
ZETA ELEMENTS IN THE K-THEORY OF DRINFELD

MODULAR VARIETIES

SATOSHI KONDO AND SEIDAI YASUDA

Abstract. Beilinson [Be] constructs special elements in the second K-group

of an elliptic modular curve, and shows that the image under the regulator map
is related to the special values of the L-functions of elliptic modular forms. In
this paper, we give an analogue of this result in the context of Drinfeld modular

varieties.

(A partial result appeared in our preprint “Euler systems on Drinfeld modular
varieties and zeta values” (2005) RIMS-1499.)

1. Introduction

The theme of this article is a function field analogue of Beilinson’s result on
elliptic modular curves concerning his conjectures on motives over Q (see [Be, Sec-
tion 5]). The conjectures (among other things) relate the image of the regulator
map and the special values of L-functions. Our main theorem (Theorem 1.1 be-
low) is the Drinfeld modular analogue of Beilinson’s theorem ([Be, Theorem 5.1.2])
or more precisely its refinement due to Kato ([Ka, p.127, Theorem 2.6]) which
computes explicitly the regulator map in terms of the special value of L-function.

Let us give some notation to state our results. We refer to later sections for the
precise statement. Let F be the function field of a projective smooth geometrically
irreducible curve C over a finite field. We fix a closed point ∞ of C and let
A = Γ(C \ {∞},OC) denote the coordinate ring of the affine curve C \ {∞}. Let
q∞ denote the cardinality of the residue field at ∞.

Let d be a positive integer. Let J ⊂ I ⊂ A be nonzero ideals. We let NI,J =
(A/I)⊕d−1⊕(A/J). It is an A-module of finite length. We consider the moduli space
Md

NI,J
of rank d Drinfeld modules with level NI,J structures (see Section 2.4.7).

Let A∞ =
∏′
℘6=∞ F℘ denote the ring of finite adeles. Given an element γ ∈

GLd(A∞), we construct, in Section 2.4.7, an element

κI,J,γ ∈ Kd(Md
NI,J

)⊗Z Q

using theta functions and Siegel units. Let Z denote the center of GLd, letA1 denote
the space of Z(F∞)-invariant automorphic forms on GLd,F (see Section 4.1.1), and
let Ao

1 ⊂ A1 denote the subspace of Z(F∞)-invariant cusp forms. The main result
of this paper is a formula which describes the image of the element κI,J,γ under the
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regulator map

regL1,L2
: Kd(Md

NI,J
)⊗Z Q→ (A1)

K∞
I,J

defined in Section 7.5. Here the symbols L1, L2 in the subscript denote cer-

tain Â-lattices of A∞⊕d corresponding to I and J defined in Section 2.4.7, and
(A1)

K∞
I,J ⊂ A1 denotes the subspace of Z(F∞)×K∞

I,J -invariant automorphic forms

where K∞
I,J ⊂ GLd(A∞) is the open compact subgroup corresponding to I and J

defined in Section 2.4.7.
In Section 5.4.7, we construct a Z(F∞)×K∞

I,J -invariant automorphic form

ηK∞
I,J ,γ

: GLd(F )\GLd(A)/(Z(F∞)×K∞
I,J)→ C

which is an analogue of a modular symbol.
We are ready to state our main result.

Theorem 1.1. (See Theorem 8.2) Let f ∈ (Ao
1)

K∞
I,J be a Z(F∞)×K∞

I,J -invariant

cusp form satisfying Condition (2) of Section 4.2.2 (this is roughly the condition
that the cusp form is a Hecke eigenform). Then we have

〈f, regL1,L2
(κI,J,γ)〉 =

1

log q∞
lim
s→0

∂

∂s
LI,J(f, s− d− 1

2
)〈f, ηK∞

I,J ,γ
〉.

Here LI,J(f, s) is the L-function of f (with local factors at the primes dividing I
removed) which is defined in Section 4.2.2, and 〈 , 〉 : Ao

1×A1 → C is the Petersson
inner product defined in Section 4.1.2.

As an application of Theorem 1.1, we obtain the following result (Theorem 1.2)
which accounts for the part of the Beilinson conjecture on the surjectivity of the
regulator map (sometimes called the weak Beilinson conjecture).

We write P o : A1 → Ao
1 for the projection map to the space of cusp forms

(Section 4.2.2). Let Ao
St ⊂ Ao

1 denote the subspace which is characterized by the
condition that the corresponding representation at the prime ∞ is the Steinberg
representation (see Section 9.1 for the precise statement).

Theorem 1.2. The image of the homomorphism

Kd(Md
NI,J

)⊗Z C
regL1,L2−−−−−→ A1

P o

−−→ Ao
1

equals (Ao
St)

K∞
L1,L2 .

The outline of the proof of Theorem 1.1 is as follows. We construct in Section 2.4
a subspace of the K-group using the units on the modular varieties. In the case of
elliptic modular curves, these elements are called Beilinson elements (or Beilinson-
Kato elements).

We then compute (Theorem 6.3) an integral, which we call zeta integral. This
is the pairing between a Hecke eigen cusp form and a certain automorphic form.
We see that it equals the product of the automorphic L-function associated to the
Hecke eigen cusp form and a certain factor without the complex parameter. The
computation is done using the norm property of Euler systems (see Proposition 6.2).
This formula is given purely in terms of automorphic forms. A similar statement
was proved using the Rankin-Selberg method in the elliptic modular case.

The limit of the zeta integral, as the complex parameter tends to zero, is related
to the pairing between a Hecke eigen cusp form and the image by the regulator
map of the elements in K-groups constructed above. This is the zeta value formula
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(Theorem 1.1). This can be seen using an analogue of the Kronecker limit formula
(Proposition 3.4). Theorem 1.2 above is proved in Section 9 using this formula and
some computation of the Borel-Moore homology groups (see Corollary 5.16).

In comparison with the Beilinson conjectures, there are two open problems which
we have not solved. Let us give some remarks concerning these problems. The
Beilinson conjectures are stated for the integral part of the motivic cohomology
groups, which are certain parts of the algebraic K-groups, of projective smooth
schemes over Q. One problem is that the Drinfeld modular varieties Md

NI,J
are

affine of pure dimension d− 1 over F . Hence we have not constructed elements in
the K-groups of projective smooth schemes over F for d ≥ 2. In the case of elliptic
modular curves, Beilinson has resolved this problem by considering the compactified
elliptic modular curves and using the Drinfeld-Manin theorem. The same method
can be applied in the case of Drinfeld modular curves, that is, for d = 2, and
the details are written in our other paper [Ko-Ya3]. However, for d ≥ 3, we do
not know how to construct a good compactification ofMd

NI,J
. Even if we assume

the existence of such a good compactification, we still do not how to overcome the
problem. The other problem is that we do not know if the subspace of the K-groups
of the Drinfeld modular varieties we constructed is contained in the integral part.
For Drinfeld modular curves, we have affirmative results in our paper [Ko-Ya3]. We
do not know how to resolve these problems in higher dimensions.
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2. Construction of zeta elements

We give the construction of some special elements in the K-theory of Drinfeld
modular varieties. In Section 2.1, we recall some facts on Drinfeld modular vari-
eties. The function field analogue of Siegel units and theta functions are defined
in Sections 2.2 and 2.3. In the case of elliptic modular curves, the algebraic con-
struction of theta functions is due to Kato ([Ka]), while similar functions appear in
the earlier work of Coates and Wiles [Coa-Wi], as rational functions on CM elliptic
curves. The construction of special elements follows the idea of Beilinson.

2.1. Drinfeld modular varieties.

2.1.1. Notations. Let C be a smooth projective geometrically irreducible curve over
the finite field Fq of q elements. Let F denote the function field of C. Fix a closed
point ∞ of C. Let q∞, F∞, | |∞ : F∞ → qZ∞ ∪ {0} denote the cardinality of the
residue field of C at ∞, the completion of F at ∞, and the absolute value at ∞,
respectively. Let A = Γ(C\{∞},OC) be the coordinate ring of the affine Fq-scheme
C \ {∞}.
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2.1.2. We recall the definition of a Drinfeld module ([Dr]).
We fix an integer d ≥ 1. Let S be an A-scheme. A Drinfeld module of rank d

over S is a scheme E in A-modules over S satisfying the following conditions:

(1) Zariski locally on S, the scheme E is isomorphic to Ga as a commutative
group scheme.

(2) If we denote the A-action on E by ϕ : A→ EndS-group(E), then, for every
a ∈ A \ {0}, the morphism ϕ(a) : E → E on E is finite, locally free of
constant degree |a|d∞.

(3) The A-action on LieE induced by ϕ coincides with the A-action on LieE
which comes from the structure homomorphism A→ Γ(S,OS).

2.1.3. Let N be a torsion A-module. Let UN = SpecA\SuppN be the spectrum of
the localization of A by the elements in A which are invertible on SpecA \SuppN .
Let S be a UN -scheme, and (E,ϕ) be a Drinfeld module of rank d over S. A level
N -structure on (E,ϕ) is a monomorphism ψ : NS ↪→ E from the constant group
scheme NS to E in the category of schemes in A-modules over S.

2.1.4. Let us consider the sheafMd
N of groupoids on the big étale site of UN -schemes

which associates, to a UN -scheme S, the groupoid of triples (E,ϕ, ψ) where (E,ϕ)
is a Drinfeld module over S and ψ is a level N -structure. If N 6= 0 (resp. if N is of
finite length), the functorMd

N is representable by an affine UN -scheme (resp. by a
smooth Deligne-Mumford UN -stack). The representability is stated and proved in
[Dr, Proposition 5.3] (see also [Lau, Theorem 1.4.1]), in the case N = (I−1/A)⊕d

with a non-zero ideal I $ A. The method of the proof in [Dr] may be applied to
our case.

Let N ↪→ N ′ be an injection of torsion A-modules. We let rN ′,N : Md
N ′ →

Md
N ×UN

UN ′ denote the morphism (E,ϕ, ψ) 7→ (E,ϕ, ψ|N ) where ψ|N is the
restriction of ψ to the submodule N .

Let N � N ′′ be a surjection of torsion A-modules such that the kernel is of finite
length. We let mN,N ′′ :Md

N →Md
N ′′ ×UN′′ UN denote the morphism (E,ϕ, ψ) 7→

(E′′, ϕ′′, ψ′′) where E′′ = E/ψ(Ker(N → N ′′)) and ϕ′′, ψ′′ are those induced by the
quotient map ([Lau, Lemma 1.4.1]).

2.2. Theta functions.

In this section, we construct an element

θE/S ∈ Γ(E \ S,O×
E/S)⊗Z Q

which we call the theta function associated to a Drinfeld module E over S.

2.2.1. Let (E,ϕ) be a Drinfeld module of rank d over a reduced A-scheme S. Let
π : E → S denote the structure morphism. We regard S as a closed subscheme of
E via the zero section S ↪→ E.

Lemma 2.1. Let the notation be as above. There exists an element f ∈ Γ(E \
S,O×

E\S) satisfying the following properties:

(1) For a ∈ A \ {0}, let Na : Γ(E \ Kerϕ(a),O×
E) → Γ(E \ S,O×

E) denote the
norm map with respect to the finite flat morphism ϕ(a) : E \ Kerϕ(a) →
E \ S. Then Na(f) = f for any a ∈ A \ {0}.

(2) The order ordS(f) of zero of f at the closed subscheme S is equal to qd∞−1.



ZETA ELEMENTS IN THE K-THEORY OF DRINFELD MODULAR VARIETIES 5

Proof. Let us consider the sequence

0→ O×
S → π∗O×

E\S
ordS−−−→ Z→ 0

of Zariski sheaves of abelian groups on S. It is exact since we assumed S to be
reduced. The multiplicative monoid A \ {0} acts on OE\S by the norm map Na
for a ∈ A \ {0}. We let the monoid A \ {0} act on the sheaf O×

S in such a way

that the action on a ∈ A on O×
S is given by the |a|d∞-power map. We let the

monoid A \ {0} act trivially on the sheaf Z. Then the above exact sequence is an
exact sequence of A \ {0}-modules, and defines an element of the extension module
Ext1Z[A\{0}]S (Z,O

×
S ) in the abelian category of Zariski sheaves of A \ {0}-modules

on S. Since A \ {0} acts trivially on Z and via the character | |d∞ : A \ {0} → q
dZ≥0
∞

on O×
S , we have (|a|d∞ − 1)Ext1Z[A\{0}]S (Z,O

×
S ) = 0 for any a ∈ A \ {0}. Since

the greatest common divisor of |a|d∞ − 1 as a runs through A \ {0} is qd∞ − 1, the
extension group Ext1Z[A\{0}]S (Z,O

×
S ) is annihilated by qd∞ − 1. In particular, the

above exact sequence splits after pulling back by qd∞− 1 : Z→ Z. Now let f be the
image of 1 ∈ Z by the section which gives the splitting. �

2.2.2. Since the choice of the element f ∈ Γ(E \ S,O×
E\S) in Lemma 2.1 is unique

up to HomZ[A\{0}]S (Z,O
×
S )
∼= µqd∞−1(S), the element fq

d
∞−1 ∈ Γ(E \S,O×

E\S) does

not depend on the choice of f . Hence the element

(2.1) f ⊗ (1/(qd∞ − 1)) = fq
d
∞−1 ⊗ (1/(qd∞ − 1)2)

in Γ(E\S,O×
E\S)⊗ZQ is defined without ambiguity. We call it the theta function of

(E,ϕ) and denote it by θE/S . The normalizing factor 1/(qd∞ − 1) in (2.1) is chosen
so that the formula in Theorem 8.2 is simplest. See also the remark by Kato ([Ka,
p.122, Remark 1.5]).

Zariski locally on S, there is an isomorphism E ∼= Ga,S = Spec Z[T ] ×Spec Z S
of commutative group schemes. Fix such an isomorphism and let f ′ ∈ Γ(E,OE)
denote the element corresponding to the coordinate function T on Ga,S . It follows
from the definition that the function θE/S is of the form θE/S = cf ′ for some

constant c ∈ Γ(S,O×
S )⊗ZQ. The constant c is explicitly calculated in the following

way. Take an element a ∈ A \ {0} and write Na(f
′) = c′f ′. Then the relation

Na(cf
′) = cf ′ implies that c = c′

−1 ⊗ 1/(|a|d∞ − 1). Therefore

(2.2) θE/S =
f ′

|a|d∞

Na(f ′)
⊗ 1

|a|d∞ − 1
∈ Γ(E \ S,O×

E\S)⊗Z Q.

The following properties are easily checked:

Proposition 2.2. (1) Let g : S′ → S be a morphism from another reduced
scheme S′ to S, and let gE : E×SS′ → E denote the base change morphism
induced by g. Then we have g∗EθE/S = θE×SS′/S′ .

(2) Let h : E → E′ be an isogeny (that is, a morphism of schemes in A-modules
which is finite flat as a morphism of schemes) from another Drinfeld module
E′ of rank d over S to E. Then NhθE/S = θE′/S where Nh is the norm
map associated with h.

�
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2.3. Siegel units.

Let N be a nonzero torsion A-module. We let EdN →Md
N denote the universal

Drinfeld module, and ψ : NMd
N
↪→ EdN the universal level structure. If N is of

finite length, thenMd
N is smooth over UN = SpecA \ SuppN , so in particular it is

reduced. Hence we have a theta function θEd
N/Md

N
∈ Γ(EdN\Md

N ,O
×
Ed

N\Md
N

)⊗Z Q,

whereMd
N is regarded as a subscheme of EdN by the zero section. For b ∈ N \ {0},

we let ψb : Md
N → EdN denote the restriction of ψ to the subscheme Md

N =
{b} × Md

N ⊂ NMd
N

and put gN,b = ψ∗
b θEd

N/Md
N
∈ O(Md

N )× ⊗Z Q. We call the

element gN,b a Siegel unit.
Let N ′ be an A-module of finite length generated by at most d elements (so in

particular that Md
N is nonempty), and N be a sub A-module of N ′. By Propo-

sition 2.2(1), we have r∗N ′,NgN,b = gN ′,b for any b ∈ N \ {0} ⊂ N ′ \ {0}. Let

α : N → N ′′ be a surjection of A-modules of finite length. It follows from Proposi-
tion 2.2(1)(2) that m∗

N,N ′′gN ′′,b′′ =
∏
b∈N,α(b)=b′′ gN,b for any b

′′ ∈ N ′′ \ {0}.

2.4. Elements in K-theory.

2.4.1. Notation. We use the notation C, F , ∞, q∞, A introduced in Section 2.1.1.

We also let O∞ denote the ring of integers of the local field F∞ and let Â = lim←−I A/I
where the limit is taken over all nonzero ideals I of A. We let A∞ = Â ⊗A F and
A = F∞ × A∞ denote the rings of finite adeles and adeles, respectively.

Let us consider the d-dimensional vector space V = F⊕d over F . We regard
it as the set of row vectors. We write V∞ = V ⊗F F∞, OV∞ = O⊕d

∞ ⊂ V∞,

V∞ = V ⊗F A∞, and OV∞ = Â⊕d ⊂ V∞. For a ring R, we let Matd(R) denote
the ring of d× d-matrices with entries in R.

2.4.2. We define schemesMd andMd
1 as the limit with respect to the level struc-

tures of Drinfeld modular varieties of rank d in this paragraph. They are both
equipped with the action of GLd(A∞) and are canonically isomorphic as GLd(A∞)-
schemes.

For a torsion A-module N , let us use the shorthandMd
N,F =Md

N ×UN
SpecF .

We use the same notation m∗,∗ and r∗,∗ as in Section 2.1.4 for the corresponding
morphisms of schemes over SpecF .

An Â-lattice L in V∞ is a free Â-module of rank d contained in V∞ such that the
canonical map L⊗Â A∞ → V∞ is an isomorphism. Let us consider the set of pairs

of Â-lattices (L1, L2) in V
∞ such that L1 ⊂ L2. We consider it as an ordered set by

setting (L1, L2) < (L′
1, L

′
2) if and only if L′

1 ⊂ L1 ⊂ L2 ⊂ L′
2. LetMd denote the

inverse limit lim←−(L1,L2)
Md

L2/L1,F
where the transition map for (L1, L2) < (L′

1, L
′
2)

is given by the composite rL′
2/L1,L2/L1

mL′
2/L

′
1,L

′
2/L1

. The group GLd(A∞) acts from
the left on this inverse limit by the multiplication from the right on V∞ (hence acts
on the set of sublattices of V∞).

We also consider the inverse limit Md
1 = lim←−L⊂Â⊕d⊂V∞Md

Â⊕d/L,F
where the

limit is taken over Â-lattices L contained in Â⊕d with transition maps given by
m∗,∗.

We can prove that the canonical map Md → Md
1 induced from the inclusion

of the index sets is an isomorphism. Let us give a brief sketch of the proof. The
scheme Md

1 is equipped with the action of GLd(A∞). This can be shown using
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an argument similar to the one given by Drinfeld ([Dr, p.577, D)], see also [Lau,
p.15, (1.7)]). It is known that a ∈ F× ⊂ A∞× ∼= Z(GLd(A∞)), where Z denotes
the center, acts trivially. Hence the canonical morphismMd →Md

L2/L1,F
and the

compositionMd →Md
aL2/aL1,F

∼=Md
L2/L1,F

, where the first map is the canonical

morphism and the second map is the morphism induced by the multiplication-by-a
map L2/L1

∼= aL2/aL1 where a ∈ F×, coincide. Now consider the set of pairs of

lattices {(aÂ⊕d, aL)} with Â⊕d ⊂ L and a ∈ F×. Then this set is cofinal with the
system forMd. HenceMd →Md

1 is an isomorphism and is GLd(A∞)-equivariant.

2.4.3. Let us give a remark concerning the scheme Md
2 = Md

V∞/Â⊕d
, which, by

definition, is equal to the projective limit lim←−Â⊕d⊂L⊂V∞Md
L/Â⊕d,F

with transition

maps r∗,∗. This remark will not be used in the sequel so the reader may skip this
paragraph. The schemeMd

2 is the scheme which appears in the paper by Drinfeld
[Dr] (and other sources). It is isomorphic to Md in a canonical way (a reasoning
similar to the one given above applies).

One reason we consider Md
1 instead of Md

2 is that it is easier to construct ele-
ments in the K-groups ofMd

1 than in that ofMd
2 and to prove properties such as

the Euler system relations. We refer to [Ko-Ya1] for the details.

2.4.4. Let S(V∞) denote the space of Z-valued Schwartz-Bruhat functions on V∞,
that is, the space of Z-valued functions on V∞ that are locally constant and
compactly supported. We let S ′(V∞) ⊂ S(V∞) denote the subspace of those
functions f such that f(0) = 0. We have a GLd(A∞)-equivariant isomorphism
S(V∞)⊗d ∼= S(Matd(A∞)) by setting

(f1 ⊗ · · · ⊗ fd)((xij)) = f1(x1j)f2(x2j) · · · fd(xdj)

where fi ∈ S(V∞) for each i and (xij) ∈ Matd(A∞). By multiplication of the in-
verse from the right on V∞ and on Matd(A∞), we have a left action of GLd(A∞) on
S(V∞) and on S(Matd(A∞)). We see that S ′(V∞)⊗d ⊂ S(V∞)⊗d is a GLd(A∞)-
submodule.

2.4.5. Let us define a GLd(A∞)-equivariant homomorphism

κ : S ′(V∞)⊗d → Kd(Md)⊗Z Q.

We first define a GLd(A∞)-equivariant homomorphism

S ′(V∞)→ K1(Md)⊗Z Q ∼= lim−→
(L1,L2)

(K1(Md
L2/L1,F

)⊗Z Q).

Note that any element of S ′(V∞) can be expressed as a Z-linear combination of

characteristic functions of the sets of the form b+L where L ⊂ V∞ is an Â-lattice
and b ∈ V∞\L. We take an Â-lattice L′ ⊂ V∞ large enough so that b ∈ L′ and L ⊂
L′. We have a Siegel unit gL′/L,b ∈ O(Md

L′/L,F )
×⊗Z Q where we wrote b again for

the image in L′/L. The image of gL′/L,b in the limit lim−→(L1,L2)
O(ML2/L1,F )

×⊗ZQ
is independent of the choice of L′ by Proposition 2.2.

Let L ⊃ L′′ and let b ∈ V∞ \ L. Then we have an equality

chb+L =
∑

b′′∈V∞/L′′,b′′ modL=b

chb′′+L′′
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in S(V∞), where ch means the characteristic function of its subscript. We have a
similar equality gL′/L,b =

∏
b′′∈L′/L′′,b′′ modL=b gL′/L′′,b′′ in lim−→(L1,L2)

O(ML2/L1,F )
×⊗Z

Q which follows from a remark at the end of Section 2.3. Hence the map

S ′(V∞)→ lim−→
(L1,L2)

O(Md
L2/L1

)× ⊗Z Q

which sends chb+L to gL′/L,b is well-defined. It is easy to see that the map is
GLd(A∞)-equivariant.

Now composing this with the symbol map O(−)× → K1(−) and the product
structure K1(−)⊗d → Kd(−) of K-theory, we obtain the desired homomorphism κ.

2.4.6. Let I, J $ A be nonzero ideals with J ⊂ I and let γ ∈ GLd(A∞). We put

NI,J = (A/I)⊕(d−1) ⊕ (A/J). We define an element κI,J,γ ∈ Kd(Md
NI,J ,F

) ⊗Z Q
whereMd

NI,J ,F
=Md

NI,J
⊗UNI,J

Spec F . We let

YI,J = {(gij) ∈ Matd(Â) | (gij)1≤j≤d ≡ (δij)1≤j≤dmod I for 1 ≤ i ≤ d− 1
and mod J for i = d},

(where δij is the Kronecker delta) and regard it as an open compact subset of
Matd(A∞). Let chγ·YI,J

∈ S(Matd(A∞)) denote the characteristic function of the

set γ · YI,J . Then chγ·YI,J belongs to S ′(V∞)⊗d. We let κI,J,γ = κ(chγ·YI,J ).

2.4.7. Let L1 = (IÂ)⊕(d−1) ⊕ (JÂ) and L2 = Â⊕d be Â-lattices in V∞. We let

NI,J = L2/L1 = (A/I)⊕(d−1) ⊕ (A/J). Let K∞
I,J = YI,J ∩ GLd(Â) ⊂ GLd(Â) be

an open compact subgroup. Then (Kd(Md) ⊗Z Q)K
∞
I,J ∼= (Kd(Md

1) ⊗Z Q)K
∞
I,J ∼=

Kd(Md
NI,J ,F

) ⊗Z Q since rational K-theory satisfies étale descent. (The proof of

the fact that r∗,∗ is étale is found in [Lau, p.8, LEMMA (1.4.2)]. The fact that m∗,∗
is étale can be proved by using the fact that any morphism between étale schemes
over a base scheme is étale.) As chγYI,J is K∞

I,J -invariant, so is κI,J,γ , and hence we

obtain an element in Kd(Md
NI,J ,F

)⊗Z Q. This element is also denoted κI,J,γ .

3. Kronecker limit formula

We prove a function field analogue of the Kronecker limit formula. The case
d = 1 is due to Gross and Rosen [Gro-Ro]. The first author follows the same line to
prove the general case [Ko]. Here we give a simpler, more conceptual proof. First,
we recall the analytic study at infinity of Drinfeld modular varieties. The reader
is referred to [De-Hu] for more details. We then give an analytic description of
the theta functions and Siegel units which were defined in Sections 2.2 and 2.3. In
Section 3.4, Eisenstein series with a complex parameter s are defined. The limit as
s tends to 0 is expressed in terms of those analytic functions (Proposition 3.4).

3.1. Simplicial complexes.

3.1.1. Let us recall the notion of (abstract) simplicial complex. A simplicial complex
is a pair (Y0,∆) of a set Y0 and a set ∆ of finite subsets of Y0 which satisfies the
following conditions:

• If S ∈ ∆ and T ⊂ S, then T ∈ ∆.
• If v ∈ Y0, then {v} ∈ ∆.
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In this paper we call a simplicial complex in the sense above a strict simplicial
complex, and use the terminology “simplicial complex” in a little broader sense,
since we will treat as simplicial complexes some arithmetic quotients of Bruhat-
Tits building, in which two different simplices may have the same set of vertices.
Bruhat-Tits building itself is a strict simplicial complex. Our primary example of
a (nonstrict) simplicial complex is XK∞,• to be introduced in Section 5.3.1.

We adopt the following definition of a simplicial complex: a simplicial complex
is a collection Y• = (Yi)i≥0 of the sets indexed by non-negative integers, equipped
with the following additional data

• a subset V (σ) ⊂ Y0 with cardinality i+1, for each i ≥ 0 and for each σ ∈ Yi
(we call V (σ) the set of vertices of σ), and
• an element in Yj , for each i ≥ j ≥ 0, for each σ ∈ Yi, and for each subset
V ′ ⊂ V (σ) with cardinality j + 1 (we denote this element in Yj by the
symbol σ ×V (σ) V

′ and call it a face of σ)

which satisfy the following conditions:

• For each σ ∈ Y0, the equality V (σ) = {σ} holds,
• For each i ≥ 0, for each σ ∈ Yi, and for each non-empty subset V ′ ⊂ V (σ),
the equality V (σ ×V (σ) V

′) = V ′ holds.
• For each i ≥ 0 and for each σ ∈ Yi, the equality σ ×V (σ) V (σ) = σ holds,
and
• For each i ≥ 0, for each σ ∈ Yi, and for each non-empty subsets V ′, V ′′ ⊂
V (σ) with V ′′ ⊂ V ′, the equality (σ×V (σ) V

′)×V ′ V ′′ = σ×V (σ) V
′′ holds.

Let us call the elements of the form σ×V (σ) for j and V ′ as above, a j-dimensional
face of σ. We remark here that the symbol ×V (σ) does not mean a fiber product
in any way.

Any strict simplicial complex gives a simplicial complex in the sense above in
the following way. Let (Y0,∆) be a strict simplicial complex. We identify Y0 with
the set of subsets of Y0 with cardinality 1. For i ≥ 1 let Yi denote the set of the
elements in ∆ which has cardinality i+1 as a subset of Y0. For i ≥ 1 and for σ ∈ Yi,
we put V (σ) = σ regarded as a subset of Y0. For a non-empty subset V ⊂ V (σ),
of cardinality i′ + 1, we put σ ×V (σ) V = V regarded as an element of Yi′ . Then
it is easily checked that the collection Y• = (Yi)i≥0 together with the assignments
σ 7→ V (σ) and (σ, V ) 7→ σ ×V (σ) V forms a simplicial complex.

3.1.2. There is an alternative, less complicated, equivalent definition of a simplicial
complex in the sense above, which we will describe in this paragraph. As it will
not be used in this article, the reader may skip this paragraph. For a set S, let
Pfin(S) denote the category whose object are the non-empty finite subsets of S and
whose morphisms are the inclusions. Then giving a simplicial complex in our sense
is equivalent to giving a pair (Y0, F ) of a set Y0 and a presheaf F of sets on Pfin(Y0)
such that F ({σ}) = {σ} holds for every σ ∈ Y0. This equivalence is explicitly
described as follows: given a simplicial complex Y•, the corresponding F is the
presheaf which associates, to a non-empty finite subset V ⊂ Y0 with cardinality
i+ 1, the set of elements σ ∈ Yi satisfying V (σ) = V .

This alternative definition of a simplicial complex is smarter, nevertheless we
have adopted the former definition since it is nearer to the definition of a simplicial
complex in the usual sense.
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We call an element in Yi an i-simplex in Y•. For an i-simplex σ ∈ Yi, we call an
element of the form σ ×V (σ) V

′ for some non-empty subset V ′ ⊂ V (σ) a face of σ.
Let Y• and Z• be simplicial complexes. A map from Y• to Z• is a collection

f = (fi)i≥0 of maps fi : Yi → Zi of sets which satisfies the following conditions:

• for any i ≥ 0 and for any σ ∈ Yi, the restriction of f0 to V (σ) is injective
and the image of f |V (σ) is equal to the set V (fi(σ)), and
• for any i ≥ j ≥ 0, for any σ ∈ Yi, and for any non-empty subset V ′ ⊂ V (σ)
with cardinality j + 1 we have fj(σ ×V (σ) V

′) = fi(σ)×V (fi(σ)) f0(V
′).

3.1.3. Let Y• be a simplicial complex. We associate a CW complex |Y•| which we
call the geometric realization of Y•. Let I(Y•) denote the disjoint union

∐
i≥0 Yi.

We define a partial order on the set I(Y•) by saying that τ ≤ σ if and only if τ
is a face of σ. For σ ∈ I(Y•), we let ∆σ denote the set of maps f : V (σ) → R≥0

satisfying
∑
v∈V (σ) f(v) = 1. We regard ∆σ as a topological space whose topology

is induced from that of the real vector space Map(V (σ),R). If τ is a face of σ,
we regard the space ∆τ as the closed subspace of ∆σ which consists of the maps
V (σ) → R≥0 whose support is contained in the subset V (τ) ⊂ V (σ). We let |Y•|
denote the colimit lim−→σ∈I(Y•)

∆σ in the category of topological spaces and call it

the geometric realization of Y•. It follows from the definition that the geometric
realization |Y•| has a canonical structure of CW-complex.

3.2. Analytic theory of Drinfeld modular varieties.

3.2.1. Notations. We use the notation introduced in Sections 2.1.1 and 2.4.1. We
let V ∗ denote the dual of V ; the elements are regarded as column vectors in F . We
write V ∗

∞ = V ∗ ⊗F F∞ and OV ∗
∞

= O⊕
∞ ⊂ V ∗

∞. Let $∞ ∈ O∞ be a uniformizer.
For a scheme Y of finite type over SpecF∞, we denote by Y an the rigid analytic

space over F∞ associated to Y . We will often identify the underlying set of Y an

with the set of closed points of Y .

3.2.2. Drinfeld symmetric space ([Dr], [Ge]). Let Ṽ∞ denote the locally free sheaf
of rank d on SpecF∞ associated to the F∞ vector space V∞. Let V∗

∞ (resp. P(V ∗
∞))

denote the vector bundle (resp. the projective space bundle) over SpecF∞ asso-

ciated to the locally free sheaf Ṽ∞ over SpecF∞. Let V∗,an
∞ , P(V ∗

∞)an denote the
rigid analytic space over F∞ associated to the schemes V∗

∞, P(V ∗
∞) over SpecF∞,

respectively. The canonical right action of the group GLd(F∞) on V∞ induces a
canonical left action of GLd(F∞) on V∗,an

∞ and P(V ∗
∞)an. It follows from the defi-

nition of V∗
∞ that for any F∞-algebra R, the F∞-vector space of R-valued points

V∗
∞(R) of V∗

∞ is canonically isomorphic to V ∗
∞ ⊗F∞ R.

Let H0 denote the set of subbundles of V∗
∞ of rank d − 1. Let X̃ denote the

subset

X̃ = V∗,an
∞ \ (∪H0∈H0H

an
0 ) ⊂ V∗,an

∞

of the underlying set of V∗,an
∞ . We let X = P(V ∗

∞)an \ (∪H∈HH
an) where H denotes

the set of F∞-rational hyperplanes in P(V ∗
∞). Let 0 = SpecF∞ ⊂ V∗

∞ denote image
of the zero section. The analytification (V∗

∞ \ 0)an → P(V ∗
∞)an of the canonical

morphism V∗
∞ \ 0→ P(V ∗

∞) gives a canonical map X̃→ X of sets.
In [Dr, Proposition 6.1], Drinfeld shows that the set X is an admissible open

subset of P(V ∗
∞)an, and hence X has a canonical structure of a rigid analytic space

over F∞. It follows from the same argument as in [Sc-St, p.51, (C)] that the set X̃
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is an admissible open subset of V∗,an
∞ . Hence X̃ has a canonical structure of a rigid

analytic space over F∞. The canonical map X̃ → X in the last paragraph gives a
morphism of rigid analytic spaces over F∞. An alternative construction of the rigid

analytic space X̃ is given by defining X̃ to be the fiber product X ×P(V ∗
∞)an (V∗

∞ \
{0})an in the category of rigid analytic spaces over F∞.

3.2.3. Bruhat-Tits building ([Br-Ti]). In this section, we recall the definition of the
Bruhat-Tits building of PGLd over F∞, which is a simplicial complex.

An O∞-lattice in V∞ is a free O∞-submodule of V∞ of rank d. We denote by
LatO∞(V∞) the set of O∞-lattices in V∞. We regard the set LatO∞(V∞) as a
partially ordered set whose elements are ordered by the inclusions of O∞-lattices.
Two O∞-lattices L, L′ of V∞ are called homothetic if L = $j

∞L
′ for some j ∈ Z.

Let LatO∞(V∞) denote the set of homothety classes of O∞-lattices V∞. We denote
by cl the canonical surjection cl : LatO∞(V∞) → LatO∞(V∞). We say that a
subset S of LatO∞(V∞) is totally ordered if cl−1(S) is a totally ordered subset
of LatO∞(V∞). The pair (LatO∞(V∞),∆) of the set LatO∞(V∞) and the set ∆
of totally ordered finite subsets of LatO∞(V∞) forms a strict simplicial complex.
The Bruhat-Tits building of PGLd over F∞ is a simplicial complex BT • which is
isomorphic to the simplicial complex associated to this strict simplicial complex.
In the next paragraphs we explicitly describe the simplicial complex BT •.

For an integer i ≥ 0, let B̃T i be the set of sequences (Lj)j∈Z of O∞-lattices in
V∞ indexed by j ∈ Z such that Lj % Lj+1 and $∞Lj = Lj+i+1 hold for all j ∈ Z.
In particular, if (Lj)j∈Z is an element in B̃T 0, then Lj = $j

∞L0 for all j ∈ Z. We

identify the set B̃T 0 with the set LatO∞(V∞) by associating the O∞-lattice L0 to

an element (Lj)j∈Z in BT 0. We say that two elements (Lj)j∈Z and (L′
j)j∈Z in B̃T i

are equivalent if there exists an integer ` satisfying L′
j = Lj+` for all j ∈ Z. We

denote by BT i the set of the equivalence classes in B̃T i. For i = 0, the identification

B̃T 0
∼= LatO∞(V∞) gives an identification BT 0

∼= LatO∞(V∞).
Let σ ∈ BT i and take a representative (Lj)j∈Z of σ. For j ∈ Z, let us consider the

class cl(Lj) in LatO∞(V∞). Since $∞Lj = Lj+i+1, we have cl(Lj) = cl(Lj+i+1).
Since Lj % Lk % $∞Lj for 0 ≤ j < k ≤ i, the elements cl(L0), . . . , cl(Li) ∈
LatO∞(V∞) are distinct. Hence the subset V (σ) = {cl(Lj) | j ∈ Z} ⊂ BT 0 has
cardinality i + 1 and does not depend on the choice of (Lj)j∈Z. It is easy to

check that the map from BT i to the set of finite subsets of LatO∞(V∞) which
sends σ ∈ BT i to V (σ) is injective and that the set {V (σ) | σ ∈ BT i} is equal
to the set of totally ordered subsets of LatO∞(V∞) with cardinality i + 1. In
particular, for any j ∈ {0, . . . , i} and for any subset V ′ ⊂ V (σ) of cardinality
j + 1, there exists a unique element in BT j , which we denote by σ ×V (σ) V

′, such
that V (σ ×V (σ) V

′) is equal to V ′. Thus the collection BT • =
∐
i≥0 BT i together

with the data V (σ) and σ×V (σ) V
′ forms a simplicial complex which is canonically

isomorphic to the simplicial complex associated to the strict simplicial complex
(LatO∞(V∞),∆) which we introduced in the first paragraph of Section 3.2.3. We
call the simplicial complex BT • the Bruhat-Tits building of PGLd over F∞.

The simplicial complex is BT • is of dimension at most d− 1, by which we mean

that BT i is an empty set for i > d − 1. It follows from the fact that B̃T i is an
empty set for i > d − 1, which we can check as follows. Let i > d − 1 and assume

that there exists an element (Lj)j∈Z in B̃T i. Then for j = 0, . . . , i+1, the quotient
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Lj/Li+1 is a subspace of the d-dimensional (O∞/$∞O∞)-vector space L0/Li+1 =
L0/$∞L0. These subspaces must satisfy L0/Li+1 % L1/Li+1 % · · · % Li+1/Li+1.
It is impossible since i+ 1 > d.

We let BT j,∗ denote the quotient B̃T j/F×
∞. This set is identified with the set

of pairs (σ, v) with σ ∈ BT j and v ∈ BT 0 a vertex of σ, which we call a pointed

j-simplex. Here the element (Li)i∈Z modF×
∞ of B̃T j/F×

∞ corresponds to the pair
((Li)i∈Z, L0) via this identification.

We identify the set B̃T 0 with the coset GLd(F∞)/GLd(O∞) by associating
to an element g ∈ GLd(F∞)/GLd(O∞) the lattice OV∞g

−1. Let I = {(aij) ∈
GLd(O∞) | aij mod$∞ = 0 if i > j} be the Iwahori subgroup. Similarly, we

identify the set B̃T d−1 with the coset GLd(F∞)/I by associating to an element
g ∈ GLd(F∞)/I the chain of lattices (Li)i∈Z characterized by Li = OV∞Πig

−1 for
i = 0, . . . , d. Here, for i = 0, . . . , d, we let Πi denote the diagonal d × d matrix
Πi = diag($∞, . . . , $∞, 1, . . . , 1) with $∞ appearing i times and 1 appearing d− i
times.

The reader is referred to Section 7.2.1 where we recall the relationship between
the building BT • and the Drinfeld symmetric space X.

3.2.4. We give an explicit description of a rigid analytic subspace ŨL ⊂ X̃ associ-

ated to a lattice L ∈ B̃T 0 in this section. A similar description for rigid analytic
subspaces Uσ ⊂ X associated to a simplex σ ∈ BT • is known and the details are
recalled in Section 7.2.1.

The underlying set of V∗,an
∞ is canonically isomorphic to the set of closed points

of V∗
∞. For x ∈ V∗

∞, let F∞(x) denote the residue field at x. Since F∞(x) is
a finite extension of F∞, the absolute value | |∞ on F∞ is uniquely extended to
that on F∞(x), which we denote by the same symbol | |∞. We let OF∞(x) denote
the valuation ring OF∞(x) = {a ∈ F∞(x) | |a|∞ ≤ 1} of F∞(x) with respect to the
absolute value | |∞. We denote by κ∞ the residue field of O∞ and let κ∞(x) denote
the residue field of OF∞(x). Since the closed point in V∗

∞ corresponding to x is a
F∞(x)-rational point, it gives an element τx in V ∗

∞⊗F∞F∞(x) via the isomorphism
mentioned in the first paragraph of Section 3.2.2.

We let ŨOV∞
denote the set of elements x ∈ V∗,an

∞ such that τx ∈ OV ∗
∞
⊗O∞

OF∞(x) and that τx⊗1 ∈ (OV ∗
∞
⊗O∞OF∞(x))⊗OF∞(x)

κ∞(x) = (OV ∗
∞
⊗O∞κ∞)⊗κ∞

κ∞(x) does not belong to H ⊗κ∞ κ∞(x) for any proper κ∞-vector subspace H $
OV ∗

∞
⊗O∞ κ∞. It is easy to check that the subset ŨOV∞

of V∗,an
∞ is contained in the

subset X̃ ⊂ V∗,an
∞ . Let L ∈ B̃T 0 be an O∞-lattice in V∞. Take g ∈ GLd(F∞) such

that L = OV∞g
−1. We set ŨL = gŨOV∞

. In other words, ŨL = {x ∈ V∗,an
∞ |vτx ∈

O×
F∞(x) for allv ∈ L \$∞L}.
It is easy to check that the subset ŨL is an open affinoid subset of V∗,an

∞ which is

contained in X̃. The coordinate O∞-algebra B̃oL of the formal model of the affinoid

ŨL has the following explicit description. Let Sym•L =
⊕

n≥0 Sym
n
O∞

L denote

the symmetric algebra on L over O∞. Let SL ⊂ L \ $∞L be a complete set of
representatives of the set (L/$∞L) \ {0} with respect to the surjection

L \$∞L� (L/$∞L) \ {0}.

Then B̃oL is isomorphic to the$∞-adic completion of theO∞-subalgebra Sym•L[S−1
L ]

of the field of fractions Frac Sym•L of Sym•L generated by Sym•L and the set
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{b−1 | b ∈ SL}. The O∞-algebra Sym•L[S−1
L ] is regular and excellent ([EGAIV,

7.8, p.214]) since it is a localization of the polynomial algebra Sym•L over O∞.

It follows that the O∞-algebra B̃oL is regular. Since $∞ is a prime element in

Sym•L[S−1
L ], the ideal $∞B̃

o
L of B̃oL generated by $∞ is a prime ideal of height

one. Since B̃oL is regular, its localization at $∞B̃
o
L is a discrete valuation ring.

Hence the prime ideal $∞B̃
o
L defines via the homomorphism η a valuation vL on

the field of fractions of B̃oL.

3.2.5. The order of rigid analytic functions on X̃ at lattices. We define a homomor-
phism

ordL : Γ(X̃,O×
X̃
)→ Z

of abelian groups for L ∈ B̃T 0, to be the composite

Γ(X̃,O×
X̃
)→ Γ(UL,O×

UL
)→ Z

where the first map is the restriction and the second map is the map given by the

valuation vL. Let h ∈ Γ(X̃,O×
X̃
) be an invertible rigid analytic function. Then by

the definition of the homomorphism ordL we have ordLh = infx∈UL logq∞ |h(x)|∞.

Given a lattice L ∈ B̃T 0 and a row vector a ∈ V∞, we let ordL(a) = sup{n ∈
Z |a ∈ $n

∞L}, and |a|L = q
−ordL(a)
∞ . Note that |a|L = 1 if and only if a ∈ L\$∞L.

The abuse of notation is justified by the following proposition.

Proposition 3.1. Given a lattice L ∈ B̃T 0 and a row vector a ∈ V∞, let fa be the

rigid analytic function on X̃ characterized by fa(x) = aτx for every x ∈ X̃. Then
we have ordLfa = ordL(a).

Proof. We may without loss of generality that L = OV∞ . Hence, if a = (a1, . . . , ad)
with ai ∈ F∞(1 ≤ i ≤ d), then ordLfa = inf1≤i≤d (− logq∞ |ai|∞). The claim
follows. �

3.2.6. Convention. Given an element g ∈ GLd(A), we always denote by g∞ the
component at infinity, and g∞ the finite part. Given a function f on GLd(A), we
write f(g) = f(g∞, g

∞) for g = (g∞, g
∞) ∈ GLd(A).

An A-lattice in V is a projective A-submodule in V of rank d. Recall that we

defined an Â-lattice L in V∞ to be a free Â-module of rank d contained in V∞

such that the canonical map L ⊗Â A∞ → V∞ is an isomorphism. Let LatÂ(V
∞)

(resp. LatA(V )) denote the set of Â-lattices in V∞ (resp. A-lattices in V ). There

are canonical isomorphisms GLd(A∞)/GLd(Â) ∼= LatÂ(V
∞) ∼= LatA(V ), where

g∞ ∈ GLd(A∞)/GLd(Â) is sent to OV∞g∞−1 in LatÂ(V
∞), and to OV∞g∞−1 ∩V

in LatA(V ).

Given Λ ∈ LatA(V ), let Λ̂ = Λ⊗A Â ∈ LatÂ(V
∞) be the corresponding Â-lattice

in V∞. If g∞ ∈ GLd(A∞) is given, we denote by Λg∞−1 ∈ LatA(V ) the A-lattice

corresponding to the Â-lattice Λ̂g∞−1 via the isomorphism above. Suppose we are
given an element b ∈ V/Λ. We denote by bg∞−1 ∈ V/(Λg∞−1) the image of
b ∈ V/Λ under the sequence of isomorphisms

V/Λ ∼= V∞/Λ̂ ∼= V∞/Λ̂g∞−1 ∼= V/Λg∞−1

where the first and third maps are those induced by the canonical inclusion V ⊂ V∞

and the second is the map induced by the multiplication-by-g∞−1 on V∞.
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3.2.7. Uniformization ([Dr]). Let L1 ⊂ L2 ⊂ V∞ be Â-lattices. Let K∞
L1,L2

⊂
GLd(A∞) be the compact open subgroup consisting of those elements g∞ such that
Lig

∞−1 = Li (i = 1, 2) and the induced action on L2/L1 is the identity. It is an

open compact subgroup of GLd(Â). We have a canonical isomorphism ([Dr], see
[Bl-St] for a different construction)

(3.1) (Md
L2/L1

×UL2/L1
SpecF∞)an ∼= GLd(F )\(X×GLd(A∞)/K∞

L1,L2
)

of rigid analytic spaces over SpecF∞. Here in the right hand side, X×GLd(A∞)/K∞
L1,L2

denotes the disjoint union of copies of X indexed by the set GLd(A∞)/K∞
L1,L2

, and

GLd(F )\(X×GLd(A∞)/K∞
L1,L2

) denotes its quotient under the diagonal action of

GLd(F ).
We define a map

ordL1,L2 : O(Md
L2/L1

)× → Map(GLd(F )\(B̃T 0)×GLd(A∞)/K∞
L1,L2

,C)

as the composite

O(Md
L2/L1

)×
(1)−−→ O((Md

L2/L1
×UL2/L1

SpecF∞)an)×

= O(GLd(F )\(X×GLd(A∞)/K∞
L1,L2

))×

(2)−−→ Map(GLd(F )\(B̃T 0)×GLd(A∞)/K∞
L1,L2

,C)

where the map (1) is the analytification, and the map (2) is the map induced by

the functions ordL for L ∈ B̃T 0, as defined in Section 3.2.5, composed with the

pullback by the canonical quotient map X̃→ X.
Let I, J $ A be two nonzero ideals with J ⊂ I. We remark that if we let

L2 = Â⊕d and L1 = (IÂ)⊕(d−1)⊕ (JÂ), we recover K∞
I,J = K∞

L1,L2
of Section 2.4.7.

3.3. Analytic descriptions of theta functions and Siegel units.

3.3.1. Let x ∈ X̃ and let τx ∈ V ∗
∞ ⊗F∞ F∞(x) be as in Section 3.2.4. Let Λ ⊂ V

be an A-lattice. We let Λx = {λτx |λ ∈ Λ} ⊂ F∞(x). We define σΛx(z) ∈
Γ(Gan

a,F∞(x),OGan
a,F∞(x)

) to be the rigid analytic function

σΛx(z) = z
∏

λ∈Λx\{0}

(
1− z

λ

)
where z is the coordinate function of Ga,F∞(x). The function σΛx induces an isomor-

phism of rigid analytic groups Gan
a,F∞(x)/Λx

∼=→ Gan
a,F∞(x). (We refer to [De-Hu, p.46]

for a similar statement over C∞ instead of F∞(x). Their argument readily applies
to our case.) On the additive group Ga,F∞(x) over F∞(x), there exists a unique
structure ϕΛx : A→ End(Ga,F∞(x)) of Drinfeld module of rank d over F∞(x) such
that the diagram

Gan
a,F∞(x)

a−−−−→ Gan
a,F∞(x)

σΛx

y σΛx

y
Gan
a,F∞(x)

ϕΛx (a)
an

−−−−−−→ Gan
a,F∞(x)

commutes ([De-Hu, (2.1) Theorem, p.46]).

Let θ
(qd∞−1)2,an

(Ga,F∞(x),ϕΛx )/F∞(x) ∈ Γ(Gan
a,F∞(x) \ {0},O

×
Gan

a,F∞(x)
\{0}) be the analytifi-

cation of the function fq
d
∞−1 defined in Section 2.2.2 for the Drinfeld module



ZETA ELEMENTS IN THE K-THEORY OF DRINFELD MODULAR VARIETIES 15

(Ga,F∞(x), ϕΛx) of rank d over F∞(x). Let θ
(qd∞−1)2,an
x ∈ Γ(Gan

a,F∞(x)\Λx,O
×
Gan

a,F∞(x)
\Λx

)

denote the composite of the function θ
(qd∞−1)2,an

(Ga,F∞(x),ϕΛx )/F∞(x) and the restriction of the

function σΛx to Gan
a,F∞(x) \ Λx. It follows from the formula (2.2) that the function

θ
(qd∞−1)2,an
x has the following description. For any a ∈ A \ {0}, we have

(3.2)

(
θ
(qd∞−1)2,an
x (z)

)(|a|d∞−1)/(qd∞−1)

=

(
σΛx (z)

|a|d∞−1

(Na(σΛx ))(z)

)qd∞−1

=

(
σΛx (z)

|a|d∞−1∏
a∈Λ/a σΛx( z

a+ aτx
a )

)qd∞−1

.

Let b ∈ (V/Λ) \ {0}. Let L1 = Λ⊗A Â ⊂ V∞ and L2 be the Â-lattice generated

by L1 and b̃ ⊗ 1 ∈ V ⊗A Â ∼= V∞ where b̃ ∈ V is a lift of b ∈ V/Λ. We intro-
duce an element ganΛ,b ∈ O(X)× ⊗Z Q and its adelic version gAΛ,b ∈ O(GLd(F )\(X×

GLd(A∞)/K∞
L1,L2

))×⊗ZQ. We let g
(qd∞−1)2

Λ,b (x) = θ
(qd∞−1)2,an
x (bτx) ∈ F∞(x) for x ∈

X̃. It follows from the formula (3.2) that for any a ∈ A\{0}, there exists an invertible

rigid analytic function ganΛ,b,a on X satisfying ganΛ,b,a(x) = (g
(qd∞−1)2

Λ,b (x))(|a|
d
∞−1)/(qd∞−1)

for every x ∈ X̃, where x denotes the image of x under the canonical map X̃→ X.
Since the rigid analytic space X is reduced, such a function ganΛ,b,a is unique. We

put ganΛ,b = ganΛ,b,a ⊗ 1/((|a|d∞ − 1)(qd∞ − 1)) ∈ O(X)× ⊗Z Q. It follows from the
uniqueness of ganΛ,b,a that the element ganΛ,b does not depend on the choice of a.

For a ∈ A \ {0}, we define gAΛ,b,a ∈ O(X × GLd(A∞)/K∞
L1,L2

)× by setting

gAΛ,b,a(x, g
∞) = ganΛg∞−1,bg∞−1,a(x). It follows from the formula (3.2) that gAΛ,b,a(γx, γg

∞) =

gAΛ,b,a(x, g
∞) for any γ ∈ GLd(F ). Hence gAΛ,b,a is an element in (O(X×GLd(A∞)/K∞

L1,L2
)×)GLd(F ) =

O(GLd(F )\X×GLd(A∞)/K∞
L1,L2

)×. We put gAΛ,b = gAΛ,b,a⊗1/((|a|d∞−1)(qd∞−1)) ∈
O(GLd(F )\X×GLd(A∞)/K∞

L1,L2
)× ⊗Z Q. It follows from the uniqueness of ganΛ,b,a

that the element gAΛ,b does not depend on the choice of a.

3.3.2. For x ∈ X̃ and for g∞ ∈ GLd(A∞), let (Ex,g∞ , ϕx,g∞) be the Drinfeld module
of rank d over F∞(x) with the level (L2/L1)-structure ψx,g∞ : (L2/L1)SpecF∞(x) →
Ex,g∞ corresponding to the image of the point (x, gK∞

L1,L2
) under the composite

X̃×GLd(A∞)/K∞
L1,L2

→ GLd(F )\(X×GLd(A∞)/K∞
L1,L2

)
∼=−→ (Md

L2/L1
×UL2/L1

SpecF∞)an

where the last map is the canonical isomorphism (3.1). It follows from the con-
struction of the isomorphism (3.1) given in [Dr, Proposition 6.6, p.583] that there
is an isomorphism α : (Ex,g∞ , ϕx,g∞) ∼= (Ga,F∞(x), ϕ(Λg∞−1)x) of Drinfeld modules

over F∞(x) such that the analytification of the composite (L2/L1)SpecF∞(x)

ψx,g∞−−−−→
Ex,g∞

α−→ Ga,F∞(x) is equal to the composite

L2/L1
(1)−−→ L2g

∞−1/L1g
∞−1 (2)−−→ (Ab̃+ Λ)g∞−1/Λg∞−1 (3)−−→ Gan

a,F∞(x)

where the map (1) is the isomorphism supplied by the left multiplication by g∞−1,

the map (2) is the inverse of the isomorphism (Ab̃+Λ)g∞−1/Λg∞−1
∼=−→ L2g

∞−1/L1g
∞−1

given by the inclusions (Ab̃ + Λ)g∞−1 ⊂ L2g
∞−1 and Λg∞−1 ⊂ L1g

∞−1, and
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the map (3) is the morphism which sends the class of λ ∈ (Ab̃ + Λ)g∞−1 to
σ(Λg∞−1)x(λτx).

Recall that we defined in Section 2.4.5 a Siegel unit gL2/L1,b ∈ O(Md
L2/L1

)×⊗ZQ
where b is the class of b̃⊗1 in L2/L1. It follows from the isomorphism in the previous
paragraph and the construction of gAΛ,b that the element in O((Md

L2/L1
×UL2/L1

SpecF∞)an)× ⊗Z Q corresponding to gAΛ,b via the canonical isomorphism (3.1),
coincides with the analytification of gL2/L1,b.

3.4. Eisenstein series.

We define Eisenstein series EΛ,b in this section. We also define its adelic version
EΛ,b.

3.4.1. We define C((q−s∞ ))-valued functions EΛ,b on the set B̃T 0 of O∞-lattices in
V∞. (Here, q−s∞ is regarded as an indeterminate.) Given an A-lattice Λ ⊂ V and
b ∈ (V/Λ) \ {0}, we let

EΛ,b(L) =
∑

x∈V,xmodΛ=b

|x|−sL .

The sum is convergent in the (q−s∞ )-adic topology.
The following lemma is checked easily.

Lemma 3.2. Let Λ ⊃ Λ′ be two A-lattices in V , and b ∈ (V/Λ) \ {0}. Then

(1) EΛ,b =
∑

b′∈V/Λ′,b′modΛ=bEΛ′,b′ ,

(2) If a ∈ A \ {0}, then EaΛ,ab = EΛ,b|a|−s∞ .

�

3.4.2. Given an A-lattice Λ ⊂ V and b ∈ (V/Λ) \ {0}, we let

EΛ,b(g∞, g
∞) = EΛg∞−1,bg∞−1(OV∞g

−1
∞ ),

for (g∞, g
∞) ∈ GLd(A).

We note that EΛ,b is a C((q−s∞ ))-valued function

EΛ,b : GLd(F )\GLd(A)/(GLd(O∞)×K∞
L1,L2

)→ C((q−s∞ ))

on the double coset space GLd(F )\GLd(A)/(GLd(O∞) × K∞
L1,L2

) where the Â-
lattices L1 and L2 are as in Section 3.3.2 and the open compact subgroup K∞

L1,L2

is as in Section 3.2.7.

3.4.3. We write VA = V ⊗F A = V∞ × V∞. Let Λ ⊂ V be an A-lattice and
b ∈ (V/Λ) \ {0}. We put Λ̂ = Λ ⊗A Â ⊂ V∞. Let us define a C((q−s∞ ))-valued
function φΛ,b on VA. For x = (x∞,x

∞) ∈ VA, where x∞ (resp. x∞) denotes the
component at ∞ (resp. the finite part) of x, we put

φΛ,b(x) = φ∞(x∞)φ∞Λ,b(x
∞)

where φ∞Λ,b is defined to be the characteristic function on b̃ ⊗ 1 + Λ̂ ⊂ V∞ (see

Section 3.3.2 for notation), and φ∞(x∞) = |x∞|−sOV∞
.

Lemma 3.3. If g ∈ GLd(A), then EΛ,b(g) =
∑

x∈V φΛ,b(xg).

Proof. This is immediate from the definition of EΛ,b and of φΛ,b. �
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3.5. Limit formula.

We give a short proof of the function field analogue of the Kronecker limit for-
mula. This was already proved in [Gro-Ro] for the rank one case and in [Ko] for
an arbitrary rank, but here we give another proof, mainly to fix some notation
concerning adeles.

Proposition 3.4. Let Λ ⊂ V be an A-lattice, b ∈ (V/Λ) \ {0}, and (g∞, g
∞) ∈

GLd(A). We let L1 = Λ ⊗A Â ⊂ V∞ and L2 be the Â-lattice in V∞ generated by

L1 and b̃ ⊗ 1 ∈ (V/Λ) ⊗A Â where b̃ is a lift of b. Then (1 − qd−s∞ )EΛ,b(g∞, g
∞)

is a Laurent polynomial in q−s∞ which is divisible by 1− q−s∞ . Moreover we have

ordL1,L2g
A
Λ,b =

1

1− q−s∞
EΛ,b

∣∣∣∣
s=0

.

Proof. We prove the non-adelic version. Let L be an O∞-lattice in V∞. Using
Proposition 3.1 and the analytic description of theta functions given in Section 3.3.1,
we have

ordLg
an
Λ,b

=
1

|a|d∞ − 1
×

[
|a|d∞

ordL(b) +
∑

λ∈Λ\{0}

(ordL(λ− b)− ordL(λ))


−
∑

a∈Λ/a

ordL

(
a+ b

a

)
+

∑
λ∈Λ\{0}

(
ordL

(
λ− a+ b

a

)
− ordL(λ)

)
]

for any a ∈ A \ {0}. We note that the summands ordL(λ − b) − ordL(λ) and
ordL(λ− a+b

a )− ordL(λ) are zero for almost all λ ∈ Λ \ {0}.
Let E∗

Λ(L) =
∑
λ∈Λ\{0} |λ|

−s
L . The expression above equals

1

|a|d∞ − 1

1

logq∞

∂

∂s

{
|a|d∞(EΛ,b(L)− E∗

Λ(L))

−
∑

a∈Λ/a

(EΛ,(a+b)/a(L)− E∗
Λ(L))


∣∣∣∣∣∣
s=0

.

The terms in E∗
Λ cancel and we obtain

1

|a|d∞ − 1

1

logq∞

∂

∂s

|a|d∞EΛ,b(L)−
∑

a∈Λ/a

EΛ,(a+b)/a(L)


∣∣∣∣∣∣
s=0

.

From Lemma 3.2, we have∑
a∈Λ/a

EΛ,(a+b)/a(L) = Ea−1Λ,b/a(L) = EΛ,b(L)|a|s∞.

Since EΛ,b(L) − E∗
Λ(L) and EΛ,(a+b)/a(L) − E∗

Λ(L) are finite sums, we see that

(1 − qd−s∞ )EΛ,b(L) is a Laurent polynomial in q−s∞ divisible by 1 − q−s∞ and the
expression above is equal to

1

1− qd∞

[
qd∞ − qs∞
1− qs∞

EΛ,b(L)

]
s=0

.
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The proposition now follows from the definition of adelic Eisenstein series EΛ,b

and the (adelic) Siegel unit gAΛ,b. �

4. Automorphic forms

We recall the definition of automorphic forms and Hecke operators. The defini-
tion of the local L-factor is given in terms of Hecke eigenvalues. For a new vector
(see Condition (3) in Section 4.2.2), the definition agrees with the (usual) definition
by Godement and Jacquet (Lemma 4.1).

4.1. Automorphic forms.

4.1.1. Automorphic forms. Let R be a commutative ring. By an R-valued automor-
phic form for the general linear group GLd,F over F , we mean an R-valued function
on GLd(F )\GLd(A) which is invariant under right translation by an open compact
subgroup of GLd(A). The set of R-valued automorphic forms, denoted AR, is an
R-module on which the group GLd(A) acts by right translation, that is, for an auto-
morphic form f , an element x ∈ GLd(F )\GLd(A), and an element g ∈ GLd(A), we
put (gf)(x) = f(xg). For an R-valued character χ∞ of the∞-component Z(F∞) of
Z(A), let AR(χ∞) denote the R-module of R-valued automorphic forms on which
Z(F∞) acts via χ∞. For two nonzero ideals I, J of A with J ⊂ I, let AR(I, J, χ∞)
denote the K∞

I,J -invariant part of AR(χ∞) where K∞
I,J is as in Section 2.4.7.

In this paper we will deal with several subspaces of AC whose inclusive relations
are expressed in the following diagram

AC ⊃ A1 ⊃ ASt

∪ ∪ ∪
Ao

C ⊃ Ao
1 ⊃ Ao

St.

Among the five subspaces (other than AC itself) in the diagram above, the three
subspaces Ao

C, A1 and Ao
1 are stable under the action of GLd(A) and will be intro-

duced in the next paragraph. The remaining two subspaces ASt and Ao
St are stable

under the action of the subgroup GLd(A∞) ⊂ GLd(A) and will be introduced in
Section 9.1.

We let Ao
C ⊂ AC denote the space of cusp forms. We put A1 = AC(1), where 1

denotes the trivial character, and Ao
1 = A1 ∩Ao

C. We let Ao
C(χ∞) = Ao

C ∩AC(χ∞)
and Ao

C(I, J, χ∞) = Ao
C ∩ AC(I, J, χ∞) where χ∞, I, J are as above.

4.1.2. For each place ℘ of F , we let F℘ denote the completion of F at ℘ and O℘
denote the ring of integers of F℘. We fix a Haar measure dg℘ of GLd(F℘) such that∏
℘ dg℘ defines a Haar measure of GLd(A) with vol(GLd(

∏
℘O℘)) = 1.

Let R = C((q−s∞ )). We define a C-bilinear map

〈 , 〉 : Ao
1 ×AR(| |−sd∞ )→ R,

where | |−sd∞ is regarded as a character F×
∞ → R×, by setting

〈f1, f2〉 =
∫
Z(F∞)GLd(F )\GLd(A)

f1(g)f2(g)|det g|sdg.

Here the bracket | | denotes the idelic norm, that is, for (a℘) ∈ A×, we let |(a℘)| =∏
℘ |a℘|℘ with | |℘ the absolute value at ℘. We note that the above integral is

convergent since the support of f1 is compact modulo center by Harder’s result
([Ha]).
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4.2. L-functions.

4.2.1. Hecke operators. Let J ⊂ I be nonzero ideals of A, and let ℘ be a prime
ideal. We put

e℘ =

 0 if ℘ | I,
d− 1 if ℘ - I, ℘ | J,
d if ℘ - J.

We write diag(a1, . . . , ad) for the diagonal (d× d)-matrix whose diagonal entries
are a1, . . . , ad. Let $℘ denote the element in A× whose component at ℘ is a (fixed)
uniformizer and whose components at other places are 1.

We define the Hecke operators T℘,r and the dual Hecke operators T ∗
℘,r for the

open compact subgroup K∞
I,J ⊂ GLd(A∞) where r = 0, . . . , e℘. We define T℘,r

(resp. T ∗
℘,r) to be the operator given by the double coset

K∞
I,Jdiag($℘, . . . , $℘, 1, . . . , 1)K∞

I,J

(resp. K∞
I,Jdiag($

−1
℘ , . . . , $−1

℘ , 1, . . . , 1)K∞
I,J)

where $℘ (resp. $−1
℘ ) appears r times. In particular, the operators T℘,0 and T ∗

℘,0

are the identity.

4.2.2. Let f ∈ AC be a C-valued automorphic form. Suppose that f satisfies the
following conditions for some nonzero ideals J ⊂ I ( A of A.

(1) The open compact subgroup K∞
I,J of GLd(A∞) acts trivially on f .

(2) Let ℘ be a nonzero prime ideal of A, and define the integer e℘ as in Sec-
tion 4.2.1. Then f is an eigenform with respect to the operator T℘,r for all
r ≤ e℘.

Let a℘,r denote the eigenvalue of the operator T℘,r on f . We define the L-function
LI,J(f, s) of f to be the infinite product

LI,J(f, s) =
∏
℘

[
e℘∑
r=0

a℘,rq
r(r−1)

2 −r(s+ d−1
2 )

℘

]−1

in C((q−s)) where ℘ runs through the nonzero prime ideals of A. The infinite
product LI,J(f, s) is convergent for the (q−s)-adic topology. We also consider the
following condition.

(3) There exists a cuspidal automorphic representation π = ⊗′
vπv ⊂ AC such

that f is of the form (⊗v-I∞fv)⊗ fI∞ ∈ π, where fv ∈ πv is a new vector
(“vecteur essentiel” in [Ja-Pi-Sh, p.211,(4.4)]) for each v - I∞, and fI∞ ∈
π∞ ⊗

⊗
v|I πv.

We note that (3) implies (2). We will need the following lemma.

Lemma 4.1. Let the notation be as above. Suppose Condition (3) is satisfied. Let
℘ be a prime ideal such that e℘ ≥ d− 1. Then

L(π℘, s) =

[
e℘∑
r=0

a℘,rq
r(r−1)

2 −r(s+ d−1
2 )

℘

]−1

where the left hand side is the local L-factor of Godement and Jacquet (see [Go-Ja]).

Proof. This is well known in the case e℘ = d (see, for example, [Cog, Lecture 7]).
The case e℘ ≥ d− 1 is [Ko-Ya4, Theorem 4.2]. �
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4.3. Projection to cusp forms.

The pairing introduced below appears in Theorem 6.3. The map P o given in
this section is used in Theorem 9.1.

4.3.1. Let A1 = AC(1) ⊂ Map(GLd(F )F
×
∞\GLd(A),C) denote the space of F×

∞-
invariant C-valued automorphic forms, as defined in Section 4.1.1. Let Ao

1 ⊂ A1

denote the subspace of F×
∞-invariant cusp forms. We consider the map 〈 , 〉 :

Ao
1 ×A1 → C defined by the integral

〈f1, f2〉 =
∫
Z(F∞)GLd(F )\GLd(A)

f1(g)f2(g)dg

where the bar denotes the complex conjugate.

4.3.2. For any open compact subgroup K ⊂ GLd(A), the space (Ao
1)

K is finite
dimensional. (This follows from Harder’s result [Ha, COROLLARY 1.2.3, p.256].)
Since 〈f, f〉 > 0 for any nonzero f ∈ Ao

1, the restriction of 〈, 〉 to (Ao
1)

K × (Ao
1)

K is
non-degenerate. Hence for any f ∈ AK

1 , there exists a unique fo ∈ (Ao
1)

K satisfying
〈f ′, f〉 = 〈f ′, fo〉 for all f ′ ∈ (Ao

1)
K. We claim that the equality 〈f ′′, f〉 = 〈f ′′, fo〉

holds for any f ′′ ∈ Ao
1. By setting f ′′′(g) = 1

vol(K)

∫
K f

′′(gk)dk, we obtain

〈f ′′, f〉 = 〈f ′′′, f〉 = 〈f ′′′, fo〉 = 〈f ′′, fo〉.
Passing to the inductive limit, the map f 7→ fo gives a surjective GLd(A)-equivariant
homomorphism P o : A1 → Ao

1, which is a left inverse to the inclusion Ao
1 ↪→ A1.

5. Borel-Moore homology of the Bruhat-Tits building

In Section 8, we will compute the image of the elements κI,J,γ under the regulator
map. Borel-Moore homology is the dual of cohomology with compact support, and
the Borel-Moore homology groups of top degree of the Bruhat-Tits building is a
synonym of the group of harmonic cochains ([Ga, Definition 3.15]) of top degree.
We describe the Borel-Moore homology of (the top degree of the quotient of) the
Bruhat-Tits building in this section.

5.1. Borel-Moore homology.

Recall from the introduction that there appeared a subspace Ao
St of the space AC

of automorphic forms on GLd(A) in the statement of Theorem 1.2. In Section 5.1,
the setup which leads to the definition of Ao

St is given.
Let Y• be a simplicial complex. As we have remarked at the end of Section 3.1.3,

the geometric realization |Y•| has a canonical structure of CW-complex. The no-
tions of homology and cohomology for |Y•| are well known. If Y• is locally finite (see
Section 5.1.2), we have two more similar notions: cohomology with compact sup-
port and Borel-Moore homology. Borel-Moore homology is the dual of cohomology
with compact support, as cohomology is the dual of homology.

Let us recall these four notions of (co)homologies. Usually the homology groups
of Y• are defined to be the homology groups of a complex C• whose component in
degree i is the free abelian group generated by the i-simplices of Y•. For a precise
definition of the boundary homomorphism of the complex C•, we need to choose
an orientation of each simplex. In this paper we adopt an alternative, equivalent
definition of homology groups which does not require any choice of orientations.
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The latter definition seems a little complicated at first glance, however it will soon
turn out to be a better way for describing the (co)homology of the arithmetic
quotients Bruhat-Tits building, which seems to have no canonical, good choice of
orientations.

5.1.1. We recall in Sections 5.1.1 and 5.1.2 the precise definitions of the (co)homology,
the cohomology with compact support and the Borel-Moore homology of a simpli-
cial complex. When computing (co)homology, one usually fixes an orientation of
each simplex once and for all, but we do not. This results in an apparently different
definition, but they indeed agree with the usual definition. This will be useful when
defining the map ι in Section 5.2.1, since the Bruhat-Tits building is not naturally
oriented.

We introduce the notion of orientation of a simplex. Let Y• be a simplicial
complex and let i ≥ 0 be a non-negative integer. For an i-simplex σ ∈ Yi, we let
T (σ) denote the set of all bijections from the finite set {1, . . . , i+ 1} of cardinality
i + 1 to the set V (σ) of vertices of σ. The symmetric group Si+1 acts on the set
{1, . . . , i+1} from the left and hence on the set T (σ) from the right. Through this
action the set T (σ) is a right Si+1-torsor.

We define the set O(σ) of orientations of σ to be the {±1}-torsor O(σ) =
T (σ) ×Si+1,sgn {±1} which is the push-forward of the Si+1-torsor T (σ) with re-
spect to the signature character sgn : Si+1 → {±1}. When i ≥ 1, the {±1}-torsor
O(σ) is isomorphic, as a set, to the quotient T (σ)/Ai+1 of T (σ) by the action of
the alternating group Ai+1 = Ker sgn ⊂ Si+1. When i = 0, the {±1}-torsor O(σ)
is isomorphic to the product O(σ) = T (σ) × {±1}, on which the group {±1} acts
via its natural action on the second factor.

Let i ≥ 1 and let σ ∈ Yi. For v ∈ V (σ) let σv denote the (i − 1)-simplex
σv = σ ×V (σ) (V (σ) \ {v}). There is a canonical map sv : O(σ)→ O(σv) of {±1}-
torsors defined as follows. Let ν ∈ O(σ) and take a lift ν̃ : {1, . . . , i+1}

∼=−→ V (σ) of
ν in T (σ). Let ι̃v : {1, . . . , i} ↪→ {1, . . . , i + 1} denote the unique order-preserving
injection whose image is equal to {1, . . . , i + 1} \ {ν̃−1(v)}. It follows from the
definition of ι̃v that the composite ν̃ ◦ ι̃v : {1, . . . , i} → V (σ) induces a bijection

ν̃v : {1, . . . , i}
∼=−→ V (σ) \ {v} = V (σv). We regard ν̃v as an element in T (σv). We

define sv : O(σ)→ O(σv) to be the map which sends ν ∈ O(σ) to (−1)ν̃−1(v) times
the class of ν̃v. It is easy to check that the map sv is well-defined.

Let i ≥ 2 and σ ∈ Yi. Let v, v′ ∈ V (σ) with v 6= v′. We have (σv)v′ = (σv′)v. Let
us consider the two composites sv′ ◦ sv : O(σ) → O((σv)v′) and sv ◦ sv′ : O(σ) →
O((σv′)v). It is easy to check that the equality

(5.1) sv′ ◦ sv(ν) = (−1) · sv ◦ sv′(ν)
holds for every ν ∈ O(σ).

5.1.2. We say that a simplicial complex Y• is locally finite if for any i ≥ 0 and
for any τ ∈ Yi, there exist only finitely many σ ∈ Yi+1 such that τ is a face of σ.
We recall the four notions of homology or cohomology for a locally finite simplicial
complex. Let Y• be a simplicial complex (resp. a locally finite simplicial complex).
For an integer i ≥ 0, we let Y ′

i =
∐
σ∈Yi

O(σ) and regard it as a {±1}-set. Given an
abelian group M , we regard the abelian groups

⊕
ν∈Y ′

i
M and

∏
ν∈Y ′

i
M as {±1}-

modules in such a way that the component at ε · ν of ε · (mν) is equal to εmν for
ε ∈ {±1} and for ν ∈ Y ′

i .
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For i ≥ 1, we let ∂̃i,⊕ :
⊕

ν∈Y ′
i
M →

⊕
ν∈Y ′

i−1
M (resp. ∂̃i,

∏ :
∏
ν∈Y ′

i
M →∏

ν∈Y ′
i−1

M) denote the homomorphism of abelian groups which sendsm = (mν)ν∈Y ′
i

to the element ∂̃i(m) whose coordinate at ν′ ∈ O(σ′) ⊂ Y ′
i−1 is equal to

∂̃i(m)ν′ =
∑

(v,σ,ν)

mν(5.2)

where in the sum in the right hand side (v, σ, ν) runs over the triples of v ∈ Y0\V (σ′),
an element σ ∈ Yi, and ν ∈ O(σ) which satisfy V (σ) = V (σ′)q{v} and sv(ν) = ν′.

Note that the sum on the right hand side is a finite sum for ∂̃i,⊕ by definition.

One can see also that the sum is a finite sum in the case of ∂̃i,
∏ using the lo-

cally finiteness of Y•. Each of ∂̃i,⊕ and ∂̃i,
∏ is a homomorphism of {±1}-modules.

Hence it induces a homomorphism ∂i,⊕ : (
⊕

ν∈Y ′
i
M){±1} → (

⊕
ν∈Y ′

i−1
M){±1}

(resp. ∂i,
∏ : (

∏
ν∈Y ′

i
M){±1} → (

∏
ν∈Y ′

i−1
M){±1}) of abelian groups, where the

subscript {±1} means the coinvariants. It follows from the formula (5.1) and the
definition of ∂i,⊕ and ∂i,

∏ that the family of abelian groups ((
⊕

ν∈Y ′
i
M){±1})i≥0

(resp. ((
∏
ν∈Y ′

i
M){±1})i≥0) indexed by the integer i ≥ 0, together with the ho-

momorphisms ∂i,⊕ (resp. ∂i,
∏) for i ≥ 1, forms a complex of abelian groups. The

homology groups of this complex are the homology groups H∗(Y•,M) (resp. the
Borel-Moore homology groups HBM

∗ (Y•,M)) of Y• with coefficients in M .

The family of abelian groups (Map{±1}(Y
′
i ,M))i≥0 (resp. (Mapfin{±1}(Y

′
i ,M))i≥0

where the superscript fin means finite support) of the {±1}-equivariant maps from
Y ′
i to M forms a complex of abelian groups in a similar manner. (One uses the

locally finiteness of Y• for the latter.) The cohomology groups of this complex are
the cohomology groups H∗(Y•,M) (resp. the cohomology groups with compact
support H∗

c (Y•,M)) of Y• with coefficients in M .

5.1.3. It follows from the definition that the following universal coefficients theo-
rem holds. That is, for a simplicial complex Y•, there exist canonical short exact
sequences

0→ Hi(Y•,Z)⊗M → Hi(Y•,M)→ TorZ1 (Hi−1(Y•,Z),M)→ 0

and

0→ Ext1Z(Hi−1(Y•,Z),M)→ Hi(Y•,M)→ HomZ(Hi(Y•,Z),M)→ 0.

for any abelian group M .
Similarly, for a locally finite simplicial complex Y•, we have short exact sequences

0→ Ext1Z(H
i+1
c (Y•,Z),M)→ HBM

i (Y•,M)→ HomZ(H
i
c(Y•,Z),M)→ 0

and

0→ Hi
c(Y•,Z)⊗M → Hi

c(Y•,M)→ TorZ1 (H
i+1
c (Y•,Z),M)→ 0

for any abelian group M . The canonical inclusions(⊕
ν∈Y ′

i
M
)
{±1}

↪→
(∏

ν∈Y ′
i
M
)
{±1}

and

Mapfin{±1}(Y
′
i ,M) ↪→ Map{±1}(Y

′
i ,M)

for i ≥ 0 induce homomorphisms Hi(Y•,M) → HBM
i (Y•,M) and Hi

c(Y•,M) →
Hi(Y•,M) of abelian groups, respectively.
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5.1.4. Let f = (fi)i≥0 : Y• → Z• be a map of simplicial complexes. For each integer
i ≥ 0 and for each abelian groupM , the map f canonically induces homomorphisms
f∗ : Hi(Y•,M) → Hi(Z•,M) and f∗ : Hi(Z•,M) → Hi(Y•,M). We say that the
map f is finite if the subset f−1

i (σ) of Yi is finite for any i ≥ 0 and for any
σ ∈ Zi. If Y• and Z• are locally finite, and if f is finite, then f canonically
induces homomorphisms f∗ : HBM

i (Y•,M) → HBM
i (Z•,M) and f∗ : Hi

c(Z•,M) →
Hi
c(Y•,M).

5.2. Borel-Moore homology of Bruhat-Tits building.

In Section 5.2.1, we construct a homomorphism (5.3) from the Borel-Moore ho-
mology of the building to the space of function on GLd(F∞). We prove in Lemma 5.1
that the homomorphism (5.3) is injective and we determine its image in Corol-
lary 5.5.

Let d ≥ 1 be an integer. Let BT • be the Bruhat-Tits building of PGLd over F∞,

which is introduced in Section 3.2.3. For an integer i ≥ 0, let B̃T i and BT i,∗ be as
in Section 3.2.3.

5.2.1. We define a canonical, GLd(F∞)-equivariant homomorphism

(5.3) HBM
d−1(BT •,C)→ Map(GLd(F∞),C)

of complex vector spaces. Here the group GLd(F∞) acts on the space Map(GLd(F∞),C)
by the right translation. Let us define ι̃ : BT d−1,∗ →

∐
ν∈BT d−1

T (σ) as follows.

Take (σ = (Li)i∈Z, L0) in BT d−1,∗. We define ι̃(σ, L0) to be the bijection in T (σ)
from {1, . . . , d} to V (σ) which sends i to the class of Li−1 in BT 0. We denote by ι
the composite

ι : GLd(F∞)/IF×
∞
∼= BT d−1,∗

ι̃−→
∐

σ∈BT d−1

T (σ)→
∐

σ∈BT d−1

O(σ) = (BT d−1)
′.

Here I is the Iwahori subgroup introduced in Section 3.2.3, and IF×
∞ denotes the

subgroup of GLd(F∞) generated by the center F×
∞ of GLd(F∞) and and I. The

first map is the isomorphism induced by the isomorphism B̃T d−1
∼= GLd(F∞)/I

given in Section 3.2.3. Let us consider the composite

(5.4)

 ∏
ν∈(BT d−1)′

C


{±1}

µ−→ Map{±1}((BT d−1)
′,C)→ Map(GLd(F∞)/IF×

∞,C).

Here the first map µ is the isomorphism which sends the class of an element a =
(aν) ∈

∏
ν∈(BT d−1)′

C to the map (BT d−1)
′ → C, which sends ν ∈ (BT d−1)

′ to

aν − a(−1)·ν . The second map is the homomorphism induced by the map ι. Since

HBM
d−1(BT •,C) is a subspace of the source of the map (5.4) and since the target of

the map (5.4) is a subspace of Map(GLd(F∞),C), the map (5.4) induces the desired
homomorphism (5.3). It follows from the construction that this homomorphism is
GLd(F∞)-equivariant.

Lemma 5.1. The homomorphism (5.3) is injective.

Proof. We have defined the homomorphism (5.3) to be the composite of several ho-
momorphisms which are obviously injective except for the second homomorphism
in (5.4) which we denote by ι∗. We prove the injectivity of ι∗. Let S ⊂ (BT d−1)

′
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denote the image of the map ι in Section 5.2.1. The composite GLd(F∞)/IF×
∞

of ι with the canonical surjection (BT d−1)
′ → BT d−1 is surjective, since it is

equal to the canonical map GLd(F∞)/IF×
∞
∼= BT d−1,∗ → BT d−1. Hence we

have S ∪ (−1) · S = (BT d−1)
′. It follows that the restriction homomorphism

Map{±1}((BT d−1)
′,C) → Map(S,C) is injective. The homomorphism ι∗ is the

composite of this (injective) restriction homomorphism with the pullback homo-
morphism Map(S,C) → Map(GLd(F∞)/IF×

∞,C) with respect to the surjection
GLd(F∞)/IF×

∞ � S induced by the map ι. Hence the homomorphism ι∗ is injec-
tive. �

5.2.2. We say that an element f ∈ Map(BT d−1,∗,C) is a (C-valued) harmonic
cochain if the following two conditions are satisfied:

(1) Let σn = ((Li)i∈Z, Ln) ∈ BT d−1,∗ be a pointed (d − 1)-simplex for n ∈ Z.
Then f(σn) = (−1)n−n′

f(σn′) holds for n, n′ ∈ Z.
(2) Let τ+ ∈ BT d−2,∗ be a pointed (d − 2)-simplex. Let {τ i+}0≤i≤q be the set

of pointed (d−1)-simplices, each of which contains τ+ as its (pointed) face.
Then

∑q
i=0 f(τ

i
+) = 0.

Lemma 5.2. The space of harmonic cochains coincides with the image of the map
(5.3).

Proof. Let f be a harmonic cochain. Let us show that it lies in the image of the map
(5.3). As f satisfies the condition (1) above, we can find an element (fν)ν∈(BT d−1)′

of
∏
ν∈(BT d−1)′

C which maps to f via the map (5.4).

By the definition ofHBM
d−1(BT •,C) given in Section 5.1.2, an element of

∏
ν∈(BT d−1)′

C
lies in the image of HBM

d−1(BT •,C) if and only if (5.2) is zero. Using Condition (2)
of the definition of harmonic cochain, one can verify that it holds true. �

5.2.3. We give an alternative description of the homomorphism (5.3). Since BT d is
an empty set, it follows from Section 5.1.3 that we have a canonical isomorphism
HBM
d−1(BT •,M) ∼= HomC(H

d−1
c (BT •,Z),M) for any abelian group M . From this it

follows that

(5.5)
HBM
d−1(BT •,C) ∼= HomC(H

d−1
c (BT •,C),C)

∼= HomGLd(F∞)(H
d−1
c (BT •,C),Map(GLd(F∞),C))

where the second isomorphism follows from the Frobenius reciprocity.
Let σ0 ∈ BT d−1,∗ ∼= GLd(F∞)/IF×

∞ be the pointed (d−1)-simplex corresponding
to the coset IF×

∞. Let [ι(σ0)] : (BT d−1)
′ → C denote the {±1}-equivariant map

with finite support which sends ε · ι(σ0) ∈ (BT d−1)
′ to ε for ε ∈ {±1} and which

sends the other elements in (BT d−1)
′ to zero. Since BT d is an empty set, the

element [ι(σ0)] ∈ Mapfin{±1}((BT d−1)
′,C) defines a class in Hd−1

c (BT •,C). We also

denote this class by [ι(σ0)]. Let us consider the composite

(5.6)
HBM
d−1(BT •,C)

(1)−−→ HomGLd(F∞)(H
d−1
c (BT •,C),Map(GLd(F∞),C))

(2)−−→ Map(GLd(F∞),C)

where (1) is the isomorphism (5.5) and (2) is given by the evaluation at [ι(σ0)].

Lemma 5.3. The homomorphism (5.6) coincides with the homomorphism (5.3).
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Proof. We put M = Map(GLd(F∞),C). It follows from the definition that the ho-
momorphism (5.6) is equal to the restriction toHBM

d−1(BT •,C) ⊂ (
∏
ν∈(BT d−1)′

C){±1}
of the composite

(5.7)

(∏
ν∈(BT d−1)′

C
)
{±1}

∼= HomC(Mapfin{±1}((BT d−1)
′,C),C)

∼= HomGLd(F∞)(Mapfin{±1}((BT d−1)
′,C),M)

→M

where the second isomorphism follows from the Frobenius reciprocity and the
last map is the homomorphism given by the evaluation at [ι(σ0)]. It is straight-
forward to check that the homomorphism (5.7) sends the class of the element
(aν) ∈

∏
ν∈(BT d−1)′

C to the map GLd(F∞) → C which sends g ∈ GLd(F∞) to

aι(gIF×
∞) − a(−1)·ι(gIF×

∞). Hence the homomorphism (5.7) is equal to the compos-

ite of (5.4) with the canonical inclusion Map(GLd(F∞)/IF∞,C) ⊂ M . Hence it
follows from the definition that the homomorphism (5.3) is equal to the restriction
to HBM

d−1(BT •,C) ⊂ (
∏
ν∈(BT d−1)′

C){±1} of the homomorphism (5.7), which proves

the claim. �

5.2.4. We give a consequence of Lemma 5.3. It is shown by Borel ([Bo, 6.2, 6.4])
that there is an isomorphism Std ∼= Hd−1

c (BT •,C) of C[GLd(F∞)]-modules, where
Std is the Steinberg representation (see [Lau, p.193] for definition). By Schur’s
lemma this isomorphism is unique up to scalar; we fix one. It is known that the
subspace StId ⊂ Std of I-invariant vectors is one-dimensional. Let us fix a basis

e0 ∈ StId . Since [ι(σ0)] ∈ Hd−1
c (BT •,C) is I-invariant, it corresponds to a scalar

multiple ce0 of e0 under the fixed isomorphism Hd−1
c (BT •,C) ∼= Std.

Lemma 5.4. The scalar c is non-zero.

Proof. Since the group GLd(F∞) acts transitively on the set BT d−1 which is a

quotient of the set B̃T d−1
∼= GLd(F∞)/I, the space Map{±1}((BT d−1)

′,C) of (d−
1)-cochains computing the group Hd−1

c (BT •,C) is generated, as a C[GLd(F∞)]-
module, by the map [ι(σ0)] : (BT d−1)

′ → C. It follows that the C[GLd(F∞)]-
module Hd−1

c (BT •,C) is generated by the element [ι(σ0)] ∈ Hd−1
c (BT •,C). Hence

the C[GLd(F∞)]-module Std is generated by the element ce0. Hence we have c 6=
0. �

It follows from Lemma 5.3 that the homomorphism (5.3) is the composite of the
isomorphism (5.5) with the composite

HomGLd(F∞)(H
d−1
c (BT •,C),Map(GLd(F∞),C))

∼= HomGLd(F∞)(Std,Map(GLd(F∞),C))
→ Map(GLd(F∞),C)

where the last map is given by the evaluation at ce0. Hence, by Lemma 5.4, we
have:

Corollary 5.5. The image of the homomorphism (5.3) is equal to the image of
the map HomGLd(F∞)(Std,Map(GLd(F∞),C)) → Map(GLd(F∞),C) given by the
evaluation at e0. �
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5.2.5. We need the following fact in Section 5.3.1 and in Section 5.4.4.

Lemma 5.6. Let i ≥ 0 be an integer, let σ ∈ BT i and let v, v′ ∈ V (σ) be two
vertices with v 6= v′. Suppose that an element g ∈ GLd(F∞) satisfies | det g|∞ = 1.
Then we have gv 6= v′.

Proof. Let σ̃ be an element (Lj)j∈Z in B̃T i such that the class of σ̃ in BT i is equal
to σ. There exist two integers j, j′ ∈ Z such that v, v′ is the class of Lj , Lj′ ,
respectively. Assume that gv = v′. Then there exists an integer k ∈ Z such that
Ljg

−1 = $k
∞Lj′ = Lj′+(i+1)k. Let us fix a Haar measure dµ of the F∞-vector space

V∞. As is well-known, the push-forward of dµ with respect to the automorphism
V∞ → V∞ given by the right multiplication by γ is equal to | det γ|−1

∞ dµ for every
γ ∈ GLd(F∞). Since | det g|∞ = 1, it follows from the equality Ljg

−1 = Lj′+(i+1)k

that the two O∞-lattices Lj and Lj′+(i+1)k have a same volume with respect to dµ.

Hence we have j = j′ + (i + 1)k, which implies Lj = $k
∞Lj′ . It follows that the

class of Lj in BT 0 is equal to the class of Lj′ , which contradicts the assumption
v 6= v′. �

5.3. Borel-Moore homology of some arithmetic quotients of Bruhat-Tits
building.

We define a certain simplicial complex in Section 5.3.1, whose Borel-Moore ho-
mology groups play a major role in this article. The homomorphism constructed
in Section 5.2.1 induces a homomorphism from the Borel-Moore homology of the
simplicial complex to the space of automorphic forms. Using an isomorphism of
Borel (which is recalled in Section 5.2.3), we see in Corollary 5.7 that the image
of this homomorphism inside the space of cusp forms is the Ao

St (see Section 9.1
for the precise definition). We note that these functions lying in the image of the
homomorphism constructed are usually called “harmonic cochains”.

5.3.1. For an open compact subgroup K∞ ⊂ GLd(A∞), we define the simplicial

complex X̃K∞,• as the disjoint union X̃K∞,• = BT • × GLd(A∞)/K∞ of copies of

BT • indexed by GLd(A∞)/K∞. The group GLd(A) canonically acts on X̃K∞,•

from the left. For i ≥ 0, we let XK∞,i denote the quotient XK∞,i = GLd(F )\X̃K∞,i

under the action of GLd(F ) ⊂ GLd(A). Let us introduce the structure of simplicial
complex on the collection XK∞,• = (XK∞,i)i≥0.

Let γ ∈ GLd(A∞). For each i ≥ 0, consider the inclusion BT i ↪→ X̃K∞,i which
sends σ ∈ BT i to (σ, γK∞). This induces an injection

GLd(F ) ∩ γK∞γ−1\BT i ↪→ XK∞,i.

We give an explanation for the notation GLd(F )∩γK∞γ−1\BT i in the source of this
injection. It should be read as follows. We regard the group GLd(F ) as a subgroup
of GLd(A∞) via the diagonal embedding GLd(F ) → GLd(A∞) when we take the
intersection GLd(F )∩ γK∞γ−1. We then regard GLd(F )∩ γK∞γ−1 as a subgroup
of GLd(F∞) via the homomorphism GLd(F ) ∩ γ−1K∞γ ↪→ GLd(F ) ↪→ GLd(F∞)
when we let it act on BT i.

If g is an element in GLd(F ) ∩ γK∞γ−1, the product formula
∏
v | det g|v = 1

(where v runs over all places of F ) implies that |det g|∞ = 1. Hence for (σ, γK∞) ∈
X̃K∞,i, it follows from Lemma 5.6, that the image of the set of vertices V ((σ, γK∞))

under the surjection X̃K∞,0 � XK∞,0 is a subset of XK∞,0 with cardinality i + 1.
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We denote this subset by V (cl(σ, γK∞)), since it is easily checked that the set
V (cl(σ, γK∞)) depends only on the class cl(σ, γK∞) of (σ, γK∞) in XK∞,i. Thus
the collection XK∞,• = (XK∞,i)i≥0 has a structure of a simplicial complex.

5.3.2. The structure of the simplicial complex is uniquely characterized by the

property that the collection of the canonical surjection X̃K∞,i � XK∞,i is a map of

simplicial complexes X̃K∞,• � XK∞,•.

This means in particular that if σ ∈ XK∞,i is an i-simplex and if σ̃ ∈ X̃K∞,i

is an i-simplex which maps to σ, then V (σ) is the image of V (σ̃) under the map

X̃K∞,0 → XK∞,0.

For a non-empty subset V ⊂ V (σ) of cardinality i′ + 1, let Ṽ ⊂ V (σ̃) be the

unique subset which maps bijectively onto V under the map X̃K∞,0 → XK∞,0. Then

the i′-simplex σ ×V (σ) V is equal to the image of σ̃ ×V (σ̃) Ṽ under the surjection

X̃K∞,i′ → XK∞,i′ . It is straightforward to check that the simplicial complex XK∞,•
is locally finite.

5.3.3. The homomorphism (5.3) in Section 5.2.1 induces the homomorphism

(5.8)

HBM
d−1(X̃K∞,•,C) ∼=

∏
gK∞∈GLd(A∞)/K∞ HBM

d−1(BT •,C)
→
∏
gK∞∈GLd(A∞)/K∞ Map(GLd(F∞),C)

∼= Map(GLd(A)/K∞,C)
which is GLd(A)-equivariant. It follows from the definition of Borel-Moore homol-

ogy and the fact that the simplicial complex X̃K∞,• has no i-simplex for i ≥ d that
the GLd(F )-invariant subspace of the source of (5.8) is isomorphic toHBM

d−1(XK∞,•,C).
Hence we have a homomorphism

(5.9) HBM
d−1(XK∞,•,C)→ (Map(GLd(A)/K∞,C))GLd(F ) = AK∞

C .

The following is a consequence of Lemma 5.1 and Corollary 5.5.

Corollary 5.7. The homomorphism (5.9) is injective and its image is equal to the
image of the homomorphism

HomGLd(F∞)(Std,AK∞

C )→ AK∞

C

given by the evaluation at e0 ∈ StId . �
5.4. Apartments.

Here we recall the definition of the apartments which are simplicial subcom-
plexes of the Bruhat-Tits building. We then associate to each apartment a class
in the Borel-Moore homology of a quotient of the Bruhat-Tits building. This class
is an analogue of a modular symbol, and for its construction we require a lemma
(Lemma 5.11) from our other paper [Ko-Ya2] where this analogue of a modular sym-
bol is the main subject for study. The classes ηK∞,γ ∈ AK∞

C defined in Section 5.4.7
will be of use in Section 6.2, especially in the proof of Proposition 6.5.

We recall one more lemma (Lemma 5.12) from [Ko-Ya2]. This lemma states that
a class in the Borel-Moore homology which comes from the homology is expressed
as a linear combination of the classes of apartments. Corollary 5.16 is the form we
will use, and will appear in the proof of Lemma 9.4.

For the general theory of Bruhat-Tits building and apartments, the reader is
referred to the book [Ab-Br].
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5.4.1. We give an explicit description of the simplicial complex A• below without
making use of the theory of root systems. For the viewpoint in the general theory
of root systems, we refer the reader to [Ab-Br, p. 523, 10.1.7 Example].

Put A0 = Z⊕d/Z(1, . . . , 1). For two elements x = (xj), y = (yj) ∈ Z⊕d, we
write x ≤ y when xj ≤ yj for all 1 ≤ j ≤ d. We say that a subset σ̃ ⊂ Z⊕d is
small if for any two elements x, y ∈ σ̃ we have either x ≤ y � x + (1, . . . , 1) or
y ≤ x � y+(1, . . . , 1). Explicitly, this means that σ̃ is a finite set and is of the form
σ̃ = {x0, . . . , xi} for some elements x0, . . . , xi satisfying x0 � · · · � xi � xi+1 =
x0 + (1, . . . , 1). We say that a finite subset σ ⊂ A0 has a small lift to Z⊕d if there
exists a small subset σ̃ ⊂ Z⊕d which maps bijectively onto σ under the canonical
surjection Z⊕d � A0. For i ≥ 0, we let Ai denote the set of the subsets σ ⊂ A0 with
cardinality i+1 which has a small lift to Z⊕d. It is clear that the pair (A0,

∐
i≥0Ai)

forms a strict simplicial complex and the collection A• = (Ai)i≥0 is the simplicial
complex associated to the strict simplicial complex (A0,

∐
i≥0Ai). We note that Ai

is an empty set for i ≥ d, since by definition there is no small subset of Z⊕d with
cardinality larger than d.

5.4.2. Let v1, . . . , vd be a basis of V∞ = F⊕d
∞ . We define a map ιv1,...,vd : A• → BT •

of simplicial complexes.

Let ι̃v1,...,vd : Z⊕d → B̃T 0 denote the map which sends the element (n1, . . . , nd) ∈
Zd to the O∞-lattice O∞$

n1
∞ v1 ⊕ O∞$

n2
∞ v2 ⊕ · · · ⊕ O∞$

nd
∞ vd. Let i ≥ 0 be an

integer and let σ ∈ Ai. Take a small subset σ̃ ⊂ Z⊕d with cardinality i + 1 which
maps bijectively onto σ under the surjection Z⊕d → Z⊕d/Z(1, . . . , 1) = A0. By
definition the set σ̃ is of the form σ̃ = {x0, . . . , xi} where x0, . . . , xi ∈ Z⊕d satisfy
x0 � · · · � xi � xi+1 where we have put xi+1 = x0 + (1, . . . , 1). For each integer
j ∈ Z we write j in the form j = m(i + 1) + r with m ∈ Z and r ∈ {0, . . . , i},
and put xj = xr + m(1, . . . , 1) and Lj = ι̃v1,...,vd(xj). The sequence (Lj)j∈Z of

O∞-lattices gives an element ι̃v1,...,vd,i(σ̃) in B̃T i. We denote by ιv1,...,vd,i(σ) the
class of ι̃v1,...,vd,i(σ̃) in BT i.

Lemma 5.8. The class ιv1,...,vd,i(σ) does not depend on the choice of a small lift σ̃.

Proof. The inverse image of σ under the canonical surjection Z⊕d → Z⊕d/Z(1, . . . , 1)
is equal to {xj | j ∈ Z}. Since xj � xj′ for j � j′ and xj+i+1 = xj + (1, . . . , 1),
any small subset σ̃′ of Z⊕d with cardinality i+ 1 which maps bijectively onto σ is
of the form σ̃′ = {xl, xl+1, . . . , xl+i} for some l ∈ Z. The element ι̃v1,...,vd,i(σ̃

′) is
the sequence (L′

j)j∈Z, where L
′
j = Lj+l. Hence the two elements ι̃v1,...,vd,i(σ̃) and

ι̃v1,...,vd,i(σ̃
′) gives the same element in BT i. �

It is easily checked that the map ιv1,...,vd,i : Ai → BT i is injective for every i ≥ 0
and that the collection of the maps ιv1,...,vd,i forms a map ιv1,...,vd : A• → BT • of
simplicial complexes. We define a simplicial subcomplex Av1,...,vd,• of BT • to be
the image of the map ιv1,...,vd so that Av1,...,vd,i is the image of the map ιv1,...,vd,i
for each i ≥ 0. We call the subcomplex Av1,...,vd,• of BT • the apartment in BT •
corresponding to the basis v1, . . . , vd. Since the map ιv1,...,vd,i is injective for every

i ≥ 0, the map ιv1,...,vd induces an isomorphism A•
∼=−→ Av1,...,vd,• of simplicial

complexes.

5.4.3. We introduce a special element β in the group HBM
d−1(A•,Z), which is an

analogue of the fundamental class. Let σ ∈ Ad−1 and take a small lift σ̃ ⊂ Z⊕d to
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Z⊕d. By definition the set σ̃ is of the form σ̃ = {x1, . . . , xd} with x0 � x1 � · · · � xd
where we have put x0 = xd − (1, . . . , 1). It follows from this property that for each
integer i with 1 ≤ i ≤ d there exists a unique integer w(i) with 1 ≤ w(i) ≤ d such
that the w(i)-th coordinate of xi − xi−1 is equal to 1 and the other coordinates of

xi − xi−1 are equal to zero. Since we have
∑d
i=1(xi − xi−1) = xd − x0 = (1, . . . , 1),

the map w : {1, . . . , d} → {1, . . . , d} is injective. Hence it defines an element w
in the symmetric group Sd. The maps {1, . . . , d} → A0 = Z⊕d/Z(1, . . . , 1) which
sends i to the class of xw−1(i) in A0 gives an element [σ̃] in T (σ).

Lemma 5.9. The element [σ̃] ∈ T (σ) does not depend on the choice of a lift σ̃.

Proof. For each integer j ∈ Z we write j of the form j = md + r with m ∈ Z
and r ∈ {0, . . . , d − 1} and put xj = xr +m(1, . . . , 1). As we have mentioned in
the proof of Lemma 5.8, The inverse image of σ under the canonical surjection
Z⊕d → Z⊕d/Z(1, . . . , 1) is equal to {xj | j ∈ Z} and any small lift σ̃′ of σ to Z⊕d is
of the form σ̃′ = {xl, xl+1, . . . , xl+d−1} for some l ∈ Z. For each i ∈ {1, . . . , d}, the
unique integer j ∈ {l, l+1, . . . , l+ d− 1} such that the i-th coordinate of xj −xj−1

is equal to 1 and the other coordinates of xj − xj−1 are equal to zero is congruent
to w−1(i) modulo d. Hence the class of xj in A0 does not depend on the choice of
a small lift σ̃′. This proves the claim. �

We denote by [σ] the class of [σ̃] in O(σ). We let β̃ denote the element β̃ =
(βν)ν∈A′

d−1
in
∏
ν∈A′

d−1
Z where βν = 1 if ν = [σ] for some σ ∈ Ad−1 and βσ′ = 0

otherwise. We denote by β the class of β̃ in (
∏
ν∈A′

d−1
Z){±1}.

Proposition 5.10. The element β ∈ (
∏
ν∈A′

d−1
Z){±1} is a (d − 1)-cycle in the

chain complex which computes the Borel-Moore homology of A•.

Proof. The assertion is clear for d = 1 since the (d − 2)-nd component of the
complex is zero. Suppose that d ≥ 2. Let τ be an element in Ad−2. Take a small
lift τ̃ ⊂ Z⊕d of τ to Z⊕d. By definition the set τ̃ is of the form τ̃ = {x1, . . . , xd}
with x0 � x1 � · · · � xd−1 where we have put x0 = xd − (1, . . . , 1). There is a
unique i ∈ {1, . . . , d− 1} such that xi − xi−1 has two non-zero coordinates. There
are exactly two elements in Z⊕d which is larger than xi−1 and which is smaller
than xi. We denote these two elements by y1 and y2. We put σ̃j = τ̃ ∪ {yj} for
j = 1, 2. The sets σ̃1, σ̃2 are small subsets of Z⊕d of cardinality d and their images
σ1, σ2 under the surjection Z⊕d � Z⊕d/Z(1, . . . , 1) are elements in Ad−1. For
j = 1, 2, let wj denote the element w in the symmetric group Sd which appeared
in the first paragraph of Section 5.4.3 for σ = σj . It follows from the definition
of σj that we have w1 = w2(i, i + 1), where (i, i + 1) denotes the transposition of
i and i + 1. It is easily checked that the set of the elements in Ad−1 which has
τ as a face is equal to {σ1, σ2}. Since we have sgn(w1) = −sgn(w2), it follows
that the component in (

∏
ν∈O(τ) Z){±1} of the image of β under the boundary map

(
∏
ν∈A′

d−1
Z){±1} → (

∏
ν′∈A′

d−2
Z){±1} is equal to zero. This proves the claim. �

5.4.4. Let us define simplicial complexes Γ\BT • in this paragraph.
Let K∞ ⊂ GLd(A∞) be an open compact subgroup. Let γ ∈ GLd(A∞) and

put Γ = GLd(F ) ∩ γK∞γ−1. As we have explained in Section 5.3.1, any element
g ∈ Γ satisfies | det g|∞ = 1. Hence it follows from Lemma 5.6 that for each i ≥ 0
and for each σ ∈ BT i, the image of V (σ) under the surjection BT 0 � Γ\BT 0
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is a subset of Γ\BT 0 with cardinality i + 1. We denote this subset by V (cl(σ)),
since it is easily checked that it depends only on the class cl(σ) of σ in Γ\BT i.
Thus the collection Γ\BT • = (Γ\BT i)i≥0 has a canonical structure of a simplicial
complex such that the collection of the canonical surjection BT i � Γ\BT i is a map
of simplicial complexes BT • � Γ\BT •.

5.4.5. We need two statements (Lemma 5.11, Lemma 5.12) whose proof will be
given in our forthcoming paper [Ko-Ya2]. Let Γ be as in Section 5.4.4. For an
F -basis v1, . . . , vd (that is, a basis of F⊕d regarded as a basis of F⊕d

∞ ), we consider
the composite

(5.10) A•
ιv1,...,vd−−−−−→ BT • → Γ\BT •.

Lemma 5.11. The map (5.10) is a finite map of simplicial complexes in the sense
of Section 5.1.4.

Proof. See [Ko-Ya2]. �

It follows from Lemma 5.11 that the map (5.10) induces a homomorphism

HBM
d−1(A•,Z)→ HBM

d−1(Γ\BT •,Z).

We let βv1,...,vd ∈ HBM
d−1(Γ\BT •,Z) denote the image under this homomorphism of

the element β ∈ HBM
d−1(A•,Z) introduced in Section 5.4.3. We call this the class of

the apartment Av1,...,vd,•.

Lemma 5.12. The image of the canonical map

Hd−1(Γ\BT •,C)→ HBM
d−1(Γ\BT •,C)

is contained in the sub C-vector space generated by the classes of apartments asso-
ciated to an F -basis.

Proof. See [Ko-Ya2]. �

5.4.6. Let the notation be as in Section 5.4.4. Since BT d is an empty set, the
abelian group HBM

d−1(Γ\BT •,Z) is canonically isomorphic to the Γ-invariant part of

HBM
d−1(BT •,Z). We describe the image of βv1,...,vd under the composite

HBM
d−1(Γ\BT •,Z) ↪→ HBM

d−1(BT •,Z)→ HBM
d−1(BT •,C)→ Map(GLd(F∞),C)

where the last map is the homomorphism (5.3).
Let T ⊂ GLd be the maximal torus of diagonal matrices and let N(T (F∞))

denote be the normalizer of T (F∞) in GLd(F∞). As a set, N(T (F∞)) is the disjoint
union N(T (F∞)) =

∐
w∈Sd

ẇT (F∞) where w runs over the symmetric group Sd and

ẇ = (δi,w(j)) denotes the permutation matrix associated with w. Let

(5.11) φ : N(T (F∞))/T (F∞)→ {±1}

denote the map which sends the coset ẇT (F∞) to sgn(w).

Lemma 5.13. We have N(T (F∞)) ∩ IF×
∞ = T (O∞)F×

∞.

Proof. If g ∈ IF×
∞, then the diagonal entries of g are non-zero and have the same

∞-adic valuation. This implies that ẇT (F∞) ∩ IF×
∞ is empty except for w = 1.

Since T (F∞) ∩ IF×
∞ = T (O∞)F×

∞, the claim follows. �
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Lemma 5.13 shows that the canonical map

(5.12) N(T (F∞))/T (O∞)F×
∞ → GLd(F∞)/IF×

∞

is injective. Let g ∈ GLd(F ) denote the matrix whose i-th row is equal to vi for
1 ≤ i ≤ g. Let µg : N(T (F∞))/T (O∞)F×

∞ → GLd(F∞)/IF×
∞ denote the injection

which is the composite of (5.12) with the automorphism of GLd(F∞)/IF×
∞ given by

the left multiplication by g−1. Let φv1,...,vd : GLd(F∞)/IF×
∞ → {−1, 0, 1} denote

the map characterized by the following properties:

• For h ∈ N(T (F∞)), the map φv1,...,vd sends the image of hT (O∞)F×
∞ ∈

N(T (F∞))/T (O∞)F×
∞ under the injection µg to φ(hT (F∞)) ∈ {±1}. Here

φ is the map in (5.11).
• If an element g′IF×

∞ does not belong to the image of µg, then φv1,...,vd(g
′IF×

∞) =
0.

Lemma 5.14. The composite GLd(F∞) → GLd(F∞)/IF×
∞

φv1,...,vd−−−−−−→ {−1, 0, 1} ⊂
C is equal to the image of the class of the apartment Av1,...,vd,• under the homo-
morphism (5.3).

Proof. Let (Lj)j∈Z be an element in B̃T d−1 whose class in BT d−1 belongs to the
subset Av1,...,vd,d−1 ⊂ BT d−1. Let σ be the unique element in Ad−1 such that the
class of (Lj) in BT d−1 is equal to the image of σ under the map ιv1,...,vd,d−1 :
Ad−1 → BT d−1. It follows from the definition of the map ιv1,...,vd,d−1 that there
exists a small lift σ̃ = {x0, . . . , xd−1}, with x0 � · · · � xd−1 � xd = x0 + (1, . . . , 1),
of σ to Z⊕d such that for i = 0, . . . , d, the image of xi under the map ι̃v1,...,vd
in Section 5.4.2 is equal to Li ∈ B̃T 0. We write x0 = (m1, . . . ,md), where
m1, . . . ,md ∈ Z. Let w be the element in the symmetric group Sd which was con-
structed from σ̃ in Section 5.4.3. Then for i = 0, . . . , d − 1, the element xi ∈ Z⊕d

is characterized by the following property: the w(j)-th coordinate of xi is equal to
mj + 1 if 0 ≤ j ≤ i, and is equal to mj if i < j ≤ d− 1. Hence it follows from the
definition of the map ι̃v1,...,vd , that for i = 0, . . . , d, the O∞-lattice Li is of the form

Li =
⊕

1≤j≤i

$mj+1
∞ O∞vw(j) ⊕

⊕
i<j≤d

$mj
∞ O∞vw(j).

It is straightforward from the definition of the isomorphism B̃T d−1
∼= GLd(F∞)/I

in Section 3.2.3 to check that the element (Lj)j∈Z in B̃T d−1 corresponds via this
isomorphism to the coset g−1ẇdiag($−m1

∞ , . . . , $−md
∞ )I. The class [σ] ∈ O(σ) is

sgn(w) times the class of the element in T (σ) given by the map {1, . . . , d} → A0

which sends i to the class of xi. Consider the composite map c : HBM
d−1(BT •,C)→

Map(GLd(F∞)/IF×
∞,C) of the homomorphism (5.4) with the canonical inclusion

HBM
d−1(BT •,C) ↪→ (

∏
ν∈(BT d−1)′

C){±1}. Then the image of the class of the apart-

ment Av1,...,vd under this map c is equal to the map φv1,...,vd . Thus the claim follows
from the definition of the homomorphism (5.3). �

Let pd−1 : GLd(F∞)/IF×
∞ → Γ\GLd(F∞)/IF×

∞ denote the canonical surjection.
It follows from Lemma 5.11 that for every a ∈ Γ\GLd(F∞)/IF×

∞ the sum

φv1,...,vd(a) =
∑

b∈p−1
d−1(a)

φv1,...,vd(b)
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is a finite sum and hence gives an element φv1,...,vd(a) ∈ Z. The following statement
is a consequence of Lemma 5.14.

Corollary 5.15. The map φv1,...,vd : Γ\GLd(F∞)/IF×
∞ → Z ⊂ C is equal to the

image of βv1,...,vd ∈ HBM
d−1(Γ\BT •,Z) under the composite

HBM
d−1(Γ\BT •,Z)→ HBM

d−1(Γ\BT •,C)
↪→
(∏

ν∈(Γ\BT d−1)′
C
)
{±1}

(1)−−→ Map(Γ\GLd(F∞)/IF×
∞,C)

where the map (1) is the homomorphism induced by the homomorphism (5.4). �
5.4.7. Let K∞ ⊂ GLd(A∞) be an open compact subgroup. For γ ∈ GLd(A∞), we
construct a function

ηK∞,γ : GLd(F )\(BT d−1,∗ ×GLd(A∞)/K∞)→ C

in AK∞

C as follows. Take a complete set of representatives {gj}j∈J ⊂ GLd(A∞) of
GLd(F )\GLd(A∞)/K∞. We then have

∐
j∈J Γj\BT d−1,∗ ∼= GLd(F )\(BT d−1,∗ ×

GLd(A∞)/K∞) where Γj = GLd(F ) ∩ gjK∞g−1
j for each j ∈ J . Suppose γ = ggjk

with g ∈ GLd(F ), k ∈ K∞ and j ∈ J . Let vi denote the i-th row of the matrix g.
Then we put ηK∞,γ = φv1,...,vd on Γj\BT d−1,∗ and zero on Γj′\BT d−1,∗ for j′ 6= j.
This is independent of the choice of the gj ’s, g, and k.

It follows from Corollary 5.15 that ηK∞,γ ∈ AK∞

C is equal to the image under the
homomorphism (5.9) of the element HBM

d−1(XK∞,•,C) =
⊕

j′∈J H
BM
d−1(Γj′\BT •,C)

which is equal to the class of Av1,...,vj ,• on Γj\BT • and which is zero on Γj′\BT •
for j′ 6= j. Let us also denote by ηK∞,γ the element in HBM

d−1(XK∞,•,C) described
above.

Corollary 5.16. The image of the canonical map

Hd−1(XK∞,•,C)→ HBM
d−1(XK∞,•,C)

is contained in the subspace generated by the elements of the form ηK∞,γ with γ ∈
GLd(A∞).

Proof. Let {gj}j∈J be as above. Then HBM
d−1(XK∞,•,C) ∼=

⊕
j∈J H

BM
d−1(Γj\BT •,C).

Fix j0 ∈ J . From Lemma 5.12, it follows that the subspace generated by the ele-
ments ηK∞,γ , where γ runs over the set {ggj0 | g ∈ GLd(F )}, contains the subspace
of elements e = (ej)j∈J ∈ HBM

d−1(XK∞,•,C) with ej = 0 if j 6= j0 and with ej0
coming from Hd−1(XK∞,•,C). The claim follows. �

6. Zeta Integral

The aim of this section is to prove Theorem 6.3. It states that the integral
of a Hecke eigen cusp form against a certain automorphic form with a complex
parameter is expressed as the product of the L-function of the cusp form and
a certain integral not involving the complex parameter. The case d = 2 is the
analogue of the case of GL2,Q, and may be proved using the Rankin-Selberg method.
Here we use instead the fact, whose proof is given in our other paper [Ko-Ya1], that
the automorphic forms constructed using the homomorphism E satisfy certain trace
relations.

In Section 6.1 (especially in Proposition 6.2), we express the fact that this trace
relation holds as that a certain family of automorphic forms is an “Euler system”.
This is an abuse of terminology, since an Euler system in the usual sense is a family
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of elements in certain Galois cohomology groups. The reader familiar with the
theory of Euler systems will easily find that the notion of Euler system in this
section is an automorphic counterpart of that in usual sense. The reader who is
not familiar with the theory of Euler systems should regard the properties stated
in Proposition 6.2 as the definition of Euler system in our sense.

6.1. Euler systems.

We recall below the statement (Proposition 6.2) that certain automorphic forms
constructed from distributions satisfies certain trace relation. The proof is given in
our other paper [Ko-Ya1].

6.1.1. Let R = C((q−s∞ )). We define a homomorphism

E : S ′(V∞)⊗d → AR(| |−sd∞ )

as follows. (See Section 2.4.4 for the definition of S ′(V∞).) Let Φ∞ : Matd(F∞)→
C((q−s∞ )) denote the function which sendsM∞ ∈ Matd(F∞) to det(φ∞(M∞,iΠ

−1
j−1)),

where φ∞ is as in Section 3.4.3, Πj−1 is as in Section 3.2.3, and M∞,i is the i-th
row of M∞. For Φ∞ ∈ S ′(V∞)⊗d and g = (g∞, g∞) ∈ GLd(A), we regard Φ∞

as an element in S(Matd(A∞)) via the isomorphism S(V∞)⊗d ∼= S(Matd(A∞)) in
Section 2.4.4 and we put

(6.1) E(Φ∞)(g) =
∑

M∈Matd(F )

Φ∞(Mg∞)Φ∞(Mg∞).

Let us show that the sum on the right hand side is convergent. Note that any
Φ∞ ∈ S′(V∞)⊗d is a linear combination of functions of the form φΛ1,b1⊗· · ·⊗φΛd,bd

where each Λi ⊂ V is an A-lattice and bi ∈ (V/Λi) \ {0} (We refer to Section 3.4.3
for the definition of φ∞∗,∗).

Lemma 6.1. Let the notation be as above. For Φ∞ = φ∞Λ1,b1
⊗ · · · ⊗ φ∞Λd,bd

and

for g ∈ GLd(A), we have

E(Φ∞)(g) = det((EΛi,bi(gΠ
−1
j−1))1≤i,j≤d),

where EΛi,bi is the Eisenstein series defined in Section 3.4.2.

Proof. This follows from the definitions using Lemma 3.3. �
This lemma implies that the sum on the right hand side of (6.1) above is con-

vergent.

6.1.2. Let J ⊂ I $ A be nonzero ideals. Given γ ∈ GLd(A∞), we put EI,J,γ =
E(chγ·YI,J

).

Proposition 6.2. Let γ ∈ GLd(A∞). The system of automorphic forms (EI,J,γ)I,J
indexed by two nonzero ideals J ⊂ I $ A is an Euler system. That is, the following
statement holds (see the comments in the second paragraph of Section 6 on our
usage of this terminology).

Let I ′, J ′ ⊂ A be nonzero ideals satisfying J ′ ⊂ I ′ ⊂ I and J ′ ⊂ J . We let ℘ be a
prime ideal dividing I ′, and assume that Supp (I/I ′) ⊂ {℘} and that Supp (J/J ′) ⊂
{℘}. Let e℘ be as in Section 4.2.1. Then

TrI
′,J′

I,J EI′,J ′,γ =

e℘∑
r=0

(−1)rqr(r−1)/2
℘ T ∗

℘,rEI,J,γ .
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Here T ∗
℘,r is the dual Hecke operator defined in Section 4.2.1, and

TrI
′,J′

I,J : AR(I ′, J ′, | |−ds∞ )→ AR(I, J, | |−ds∞ ) is the trace map.

Proof. See [Ko-Ya1]. See also the thesis by Grigorov [Gr, p.25, Theorem 1.4.6]
where a relevant portion of the proof is presented. �

6.2. Zeta Integral.

Let J ⊂ I be two nonzero ideals of A. For an element γ ∈ GLd(A∞), we write
ηI,J,γ = ηK∞

I,J ,γ
∈ AC(I, J, 1), where ηK∞

I,J,γ
∈ AC(I, J, 1) is as in Section 5.4.7.

Theorem 6.3. Let f be an element in Ao
C(I, J, 1). Suppose Conditions (1)(2) of

Section 4.2.2 are satisfied. We have

〈f, EI,J,γ〉 = (1− q−s∞ )d−1LI,J(f, s− d− 1

2
)〈f, ηI,J,γ〉.

Corollary 6.4. If LI,J(f,−d−1
2 ) 6= 0, then 〈f, ηI,J,γ〉 = 0.

Proof of Corollary 6.4. From Proposition 3.4 it follows that the left hand side of
the equation in Theorem 6.3 has a zero of order d at s = 0. Then counting the
number of zeros on the right hand side gives the claim. �

We refer to Remark 8.3 for an implication of this corollary.

6.2.1. Proof of Theorem 6.3: Step 1. Application of Euler systems. For
any nonzero ideal I ′ of A with I ′ ⊂ J , we consider the element

EI,J,I′,γ = TrI
′,I′

I,J (EI′,I′,γ)

in AR(I, J, | |−sd∞ ). By Proposition 6.2, we have

EI,J,I′,γ =
∏

℘|I′, ℘-I

(
e℘∑
r=0

(−1)rqr(r−1)/2
℘ T ∗

℘,r

)
EI,J,γ ,

where e℘ is as in Section 4.2.1. Thus

〈f, EI,J,I′,γ〉 = 〈
∏

℘|I′, ℘-I

(

e℘∑
r=0

(−1)rq
r(r−1)

2 −rs
℘ T℘,r)f, EI,J,γ〉

and hence

〈f, EI,J,γ〉 =
∏

℘|I′, ℘-I

[
e℘∑
r=0

(−1)ra℘,rq
r(r−1)

2 −rs
℘

]−1

〈f, EI,J,I′,γ〉.

Next we consider the limit of EI,J,I′,γ as I ′ gets smaller. We note that for all
I ′ ⊂ J , the function EI,J,I′,γ is invariant under the action of I × K∞

I,J where I is

the Iwahori subgroup, since I =
∩d
j=1 Π

−1
j−1GLd(O∞)Πj−1.

We put

YI,J,I′ = {g ∈ YI,J | gmod I ′ ∈ GLd(A/I
′)}.

where YI,J is as in Section 2.4.6. It is easy to check that the set YI,J,I′ is written
as the disjoint sum

YI,J,I′ =
∐

h∈K∞
I′,I′\K

∞
I,J

YI′,I′ · h.
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It follows that TrI
′,I′

I,J (chγ·YI′,I′ ) = chγ·YI,J,I′ . Hence we have EI,J,I′,γ = E(chγ·YI,J,I′ ).

Since γ · YI,J,I′ is a subset of γ · YI,J and since γ · YI,J,I′′ ⊂ γ · YI,J,I′′ for I ′′ ⊂ I ′,
the limit of EI,J,I′,γ(g) ∈ R as I ′ gets smaller exists for any g = (g∞, g∞) ∈ GLd(A)
and is equal to

EI,J,I′,γ(g) =
∑

M∈Matd(F )

Mg∞∈
∩
I′ γ·Y

I,J,I′

Φ∞(Mg∞).

Since
∩
I′ γ · YI,J,I′ = γK∞

I,J , we have

(6.2)
EI,J,lim,γ(g) =

∑
X∈GLd(F ),Xg∞∈γK∞

I,J
Φ∞(Xg∞)

=
∑
X∈GLd(F ),Xg∞∈γK∞

I,J
det((|1iXg∞Π−1

j−1|
−s
OV∞

)1≤i,j≤d),

where 1i = (0, . . . , 0, 1, 0 . . . , 0) with 1 placed in the i-th place, with respect to the
(q−s∞ )-adic topology.

Recall that since f is a cusp form, the support of the function f(g) is contained in
Z(A)K for some compact open subset K ⊂ GLd(A). We note also that Z(F∞) acts
trivially on f(g)EI,J,I′,γ(g)| det g|−s. It follows that the inner product 〈f, EI,J,I′,γ〉
is a sum over the finite set GLd(F )Z(F∞)\Supp (f)/(K ∩ (I × K∞

I,J)) which does

not depend on I ′. Hence the limit of 〈f, EI,J,I′,γ〉 with respect to I ′ commutes with
the bracket 〈, 〉. Thus we obtain

〈f, EI,J,γ〉 = LI,J(f, s− d− 1

2
)〈f, EI,J,lim,γ〉.

6.2.2. Proof of Theorem 6.3: Step 2. Unfolding the integral. Now to prove
the theorem, it suffices to prove the following proposition.

Proposition 6.5. Let the notation be as above. We have

〈f, EI,J,lim,γ〉 = (1− q−s∞ )d−1〈f, ηI,J,γ〉.

Proof. Given two nonzero ideals I, J of A with J ⊂ I $ A, we define a function

φ̃I,J,γ on GLd(A) as follows. For g = (g∞, g
∞) ∈ GLd(A), we let

φ̃I,J,γ(g) = φ̃∞I,J,γ(g
∞)φ̃∞(g∞),

where φ̃∞(g∞) = det(|1ig∞Π−1
j−1|

−s
OV∞

), and φ̃∞I,J,γ is the characteristic function of

γK∞
I,J . We have

EI,J,lim,γ =
∑

γ′∈GLd(F )

φ̃I,J,γ(γ
′g).

Hence 〈f, EI,J,lim,γ〉 is equal to∫
Z(F∞)GLd(F )\GLd(A)

f(g)
∑

γ′∈GLd(F )

φ̃I,J,γ(γ
′g)| det g|sdg

=

∫
Z(F∞)\GLd(A)

f(g)φ̃I,J,γ(g)| det g|sdg

= vol(K∞
I,J)

∫
Z(F∞)\GLd(F∞)

f(g∞, γ)φ̃∞(g∞)| det g∞|s∞dg∞.

Now let us fix g∞ ∈ GLd(F∞) and consider the value φ̃∞(g∞). Let us write

Hi,j(g∞) = |1ig∞Πj−1|−sOV ∞ and let H(g∞) = (Hi,j(g∞))1≤i,j≤d so that φ̃∞(g∞) =

detH(g∞). For each i = 1, . . . , d, there exists a unique ni = ni(g∞) ∈ {1, . . . , d}
such that Hi,j(g∞) = Hi,1(g∞) for 1 ≤ j ≤ ni and Hi,j(g∞) = q−s∞ Hi,1(g∞) for
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ni +1 ≤ j ≤ d. If ni1 = ni2 for some ii 6= i2, the i1-st row and i2-nd row of H(g∞)
are linearly dependent and hence detH(g∞) = 0. Suppose that n1, . . . , nd are
distinct, and let w denote the element in the symmetric group Sd which sends i ∈
{1, . . . , d} to ni. This occurs exactly when g∞ ∈ ẇT (F∞)I where T ⊂ GLd denotes
the subgroup of diagonal matrices and ẇ ∈ GLd(F∞) ⊂ GLd(A) is the permutation

matrix associated with w. Then we have
∏d
i=1Hi,1(g∞) = |det(g∞)|−s∞ and hence

detH(g∞) = sgn(w) detH(ẇ−1g∞) = sgn(w) |det(g∞)|−s∞ detD(s),

where D(s) is the d× d matrix

D(s) =



1 q−s∞ . . . . . . . . . q−s∞
1 1 q−s∞ · · · q−s∞
...

. . .
...

...
. . . q−s∞

1 . . . . . . . . . . . . . . 1

 .

Simple calculation shows that detD(s) = (1− q−s∞ )d−1.
This shows that the left hand side of the equation in Theorem 6.3 equals

(1− q−s∞ )d−1vol(K∞
I,J)

∑
w∈Sd

∫
Z(F∞)\ẇT (F∞)I

f(g∞, γ)sgn(w)dg∞.

One can then verify that this equals the right hand side by checking the definition
of ηI,J,γ and the definition of β∗,...,∗ in Section 5.4.4. �

This completes the proof of Theorem 6.3. �

7. Regulator

In this section, we construct a homomorphism which we call regulator map from
the K-group of Drinfeld modular varieties to the space of automorphic forms.

7.1. K-theory for rigid analytic spaces.

For a rigid analytic space Y, we may define the K-theory ring K∗(Y) using
the exact category of locally free coherent OY-modules. Let us collect the basic
properties in this section.

7.1.1. LetY be a rigid analytic space (of finite type) over F∞. We letKm(Y) denote
the m-th K-group constructed from the exact category of locally free coherent OY-
modules. The graded abelian abelian group K∗(Y) becomes a graded ring by giving
the product structure following [Wa, §9]. For a morphismY1 → Y2 of rigid analytic
spaces over F∞, we have a pullback morphism K∗(Y1)→ K∗(Y2) of graded rings.

7.1.2. Let Y be a scheme of finite type over F∞. Let Y an denote the rigid analytic
space associated with Y . There is an exact functor − ⊗OY

OY an from the exact
category of locally free coherent OY -modules to that of OY an-modules. This functor
induces a morphism of graded rings K∗(Y )→ K∗(Y

an). Here the ring structure of
K∗(Y ) is as defined in [Gi], which uses the recipe of [Wa, §9].
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7.1.3. Let B be an affinoid algebra over F∞. It is known ([Bos-Gu-Re, p.378,
Theorem 3], [Bos-Gu-Re, p.374, Proposition 2] and [Fr-vdPu, p.98, Proposition
4.7.2]) that the abelian category of finitely generated projective B-modules and the
category of locally free coherent OSpmB-modules are equivalent. This induces an
isomorphism of graded rings K∗(SpecB) ∼= K∗(SpmB).

7.1.4. Let Y be a rigid analytic space over F∞. Let us construct the symbol map
O(Y)× → K1(Y). Let f ∈ O(Y)×. Then f gives a morphism f : Y → Gan

m,F∞
of

rigid analytic spaces. We define the image of f in K1(Y) under the symbol map to
be the image of the coordinate function t in O(SpecF∞[t, t−1]) = O(Gm,F∞) via
the map

O(Gm,F∞)× = K1(Gm,F∞)
(1)−−→ K1(Gan

m,F∞
)

(2)−−→ K1(Y)

where the map (1) is as in Section 7.1.2 and is the map (2) is the pullback by f .
To see that it is a group homomorphism, let us first recall the following fact.

Let m,pr1, pr2 : Gm × Gm → Gm denote the multiplication, the first projection,
and the second projection respectively. Let t ∈ O(Gm)× ∼= K1(Gm) denote the
coordinate function. Then we have an equality m∗t = pr∗1t+pr∗2t in K1(Gm×Gm).

Now let f1, f2, f3 = f1f2 ∈ O(Y)× and regard each of them as a morphism Y→
Gan
m,F∞

. Since m ◦ (f1, f2) = f3, we obtain f∗3 t = (f1, f2)
∗m∗t = (f1, f2)

∗(pr∗1t +

pr∗2t) = f∗1 t+f
∗
2 t using the fact above. Here we used the same notationm,pr1, pr2, t

for its analytification by abuse. This shows that the symbol map is a group homo-
morphism.

We remark that the symbol map for schemes may be defined in an analogous
manner.

7.1.5. Let f : Y1 → Y2 be a morphism of rigid analytic spaces over F∞. The
symbol maps O(Yi)

× → K1(Yi) for i = 1, 2 defined in the previous section are
compatible in the sense that the following diagram is commutative:

O(Y2)
× −−−−→ K1(Y2)

f∗
y f∗

y
O(Y1)

× −−−−→ K1(Y1)

where the horizontal arrows are the symbol maps. The commutativity follows
immediately from the definitions.

7.1.6. Let Y be a scheme of finite type over F∞ and let Y an denote the associated
rigid analytic space. Then the diagram

O(Y )×
(1)−−−−→ K1(Y )

(2)

y y(3)

O(Y an)×
(4)−−−−→ K1(Y

an)

where the map (1) is the symbol map (for a scheme), the map (2) is the analytifi-
cation map, the map (3) is the map in Section 7.1.2, and the map (4) is the symbol
map (Section 7.1.4, is commutative. The commutativity follows from the fact that
the symbol map O(Y )× → K1(Y ) for a scheme can be constructed in a similar way
as we did in Section 7.1.4 for rigid analytic spaces.
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7.1.7. Let B be an affinoid algebra over F∞. Then the diagram

B× −−−−→ K1(SpmB)∥∥∥ y∼=

B× −−−−→ K1(SpecB)

where the horizontal arrows are the symbol maps and the right vertical arrow is the
map defined in Section 7.1.3, is commutative. The commutativity can be checked
in the same manner as in Section 7.1.6.

7.2. Affinoid covering of Drinfeld symmetric spaces.

The Drinfeld symmetric space X has a canonical covering of affinoids Uσ where
σ is a simplex in the Bruhat-Tits buildings BT •. The aim of this section is to give
an explicit description of this covering and of the coordinate rings of the affinoid
and the corresponding formal model.

All the results in this subsection is well-known and some of them are found in
the literature. In particular, the explicit local description of the formal model of X
is found in [Ge, p.75-76, III.1.3]. However we reproduce the results here because
we need to point out some ring theoretic properties and to describe explicitly the
relation with the continuous map λ : X→ |BT•| in Section 7.2.1.

7.2.1. Let |BT•| be the geometric realization of the Bruhat-Tits building BT •. In
[Dr, p.579, §6, 3)], Drinfeld constructs a canonical continuous map λ : X → |BT•|
from the underlying topological space of X to |BT•|. Let σ ∈

∐
0≤i≤d−1 BT i be a

simplex of BT •. Let |σ| ⊂ BT denote the geometric realization of the simplicial
subcomplex of BT • which consists of the faces of σ. It follows from [Dr, Proposition
6.1, p.579] that the subset λ−1(|σ|) ⊂ X is an admissible open subset of X such
that the restriction Uσ of (X,OX) to λ−1(|σ|) is an affinoid. The map λ : X →
|BT•| is GLd(F∞)-equivariant. The action of g ∈ GLd(F∞) induces for each σ ∈∐

0≤i≤d−1 BT i a canonical isomorphism Uσ
∼=−→ Ugσ.

Let Uσ denote the formal model of Uσ over Spf O∞, and let Boσ denote the
coordinate O∞-algebra of Uσ. In this section, we give a list of properties of the ring
Boσ which will be used later.

7.2.2. Let i be an integer with 0 ≤ i ≤ d − 1 and let σ ∈ BT i be an i-simplex of

BT •. Let us take a representative (Lj)j∈Z ∈ B̃T i of σ. We use the notation in

Section 3.2.2 and in Section 3.2.4. For x ∈ X̃ = V∗,an
∞ \ (∪H0∈H0H

an
0 ), we let [x]

denote the image of x under the canonical morphism X̃ → X. It follows from the
construction of the map λ that the subset λ−1(|σ|) ⊂ X is equal to the set of classes

[x] ∈ X of x ∈ X̃ satisfying the following condition.

• For j = 0, . . . , i and for any v, v′ ∈ Lj with v 6∈ Lj+1 and v′ 6∈ $∞L0, we
have |vτx|∞ ≥ |v′τx|∞ ≥ |$∞vτx|∞.

From this we have the following explicit description of the O∞-algebra Boσ. For
j = 0, . . . , i+ 1, choose a finite subset Sj ⊂ Lj \ Lj+1 such that the composite

Sj ↪→ Lj\Lj+1 � (Lj/$∞Lj)\(Lj+1/$∞Lj) � ((Lj/$∞Lj)\(Lj+1/$∞Lj))/κ
×
∞
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is surjective. Then the O∞-algebra Boσ is isomorphic to the $∞-adic completion of
the O∞-subalgebra of Frac Sym•L0 generated by the set∪

0≤j≤j′≤i+1

{`/`′ | ` ∈ Sj , `′ ∈ Sj′}.

7.2.3. For a more explicit description of the O∞-algebra Boσ, we choose the sets
S0, . . . , Si in the following way. Take a complete set S ⊂ O∞ of representatives of
κ∞ = O∞/$∞O∞ in O∞. For j = 0, . . . , i+ 1, let dj denote the the dimension of
L0/Lj over κ∞. Take an O∞-basis e1, . . . , ed of L0 such that for j = 0, . . . , i the set
{$∞e1, . . . , $∞edj , edj+1, . . . , ed} forms an O∞-basis of Lj . For j = 1, . . . , d − 1
we put ed+j = $∞ej . For j = 0, . . . , i, we put

Sj =
∪

dj<j′≤dj+1

{ej′ + a1ej′+1 + a2ej′+2 · · · ad−1ej′+d−1 | a1, . . . , ad−1 ∈ S}.

This particular choice of the sets S0, . . . , Si gives the following description of the
O∞-algebra Boσ. For j ∈ Z/dZ, define an element Tj ∈ Frac Sym•L0 as follows. For
j = 1, . . . , d − 1 we put Tj = ej+1/ej . For j = 0 we put T0 = $∞e0/ed. Let y be
the product

y =
∏

j∈Z/dZ

∏
a1,...,ad−1∈S

(1 + a1Tj + a2TjTj+1 + · · ·+ ad−1Tj · · ·Tj+d−2)

and let z be the product

z =
∏

j∈{0,...,d−1}\{d0,...,dd−1}

Tj .

Then T0, . . . , Td−1 are algebraically independent over O∞ and the O∞-algebra Boσ
is isomorphic to the $∞-adic completion of the O∞-algebra

Rσ = O∞[T0, T1, . . . , Td−1, y
−1, z−1]/(T0T1 · · ·Td−1 −$∞).

Let I be a subset of {0, 1, . . . , i} and let σ′ be a face of σ corresponding to the subset
{cl(Li) |i ∈ I} of the set V (σ) = {cl(L0), . . . , cl(Li)} ⊂ BT 0 of vertices of σ. Then
the O∞-algebra Boσ is isomorphic to the $∞-adic completion of the O∞-algebra
Rσ[T

−1
I ] where TI =

∏
j∈{0,...,i}\I Tdj . The homomorphism Boσ → Boσ′ obtained by

taking$∞-adic completion of the canonical homomorphism Rσ → Rσ[T
−1
I ] is equal

to the homomorphism Boσ → Boσ′ induced from the inclusion λ−1(|σ′|) ⊂ λ−1(|σ|)
of admissible open subsets of X.

7.2.4. Let the notation be as in Section 7.2.3. If follows easily from the definition
that the O∞-algebra Rσ has the following properties:

(1) The ring Rσ is a regular integral domain of dimension d,
(2) The ring Rσ is flat and finitely generated over O∞,
(3) The O∞-algebra Rσ has semistable reduction, that is, the special fiber

Spec Rσ/$∞Rσ is a simple normal crossing divisor of SpecRσ.

The property (2) implies that the ring Rσ is excellent ([EGAIV, 7.8, p.214]). Hence
its $∞-adic completion Boσ is also a regular noetherian integral domain.
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7.2.5. For each simplex σ ∈
∐

0≤i≤d−1 BT i, let Xσ denote the intersection of all

irreducible components in SpecBσ, whereBσ = Boσ/$∞B
o
σ. SinceBσ is isomorphic

to Rσ/$∞Rσ, it follows from the definition of Rσ that the schemes SpecBσ and
Xσ have the following properties.

(1) The set of irreducible components of SpecBσ is canonically isomorphic to
the set of vertices of σ.

(2) Each irreducible component of SpecBσ is smooth of dimension d− 1 over
Specκ∞.

(3) The scheme Xσ is non-empty, irreducible and smooth of dimension d−1− i
over Specκ∞.

(4) For each vertex v ∈ V (σ), let σ′ = σ ×V (σ) (V (σ) \ {v}) be the face of σ
corresponding to the subset V (σ) \ {v} ⊂ V (σ), and let Xσ,v denote the

intersection of all irreducible components of SpecBσ except for the compo-
nent corresponding to v. ThenXσ,v is non-empty, irreducible and smooth of
dimension d−i over Specκ∞. The scheme Xσ is a closed subscheme of Xσ,v

and the canonical morphism SpecBσ′ → SpecBσ induces an isomorphism
from Xσ′ to the open complement Xσ,v \Xσ of Xσ in Xσ,v.

(5) If i = d− 1, then Xσ is isomorphic to Specκ∞.
(6) If i = d − 2, then Xσ is isomorphic to the projective line over Specκ∞

minus all the κ∞-rational points.

7.2.6. Let v ∈ BT v be a 0-simplex of BT •. It follows from the properties of Bov
described above that the ideal $∞B

o
v of Bov generated by $∞ is a prime ideal and

that the localization of the ring Bov at ($∞) ⊂ Bov is a discrete valuation ring.
Hence the prime ideal $∞B

o
v defines a valuation on (the field of fractions of) Bv,

which will be denoted by v : Bv → Z by abuse of notation. For a unit f ∈ O(X)×
on X, we write v(f) for the image of f under the map O(X)× → B×

v → Z where
the first map is the pullback by the canonical open immersion and the second map
is the valuation v.

7.3. Regulator for Drinfeld symmetric spaces.

7.3.1. For an integer i ≥ 0, let σ ∈ BT i be an i-simplex. We have a canonical
homomorphism

K∗(X)
(1)−−→ K∗(SpmBσ)

(2)−−→ K∗(SpecBσ)(7.1)

where the map (1) is the pullback map with respect to the open immersion Uσ ↪→ X.
The map (2) is the map constructed in Section 7.1.3

One can then apply the localization sequence to the triple SpecBσ ⊂ SpecBoσ ⊃
SpecBσ, and obtain a boundary homomorphism Km+1(SpecBσ)→ Km(SpecBσ)
for each integer m ≥ 0. In this way we obtain a canonical homomorphism

bσ : K∗(X)→ K∗−1(SpecBσ)

as the composite of the boundary map with the map (7.1)

7.3.2. Let σ ∈ BT i be an i-simplex and let τ be a face of σ. Then there is a
canonical open immersion Uτ → Uσ, which in turn induces a flat map of rings
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Boτ → Boσ. This implies that the diagram

K∗(SpecBτ ) −−−−→ K∗−1(SpecBτ )y y
K∗(SpecBσ) −−−−→ K∗−1(SpecBσ)

where the vertical arrows are the boundary maps and the vertical arrows are the
pullback maps, is commutative.

7.3.3. For a pointed simplex σ+ ∈ BT •,∗, we let bσ+ : K∗(X) → K∗−1(SpecBσ)
denote the map bσ where σ ∈ BT • is the (not pointed) underlying simplex of σ+.
Using the remarks in Section 7.3.2, we see that the maps bσ+ assemble together to
give a GLd(F∞)-equivariant homomorphism

(7.2) K∗(X)→ lim←−
σ+∈BT •,∗

K∗−1(SpecBσ).

7.3.4. Let σ+ = ((Li)i∈Z, L0) ∈ BT m−1,∗ be a pointed (m − 1)-simplex. We let
σj = (· · · % L0 % · · · % Lj % Lm % · · · ) ∈ BT j for 0 ≤ j ≤ m − 1 so that σj is a
face of σj+1 and σm−1 is the underlying simplex of σ+. We obtain a homomorphism

Km−1(SpecBσ)→ Km−1(Xσ0)→ · · · → K0(Xσm−1)
∼= Z.

where the first map is the pullback map and each of the rest is the boundary map
(See Section 7.2.5 for the notation Xσ). Thus we obtain a GLd(F∞)-equivariant
homomorphism

regX,m : Km(X)→ Map(BT m−1,∗,Z),
as the composition of the map above with the map (7.2), which we call the (m-th)
regulator for X.

7.3.5. In this section, we show that the image of the regulator map is contained in
the space of harmonic cochains.

Let m ≥ 0 be an integer. Let σ ∈ BT i with i ≤ m − 1. For j = 0, . . . , i,
let us take a j-simplex σj ∈ BT j such that σi = σ and σj is a face of σj+1 for
j = 0, . . . , i− 1. We obtain a sequence of homomorphisms

Km−1(Xσ0
)→ Km−2(Xσ1

)→ · · · → Km−1−i(Xσ)

where each arrow is the boundary map in a localization sequence. We consider the
map Km−1(SpecBσ)→ Km−1−i(Xσ) obtained as the composite of the map above
with the pullback map Km−1(SpecBσ)→ Km−1(Xσ0).

Lemma 7.1. The homomorphism Km−1(SpecBσ) → Km−1−i(Xσ) defined above
is independent, up to sign, of the choice of σj’s.

Proof. Let σj , σ
′
j (0 ≤ j ≤ i) be two choices. We claim that the two homomor-

phisms Gm−1(Bσ) → Gm−1−i(Xσ) for σj ’s and for σ′
j ’s coincide. We may assume

that there exists j0 with 0 ≤ j0 ≤ i− 1 such that σj0 6= σ′
j0

and σj = σ′
j for j 6= j0.

We put Y = Xσj0−1 if j0 ≥ 1 and put Y = SpecBσ if j0 = 0. Let X denote the

locally closed reduced subscheme of SpecBσ whose underlying set is Xσj0
∪Xσ′

j0
∪

Xσj0+1
. Then the connecting homomorphismKm−j0(Y )→ Km−j0−1(Xσj0

) is equal

to the composition of the connecting homomorphism Km−j0(Y ) → Km−j0−1(X)
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and the restriction Km−j0−1(X) → Km−j0−1(Xσj0
) with respect to the open im-

mersion Xσj0
⊂ X. Similar fact also holds for the connecting homomorphism

Km−j0(Y )→ Km−j0−1(Xσ′
j0
). Since the two homomorphisms

Km−j0−1(X)→ Km−j0−1(Xσj0
)→ Km−j0−2(Xσj0+1)

and
Km−j0−1(X)→ Km−j0−1(Xσ′

j0
)→ Km−j0−2(Xσj0+1)

differ by the multiplication by −1, the claim follows. �
Lemma 7.2. The image of regX,d−1 is contained in the space of harmonic cochains.

Proof. Let κ ∈ Kd(X) and consider f = regX,d−1(κ). We need to verify Conditions
(1)(2) of Section 5.2.2. Condition (1) follows from Lemma 7.1. To verify Condition
(2), let us use the notation τ+ and τ i+ there. Let σj ∈ BT j be a j-simplex for
0 ≤ j ≤ d− 2 such that σd−2 = τ and σj is a face of σj+1. Then using Lemma 7.1,
we see that the value (regXκ)(τ

i
+) is, up to sign (but the same sign for all i), the

image of κ under the map

Kd+1(X)→ Kd(Xσ0)→ Kd−1(Xσ1)→ · · · → K1(Xσd−1
)
∂i−→ K0(Xτi)

where the first map is the composition of the restriction map and the boundary map,
and the rest are boundary maps; we labeled the last map for later use. We note
that Xσd−1

= Xσ is the projective line minus all the κ∞-rational points, and the set
{Xτj}0≤j≤q is the set of all the κ∞-rational points of Xσ. By explicit computation,
we know that K1(Xσ) ∼= O(Xσ)

× and K0(Xτj )
∼= Z for all j. Furthermore, the

boundary map ∂j sends a unit f ∈ O(Xσ)
× to its order at Xτj . Thus the sum is

zero as claimed. �
7.4. Regulator on symbols.

7.4.1. We define a map regu : O(X)×⊗d → Hom(BT d−1,∗,Z) as follows. Let f1 ⊗
· · ·⊗fd ∈ O(X)×⊗d and ((Li)i∈Z, L0) ∈ BT d−1,∗ be a pointed (d−1)-simplex. Then
we put

(regu(f1 ⊗ · · · ⊗ fd))((Li)i∈Z, L0) = det

ordL0f1 . . . ordLd−1
f1

...
. . .

...
ordL0fd . . . ordLd−1

fd

 ,

where the symbol ord is as in Section 3.2.5.
We have a symbol map sym : O(−)×⊗d → Kd(−) which is obtained from the

symbol mapO(−)× → K1(−) (Section 7.1.4) and the product structureK1(−)⊗d →
Kd(−) (Section 7.1.1).

Proposition 7.3. Let the notation be as above. We have regu = regX ◦ sym.

Let σ+ = ((Li)i∈Z, L0) ∈ BT d−1,∗. We let σj = (· · · % L0 % · · · % Lj % Ld %
. . . ) ∈ BT j (as in Section 7.3.4). Then by definition, reg ◦ sym(F ) evaluated at σ+
is the image of the element F under the composition

(7.3)
Kd(X)

(1)−−→ Kd(SpecBσ)
∂d−→ Kd−1(SpecBσ)

(2)−−→ Kd−1(Xσ0)
∂d−1−−−→ . . .

∂1−→ K0(Xσd−1
) ∼= Z

where the map (1) is the map (7.1), the map (2) is the pullback map, and each ∂j
for 1 ≤ j ≤ d is the boundary map in a localization sequence.
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7.4.2. Let σ ∈ BT d−1 be the class of σ+. We use the notation in Section 7.2.2.

Let R̂σ denote the completion of Rσ at the maximal ideal (T0, . . . , Td−1). Let

pj = (Tj , . . . , Td−1) ⊂ R̂σ for j = 0, . . . , d−1 and pd = (0). Each pj is a prime ideal;

we let κ(pj) denote the field of fractions of R̂σ/pjR̂σ. For j = 0, . . . , d − 1, note

that R̂σ,pj/pj+1R̂σ,pj is a discrete valuation ring. Its field of fractions is κ(pj+1)
and the residue field is κ(pj). We obtain a homomorphism

(7.4) Kd(Specκ(pd))→ Kd−1(Specκ(pd−1))→ · · · → K0(Specκ(p0)) = Z

where each map is the boundary map in the localization sequence associated to the

triple Specκ(pj+1) ⊂ Spec R̂σ/pjR̂σ ⊃ Specκ(pj).

For j = 0, . . . , d− 1, the element Td−j−1 ∈ R̂σ is a prime element of the regular

noetherian ring R. Hence the localization R̂σ,(Td−j−1) of R̂σ at the prime ideal

(Td−j−1) is a discrete valuation ring. Let v′j denote the valuation (Frac R̂σ)
× → Z

given by the discrete valuation ring R̂σ,(Td−j−1).

Lemma 7.4. Let h1, . . . , hd ∈ R̂σ[1/$∞]×. The image of h1⊗· · ·⊗hd ∈ (R̂σ[1/$∞]×)⊗d

under the map (R̂σ[1/$∞]×)⊗d → (κ(pd)
×)⊗d → Kd(Specκ(pd))

(1)−−→ Z, where the
map (1) is (7.4), equals det(v′j−1(hi))1≤i,j≤d.

Proof. Note that R̂σ[1/$∞]× is generated by R̂×
σ and T0, . . . , Td−1. Hence the

claim above follows by using the computation of boundary maps of K-theory in
localization sequences of Gillet described in [Gi, Theorem 7.21, p.274]. Note also
that since the target group Z is torsion free, the 2-torsion appearing in the formula
of Gillet may be ignored. �

7.4.3. Let vj denote the class of Lj in BT 0. Then the composite Boσ → R̂→ R̂(Td−j)

factors through the canonical homomorphism Boσ → Bovj . Let ξj : Bovj → R(Td−j)

denote the induced homomorphism.

Lemma 7.5. the diagram

O(X)× −−−−→ Bovj [1/$∞]×
ξj−−−−→ R̂(Td−j)[1/$∞]×

ordLj

y vj

y v′j

y
Z Z Z

is commutative.

Proof. Since B̃oLj ,($∞) → Bovj ,($∞) → R̂(Td−j), where B̃
o
Lj

is as in Section 3.2.5, are

the homomorphism of discrete valuation rings with uniformizer $∞, the commu-
tativity follows from Lemma 7.6 below. �

Lemma 7.6. Let L be an O∞-lattice of V∞ and let v ∈ BT 0 denote its class. Then
for f ∈ O(X)× we have ordL(f) = v(f), where in the left hand side we regard f as

an element in O(X̃)× via the pullback by the canonical quotient map X̃→ X.

Proof. This follows from the definitions given in Sections 3.2.5, 7.2.6. �
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7.4.4. Proof of Proposition 7.3. One can check that the homomorphism (7.3) equals
the composition

Kd(X)→ Kd(SpecBσ)
(1)−−→ Kd(Specκ(p0))

(2)−−→ K0(Specκ(pd)) ∼= Z
where the map (1) is the pullback map and the map (2) is the map (7.4). Then the
claim follows from Lemma 7.4 and Lemma 7.5. �
7.5. Regulator for Drinfeld modular varieties.

Let L1 ⊂ L2 ⊂ V∞ be Â-lattices. Using the uniformization of Drinfeld modular
varieties (see Section 3.2.7), we obtain a homomorphism, which is denoted regL1,L2

,
as the composite

Kd(Md
L2/L1,F

)
(1)−−→ Kd(Md

L2/L1,F
×SpecF SpecF∞)

(2)−−→ MapGLd(F )(GLd(A∞)/K∞
L1,L2

,Kd(X))
(3)−−→ MapGLd(F )(BT d−1,∗ ×GLd(A∞)/K∞

L1,L2
,Z) (4)−−→ (A1)

K∞
L1,L2 ,

where the map (1) is the pullback map, the map (2) is the analytification, the
map (3) is the map induced by regX, and the map (4) is the inclusion. We write
reg : Kd(Md)⊗Z Q→ A1 for the map induced by the limit lim−→(L1,L2)

regL1,L2
.

Again using the uniformization, we define regu,L1,L2
as the composite

O(Md
L2/L1,F

)×⊗d (1)−−→ MapGLd(F )(GLd(A∞)/K∞
L1,L2

,O(X)×⊗d)
(2)−−→ MapGLd(F )(BT d−1,∗ ×GLd(A∞)/K∞

L1,L2
,Z) (3)−−→ (A1)

K∞
L1,L2

where the map (1) is the analytification using the uniformization, the map (2) is
the map obtained using regu, and the map (3) is the inclusion.

The following is a corollary to Proposition 7.3. We omit the proof.

Corollary 7.7. Let the notation be as above. We have an equality of two maps:

regu,L1,L2
= regL1,L2

◦ sym : O(Md
L2/L1,F

)×⊗d → (A1)
K∞

L1,L2 .

�

8. Zeta value formula

The aim of this section is to prove Theorem 8.2. This states that the image of
the regulator map is expressed in terms of the L-function. This may be regarded
as the function field analogue of Kato’s refinement ([Ka, p.127, Theorem 2.6]) of
Beilinson’s theorem [Be, Theorem 5.1.2].

Recall that we defined a homomorphism κ in Section 2.4.5 and a homomorphism
E in Section 6.1.1. We defined a homomorphism reg in Section 7.5.

Lemma 8.1. Let Φ∞ ∈ S ′(V∞)⊗d. Then

reg(κ(Φ∞)) = lim
s→0

1

(1− q−s∞ )d
E(Φ∞),

where
reg : Kd(Md)⊗Z Q→ A1

is the regulator map defined in Section 7.5.

Proof. This follows from Lemma 6.1 and Proposition 3.4 using Corollary 7.7. �
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Theorem 8.2. Let J ⊂ I be nonzero ideals of A. Let f ∈ Ao
C(I, J, 1) be a cusp

form satisfying Conditions (1)(2) of Section 4.2.2. Let L1 and L2 be Â-lattices as
defined in Section 2.4.7. Let γ ∈ GLd(A∞). Then

〈f, regL1,L2
(κI,J,γ)〉 =

1

log q∞
lim
s→0

∂

∂s
LI,J(f, s− d− 1

2
)〈f, ηK∞

I,J ,γ
〉.

Proof. Divide both sides of the equation in Theorem 6.3 by (1 − q−s∞ )d. Then
compute the limit as s tends to 0 using Lemma 8.1. The claim follows. �

Remark 8.3. Theorem 8.2 describes the value at s = −d−1
2 of the first derivative

of the L-function L(f, s). We note that when L(f,−d−1
2 ) 6= 0, then the right hand

side of the formula of Theorem 8.2 is zero by Corollary 6.4.

9. Nontriviality

The aim of this section is to prove Theorem 9.1. This states that the cusp form
part of the image of the regulator map of (the limit of) Drinfeld modular varieties
contains the space Ao

St (defined below). This may be regarded as the function field
analogue of the surjectivity of the regulator map of the Beilinson conjectures.

The proof uses the zeta value formula (Theorem 8.2), Corollary 5.16, and some
standard results from the theory of automorphic forms.

9.1. The image of the regulator map.

We defined an element [ι(σ0)] ∈ Hd−1
c (BT •,C) in Section 5.2.3. We also write

[ι(σ0)] for the corresponding element in Std under the isomorphism (see Section 5.2.3)
of Borel. Note that it is an Iwahori spherical vector, i.e., a nonzero element which
is invariant under the action of the Iwahori subgroup I. We let ASt denote the
image of the map HomGLd(F∞)(Std,A1)→ A1 given by the evaluation at [ι(σ0)].

We putAo
St = ASt∩Ao

1. Let us consider the composite of the projection P o : A →
Ao defined in Section 4.3 and the homomorphism in the statement of Corollary 5.7.
We claim that the group Ao

St is equal to the image of this composite map. Note
that the center F×

∞ of GLd(F∞) acts trivially on Std. It follows that the image
of the latter homomorphism is contained in A1. Hence by Corollary 5.7, it is also
equal to the image of the composite with the projection P o of the homomorphism
(5.9).

Theorem 9.1. Let the notation be as above. Then the image of the composite map

Kd(Md)⊗Z C reg−−→ A1
P o

−−→ Ao
1,

equals Ao
St.

Remark 9.2. Although we omit the proof, it is not difficult to show that the
homomorphisms reg and P o are defined over Q in the sense that we have a sequence
of homomorphisms

Kd(Md)⊗Z Q
regQ−−−→ A1 ∩ AQ

P o
Q−−→ Ao

1 ∩ AQ,

which gives the sequence in Theorem 9.1 after tensoring by C. We have a corollary
that the image of the sequence above equals Ao

St ∩ AQ. We also remark that the
variant of Corollary 1.2 holds.
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9.2. Proof of Theorem 9.1.

Using Lemma 7.2 and Corollary 5.5, we see that the image of the regulator map
reg is contained in ASt. It remains to show that P o ◦ reg surjects onto Ao

St.
Let π = ⊗′

vπv ⊂ Ao
1 be an irreducible cuspidal automorphic representation

such that π∞ is isomorphic to the Steinberg representation Std. By [Sh, p.190,
COROLLARY], the representation πv is generic for each v. Thus we can take a
nonzero f = ⊗vfv ∈ π such that fv is a new vector for v 6=∞ and f∞ is an Iwahori
spherical vector. Let Iπ be the prime-to-∞-part of the conductor of π. Then it is
known that f ∈ πK∞

A,Iπ . We note that f satisfies Condition (3) of Section 4.2.2.
We consider the map

(9.1) Kd(Md)⊗Z C reg−−→ A1
〈f,−〉−−−→ C.

Lemma 9.3. If the homomorphism (9.1) is nonzero for every irreducible cuspidal
automorphic representation π = ⊗′

vπv ⊂ Ao
1 such that π∞ ∼= Std, then Theorem 9.1

holds.

Proof. As is well known, there is a direct sum decomposition Ao
1 = ⊕π′π′ where

π′ ⊂ A1 runs over the irreducible automorphic representations contained in Ao
1.

The multiplicity one theorem says that no two direct summands are isomorphic.
Let M = Image[P o ◦ reg] ∩ Ao

St. One can check that the maps P o and reg
are GLd(A∞)-equivariant. So M ⊂ Ao

St is a GLd(A∞)-submodule. From the as-
sumption of the lemma, we have, for any irreducible automorphic representation
π = ⊗′

vπv ⊂ Ao
1 such that π∞ ∼= Std, the anti-linear map

M ⊂ Ao
1

〈f,−〉−−−→ C

where f is constructed from π as above, is nonzero. Let h = (hπ′)π′ ∈M ⊂ Ao
St be

an element which is not in the kernel of the map above. Take a sufficiently small

compact open subgroup K∞ ⊂ GLd(Â) such that all hπ′ are fixed under K∞.
From the strong multiplicity one theorem, it follows that one can find a Hecke

operator T (for K∞) such that T = id on πK∞
and T = 0 on π′K∞

for π′ such that
π′ 6= π and hπ′ 6= 0. One applies this T to h as an element in MK∞

, and sees that
hπ ∈M . The claim follows. �

Lemma 9.4. The map (9.1) is nonzero.

Proof. We choose an auxiliary prime v0 as follows. If d = 1 and π is the trivial
representation, we fix an arbitrary finite prime v0. Otherwise, we fix a finite prime
v0 satisfying the following condition: The local L-factor L(πv0 , s) does not have a
pole at s = −(d−1)/2. The existence of such v0 is obvious when d = 1, and follows
from [Ja-Sh, p. 515, (2.5)] when d ≥ 2.

We obtain the following isomorphism

HomGLd(F∞)(Std,AC(v0, Iπv0, 1)) ∼= HBM
d−1(XK∞

v0,Iπv0
,•,C)

using Corollary 5.6. There is an element in the left hand side which sends ι(σ0) ∈
Std to f since f∞ is an Iwahori spherical vector. As the support of f is com-
pact modulo center, the corresponding element on the right hand side lies in the
image of the canonical map Hd−1(XK∞

v0,Iπv0
,•,C) → HBM

d−1(XK∞
v0,Iπv0

,•,C). Using
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Corollary 5.16, we can express f as a sum

f =
∑

γ∈GLd(A∞)

aγηv0,Iπv0,γ ∈ AC(v0, Iπv0, 1)

with aγ ∈ C. We let

κf =
∑

γ∈GLd(A∞)

aγκv0,Iπv0,γ ∈ Kd(Md
v0,Iπv0,F )⊗Z C.

Using Lemma 4.1, it follows from Theorem 8.2 that

〈f, reg κf 〉 =
1

log q∞
lim
s→0

∂

∂s
L{∞,v0}(π, s− d− 1

2
)〈f, f〉,

where L{∞,v0}(π, s) is the global L-function of the representation π without the
local factors at ∞ and at v0. If d = 1 and π is the trivial representation, the
global L-function L(π, s) = L{∞,v0}(π, s)L(πv0 , s)L(π∞, s) has a simple pole at
s = 0. Otherwise, by [Ja-Sh, p. 557, (5.4)], L(π, s) has neither a pole nor a zero at

s = −(d− 1)/2. Since L(π∞, s) = L(Std, s) = (1− q−s+
d−1
2∞ )−1, it follows with our

choice of v0 that lims→0
∂
∂sL

{∞,v0}(π, s− d−1
2 ) is nonzero. �

This completes the proof of Theorem 9.1. �

Proof of Theorem 1.2. Recall that we defined the action of GLd(A∞) on the moduli
space Md in Section 2.4.2. Take the K∞

L,Â⊕d
-invariant part of the statement of

Theorem 9.1 as we have done in Section 2.4.7. Then use the étale descent of
rational K-theory to conclude. �
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[Gi] Gillet, H.: Riemann-Roch theorems for higher algebraic K-theory. Adv. Math. 40,

203-289 (1981)
[Go-Ja] Godement, R., Jacquet, H.: Zeta functions of simple algebras. Lecture Notes in

Mathematics. 260. Berlin-Heidelberg-New York: Springer-Verlag. (1972).
[Gr] G. T. Grigorov, Kato’s Euler Systems and the Main Conjecture, Thesis, Harvard

University (2005)
[Gro-Ro] Gross, B., Rosen, M.: Fourier series and the special values of L-functions. Adv.

Math. 69, No.1, 1-31 (1988)
[Ha] Harder, G.: Chevalley groups over function fields and automorphic forms. Ann.

Math. (2) 100, 249-306 (1974)
[Ja-Pi-Sh] Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: Conducteur des représentations du
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