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VANISHING THEOREMS FOR REAL ALGEBRAIC CYCLES

JEREMIAH HELLER AND MIRCEA VOINEAGU

Abstract. We establish the analogue of the Friedlander-Mazur conjecture
for Teh’s reduced Lawson homology groups of real varieties, which says that
the reduced Lawson homology of a real quasi-projective variety X vanishes
in homological degrees larger than the dimension of X in all weights. As an
application we obtain a vanishing of homotopy groups of the mod-2 topological
groups of averaged cycles and a characterization in a range of indices of the
motivic cohomology of a real variety as homotopy groups of the complex of
averaged equidimensional cycles. We also establish an equivariant Poincare
duality between equivariant Friedlander-Walker real morphic cohomology and
dos Santos’ real Lawson homology. We use this together with an equivariant
extension of the mod-2 Beilinson-Lichtenbaum conjecture to compute some
real Lawson homology groups in terms of Bredon cohomology.
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1. Introduction

Let X be a quasi-projective real variety. The Galois group G = Gal(C/R) acts
on Zq(XC), the topological group of q-cycles on the complexification. Cycles on the
real variety X correspond to cycles on XC which are fixed by conjugation. Inside
the topological group of Zq(XC)G of cycles fixed by conjugation is the topological
group Zq(XC)av of averaged cycles which are the cycles of the form α + α. The
space of reduced cycles on X is the quotient topological group

Rq(X) =
Zq(XC)G

Zq(XC)av
.

Homotopy groups of some of the above abelian topological groups are related
to classical topological invariants. For example for X a projective real variety
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2 JEREMIAH HELLER AND MIRCEA VOINEAGU

we obtain the singular homology groups π∗R0(X) = H∗(X(R),Z/2) [Teh05] and
π∗Z0(XC)av = H∗(XC(C)/G,Z) [LLFM03], as well as Bredon homology π∗Z0(X) =
H∗,0(XC(C); Z) [LF97]. Other homotopy groups are related to classical algebraic
geometry invariants. For example π0(Zr(XC)G) computes the group of algebraic
cycles of dimension r on X modulo real algebraic equivalence [FW02a] and conse-
quently with Z/n coefficients equals the Chow group CHr(X)⊗Z/n (see Proposition
5.1). However most of these homotopy groups remain a mysterious combination of
topological and algebraic information of the real variety X .

These homotopy groups are hard to compute and examples are few. Nonetheless
an examination of existing computations shows that these homotopy groups are all
zero in large degrees. For example, in ([Lam90]) Lam proves that

Rq(P
n
R) ≃

n−q∏

i=0

K(Z/2, i).

In particular πk(Rq(PnR)) = 0 for k > n − q. Similar vanishing results are seen
in the computations of [LLFM05] for a real variety X with the property that its
complexification is the quaternionic projective space (see Example 6.14).

In [Teh08] Teh proves a conditional Harnack-Thom type theorem for the homo-
topy groups of reduced algebraic cycles on X which holds under the assumption
that these homotopy groups are all finitely generated and they are zero in high
degrees. In the case of divisors he shows that

πkRd−1(X) = 0

when k ≥ 3 for any smooth projective real variety X of dimension d.
The main theorem of this paper provides this vanishing in general and should be

viewed as a massive generalization of both the classical vanishing of singular homol-
ogy groups of a manifold in degree larger than the manifold and of the vanishing
results discussed above.

Theorem 1.1. Let X be a quasi-projective real variety. Then

πkRq(X) = 0

for k ≥ dimX − q + 1.

In the case of divisors our result improves the previously known vanishing range.
The case of real projective space described above shows that the theorem’s vanishing
range is optimal.

The homotopy groups of reduced algebraic cycles Rq(X) define a homology the-
ory for real quasi-projective varieties X introduced in [Teh05] which is defined by
RLqHn(X) = πn−q(Rq(X)) for n ≥ q and called reduced Lawson homology. In this
notation our vanishing result reads RLqHn(X) = 0 for any n > dim(X). Thus our
vanishing result shows that the Friedlander-Mazur conjecture holds for the reduced
Lawson homology of real varieties.

The homotopy groups of Rq(X) fit into a long exact sequence

· · · → πk+1Rq(X)→ πkZq(XC)av → LqHRq−k,q(X)→ πkRq(X)→ · · ·

where LqHRq−k,q(X) = πkZq(XC)G is the real Lawson homology introduced by
dos Santos in [dS03a]. As a consequence of Suslin rigidity the homotopy groups of
Rq(X) are also related to motivic cohomology of X

· · · → πkzequi(A
q
C
, 0)(XC ×∆•

C)av → H2q−k
M (X ; Z(q))→ πkRq(X)→ · · · .
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Thus an immediate corollary of the vanishing theorem is an identification of the
homotopy groups of the space of averaged cycles and of the complex of averaged
equidimensional cycles.

Corollary 1.2. Let X be a smooth quasi-projective real variety. Then for any
k ≥ dimX − q + 1

LqHRq−k,q(X) = πkZq(XC)av

and

H2q−k
M (X ; Z(q)) = πkzequi(A

q
C
, 0)(XC ×∆•

C)av.

Theorem 1.1 also implies that the mod-2 homotopy groups of the topological
group of average cycles satisfy an optimal vanishing (see also Example 6.19).

Corollary 1.3. Let X be a smooth projective real variety of dimension d. Then

πn
Zp(XC)av

2Zp(XC)av
= 0

for n ≥ 2d− 2p+ 1.

An essential ingredient in the proof of our vanishing theorem is the Milnor con-
jecture proved by Voevodsky in [Voe03]. The Milnor conjecture relates motivic
cohomology and etale cohomology while real morphic cohomology naturally com-
pares with Bredon cohomology. We need to know that these cycle maps are suitably
related which is done in Theorem 5.9,

Theorem 1.4. Let X be a smooth quasi-projective real variety. The diagram com-
mutes

LqHRq−k,q(X ; Z/2)

Φ

��

H2q−k,q
M (X ; Z/2)

∼=oo

cyc

��
Hq−k,q(XC(C); Z/2) // H2q−k

G (XC(C); Z/2) // H2q−k
et (X ;µ⊗q

2 ),

where Hp−q,q(XC(C); Z/2) denotes Bredon cohomology and Hp
G(XC(C); Z/2) de-

notes Borel cohomology.

This suggests that there are possible advantages in replacing the map on Chow
groups of real cycles into Borel cohomology with the map into Bredon cohomology
since in many respects Bredon cohomology behaves better than Borel cohomology.
An application of this idea will be given in a forthcoming paper.

Together with the mod-2 Beilinson-Lichtenbaum conjecture for real and complex
varieties (which is a consequence of the Milnor conjecture by [SV00a]) we conclude
an equivariant Beilinson-Lichtenbaum type theorem for an equivariant extension of
Friedlander-Walker’s real morphic cohomology groups (see Definition 3.13).

Theorem 1.5. Let X be a smooth quasi-projective real variety and k > 0. The
cycle map

Φ : LqHRr,s(X ; Z/2k)→ Hr,s(XC(C); Z/2k)

is an isomorphism if r ≤ 0 (and s ≤ q) and an injection if r = 1 (and s ≤ q).
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Using Friedlander-Voevodsky duality for bivariant cycle theory we show in Corol-
lary 4.20 that the equivariant morphic cohomology and real Lawson homology
groups are isomorphic through a Poincare duality. As a consequence the equi-
variant Beilinson-Lichtenbaum says that in a range we may compute the mod-2
real Lawson homology groups in terms of mod-2 Bredon cohomology. This allows
a computation for curves with integral coefficients.

Corollary 1.6. Let X be a smooth real curve. Then

LqHRr,s(X ; Z)→ Hr,s(XC(C); Z)

is an isomorphism for any q ≥ 0, r ≤ q, and s ≤ q.

The space of reduced cocycles on X , related via Poincare duality with the space
of reduced cycles, is defined as

Rq(X) =
Zq(XC)G

Zq(XC)av

where Zq(XC) is the space of algebraic cocycles onXC and Zq(XC)G agrees with the
space of real cocycles introduced by Friedlander-Walker in [FW02a] (see Proposition
3.7). There is a natural comparison map

Rq(X)→ Map(X(R), R0(A
q))

and since R0(Aq) = K(Z/2, q) this provides a natural map

(1.7) cyck : πkR
q(X)→ Hq−k

sing(X(R); Z/2)

which is the cycle map for reduced morphic cohomology groups defined in [Teh05].
Via Poincare duality the vanishing theorem is equivalent to the statement that cyck
is an isomorphism for k > q.

Via the Milnor conjecture over C and over R we can deduce an isomorphism
πkR

q(X)→ πkR
q
top(X) for k ≥ q. Here Rqtop(X) is the group of “reduced topolog-

ical cocycles”. For a precise definition see Section 7, but essentially this is a version
of the quotient group Map(XC(C), Z0(A

q
C
))G/Map(XC(C), Z0(A

q
C
))av which has

reasonable homotopical properties (such as fitting into a homotopy fiber sequence
involving Map(XC(C), Z0(A

q
C
))G and Map(XC(C), Z0(A

q
C
))av).

The final ingredient for our vanishing theorem is now provided by Corollary 7.14
which shows that for X projective,

Φ̃ : πkR
q(X)→ πkR

q
top(X)

agrees with the cycle map πkR
q(X)→ Hq−k

sing(X(R); Z/2) for k ≥ 2.
Here is a short outline of the paper. In the second section we review the equi-

variant homotopy used in the paper. The third section is dedicated to introducing
the topological spaces of cycles we study and proving some basic properties that
we use and for which we don’t find exact references in the literature. In the fourth
section we prove a Poincare Duality between equivariant morphic cohomology and
real Lawson homology. In the fifth section we discuss the cycle maps from equivari-
ant morphic cohomology and Bredon cohomology and equivariant applications of
the Beilinson-Lichtenbaum conjecture. The sixth section is devoted to the proof of
our main vanishing Theorem. One of the main technical ingredients of this proof is
left for section seven where we reinterpret the cycle map 1.7 from reduced Lawson
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homology groups to the singular homology in a manner needed to prove our van-
ishing theorem. The paper ends with two appendixes where we prove and recollect
a few results on topological monoids used in the paper.

The authors would like to thank Eric Friedlander, Christian Haesemeyer and
Mark Walker for helpful discussions.

Notation: By a quasi-projective k-variety we mean a reduced and separated
quasi-projective scheme of finite type over a field k. We write Sch/k for the cate-
gory of quasi-projective k-varieties and Sm/k for the subcategory of smooth quasi-
projective k-varieties. Except in section 2, G always denotes Gal(C/R) and σ ∈ G
denotes the nontrivial element.

2. Equivariant Homotopy and Cohomology

We recall the basic definitions and theorems we need from equivariant homotopy
theory. For more details see [May96]. In this paper we will only work with G =
Z/2, but since no simplification results in the basic definitions, we let G denote
an arbitrary finite group. The category TopG of G-spaces consists of compactly
generated spaces equipped with a left G-action and morphisms are continuous G-
equivariant maps. If X is a G-space and H ⊆ G is a subgroup write XH for the
subspace of all points fixed by H . The category TopG∗ of based G-spaces consists of
G-spaces X together with a G-invariant basepoint x ∈ X and maps are base-point
preserving equivariant maps. A space together with a disjoint, invariant base-point
will be denoted X+.

Equivariant homotopy theory. Let I denote the unit interval with trivial G-
action. AG-homotopy between two equivariant maps f, g : X → Y is an equivariant
map F : X× I → Y such that F |X×{0} = f and F |X×{1} = g. An equivariant map
f : X → Y is an equivariant homotopy equivalence provided there is an equivariant
map g : Y → X such that both f ◦ g and g ◦ f are G-equivalently homotopic to the
identity. An equivariant map f : X → Y is a G-weak equivalence provided both
fH : XH → Y H is a non-equivariant weak equivalence for all subgroups H ⊆ G.
Formally inverting the G-weak equivalences gives the homotopy category of G-
spaces. Similarly inverting the based G-weak equivalences between based G-spaces
we obtain the based G-homotopy category. Write [X,Y ]G for classes of based maps
in the homotopy category of based maps.

A G-CW complex X is a topological union X = ∪Xn of G-spaces such that X0

is a disjoint union of orbits G/H and Xn is obtained from Xn−1 by attaching cells
of the form Dn ×G/H via attaching maps σ : Sn−1 ×G/H → Xn−1.

The equivariant Whitehead theorem holds for G-CW complexes. That is, if
f : X → Y is a G-equivariant weak equivalence between G − CW -complexes then
f is a G-homotopy equivalence.

A map A→ X is said to have the homotopy extension property with respect to
Z if for any equivariant partial homotopy H : X × {0}

∐
A×{0}A× I → Z there is
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an equivariant map H ′ making the diagram below commute

X × {0}
∐
A×{0}A× I

H //

��

Z

X × I

∃H′

77
n

n

n

n

n

n

n

.

An equivariant cofibration A →֒ X is an equivariant map which has the homo-
topy extension property with respect to all Z in TopG. Inclusions of sub-G-
CW complexes A ⊆ X are equivariant cofibrations.

Let V be a real representation of G, write SV for the one-point compactification
of V . The V th homotopy group of a based G-space X is

πVX = [SV , X ]G.

Note that SV always has at least two fixed points, 0 and ∞.
When G = Z/2 and V = Rp,q, where V = Rp+q with G acting trivially on the

first p-components and on the last q-components the G action is multiplication by
−1 we use the notation

πp,qX = πRp,qX.

Borel homology and cohomology. The Borel-equivariant cohomology of X
with coefficients in an abelian group A is defined to be the ordinary singular coho-
mology of the homotopy orbit space of X :

Hp
G(X ;A) = Hp((X × EG)/G;A).

Similarly the Borel-equivariant homology is defined to be

HG
p (X ;A) = Hp((X × EG)/G;A).

When X has free G-action then (X × EG)/G → X/G is a homotopy equiv-
alence and therefore when X has free G-action Hp(X/G;A) ∼= Hp

G(X ;A) and
Hp(X/G;A) ∼= HG

p (X ;A).

Mackey functors. Bredon homology and cohomology take Mackey functors as
coefficients. There are several equivalent ways to define a Mackey functor [May96].
Classically for G a finite group one defines a Mackey functor as follows . Let
FG denote the category of finite G-sets as objects and with equivariant set maps
as morphisms. A Mackey functor M consists of a pair of abelian-group valued
functors M = (M∗,M∗) on FG, with M∗ contravariant and M∗ covariant. The
functors M∗ and M∗ satisfy the following requirements.

(1) M∗,M∗ take the same value on objects and convert disjoint unions of G-sets
into products of abelian groups.

(2) When

S
σ′

//

β′

��

T

β

��
U

σ // V
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is a pull-back square of finite G-sets then

M(S)
M∗(σ′)// M(T )

M(U)

M∗(β′)

OO

M∗(σ) // M(V )

M∗(β)

OO

is a commutative square of abelian groups.

Given an abelian group A, the constant Mackey functor A is the Mackey functor
which on objects A(G/K) = A and on a map f : G/H → G/K, M∗(f) = id and
M∗(f) is multiplication by the index [K : H ].

Bredon homology and cohomology. Bredon cohomology (homology) with co-
efficients in a Mackey functor M is a cohomology (homology) theory H∗(−;M))
(H∗(−;M) graded by RO(G). For V ∈ RO(G) there is an equivariant Eilenberg-

Maclane space K(M,V ) which represents the reduced cohomology H̃V (X ;M) for
a based G-space,

H̃V (X ;M) = [X,K(M,V )]G.

When G = Z/2 then RO(G) = Z⊕Z with generators R1,0 and R0,1. We use the
convention that Hp,q(X ;M) = HR

p,q

(X ;M) (and similarly for homology).
IfA is an abelian group (with trivialG-action) thenHp,0(X ;A) = Hp

sing(X/G;A).
More generally, Borel and Bredon cohomology are related by the natural isomor-
phism

Hp,q(X × EG;A) ∼= Hp+q
G (X ;A(q))

where A(q) is A with σ acting by (−1)q (see [dSLF04, Proposition 1.15]).

Equivariant Dold-Thom theorem. Let X be a compactly generated Hausdorff
space. The free abelian group on the points of X is defined to be Z0(X) =
[
∐
d SP

d(X)]+, where SP d(X) is the dth symmetric product on X and (−)+ de-
notes group completion of the displayed monoid which is topologized via the quo-
tient topology.

The degree homomorphism deg : Z0(X)→ Z is defined by deg(
∑
nixi) =

∑
ni

is a continuous homomorphism. Write Z0(X)0 for the kernel of this map. Notice
that there is an isomorphism of topological groups Z0(X) ∼= Z0(X+)0.

If X is a G-space then the action onX induces a G-action on Z0(X) and Z0(X)0.
By [LF97, Corollary 2.9] when X is a G-CW complex so is Z0(X).

The classical Dold-Thom theorem says that πnZ0(X)0 = H̃n(X ; Z) and the equi-
variant Dold-Thom theorem proved by Lima-Filho [LF97] and dos Santos [dS03b]
says that

πV Z0(X)0 = H̃V (X ; Z).

In particular Z0(S
V )0 is an Eilenberg-Maclane space K(Z, V ).

3. Topological Spaces of Cycles

Group completions of monoids. Let M be a compactly generated Hausdorff
topological abelian monoid. The naive group completion of M is the quotient of
M × M by the monoid action of M where M acts by (a, b) 7→ (m + a,m + b).
Write M+ for this abelian group, which is topologized as the quotient of M ×M .
Recall that M is said to satisfy the cancellation property if a+m = b+m implies
that a = b for any a, b,m ∈ M . When M satisfies cancellation then the naive



8 JEREMIAH HELLER AND MIRCEA VOINEAGU

group completion can be described as M+ = M ×M/ ∼, where (a, b) ∼ (c, d) if
a+ d = b+ c.

Naive group completion does not generally behave well topologically. For ex-
ample it may happen that M+ is not a Hausdorff topological group nor is it clear
how homotopy invariants of M and M+ are related. Friedlander-Gabber [FG93]
and Lima-Filho [LF93] have studied conditions under which the naive group com-
pletion of a topological monoid is a Hausdorff group and M →M+ is a homotopy
group completion. All of the topological monoids with which we work are tractable
monoids in the sense of Friedlander-Gabber (see Appendix B) and in particular the
naive group completion of these groups are homotopy group completions.

Our main objects of interest are the group completions of submonoids of the
Chow monoids of effective algebraic cycles on algebraic varieties. Let k be a field
of characteristic 0 and j : Y ⊆ Pnk be a projective k-variety. The Chow variety
Cq(Y, j) =

∐
d≥0 Cq,d(Y, j) of effective q-dimensional cycles on Y is an (infinite,

disjoint) union of projective k-varieties. See [Fri91] for details.

Cycle-spaces over C. Let Z be a complex variety. Denote the set of complex
points equipped with the analytic topology by Z(C)an. Since there will be little
chance for confusion we will often simply write this space as Z(C) with the topology
understood. If j : Y ⊆ Pn

C
is a projective variety then Cq(Y, j)(C) is a topological

monoid and we will generally omit j from the notation since the homeomorphism
type of this space is independent of j.

The monoid Cq(Y )(C)an is tractable and therefore the naive group completion
is a homotopy group completion. Write

Zq(Y ) = (Cq(Y )(C))+

for the naive group group completion of this monoid. Define the filtration {0} ⊆
· · · ⊆ Zq,≤d(Y ) ⊆ Zq,≤d+1(Y ) ⊆ · · · ⊆ Zq(Y ) by

Zq,≤d(Y ) =


 ∐

d1+d2≤d

Cq,d1(Y )(C)× Cq,d2(Y )(C)


 / ∼⊆ Zq(Y ).

By [LF93] each Zq,≤d(Y ) is a closed, compact Hausdorff space and Zq(Y ) has the
weak topology with respect to this filtration.

When U is quasi-projective with projectivization U ⊆ U then define Zq(U) =

Zq(U)/Zq(U∞) where U∞ = U\U . The images of Zq,≤k(U) in the quotient Zq(U)
give a filtration by compact subspaces (and Zq(U) has the weak topology with
respect to this filtration). This definition is independent of choice of projectivization
[LF92], [FG93].

Cycle-spaces over R. Suppose that Z is a real variety. Write the set of R-points
equipped with the analytic topology as Z(R)an or simply Z(R) with the topology
understood.

Let Y be a projective real variety. Consider the topological monoid Cq(Y )(R).
As explained in the proof of [FW02a, Proposition 8.2] (see Proposition B.5), the
topological monoid Cq(Y )(R) is tractable and therefore its naive group completion
is a homotopy group completion. Write

Zq(Y ) = (Cq(Y )(R))+

for the naive group completion.
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Suppose that U is a quasi-projective real variety with projectivization U ⊆ U .
Define the topological group of q-cycles on the quasi-projective real variety U to be

Zr(U) = Zr(U)/Zr(U\U).

If X is a real variety and π : XC → X is its complexification then G acts on
XC(C) and induces a homeomorphism

X(R)
∼=
−→ XC(C)G.

In particular if X is a projective real variety then by [Fri91, Proposition 1.1]
Cq(XC) = Cr(X)C and so we have the isomorphism of topological monoids

Cr(X)(R)
∼=
−→ Cr(XC)(C)G.

Proposition 3.1. Let U be a quasiprojective real variety. Then

Zr(U)
∼=
−→ Zr(UC)G

is an isomorphism of topological abelian groups. In particular the group Zr(U) is
independent of projectivization U ⊆ U .

Proof. For U projective this follows immediately from Proposition A.3. The quasi-
projective case now follows by a comparison of short exact sequences of topological
abelian groups

0 // Zr(U\U) //

��

Zr(U) //

��

Zr(U) //

��

0

0 // Zr(UC\UC)G // Zr(UC)G // Zr(UC)G // 0,

where the exactness of the bottom row is a consequence of the Lemma 3.3. �

Remark 3.2. Let U be a quasi-projective real variety. Since + : Zk(UC)×Zk(UC)→
Zk(UC) is closed we see by taking G-fixed points that + : Zk(U)×Zk(U)→ Zk(U)
is a closed map for any real variety U .

Lemma 3.3. Let Y ⊆ X be a closed subvariety of a real projective variety. Then

Zr(XC)G/Zr(YC)G
∼=−→ (Zr(XC)/Zr(YC))G

and
Zr(XC)av/Zr(YC)av

∼=
−→ (Zr(XC)/Zr(YC))av

are isomorphisms of topological groups.

Proof. Consider the quotient maps π : Zr(XC)→ Zr(XC)/Zr(YC) and q : Zr(XC)G →
Zr(XC)G/Zr(YC)G. Consider the filtration {(πZr(XC)≤d})G of (Zr(XC)/Zr(YC))G

and the filtration {q(Zr(XC)G≤d)} of Zr(XC)G/Zr(YC)G. These spaces have the
weak topology given by these filtrations so it is enough to see that

q(Zr(XC)G≤d) −→ (πZr(XC)≤d)
G

is a homeomorphism for all d.
First we show that Zr(XC)G≤d → (πZr(XC)≤d)

G is surjective. If [η] ∈ (πZr(XC)≤d)
G,

we can choose a representative η =
∑
nV V ∈ Zr(XC)≤d such that each V * YC.

Since η − η ∈ Zr(YC) (and each V * YC) we see that η = η and therefore the map

Zr(XC)G≤d −→ (πZr(XC)≤d)
G
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is surjective. The map

qZr(XC)G≤d −→ (πZr(XC)≤d)
G

is easily seen to be injective and since Zr(XC)G≤d is compact this map is closed so
is a homeomorphism.

The second statement about the topological group of averaged cycles is proved
in a similar fashion. �

Spaces of algebraic cocycles. In this section we recall the construction of topo-
logical monoids of algebraic cocycles [FL92, Fri98]. Let X , Y be quasi-projective
real varieties over k = C or R. Write Mork(X, Y ) for the set of continuous algebraic
maps between X and Y . When X is semi-normal then Mork(X, Y ) = Hom (X, Y ).
Friedlander-Walker construct “analytic” topologies on Mork(X, Y ) in [FW01b] for
k = C and in [FW02a] for k = R. The set of continuous algebraic maps with this
topology will be written Mork(X, Y )an. By [FW02a, Lemma 1.2] MorR(X, Y )an =
(MorC(XC, YC)an)G.

When X ,Y are projective real varieties and W ,Z are projective complex varieties
then this topology coincides with the subspace topology induced by the inclusions

MorC(W, Z) ⊆Map(W (C), Z(C))

and

MorR(X, Y ) ⊆ Map(XC(C), YC(C))G,

where Map(−, −) denotes the space of continuous maps is with compact-open topol-
ogy. When the domain is only quasi-projective then the analytic topology on the
algebraic mapping spaces is no longer the compact-open topology but rather the
topology of convergence with bounded degree (see [FL97, Appendix A]).

Let W be a quasi-projective complex variety and Z be a projective complex
variety. Write d = dimW . Let Cr(Z)(W ) denote the monoid of effective cycles
on W × Z equidimensional or relative dimension r on W . This is made into a
topological monoid via the subspace topology induced by the inclusion

Cr(Z)(W ) ⊆ Cd+r(W × Z)
def
=
Cd+r(W × Z)

Cd+r(W∞ × Z)

where W ⊆ W a projective closure with closed complement W∞ = W\W . This
topology may also be described as follows. Let

Er(Z)(W ) ⊆ Cr+d(W × Z)

denote the constructable submonoid consisting of effective cycles whose restriction
to W ×Z is equidimensional of relative dimension r over W . By [Fri98, Proposition
1.8] the topology on Cr(Z)(W ) (given by the subspace topology above) coincides
with the quotient topology given by

Cr(Z)(W ) =
Er(Z)(W )

Cr+d(W∞ × Z)
.

Define the topological group of equidimensional cycles of relative dimension r
over W as Zr(Z)(W ) = [Cr(Z)(W )]+ (where as usual the naive group completion
is given the quotient topology). Since Cr(Z)(W ) is a tractable monoid the naive
group completion is a homotopy group completion.

In [Fri91] it is shown that a morphism of varieties f : W → Cr(Z) has an
associated graph in Zf ∈ Cr(Z)(W ). By [FL97, Proposition A.1] this defines an
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isomorphism of topological monoids Γ : MorC(W, Cr(Z)) → Cr(Z)(W ) for any
normal, quasi-projective complex variety W by [FL97, Proposition A.1]. Therefore
the graph map Γ also induces an isomorphism of topological abelian groups

Γ : MorC(W, C0(Z))+ → Z0(W )(Z),

for any normal, quasi-projective variety W and any projective variety Z. The
composite of Γ and the continuous inclusion Z0(W )(Z) ⊆ ZdimW (W × Z) defines
the duality map

D : MorC(W, C0(Z))+
Γ
−→ Z0(W )(Z) ⊆ Zd(W × Z).

While this is a continuous injective homomorphism it is not a topological embedding
(see [FL97]).

Lemma 3.4. (c.f. [Teh05, Proposition 2.9])

(1) If W is a normal quasi-projective complex variety and Z1 ⊂ Z2 is a closed
subvariety of a complex projective variety then

MorC(W, C0(Z1))
+ ⊆MorC(W, C0(Z2))

+

is a closed subspace.
(2) If U is a normal quasi-projective real variety and Y ⊆ Z is a closed subva-

riety of a projective real variety then

MorR(U, C0(Y ))+ ⊆MorR(U, C0(Z))+

is a closed subspace.

Proof. For the first statement it is equivalent to show thatZr(Z1)(W ) ⊆ Zr(Z2)(W )
is closed. Using Lemma A.1 we see that Cr+d(W × Z1) ⊂ Cr+d(W × Z2) is closed
and since Cr(Z1)(W ) = Cr+d(W ×Z1)∩Cr(Z2)(W ) we conclude that Cr(Z1)(W ) ⊂
Cr(Z2)(W ) is a closed subspace. Write π : Cr(Z2)(W )×2 → Zr(Z2)(W ) for the
quotient. Then π−1Zr(Z1)(W ) = Cr(Z1)(W )×2 +∆(Cr(Z2)(W )) (where ∆ denotes
the diagonal) is closed by step (1) in Proposition 3.6. Therefore Zr(Z1)(W ) ⊆
Zr(Z2)(W ) is closed.

The second statement follows immediately from the first statement together with
Proposition A.3 and [FW02a, Lemma 1.2]. �

Definition 3.5. (1) Let W be a quasi-projective complex variety. The space
of algebraic q-cocyles is defined to be

Zq(W ) =
MorC(W, C0(P

q
C
))+

MorC(W, C0(P
q−1
C

))+

(2) Let U be a quasi-projective real variety. The space of real algebraic q-
cocyles is defined to be

Zq(U) =
MorR(U, C0(P

q
R
))+

MorR(U, C0(P
q−1
R

))+

Proposition 3.6. Let U be a normal quasi-projective real variety then

(MorC(UC, C0(P
q
C
))an,+)G

(MorC(UC, C0(P
q−1
C

))an,+)G

∼=
−→

(
MorC(UC, C0(P

q
C
))an,+

MorC(UC, C0(P
q−1
C

))an,+

)G
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and

(MorC(UC, C0(P
q
C
))an,+)av

(MorC(UC, C0(P
q−1
C

))an,+)av

∼=
−→

(
MorC(UC, C0(P

q
C
))an,+

MorC(UC, C0(P
q−1
C

))an,+

)av

are isomorphisms of topological groups.

Proof. By Lemma A.2 and Proposition A.3 it is enough to show that for Y ′ ⊆ Y
a closed subvariety of a projective real variety and U a quasiprojective real variety
that

Cr(YC)(UC)G

Cr(Y ′
C
)(UC)G

−→

(
Cr(YC)(UC)

Cr(Y ′
C
)(UC)

)G

is an isomorphism of topological monoids.
We proceed in several steps.

(1) The map

+ : Cr(YC)(UC)× Cr(YC)(UC)→ Cr(YC)(UC)

is a proper map. Observe that if α+ β is equidimensional then both α and
β are equidimensional and therefore

Cr(YC)(UC)× Cr(YC)(UC)
+ //

��

Cr(YC)(UC)

��
Cr+k(UC × YC)× Cr+k(UC × YC)

+ // Cr+k(UC × YC)

is a pull-back square. Since addition is a proper map on effective cycles we
see that it is a proper map for effective cocycles as well.

(2) The map

Cr(YC)(UC)G

Cr(Y ′
C
)(UC)G

−→

(
Cr(YC)(UC)

Cr(Y ′
C
)(UC)

)G

is easily seen to be a continuous bijection by an argument similar to the
one used in Lemma 3.3.

(3) Finally since Cr(YC)(UC) → Cr(YC)(UC)/Cr(Y ′
C
)(UC) is a closed map by

Lemma A.1 we conclude that the continuous bijection

Cr(YC)(UC)G

Cr(Y ′
C
)(UC)G

−→

(
Cr(YC)(UC)

Cr(Y ′
C
)(UC)

)G

is a closed map and therefore a topological isomorphism.

The second statement for average cocycles is proved in a similar fashion, using
Proposition 3.10 and that Cr(YC)(UC)av ⊆ Cr(YC)(UC) is closed.

�

As with the topological group of cycles on a real variety X we may view the
topological group of real cocycles as the topological group of cycles on the com-
plexification which are fixed by the Galois action.

Proposition 3.7. Let X be a normal quasi-projective real variety. Then

Zq(X) = Zq(XC)G.

Proof. This follows from Proposition A.3 together with the previous proposition
since MorR(X, C0(P

q
R
)) = MorC(XC, C0(P

q
C
))G. �
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Remark 3.8. The space Zq(XC) has the equivariant homotopy type of a G-CW -
complex (see Corollary B.6).

When W = XC is the complexification of a quasi-projective real variety and
Z = YC is the complexification of a projective real variety the graph map is an
equivariant morphism. In particular the duality map

D : Zq(XC)→ Zd(XC × Aq
C
)

is an equivariant continuous map.

Definition 3.9. (1) Let X be a projective real variety. Define the topological
group of averaged cocycles to be

Zq(XC)av = {f + σ · f |f ∈ Zq(XC)} ⊆ Zq(XC).

(2) Let X be a normal projective real variety. Define the topological group of
reduced cocycles to be the quotient topological group

Rq(X) =
Zq(XC)G

Zq(XC)av
.

Lemma 3.10 shows that Rq(X) is a Hausdorff topological group.

In [Teh05] Teh defines

R0(Y )(X) =
MorC(XC, C0(YC))+,G

MorC(XC, C0(YC))+,av

and defines the reduced cocycles are defined as

Rq(X) =
R0(Pq)(X)

R0(Pq−1)(X)

for any real normal projective variety X and real projective variety Y.
By Proposition 3.6 this definition and the one above give isomorphic topological

groups.

Lemma 3.10. (c.f. [Teh05, Proposition 2.4]) Let X be a real projective variety.
The subset of averaged cocycles Zq(XC)av ⊆ Zq(XC) is a closed subgroup.

Proof. Write f for σ · f and V for σ · V .
Suppose that {[fn]+[fn]} is a sequence in Zq(XC)av which converges in Zq(XC).

Write [γ] = limn→∞[fn] + [fn] for its limit. We need to conclude that [γ] is an
averaged cocycle.

The set {[fn] + [fn]}∪ {[γ]} ⊆ Zq(XC) is compact. Applying the duality map to
this set yields the compact subset

{Γ([fn]) + Γ([fn])} ∪ {Γ([γ])} ⊆ Zd(XC × Aq
C
).

Since this is a compact subset it lies in Zd,≤k(XC × Aq
C
) for some k.

The sequence {[gn]} ⊆ Zd,≤k(XC × Aq
C
) has a convergent subsequence. Write

{[gni
]} for this convergent subsequence and write limni→∞[gni

] = [g] ∈ Zd,≤k(XC×

Aq
C
) for its limit. Note that [g] satisfies [g] + [g] = Γ(γ). Since Γ is injective and

its image consists precisely of equidimensional cycles, we are done if we can find an
equidimensional cycle [g′] such that [g′] + [g′] = [g] + [g].

Choose a representative γ ∈ MorC(XC, C0(P
q
C
))+ of [γ]. Choose a representative

g =
∑
nV V ∈ Zd(XC × Pq

C
) of [g] such that if nV 6= 0 then V * Pq−1 ×X . Since

[g] + [g] = Γ([γ]) ∈ Zd(XC × Aq
C
) we see that g + g =

∑
(nV + nV )V = Γ(γ) + h
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where h ∈ Zd(XC × Pq−1
C

). Write h = ΣmWW . Since V * Pq−1 whenever nV 6= 0
we see that if mW 6= 0 then a term of −mWW must appear in Γ(γ). In particular
h is equidimensional. Consequently g + g is equidimensional.

If nV + nV 6= 0 then V is equidimensional. Define

g′ =
∑

nV +nV 6=0

nV V.

Since g′ is an equidimensional cycle there is an f ∈ (MorC(XC, C0(P
q
C
))+)G such

that Γ(f) = g′. Since Γ([f ] + [f ]) = [g′] + [g′] = [g] + [g] = Γ([c]) and Γ is injective,

we conclude that [c] = [f ] + [f ]. �

A continuous algebraic map f : W → V between two complex varieties induces
a continuous map f : W (C) → V (C). Friedlander-Lawson [FL92, Proposition 4.1]
show that this defines a continuous map

(3.11) Φ : Zr(W )→ Map(W (C), Z0(A
r
C)),

where the mapping space between two topological spaces is given with the compact-
open topology. If Y is a real variety this provides a continuous equivariant com-
parison map

Φ : Zr(YC)→ Map(YC(C), Z0(A
r
C))

of topological abelian groups.

Definition 3.12. (Real Morphic Cohomology) Friedlander-Walker [FW02a] define
real morphic cohomology of a quasi-projective real variety by

LqHRn(X) = π2q−nZ
q(X)

for 2q − n ≥ 0.

We will be using an equivariant extension of their theory for normal quasi-
projective real varieties defined below.

Definition 3.13. (Equivariant Morphic Cohomology) Let X be a normal quasi-
projective variety. Then the equivariant morphic cohomology is (in equivariant
homotopy indexing notation)

LqHRk,r(X) = πq−k,q−rZ
q(XC),

for q − k, q − r ≥ 0.

By Proposition 3.7 we see that

LqHRn(X) = π2q−nZ
q(XC)G

so Friedlander-Walker’s real morphic cohomology groups are a part of the equivari-
ant morphic cohomology, LqHRq−r,q(X) = πr,0Zq(XC) = LqHR2q−r(X).

In [dS03a] dos Santos defines real Lawson homology.

Definition 3.14. (Real Lawson Homology) For any quasi-projective real variety
X , the real Lawson homology is defined by

LqHRn,m(X) = πn−q,m−qZq(XC),

for n− q,m− q ≥ 0.

Definition 3.15. LetX be a quasi-projective real variety. The following definitions
are taken from [LLFM03].
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(1) Define the space of averaged cycles Zq(X)av to be

Zq(XC)av = Im(N) ⊆ Zq(XC)G,

so Zq(XC)av ⊆ Zq(XC)G is the subgroup generated by cycles of the form

Z + Z and given the subspace topology. By Remark 3.2 this is a closed
subgroup. Here N : Zq(XC)→ Zq(XC) is defined by N(Z) = Z + Z.

(2) Define the space of reduced cycles Rq(X) to be the quotient group

Rq(X) =
Zq(XC)G

Zq(XC)av
.

Remark 3.16. These spaces all have the homotopy type of a CW -complex (see
Corollary B.6).

Teh [Teh05] defines the reduced real Lawson homology of X to be

RLqHn(X) = πn−qRq(X),

for n ≥ q. According to Lemma 3.3 this definition coincides with the definition
given in [Teh05] in the case of a quasi-projective variety.

Example 3.17. Let X be a projective real variety.

(1) [LLFM03, Lemma 8.4] The space of averaged zero-cycles computes the
singular homology of the quotient of analytic space of complex points

πkZ0(XC)av = Hk(X(C)/G; Z).

(2) By the equivariant Dold-Thom theorem [dS03b] the space of fixed zero-
cycles computes (a portion of) Bredon cohomology

πkZ0(XC)G = Hk,0(X(C); Z).

(3) [Teh05, Proposition 2.7] The space of reduced real cycles computes the
singular homology with Z/2 coefficients of the analytic space of real points

πkR0(X) = Hk(X(R); Z/2).

4. Poincare Duality

In this section we use the duality for bivariant cycle homology in [FV00] to
establish a duality between Lawson homology of a real variety and real morphic
cohomology. This together with the duality between Lawson homology and morphic
cohomology [FL97] gives an equivariant duality between the algebraic cocycle spaces
and algebraic cycle spaces for the complexification of a real variety.

The material and methods used here closely parallel [FW03, Section 3] where
Friedlander-Walker reformulate Lawson homology and morphic cohomology for
complex varieties.

Recognition Principle. Let F (−) be a presheaf sets (respectively simplicial sets,
or abelian groups) on Sch/R. If T is a topological space then define F (T ) by the
filtered colimit

F (T ) = colim
T→V (R)

F (V ).

In particular we obtain a simplicial set (respectively a bisimplicial set, or sim-
plicial abelian group) by

(4.1) d 7→ F (∆d
top).
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We record an analogue of the recognition principle [FW03, Theorem 2.3] which is
needed to move the duality for bivariant cycle homology to a duality for real Lawson
homology and morphic cohomology. Friedlander-Walker’s proof in the complex case
uses the uad-topology which is essentially due to Deligne.

Definition 4.2. (1) A continuous map of topological spaces f : S → T is said
to satisfy cohomological descent if for any sheaf A of abelian groups on T
the natural map

H∗(T,A)→ H∗(NT (S), f∗A)

is an isomorphism. Here NT (S)→ T is the Cech nerve of f , i.e. NT (S) is
the simplicial space which in degree n is the n + 1-fold fiber product of S
over T . A map f : S → T is said to be of universal cohomological descent
provided the pullback S ×T T ′ → T ′ along any continuous map T ′ → T is
again of cohomological descent.

(2) The uad-topology on SchR is the Grothendieck topology associated to the
pretopology generated by collections {Ui → X} such that

∐
Ui(R)an →

X(R)an is a surjective map of universal cohomological descent.

Example 4.3. (1) A proper and surjective map of real varieties X → Y which
induces a surjective map of real points is a uad-cover. Indeed, in this case
X(R)an → Y (R)an is a proper surjective map of topological spaces, and
therefore is a map of universal cohomological descent (see [Del74, 5.3.5]).

(2) Any Nisnevich cover is a uad-cover. Any cdh-cover is a uad-cover. In
particular every real varietyX is locally smooth in the uad topology because
resolution of singularities implies there is a cdh-cover X ′ → X , with X ′

smooth.
(3) Unlike the complex case not every etale-cover is a uad-cover (e.g. Spec C→

Spec R is an etale cover but not a uad-cover).

Here is the recognition principle.

Theorem 4.4 ([FW03, Theorem 2.2]). Suppose that F → G is a natural transfor-
mation of presheaves of abelian groups on SchR. If Fuad −→ Guad is an isomorphism
of uad-sheaves, then

F (∆•
top)→ G(∆•

top)

is a homotopy equivalence of simplicial abelian groups.

Proof. Friedlander-Walker’s proof given in [FW03] works by changing the space
X(C)an associated with a complex variety with the space Y (R)an associated to a
real variety together with the fact that Y (R)an may be triangulated. �

Corollary 4.5. Suppose that f : F → G is a map of presheaves of simplicial
abelian groups such that F (V ) → G(V ) is a homotopy equivalence for any smooth
V . Then the map of simplicial abelian groups diagF (∆•

top) → diagG(∆•
top) is a

homotopy equivalence.

Poincare Duality. Let X be a variety over a field k of characteristic zero. Re-
call the presheaf zequi(X, r)(−) of equidimensional r-cycles. This is the unique
qfh-sheaf on Sch/k such that for a normal variety U the group zequi(X, r)(U) is
the free abelian group on closed, irreducible subvarieties V ⊆ U ×k X which are
equidimensional of relative dimension r over some irreducible component of U .
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IfX and Y are real varieties thenG = Gal(C/R) acts on the group zequi(XC, r)(UC)
by σ · [V ⊆ UC ×C XC] = [σV ⊆ UC ×C XC].

Lemma 4.6. Let X and U be real varieties. Then

zequi(X, r)(U)
π∗

−→ (zequi(XC, r)(UC))G

is a natural isomorphism where π : (U ×R X)C → U ×R X.

Proof. It suffices to check this for U normal, since normalization is a qfh-cover. By
[SV00b, Lemma 2.3.2] π∗ : Cycl(U ×X) → Cycl((U ×X)C)G is an isomorphism,
where Cycl(W ) denotes the group of cycles on W . We are done if we see that

f : V → U is equidimensional if and only if f̃ : VC → UC is equidimensional. By
[Gro66, Proposition 13.3.8] if f is equidimensional then so is f̃ . Suppose that f̃ :

VC → UC is equidimensional. Since UC is normal, f̃ : VC → UC is an open mapping
and for all v′ ∈ V the local rings OVC,v′ are equidimensional by [Gro66, Corollaire
14.4.6]. By [Gro65, Corollaire 2.6.4, Proposition 7.1.3] the map f : V → U is
open and OV,v is equidimensional for all v ∈ V since UC → U is faithfully flat and
therefore f is equidimensional. �

In the proof of [FW02a, Proposition 2.4] it is shown that for any presheaf F (−)
of sets on Sch/C and any topological space T the natural map

colim
T→V (R)

F (VC)
∼=
−→ colim

T→U(C)
F (U)

is an isomorphism. In the first indexing set V ranges over real varieties and in the
second U ranges over complex varieties.

In particular zequi(XC, r)(YC ×C T ) may be computed via the filtered colimit

zequi(XC, r)(YC ×C T ) = colim
T→V (R)

zequi(XC, r)(YC ×C VC),

which equips zequi(XC, r)(YC×C T ) with an action of G. Filtered colimits commute
with fixed points and so

zequi(X, r)(Y ×RT )→ (zequi(XC, r)(YC×CT ))G = colim
T→V (R)

(zequi(XC, r)(YC×CVC))G

is an isomorphism.
For X projective we have the natural isomorphism of presheaves (in fact of qfh-

sheaves) of abelian groups on SchR (see [SV00b, Lemma 4.4.14]

zequi(X, r)(−) ∼= MorR(−, Cr(X))+.

The following is the real analogue of [FW03, Proposition 3.1].

Proposition 4.7. Let T be a compactly generated Hausdorff topological space and
X a quasi-projective real variety. There is a natural map of abelian groups

zequi(X, r)(T )→ Homcts (T, Zr(X))

given by sending (f : T → U(R), α ∈ zequi(X, r)(U)) to the function t 7→ α|f(t).
This map is contravariant for continuous maps of compactly-generated Hausdorff

spaces T ′ → T , covariant for proper maps X → X ′ and contravariant for flat maps
X ′ → X (with a shift in dimension).

When X is a projective real variety the induced map of simplicial abelian groups

zequi(X, r)(∆
•
top)→ Sing•Zr(X)
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is the natural homotopy equivalence

[Sing•(Cr(X)an)]
+ ≃
−→ Sing•Zr(X).

More generally, for a quasi-projective real variety X with projectivization X ⊂ X
this map fits into a comparison of homotopy fiber sequences

(4.8) zequi(X rX, r)(∆•
top)

��

// zequi(X, r)(∆•
top) //

��

zequi(X, r)(∆•
top)

��
Sing•Zr(X rX) // Sing•Zr(X) // Sing•Zr(X).

Therefore the map

zequi(X, r)(∆
•
top)→ Sing•Zr(X)

is a natural weak equivalence for any quasi-projective real variety X.

Proof. The map

zequi(XC, r)(T ) = colim
T→W (C)

zequi(XC, r)(W )→ Homcts (T, Zr(XC))

given sending (f : T → W (C), α ∈ zequi(XC, r)(W )) to the function t 7→ α|f(t)

is shown to be well-defined in [FW03, Proposition 3.1] and to satisfy the stated
naturality properties. Observe that if W = VC is the complexification of a real
variety then α|f(t) = α|f(t). Therefore composing with the natural isomorphism

colim
T→V (R)

zequi(XC, r)(VC)
∼=
−→ colim

T→W (C)
zequi(XC, r)(W )

gives a well-defined equivariant map

zequi(XC, r)(T )→ Homcts (T, Zr(XC))

which by taking fixed points induces the map

zequi(X, r)(T ) = zequi(XC, r)(T )G → Homcts (T, Zr(XC))
G

= Homcts (T, Zr(X)) ,

which is the map of the proposition and satisfies the stated naturality properties.
When X is a projective real variety and T is a compact Hausdorff space, the map

zeffequi(XC, r)(T ) → Homcts (T, Cr(XC)) is an isomorphism by [FW02b, Corollary

4.3]. Since this is an equivariant map, taking fixed points yields the isomorphism
of monoids

zeffequi(X, r)(T )
∼=
−→ Homcts (T, Cr(X)) .

Therefore the map

zequi(X, r)(∆
•
top)

∼=
−→ [Homcts

(
∆•
top, Cr(X)an

)
]+ → Sing•Zr(X)

is a homotopy equivalence by Quillen’s theorem [FM94, App Q] on homotopy group
completions of simplicial abelian monoids.

Finally the diagram (4.8) commutes by the naturality properties of the map
zequi(X, r)(T ) → Homcts (T, Zr(X)) . By [FV00, 5.12,8.1], Proposition 4.12 (ho-
motopy invariance), and Theorem 4.4 (recognition principle) the upper row of the
diagram (4.8) is a homotopy fiber sequence. Comparing the upper and lower ho-
motopy fiber sequence yields the final statement of the proposition.

�
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Proposition 4.9. For a quasi-projective real variety U , projective real variety Y ,
and compact Hausdorff space T , there is a natural map of abelian groups

zequi(Y, 0)(U ×R T )→ Homcts

(
T, MorR(U, C0(Y ))+

)

given by sending (f, α) to the function t 7→ α|f(t).

Proof. The map

zequi(YC, 0)(UC ×C T )→ Homcts

(
T, MorC(UC, C0(YC))+

)

from [FW03, Proposition 3.3] is equivariant and therefore taking fixed points in-
duces the natural map of abelian groups

zequi(Y, 0)(U ×R T )→ Homcts

(
T, MorR(U, C0(Y ))+

)
.

�

Let Y be a projective real variety and U a normal quasi-projective real variety
of dimension d with projectivization U ⊆ X and closed complement X∞ = X \ U .
Write Er(Y )(U) ⊆ Cr+d(Y ×R X) for the submonoid consisting of those cycles of
dimension r + d on Y × X whose restriction to U is equidimensional of relative
dimension r over U . This is a constructable embedding. This can be seen by
arguing as in [Fri98] for the complex case. The subspace topology on this monoid
agrees with the quotient topology Cr(Y )(U) = Er(Y )(U)/Cr+d(Y ×X∞) by the same
reasoning as in [Fri98, Proposition 1.8]. The topological group of equidimensional
cycles is the naive groups completion Zr(Y )(U) = Cr(Y )(U)+. Since these are
tractable monoids, they are related to equidimensional cocycles via the homotopy
fiber sequence

Zr+d(Y ×X∞)→ (Er(Y )(U))+ → Zr(Y )(U).

Define the presheaf e(U, Y, r)(−) to be the pull-back of presheaves

e(U, Y, r)(−)
� � //

��

zeffequi(Y ×X, r + d)(−)

��
zeffequi(Y, r)(U ×−)

� � // zeffequi(Y × U, r + d)(−).

We have for each quasi-projective real variety V the short exact sequence of abelian
groups

0→ zequi(Y ×X∞, r + d)(V )→ (e(U, Y, r)(V ))+ → zequi(Y, r)(U × V )→ 0.

Proposition 4.10. Let Y be a projective real variety, U a normal quasi-projective
real variety, and T a compact Hausdorff space. Then

e(U, Y, r)(T )
∼=−→ Homcts (T, Er(Y )(U))

is an isomorphism.

Proof. Observe that if V is a quasi-projective real variety then the isomorphism

MorR(V, Cr+d(Y ×X)) ∼= zeffequi(Y ×X, r + d)(V ) restricts to give the isomorphism

MorR(V, E(Y )(U)) ∼= e(U, Y, r)(V ). Here if E ⊆ W is a constructable subset then
Mor(V, E) ⊆ Mor(V, W ) is the subset consisting of those continuous algebraic
maps whose image is contained in E.

The isomorphism e(U, Y, r)(T )
∼=
−→ Homcts (T, Er(Y )(U)) now follows as in [FW01b,

Corollary 4.3]. �



20 JEREMIAH HELLER AND MIRCEA VOINEAGU

Proposition 4.11. Let U be a normal quasi-projective real variety and Y a pro-
jective real variety. The map of simplicial abelian groups from Proposition 4.9

zequi(Y, 0)(U ×∆•
top)→ Sing•(MorR(U, C0(Y ))+)

is a homotopy equivalence.

Proof. By proposition 4.10 we have e(U, Y, r)(∆•
top)
∼= Sing• Er(Y )(U). Now by tak-

ing group completions, tractability of the monoid Er(Y )(U) and Quillen’s theorem
[FM94, App Q] we conclude that

e(U, Y, r)(∆•
top)

+ ≃
−→ Sing•(Er(Y )(U)+)

is a homotopy equivalence.
We conclude the proposition by comparing homotopy fiber sequences of simplicial

abelian groups

zequi(Y ×X∞, r + d)(∆•
top) //

��

(e(U, Y, r)(∆•
top))

+ //

��

zequi(Y, r)(U ×∆•
top)

��
Sing•Zr+d(Y ×X∞) // Sing•(Er(Y )(U)+) // Sing•Z

r(Y )(U).

The left arrow is a homotopy equivalence by Proposition 4.7, we have just seen
that the middle map is a homotopy equivalence, the right horizontal maps induce a
surjection on π0 and so we conclude that zequi(Y, r)(U ×∆•

top)→ Sing•Z
r(Y )(U)

is a homotopy equivalence. �

Proposition 4.12. The presheaves zequi(X, r)(∆
•
top ×−) are homotopy invariant

in the sense that the map of complexes

zequi(X, r)(∆
•
top)→ zequi(X, r)(∆

•
top ×R ∆1

R)

is a quasi-isomorphism.

Proof. The same argument as in [FW01a, Lemma 1.2]. �

The duality theorem for bivariant cycle theory [FV00, Theorem 7.4] says that
for real varieties X , U with U smooth of dimension d, the natural inclusion

(4.13) D : zequi(X, r)(U ×R −) →֒ zequi(X ×R U, r + d)(−)

induces a quasi-isomorphism of complexes

D : zequi(X, r)(U ×R ∆•
R)

≃
−→ zequi(X ×R U, r + d)(∆•

R).

Proposition 4.14. For a smooth real variety U and a quasi-projective real variety
X the map

zequi(X, r)(U ×R ∆•
top)

D
−→ zequi(X ×R U, r + d)(∆•

top)

is a quasi-isomorphism.

Proof. Consider the commutative diagram

zequi(X, r)(U ×R ∆•
top)

D
−−−−→ zequi(X ×R U, r + d)(∆•

top)

π∗

y
yπ∗

zequi(X, r)(U ×R ∆•
R
×R ∆•

top)
D

−−−−→ zequi(X ×R U, r + d)(∆•
R
×R ∆•

top).
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The vertical arrows are quasi-isomorphisms by homotopy invariance. The bottom
right arrow is a quasi-isomorphism by Corollary 4.5 since

zequi(X, r)(U ×R ∆•
R ×W )→ zequi(X ×R U, r + d)(∆•

R ×R W ).

is a quasi-isomorphism for all smooth real varieties W by [FV00, Theorem 7.4] and
therefore the top horizontal map is a quasi-isomorphism as well. �

Lemma 4.15. Let Y be a projective real variety and U a smooth real variety. The
following diagram commutes

zequi(Y, 0)(U ×R ∆•
top)

D
−−−−→ zequi(U ×R Y, d)(∆

•
top)y

y

Sing• MorR(U, C0(Y ))+
D

−−−−→ Sing•Zd(U ×R Y )

where the vertical maps are the ones from Proposition 4.9 and Proposition 4.7.

Proof. By [FW03, Proposition 3.3] the diagram of equivariant maps of simplicial
sets

zequi(YC, 0)(UC ×C ∆•
top) −−−−→

D
zequi(UC ×C YC, d)(∆

•
top)

y
y

Sing• MorC(UC, C0(YC))+ −−−−→
D

Sing•Zd(UC ×C YC)

commutes. Taking fixed points yields the result. �

Write

zequi(P
q/q−1
R

, 0)(U) = coker(zequi(P
q−1
R

, 0)(U)→ zequi(P
q
R
, 0)(U))

for the cokernel of the map of presheaves induced by Pq−1
R
⊆ Pq

R
.

Proposition 4.16. Let U be a smooth real variety of dimension d. The sequence
of natural maps of complexes below consist of quasi-isomorphisms.

(4.17) zequi(A
q
R
, 0)(U ×R ∆•

top)← zequi(P
q/q−1
R

, 0)(U ×R ∆•
top)→

→
Sing•(MorR(U, C0(P

q
R
))+

Sing•(MorR(U, C0(P
q−1
R

))+
→ Sing•Z

q(U).

Proof. That the first map of diagram (4.17) is a quasi-isomorphism follows from
consideration of the comparison diagram

z(Pn−1, r)(U ×∆•
top)

D��

// z(Pn, r)(U ×∆•
top) //

D��

z(An, r)(U ×∆•
top)

D��
z(Pn−1 × U, r + d)(∆•

top)

��

// z(Pn × U, r + d)(∆•
top) //

��

z(An × U, r + d)(∆•
top)

��
Sing•Zr+d(P

n−1 × U) // Sing•Zr+d(P
n × U) // Sing•Zr+d(A

n × U).

The vertical arrows are all quasi-isomorphisms by Proposition 4.14 and by Propo-
sition 4.7. Because Ck(V ) is a tractable monoid, the bottom row is homotopy
equivalent to a short exact sequence of simplicial abelian groups and therefore the
top rows are as well. It follows immediately that the first arrow of diagram 4.17 is a
quasi-isomorphism. The second arrow of diagram (4.17) is a quasi-isomorphism by
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Proposition 4.11 and the last arrow of the diagram is a quasi-isomorphism because
MorR(U, C0(PnR)) is a tractable monoid. �

Definition 4.18. If k < 0 then define Zk(X) to be Z0(X × A−k).

We can now conclude the duality for real morphic cohomology and real Lawson
homology.

Corollary 4.19. Let U be a smooth real variety of dimension d. Then

Zq(UC)G
D
−→ Zd(A

q
C
×C UC)G

≃
←− Zd−q(UC)G

is a natural homotopy equivalence.
In particular it induces the natural isomorphism

LqHRn(U)
∼=
−→ Ld−qHRd−n,d(U).

Proof. This follows from Proposition 4.14, Lemma 4.15, Proposition 4.7, Proposi-
tion 4.16, and homotopy invariance [dS03a, Proposition 4.15]. Indeed these show
that the following diagram is commutative and the left hand maps are homotopy
equivalences,

zequi(A
q
R
, 0)(U ×∆•

top)

D��

zequi(P
q/q−1
R

, 0)(U ×∆•
top)

oo

D��

//

zequi(A
q
R
× U, d)(∆•

top) zequi(P
q/q−1
R

× U, d)(∆•
top)

oo //

// Sing
•
(MorR(U, C0(P

q

R
))+

Sing
•
(MorR(U, C0(P

q−1

R
))+

//

D��

Sing•Z
q(U)

D
��

// Sing
•
Zd(Pq

R
×U)

Sing
•
Zd(Pq−1

R
×U)

// Sing•Zd(A
q × U).

Therefore the right hand map is also a homotopy equivalence �

Combining Friedlander-Lawson’s duality between Lawson homology and morphic
cohomology over C and the duality over R immediately gives an equivariant duality
theorem.

Corollary 4.20. Let U be a smooth real variety of dimension d. The sequence of
maps

Zq(UC)→ Zd(UC ×C Aq
C
)← Zd−q(XC)

consists of G-equivariant homotopy equivalences. In particular

LqHRn,m(U)
∼=
−→ Ld−qHRd−n,d−m(U).

for all smooth quasi-projective real varieties U .

Remark 4.21. A smooth G-manifold M equipped such that the action of G on
its tangent bundle makes it into a real n-bundle satisfies an equivariant Poincare
duality,

P : Hp,q(M ; Z)
∼=
−→ Hn−p,n−q(M ; Z).

In a forthcoming paper we prove that the duality D is compatible under the cycle
maps with the duality P .
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5. Compatibility of Cycle Maps

Generalized cycle maps. Let X be a smooth real variety. The generalized cycle
map relates motivic cohomology and etale cohomology,

cyc : H2q−k,q
M (X ; Z/2)→ H2q−k

et (X ;µ⊗q
2 ).

By [Cox79] the etale cohomology of a real variety is equal to the Borel equivariant
cohomology of its space of complex points,

H2q−k
et (X ;µ⊗q

2 ) ∼= H2q−k
Z/2 (XC(C); Z/2).

On the other hand morphic cohomology and motivic cohomology agree with
finite coefficients (see Proposition 5.1).

Combining the generalized cycle map in morphic cohomology and the comparison
map between Bredon and Borel equivariant cohomology

LqHRq−k,q(X ; Z/2)→ Hq−k,q(XR(C); Z/2)→ H2q−k
Z/2 (X(C); Z/2)

together with the isomorphism H2q−k,q
M (X ; Z/2)

∼=
−→ LqHRq−k,q(X ; Z/2) gives an-

other map

H2q−k,q
M (X ; Z/2) ∼= LqHRq−k,q(X ; Z/2)→ H2q−k

Z/2 (XC(C); Z/2) ∼= H2q−k
et (X ;µ⊗q

2 ).

In this section we verify that these two potentially different cycle maps are equal
and we explore a few consequences. In particular this allows compatibility of cycle
maps allows us to conclude that LqHRq−p,q(X ; Z/2k) → Hq−p,q(XR(C); Z/2k) is
an isomorphism for p ≥ q and for any smooth X .

Before continuing, we show that motivic cohomology and morphic cohomology
for real varieties agree with finite coefficients. This is a well-known to the experts,
but because of the lack of a good reference we prove it below.

Proposition 5.1. Let X be a smooth real variety. Then for any n > 0

H2q−k,q
M (X ; Z/n)

∼=
−→ LqHRq−k,q(X ; Z/n).

Proof. We show that the natural map of simplicial abelian groups

zequi(A
q, 0)(X ×∆•

R)⊗ Z/n→ zequi(A
q, 0)(X ×∆•

R ×∆•
top)⊗ Z/n

is a quasi-isomorphism which implies the result by Proposition 4.11 and Proposition
4.12. Write F (U) for the presheaf

U 7→ πk(zequi(A
q, 0)(X ×∆•

R × U)⊗ Z/n)

on Sch/R and F0(U) for the constant presheaf

U 7→ πk(zequi(A
q, 0)(X ×∆•

R)⊗ Z/n).

Restricted to Sm/R these are homotopy invariant presheaves with transfers.
Recall [FW02a, Lemma 3.8] that if F (−) is a homotopy invariant presheaf with
transfers, Y is smooth, and y ∈ Y (R) then F (SpecOhY,y) → F (R) is an isomor-

phism, where OhY,y is the Henselization of the local ring OY,y.
Let H(−) denote either the kernel or the cokernel of the natural transformation

F0(−) → F (−). Let Y be a quasi-projective real variety and γ ∈ H(Y ). Let

Ỹ → Y be a cdh-cover with Ỹ smooth (in particular it is a uad-cover). Since
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H(SpecOh
Ỹ ,y

) = 0 for any y ∈ Ỹ (R) there are finitely many etale maps Ỹk → Ỹ

such that γ|Ỹk
= 0 and

∐
Ỹk → Ỹ is a uad-cover.

Therefore Huad = 0 and (F0)uad → Fuad is an isomorphism. By Theorem 4.4 we
conclude that

πk(zequi(A
q
R
, 0)(X ×∆•

R)⊗ Z/n)→ πk(zequi(A
q
R
, 0)(X ×∆•

R ×∆•
top)⊗ Z/n)

is an isomorphism.
An application of the Bousfield-Friedlander spectral sequence finishes the proof.

�

Friedlander-Walker introduce in [FW02a] the equivalence relation of real alge-
braic equivalence. Briefly two cycles α, β on a real variety X are real algebraically
equivalent provided there is a smooth real curve C, two real points c0, c1 in the
same analytic connected component of C(R), and a cycle γ on X × C such that
α = γ|c0 and β = γ|c1 . Since LqHRq,q(X) is the group of codimension q cycles on
X modulo real algebraic equivalence we obtain the following corollary.

Corollary 5.2. Let X be a smooth real variety and 0 ≤ r ≤ dim(X). Rational
equivalence and real algebraic equivalence yield the same equivalence relation on the
group of r−cycles on X with finite coefficients.

Recall that zequi(Pq/q−1, 0)(U) = zequi(Pq, 0)(U)/zequi(Pq−1, 0)(U). Write

Z/2(q)(X) = (zequi(P
q/q−1
R

, 0)(X ×R ∆•
R)⊗ Z/2)[−2q]

Z/2(q)sst(X) = Sing•(Z
q/2(XC)G)[−2q]

Z/2(q)top(X) = Homcts

(
XC(C)×∆•

top, Z/20(A
q
C
)
)G

[−2q]

Z/2(q)Bor(X) = Homcts

(
XC(C)× EG×∆•

top, Z/20(A
q
C
)
)G

[−2q]

where we identify a simplicial abelian group with its associated bounded above
cochain complex. These form presheaves of cochain complexes on Sm/R. These
chain complexes compute respectively motivic cohomology, real morphic cohomol-
ogy, Bredon cohomology, and Borel cohomology. Note that Z/2(q), Z/2(q)top and
Z/2(q)Bor are in fact complexes of etale sheaves on (Sm/R).

There are natural maps between these complexes,

Z/2(q)(X)
ρ
−→ Z/2(q)sst(X)

Φ
−→ Z/2(q)top(X)

ψ
−→ Z/2(q)Bor(X)

obtained as follows. From Proposition 4.9 and the projection ∆•
R
→ Spec R we

obtain

zequi(P
q/q−1, 0)(X ×R ∆•

R)→ SingZq(X ×R ∆•
R) = SingZq(XC ×C ∆•

C)G

which induces Z/2(q)(X) → Z/2(q)sst(X). The second map Φ is the map (3.11)
and the third map ψ is induced by the projection XC(C)× EG→ XC(C).

Nisnevich hypercohomology and descent. These cohomology theories may be
computed as Nisnevich hypercohomology groups. This allows us to view these cycle
maps as maps in a derived category where we can use a computation of [SV00a].
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Say that a cartesian square

(5.3) V //

��

Y

f

��
U

� � i / X

is a distinguished Nisnevich square provided the map Y
f
−→ X is etale, i : U ⊆ X

is an open embedding, and f : (Y \V )→ (X\U) is an isomorphism. The Nisnevich
topology is the Grothendieck topology on Sm/k generated by covers of the form
U
∐
Y → X where U ⊆ X and f : Y → X form part of a distinguished square as

above.
Given a presheaf of chain complexes F and a closed i : A ⊆ B and open comple-

ment j : U ⊆ B define

F (B)A = cone(F (B)
j∗

−→ F (U))[−1],

which fits into the exact triangle

F (B)A → F (B)
j∗

−→ F (U).

Say that a presheaf F (−) of chain complexes satisfies Nisnevich descent provided
that for a distinguished square as in (5.3) the square

F (X) //

��

F (Y )

��
F (U) // F (V )

is homotopy cartesian. Recall this means that this square induces the Mayer-
Vietoris exact triangle (in the derived category of abelian groups):

F (X)→ F (Y )⊕ F (U)→ F (V ).

Equivalently, it means that F (Y )Z′ → F (X)Z is an isomorphism in the derived
category of abelian groups where Z = X\U and Z ′ = Y \V .

When a presheaf of chain complexes F (−) (with F (∅) = 0) satisfies Nisnevich
descent then the Nisnevich hypercohomology of a smooth X with coefficients in F
is computed as

Hp(F (X)) = Hp(FNis(X)) = Hp
Nis(X ;FNis)

(see for example [CTHK97, Theorem 7.5.1] for presheaves of chain complexes,
[Nis89] for descent in the case of presheaves of spectra, [BG73] for descent in the
Zariski topology).

Note that

H2q−p
Nis (X ; (Z/2(q)sst)Nis) = LqHq−p,q(X ; Z/2),

H2q−p
Nis (X ; Z/2(q)top) = Hq−p,q(XR(C); Z/2),

H2q−p
Nis (X ; Z/2(q)Bor) = H2q−p

Z/2 (X(C); Z/2).

In the first case this follows because the motivic complex Z/2(q) satisfies Nisnevich
descent and Z/2(q)(X)→ Z/2(q)sst(X) is a quasi-isomorphism of chain complexes
for all smooth X .
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Given i : A ⊆ B a closed subvariety with open complement j : U ⊆ B and write
C(j) for the mapping cone of j : U(C) ⊆ B(C). Then by a comparison of exact
triangles we see that

Z/2(q)top(B)A ≃ Homcts∗

(
C(j) ∧∆•

top,+, Z/20(A
q
C
)
)G

[−2q]

and

Z/2(q)Bor(B)A ≃ Homcts∗

(
C(j) ∧ EG+ ∧∆•

top,+, Z/20(A
q
C
)
)G

[−2q].

Let F (−) denote either Z/2(q)top(−) or Z/2(q)Bor(−) and let

V
j′ //

��

Y

��
U

j // X

be a distinguished Nisnevich square in Sm/R then

V (C)
j′ //

��

Y (C)

��
U(C)

j // X(C)

is an equivariant homotopy pushout diagram of G-spaces (see for example [DI04]

). Therefore C(j′)
≃
−→ C(j) is an equivariant homotopy equivalence. Consequently

F (X)Z → F (Y )Z′ is an isomorphism in the derived category of abelian groups and
therefore

F (X) //

��

F (U)

��
F (Y ) // F (V )

is homotopy cartesian. This means that both Z/2(q)top(−) and Z/2(q)Bor(−) sat-
isfy Nisnevich descent.

Compatibility of cycle maps. We are now ready to show that two cycle maps
discussed in the beginning of this section are the same map.

Lemma 5.4. Suppose that V is a quasi-projective complex variety considered as a

real variety. Then πkZ/2(q)Bor(V ) = H2q−k
sing (V (C); Z/2).

Proof. If V is a complex variety then (V ×R C)(C) = V (C) ∐ V (C) and G acts
by interchanging the factors. In particular G acts freely on VC(C) and (VC(C) ×
EG)/G → VC(C)/G = V (C) is a vector-bundle which immediately implies that

πkZ/2(q)Bor(V ) = H2q−k
sing (V (C); Z/2). �

Write π0 : (Sm/R)et → (Sm/R)Nis for the canonical map of sites.

Proposition 5.5. The complex of etale sheaves π∗
0Z/2(q)Bor on (Sm/R)et is canon-

ically quasi-isomorphic to µ⊗q
2 .
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Proof. Write Hi for the etale sheafification of the ith cohomology presheaf of
Z/2(q)Bor. First we show that Hi = 0 for i 6= 0. It is enough to show that
for each real variety X and γ ∈ Hi([XC(C) × EG]/G; Z/2) that we can find an
etale covering (Uj → X) such that γ|Uj

= 0 for each j. The map Y = XC → X
is an etale cover for any real variety X . Write γ′ = γ|Y . By the previous Lemma
Hi(YC(C)×EG]/G; Z/2) = Hi

sing(Y (C); Z/2). Since Y has an etale cover Uj → Y

such that γ′|Uj
= 0 for each j (see e.g. [Mil80, Lemma III.3.15] ) we conclude that

Hi = 0 for i 6= 0.
When XC is connected then H0([XC(C)× EG]/G; Z/2) = Z/2. More generally

if X = ∐Xi is the disjoint union of c connected real varieties then H0([XC(C) ×
EG]/G; Z/2) = Z/2×c. This shows H0 = Z/2 = µq2.

Finally since Hi = 0 for i 6= 0 we have canonical isomorphisms

Z/2 = Homet

(
H0, µ⊗q

2

)
= HomD−((Sm/R)et)

(
π∗Z/2(q)Bor, µ⊗q

2

)

�

Recall [SV00a, Section 6] that there is an injective etale resolution 0→ µ⊗q
2 → J•

such that π0∗J
• is a complex of Nisnevich sheaves with transfers with homotopy in-

variant cohomology sheaves. Proposition 5.5 gives a canonical map π∗
0Z/2(q)Bor →

J• and by adjointness we obtain a map

Z/2(q)Bor → R(π0)∗µ
⊗q
2 = (π0)∗J

•.

Consider the following sequence of maps of complexes of Nisnevich sheaves

(5.6) Z/2(q)→ (Z/2(q)sst)Nis
Φ
−→ Z/2(q)top → Z/2(q)Bor → R(π0)∗µ

⊗q
2 .

The complex of Nisnevich sheaves with transfers B2(q) is defined in [SV00a,
Section 6] to be the truncation

B2(q) = τ≤q(π0)∗J
• = τ≤q(Rπ0∗µ

⊗q
2 ),

in particular Hp
Nis(X ;B2(q)) = Hp

et(X ;µ⊗q
2 ) for p ≤ q and all smooth X . Since the

cohomology sheaves of Z/2(q) (and therefore of Z/2(q)sst as well) vanish in degrees
i > q and so the sequence of maps (5.6) factors through the truncations,

(5.7) Z/2(q)→ (Z/2(q)sst)Nis → τ≤qZ/2(q)top → τ≤qZ/2(q)Bor → B2(q).

Remark 5.8. It is important to note that the composites 5.6 and 5.7 are non-trivial.
This can be seen, for example, by evaluating on Spec C. The map Z/2(q)(X) →
(Z/2(q)sst)Nis(X) is a quasi-isomorphism for any smooth real variety X by Propo-
sition 5.1. The comparison map (Z/2(q)sst)Nis(C) → Z/2(q)top(C) is an equality.
By Proposition 5.17 below, for any X , the map Z/2(q)top(X)→ Z/2(q)Bor(X) in-
duces an isomorphism on cohomology in degrees p ≤ q. Finally since Z/2(q)Bor →
Rπ0∗µ

⊗q
2 is obtained as the adjoint of a quasi-isomorphism and Spec C is an etale

point (of (Sm/R)et) the map Z/2(q)Bor(C)→ Rπ0∗µ
⊗q
2 (C) cannot be zero.

Write D−(Nis) (respectively D−(NSwT/R)) for the derived category of bound
above complexes of Nisnevich sheaves (respectively Nisnevich sheaves with trans-
fers). Write DM−(R) ⊆ D−(NSwT/R) for the full subcategory consisting of com-
plexes with homotopy invariant Nisnevich cohomology sheaves.
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Theorem 5.9. Let X be a smooth real variety. The diagram commutes

(5.10) LqHRq−k,q(X ; Z/2)

Φ

��

H2q−k,q
M (X ; Z/2)

∼=oo

cyc

��
Hq−k,q(XC(C); Z/2) // H2q−k

G (XC(C); Z/2) // H2q−k
et (X ;µ⊗q

2 ),

Proof. By [SV00a, Corollary 6.11.1] and the vanishing of the cohomology sheaves
of Z/2(q) above degree q,

Z/2 = HomDM−(R) (Z/2(q), B2(q)) = HomDM−(R) (Z/2(q), π0∗J
•) .

Also by [SV00a, Lemma 6.5] the inclusion of bi-complexes

HomNis (Z/2(q), π0∗J
•) ⊆ HomNSWT (Z/2(q), π0∗J

•)

is an equality. Therefore

Z/2 = HomDM−(R) (Z/2(q), π0∗J
•) = HomD−(Nis) (Z/2(q), π0∗J

•) .

Finally, the map Z/2(q)→ π0∗J
• obtained from (5.6) is not trivial by Remark 5.8

and so we conclude that it must be the cycle map.
�

Applications and computations. As a result of the compatibility of cycle maps
we can conclude some Beilinson-Lichtenbaum type theorems for morphic cohomol-
ogy which we need to prove the vanishing theorem. We also use these to make a
few computations of equivariant morphic cohomology.

Corollary 5.11. Let X be a smooth real variety. The map

Φ : LqHRq−k,q(X ; Z/2n)→ Hq−k,q(XC(C); Z/2n)

is an isomorphism for q ≤ k and a monomorphism for q = k + 1.

Proof. Consider the commutative diagram (5.10). By [SV00a] the Milnor conjec-
ture, proved by Voevodsky [Voe03], implies that cyc is an isomorphism for k ≥ q and
an injection for k = q − 1. This immediately implies the statement for injectivity.

If k ≥ q then since cyc is an isomorphism we conclude that H2q−k
G (XC(C); Z/2)→

H2q−k
et (X ;µ⊗q

2 ) is a surjective map between finitely dimensional Z/2-vector spaces.
By [Cox79] these are isomorphic Z/2-vector spaces and therefore the map is an iso-

morphism. Since Hq−k,q(XC(C); Z)→ H2q−k
G (XC(X); Z/2) is also an isomorphism

for k ≥ q by Proposition 5.17 we conclude that Φ is also an isomorphism for k ≥ q.
This yields the result for Z/2-coefficients.

We have the following diagram of distinguished triangles in D−(Nis) :

Z/2(q)sstNis
//

��

Z/4(q)sstNis
//

��

Z/2(q)sstNis
//

��

Z/2(q)sstNis[1]

��
τ≤qZ/2(q)top // τ≤qZ/4(q)top // τ≤qZ/2(q)top // τ≤qZ/2(q)top[1],

To see that the bottom row is a triangle in D−(Nis) it is enough to check that the
map on cohomology sheaves Hq(τ≤qZ/4(q)top)→ Hq(τ≤qZ/2(q)top) is a surjection.
This follows from the surjectivity of the composition

Hq(Z(q))→ Hq(τ≤qZ/4(q)top)→ Hq(τ≤qZ/2(q)top).
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which is a consequence of the local vanishing of Z(q) and the quasi-isomorphisms
Z/2(q) → B2(q) and τ≤qZ/2(q)top → B2(q). Now the conclusion follows from
the long exact sequence in hypercohomology associated to the diagram. Using
induction on n we conclude that Φ : (Z/2n(q)sst)Nis → τ≤qZ/2n(q)top is a quasi-
isomorphism. �

Corollary 5.12. Let X be a smooth complex variety. For any n > 0 the map

Φ : LqH2q−k(X ; Z/2n)→ H2q−k
sing (X(C); Z/2n)

is an isomorphism for any q ≤ k and a monomorphism for q = k + 1.

Proof. Follows immediately from Corollary 5.11 by viewing X as real variety. �

Corollary 5.13. Let X be a smooth real variety and k > 0. The cycle map

Φ : LqHRr,s(X ; Z/2k)→ Hr,s(XC(C); Z/2k)

is an isomorphism if r ≤ 0 (and s ≤ q) and an injection if r = 1 (and s ≤ q).

Proof. Write Fq = hofib(Zq/2k(XC)→ Map(XC(C), Z/2k0(A
q
C
))) for the homotopy

fiber of the cycle map. The homotopy fiber construction is equivariant and yields
an equivariant homotopy fiber sequence

Fq → Z
q/2k(XC)→ Map(XC(C), Z/2k0(A

q
C
)).

By Corollary 5.12 and Corollary 5.11 both πk(Fq) = 0 and πk(F
G
q ) = 0 for k ≥ q−1.

Therefore Ωq−1Fq is equivariantly weakly contractible for q ≥ 1 and if q = 0 then F0

is equivariantly contractible. The result follows now from the long exact sequence
of homotopy groups applied to the equivariant homotopy fiber sequence

Ωq−1Fq → Ωq−1Zq/2k(XC)→ Ωq−1Map(XC(C), Z/2k0(A
q
C
)).

�

Corollary 5.14. Let X be a smooth real curve. Then

LqHRr,s(X ; Z)→ Hr,s(XC(C); Z)

is an isomorphism for any q ≥ 0, r ≤ q, and s ≤ q.

Proof. By Poincare duality for real Lawson homology and equivariant morphic

cohomology and Remark 4.21, LqHr,s(X ; Z)
∼=−→ Hr,s(XC(C); Z) for q ≥ 1. By

Corollary 5.13, L0HRr,s(X ; Z/2k)→ Hr,s(X ; Z/2k) is an isomorphism for r, s ≤ 0.
When A is an abelian group and 2 is invertible in A then a transfer argument shows
that

L0HRr,s(X ;A)
∼=
→ Hr,s(X ;A).

This isomorphism and the one with mod-2k coefficients give the result of the corol-
lary. �

Corollary 5.15. Let X be a smooth real surface. Then for any k > 0

LqHRr,s(X ; Z/2k)→ Hr,s(XC(C); Z/2k)

is an isomorphism for q = 0 and r, s ≤ 0 and it is an injection for r = 1 and s ≤ 1.
Moreover L1HR1,s(X ; Z/2k) = 0 for s ≤ −2.

Recall that π0Zq(XC)G is the group of codimension q cycles on X modulo real
algebraic equivalence.
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Corollary 5.16. Let X be a smooth real variety of dimension d. Then for any
k > 0

L1HRr,s(X ; Z/2k)→ Hr,s(X ; Z/2k)

is an isomorphism for any r ≤ 0 and s ≤ 1 and it is an injection for r = 1 and
s ≤ 1. Moreover

L1HR1,1(X ; Z/2k) = CH1(X)⊗ Z/2k ⊆ H1,1(XC(C); Z/2k)

L1HR1,s(X ; Z/2k) = 0 for s ≤ −2

Proof. All statements follow immediately from Corollary 5.13 except the last one.
The first part of the last statement follows from Proposition 5.1. For rest of the
last statement, by Corollary 5.13 together with Proposition 5.17 we have

L1HR1,s(X ; Z/2k) →֒ H1,s(XC(C); Z/2k) →֒ H1+s
G (XC(C);A) = 0

for 1 + s < 0. �

We finish this section with the computation used in Corollary 5.11 that Bredon
and Borel cohomology agree in the range relevant to the Beilinson-Lichtenbaum
conjecture.

Proposition 5.17. Let W be a G-CW complex, M a G-module, and M the asso-
ciated constant Mackey functor. The map

Hm,q(W ;M)→ Hm,q(W × EG;M)

is an isomorphism for m ≤ 0 and it is an injection for m = 1.
In particular for q ≤ p the map

Hq−p,q(W ; Z/2)→ H2q−p
Z/2 (W,Z/2)

is an isomorphism and an injection for p = q − 1.

Proof. Define ẼG = colimn S
0,n. This space fits into a homotopy cofiber sequence

EG+ → S0 → ẼG

and ẼG/G ≃ S1,0 ∧BG.
First we consider the case that G acts trivially on W . From the previous homo-

topy cofiber sequence we obtain the homotopy cofiber sequence

(5.18) W+ ∧ EG+ →W+ →W+ ∧ ẼG.

SinceG acts trivially onW we have that (W+∧ẼG)/G = W+∧ẼG/G ≃W+∧S1,0∧
BG and therefore H̃k,0(W+ ∧ ẼG;M) = H̃k−1

sing(W+ ∧BG;M) = 0 if k ≤ 1. Notice

that S0,1∧ ẼG = S0,1∧ colimn S
0,n = colimn S

0,n+1 ∼= ẼG. Since ẼG ∼= S0,1∧ ẼG
is an equivariant equivalence this induces an isomorphism

H̃k,s(W+ ∧ ẼG;M) ∼= H̃k,0(W+ ∧ ẼG;M)

for all s and therefore H̃k,s(W+ ∧ ẼG,M) = 0 for k ≤ 1 for all s. Now from the
long exact sequence associated to the cofiber sequence (5.18) it follows that for all
q the map Hm,q(W ;M) → Hm,q(W × EG;M) is an isomorphism for m ≤ 0 and
an injection for m = 1.

Consider now a general G-CW complex W and consider the quotient W/WG.
Since G acts freely on the based space W/WG we have the isomorphism

H̃s,t(X/XG;M)
∼=
−→ H̃s,t(X/XG ∧ EG+;M).
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Applying the five lemma to the comparison of long exact sequences obtained from
the cofiber sequences WG

+ → W+ → W/WG and (WG × EG)+ → (W × EG)+ →
W/WG ∧ EG+ yields the result.

�

6. Vanishing Theorem

Let X be a real variety. Continue to write G = Z/2 and σ ∈ G for the nontrivial
element. Recall that the reduced real cycle group is defined to be the quotient
topological group

Rq(X) =
Zq(XC)G

Zq(XC)av
.

This is the free Z/2-module generated by closed subvarieties Z ⊆ X such that both
Z and ZC are irreducible. In particular, if X is a complex variety viewed as a
variety over R then Rq(X) = 0.

Reduced real Lawson homology of X is defined by the homotopy groups of this
space,

RLqHn(X) = πn−qRq(X).

In this section we prove our main theorem which we state now.

(Theorem 6.10). Let X be a quasi-projective real variety. Then

πkRn(X) = RLnHk+n(X) = 0

for k ≥ dimX − n+ 1.

To avoid difficulties with point-set topology below we work simplicially. Note
that ifX is aG-space then Sing•X is aG-simplicial set and Sing•(X

G) = (Sing•X)G.
If A• is a G-simplicial set then |AG• | = |A•|G (see for example [Dug05, Lemma A.5]).

Definition 6.1. (1) Let W be a G-space. Write

Z̃qtop(W ) = Homcts

(
W ×∆•

top, Z0(A
q
C
)
)
,

and

Z̃q/2top(W ) = Homcts

(
W ×∆•

top, Z/20(A
q
C
)
)
.

These are simplicial abelian groups and G acts on them by the standard
formula (σf)(x) = σf(σx).

(2) Let X be a normal quasi-projective real variety. Write

Z̃q(XC) = Sing•Z
q(XC)

and

Z̃q/2(XC) = Sing•Z
q/2(XC).

We have

πkZ̃
q
top(XC(C))G ∼= Hq−k,q(XC(C),Z)

and

πkZ̃
q(XC)G ∼= LqHR2q−k(X ; Z)

and similarly for the mod-2 groups. In particular if X is a complex variety viewed
as a real variety then XC(C) = X(C)

∐
X(C) (with G-action switching the factors)

and so

πkZ̃
q
top(XC(C))G ∼= H2q−k

sing (X(C),Z) and πkZ̃
q(XC)G ∼= LqH2q−k(X ; Z)
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and similarly for the mod-2 groups.
The comparison maps (3.11) of simplicial abelian groups

Φ : Z̃q(XC)→ Z̃qtop(XC(C)) and Φ : Z̃q/2(XC)→ Z̃q/2top(XC(C))

are G-equivariant for any quasi-projective real variety X .
If M• is a simplicial G-module write N = 1 + σ : M• → M• and define Mav

• to
be

Mav
• = Im(N) = Im(1 + σ : M• →M•).

Definition 6.2. Let W be a G-space. Define the group of reduced topological
cocycles (of codimension q) to be the quotient simplicial abelian group

R̃qtop(W ) =
Homcts

(
W ×∆•

top, Z/20(A
q
C
)
)G

Homcts

(
W ×∆•

top, Z/20(A
q
C
)
)av =

Z̃q/2top(W )G

Z̃q/2top(W )av
.

To relate the space of reduced algebraic cocycles with the reduced topological
cocycles we introduce the following auxiliary simplicial set for X a quasi-projective
normal real variety:

R̃q(X) =
Z̃q/2(XC)G

Z̃q/2(XC)av
.

Proposition 6.3. Let X be a normal quasi-projective real variety. The following
diagrams commute and the horizontal rows are short exact sequences of simplicial
abelian groups (and therefore in particular the horizontal rows are homotopy fiber
sequences of simplicial sets)

(6.4) Z̃q/2(XC)G //

ΦG

��

Z̃q/2(XC)
N //

Φ

��

Z̃q/2(XC)av

Φav

��
Z̃q/2top(XC(C))G // Z̃q/2top(XC(C))

N // Z̃q/2top(XC(C))av ,

and

(6.5) Z̃q/2(XC)av //

Φav

��

Z̃q/2(XC)G //

ΦG

��

R̃q(X)

Φ
��

Z̃q/2top(XC(C))av // Z̃q/2top(XC(C))G // R̃qtop(XC(C)).

Proof. These diagrams commute because Φ is a G-homomorphism.
Whenever M is a G-module whose underlying abelian group is 2-torsion then

the sequence of abelian groups 0→MG →M
N
−→Mav → 0 is exact.

In particular the underlying sequences of simplicial abelian G-modules in the
first diagram form short exact sequences of simplicial abelian groups.

In the second diagram the horizontal rows form short exact sequences by defini-

tion of R̃q(−) and R̃qtop(−). �

By definition we have

(Sing•Z
q/2(XC))av = Im(Sing•Z

q/2(XC)
N
−→ Sing•Z

q/2(XC)).
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There is a natural map i : (Sing•Z
q/2(XC))av → Sing•(Z

q/2(XC)av) which is
simply

i(f + f) = f + f

for a continuous map f : ∆d
top → Z

q/2(XC). The map i : (Sing•Z
q/2(XC))av →

Sing•(Z
q/2(XC)av) induces a map

(6.6) i : R̃q(X)→ Sing•R
q(X).

Lemma 6.7. Let X be a normal real projective variety. The map (6.6) of simplicial
abelian groups

R̃q(X)→ Sing•R
q(X)

is a homotopy equivalence.

Proof. By Proposition A.5 the maps Zq/2(XC)/Zq/2(XC)G −→ Zq/2(XC)av and
Zq(XC)av/2Zq(X)G −→ Zq/2(XC)av are isomorphisms of topological groups. There-
fore both

0→ Zq/2(XC)G → Zq/2(XC)→ Zq/2(XC)av → 0

and
0→ Zq/2(XC)av → Zq/2(XC)G →Rq(X)→ 0

are short exact sequences of topological abelian groups. These groups all have the
homotopy type of a CW -complex and therefore these sequences are homotopy fiber
sequences [Teh05]. Applying Sing• to these homotopy fiber sequence and comparing
with the homotopy fiber sequences of the top rows of 6.4 and 6.5 gives commutative
diagrams of homotopy fiber sequences of simplicial sets:

(6.8) Z̃q/2(XC)G //

≃

��

Z̃q/2(XC) //

≃

��

Z̃q/2(XC)av

i

��
Sing•Z/2

q(XC)G // Sing•Z/2
q
(XC) // Sing•Z/2

q
(XC)av,

and

(6.9) Z̃q/2(XC)av //

i

��

Z̃q/2(XC)G //

≃

��

R̃q(X)

i

��
Sing•Z/2(XC)av // Sing•Z/2

q(XC)G // Sing•R
q(X).

From the first diagram we see that i : Z̃q/2(XC)av
≃
−→ Sing•(Z

q/2(XC)av) is a
weak equivalence of simplicial sets and consequently from the second diagram we
conclude that

R̃q(X)
≃
−→ Sing•R

q(X)

is a weak equivalences of simplicial abelian groups and therefore is a homotopy
equivalence of simplicial sets. �

We now prove our main theorem.

Theorem 6.10. Let X be a quasi-projective real variety of dimension d. Then

RLnHn+k(X) = πkRn(X) = 0

for k ≥ d− n+ 1.
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Proof. We first consider the case when X is a smooth projective real variety.
In case n = d = dim(X) we have that

Rd(X) =
Zd(XC)G

Zd(XC)av
= Z/2×c,

where c denotes the number of irreducible components of X which are not defined
over C.

Therefore π0(Rd(X)) = Z/2×c and πi(Rd(X)) = 0 for i > 0.
Consider the comparison of homotopy fiber sequences (6.4) for q > 0.

(6.11) Z̃q/2(XC)G //

ΦG

��

Z̃q/2(XC)
N //

Φ

��

Z̃q/2(XC)av

Φav

��

Z̃q/2top(XC(C))G // Z̃q/2top(XC(C))
N // Z̃q/2qtop(XC(C))av,

By the Milnor conjecture (see Corollary 5.12) the comparison map Φ induces an
isomorphism on πk for k ≥ q and induces an injection for k = q − 1. By Corollary
5.11 the map ΦG induces an isomorphism on πk for k ≥ q and induces an injection
for k = q − 1. We now conclude by the 5-lemma that Φav induces an isomorphism
on πk for k ≥ q + 1. When k = q we have the comparison diagram:

(6.12) πqZ̃
q/2G //

∼=

��

πqZ̃
q/2 //

∼=

��

πqZ̃
q/2av //

Φav

��

πq−1Z̃
q/2G
� _

�
πqZ̃q/2Gtop

// πqZ̃q/2top // πqZ̃q/2avtop
// πq−1Z̃q/2Gtop

and so Φav induces an injection for k = q.
Considering now the comparison diagram (6.5) and using the five-lemma we have

that Φ induces an isomorphism on πk for k ≥ q + 2 and an injection for k = q + 1.

By Corollary 7.14, πkR̃
q
top(XC(C)) = Hq−k(X(R),Z/2) for k ≥ 2. In partic-

ular πkR̃q(X) = 0 for k ≥ q + 1, when q ≥ 1. By the homotopy equivalences

R̃q(X) ≃ Sing•R
q(X) (see Lemma 6.7) and the duality [Teh05, Theorem 5.14]

between reduced cycle and reduced cocycle spaces Rq(X)
≃
−→ Rd−q(X) the vanish-

ing πkR̃q(X) = 0 for k ≥ q + 1 is equivalent to the vanishing πkRn(X) = 0 for
k ≥ dimX − n+ 1.

Now let X be a smooth quasi-projective variety and let X ⊆ X be a projective
closure with closed complement Z = X\X . The result follows from the projective
case and the long exact sequence in homotopy groups induced by the homotopy
fiber sequence

Rn(Z)→Rn(X)→Rn(X).

Finally let X be an arbitrary quasi-projective variety. There is an increasing
filtration of closed subvarieties

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xd = X

such that Xi+1\Xi is smooth and dimXi = i. We proceed by induction, the case
i = 0 is done. Consider the long exact sequence which arises from the homotopy
fiber sequence

Rn(Xi)→Rn(Xi+1)→Rn(Xi+1\Xi).
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Since the result holds for Xi by induction and for Xi+1\Xi because it is smooth we
obtain the result for Xi+1. �

Remark 6.13. If X is a projective smooth real variety of dimension d it is proved
in [Teh05, Theorem 6.7] that πk(Rd−1(X)) = 0 for any k ≥ 3. Theorem 6.10 in
case n = d− 1 improves this vanishing bound.

Example 6.14. If n = 0 and if X has no real points then R0(X) = 0 and so

RL0H∗(X) = π∗R0(X) = Hsing
∗ (X(R),Z/2) = 0.

Let P(H) denote the space of complex lines in the quaternions H = C⊕jC where
j2 = −1. Multiplication by j defines an involution on P(H) and write Q for the
corresponding 1-dimensional real curve. We know that Q is the smooth real curve
X2 + Y 2 + Z2 = 0 in P2

R
. This is the Severi-Brauer variety corresponding to the

non-trivial element of Br(R) = Z/2 and has no real points. This means R0(Q) = 0
and R1(Q) = Z/2. Thus in this case,

0 = RL0H0(Q) = RL0H1(Q) = H0(Q(R),Z/2)

and

Z/2 = RL1H1(Q).

Let X = SP 2d+1(Q) be the smooth projective real variety given by an odd
symmetric power of Q. Because XC = PC(Hd+1), we have R2q(X) = Z/2 and
R2q+1(X) = 0 for any 2q ≤ 2d+1 (see [LLFM05, Theorem 2.3]). This implies that
the only nonzero reduced Lawson homology groups of X are RL2r+1H2r+1(X) =
Z/2 for any r ≤ d. Notice that in this case dim(X) = 2d+ 1.

These computations show that the vanishing in the above theorem is best pos-
sible, even in the case of a real variety with no real points.

Example 6.15. According to [Lam90], RLrHn(Pd
R
) = Z/2 for any 0 ≤ r ≤ n ≤ d

and RLrHn(PdR) = 0 for any n > d.

We also obtain the following vanishing result.

Corollary 6.16. Let X be a smooth projective real variety of dimension d. Then

πn
Zp(XC)av

2Zp(XC)av
= 0

for n ≥ 2d− 2p+ 1.

Proof. By the Corollaries 5.12, 5.11, A.5 and 4.20 we conclude that

πn
Zp(XC)av

2Zp(XC)G
= 0

for n ≥ 2d− 2p+ 1 from the long exact sequence in homotopy groups induced by
the short exact sequence [Teh08, Proposition 4.3]

(6.17) 0→
Zp(XC)G

2Zp(XC)G
→
Zp(XC)

2Zp(XC)
→
Zp(XC)av

2Zp(XC)G
→ 0.

Consider the short exact sequences of topological abelian groups

0→
2Zp(XC)G

2Zp(XC)av
→
Zp(XC)av

2Zp(XC)av
→
Zp(XC)av

2Zp(XC)G
→ 0.
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Multiplication by 2 induces a homeomorphism

Rp(X) =
Zp(XC)G

Zp(XC)av
∼=

2Zp(XC)G

2Zp(XC)av

and plugging the vanishing for homotopy groups of Rp(X) into the above exact
sequence yields the result. �

Remark 6.18. Using the same arguments as in Theorem 6.10 shows that the van-
ishing in Corollary 6.16 holds for any quasi-projective real variety.

Example 6.19. Let X = Pd
R
. Then

πn

(
Zp(PdC)av

2Zp(PdC)av

)
= 0

for any n ≥ 2d− 2p+ 1. If p = d, then

π2d−2p

(
Zd(PdC)av

2Zd(PdC)av

)
= Z/2

If p = 0 then, for any real projective variety X ,

π∗

(
Zp(XC)av

2Zp(XC)av

)
= H∗(X(C)/G,Z/2).

These computations show that the vanishing bound of Corollary 6.16 is the best
possible. For these computations see [LLFM05].

The following corollary shows that in a range the morphic cohomology of a real
variety X can be computed by the homotopy groups of average cycles on X .

Corollary 6.20. Let X be a real quasi-projective variety. Then

πq(Zp(XC)G) ≃ πq(Zp(XC)av)

for any q ≥ dim(X)− p+ 1.

Proof. This follows from Theorem 6.10 together with the long exact sequence of
homotopy groups associated to the homotopy fiber sequence

0→ Zp(XC)av → Zp(XC)G →Rp(X)→ 0.

�

Example 6.21. (1) In case of divisors p = dim(X) − 1, Corollary 6.20 and
[Teh08, Proposition 6.2] show that

πq(Zp(XC)av) = 0

for any q ≥ 2.
(2) In the case of zero-cycles p = 0, we get

Hk,0(X(C),Z) ≃ Hk(X(C)/G,Z)

for any k ≥ dim(X) + 1.

We conclude this section by observing that the vanishing theorem also shows that
motivic cohomology of a real variety can be computed in a range via the complex
of averaged equidimensional cycles on the complexification.
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Let X and Y be a quasi-projective real varieties. The group of reduced equidi-
mensional cycles is defined to be the quotient group

requi(Y, r)(X) =
zequi(YC, r)(XC)G

zequi(YC, r)(XC)av
.

It is essentially a consequence of Suslin rigidity that the complex of reduced
equidimensional cycles computes the reduced Lawson homology.

Proposition 6.22. Let X be a quasi-projective real variety.

(1) The diagram

requi(A
q, q)(X ×∆•

top)
≃
←− requi(P

q/q−1, q)(X ×∆•
top)

≃
−→ Sing•R

q(X)

consists of homotopy equivalences of simplicial sets.
(2) The map

requi(P
q/q−1, 0)(X ×∆•)

≃
−→ requi(P

q/q−1, 0)(X ×∆• ×∆•
top)

is a homotopy equivalence of simplicial sets.

Proof. The proof is similar to other proofs in this paper so we only provide a sketch.
First observe that the simplicial abelian group of reduced equidimensional cycles
may be computed as

requi(Y, r)(X) =
(zequi(YC, r)(XC)⊗ Z/2)G

(zequi(YC, r)(XC)⊗ Z/2)av
.

Using Proposition 4.11 and the appropriate analogues of the homotopy fiber se-
quences (6.4) and (6.5) we see that

requi(P
q, 0)(X ×∆•

top)→
(Sing• MorC(XC, C0(P

q
C
))+/2)G

(Sing• MorC(XC, C0(P
q
C
))+/2)av

is a homotopy equivalence. The first part follows now in a similar fashion as Propo-
sition 4.16. The second part follows from the fact that both over C and over R with
finite coefficients motivic cohomology agrees with morphic cohomology. �

Corollary 6.23. Let X be a quasi-projective real variety. Then

Hp
M(X ; Z(q)) = π2q−pzequi(A

q
C
, 0)(XC ×C ∆•

C)av

for q − 1 ≥ p

7. Reduced Topological Cocycles

For typographical simplicity throughout this section we write Z = Z/20(S
q,q)0.

This section is devoted to the computation that πkR̃
q
top(W ) = Hq−k

sing(W
G; Z/2), for

k ≥ 2, where R̃qtop(W ) is the quotient simplicial abelian group

R̃qtop(W ) =
Homcts∗

(
W ∧∆•

top,+, Z
)G

Homcts∗

(
W ∧∆•

top,+, Z
)av

and W is a based finite G-CW complex.
The idea is to reduce to the case of trivial action. Before doing this we sketch

what happens when G acts trivially on W . By [LLFM03, Proposition 8.3] the short
exact sequence

0→ Z/20(S
q,q)av0 → Z/20(S

q,q)G0 →R0(S
q,q)0 → 0
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is a fibration sequence (in fact principle fibration sequence) of topological spaces.
Applying Homcts∗

(
W ∧∆•

top,+, −
)

to this sequence yields a homotopy fiber se-
quence of simplicial sets. Now we compare the homotopy fiber sequences of simpli-
cial abelian groups

Hom
(
W ∧∆•

top,+, Z
)av //

��

Hom
(
W ∧∆•

top,+, Z
)G //

∼=��

R̃qtop(W )

��
Hom

(
W ∧∆•

top,+, Z
av
)

// Hom
(
W ∧∆•

top,+, Z
G
)

// Hq(W ),

where Hq(W ) = Homcts∗

(
W ∧∆•

top,+, R0(S
q,q)0

)
. We will see that when W has

trivial G-action then the left vertical arrow induces an isomorphism on πk for k ≥ 1

(see Corollary 7.9). Therefore πiR̃
q
top(W ) = πiH

q(W ) = Hq−i
sing(W ; Z/2) for i ≥ 2

when W has trivial G-action.
For a based G-CW complex W and a topological G-module Z, write

Homcts∗ (W, Z)G0

for the set of based equivariant maps which are equivariantly homotopic to the
0-map (via a based homotopy).

Lemma 7.1. Let W be a based G-CW complex and let Z be a topological G-module.
The simplicial set

d 7→ Homcts∗

(
W ∧∆d

top,+, Z
)G
0

is the path-connected component of the vertex 0 ∈ Homcts∗

(
W ∧∆•

top,+, Z
)G

.

Proof. A vertex g ∈ Homcts∗

(
W ∧∆•

top,+, Z
)G

is in the same path component as

the 0-map if and only if there is a 1-simplex F ∈ Homcts∗

(
W ∧∆1

top,+, Z
)G

such

that F (0) = 0 and F (1) = g. This happens exactly when g ∈ Homcts∗ (W, Z)
G
0 .

A d-simplex, f : W ∧∆d
top,+ → Z is in the path-component of 0 if and only if its

restriction to a vertex is in the path component of 0. Since ∆d
top,+ is equivariantly

contractible and the restriction f |W∧{v}+
to a vertex is equivariantly homotopic to

the constant map 0 we conclude that f itself is equivariantly homotopic to 0.
�

Definition 7.2. Let W be a based G-CW complex.

(1) Define Homcts∗

(
W ∧∆•

top,+, Z
)av
0

to be the path-connected component of

the vertex 0 in the simplicial set Homcts∗

(
W ∧∆•

top,+, Z
)av

.
(2) Define

R̃qtop(W )0 =
Homcts∗

(
W ∧∆•

top,+, Z
)G
0

Homcts∗

(
W ∧∆•

top,+, Z
)av
0

,

here the quotient is in the category of simplicial abelian groups.

Restricting to WG gives rise to the comparison map

R̃qtop(W )0 → R̃
q
top(W )→ Homcts∗

(
WG ∧∆•

top,+, Z/20(S
q)
)
.

Note that πiR̃
q
top(W )0 → πiR̃

q
top(W ) is an isomorphism for i ≥ 2 and an injection

for i = 0, 1. To compute πiR̃
q
top(W ) we will show that R̃qtop(W )0 → R̃

q
top(W

G)0 is
an isomorphism. The surjectivity is easy but the injectivity takes some work.
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Proposition 7.3. Let i : A →֒ W be an equivariant cofibration between based
G-CW -complexes and let Z be a topological G-module. Then

i∗ : Homcts∗ (W, Z)
G
0 → Homcts∗ (A, Z)

G
0

is surjective.

Proof. Suppose that f : A → Z is a based equivariant map which is based equiv-
ariantly homotopic to the 0-map. Let H : A∧ I+ → Z be an equivariant homotopy
such that H(−, 0) = 0 and H(−, 1) = f .

By the homotopy extension property of cofibrations, an equivariant map H ′

making the diagram below commute exists

W ∧ {0}+
∐
A∧{0}+

A ∧ I+
0∐H //

� _

��

Z

W ∧ I+

H′

66
m

m

m

m

m

m

m

m

.

The restriction of f ′ = H ′(−, 1) to A is equal to f and H ′ is an equivariant homo-
topy between f ′ and the 0-map. �

Corollary 7.4. Let i : A →֒W be an equivariant cofibration between based G-CW -
complexes. The induced map

i∗ : R̃qtop(W )0 → R̃
q
top(A)0

is a surjection.

Proof. Consider the square

Homcts∗

(
W ∧∆•

top,+, Z
)G
0

// //

����

Homcts∗

(
A ∧∆•

top,+, Z
)G
0

����
R̃qtop(W )0 // R̃qtop(A)0.

By the previous proposition, the top horizontal arrow is surjective. The vertical
arrows are surjective by definition and therefore the bottom horizontal arrow is also
surjective. �

For a based CW -complex W and a topological abelian group Z we will write
Homcts∗ (W, Z)0 for the set of based continuous maps which are based homotopic
to the 0-map. Note that the simplicial set

d 7→ Homcts∗

(
W ∧∆d

top,+, Z
)
0

is the path-connected component of the vertex 0 ∈ Homcts∗

(
W ∧∆•

top,+, Z
)

(for
example consider W and Z with trivial G-action and apply Lemma 7.1). If Z and
W have a G-action write (Homcts∗ (W, Z)0)

av for the image of N = 1 + σ. This

set consists of maps h : W → Z which can be written as h = f + f where f is a
continuous map which is nonequivariantly homotopic to 0.

We now justify the use of similar notation for two potentially different simpli-
cial sets. Previously we wrote Homcts∗

(
W ∧∆•

top,+, Z
)av
0

for the path-component
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of the vertex 0 ∈ Homcts∗

(
W ∧∆•

top,+, Z
)av

. We now verify that this path-
component can be described explicitly as the image under N = 1 + σ of the path-
component of 0 ∈ Homcts∗

(
W ∧∆•

top,+, Z
)
. In otherwords Homcts∗

(
W ∧∆•

top,+, Z
)av
0

=

(Homcts∗

(
W ∧∆•

top,+, Z
)
0
)av. This explicit description will be fundamental to our

proof of Proposition 7.6 below.

Proposition 7.5. Let W be a based G-CW -complex. The simplicial set

d 7→ (Homcts∗

(
W ∧∆d

top,+, Z
)
0
)av

is the path-connected component of 0 ∈ Homcts∗

(
W ∧∆•

top,+, Z
)av

Proof. First we identify (Homcts∗ (W, Z)0)
av as the set of vertices of the path-

connected component of 0 ∈ Homcts∗ (W, Z)av. Any f + f ∈ (Homcts∗ (W, Z)0)
av

is in the path component of 0. Suppose the vertex h+ h ∈ Homcts∗ (W, Z)
av

is in
the same path component as 0. This means there is a map of simplicial sets

F : I → Homcts∗

(
W ∧∆•

top,+, Z
)av

such that F (0) = 0 and F (1) = h+ h. Consider the diagram of simplicial sets,

{0}
0 //

� _

≃

��

Homcts∗

(
W ∧∆•

top,+, Z
)

N
����

I
F //

F ′

66
m

m

m

m

m

m

m

m Homcts∗

(
W ∧∆•

top,+, Z
)av

.

A surjection between simplicial abelian groups is a fibration and therefore an F ′

exists to make the above square commute.
The map F ′(1) : W → Z is in Homcts∗ (W, Z)0 and satisfies

F ′(1) + F ′(1) = N(F ′(1)) = F (1) = h+ h.

We conclude that (Homcts∗ (W, Z)0)
av is the set of vertices of the path-connected

component of the 0 ∈ Homcts∗ (W, Z)
av

.
Now to conclude that the simplicial set d 7→ (Homcts∗

(
W ∧∆d

top,+, Z
)
0
)av is

the path-connected component of 0 we need to see that if the restriction g|W∧{v}+

of g ∈ Homcts∗

(
W ∧∆n

top,+, Z
)av

to a vertex v ∈ ∆n
top lies in (Homcts∗ (W, Z)0)

av

then g ∈ (Homcts∗

(
W ∧∆n

top,+, Z
)
0
)av. That is, if g ∈ Homcts∗

(
W ∧∆n

top,+, Z
)av

and that there is a map f : W → Z which is homotopic to 0 such that the restriction
of g to some vertex v ∈ ∆n

top satisfies g|W∧{v}+
= f + f then we need to see that g

can be written g = f ′ + f ′ for some f ′ : W ∧∆n
top,+ → Z which is homotopic to 0.

For this we consider the lift f ′ of g,

{v}
� _

≃

��

f // Homcts∗

(
W ∧∆•

top,+, Z
)

N
����

∆n
g //

f ′

66
m

m

m

m

m

m

m

m

Homcts∗

(
W ∧∆•

top,+, Z
)av

.

The map f ′ : W ∧∆n
top,+ → Z satisfies f ′ + f ′ = N(f ′) = g, the restriction of f ′ to

v ∈ ∆n
top is homotopic to the 0-map and, since ∆n

top is contractible, f ′ is homotopic
to the 0-map as well.
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Therefore we conclude that

d 7→ (Homcts∗

(
W ∧∆d

top,+, Z
)
0
)av

is the path-component of 0 in Homcts∗

(
W ∧∆d

top,+, Z
)av

. �

Proposition 7.6. Let i : A →֒ W be an equivariant cofibration. Then

R̃qtop(W/A)0 ։ ker[R̃qtop(W )0
i∗
−→ R̃qtop(A)0].

Proof. Suppose that [f ] ∈ ker(R̃qtop(W )0
i∗
−→ R̃qtop(A)0) is a d-simplex. Then [f ]

is represented by an equivariant map f : W ∧ ∆d
top,+ → Z which is equivariantly

homotopic to 0. Since i∗[f ] = 0 this means that i∗f ∈ Homcts∗

(
A ∧∆d

top,+, Z
)av
0

.

Thus there is a continuous map h : A ∧∆d
top,+ → Z, (nonequivariantly homotopic

to 0), such that i∗f = f |A∧∆d
top,+

= h+ h. Since h is (nonequivariantly) homotopic

to the 0-map, h : A∧∆d
top,+ → Z extends to a continuous map h′ : W ∧∆d

top,+ → Z
which is (nonequivariantly) homotopic to the 0-map.

Explicitely, let H : A ∧∆d
top,+ ∧ I+ → Z be a homotopy such that H(−, 0) = 0

and H(−, 1) = h. By the homotopy extension property for cofibrations, the dotted
arrow exists in the diagram

A ∧∆d
top+ ∧ I+

∐
A∧∆d

top,+
∧{0}+

W ∧∆d
top,+ ∧ {0}+

� _

��

H∐0 // Z

W ∧∆d
top,+ ∧ I+.

H′

44i
i

i
i

i
i

i
i

i
i

i
i

Now H ′(−, 1) = h′ is the desired extension of h, H ′ is a homotopy between h′

and the 0-map and F
def
= f − (h′ + h′) represents the same class as [f ]. Since

F |A∧∆d
top,+

= 0 the map F defines the map F ′ : W/A ∧∆d
top,+ → Z such that

F = p∗F ′ : W
p
−→W/A ∧∆d

top,+ → Z.

Therefore
R̃qtop(W/A)0 ։ ker(i∗ : R̃qtop(W )0 → R̃

q
top(A)0),

because p∗[F ′] = [p∗F ′] = [F ] = [f ]. �

Lemma 7.7. (c.f. [LLFM03, Lemma 8.8]) Suppose that A• is a simplicial G-
module. Then

|Aav• | = |A•|
av

Proof. Let f• : B• → C• be a map between simplicial sets, then | Im f•| = Im |f•|.
The lemma follows since (−)av is defined to be the image of the map N = 1+σ. �

Proposition 7.8. Suppose that Y = |Y•| is the realization of a based G-simplicial
set. Then Z0(Y )0 → Z0(Y )av0 and Z/20(Y )0 → Z/20(Y )av0 are Serre fibrations.

Proof. If Y is a based set and A is an abelian group then define A⊗Y = ⊕y∈Y \{∗}A.
If Y• is a based G-simplicial set then A ⊗ Y• is a G-simplicial set. In case A =
Z or A = Z/2 we have Z(|Y•|)0 = |Z ⊗ Y•| and Z/20(|Y•|)0 = |Z/2 ⊗ Y•| (see
[dS03b, McC69]). The map Z⊗ Y• → (Z⊗ Y•)av is a surjection between simplicial
abelian groups and so is a fibration of simplicial sets and similarly for Z/2⊗ Y• →
(Z/2⊗ Y•)av.
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The realization of a Kan fibration is a Serre fibration and therefore both Z0(Y )0 =

|Z⊗Y•|
N
−→ |(Z⊗Y•)av| = Z0(Y )av0 and Z/20(Y )0 = |Z/2⊗Y•|

N
−→ |(Z/2⊗Y•)av| =

Z/20(Y )av0 are Serre fibrations of topological spaces. �

Below we apply this proposition to the cases Y = Sq,q and Y = Sq,q ∧ Z/2+

so we make explicit that these are realizations of G-simplicial sets. We consider
Z/2 as a simplicial set in the usual way. The simplicial set S1,0 is the ordinary S1

with trivial action. The simplicial set S0,1 is the simplicial whose nondegenerate
simplices are two vertices {0} and {∞} and two 1-simplices. The G-action fixes
the vertices and switches the 1-simplices. The realization of this simplicial set is
the usual S0,1. Now Sp,q is the G-simplicial set Sp,q = (S1,0)∧p ∧ (S0,1)∧q and its
realization is the usual Sp,q.

Lemma 7.9. Let W be a based G-space with trivial action. Suppose that Z is a

topological G-module such that Z
N
−→ Zav is a Serre fibration. Then

Homcts∗

(
W ∧∆•

top,+, Z
)av
0

= Homcts∗

(
W ∧∆•

top,+, Z
av
)
0
.

Proof. Since W and ∆d
top have trivial actions,

Homcts∗

(
W ∧∆•

top,+, Z/20(Y )0
)av
0
⊆ Homcts∗

(
W ∧∆•

top,+, Z/20(Y )av0
)
0
,

and we wish to see that it is onto.
Suppose that f : W ∧∆d

top,+ → Zav is a map which is homotopic to 0. Let H
be a homotopy between 0 and f and let H ′ be a lift of H ,

W ∧∆d
top,+ ∧ {0}+

0 //
� _

≃

��

Z

N

����
W ∧∆d

top,+ ∧ I+
H //

H′

77
p

p

p

p

p

p

p

Zav,

which exists because the right-hand vertical map is a fibration. Finally the map

f ′(−) = H ′(−, 1) satisfies f ′ + f
′
= f and H ′ is a homotopy between 0 and f ′. �

Proposition 7.10. Suppose that W has trivial G-action. Then for all n ≥ 0 and
all q ≥ 0,

R̃qtop(W ∧ Z/2+)0 = {0}.

Proof. First recall [dS03b, Lemma 2.4] that given a finite G-set Z then there is a
G-homeomorphism

Hom∗ (Z+, Z0(Y )0)
∼=
−→ Z0(Y ∧ Z+)0

defined by f 7→
∑
z∈Z f(z) ∧ z. This yields

R̃qtop(W ∧ Z/2+)0 =
Homcts∗

(
W ∧ Z/2+ ∧∆•

top,+, Z/20(S
q,q)0

)G
0

Homcts∗

(
W ∧ Z/2+ ∧∆•

top,+, Z/20(Sq,q)0
)av
0

=

=
Homcts∗

(
W ∧∆•

top,+, Z/20(S
q,q ∧ Z/2+)0

)G
0

Homcts∗

(
W ∧∆•

top,+, Z/20(Sq,q ∧ Z/2+)0
)av
0

=

=
Homcts∗

(
W ∧∆•

top,+, Z/20(S
q,q ∧ Z/2+)G0

)
0

Homcts∗

(
W ∧∆•

top,+, Z/20(Sq,q ∧ Z/2+)av0
)
0

,
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where the last equality follows from Lemma 7.9 and Proposition 7.8 because W
has trivial G-action. But since the action of G on Sq,q ∧ Z/2+ is free we have the
isomorphism

Z/20(S
q,q ∧ Z/2+)av0

∼=
−→ Z/20(S

q,q ∧ Z/2+)G0

and therefore

R̃qtop(W ∧ Z/2+)0 =
Homcts∗

(
Sn ∧∆•

top,+, Z/20(S
q,q ∧ Z/2+)G0

)
0

Homcts∗

(
W ∧∆•

top,+, Z/20(Sq,q ∧ Z/2+)av0
)
0

= {0}.

�

Recall that the action of G on a based set (Y, ∗) is said to be free if Y G = ∗.

Corollary 7.11. Suppose that W is a based finite G-CW complex with free G-
action. Then

R̃qtop(W )0 = {0}.

Proof. First we observe that R̃qtop(Wn+1)0 → R̃
q
top(Wn)0 is an isomorphism for any

n. Indeed since W is a free G-CW complex Wn/Wn−1 is a wedge of spheres of the

form Sn ∧ Z/2+. By the previous proposition R̃qtop(Wn+1/Wn)0 = R̃qtop(∨S
n+1 ∧

Z/2+)0 = {0}.

By Proposition 7.6, R̃qtop(Wn+1/Wn)0 ։ ker(R̃qtop(Wn+1)0 → R̃qtop(Wn)0) is

surjective and therefore R̃qtop(Wn+1)0 ⊆ R̃
q
top(Wn)0. By Corollary 7.4 this map is

onto as well and therefore R̃qtop(Wn+1)0 = R̃qtop(Wn)0. Since W = WN for large N

we conclude that R̃qtop(W )0 = R̃qtop(W0)0 = {0}. �

Corollary 7.12. Suppose that W is a finite G-CW -complex. Then

R̃qtop(W )0
∼=
−→ R̃qtop(W

G)0

is an isomorphism of simplicial abelian groups.

Proof. Consider the cofibration sequence WG →֒W →W/WG. The space W/WG

has a free G-action and so Proposition 7.6 and Corollary 7.11 imply that

{0} = R̃qtop(W/W
G)0 ։ ker[R̃qtop(W )0 → R̃

q
top(W

G)0]

is surjective. Therefore R̃qtop(W )0 ⊆ R̃
q
top(W

G)0. Since it is also a surjection by
Corollary 7.4 it is an isomorphism. �

For a based G-CW complex W define

Hq(W ) = Homcts∗

(
WG ∧∆•

top,+, R0(S
q,q)0

)
.

The homotopy groups of Hq(W ) compute singular cohomology of the fixed point

space, πkHq(W ) = Hq−k
sing(W

G,Z/2).

Theorem 7.13. Let W be a finite G-CW -complex. Then

πiR̃
q
top(W )0 → πiH

q(W ) = Hq−i
sing(W

G; Z/2)

is an isomorphism for i ≥ 2 and an injection for i = 0, 1.
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Proof. Since Hq(W ) = Hq(WG) and R̃qtop(W )0 = R̃qtop(W
G)0 by Corollary 7.12

we immediately reduce to the case that W = WG. Since G acts trivially on W ,
Lemma 7.9 and Proposition 7.8 give

R̃qtop(W )0 =
Homcts∗

(
W ∧∆•

top,+, Z/20(S
q,q)0

)G
0

Homcts∗

(
W ∧∆•

top,+, Z/20(Sq,q)0
)av
0

=

=
Homcts∗

(
W ∧∆•

top,+, Z/20(S
q,q)G0

)
0

Homcts∗

(
W ∧∆•

top,+, Z/20(Sq,q)av0
)
0

.

By [LLFM03, Proposition 8.3] the short exact sequence

0→ Z/20(S
q,q)av0 → Z/20(S

q,q)G0 →R0(S
q,q)0 → 0

is a principle fibration sequence.
Finally comparing homotopy fiber sequences of simplicial abelian groups

Hom
(
W ∧∆•

top,+, Z
av
)
0

//

��

Hom
(
W ∧∆•

top,+, Z
G
)
0

//

��

R̃qtop(W )0

��
Hom

(
W ∧∆•

top,+, Z
av
)

// Hom
(
W ∧∆•

top,+, Z
G
)

// Hq(W )

yields the result.
�

Corollary 7.14. Let W be a finite G-CW -complex. Then

πiR̃
q
top(W )→ πiH

q(W ) = Hq−i
sing(W

G; Z/2)

is an isomorphism for i ≥ 2.

Proof. The map πiR̃
q
top(W )0 → πiR̃

q
top(W ) is an isomorphism for i ≥ 2 and an

injection for i = 0, 1 �

Appendix A. Topological Monoids

In this appendix we collect a few simple results on topological monoids. By topo-
logical monoid we will mean a compactly generated Hausdorff topological abelian
monoid (and similarly for the phrase topological group). An abelian monoid M is
said to have the cancellation property if for any n,m, p ∈M n+ p = m+ p implies
m = n.

Lemma A.1. Suppose that M is a topological monoid with the cancellation prop-
erty. If + : M ×M → M is closed and N ⊆ M is a closed submonoid then the
quotient map π : M →M/N is closed.

Proof. Suppose that V ⊆ M is closed. Then since π : M → M/N is a quotient
map to see that πV is closed it is enough to see that π−1πV ⊆ M is closed. But
π−1πV = (V +N) ∩ (M +N) which is closed. �

Lemma A.2. Let M be a topological monoid with the cancellation property and
let N ⊆ M be a submonoid. Suppose that M/N is a topological monoid, M+ is a
topological group and N+ is closed. Then the isomorphism of groups

(
M

N

)+

→
M+

N+

is an isomorphism of topological groups.
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Proof. The map M →M+ →M+/N+ sends N to 0 and so we obtain the monoid
homomorphismM/N →M+/N+ which is continuous. This induces the continuous
group homomorphism φ : (M/N)+ →M+/N+.

On the other hand the topological monoid quotient map M →M/N induces the
continuous group homomorphism M+ → (M/N)+. Since N+ is mapped to 0 it
induces the continuous group homomorphism ψ : M+/N+ → (M/N)+.

The continuous maps ψ and φ are easily seen to be inverse to each other. �

Recall that if A is a topological monoid with G-action we write Aav ⊆ A for the
image of N = 1+σ, so Aav ⊆ A is the topological submonoid consisting of elements
of the form a+ σa.

Proposition A.3. Suppose that M is a Hausdorff topological abelian monoid with
the cancellation property and that M+ is a Hausdorff group. Suppose that G acts
on M . Then the isomorphism of groups

(MG)+
∼=
−→ (M+)G

is an isomorphism of topological groups. If (M+)av ⊆M+ is closed then

(Mav)+
∼=
−→ (M+)av

is an isomorphism of topological groups.

Proof. We just have to show that the “identity” map

(M+)G → (MG)+

is continuous.
The group completion M+ is topologized as the quotient

M ×M
q
−→M+.

where q(a, b) = a− b. The map q : q−1(M+)G → (M+)G is again a quotient map
since (M+)G is closed.

Consider the map M ×M
id×σπ2−−−−−→ M ×M ×M

∆×id
−−−→ M×4 +

−→ M ×M which
sends (a, b) 7→ (a, b, σb, σb) 7→ (a + σb, b + σb). This is a continuous map. Its
restriction to q−1(M+)G is a continuous map q−1(M+)G → MG × MG which
induces the identity map on quotients

(M+)G → (MG)+,

and therefore this is a continuous map.
The second statement for averaged cycles is proved in a similar fashion. �

Lemma A.4. Let M be a topological monoid with the cancellation property. Sup-
pose that M+ is a topological group and 2M+ is closed in M+. Then

M

2M
→

M+

2M+

is an isomorphism of topological abelian groups.

Proof. For m ∈ M write [m] for its image in M/2M . This quotient monoid is a
group since [m] + [m] = 0.

For (m,n) ∈ M+ write [m,n] for its image in M+/2M+. The map M/2M →
M+/2M+ which sends [m] to [m, 0] is continuous because M → M/2M is a quo-
tient. It is an injection because if [m, 0] = [0, 0] then there is (2n, 2n′) such that
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m+2n′ = 2n which says that [m] = 0. It is surjective since [m,n] = [m+n, n+n] =
[m + n, 0]. The inverse M+/2M+ → M/2M is continuous since it is the map
[m,n] 7→ [m+ n, 0] = [m+ n, n+ n]. �

Proposition A.5. Let X be a normal quasi-projective real variety.

(1) The continuous homomorphism N : Zq/2(XC) → Zq/2(XC)av induces an
isomorphism of topological groups

Zq/2(XC)

Zq/2(XC)G
→ Zq/2(XC)av.

(2) The continuous homomorphism Zq(XC)av → Zq/2(XC)av induces an iso-
morphism of topological groups

Zq(XC)av

2Zq(X)G
→ Zq/2(XC)av.

Proof. Addition is a closed map for the monoid C0(P
q
C
)(XC) (see the proof of Propo-

sition 3.6) and therefore we conclude by Lemma A.1 that addition is also closed

for both the effective cocycles Cq(XC) = C0(P
q
C
)(XC)/C0(P

q−1
C

)(XC) and closed for
Cq/2(XC) .

By Lemma A.4 the map Cq/2(XC)
∼=
−→ Zq/2(XC) is an isomorphism of topological

groups and therefore addition is closed for Zq/2(XC). In particular N = 1 +
σ : Zq/2(XC) → Zq/2(XC) is closed. Since Zq/2(XC) is 2-torsion ker(N) =
Zq/2(XC)G. It now follows that

Zq/2(XC)

Zq/2(XC)G
N
−→ Zq/2(XC)av

is an isomorphism of topological groups. For the second statement we need to
conclude that the continuous bijection Zq(XC)av/2Zq(XC)G → Zq/2(XC)av has a
continuous inverse. Write g for the inverse. Then

Zq(XC) //

��

Zq(XC)av

��

Zq/2(X)av
g // Z

q(XC)av

2Zq(XC)G

is commutative and each map except possibly g is continuous. By the first part of

the proposition the composition Zq(XC)→ Zq/2(XC)
N
−→ Zq/2(XC)av is a quotient

map and therefore g is continuous. We conclude that the map is an isomorphism
of topological groups. �

Appendix B. Tractable Monoid Actions

We recall Friedlander-Gabber’s notion of tractability for a topological monoid.

Definition B.1. [FG93]

(1) If M is a Hausdorff topological monoid which acts on a topological space T ,
the action is said to be tractable if T is the topological union of inclusions

∅ = T−1 ⊆ T0 ⊆ T1 ⊆ · · ·
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such that for each n ≥ 0 the inclusion Tn−1 ⊆ Tn fits into a push-out of
M -equivariant maps (with R0 empty)

(B.2)

Rn ×M −−−−→ Sn ×My
y

Tn−1 −−−−→ Tn,

where the upper horizontal map is induced by a cofibration Rn →֒ Sn of
Hausdorff spaces.

The monoid M is said to be tractable if the diagonal action of M on
M ×M is tractable.

(2) If in addition M , T are G-spaces say that the action of M on T is equiv-
ariantly tractable if the action map is G-equivariant, the Rn →֒ Sn are
equivariant cofibrations between G-spaces, and the pushout squares (B.2)
are G-equivariant.

Fixed points of an equivariant cofibration is a cofibration and fixed points pre-
serve pushouts along a closed inclusion. Therefore if T is an equivariantly tractable
M -space then it is in particular a tractable M -space and TG is a tractable MG-
space.

The most important feature of tractability is that the naive group completion
M →M+ of a tractable monoid is a homotopy group completion [FG93].

It is useful to know that all of our topological groups have reasonable equivariant
homotopy types. Below we observe that this is the case by using essentially the same
reasoning as in [FW01b, Proposition 2.5]. The essential topological property used
here is that Hironaka’s triangulation theorem implies that the complexification of
a real variety may be equivariantly triangulated (see for example [KW03, Theorem
1.3]).

Proposition B.3. Suppose that T is a tractable M -space. If Rn, Sn have the ho-
motopy type of a CW -complex then so does T/M Suppose that T is an equivariantly
tractable M -space. If Rn, and Sn have the equivariant homotopy type of a G-CW
complex then T/M has the equivariant homotopy type of a G-CW complex.

Proof. We prove the second statement, the first follows in the same manner by
discarding equivariant considerations. Modding out by the M -action in (B.2) we
obtain equivariant pushout-squares

Rn −−−−→ Sny
y

Tn−1/M −−−−→ Tn/M.

By induction and homotopy invariance of pushouts along G-cofibrations we see that
Tn/M has the homotopy type of a G-CW complex and that Tn−1/M → Tn/M is
a G-cofibration. By [Wan80, Theorem 4.9] we conclude that colimn Tn/M has the
homotopy type of a G-CW complex. We are done since T/M = colimn Tn/M by
the proof of [Fri98, Lemma 1.3]. �

Proposition B.4. Let E ⊆ X be a constructable subset of a real projective variety.

(1) The space EC has the homotopy type of a G-CW complex.



48 JEREMIAH HELLER AND MIRCEA VOINEAGU

(2) Suppose that F →֒ E is a closed constructable embedding. Then FC →֒ EC

is an equivariant cofibration.

Proof. Let EC, FC be closures (in XC) of EC and FC. There is an equivariant
triangulation of EC so that FC and EC\EC are subcomplexes [KW03, Theorem
1.3]. Then EC and FC are unions of open simplices. The deformation retract of EC

onto a subsimplicial complex given in the proof of [FW01b, Proposition 2.5] is an
equivariant retract onto a G-simplicial complex (and similarly for FC) which gives
the first statement. The construction of a deformation retract onto FC of an open
neighborhood U of FC in EC given in [FL97, Lemma C1] works equivariantly which
shows that FC →֒ EC is a cofibration.

�

As shown in [FG93, Proposition 1.3] the Chow monoids associated to complex
varieties are tractable and in [FL97, Proposition C.3] these results are extended to
certain constructable submonoids of Chow monoids. Their proofs work equivari-
antly to give the equivariant analogue of their result. A submonoid N ⊆M is said
to be full if whenever m + m′ ∈ N then both m, m′ ∈ N . The condition below
on E ⊆ Ck(X) in the proposition is satisfied if E is Zariski closed or if it is a full
submonoid.

Proposition B.5. Let X be a projective real variety and E ⊆ Ck(X) by a con-
structable submonoid such that + : E × E → E is a Zariski closed mapping. Then

(1) EC is an equivariantly tractable monoid.
(2) E+

C
has the homotopy type of a G-CW complex.

(3) If F ⊆ E is a closed constructable embedding then EC is tractable as an
FC-space and EC/FC is an equivariantly tractable monoid.

(4) Suppose that F →֒ E is a closed constructable embedding. Then F+ ⊆ E+

is closed and the sequence

0→ F+
C
→ E+

C
→ (EC/FC)+ → 0

is an equivariant short exact sequence of groups of spaces of the homotopy
type of a G-CW complex.

Proof. In [FL97, Proposition C.3] the monoid EC is shown to be tractable as follows.
Write E(d) = EC ∩ Ck,d(XC) and let ν : N2 → N be a bijection such that if a ≤ c,
b ≤ d then ν(a, b) ≤ ν(c, d). Define

Sn = E(an)× E(bn), where ν(an, bn) = n

Rn = Im


⋃

c≥0

E(an − c)× E(bn − c)× E(c)→ E(an)× E(bn)


 ⊆ Sn

and

Tn = Im


(

⋃

ν(a,b)≤n

E(a) × E(b))× EC → EC × EC


 .

The spaces Rn, Sn, and Tn are G-spaces, fit into the appropriate pushout squares,
and Rn →֒ Sn is a closed constructable embedding since addition is closed on EC

therefore by Proposition B.4 the Rn →֒ Sn are equivariant cofibrations. This shows
that E is equivariantly tractable. The third item follows from similar consideration
of [FL97, Proposition C.3]. The second item follows by applying Proposition B.3.
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For the last part write R′
n, S

′
n, and T ′

n for the spaces above giving the tractability
of FC. Then R′

n ⊆ Rn and S′
n ⊆ Sn are cofibrations. Considering the comparison

of pushouts

T ′
n/FC = T ′

n−1/FC

⋃

R′

n

S′
n → Tn/EC = Tn−1/EC

⋃

Rn

Sn

we see by induction that T ′
n/FC →֒ Tn/EC is a cofibration and in particular is

closed. Therefore F+
C

= colimn T
′
n/FC ⊆ colimn Tn/EC = E+

C
is a closed subspace

[FP90, Proposition A.5.5]. Finally EC/FC)+ = E+
C
/F+

C
by Lemma A.2 which gives

the displayed exact sequence. �

Spaces of algebraic cycles and algebraic cocycles on complex varieties are shown
to have CW -structures or homotopy type of CW -spaces in [LF92, FW01b] and in
[Teh05] for real varieties.

Corollary B.6. Let U be a quasi-projective real variety. Then the spaces Zk(UC),
Z/ℓk(UC), Zq(UC), Zq/ℓ(UC) all have the homotopy type of a G-CW complex.
The spaces Zk(UC)av, Z/ℓk(UC)av, Rk(U), Zq(UC)av, Zq/ℓ(UC)av, and Rq(UC)
all have the homotopy type of a CW -complex.

Proof. That Zk(UC) has the homotopy type of a G-CW complex follows imme-
diately from the previous proposition. Let U ⊂ U be a projectivization. Write
F0(P

q−1
C

)(UC) = E0(P
q−1
C

)(UC) + Cd(P
q
C
× UC). This is a closed constructable sub-

monoid F0(P
q−1
C

)(UC) ⊆ E0(P
q
C
)(UC) and (E0(P

q
C
)(UC)/F0(P

q−1
C

)(UC))+ ∼= Zq(UC)
has the equivariant homotopy type of a G-CW complex. Since (ℓCk(UC))+ ⊆
Ck(UC)+ is closed we easily see that (ℓCk(UC))+ = ℓ(Ck(UC))+ ⊆ Ck(UC)+. There-
fore Z/ℓk(UC) ∼= (Ck(UC)/ℓCk(UC))+ has the equivariant homotopy type of a G-

CW complex. Similarly one sees that Zq/ℓ(UC) ∼= (E0(P
q
C
)(UC)/F0(P

q−1
C

)(UC) +
ℓE0(P

q
C
)(UC))+ has the equivariant homotopy type of a G-CW complex.

The monoid inclusions ℓCk(UC)∩Ck(UC)av ⊆ Ck(UC)av ⊆ Ck(UC)G ⊆ Ck(UC) are
all closed and so Zk(UC)av, Rk(U) ∼= (Ck(UC)G/Ck(UC)av)+, and Z/ℓk(UC)av ∼=
(Ck(UC)av/ℓCk(UC) ∩ Ck(UC)av)+ all have the homotopy type of a CW -complex.

SimilarlyZq(UC)av ∼= (E0(P
q
C
)(UC)av/F0(P

q−1
C

)(UC)∩E0(P
q
C
)(UC))+, Zq/ℓ(UC)av ∼=

(E0(P
q
C
)(UC)av/(F0(P

q−1
C

)(UC) + ℓE0(P
q
C
)(UC)) ∩ E0(P

q
C
)(UC)av)+, and Rq(UC) ∼=

(E0(P
q
C
)(UC)G/F0(P

q−1
C

)(UC)G + E0(P
q
C
)(UC)av)+ all have the homotopy type of a

CW complex. �
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