definition of the L-factor and the
epsilon factor is given in a uniform manner using zeta integrals (see Section 1 of
[7]), we use the classification theorem of admissible representations and the known
computations of L-factors and epsilon factors (see Section 3 of [7]). For the L-
factor, the key computation is that for induced representations (see Section 2 of
[7]) and appears as Lemma 4.7 in our paper. This lemma depends on Corollary 3.4,
to which most of Sections 2 and 3 are devoted. For the epsilon factor, we use a
result from our other paper [10] on Euler system relations. This key fact enables
us to make an explicit choice of zeta integral which appears in the definition of the
epsilon factor.

The paper is organized as follows. In Sections 2 and 3, we develop a sheaf the-
ory for Hecke algebra. The aim is to introduce a category such that the category
of sheaves (which differs slightly from the usual notion) on the category becomes
equivalent to the category of smooth representations. Operations such as restric-
tion, inflation, and parabolic induction of representations have a natural interpreta-
tion as operations on the category of sheaves. The main result of these two sections
is Corollary 3.4, and will be used in the proof of Lemma 4.7. We mention that in
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our other paper [10], a more general setup for this sheaf theory is developed, in or-
der to prove the Euler system relation of certain elements in algebraic K-groups of
Drinfeld modular varieties. We believe that some computations of Hecke operators
are clarified in this language of sheaves. In Sections 4 and 5, we give a computation
of the L-factor and the epsilon factor respectively. See their introduction for more
details.

2. A Sheaf theory for Hecke algebra

We introduce the categories Cd and FCd, and develop sheaf theory on them
with respect to (an analogue of) a Grothendieck topology. Actually, since the
categories are not closed under fiber products, they do not convey topology in the
sense of Verdier [19, Expose II]. However we have a cofinality lemma (Lemma 2.2)
to circumvent the technical difficulty caused by this shortcoming, and many of the
useful notions of sheaf theory become available in our setting.

The connection with the representations of GLd(K) is given in Section 2.2. We
have a functor ω (Section 2.2.1) which gives an equivalence of categories between the

category of sheaves on FCd with values in complex vector spaces and the category
of admissible representations of G (Proposition 2.5).

In Section 2.3, we define the notion of transfers. This is called norm, trace,
or pushforward depending on the context to which it applies. There appears a
pushforward map in the definition of a Hecke operator (Section 3.2.2), and that is
exactly the place where it will be used.

2.1. Let d ≥ 1 be a positive integer. Let K be a local field and O be its ring of
integers.

2.1.1. We define the category Cd as follows. An object in Cd is an O-module of
finite length which admits a surjection from O⊕d. For two objects N and N ′ in Cd,
the set HomCd(N,N ′) of morphisms from N to N ′ is the set of isomorphism classes
of diagrams

N ′ � N ′′ ↪→ N

in the category of finitely generated O-modules where the left arrow is a surjection
and the right arrow is an injection. Here two diagrams N ′ � N ′′ ↪→ N and
N ′ � N ′′′ ↪→ N are considered to be isomorphic if there exists an isomorphism

N ′′
∼=−→ N ′′′ of O-modules such that the diagram

N ′ � N ′′ ↪→ N
‖ ↓ ∼= ‖
N ′ � N ′′′ ↪→ N

is commutative. The composition of two morphisms N ′ � M ↪→ N and N ′′ �
M ′ ↪→ N ′ is seen in the following diagram:

N
↑

N ′ � M
↑ ◦ ↑

N ′′ � M ′ � M ×N ′ M ′
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where the circle means that the square containing it is cartesian. This definition of
morphisms is taken from [14] except that here we take morphisms in the opposite
direction.

We often consider the following two types of morphisms in Cd. Let N be an
object in Cd. For a sub O-module N ′ of N , the morphism N ′ = N ′ ↪→ N in Cd
is denoted by rN,N ′ : N → N ′. For a quotient O-module N ′′ of N , the morphism
N ′′ � N = N in Cd is denoted by mN,N ′′ : N → N ′′.

2.1.2. Let FCd denote the category of finite families of objects in Cd. An object in
FCd is a pair (J, (Nj)j∈J) where J is a (possibly empty) finite set and (Nj)j∈J is a
family of objects in Cd indexed by J . We denote the object (J, (Nj)j∈J) by

∐
j∈J Nj .

For two objects
∐
i∈IMi and

∐
j∈J Nj , the set HomFCd(

∐
i∈IMi,

∐
j∈J Nj) is, by

definition, the set
∏
i∈I
∐
j∈J HomCd(Mi, Nj). We regard Cd as a full subcategory

of FCd. We define π0(
∐
j∈J Nj) to be the set J . A morphism f : M → M ′ in the

category FCd is said to be a covering if the underlying morphism π0(M)→ π0(M ′)

is surjective. We note that every covering in FCd is an epimorphism.

2.1.3. Let f : N ′ → N be a covering in FCd. We let AutN (N ′) denote the group

of automorphisms σ in FCd of N ′ such that f ◦ σ = f . Let f : N ′ → N be a
morphism in FCd, and let G be a subgroup of AutN (N ′). We say that f is a
Galois covering of Galois group G if the fiber product N ′ ×N N ′ exists and if the
morphism

∐
g∈G(g, id) :

∐
g∈GN

′ → N ′ ×N N ′ is an isomorphism. We note that if

f : N ′ → N is a Galois covering with Galois group G, then the induced morphism
π0(N ′)/G→ π0(N) is an isomorphism. If f : N ′ → N is a Galois covering with N ′

and N in Cd, then the standard argument in the theory of Galois categories shows
that its Galois group equals AutN (N ′).

2.1.4. We prove that there are enough Galois coverings in the category FCd, and
give a sheaf criterion in terms of Galois coverings.

Lemma 2.1. Let f : N ′ → N be a morphism in Cd given by the diagram N
p
�

N ′′
i
↪→ N ′. Suppose there exists a sub O-module N1 of N such that p−1(N1) ∼= M⊕d1

and N ′/i(p−1(N1)) ∼= M⊕d2 for some M1,M2 in C1. Then f is a Galois covering.

Proof. Let M be an object in Cd. It suffices to show the map
αM : HomFCd(M,N ′)→ HomFCd(M,N) induced by f is an AutN (N ′)-torsor over
the set HomFCd(M,N).

Since M1 and M2 are generated by one element, there exist ideals I1 and I2 of
O such that M1

∼= O/I1 and M2
∼= O/I2.

Take an element x ∈ HomFCd(M,N) and let us consider the set α−1M (x). Suppose

y ∈ α−1M (x) is given by the diagram N ′
s′

� F
s
↪→ M . We let F ′ = s′−1(i(p−1(N1)))

and F ′′ = Ker s′.
Since F ′/F ′′ ∼= (O/I1)⊕d, F/F ′ ∼= (O/I2)⊕d, and M is generated by d elements,

it follows that F ′/F ′′ = F ′/I1F ′ and F/F ′ is the set of elements z in M/F ′ such
that I2z = 0. Hence F ′′ = I1F ′ and F is the set of elements z in M such that I2z ⊂
F ′. In particular, s(F ) and s(F ′′) as sub O-modules of M are uniquely determined
independent of the choice of y. Note that y is the composition of the canonical
morphism s(F )/s(F ′′) � s(F ) ↪→M and an isomorphism s(F )/s(F ′′) ∼= N ′. Thus
the set α−1M (x) is canonically isomorphic to the subset of the set of isomorphisms
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s(F )/s(F ′′) ∼= N ′ such that the composition M → s(F )/s(F ′′) ∼= N ′ → N equals
the morphism x. Hence the set α−1M (x) is an AutN (N ′)-torsor. �

Lemma 2.2 (cofinality). Let k be a positive integer. Let Ni (1 ≤ i ≤ k) and N be
objects in Cd, and gi : Ni → N be morphisms. Then there exist an object M in Cd
and morphisms fi : M → Ni such that gi ◦ fi = gj ◦ fj for any 1 ≤ i, j ≤ k and
g1 ◦ f1 is a Galois covering.

Proof. We take O-lattices LNi , L
′
Ni

(1 ≤ i ≤ k), LN , and L′N in Kd such that

• LNi ⊃ LN ⊃ L′N ⊃ L′Ni for 1 ≤ i ≤ k,
• LNi/L′Ni ∼= Ni for all i and LN/L

′
N
∼= N as O-modules,

• LN/L′N � LN/L
′
Ni
↪→ LNi/L

′
Ni

is identified with gi for all i.

There exists an integral ideal I ⊂ O such that I−1LN ⊃ LNi and L′Ni ⊂ IL
′
N for all

i. Set M = I−1LN/ILN and define the morphisms M → Ni by Ni ∼= LNi/L
′
Ni

�
LNi/ILN ↪→ I−1LN/ILN for all i. Then by Lemma 2.1, the morphism M → N
and the morphisms M → Ni for all i are Galois. �

Definition 2.3. A presheaf on FCd is a contravariant functor from FCd to the cat-
egory of sets. A presheaf F on FCd is a sheaf if it satisfies the following conditions
(1), (2) and (3):

(1) The image of the empty set F (∅) is the set of one element.

(2) For two objects N and N ′ in FCd, the canonical map F (NqN ′)→ F (N)×
F (N ′) is an isomorphism.

(3) For any Galois covering N → N ′ in Cd, the set F (N ′) is canonically iso-
morphic to the AutN ′(N)-fixed part F (N)AutN′ (N) of F (N).

We note that a representable presheaf is not necessarily a sheaf.

2.1.5. The inclusion of the category of sheaves on FCd into the category of presheaves
on FCd has a left adjoint (−)a. Let us describe the construction. Given a presheaf

F : FCd → (Sets), we define the functor F a : FCd → (Sets). Let N be an object in
Cd. Then the section F a(N) is given by

lim−→
M→N

Ker [F (M) ⇒ F (M ×N M)] = lim−→
M→N

F (M)Gal(M/N)

where the limit is taken over (a small skeleton of the category of) all Galois coverings
M → N in Cd. To check that F a satisfies (1)(2) and (3), one uses Lemma 2.2. The
details are omitted. Note that since F a(N) is expressed as filtered inductive limit,
the functor (−)a commutes with finite (projective) limits ([13] Ch. IX).

2.2. Connection with smooth representations.

2.2.1. Let Presh(FCd) denote the category of presheaves on FCd. We define the

functor ω : Presh(FCd)→ (G−Sets) from Presh(FCd) to the category of left G-sets
as follows. We consider Kd = K⊕d as the space of row vectors. Given a presheaf
F ∈ Presh(FCd), we define ω(F ) to be

ω(F ) = lim−→
L1⊂L2⊂Kd

F (L2/L1)

where the inductive limit is taken over the filtered ordered set of the pairs of two
O-lattices (L1, L2) in Kd with L1 ⊂ L2. The order is defined as follows: for
two such pairs (L1, L2) and (L′1, L

′
2), we say (L1, L2) > (L′1, L

′
2) if and only if
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L′1 ⊂ L1 ⊂ L2 ⊂ L′2. We note that whenever (L1, L2) > (L′1, L
′
2), there is a

morphism

L2/L1 � L2/L
′
1 ↪→ L′2/L

′
1

in FCd. The transition maps in the inductive limit above are given by these
morphisms. The action of G on Kd which appears in the index of the limit
lim−→L1⊂L2⊂Kd

F (L2/L1) makes ω(F ) a G-set.

Lemma 2.4. Let L1 ⊂ L2 ⊂ Kd be two O-lattices of Kd. Let KL1,L2 ⊂ G
denote the compact open subgroup of the elements g ∈ G such that Lig = Li for
i = 1, 2 and the map induced by g on L2/L1 is the identity. Then for a sheaf

F ∈ Shv(FCd), the canonical map F (L2/L1) → ω(F ) induces an isomorphism
F (L2/L1) ∼= ω(F )KL1,L2 .

Proof. By definition, F (L2/L1) = lim−→M→L2/L1
F (M)Gal(M/(L2/L1)) where the limit

is taken over (a small skeleton of the category of) all Galois coverings of L2/L1 in Cd.
By the definition of ω, we have ω(F )K = lim−→L′1⊂L′2⊂Kd

F (L′2/L
′
1)Gal((L′2/L

′
1)/(L2/L1))

where the limit is taken over all Galois coverings of the form L2/L1 � L2/L
′
1 ↪→

L′2/L
′
1. One sees that the two limits are equal using the argument in the proof of

Lemma 2.2. �

Let Rep(G) denote the (abelian) category of smooth representations of G. Let

Shv(FCd) = ShvC(FCd) denote the category of sheaves on FCd with values in the
category of complex vector spaces.

Proposition 2.5. The functor ω induces an equivalence

Shv(FCd)→ Rep(G).

Proof. Let us construct a functor ρ : Rep(G)→ Shv(FCd) in the opposite direction.

For an object N in FCd, let

s(N) = lim−→
L1⊂L2⊂Kd

HomFCd(L2/L1, N).

The limit is taken as in the definition of ω in Section 2.2.1, hence s(N) is equipped
with the left G-action, and makes s a functor to the category of left G-sets. For a
smooth representation V , we set ρ(V )(N) = HomG(s(N), V ). Note that when N
is of the form L2/L1 for some lattices L1 ⊂ L2, we have a canonical isomorphism
s(N) = G/KL1,L2

. Hence

ρ(V )(L1/L2) = HomG(G/KL1,L2
, V ) = V KL1,L2

and ρ(V ) is a sheaf. This defines a functor ρ : Rep(G) → Shv(FCd). We see that
ρ ◦ ω = idShvC(FCd) since

ρ(ω(F ))(L2/L1) = HomG(G/KL1,L2
, ω(F )) = ω(F )KL1,L2 ∼= F (L1/L2)

where the last isomorphism follows from Lemma 2.4. We also see that ω ◦ ρ =
idRep(G) since, using that V is smooth, ω(ρ(V )) = lim−→L1⊂L2⊂Kd

V KL1,L2 . The

claim is proved. �
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2.2.2. Let f : N1 → N2 be a morphism in FCd with N2 ∈ Cd. Choose an object N
and morphisms f1 : N → N1 and f2 : N → N2 such that f1 and f2 are Galois using
Lemma 2.2. The integer #AutN1

(N)/#AutN2
(N) is independent of the choice of

N , and we call it the degree of f . We define deg : π0(N2) → Z≥0 for N2 ∈ FCd
extending the degree above.

2.3. Presheaves with transfers.

Definition 2.6. An abelian presheaf with transfers on FCd is a presheaf F of
abelian groups on FCd equipped with, for each morphism f : N → N ′ in FCd a
homomorphism f∗ : F (N)→ F (N ′) satisfying the following properties:

(1) For any two composable morphisms (resp. fibrations) f and f ′, we have
(f ◦ f ′)∗ = f∗ ◦ f ′∗.

(2) For any cartesian diagram

N ′1
g1
//

�f ′

��

N1

f

��

N ′2
g2
// N2

in FCd, we have g∗2 ◦ f∗ = f ′∗ ◦ g∗1 .
(3) The composite f∗ ◦ f∗ is the multiplication by deg f .

2.3.1. Any abelian sheaf F on FCd has a unique structure of abelian presheaf with
transfers on FCd. Let f : N → N ′ be a morphism in FCd. We assume that N
and N ′ are objects in Cd and give the construction of the map f∗ : F (N)→ F (N ′)

below. For general objects in FCd, we extend f∗ in a canonical way to obtain the
structure of transfers on F .

Using Lemma 2.2, take an object M and Galois morphisms g : M → N and
g′ : M → N ′ such that f ◦ g = g′. Recall that by the definition of a sheaf we
have F (N) = F (M)Gal(M/N) and F (N ′) = F (M)Gal(M/N ′). Then for an element
x ∈ F (N), we put f∗(x) =

∑
σ∈Gal(M/N)/Gal(M/N ′) σx. This defines the structure

of transfers on F .

2.3.2. A homomorphism of abelian presheaves with transfers is a homomorphism of
abelian presheaves compatible with f∗. If F is an abelian sheaf, any homomorphism
of abelian presheaves from an abelian presheaf with transfers to F is compatible
with f∗.

3. Parabolic subgroups and Levi quotients

This section contains our main technical result, namely Corollary 3.4. This is
stated in the language of sheaves of the previous section, and it corresponds to
Lemma 4.7 via the equivalence of categories of Proposition 2.5.

In Section 3.1, we extend the results of Section 2 for the case of GLd to the
case of parabolic subgroups and their Levi quotients. We interpret operations such
as restriction, inflation, and parabolic induction on admissible representations, in
terms of operations such as sheafification, pushforward, and pullback on sheaves. In
Section 3.2, we give the computation of some transfers on sheaves. Hecke operators
in the context of sheaves are introduced in Section 3.2.2, and the main technical
result (Corollary 3.4) is proved.
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3.1.

3.1.1. For a partition d = (d1, . . . , dm), d = d1 + · · ·+ dm, d1, . . . , dm ≥ 1 of d, let
Ed denote the following category. An object in Ed is an object M in Cd endowed
with a decreasing filtration

M = Fil1M ⊃ Fil2M ⊃ · · · ⊃ Film+1M = 0

of M by sub O-modules such that for each i = 1, . . . ,m, GriM = FiliM/Fili+1M
is an object in Cdi . For two objects (M,Fil•) and (N,Fil•) in Ed, a morphism from
(M,Fil•) to (N,Fil•) is a morphism from M to N in Cd such that the filtration
Fil•N coincides with the filtration on N induced from the filtration Fil•M on M .

We have the following diagram of categories

Cd1 × · · · × Cdm gr←− Ed for−−→ Cd,

where, gr (resp. for) denotes the functor which sends an object (M,Fil•) in Ed to
the object (Gr1M, . . . ,GrmM) in Cd1 × · · · × Cdm (resp. the object M in Cd).

3.1.2. For the category Ed, we can define, in a similar way as we have done for
the category Cd, the category FEd of finite families of objects in Ed, the notions of
presheaves and sheaves on FEd, and of the sheaf associated to a presheaf on FEd in
a manner similar to that in Definition 2.3. Let Fil•Kd be the decreasing filtration
on the vector space Kd characterized by the following properties: FiliKd = Kd

(resp. FiliKd = 0) for i ≤ 1 (resp. for i ≥ m+ 1), and for 2 ≤ i ≤ m, the subspace

FiliKd ⊂ Kd is the space of vectors whose first d1 + · · ·+ di−1 coefficients are zero.
(We regard Kd as the space of row vectors.) Given a presheaf F of sets on FEd,
we define the set ωd(F ) to be

ωd(F ) = lim−→
L1⊂L2⊂Kd

F (L2/L1,Fil•)

where the inductive limit is taken over the pairs of two O-lattices (L1, L2) in Kd

with L1 ⊂ L2 and the filtration Fil• on L2/L1 is the one induced by the filtration
Fil•Kd on Kd. Then the group Pd (the standard parabolic subgroup associated
with d) acts continuously on the set ωd(F ) from the left where we endow the set
ωd(F ) with the discrete topology. Using the functor associating ωd(F ) to F , we

can check that the category of sheaves on FEd with values in complex vector spaces
is canonically equivalent to the category of smooth representation of Pd.

One can proceed in a similar manner as above with the category F(Cd1 × · · · ×
Cdm) of finite families of objects in Cd1 × · · · × Cdm . Then we can check that the
category of sheaves on F(Cd1 × · · · × Cdm) with values in complex vector spaces
is canonically equivalent to the category of smooth representations of the group
GLd1(K)× · · · ×GLdm(K).

3.1.3. Functors between categories of presheaves (cf. [19, Expose I]). We recall
here the definitions of the pushforward and pullback.

For two categories A, C, let Presh(C,A) denote the category of presheaves on C
with values in A. In this section, we assume that any category denoted by a letter
C with some subscripts is essentially small.

Let f : C1 → C2 be a covariant functor. Then the pullback functor f∗ :
Presh(C2,A)→ Presh(C1,A) is canonically defined.
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If the category A has a limit (= projective limit), there is a right adjoint functor
of f∗, which we denote by f∗ : Presh(C1,A) → Presh(C2,A). The functor f∗ can
be explicitly given as follows. Let F be a presheaf on C1, and X be an object in C2.
Then (f∗F )(X) is a limit of F (Y ). Here the limit is taken over (a small skeleton
of) the category of pairs (Y, α) of an object Y in C1 and a morphism α : f(Y )→ X
in C2. When g : C2 → C3 is another covariant functor, we have g∗f∗ = (gf)∗.

3.1.4. Restriction and inflation. Let d be a partition of d and let Pd ⊂ G be
the standard parabolic subgroup associated with d. We let Ld = GLd1(K) ×
· · · ×GLdm(K) denote the Levi quotient of Pd. We have a functor called inflation
(resp. restriction) from the category Rep(Ld) of smooth representations of Ld to
the category Rep(Pd) of smooth representations of Pd (resp. from the category
Rep(G) of smooth representations of G to the category Rep(Pd)).

Let Shv(F(Ed)) (resp. Shv(F(Cd)) denote the category of sheaves on F(Ed)
(resp. on F(Cd)) with values in the complex vector spaces. The restriction functor
and the inflation functor are compatible with the equivalence of categories in the
sense that the following two diagrams are commutative:

Shv(F(Ed)) −−−−→ Rep(Pd)

gr∗
x Inf

x
Shv(F(Cd)) −−−−→ Rep(Ld),

Shv(F(Ed)) −−−−→ Rep(Pd)

for∗
x Res

x
Shv(F(Cd)) −−−−→ Rep(G).

The horizontal arrows are the equivalence of categories induced by the equivalence
discussed in Section 3.1.2.

3.1.5. Parabolic induction. Note that the construction of the unnormalized in-
duced representation gives an induction functor Ind : Rep(Pd) → Rep(G). This is
right adjoint to the restriction functor Rep(G)→ Rep(Pd).

Consider the functor fora∗ = a ◦ for∗ : Shv(F(Ed))→ Shv(F(Cd)) which sends an
abelian sheaf F to the sheaf associated to the presheaf for∗F . One can check that
this is right adjoint to the pullback functor for∗.

By the uniqueness of the adjoint functor and the commutativity of the diagram
above, we obtain the following commutative diagram:

Shv(F(Ed)) −−−−→ Rep(Pd)

fora∗

y yInd

ShvFCd −−−−→ Rep(G),

where the horizontal arrows are the equivalence of categories.

3.1.6. Let d = (d1, . . . , dm) be a partition of d. We let Fi be a sheaf with values

in complex vector spaces on FCdi for each i = 1, . . . ,m. We define F1 � · · · � Fm
to be the sheaf on FCd with values in complex vector spaces which sends an object
(M1, . . . ,Mm) of FCd1 × · · · × FCdm to F1(M1)⊗C · · · ⊗C Fm(Mm).
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Lemma 3.1. Let the notations be as above. Then

for∗gr∗(F1 � · · ·� Fm)

is a sheaf.

Proof of Lemma 3.1. Let F ′′ = for∗gr∗(F1|Cd1 � · · ·�Fm|Cdm ). Let f : M → N be
a Galois covering in Cd with Galois group G. We set e(M) =

∐
x∈π0(e(M)) e(M)x

and e(N) =
∐
y∈π0(e(N)) e(N)y. Then for any y ∈ π0(e(N)), the morphism∐

π0(e(f))(x)=y

e(M)x → e(N)y

is a Galois covering in F(Cd1 × · · · × Cdm) whose Galois group Gy is a quotient
of G. Hence F ′′(N) is isomorphic to the G-invariant part of F ′′(M), whence the
assertion follows. �

3.1.7. We define a covariant functor h : FCd → F(Cd1×· · ·×Cdm) in the following

way. For an object M in Cd, let Flagd(M) denote the set of decreasing filtrations

M = Fil1M ⊃ Fil2M ⊃ · · · ⊃ Film+1M = 0

of M by sub O-modules such that for each i = 1, . . . ,m, GriM = FiliM/Fili+1M
is an object in Cdi . We define the object h(M) in F(Cd1 × · · · × Cdm) to be the
disjoint sum

h(M) =
∐

Flagd(M)

(Gr1M, . . . ,GrmM).

For an object M =
∐
jMj in FCd, we set h(M) =

∐
j h(Mj). The proof of the

following corollary is omitted.

Corollary 3.2. In the notation of Lemma 3.1, we have an equality of functors

a ◦ (for∗gr∗) = h∗.

from the category of sheaves on F(Cd1 × · · · × Cdm) to the category of sheaves on

FCd. Here a denotes the sheafification functor. �

3.2. Computation of the transfers.

3.2.1. For a morphism f : M → N in FCd and for x ∈ π0(h(M)), we define
the multiplicity multx(f) of f at x which is a power of q as follows. An element
x ∈ π0(h(M)) corresponds to a pair (M0,Fil•M0) of a connected component M0 of
M and a decreasing filtration

M0 = Fil1M0 ⊃ · · · ⊃ Film+1M0 = 0

such that GriM0 is an object in Cdi for each i = 1, . . . ,m. Let N0 � M ′0 ↪→ M0

be the restriction of f to M0, where N0 is an appropriate connected component of
N . The filtration Fil•M0 on M0 induces a filtration Fil•M ′0 on M ′0 and a filtration
Fil•N0 on N0. We define multx(f) to be

multx(f) = ](M0/M
′
0)d

m∏
j=1

(
(]Filj+1M ′0)2

]Filj+1M0 · ]Filj+1N0

)dj
.
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Proposition 3.3. Let the notations be as in Sections 3.1.6 and 3.1.7. Let F ′ =
h∗(F1 � · · ·� Fm). Then for any morphism f : M → N in FCd, the transfer map
f∗ : F ′(M)→ F ′(N) is canonically identified with the map

f ′∗ : [F1 � · · ·� Fm](h(M))→ [F1 � · · ·� Fm](h(N))

which is defined as follows. We set h(M) =
∐
x∈π0(h(M)) h(M)x and

h(N) =
∐
y∈π0(h(N)) h(N)y. On each x ∈ π0(h(M)), we define h(f)x : h(M)x →

h(N)π0(h(f))(x) to be the restriction of the morphism h(f) : h(M) → h(N) to the
component h(M)x. Then f ′∗ is given as the direct sum of the morphisms

multx(f)(h(f)x)∗ : [F1 � · · ·� Fm](h(M)x)→ [F1 � · · ·� Fm](h(N)π0(h(f))(x)).

Proof. We easily reduce to the case where f : M → N is a Galois covering in Cd.
Moreover we may assume that M = (O/$n)⊕d for some n, and that for the diagram
N �M ′ ↪→M giving f , M ′ is equal to either M or N . Let G be the Galois group
of M over N . We set h(M) =

∐
x∈π0(h(M)) h(M)x and h(N) =

∐
y∈π0(h(N)) h(N)y.

For x ∈ π0(h(M)), let Gx denote the Galois group of h(M)x over h(N)π0(h(f))(x).
Then it is easily checked that the cardinality of the kernel of G � Gx is equal to
multx(f). Hence the assertion follows. �

3.2.2. Let F be a sheaf on FCd with values in a complex vector space. Consider

the cyclic O-module N = $−nO/O of length n. For r = 1, . . . , d− 1, let rr = r
(d)
r

and mr = m
(d)
r denote the morphisms (O/$)⊕r ⊕ N → N in Cd given by the

canonical inclusion N = N ↪→ (O/$)⊕r ⊕ N and by the canonical quotient map
N � (O/$)⊕r ⊕N = (O/$)⊕r ⊕N respectively. We put

Tn,r =
1

#GLr(O/$)
(rr)∗(mr)

∗ : F (N)→ F (N).

These are the Hecke operators. See Section 4.1.2.
Let F be a sheaf on FCd with values in complex vector spaces. When there

exists a nonnegative integer n such that F ($−nO/O) 6= 0, we define the conductor
of F to be the smallest such n.

Corollary 3.4. Let Fi be a sheaf on FCdi with values in complex vector spaces. Let
ni be the conductor of Fi for each i = 1, . . . ,m and assume that Fi($

−niO/O) is
one-dimensional. Let F ′ = h∗(F1�· · ·�Fm) (see discussion preceding Corollary 3.2

for the definition of h). Let n′ =
∑m
i=1 ni and N = $−n

′O/O. Then F ′(N) is one-
dimensional, and the operator Tn,r on F ′(N) is equal to the sum∑

r=r1+···+rm,
ri≤max(di−ni,di−1)

∏m
i=1 q

ri(
∑

1≤j<i dj)

q
∑

1≤i<j≤m rirj
T (d1)
n1,r1 ⊗ · · · ⊗ T

(dm)
nm,rm .

Proof. Let Fil•N be the decreasing filtration of N defined by FiliN = N for i ≤ 1,
FiliN = $n1+···+ni−1N for 2 ≤ i ≤ m, and FiliN = 0 for i ≥ m + 1. Let
x ∈ π0(h(N)) be the connected component corresponding to this filtration. Then
it is easily checked that

[F1 � · · ·� Fm](h(N)) = [F1 � · · ·� Fm](Fil1N/Fil2N, . . . ,FilmN/Film+1N).

Hence F ′(N) = F1(Gr1N)⊗C· · ·⊗CFm(GrmN) is one-dimensional. Now let us com-
pute the operator Tn,r = 1

]GLr(O/$) (rr)∗m
∗
r on F ′(N). The only involved connected
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components x̃ ∈ π0(h((O/$)⊕r ⊕ N)) are those which satisfy π0(h(mr))(x̃) =
π0(h(rr))(x̃) = x. For each such x̃, the filtration on (O/$)⊕r ⊕ N corresponding
to x̃ is the direct sum of a filtration on (O/$)⊕r and the filtration Fil•N on N .
Hence (rr)∗(mr)

∗ is equal to

∑
r=r1+···+rm,

ri≤max(di−ni,di−1)

]GLr(O/$)
∏m
i=1 q

di(
∑
i<j≤m rj)∏m

i=1 ]GLri(O/$) · qri(
∑
i<j≤m rj)

×((r
(d1)
r1 )∗m

(d1)∗
r1 )⊗ · · · ⊗ ((r

(dm)
rm )∗m

(dm)∗
rm ).

The assertion follows. �

4. Local L-factor in Hecke eigenvalues

The aim of this section is to prove Theorem 4.2. In Section 4.1, we give the
setup and the precise statement of the theorem on local L-factor. Lemma 4.1 may
be ignored if one is interested only in generic representation, in which case the
result is due to [8]. In Section 4.2, we give a summary of the classifications of
admissible representations of G, along with some known facts on the L-factors.
Note that L-factors are computed inductively. Section 4.3 is devoted to the proof
of Theorem 4.2. We prove that the same inductive properties hold for the L-factor
LH which is defined using Hecke eigenvalues.

4.1. Local L-factors of GLd. Let K be a non-archimedean local field, O be its
ring of integers, and $ be a uniformizer. Let q be the cardinality of the residue
field. Let (π, V ) be an irreducible admissible representation of G = GLd(K).

4.1.1. For an integer n ≥ 0, let Kn ⊂ G be the open compact subgroup consisting
of the elements in GLd(O) whose last row is congruent to (0, . . . , 0, 1) modulo ($n).
Let H(G,Kn) be the Hecke algebra consisting of the bi-Kn-invariant functions on G
with compact supports. ThenH(G,Kn) is a convolution algebra with respect to the
Haar measure of G satisfying vol(Kn) = 1, whose unit is the characteristic function

of Kn. For r = 0, . . . , d, let Tn,r = T
(d)
n,r ∈ H(G,Kn) denote the characteristic

function of the double coset

Kn



$
. . .

$
1

. . .

1


Kn

where in the above diagonal matrix $ appears r times and 1 appears d− r times.

We note that if r ≤ d− 1 or n = 0 then T
(d)
n,r does not depend on the choice of the

uniformizer.
We also define dual Hecke operators T ∗n,r ∈ H(G,Kn) as the characteristic func-

tion of the double coset Kndiag($−1 . . . $−11 . . . 1)Kn where $−1 appears r times
and 1 appears d− r times.
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4.1.2. The Hecke operators defined in Section 3.2.2 and in Section 4.1.1 are compat-
ible in the following sense. Let (π, V ) be a smooth representation. Let 0 ≤ r ≤ n
be integers. Let L1 = O⊕d and L2 = O⊕d−1 ⊕ $−nO be lattices in Kd. Then
KL1,L2

= Kn holds. Let us identify L2/L1 and N = $−nO/O. Then the diagram

V Kn Tn,r−−−−→ V Kn

ρ

y∼= ρ

y∼=
ρ(V )(N)

Tn,r−−−−→ ρ(V )(N)

is commutative. Here N and Tn,r on the bottom are as in Section 3.2.2, and the
Tn,r on the top is that of Section 4.1.1. The vertical ρ is that appeared in the proof
of Proposition 2.5.

4.1.3. Let d = (d1, . . . , dm), d = d1 + · · ·+ dm, d1, . . . , dm ≥ 1 be a partition of d,
and let Pd denote the group of K-valued points of the standard parabolic subgroup
of GLd corresponding to the partition d. Let σ be a smooth representation of Pd on
a complex vector space V . We consider the unnormalized induced representation
Ind(G,Pd;σ) which is defined to be the space of locally constant functions f : G→
V such that f(pg) = σ(p)f(g) holds for any p ∈ Pd and any g ∈ G.

4.1.4. We use the notations from the introduction. Let d ≥ 1. Let (π, V ) be an
irreducible admissible representation of G = GLd(K) where V is a complex vec-
tor space. We let ωπ denote the central character. By the classification theorem
([18], see [15, Théorème 3, p.211], also for the notations used below) of admissi-
ble representations of G, the representation π is of the form L(∆1, . . . ,∆m) where
∆1, . . . ,∆m are segments such that ∆i does not precede ∆j if m ≥ i > j ≥ 1. Each
L(∆i) is a square integrable representation of GLdi(K). Then d = (d1, . . . , dm)
is a partition of d = d1 + · · · + dm. We set πi = |detdi |si ⊗ L(∆i) for each
i where si = (

∑
j<i dj −

∑
i<j dj)/2, and detdi is the determinant character on

GLdi . Then π is the unique irreducible quotient of the induced representation
ξ = Ind(G,Pd; Inf(π1 ⊗ · · · ⊗ πm)) where Pd is the parabolic subgroup correspond-
ing to d. We write W for the representation space of ξ. We note that we use
different normalization (see Section 4.1.3 for the normalization) for the induced
representation from [15]. The difference is the square root of the modulus of Pd,
which is explicitly given as |detd1 |s1 ⊗ · · · ⊗ |detdm |sm .

Note that πi is generic. We call the integer m in the equation (1) of [8, p.211]
(the exponent of) the conductor of πi and denote it by ci or by condπi. We let
c =

∑
i ci.

Lemma 4.1. Let the notations be as above. Then WKc is one-dimensional and
WKc−1 = 0.

Proof. Translate Corollary 3.4 using the functor ω of Proposition 2.5. �

The action ofH(G,Kc) onWKc defines an algebra homomorphism χW : H(G,Kc)→
C. We define the local L-factor in Hecke eigenvalues of π as follows. If c = 0, then
we put

LH(s, π) =

(
d∑
r=0

(−1)rχW (Tc,r)q
r(r−1)

2 −r( d−1
2 +s)

)−1
.
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If c ≥ 1, then we put

LH(s, π) =

(
d−1∑
r=0

(−1)rχW (Tc,r)q
r(r−1)

2 −r( d−1
2 +s)

)−1
.

Theorem 4.2. Let the notations and assumptions be as above. Let L(s, π) be the
local L-factor of π defined by Godement and Jacquet [4]. Then we have

L(s, π) = LH(s, π).

4.2. Here we give a summary of what we use in our proof from the classification
theory of the irreducible admissible representations of G. Most of the facts needed
for this article are contained in the papers [18], [7], and [8].

Lemma 4.3. Let π be an irreducible admissible representation. Using the notation
in Section 4.1.4, we have

L(s, π) =
∏
i

L(s+ si, πi)

where we put si = (
∑
j<i dj −

∑
i<j dj)/2 for each i. If moreover π is generic, so

that the conductor is defined, then

condπ =
∑
i

condπi

holds.

Proof. The first part may be deduced from [18, 9.7. THEOREM, p.199]. The facts
on the L-function and the conductor can be found in [7, (3.4) THEOREM, p.72].

For our normalization of the induced representation differs from that in [7] by a
square root of the modulus of Pd, we need to compute the difference, which appears
as the values si. �

We also record the following lemma.

Lemma 4.4. Let π be essentially square integrable. Then for some m dividing d
and for some supercuspidal representation σ of GLd/m(K), we have

π ∼= Q(σ, . . . , σ(m− 1)).

Here the right hand side denotes the unique irreducible quotient of Ind(G,P(d/m,...,d/m); Inf(σ⊗
· · ·⊗σ(m− 1)), where for an integer i, we denote by σ(i) the twist of σ by the qua-
sicharacter x 7→ |x|i of K×. In this case, we have

L(s, π) = L(s, σ(m− 1)).

Moreover we have condπ = m condσ unless d = 1 and σ is unramified. In the
latter case we have condπ = d− 1.

Proof. The first part is [18, 9.3. THEOREM, p.198]. The remaining part follows
from the computation of the L-factor and the epsilon factor given in [6, p.153]. �

The reader is referred to the beginning of [11, p.377, 3.1] for a summary of the
computation of the L-factor. We note here that any supercuspidal representation π
is generic, and for such π we have c ≥ 1 and L(s, π) = 1 except for the case where
d = 1 and c = 0.

With these lemmas, one can inductively compute the L-factor of an arbitrary ir-
reducible admissible representation in terms of those of one-dimensional unramified
representations.
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4.3. Proof of Theorem 4.2. To prove the proposition, we prove the following
series of lemmas.

Lemma 4.5. Let π be unramified and n = 1. Then LH(s, π) = L(s, π).

Proof of Lemma 4.5. This is well known. �

Lemma 4.6. Let (π, V ) be supercuspidal and suppose c ≥ 1. Then LH(s, π) = 1(=
L(s, π)).

Proof of Lemma 4.6. Let r ∈ {1, . . . , d − 1} and m ≥ 1. Let Sr,m ⊂ G be the
set of g = (gij) ∈ G such that the valuation of det g is mr and gdd belongs to
the set 1 + $c. Let W ⊂ G be a subset which is compact modulo center. Then
the intersection Sr,m ∩ W is empty for sufficiently large m, since the set of the
determinants of the elements in W such that gdd is congruent to 1 modulo ($c) is
bounded.

Let f ∈ V Kc be a new vector (“vecteur essentiel” in [8, p.211, (4.4)]), so that
χV (Tc,r)f = Tc,rf for r ∈ {1, . . . , d − 1}. We take a nonzero vector w ∈ (V ∨)Kc ,
so that (f, w) 6= 0. Consider χV (Tc,r)

m(f, w) = (Tmc,rf, w) where (−,−) is the
canonical pairing V × V ∨ → C. Since π is supercuspidal, the matrix coefficients of
π are compactly supported modulo center. Observe that the support of (Tc,r)

m is
contained in the set Sm,r. Then from the argument in the previous paragraph, it
follows that (Tmc,rf, w) is zero for sufficiently large m. Hence χV (Tc,r) = 0. �

Lemma 4.7. Let the notations and assumptions be as in Lemma 4.3. We have

LH(s, π) =
∏
i

LH(s+ si, πi).

Proof of Lemma 4.7. Let F (resp. Fi) be the sheaf on FCd (resp. on FCdi for each
i = 1, . . . ,m) which corresponds to π (resp. πi) via the equivalence of categories
of Proposition 2.5. Then the assumptions of Corollary 3.4 are satisfied. In view of
the remark in Section 4.1.2, it suffices to prove that ∑

r=r1+···+rm,
ri≤max(di−ni,di−1)

∏m
i=1 q

ri(
∑

1≤j<i dj)

q
∑

1≤i<j≤m rirj

 q r(r−1)
2 − r(d−1)

2

equals ∑
r=r1+···+rm,

ri≤max(di−ni,di−1)

q
∑m
i=1[ri(ri−1)/2−ri((di−1)/2+si)],

or that

r2 − rd
2

+

m∑
i=1

(ri
∑

1≤j<i

dj)−
∑

1≤i<j≤m

rirj =

m∑
i=1

(r2i − ridi + 2risi)/2

where r =
∑m
i=1 ri and d =

∑m
i=1 di. This follows easily. �

Lemma 4.8. Let the notations and assumptions be as in Lemma 4.4. We have

LH(s, π) = LH(s, σ(m− 1)).
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Proof of Lemma 4.8. Suppose we are either in the case d/m ≥ 1 or in the case
d/m = 1 and σ is ramified. Applying Lemma 4.4 to the contragradient, we
may and will assume that π is the unique irreducible subrepresentation of the
induced representation Ind(σ′1, . . . , σ

′
m) for a supercuspidal representation σ′ and

σ′k = σ′((m − k) + d
2m (m − 2k + 1)) for k = 1, . . . ,m. Let Fπ (resp. Fi) be the

sheaf on FCd (resp. FCd/m) corresponding to the representation π (resp. σ′i for
each i). Then (Fπ)Knπ , where nπ is the conductor of Fπ, is one-dimensional and is
a subspace of (h∗(F1� · · ·�Fm))Knπ . We then apply Corollary 3.4 and Lemma 4.6
to obtain the claim.

The claim for the case d/m = 1 and σ is unramified follows from Lemma 4.9. �

Lemma 4.9. Let π be the Steinberg representation. Then

LH(s, π) = L(s, π).

Proof of Lemma 4.9. It is known that L(s, π) = (1− q−s)−1. We compute the left
hand side below.

Let 1(i) denote the trivial representation of GLi(K) for i = 1, 2. As π is the Stein-
berg representation, it is isomorphic (see [12, p. 193]) to the quotient of the unnor-
malized parabolic induction Ind(G,P1,1,...,1; Inf(1(1)× · · · × 1(1))), by the canonical
image of the direct sum

Ind(1(2) × 1(1) × · · · × 1(1))⊕ Ind(1(1) × 1(2) × 1(1) × · · · × 1(1))
⊕ · · · ⊕ Ind(1(1) × · · · × 1(1) × 1(2)).

Let CFCi denote the constant sheaf on FCi with the value C for i = 1, 2. Put F ′ =
h∗[CFC1�· · ·�CFC1 ] and F2 = h∗[CFC2�CFC1�· · ·�CFC1 ], F3 = h∗[CFC1�CFC2�
CFC1 � · · ·�CFC1 ], . . ., Fd = h∗[CFC1 � · · ·�CFC1 �CFC2 ]. Then F ′, F2, . . . , Fd are

the sheaves on FCd corresponding to Ind(1(1)×· · ·×1(1)), Ind(1(2)×1(1) · · ·×1(1)),

. . ., Ind(1(1)×· · ·×1(1)×1(2)), respectively. Hence the sheaf on FCd corresponding
to the Steinberg representation is the cokernel sheaf F of

d⊕
i=2

Fi → F ′.

Let K be a compact open subgroup of G. Then the functor V 7→ V K from the
category of smooth representations of G with coefficients in C is exact. This implies

that the cokernel presheaf of
⊕d

i=2 Fi → F ′ is a sheaf and hence equals F .
We put N = $−d+1O/O. By the equivalence of categories of Proposition 2.5,

F (N) is isomorphic to V Kd−1 where V is the representation space of π, and it is
known that it is one-dimensional. Since F (N) is one-dimensional, there exists a
non-trivial linear form β. We construct explicitly such β.

We set S = {2, . . . , d}. From Corollary 3.2, it follows that F ′(N) is canonically
identified with the direct sum

F ′(N) =
⊕

α:S→{0,...,d−1}

C,

where α runs over the non-decreasing maps from S to {0, . . . , d − 1}. Similarly
Fi(N) for i ∈ S is canonically identified with the direct sum

Fi(N) =
⊕

αi:S−{i}→{0,...,d−1}

C,
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where αi runs over the non-decreasing map from S − {i} to {0, . . . , d − 1}. For a
map ε : S → {0, 1}, let αε : S → {0, . . . , d − 1} denote the non-decreasing map
defined by αε(i) = i− 2 + ε(i). We also set s(ε) = (−1)

∑
i ε(i). Define the C-linear

map β : F (N)→ C by sending (cα)α to
∑
ε s(ε)cαε . Then it is easily checked that

for each i ∈ S the composition Fi(N)→ F ′(N)
β−→ C is zero.

Let ε0 : S → {0} ⊂ {0, 1} be the constant map on S. Let v ∈ F ′(N) the
element whose α = αε0-component is 1 and whose α 6= αε0 -component is 0. For
r = 1, . . . , d− 1, set Td−1,r(v) = (wr,α)α. We compute

Cr = β(Td−1,r(v)) =
∑
ε

s(ε)wr,αε .

From Proposition 3.3, it follows that wr,α is expressed as the linear combination of
the α′-component of v where α′ : S → {0, . . . , d − 1} is such that α′(i) ≥ α(i) for
each i ∈ S. Among the functions of the form αε, the function αε0 is the one which
takes the minimal value at each point on S. It follows from this that Cr = wr,αε0 .
It is checked easily that wr,αε0 = 0 for r ≥ 2 and w1,αε0

= 1.

This implies that LH(s, π) = (1− q−s)−1. This completes the proof of Proposi-
tion 4.2. �

Proof of Theorem 4.2. In view of Lemmas 4.3 and 4.4, the series of Lemmas 4.5,
4.7, 4.8, and 4.9 imply Theorem 4.2. �

5. Local epsilon factor in Hecke eigenvalues

The aim of this section is to prove Theorem 5.1. The reader is referred to Section
1 of [7, p.63] for the details on the definition of the epsilon factor. The input from
other sections is concentrated in Lemma 5.2 where we use Theorem 4.2. Another
input is needed from our other paper [10], and is used in the proof of Lemma 5.3.

In Section 5.1, we give the precise statement of the theorem. We briefly recall
the zeta integral and the definition of the epsilon factor in the form we need in
Section 5.2. Section 5.3 is where we use a result from our other paper. We make
an explicit choice fξ of the coefficient of ξ and a Bruhat-Schwartz function Φc, and
then compute the zeta integral (Lemma 5.3). In Section 5.4, we recall the epsilon
factor of a one-dimensional representation. The proof of Theorem 5.1 is given in
the last section.

5.1. Let π be a admissible irreducible representation of G. We use the notations
from Section 4.1.4. Let c′ denote the conductor of the central character ωπ of π.
For a ∈ K, we define xa = (xa,i,j)1≤i,j≤d ∈ G as follows. We let xa,1,d = $−c and
xa,d,d = a. We let xa,i+1,d−i = 1 for 1 ≤ i ≤ d − 1, and put xa,i,j = 0 otherwise.

When d = 1, we only allow a = $−c = $−c
′
.

We let T (c′) ∈ H(G,Kc) denote the Hecke operator corresponding to the double
coset Kcx$−c′Kc. We fix an additive character ψ : K → C× of conductor 0. (The
conductor of an additive character ψ is the largest integer a such that ψ($−aO) =
1.)

When c ≥ 1 and c′ ≥ 1, we put

εH(s, π, ψ) = q(−c+c
′)sε(s, ωπ, ψ)ωπ($c′)χW (T (c′)).
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When c ≥ 1 and c′ = 0, we put

εH(s, π, ψ) =
q−cs+1

q − 1
χW (T (0))

When c = 0, we put εH(s, π, ψ) = 1. We note that since the double coset

Kc$c′x$−c′Kc is independent of the choice of the uniformizer$, the factor εH(s, π, ψ)
is also independent of the choice.

Theorem 5.1. Let the notations be as above. We have ε(s, π, ψ) = εH(s, π, ψ)
where ε(s, π, ψ) is the epsilon factor as defined in [7, p.64, (1.3.6)].

5.2. Let (π∨, V ∨) denote the contragradient of (π, V ). By definition, V ∨ is the
subspace of smooth elements of HomC(V,C). We write 〈, 〉 : V × V ∨ → C for the
canonical pairing.

5.2.1. We fix a Haar measure dg on G. For a Bruhat-Schwartz function Φ (i.e., a
locally constant compactly supported function) on Matd(K) and a function h on
G, we set

Z(Φ, s, h) =

∫
G

Φ(g)|det g |sh(g)dg.

For a Bruhat-Schwartz function Φ on Matd(K), we write

Φ̂(x) =

∫
Matd(K)

Φ(y)ψ(tr(xy))dy

for its Fourier transform. Here dy is the Haar measure on Matd(K) which is self-
dual with respect to the pairing (x, y) 7→ ψ(tr(xy)).

Lemma 5.2. Let Φ be a Bruhat-Schwartz function on Matd(K) and let f be a
coefficient of ξ. Then we have

(5.1) ε(s, π, ψ)Z(Φ, s, f) = Z(Φ̂, 1− s+
d− 1

2
, f∨)

LH(s, π)

LH(1− s, π∨)

where f∨(g) = f(g−1) is a coefficient of ξ∨.

Proof. By definition ([7, (1.3.6), p.64]), we have ε(s, π, ψ) = γ(s, π, ψ)L(s, π)L(1−
s, π∨)−1, where γ(s, π, ψ) is as in [7, Proposition 1.2, p.63]. From Theorem 4.2,
it follows that L(s, π) = LH(s, π) and L(1 − s, π∨) = LH(1 − s, π∨). It is shown
in [7, (2.7.3), p.69] that γ(s, π, ψ) = γ(s, ξ, ψ). Hence the claim follows by using
the remark preceding [7, Proposition 2.3, p.67] which says that [7, Proposition 1.2,
p.63] holds for ξ. �

When π is unramified, ε(s, π, ψ) = 1. Since each factor of εH(s, π, ψ) is 1, the
equality holds in this case. We assume from now on that c ≥ 1.

5.3. To prove Theorem 5.1, we make a suitable choice fξ of a coefficient of ξ and
a choice Φc of a Bruhat-Schwartz function, and then compute the right hand side
of (5.1) of Lemma 5.2.

Let us define fξ. From Lemma 4.1, we know that WKc is one-dimensional. Let
w ∈WKc be a nonzero element. We write w∨ ∈ (W∨)Kc for the element such that
〈w,w∨〉 = 1. We then put fξ(g) = 〈gw,w∨〉 for g ∈ G. We see that both fξ and
f∨ξ are biinvariant under Kn, i.e., fξ(kgk

′) = fξ(g) for k, k′ ∈ Kc and g ∈ G, and

similarly for f∨ξ .
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Let us define Φc. Let Yc = {(xij) ∈ Matd(O)|(xid)1≤i≤d ≡ (0, · · · , 0, 1) mod ($c)}
denote the subset of elements of Matd(O) such that the g-th row is congruent
to (0, · · · , 0, 1) modulo ($c). We let Φc be the characteristic function of the set
Yc ⊂ Matd(O). We have Kc = Yc ∩GLd(O).

5.3.1.

Lemma 5.3. Let fξ and Φc be as above. Then

Z(Φc, s+
d− 1

2
, fξ)LH(s, π)−1 = vol(Kc).

Proof. We let G act on Matd(K) by multiplication from the right, and we regard
the space S(Matd(K))Kc of Bruhat-Schwartz functions on Matd(K) that are Kc-
invariant as a left H(G,Kc)-module.

Let Φ′c denote the characteristic function of Kc. We regard Φc and Φ′c as elements
in S(Matd(K))Kc . We obtain

Φ′c =

d−1∑
i=0

(−1)iq
i(i−1)

2 T ∗c,iΦc

using the Euler system relation. We refer to [10] for a proof. See also the thesis by
Grigorov [5, p.25, Theorem 1.4.6] where a relevant portion of the proof is presented.

Since fξ is Kc-invariant and |det g | = 1 for g ∈ Kc ⊂ GLd(O), we have

Z(Φ′c, s, fξ) =

∫
G

Φ′c(g)|det g |sfξ(g)dg =

∫
Kc
|det g |sfξ(g)dg = vol(Kc).

On the other hand we have

Z(Φ′c, s, fξ) =

d−1∑
i=0

(−1)iq
i(i−1)

2

∫
G

(T ∗i Φc)(g)|det g |sfξ(g)dg

(1)
=

d−1∑
i=0

(−1)iq
i(i−1)

2 q−isχW (T ∗c,i)

∫
G

Φc(g)|det g |sfξ(g)dg

(2)
= LH(s, π)−1Z(Φc, s, fξ).

For the equality (1), we use that, |det g | = q−i for g in the support of T ∗c,i. The
equality (2) follows from the definitions. �

5.3.2. Let a ∈ $−cO/O. We define a subset Ya ⊂ Matd(O)diag(1, · · · , 1, $−c)
to be those elements (yij) such that ydd modulo O is equal to a. Then a direct
computation shows that

(5.2) Φ̂c(x) =

 ∑
a∈$−cO/O

ψ(a)chYa(x)

 q−dc

where chYa is the characteristic function of Ya.
We let

Φ̂′c =

d−1∑
i=0

(−1)iq
i(i−1)

2 T ∗c,iΦ̂c.

Then the argument as in the proof of Lemma 5.3 implies

(5.3) Z(Φ̂′c, 1− s+
d− 1

2
, f∨ξ ) = LH(1− s, π∨)−1Z(Φ̂c, 1− s+

d− 1

2
, f∨ξ ).
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5.4. The epsilon factor of the central character ωπ is given explicitly (see [17, p.13,
(3.2.6)]). If ωπ is ramified (i.e., c′ ≥ 1), we have

ε(s, ωπ, ψ) =

∫
K×

ψ(a)ω−1π (a)|a|−sda =
∑
r∈Z

qrs
∫
$rO×

ω−1π (a)ψ(a)da

where da is the Haar measure of the additive group K such that the volume of O
is 1.

Suppose c′ ≥ 1. Then
∫
O× ω

−1
π ($ra)ψ(ωra)da = 0 for r 6= −c. Hence ε(s, ωπ, ψ)

is of the form q−c
′s times a constant. (See [17, (3.2.6.2), (3.4.5)].)

5.5. Proof of Theorem 5.1. We give a proof of Theorem 5.1 in this section.

5.5.1. Let Wc ⊂ G be the subset of elements g such that |det g | = qc. We have

vol(Kc)ε(s, π, ψ)
(1)
= Z(Φ̂′c, 1− s+ d−1

2 , f∨ξ )

(2)
=

d−1∑
i=0

(−1)iq
i(i−1)

2

∫
G

(T ∗c,iΦ̂c)(g)|det g |1−s+
d−1
2 f∨ξ (g)dg

(3)
=

d−1∑
i=0

(−1)iq
i(i−1)

2

∫
Wc

(T ∗c,iΦ̂c)(g)|det g |1−s+
d−1
2 f∨ξ (g)dg.

For (1), we used Lemmas 5.2 and 5.3 and the equation (5.3). The equality (2) is by
definition. Since ε(s, π, ψ) is of the form q−cs times a constant (If π is generic, this
follows from [8, p.211, Théorème]. The general case is reduced to the case where π
is essentially square integrable (hence generic), by using Lemma 4.3 and [7, p.67,
(2.3) Proposition].), we see that (3) holds. Further, this equals

(4)
=

d−1∑
i=0

(−1)iq
i(i−1)

2

∑
a∈$−cO/O

ψ(a)

∫
Wc

(T ∗c,ichYa)(g)q−dcqc(1−s+
d−1
2 )f∨ξ (g)dg

(5)
= q

c
2 (−d+1)qc(1−s+

d−1
2 )

∑
a∈$−cO/O

ψ(a)

∫
Wc∩Ya

f∨ξ (g)dg.

The equality (4) follows from (5.2). For (5), we use the following lemma.

Lemma 5.4. Let i ≥ 1. Then

(T ∗i chYa)(X) = 0

for X ∈ Ya ∩Wc.

Proof. If Y ∈ Ya, then |detY | ≤ qc. If g is in the support of T ∗i , then |det g | = qi.
Hence if X belongs to the support of T ∗i chYa , then |detX| ≤ qc−i. This implies in
particular that X /∈Wc if i ≥ 1. This proves the claim. �

5.5.2. Let αa =
∫
Wc∩Ya f

∨
ξ (g)dg for short. Note that αau = ω−1π (u)αa holds for

u ∈ O×. Then ∑
a∈$−cO/O

ψ(a)

∫
Wc∩Ya

f∨ξ (g)dg

=
∑
r≥−c

∫
$rO×

ψ(a)αada

=
∑
r≥−c

(∫
$rO×

ψ(a)ω−1π (a)da

)
ωπ($r)α$r .



LOCAL L AND EPSILON FACTORS IN HECKE EIGENVALUES 21

When c′ ≥ 1, this equals ε(s, ωπ, ψ)q−c
′sωπ($c′)α$c′ (see Section 5.4). When

c′ = 0, this equals −α$−1 + α1.

5.5.3.

Lemma 5.5. We have χW (T (c′)) = α$c′ .

Proof. Let a ∈ $−cO/O. Take a lift ã ∈ $−cO and regard it as an element in K.
The double coset KcxãKc (see Section 5.1 for the definition of xã) is independent
of the choice of the lift ã. We will write KcxaKc for this double coset.

We claim that Wc ∩ Ya = KcxaKc. To prove the claim we consider the union
GLd(O)diag(1, · · · , 1, $c) =

∐
a∈$−cO/OWc ∩ Ya. Let

K′c = diag(1, · · · , 1, $c)Kcdiag(1, · · · , 1, $c)−1.

Then one can check that∐
a∈$−cO/O Kc\(W ∩ Ya)/Kc = Kc\GLd(O)/K′c

(1)−−→ Kc\[(O/$cO)⊕d \ ($O/$cO)⊕d]
(2)−−→ O/$cO

is an isomorphism. Here the map (1) sends the class of (xij) ∈ GLd(O) to the
vector (xid)1≤i≤d and the map (2) sends the class of (yi) to yd. An element in
W ∩ Ya is sent to a$c via this map. Since xa is sent to a$c, we obtain the claim.
The claim implies in particular that χW (T (c′)) = α$c′ . �

This proves Theorem 5.1 for the case c′ ≥ 1.

5.5.4.

Lemma 5.6. When c′ = 0,

(q − 1)χW (T (1)) + χW (T (0)) = 0

holds.

Proof. Consider the disjoint union∐
a∈$−1O/O

Ya ⊂ Matd(K).

One can check that the set

diag(1, . . . , 1, $)
∐

a∈$−1O/O

Ya

is invariant under multiplication from the right by an element of Kc−1. Hence the
set

S = diag(1, . . . , 1, $)
∐

a∈$−1O/O

Ya ∩Wc ⊂ G

is also invariant under multiplication from the right by an element of Kc−1.
By Lemma 4.1, we have WKc−1 = 0. Hence if we regard the characteristic

function chS of S as an element of the Hecke algebra H(G,Kc), then χW (chS) = 0
holds.

Now for each a ∈ $−1O/O, let S(a) denote the characteristic function of Wc∩Ya.
We regard them as elements of the Hecke algebra H(G,Kc). Since χW (chS) = 0,
for an element w ∈WKc , we have

diag(1, . . . , 1, $) ·
∑

a∈$−1O/O

S(a)w = 0
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Hence ∑
a∈$−1O/O

χW (S(a)) = 0.

We write a0 for the element $−1 modO in $−1O/O. For any u ∈ O×, we have

χW (S(ua0)) = ωπ(u)χW (S(a0)) = χW (S(a0)).

Hence we obtain

(q − 1)χW (S(a0)) + χW (S(0)) = 0.

Recall that from the proof of Lemma 5.5, we have Wc ∩ Ya0 = Kcx$−1Kc and
Wc ∩ Y0 = Kcx1Kc. Hence S(a0) = T (1) and S(0) = T (0). This proves the claim
of the lemma. �

This finishes the proof of Theorem 5.1. �

Acknowledgment We thank Takuya Konno for suggesting the theory of stan-
dard modules ([2]). This enabled us to extend our result that was stated originally
only for generic representations. We also thank Yoshihiro Ishikawa for comments.

During this research, the first author was supported as a Twenty-First Century
COE Kyoto Mathematics Fellow, was partially supported by JSPS Grant-in-Aid for
Scientific Research 17740016 and by World Premier International Research Center
Initiative (WPI Initiative), MEXT, Japan. The second author was partially sup-
ported by JSPS Grant-in-Aid for Scientific Research 21540013, 16244120.

References

[1] I. N. Bernstein, A. V. Zelevinsky, Induced representations of reductive p-adic groups. I, Ann.
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