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ABSTRACT

Aims. A model-independent reconstruction of the cosmic expansion rate is essential to a robust analysis of cosmological
observations. Our goal is to demonstrate that current data are able to provide reasonable constraints on the behavior of the
Hubble parameter with redshift, independently of any cosmological model or underlying gravity theory.
Methods. Using type Ia supernova data, we show that it is possible to analytically calculate the Fisher matrix components in
a Hubble parameter analysis without assumptions about the energy content of the Universe. We used a principal component
analysis to reconstruct the Hubble parameter as a linear combination of the Fisher matrix eigenvectors (principal components).
To suppress the bias introduced by the high redshift behavior of the components, we considered the value of the Hubble
parameter at high redshift as a free parameter. We first tested our procedure using a mock sample of type Ia supernova
observations, we then applied it to the real data compiled by the Sloan Digital Sky Survey (SDSS) group.
Results. In the mock sample analysis, we demonstrate that it is possible to drastically suppress the bias introduced by the high
redshift behavior of the principal components. Applying our procedure to the real data, we show that it allows us to determine
the behavior of the Hubble parameter with reasonable uncertainty, without introducing any ad-hoc parameterizations. Beyond
that, our reconstruction agrees with completely independent measurements of the Hubble parameter obtained from red-envelope
galaxies.
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1. Introduction

At the end of the 20th century, observations of type Ia
supernovae (SNIa) revealed that the Universe expansion
is accelerating (Riess et al. 1998; Perlmutter et al. 1999).
Since these publications, several efforts have been made to
explain these observations (Cunha et al. (2009); Frieman
et al. (2008); Linder (2008); Linder & Huterer (2005);
Samsing & Linder (2010); Freaza et al. (2002); Ishida
(2005); Ishida et al. (2008) and references therein). In a
standard analysis, dark-energy models are characterized
by a small set of parameters. These are placed into the cos-
mic expansion rate by means of the Friedman equations,
in substitution for the conventional cosmological-constant
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term. This approach assumes a specific dependence of the
dark-energy equation of state (w) on redshift and provides
some insight into the probable values of the parameters
involved. However, the results remain restricted to that
particular parametrization. An interesting question to at-
tempt to answer is what can be inferred about the cosmic
expansion rate from observations without any reference to
a specific model for the energy content of the Universe?

To perform an independent analysis, we used princi-
pal component analysis (PCA). In simple terms, PCA
identifies the directions of data points clustering in the
phase space defined by the parameters of a given model.
Consequently, it allows a dimensionality reduction with
as minimum an information loss as possible (Tegmark
et al. 1997). The importance of a model-independent re-
construction of the cosmic expansion rate has already been
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investigated in the literature (Huterer & Turner 1999,
2000; Tegmark 2002; Wang & Tegmark 2005; Mignone &
Bartelmann 2008). In this context, PCA has been used to
reconstruct the dark-energy equation of state (Huterer &
Starkman 2003; Crittenden et al. 2009; Simpson & Bridle
2006) and the deceleration parameter (Shapiro & Turner
2006) as a function of redshift. The use of PCA was also
proposed in the interpretation of future experiments re-
sults by Albrecht et al. (2009). In the face of growing in-
terest in the application of PCA to cosmology, Kitching
& Amara (2009) recall that some care must be taken in
choosing the basic expansion functions and the interpre-
tation assigned to the components.

The main goal of this work is to apply PCA to recon-
struct directly the Hubble parameter redshift dependence
without any reference to a specific cosmological model. In
this context, the eigenvectors and eigenvalues of the Fisher
matrix form a new basis in which the Hubble parameter
is expanded. For the first time, we show that it is possi-
ble to derive analytical expressions for the Fisher matrix
if we focus on the Hubble parameter (H(z)) as a sum of
step functions. The reader should realize throughout this
work that our procedure is mostly driven by the data, al-
though there is a weak dependence of the components on
our starting choices of parameter values. In other words,
the functional form of each eigenvector is not of primary
importance, we are more interested in how they are lin-
early combined. This approach allows us to avoid many
interpretation problems pointed out by Kitching & Amara
(2009). Our only assumption is that the Universe is spa-
tially homogeneous and isotropic and can be described by
Friedmann-Robertson-Walker (FRW) metric.

The paper is organized as follows. In section 2, we
briefly review our knowledge of PCA and demonstrate
how it can be applied to a Hubble parameter analysis us-
ing type Ia supernova observations. Section 3 shows the
results obtained with a simulated supernova data set, fol-
lowing the standard procedure for dealing with the linear
combination coefficients. We demonstrate that the quality
of our results derived from the simulated data are greatly
improved if we consider the Hubble parameter value in the
upper redshift bound as a free parameter. We apply the
same procedure to real type Ia supernova data compiled
by the Sloan Digital Sky Survey team (Kessler et al. 2009).
The results are shown in section 4. Finally, in section 5,
we present our conclusions.

2. Principal component analysis

2.1. The Fisher matrix

The procedure used to find the principal components
(PCs) begins with the definition of the Fisher information

matrix (F). Owing to its relation to the covariance matrix
(F=C−1), it can be shown that the PCs and their asso-
ciated uncertainties are related to the eigenvectors and
eigenvalues of the Fisher matrix, respectively.

We consider that our data set is formed by N indepen-
dent observations, each one characterized by a Gaussian
probability density function, fi(xi, σi;βββ). In our notation,
xi represents the i − th measurement, σi the uncertainty
associated with it, and βββ is the vector of parameters of
our theoretical model. In other words, we investigate a
specific quantity, x, which can be written as a function of
the parameters βi, (x(βββ)). In this context, the likelihood

function is given by L =
∏N

i=1 fi and the Fisher matrix is
defined as

Fkl ≡
〈
−∂2 lnL(βββ)

∂βk∂βl

〉
. (1)

The brackets in equation (1) represents the expectation
value.

We can write F=DTΛΛΛ D, where the rows of the decor-
relation matrix (D) are the eigenvectors (eieiei) of F, and
ΛΛΛ is a diagonal matrix whose non-zero elements are the
eigenvalues (λi) of F. Choosing D to be orthogonal, with
det(D)=1, eieiei forms an orthonormal basis of decorrelated
vectors (or modes). After finding the eigenvectors and
eigenvalues of F, we rewrite x as a linear combination
of eieiei. Our ability to determine each coefficient of this lin-

ear expansion (αi) is given by σαi = λ
−1/2
i . Following the

standard convention, we enumerate eieiei from the larger to
the smaller associated eigenvalue.

The main goal of PCA is the dimensionality reduction
of our initial parameter space. This arises in the num-
ber of PCs we use to rewrite x. The most accurately de-
termined modes (smaller σαi) correspond to directions of
high data clustering in the original parameter space. As a
consequence, they represent a larger part of the variance
present in the original data set. In the same way, the most
poorly determined modes correspond to a small portion
of the variance in the data, describing features that might
not be important in our particular analysis. In this con-
text, we must determine the number of PCs that will be
used in the reconstruction. Our decision must be balanced
between how much information we are willing to discard
and the amount of uncertainty that will not compromise
our results. The constraint on x reconstructed with M
modes (where M 6 NPC and NPC is the total number
of PCs), is given by a simple error propagation of the un-
certainties associated with each PC (Huterer & Starkman
2003)

σ2
PCS(z) ≡

NPC∑

i=1

[σαieieiei(z)]
2 ≈

M∑

i=1

[σαieieiei(z)]
2
. (2)
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From this expression, it is clear that adding one more PC
adds also its associated uncertainty. At this point, we note
that to calculate Fkl we must choose numerical values for
each parameter βi. This corresponds to specifying a base
model as our starting point. As a consequence, the re-
sults provided by PCA are interpreted as deviations from
this initial model. The uncertainty derived from fitting the
data to this base model should also be added in quadra-
ture to equation (2), to compute the total uncertainty in
the final reconstruction.

The question of how many PCs should be used in the
final reconstruction is far from simple, and there is no
standard quantitative procedure to determine it. In many
cases, the decision depends on the particular data set an-
alyzed and our expectation towards them (for a complete
review see Jollife (2002), chapter 6). One practical way of
facing the problem is to consider how many components
are inconsistent with zero in a particular reconstruction. In
most cases, the coefficients αi tend to decrease in modulus
for higher i, at the same time as the uncertainties associ-
ated with them increases. In this context, we can choose
the final reconstruction as the one whose coefficients are
all inconsistent with zero.

The determination of one final reconstruction is be-
yond the scope of this work. However, to provide an idea
of how much of the initial variance is included in our plots,
we shall order them following their cumulative percentage
of total variance.

The total variance present in the data is represented
well by the sum of all λi, and a reconstruction with the
first M PCs encloses a percentage of this value (tM ), given
by

tM = 100

∑M
i=1 λi∑NPC

j=1 λj

. (3)

As a consequence, the question of how many PCs turns
into a matter of what percentage of total variance we are
willing to enclose.

2.2. Investigating the Hubble parameter from SNIa
observations

From now on, we consider the distance modulus, µ, pro-
vided by type Ia supernova observations as our observed
quantity (xi = µi). In a very simple approach, if we
consider a flat, homogeneous and isotropic Universe, de-
scribed by the FRW metric, the distance modulus relates
to cosmology according to

µ(z) = 5 log10 [dL(z)] + µ0, (4)

dL(z) ≡ (1 + z)

∫ z

0

du

H(u)
, (5)

where µ0 is called intercept, dL(z) is the luminosity dis-
tance, and H(z) is the Hubble parameter. We use H0 = 72
km s−1Mpc−1 as the current value of the Hubble param-
eter (Komatsu et al. 2009).

To make H(z) as general as possible, we write it as a
sum of step functions

H(z;βββ) =

Nbin∑

i=1

βici(z), (6)

where

ci(z) =

{
1 if (i− 1)∆z < z ≤ i∆z
0 otherwise

,

βi are constants, βββ is the vector formed by all βi, Nbin is
the number of redshift bins and ∆z is the width of each
bin. This approach was proposed by Shapiro & Turner
(2006) in the context of deceleration parameter analysis.
Although, when it is used for the Hubble parameter, the
Fisher matrix calculations are simplified and we still get
pretty general results. Given the definition above, βi are
now the parameters of our theory. Physically, they repre-
sent the value of the Hubble parameter in each redshift
bin. We can obviously express any functional form using
this prescription, with higher resolution for a larger num-
ber of bins.

In this context, we are able to obtain analytical ex-
pressions for the luminosity distance

dL(z,βββ) = (1 + z)


∆z

L(z)∑

i=0

1

βi+1
+

z − L(z)∆z

βL(z)+1


 , (7)

and its derivatives,

∂dL(z,βββ)

∂βk
= −(1 + z)


∆z

L(z)∑

i=0

δi+1,k

β2
i+1

+

+
δL(z)+1,k (z − L(z)∆z)

β2
L(z)+1

]
, (8)

where L(z) corresponds to the integer part of z/∆z. From
equations (1), (4), and (5), we can calculate the Fisher
matrix components as

Fkl =
25

(ln 10)2

[
N∑

i=1

1

(σdataidL(zi;βββ))
2×

×∂dL(zi,βββ)

∂βk

∂dL(zi,βββ)

∂βl

]
. (9)

The Hubble parameter may now be reconstructed as
the sum of Hbase and a linear combination of the new
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uncorrelated variables represented by the eigenvectors of
the Fisher matrix. Mathematically,

Hrec(z;ααα) = Hbase(z) +

M∑

i=1

αieieiei(z), (10)

where αi are constants and ααα is the vector formed by all
the αi. Using equation (10) in equations (4) and (5), we
can write the reconstructed distance modulus. The data
set is then used to find values for the parameters αi that
minimize the expression

χ2
1(ααα) =

N∑

i=1

(µi − µrec(zi;ααα))
2

2σ2
i

. (11)

This minimization procedure will also generate an uncer-
tainty in the value of parameters αi (σ

min
αi

), which should
be taken into account in the final reconstruction error bud-
get.

3. Application

3.1. Mock sample

To test the expressions and procedures presented before,
we used a simulated type Ia supernova data set. We con-
sider 34 redshift bins of ∆z = 0.05 (0 ≤ z ≤ 1.7), each one
containing 50 supernovae. We tested configurations with
a larger number of bins, but the results are consistent for
any configuration with more than ∼ 25 redshift bins. The
uncertainty in the i − th bin was calculated according to
the prescription proposed in Kim et al. (2004)

σi =

√
0.152

50
+

(
0.02

∆z(i− 0.5)

1.7

)2

. (12)

We performed 1000 simulations of a flat Universe contain-
ing a cosmological constant and dark matter, with matter
density parameter Ωm = 0.27 as our fiducial model.

Our main goal in using this simulation is to obtain
an idea of how the procedure proposed here behaves in
an almost ideal scenario. It represents an simplified ver-
sion of future data, as for the Joint Dark Energy Mission
(JDEM)1, but it is enough to allow us to check the con-
sistency of our procedure.

Using the equations shown in the previous section,
we calculated the Fisher matrix components. We found
that the modes are weakly sensitive to the choice of ini-
tial base model (values for the parameters βi, hereafter
Hbase). However, if we use a specific cosmological model
to attribute values to the parameters βi (ΛCDM, for ex-
ample), all the results derived from this initial choice can

1 http://jdem.lbl.gov/
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Fig. 1. PCs obtained from our mock sample as a function
of redshift. All PCs are shown according to the convention
that eieiei(z = 0) > 0. Top: First (red-full), second (blue-
dashed), third (green-dotdashed), and fourth (brown-dotted)
PC. Bottom: Fifth (purple-full), sixth (cyan-dashed), seventh
(magenta-dotdashed), and eighth (dark blue-dotted) PC.

only be analyzed in the face of that model. As our goal
is to make a model-independent analysis, the best choice
is to calculate the PCs based on a model where there is
no evolution with redshift (βi = cte > 0, ∀i). The PCs
will then denote deviations from a constant behavior, re-
gardless of the value attributed to βi. A constant Hubble
parameter is obviously an extremely unrealistic model, al-
though, it does allow us to have a better idea of which
characteristics of our results are extracted from the data
and which are only a consequence of our initial choices.

We do not currently have well constrained informa-
tion about the evolution of the Hubble parameter with
redshift, but we do have independent measurements of its
value today, H0 (e.g. Komatsu et al. (2009)). Hence, we
present our results in units of H0 and use a base model
in which βi = 1,∀i. The resulting eigenvectors with larger
eigenvalues are shown in Fig. 1.

The comparison between the PCs obtained from using
Hbase = ΛCDM and Hbase = cte is shown in figure (2).
From this plot, we can see that the difference exist, but
the overall shape of the PCs are not very sensitive to the
choice of Hbase.

To clear illustrate the standard-procedure results of
PCA reconstruction in the specific case studied here, we
show in Fig. 3 reconstructions using one to six PCs with
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Fig. 2. Principal components obtained using a constant base
model (full-red line) and using ΛCDM as a base model (dotted-
brown line).
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Fig. 3. Reconstruction of the Hubble parameter using equa-
tions (10) and (11). Hubble parameter reconstructed with one
(top-left) to six PCs (bottom-right), in units of H0. The black
(solid) line represents our best-fit reconstruction and the red
(dotted) curves shows 2σ confidence levels. The blue (dashed)
line corresponds to the the behavior of the Hubble parameter
in our fiducial model.

corresponding values of tM . From this plot, it is clear that
our attempt to reconstruct H(z) using a few PCs does not
provide the expected results. We have two main problems
here: the reconstruction merely oscillates around the fidu-
cial model (blue-dashed line) and we can clearly see that
there is a bias dominating the high-redshift behavior. We
address both problems in the next section.

3.2. Minimizing the bias in the reconstruction

From Fig. 1, we realize that all the first eight PCs go to
zero at high-redshift, which means that at these redshifts
our data provides little information 2. Consequently, no
matter how many PCs we use or which values we attribute
to the parameters αi, the reconstructed function will al-
ways be biased in the direction of our previously chosen
base model for high z (in this work, “high z” corresponds
to the upper redshift bound of our data set. In our mock
sample, zmax = 1.7).

At this point, we must pay attention to the crucial
role played by Hbase in the standard procedure described
so far. Although the PCs depend weakly on our choice
of Hbase, the final reconstruction is extremely sensitive to
the choice. Figure (4) shows how different Hbase lead to
completely different final reconstructions.

Searching the literature, we found two different ap-
proaches to dealing with this problem. We could ignore
the reconstruction in the region of high redshift (Huterer
& Starkman 2003; Shapiro & Turner 2006) or add a phys-
ically motivated model for Hbase in equation (10), which
would provide us with the value we expect to measure
in the upper redshift bound (Tang et al. 2008). We con-
sider that the first alternative does not represent a good
solution. The problem is not only the bias at high z, but
also the weird behavior present in the reconstruction as
a whole. Beyond that, our intention is not only to im-
prove the fit quality, but also to make it independent of
our initial choice of Hbase. The second alternative would
produce results in good agreement with the fiducial model
(corresponding to the dotted-brown reconstruction in fig-
ure (4)), in a simulated situation. Defining a physically
motivated Hbase would only, however, introduce another
bias. As in reality we do not have access to the “true”
value of H(z), this would require us to make a hypothesis
about the energy content and dark energy model, which
we are trying to avoid.

In this context, we believe that it is reasonable to con-
sider the behavior of H(z) at high z as a free parameter.

2 This kind of behavior is also present in PCs from the dark
energy equation of state (Huterer & Starkman 2003) and de-
celeration parameter (Shapiro & Turner 2006).
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Fig. 4. Reconstructions using 1 (top-left) to 6 (right-bottom)
PCs for different Hbase, obtained from our mock sample. The
black (full) line represents the fiducial model ΛCDM, the brown
(dotted) line corresponds to the final reconstructions in the
case Hbase(z) = ΛCDM , the red (full) line corresponds to the
case Hbase(z) = 0.5, the blue (dashed) line shows the recon-
struction considering Hbase = 1.0, and the green (dot-dashed)
line is the reconstruction for Hbase(z) = 4.0.

This means adding another parameter (hzmax) to equation
(10), which becomes

Hrec(z) = hzmax +Hbase(z) +

N∑

i=1

αieieiei(z). (13)

As a consequence, the new χ2 will be given by

χ2(hzmax ,ααα) =

N∑

i=1

(µi − µrec(zi;hzmax ,ααα))
2

2σ2
i

, (14)

and the uncertainty associated with the determination of
hzmax (σhzmax

) is added in quadrature to the right hand
side of equation (2), leading to

σ2
rec(z) ≈ σ2

hzmax
+

M∑

i=1

[
(σαieieiei(z))

2
+
(
σmin
αi

)2]
. (15)

The effect of this choice is shown in figure (5). We can
see that, no matter which Hbase we use, if hzmax is con-
sider to be a free parameter, the reconstruction at high z
is driven by the data. As a consequence, we obtain good
agreement for the reconstruction using a constant as well
as a ΛCDM model for Hbase. Even though the PCs are not
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Fig. 5. Reconstructions using one (top-left) to six (right-
bottom) PCs for different choices of Hbase and considering
hfid as a free parameter, for our mock sample. The black
(full) line represents the fiducial model ΛCDM, the blue
(dashed) line corresponds to the final reconstructions in the
case Hbase(z) = HΛCDM and the red (full) line corresponds to
the case Hbase(z) = cte > 0.

identical for non-evolving and ΛCDM models (figure (2)),
this agreement is a direct consequence of the best-fit val-
ues of the set of parameters {αi, hzmax} always arranging
themselves to more accurately describe the information in
the data.

We present in Fig. 6 the results of the reconstruction
using 1 to 5, and 10 PCs, and corresponding values of tM .
Comparing these results with those in Fig. 3, we can see
a huge improvement in the agreement between the recon-
structed function and the fiducial model. The reconstruc-
tion with 10 PCs encloses the fiducial model within 2σ
confidence levels in the whole redshift range covered by
the data. Considering that initially we had 34 parameters
βi, this represents a reduction of ≈ 70% in the parameter
space dimensionality.

We have so far demonstrated that PCA is an effective
method for determining the Hubble parameter behavior
with redshift. It provides a considerable reduction in the
initial parameter space dimensionality, without introduc-
ing any hypothesis about the energy content, cosmological
model, or underlying gravity theory. The reconstruction
relies on the assumption of a homogeneous and isotropic
Universe, described by a FRW metric. The simulated data
set used above is composed of independent data points,
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Fig. 6. Reconstruction of the Hubble parameter using equa-
tions (13) and (14). Hubble parameter reconstructed with 1
(top-left) to 5 (bottom-left) and 10 (bottom-right) PCs, in
units of H0. The color code is the same used in figure (3).

each one associated with a Gaussian probability density
function, in a flat ΛCDM Universe.

In what follows, we apply this procedure to a real (and
consequently less well behaved) data set. Our goal is to
see whether, in a realistic scenario, the effectiveness of the
procedure remains.

4. Results from current SNIa data

We applied this procedure to real supernova Ia data com-
piled by the Sloan Digital Sky Survey (SDSS) SN group,
hereafter real sample. This sample include measurements
from the SDSS (Kessler et al. 2009), the ESSENCE sur-
vey (Miknaitis et al. 2007; Wood-Vasey et al. 2007), the
Supernova Legacy Survey (SNLS)(Astier et al. 2006), the
Hubble Space Telescope (HST) (Garnavich et al. 1998;
Knop et al. 2003; Riess et al. 2004, 2007), and a com-
pilation of nearby SN Ia measurements (Jha et al. 2007).
The first eight PCs found from the real data set are shown
in Fig. 7. We used 28 redshift bins of width ∆z = 0.05 and
the 287 data points from the aforementioned data set with
z ≤ 1.4. The resulting reconstructions with one to six PCs
are shown in Fig. 8. The blue-dashed line corresponds to
the behavior of the Hubble parameter in a flat Universe
containing dark energy with an equation-of-state param-
eter for dark energy wdark = −0.76 and matter density
parameter Ωm = 0.30. This corresponds to the best-fit,

flat cosmology found by Kessler et al. (2009) in the con-
text of the Multicolor Light Curve Shape (MLCS2k2, (Jha
et al. 2007)), hereafter fXCDM. It is shown here exclu-
sively for comparison reasons, this model was not used in
our calculations.

Comparing Figs. 6 and 8, we realize that the confidence
intervals are much larger in Fig. 8, as expected, because
of the observational uncertainties that are present only in
the real sample. Beyond that, the contours corresponding
to 2σ confidence levels do not evolve in Fig. 8 as they
do in Fig. 6. This is a direct consequence of our choice
of introducing hzmax as a free parameter. In the simu-
lated case, σhzmax

is much smaller than the uncertainty
associated with the parameters αi. As a consequence, the
evolution of the confidence levels is dominated by the un-
certainties associated with the PCs. In the real case, the
opposite situation occurs. For the six cases presented in
Fig. 8, σhzmax

À σααα, making the final uncertainty almost
independent of how many PCs are used in the reconstruc-
tion. This behavior is a consequence of the low number
and quality of data points at high redshift. However, it is
also related to a non-null correlation between the uncer-
tainties in determining the parameters αi and hzmax . To
explore this method in the best case scenario, we need to
ensure not only that we have high number and quality of
data points at high redshift, but also that the PCs are as
well determined as possible.

In comparing Figs. 6 and 8, the reader should be aware
that the blue dashed line means different things in each
figure. Figure 6 is a simulation, and in such a case the
blue dashed line corresponds to the fiducial model used
to generate our mock sample. Fig. 8 was created using
real data, in this case the blue dashed line represents the
best-fit flat ΛCDM model, as reported by Kessler et al.
(2009).

We can also see, in Fig. 8, that the reconstruction be-
comes more irregular when more than four PCs are used.
If we take the blue dashed line as a good representation
of the “real” cosmological model, we could say that four
PCs are enough to enclose the desired behavior within
2σ confidence level. For the sake of completeness, we plot
reconstructions only up to six PCs.

To compare our results with other model-independent
determinations of H(z), we plot in the top panel of Fig. 9
the reconstruction with four PCs, superimposed on mea-
surements of H(z) derived from red-envelope galaxies ob-
servations by Stern et al. (2010). The error bars associated
with these data points are still pretty large, but they al-
ready provide important insights into the behavior of the
Hubble parameter in the redshift range covered by the
real data sample. We can see that the reconstruction en-
closes the fXCDM model, as well as agreeing with the red-
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envelope galaxy measurements. To compare our results
with the predictions of a standard model-dependent pro-
cedure, we show in the bottom panel of Fig. 9, the 2σ con-
fidence levels derived from the error propagation of statis-
tical uncertainties in Ωm and w reported by Kessler et al.
(2009) assuming a fXCDM model and using MLCS2k2.
We again find good agreement between the two results.

In Figs. 8 and 9, we point out that the blue-dashed line
does not represent the behavior we are trying to achieve,
but is merely a representation of a model we are used to
dealing with. The purpose of showing it here is to provide
an idea of how far our results are from others presented
in the literature, although, in our particular analysis, no
assumptions about the energy content of the Universe is
necessary.

The determination of what kind of physical and/or
systematic effect generates patterns seen in the two lower
panels of Fig. 8 is beyond the scope of this work. In our in-
terpretation, these results confirm that fXCDM provides
a good first-order approximation of the real behavior of
H(z) within the current observational errors and assump-
tions underlying our procedure. However, a more realistic
simulation and detailed study of systematic errors are nec-
essary in order to fully understand second-order effects.

5. Conclusions

We have presented an alternative procedure for extracting
cosmological parameters from type Ia supernova data. Our
analysis is concentrated in the Hubble parameter, although
we emphasize that the same procedure can be applied to
other quantities of interest. Our goal has been to be as
general as possible, so we have tried to avoid parametric
forms or specific cosmological models by using PCA.

Writing H(z) according to equation (6) and consider-
ing type Ia supernova observations, we have shown that it
is possible to obtain analytical expressions for the Fisher
matrix. We used a mock sample formed by 34 redshift
bins of width ∆z = 0.05, with errors calculated following
the prescription proposed by Kim et al. (2004). This mock
sample represents a simplification of future data sets, such
as the JDEM, and is not a realistic representation of cur-
rent data. Our goal in using it was to check the consisten-
tency of our procedure.

Our first attempt in reconstructing the Hubble param-
eter as a linear combination of the eigenvectors of F was
unsuccessful. In trying to fit high-redshift data with PCs
that go asymptotically to zero, the most oscillatory modes
propagate their behavior to the reconstructed H(z) in the
whole redshift range. As a consequence, the final result
barely resembles our fiducial model.

1st PC
2nd PC 4th PC

3rd PC
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0.2 0.4 0.6 0.8 1. 1.2
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0.5
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e i
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0.2 0.4 0.6 0.8 1. 1.2

-0.5
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Fig. 7. Principal components obtained from real data sam-
ple. All PCs are plotted following the convention eieiei(z =
0) > 0. Top: First (red-full), second (blue-dashed), third
(green-dotdashed), and fourth (brown-dotted) PCs. Bottom:
Fifth (purple-full), sixth (cyan-dashed), seventh (magenta-
dotdashed), and eight (darker blue-dotted) PCs.

To suppress the influence of the high-redshift behavior
present in all PCs of interest, we considered the value of
the Hubble parameter at high redshift as an extra free pa-
rameter in our analysis. This simple modification provided
reliable results when used with simulated and real super-
nova data. Beyond that, our results are corroborated with
measurements of red-envelope galaxies from Stern et al.
(2010).

As a final remark, we emphasize that PCA provides
a viable way of avoiding phenomenological parameteriza-
tions. It represents one of the few statistical methods that
allow us to obtain the behavior of a chosen quantity di-
rectly from the data. It has its own assumptions, such as
Gaussianity, independence of data points and in the spe-
cific case analyzed here, cosmologies that obey a FRW
metric. In the final reconstruction phase, it also exhibits
a bias in the upper redshift bound. On the other hand,
the procedure proposed here can drastically suppress the
influence of this bias. Beyond that, we show that in the
context of this work, the Fisher matrix can be analytically
obtained. This avoids all uncertainties related to numer-
ical derivations of step functions and might be a good
alternative to standard statistical analyses applied to cos-
mological data.



Ishida & de Souza: Hubble parameter reconstruction 9

tM '=1=63.8 %

1PC

Real sample

0.25 0.5 0.75 1. 1.25

0.5

1.

1.5

2.

2.5

z

H
re

c
�H

0

tM '=2=77.2 %

2PC

0.25 0.5 0.75 1. 1.25

0.5

1.

1.5

2.

2.5

z

H
re

c
�H

0

tM '=3=83.1 %

3PC

0.25 0.5 0.75 1. 1.25

0.5

1.

1.5

2.

2.5

z

H
re

c
�H

0

tM '=4=86.7 %

4PC

0.25 0.5 0.75 1. 1.25

0.5

1.

1.5

2.

2.5

z

H
re

c
�H

0

tM '=5=89.3 %

5PC

0.25 0.5 0.75 1. 1.25

0.5

1.

1.5

2.

2.5

z

H
re

c
�H

0

tM '=6=90.9 %

6PC

0.25 0.5 0.75 1. 1.25

0.5

1.

1.5

2.

2.5

z

H
re

c
�H

0

Fig. 8. Reconstructions obtained from linear combinations of
the PCs shown in figure 7. Panels run from 1 (top-left) to 6
(bottom-right) PCs. The blue dashed line represents H(z) in a
flat XCDM cosmological model with w = −0.76 and Ωm = 0.30
(best-fit results reported by Kessler et al. (2009)). Black curve
corresponds to the best-fit reconstruction and red lines are 2σ
confidence levels.
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