ZETA ELEMENTS IN THE K-THEORY OF DRINFELD
MODULAR VARIETIES

SATOSHI KONDO AND SEIDAI YASUDA

ABSTRACT. Beilinson [Be] constructs special elements in the second K-group
of an elliptic modular curve, and shows that the image under the regulator map
is related to the special values of the L-functions of elliptic modular forms. In
this paper, we give an analogue of this result in the context of Drinfeld modular
varieties.

(A partial result appeared in our preprint “Euler systems on Drinfeld modular
varieties and zeta values” (2005) RIMS-1499.)

1. INTRODUCTION

The theme of this article is a function field analogue of Beilinson’s result on
elliptic modular curves concerning his conjectures on motives over Q (see [Be, Sec-
tion 5]). The conjectures (among other things) relate the image of the regulator
map and the special values of L-functions. Our main theorem (Theorem 1.1 be-
low) is the Drinfeld modular analogue of Beilinson’s theorem ([Be, Theorem 5.1.2])
or more precisely its refinement due to Kato ([Ka, p.127, Theorem 2.6]) which
computes explicitly the regulator map in terms of the special value of L-function.

Let us give some notation to state our results. We refer to later sections for the
precise statement. Let F' be the function field of a projective smooth geometrically
irreducible curve C' over a finite field. We fix a closed point oo of C' and let
A =T(C\ {0}, O¢) denote the coordinate ring of the affine curve C'\ {oco}. Let
(o denote the cardinality of the residue field at co.

Let d be a positive integer. Let J C I C A be nonzero ideals. We let Ny ; =
(A/1)®4=1q(A/J). Ttis an A-module of finite length. We consider the moduli space
M{Iiv,,,, of rank d Drinfeld modules with level N; ; structures (see Section 2.4.7).

Let A~ = [T ..,
GLg(A), we construct, in Section 2.4.7, an element

KI,7~ € Kd(./\/lglv]“,) Rz Q

F,, denote the ring of finite adeles. Given an element v €

using theta functions and Siegel units. Let Z denote the center of GL4, let A; denote
the space of Z(F)-invariant automorphic forms on GLg4 p (see Section 4.1.1), and
let A9 C A; denote the subspace of Z(Fy)-invariant cusp forms. The main result
of this paper is a formula which describes the image of the element ~;, s~ under the
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regulator map
regy 1, Kd(M?VLJ) ®R7Q — (A]_)K??J
defined in Section 7.5. Here the symbols Ly, Lo in the subscript denote cer-
tain A-lattices of A>®d corresponding to I and J defined in Section 2.4.7, and
(A1)ET7 © Ay denotes the subspace of Z(Fa) x K2°;-invariant automorphic forms
where K77, C GL;4(A) is the open compact subgroup corresponding to I and J
defined in Section 2.4.7.
In Section 5.4.7, we construct a Z(Fi) x K7°;-invariant automorphic form

MK,y - GL4(F)\GL4(A)/(Z(Fs) x K7y) = C

which is an analogue of a modular symbol.
We are ready to state our main result.

Theorem 1.1. (See Theorem 8.2) Let f € (A)XT7 be a Z(Fa) x K, -invariant
cusp form satisfying Condition (2) of Section 4.2.2 (this is roughly the condition
that the cusp form is a Hecke eigenform). Then we have

d—

1 .0 1 1
—@?_{%gL (faS—T)<f777K;>?J,v>-

Here L7 (f,s) is the L-function of f (with local factors at the primes dividing I
removed) which is defined in Section 4.2.2, and ( , ) : A} x Ay — C is the Petersson
inner product defined in Section 4.1.2.

<f7 regL17L2 (RI’JW»

As an application of Theorem 1.1, we obtain the following result (Theorem 1.2)
which accounts for the part of the Beilinson conjecture on the surjectivity of the
regulator map (sometimes called the weak Beilinson conjecture).

We write P° : A; — A for the projection map to the space of cusp forms
(Section 4.2.2). Let Ag, C A9 denote the subspace which is characterized by the
condition that the corresponding representation at the prime oo is the Steinberg
representation (see Section 9.1 for the precise statement).

Theorem 1.2. The image of the homomorphism

Kd(/\/lﬁivl“]) ®7 C

regr,,

Lo P°
— A — A7
equals (Ag,) 112,

The outline of the proof of Theorem 1.1 is as follows. We construct in Section 2.4
a subspace of the K-group using the units on the modular varieties. In the case of
elliptic modular curves, these elements are called Beilinson elements (or Beilinson-
Kato elements).

We then compute (Theorem 6.3) an integral, which we call zeta integral. This
is the pairing between a Hecke eigen cusp form and a certain automorphic form.
We see that it equals the product of the automorphic L-function associated to the
Hecke eigen cusp form and a certain factor without the complex parameter. The
computation is done using the norm property of Euler systems (see Proposition 6.2).
This formula is given purely in terms of automorphic forms. A similar statement
was proved using the Rankin-Selberg method in the elliptic modular case.

The limit of the zeta integral, as the complex parameter tends to zero, is related
to the pairing between a Hecke eigen cusp form and the image by the regulator
map of the elements in K-groups constructed above. This is the zeta value formula
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(Theorem 1.1). This can be seen using an analogue of the Kronecker limit formula
(Proposition 3.4). Theorem 1.2 above is proved in Section 9 using this formula and
some computation of the Borel-Moore homology groups (see Corollary 5.16).

In comparison with the Beilinson conjectures, there are two open problems which
we have not solved. Let us give some remarks concerning these problems. The
Beilinson conjectures are stated for the integral part of the motivic cohomology
groups, which are certain parts of the algebraic K-groups, of projective smooth
schemes over Q. One problem is that the Drinfeld modular varieties M% , are
affine of pure dimension d — 1 over F. Hence we have not constructed elements in
the K-groups of projective smooth schemes over F for d > 2. In the case of elliptic
modular curves, Beilinson has resolved this problem by considering the compactified
elliptic modular curves and using the Drinfeld-Manin theorem. The same method
can be applied in the case of Drinfeld modular curves, that is, for d = 2, and
the details are written in our other paper [Ko-Ya3]. However, for d > 3, we do
not, know how to construct a good compactification of M%, . Even if we assume
the existence of such a good compactification, we still do not how to overcome the
problem. The other problem is that we do not know if the subspace of the K-groups
of the Drinfeld modular varieties we constructed is contained in the integral part.
For Drinfeld modular curves, we have affirmative results in our paper [Ko-Ya3]. We
do not know how to resolve these problems in higher dimensions.
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2. CONSTRUCTION OF ZETA ELEMENTS

We give the construction of some special elements in the K-theory of Drinfeld
modular varieties. In Section 2.1, we recall some facts on Drinfeld modular vari-
eties. The function field analogue of Siegel units and theta functions are defined
in Sections 2.2 and 2.3. In the case of elliptic modular curves, the algebraic con-
struction of theta functions is due to Kato ([Ka]), while similar functions appear in
the earlier work of Coates and Wiles [Coa-Wi], as rational functions on CM elliptic
curves. The construction of special elements follows the idea of Beilinson.

2.1. Drinfeld modular varieties.

2.1.1. Notations. Let C be a smooth projective geometrically irreducible curve over
the finite field F; of ¢ elements. Let F' denote the function field of C'. Fix a closed
point co of C. Let oo, Fro, | |oo : Fro — ¢% U {0} denote the cardinality of the
residue field of C at oo, the completion of F' at oo, and the absolute value at oo,
respectively. Let A = I'(C'\{oo}, O¢) be the coordinate ring of the affine F,-scheme

C\ {o0}.



4 SATOSHI KONDO AND SEIDAI YASUDA

2.1.2. We recall the definition of a Drinfeld module ([Dr]).
We fix an integer d > 1. Let S be an A-scheme. A Drinfeld module of rank d
over S is a scheme F in A-modules over S satisfying the following conditions:

(1) Zariski locally on S, the scheme E' is isomorphic to G, as a commutative
group scheme.

(2) If we denote the A-action on E by ¢ : A — Endg_group(E), then, for every
a € A\ {0}, the morphism ¢(a) : E — E on FE is finite, locally free of
constant degree |a|%, .

(3) The A-action on Lie E induced by ¢ coincides with the A-action on Lie E
which comes from the structure homomorphism A — I'(S, Og).

2.1.3. Let N be a torsion A-module. Let Uy = Spec A\ Supp N be the spectrum of
the localization of A by the elements in A which are invertible on Spec A\ Supp N.
Let S be a Un-scheme, and (F, ) be a Drinfeld module of rank d over S. A level
N-structure on (E, ) is a monomorphism ¢ : Ng < E from the constant group
scheme Ng to E in the category of schemes in A-modules over S.

2.1.4. Let us consider the sheaf M of groupoids on the big étale site of Ux-schemes
which associates, to a Uy-scheme S, the groupoid of triples (E, ¢, 1) where (E, ¢)
is a Drinfeld module over S and 4 is a level N-structure. If N # 0 (resp. if N is of
finite length), the functor M¢% is representable by an affine Uy-scheme (resp. by a
smooth Deligne-Mumford Up-stack). The representability is stated and proved in
[Dr, Proposition 5.3] (see also [Lau, Theorem 1.4.1]), in the case N = (I~1/A)®4
with a non-zero ideal I ; A. The method of the proof in [Dr] may be applied to
our case.

Let N < N’ be an injection of torsion A-modules. We let ry/ n : M%, —
MY xpy Uns denote the morphism (E, p, %) — (E,¢,1|n) where 9|y is the
restriction of ¢ to the submodule N.

Let N — N” be a surjection of torsion A-modules such that the kernel is of finite
length. We let my yv : M4 — M, Xy, Un denote the morphism (E, ¢, ) —
(E", " ,4") where E" = E/i(Ker(N — N")) and ¢", 4" are those induced by the
quotient map ([Lau, Lemma 1.4.1]).

2.2. Theta functions.

In this section, we construct an element
HE/S’ € F(E \ S, OE/S) Rz Q
which we call the theta function associated to a Drinfeld module E over S.

2.2.1. Let (E, ) be a Drinfeld module of rank d over a reduced A-scheme S. Let
m: E — S denote the structure morphism. We regard S as a closed subscheme of
E via the zero section S — FE.

Lemma 2.1. Let the notation be as above. There exists an element f € T'(E'\
S, OE\S) satisfying the following properties:
(1) Fora € A\ {0}, let N, : T(E \ Kerp(a),0f) — T(E\ S,0%) denote the
norm map with respect to the finite flat morphism ¢(a) : E \ Ker p(a) —
E\S. Then No(f) = f for any a € A\ {0}.
(2) The order ords(f) of zero of f at the closed subscheme S is equal to & —1.
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Proof. Let us consider the sequence

O* ordg

0= 05 >mO0pg——2Z—0

of Zariski sheaves of abelian groups on S. It is exact since we assumed S to be
reduced. The multiplicative monoid A \ {0} acts on Op\g by the norm map N,
for a € A\ {0}. We let the monoid A\ {0} act on the sheaf OF in such a way
that the action on a € A on OF is given by the la|? -power map. We let the
monoid A \ {0} act trivially on the sheaf Z. Then the above exact sequence is an
exact sequence of A\ {0}-modules, and defines an element of the extension module

Ext%[A\{O}]S(Z, OF) in the abelian category of Zariski sheaves of A\ {0}-modules

on S. Since A\ {0} acts trivially on Z and via the character | |4, : A\ {0} — q%zo

on OF, we have (|a|d — 1)Ext%[A\{0}]S(Z,O§) = 0 for any a € A\ {0}. Since
the greatest common divisor of |a|¢, — 1 as a runs through A\ {0} is ¢& — 1, the
extension group Exté[A\{O}]S(Z, OF) is annihilated by ¢%, — 1. In particular, the
above exact sequence splits after pulling back by ¢& —1:Z — Z. Now let f be the
image of 1 € Z by the section which gives the splitting. (I
2.2.2. Since the choice of the element f € T'(E'\ S, OE\S) in Lemma 2.1 is unique
up to Homgza\ f0ys(Z, Og) = p1ga _1(S), the element [l eT(E\ S, (92\5) does
not depend on the choice of f. Hence the element

(2.1) Fo1/(gh 1) = fi="t e (1/(¢d, —1)?)

inT(E\S, Og\s) ®zQ is defined without ambiguity. We call it the theta function of

(E,¢) and denote it by 0 /s. The normalizing factor 1/(¢% — 1) in (2.1) is chosen
so that the formula in Theorem 8.2 is simplest. See also the remark by Kato ([Ka,
p.122, Remark 1.5]).

Zariski locally on S, there is an isomorphism E = G, ¢ = Spec Z[T'] Xgpec z S
of commutative group schemes. Fix such an isomorphism and let f' € T'(E,OF)
denote the element corresponding to the coordinate function 7" on G, g. It follows
from the definition that the function 0g,g is of the form 0z, = cf’ for some
constant ¢ € I'(S, 05 ) ®z Q. The constant ¢ is explicitly calculated in the following
way. Take an element a € A\ {0} and write N,(f’) = ¢/f’. Then the relation
Na(cf') = cf’ implies that ¢ = ¢/~ ®1/(|a|%, — 1). Therefore

rlald, 1
_ x
(2.2) Op/s = Na(F) ® L —1 eT(E\S, OE\S) ®z Q.

The following properties are easily checked:

Proposition 2.2. (1) Let g : 8" — S be a morphism from another reduced
scheme S" to S, and let gg : E xS’ — E denote the base change morphism
induced by g. Then we have gp0p/s = Opx s /s

(2) Leth: E — E' be an isogeny (that is, a morphism of schemes in A-modules
which is finite flat as a morphism of schemes) from another Drinfeld module
E'" of rank d over S to E. Then Nn0g/s = 0p/s where Ny, is the norm
map associated with h.

O
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2.3. Siegel units.

Let N be a nonzero torsion A-module. We let E% — M9 denote the universal
Drinfeld module, and ¢ : Ny < E9, the universal level structure. If N is of

finite length, then M$ is smooth over Uy = Spec A\ Supp N, so in particular it is

reduced. Hence we have a theta function 0pa /ya € D(EL\ME, 0%, \ M ) ®z Q,
N N

where M$; is regarded as a subscheme of EY; by the zero section. For b € N \ {0},

we let ¢, : M% — E% denote the restriction of ¢ to the subscheme M% =

{b} x MY C Ny and put gnp = 950pd pe € O(MRY)* @2 Q. We call the

element gy a Siegel unit.

Let N’ be an A-module of finite length generated by at most d elements (so in
particular that M¢%, is nonempty), and N be a sub A-module of N’. By Propo-
sition 2.2(1), we have ry, ygnp = gnrp for any b € N\ {0} € N\ {0}. Let
a: N — N” be a surjection of A-modules of finite length. It follows from Proposi-
tion 2.2(1)(2) that my nvgn 7 = [lpen a()=pr 9N b for any b” € N\ {0}

2.4. Elements in K-theory.

2.4.1. Notation. We use the notation C, F', 00, ¢so, A introduced in Section 2.1.1.
We also let O, denote the ring of integers of the local field F,, and let A = lgl ; AT

where the limit is taken over all nonzero ideals I of A. We let A® = A ® 4 F and
A = F, x A* denote the rings of finite adeles and adeles, respectively.

Let us consider the d-dimensional vector space V = F® over F. We regard
it as the set of row vectors. We write Voo = V ®p Fo, Oy, = 02¢ C V.,
Ve =V erA>®, and Oyx = A®d - Vo For a ring R, we let Maty(R) denote
the ring of d x d-matrices with entries in R.

2.4.2. We define schemes M? and M¢ as the limit with respect to the level struc-
tures of Drinfeld modular varieties of rank d in this paragraph. They are both
equipped with the action of GL4(A™) and are canonically isomorphic as GL4(A%)-
schemes.

For a torsion A-module N, let us use the shorthand M, » = M% Xy, Spec F.
We use the same notation m, . and 7, , as in Section 2.1.4 for the corresponding
morphisms of schemes over Spec F.

An A-lattice L in V> is a free A-module of rank d contained in V°° such that the
canonical map L @ 3 A® — V' is an isomorphism. Let us consider the set of pairs
of A-lattices (L1, Ly) in V' such that Ly C Ly. We consider it as an ordered set by
setting (L1, Lo) < (L, L%) if and only if L) C Ly C Ly C L}. Let M? denote the
inverse limit @(L17L2) MdLZ/LhF where the transition map for (L1, Lo) < (LY, L%)
is given by the composite 71, /1, r,/L, MLy 17 1y /L,- The group GL4(A>) acts from
the left on this inverse limit by the multiplication from the right on V°*° (hence acts
on the set of sublattices of V).

. . . . d _ . d
We also consider the inverse limit M{ = lim, 2., MZEBd/L,F where the

limit is taken over A-lattices L contained in A®? with transition maps given by
Mo .

We can prove that the canonical map M¢ — M¢ induced from the inclusion
of the index sets is an isomorphism. Let us give a brief sketch of the proof. The
scheme M¢ is equipped with the action of GLg(A®). This can be shown using
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an argument similar to the one given by Drinfeld ([Dr, p.577, D)], see also [Lau,
p.15, (1.7)]). It is known that a € F* C A®* =2 Z(GL4(A*>)), where Z denotes
the center, acts trivially. Hence the canonical morphism M® — /\/ldL2 /L1 F and the
composition M? — MZLQ/aLhF = M%Q/LMF, where the first map is the canonical
morphism and the second map is the morphism induced by the multiplication-by-a
map Lo/L1 = aly/aly where a € F*, coincide. Now consider the set of pairs of
lattices {(aA®? aL)} with A®? C L and a € F*. Then this set is cofinal with the
system for M?. Hence M?% — M¢ is an isomorphism and is GL4(A>)-equivariant.

2.4.3. Let us give a remark concerning the scheme M§ = M‘éw Ao which, by
ol . . . . . . d . oy
definition, is equal to the projective limit WM 2o rcvee ML/XEW,F with transition

maps 7 . This remark will not be used in the sequel so the reader may skip this
paragraph. The scheme MY is the scheme which appears in the paper by Drinfeld
[Dr] (and other sources). It is isomorphic to M? in a canonical way (a reasoning
similar to the one given above applies).

One reason we consider M¢ instead of M$ is that it is easier to construct ele-
ments in the K-groups of M¢ than in that of M$ and to prove properties such as
the Euler system relations. We refer to [Ko-Yal] for the details.

2.4.4. Let S§(V°°) denote the space of Z-valued Schwartz-Bruhat functions on V*°,
that is, the space of Z-valued functions on V°° that are locally constant and
compactly supported. We let S'(V>°) C S(V°°) denote the subspace of those
functions f such that f(0) = 0. We have a GL4(A>)-equivariant isomorphism
S(V>)®d = §(Maty(A>)) by setting

(fr @@ fa)((wi)) = fr(w1)) fa(way) - - falzas)

where f; € S(V*°) for each ¢ and (z;;) € Matq(A>). By multiplication of the in-
verse from the right on V> and on Maty(A>), we have a left action of GL4(A>) on
S(V>°) and on S(Maty(A>)). We see that S'(V>)®? C S(V>)®4 is a GLg(A>)-
submodule.

2.4.5. Let us define a GL4(A)-equivariant homomorphism
kS (V2)®? & Ky(MY) 0z Q.
We first define a GLg(A)-equivariant homomorphism

S' (V) = Ki(M%) @7 Q = lim (K1(M%2/L17F) ®z Q).
(L1,L2)
Note that any element of §'(V°°) can be expressed as a Z-linear combination of
characteristic functions of the sets of the form b+ L where L C V*° is an A-lattice
and b € V°°\ L. We take an A-lattice L' C V°° large enough so that b € L' and L C
L'. We have a Siegel unit gy /1, € (9(./\/1%,/L7F)X ®z Q where we wrote b again for

the image in L'/L. The image of g7/, 5 in the limit hﬂ(Ll,LQ) OMp, /., r)* ®2Q

is independent of the choice of L’ by Proposition 2.2.
Let L D L” and let b € V°° \ L. Then we have an equality

Chb+L == E CthI+L//
b€V /L b mod L=b
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in S(V*°), where ch means the characteristic function of its subscript. We have a
similar equality g7 /7,5 = Hb,,eL,/L,,b,, mod L 9L/ /L7 b i M(Ll,LQ) OMp, 1, F) @z
Q which follows from a remark at the end of Section 2.3. Hence the map

SWVE) = lim OME,;,,)" @2Q
(L1,L2)

which sends chyyr to gr//pp is well-defined. It is easy to see that the map is
GLg(A®)-equivariant.

Now composing this with the symbol map O(—)* — K;(—) and the product
structure K;(—)®? — K4(—) of K-theory, we obtain the desired homomorphism .

2.4.6. Let I,J & A be nonzero ideals with J C I and let v € GLq(A>). We put
Nij = (A/D)®=D @ (A/J). We define an element rr, 5, € Ka(M%, | 1) ®z Q
where M‘fVImF =M%, , ®uy, , Spec F. We let

-~

Yi.o = {(gij) € Mata(A) | (gi5)1<j<a = (i5)1<j<amod ] for 1 <i<d—1
and mod J for i = d},

(where 9;; is the Kronecker delta) and regard it as an open compact subset of
Maty(A>). Let ch,.y, , € S(Maty(A>)) denote the characteristic function of the
set - Y7 ;. Then ch,.y, , belongs to &' (V>°)®?. We let k1,5, = r(chy.y; ).

2.4.7. Let Ly = (IA)®W=1 ¢ (JA) and Ly, = A% be A-lattices in V. We let
Nij = Lo/Ly = (A/)®@=D @ (A/J). Let K&, = Y7,; N GLg(A) € GL4(A) be
an open compact subgroup. Then (Kg(M%) @z Q)¥r7 = (K4(MY) @7 Q)% =
Kd(M?VI_J,F) ®z Q since rational K-theory satisfies étale descent. (The proof of
the fact that r, . is étale is found in [Lau, p.8, LEMMA (1.4.2)]. The fact that m. .
is étale can be proved by using the fact that any morphism between étale schemes
over a base scheme is étale.) As ch,y, , is K{°;-invariant, so is 7 s, and hence we
obtain an element in Kd(M(JiVI,,]q r) ®z Q. This element is also denoted k7, 7.

3. KRONECKER LIMIT FORMULA

We prove a function field analogue of the Kronecker limit formula. The case
d =1 is due to Gross and Rosen [Gro-Ro]. The first author follows the same line to
prove the general case [Ko|]. Here we give a simpler, more conceptual proof. First,
we recall the analytic study at infinity of Drinfeld modular varieties. The reader
is referred to [De-Hu| for more details. We then give an analytic description of
the theta functions and Siegel units which were defined in Sections 2.2 and 2.3. In
Section 3.4, Eisenstein series with a complex parameter s are defined. The limit as
s tends to 0 is expressed in terms of those analytic functions (Proposition 3.4).

3.1. Simplicial complexes.

3.1.1. Let usrecall the notion of (abstract) simplicial complex. A simplicial complex
is a pair (Yo, A) of a set Yj and a set A of finite subsets of Yy which satisfies the
following conditions:

e If Se Aand T C S, then T € A.
o If v € Yy, then {v} € A.
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In this paper we call a simplicial complex in the sense above a strict simplicial
complex, and use the terminology “simplicial complex” in a little broader sense,
since we will treat as simplicial complexes some arithmetic quotients of Bruhat-
Tits building, in which two different simplices may have the same set of vertices.
Bruhat-Tits building itself is a strict simplicial complex. Our primary example of
a (nonstrict) simplicial complex is Xk o to be introduced in Section 5.3.1.

We adopt the following definition of a simplicial complex: a simplicial complex
is a collection Y, = (Y;);>0 of the sets indexed by non-negative integers, equipped
with the following additional data

e asubset V(o) C Yy with cardinality ¢+ 1, for each ¢ > 0 and for each o € Y;
(we call V(o) the set of vertices of o), and

e an element in Y}, for each 7 > j > 0, for each o € Y}, and for each subset
V' C V(o) with cardinality j + 1 (we denote this element in Y; by the
symbol o Xy (») V' and call it a face of o)

which satisfy the following conditions:

e For each o € Yy, the equality V(o) = {o} holds,

e For each i > 0, for each o € Y;, and for each non-empty subset V' C V (o),
the equality V(o Xy (5 V') = V' holds.

e For each i > 0 and for each o € Y, the equality o xy(,) V(o) = o holds,
and

e For each i > 0, for each o € Y;, and for each non-empty subsets V', V" C
V(o) with V" C V', the equality (6 Xy (o) V') xv' V" =0 Xy (5 V" holds.

Let us call the elements of the form o x (o) for j and V' as above, a j-dimensional
face of 0. We remark here that the symbol Xy (,) does not mean a fiber product
in any way.

Any strict simplicial complex gives a simplicial complex in the sense above in
the following way. Let (Yp, A) be a strict simplicial complex. We identify Yy with
the set of subsets of Yy with cardinality 1. For i > 1 let Y; denote the set of the
elements in A which has cardinality i+ 1 as a subset of Y;. For i > 1 and for o € Y},
we put V(o) = o regarded as a subset of Y. For a non-empty subset V' C V(0),
of cardinality ¢ 4- 1, we put 0 Xy (o) V = V regarded as an element of Y;.. Then
it is easily checked that the collection Y, = (¥;);>0 together with the assignments
o= V(o) and (0,V) = 0 Xy (s V forms a simplicial complex.

3.1.2. There is an alternative, less complicated, equivalent definition of a simplicial
complex in the sense above, which we will describe in this paragraph. As it will
not be used in this article, the reader may skip this paragraph. For a set S, let
Pfin(S) denote the category whose object are the non-empty finite subsets of S and
whose morphisms are the inclusions. Then giving a simplicial complex in our sense
is equivalent to giving a pair (Yo, F') of a set Yy and a presheaf F of sets on Pin(Y;)
such that F({c}) = {0} holds for every o € Yy. This equivalence is explicitly
described as follows: given a simplicial complex Y,, the corresponding F' is the
presheaf which associates, to a non-empty finite subset V' C Yy with cardinality
i+ 1, the set of elements o € Y; satisfying V(o) = V.

This alternative definition of a simplicial complex is smarter, nevertheless we
have adopted the former definition since it is nearer to the definition of a simplicial
complex in the usual sense.
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We call an element in Y; an i-simplex in Y,. For an i-simplex o € Y;, we call an
element of the form o Xy () V' for some non-empty subset V' C V(o) a face of o.

Let Y, and Z, be simplicial complexes. A map from Y, to Z, is a collection
f=(fi)i>o of maps f; : Y; = Z; of sets which satisfies the following conditions:

e for any ¢ > 0 and for any o € Y}, the restriction of fy to V(o) is injective
and the image of f|y(, is equal to the set V(f;(c)), and

e for any ¢ > j > 0, for any o € Y;, and for any non-empty subset V' C V(o)
with cardinality j 4 1 we have f;(0 Xy (o) V') = fi(0) Xv (4 (o)) fo(V).

3.1.3. Let Y, be a simplicial complex. We associate a CW complex |Y,| which we
call the geometric realization of Y,. Let I(Y,) denote the disjoint union [[,-, Y;.
We define a partial order on the set I(Y,) by saying that 7 < ¢ if and only if 7
is a face of 0. For o € I(Y,), we let A, denote the set of maps f : V(5) = Rxg
satisfying ZUGV(U) f(v) =1. We regard A, as a topological space whose topology
is induced from that of the real vector space Map(V (c),R). If 7 is a face of o,
we regard the space A, as the closed subspace of A, which consists of the maps
V(o) — R>o whose support is contained in the subset V(1) C V(o). We let |Y,|
denote the colimit liga.E 1(va) A, in the category of topological spaces and call it
the geometric realization of Y,. It follows from the definition that the geometric
realization |Y,| has a canonical structure of CW-complex.

3.2. Analytic theory of Drinfeld modular varieties.

3.2.1. Notations. We use the notation introduced in Sections 2.1.1 and 2.4.1. We
let V* denote the dual of V; the elements are regarded as column vectors in F'. We
write VX = V* @F Fo and Oy: = 02 C V3. Let wo € Oy be a uniformizer.

For a scheme Y of finite type over Spec Fi,, we denote by Y*" the rigid analytic
space over F,, associated to Y. We will often identify the underlying set of Y2"
with the set of closed points of Y.

3.2.2. Drinfeld symmetric space ([Dr], [Ge]). Let Vo denote the locally free sheaf
of rank d on Spec Fi, associated to the Fu, vector space V. Let Vi (resp. P(VY))
denote the vector bundle (resp. the projective space bundle) over Spec F, asso-
ciated to the locally free sheaf Vo over Spec Fio. Let VA P(VE)*™ denote the
rigid analytic space over Fi, associated to the schemes VZ_, P(VX) over Spec Fio,
respectively. The canonical right action of the group GL4(F) on V., induces a
canonical left action of GL4(Fuo) on V52" and P(VE)2". It follows from the defi-
nition of V% that for any Fu.-algebra R, the F-vector space of R-valued points
Vi (R) of VZ_ is canonically isomorphic to VI ®p _ R.

Let Ho denote the set of subbundles of V7  of rank d — 1. Let X denote the
subset B

T = Vi (Unpeno HZ™) C V22

of the underlying set of V52", We let X = P(VE)* \ (Upgen H?*") where H denotes
the set of Fi,-rational hyperplanes in P(V). Let 0 = Spec F,, C V¥, denote image
of the zero section. The analytification (V% \ 0)** — P(VX)>" of the canonical
morphism VZ_ \ 0 — P(V2) gives a canonical map X — X of sets.

In [Dr, Proposition 6.1], Drinfeld shows that the set X is an admissible open
subset of P(V%)?", and hence X has a canonical structure of a rigid analytic space

over Fy. It follows from the same argument as in [Sc-St, p.51, (C)] that the set X
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is an admissible open subset of V2", Hence X has a canonical structure of a rigid
analytic space over F,,. The canonical map X — X in the last paragraph gives a
morphism of rigid analytic spaces over F,. An alternative construction of the rigid
analytic space X is given by defining X to be the fiber product X Xpveyan (Vig \
{0})®" in the category of rigid analytic spaces over Fi.

3.2.3. Bruhat-Tits building ([Br-Ti]). In this section, we recall the definition of the
Bruhat-Tits building of PGL,4 over F,, which is a simplicial complex.

An Oy -lattice in V, is a free Oy -submodule of V,, of rank d. We denote by
Lato, (Vo) the set of Ouo-lattices in V.. We regard the set Lato_ (V) as a
partially ordered set whose elements are ordered by the inclusions of O.-lattices.
Two O-lattices L, L' of V,, are called homothetic if L = @’ L’ for some j € Z.
Let Lato_, (Vo) denote the set of homothety classes of O4-lattices V.. We denote
by cl the canonical surjection cl : Latp_ (Vo) — Lato (Va). We say that a
subset S of Lato_ (Va) is totally ordered if cl™*(S) is a totally ordered subset
of Lato_ (Vao). The pair (Lato_ (Vs ),A) of the set Lato_ (Vao) and the set A
of totally ordered finite subsets of Latp_ (Va) forms a strict simplicial complex.
The Bruhat-Tits building of PGLy over F, is a simplicial complex B7 4 which is
isomorphic to the simplicial complex associated to this strict simplicial complex.
In the next paragraphs we explicitly describe the simplicial complex BT ,.

For an integer i > 0, let lf3\7/'i be the set of sequences (L;);cz of Ox-lattices in
Voo indexed by j € Z such that L; 2 Ljy1 and weoLj = Lji41 hold for all j € Z.
In particular, if (L;);jez is an element in 1?7/'0, then L; = wl Ly for all j € Z. We
identify the set 23\7/'0 with the set Lato_ (Vo) by associating the Ouo-lattice Lo to
an element (L;);ez in BTo. We say that two elements (L;);ez and (L)) ez in BT,
are equivalent if there exists an integer ¢ satisfying L;- = Ljioforall j € Z. We

denote by BT ; the set of the equivalence classes in E’ﬁ For ¢ = 0, the identification
BT = Lato__ (V) gives an identification BT = Lato__ (Vao).

Let o € BT, and take a representative (L;);ez of 0. For j € Z, let us consider the
class CI(LJ) in TEUJOOC (Voo) Since wooLj = Lj+i+17 we have CI(LJ) = CI(L]'+Z‘+1).
Since Lj 2 Ly 2 wooLj for 0 < j < k < i, the elements cl(Lo),...,cl(L;) €
Lato_, (Vo) are distinct. Hence the subset V(o) = {cl(L;) | j € Z} C BT, has
cardinality ¢ + 1 and does not depend on the choice of (Lj)jez. It is easy to
check that the map from BT; to the set of finite subsets of Late_ (Va) which
sends o € BT; to V(o) is injective and that the set {V (o) | o € BT;} is equal
to the set of totally ordered subsets of Late_ (V) with cardinality i + 1. In
particular, for any j € {0,...,i} and for any subset V' C V(o) of cardinality
J + 1, there exists a unique element in BT, which we denote by o Xy () V', such
that V(o Xy () V') is equal to V'. Thus the collection BT ¢ = [, BT together
with the data V(o) and o Xy () V' forms a simplicial complex which is canonically
isomorphic to the simplicial complex associated to the strict simplicial complex
(Lato, (Veo), A) which we introduced in the first paragraph of Section 3.2.3. We
call the simplicial complex BT, the Bruhat-Tits building of PGL, over F.

The simplicial complex is BT s is of dimension at most d — 1, by which we mean
that BT; is an empty set for ¢ > d — 1. It follows from the fact that B7; is an
empty set for ¢ > d — 1, which we can check as follows. Let ¢ > d — 1 and assume
that there exists an element (L) ez in BT ;. Then for j =0,...,i+ 1, the quotient
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L;/L;4+4 is a subspace of the d-dimensional (Ouo /o On )-vector space Lo/Lit1 =
Lo/wesLo. These subspaces must satisfy Lo/Liy1 2 L1/Liy1 2 --- 2 Liy1/Lit1.
It is impossible since i + 1 > d. -

We let BT, denote the quotient BT ;/F. This set is identified with the set
of pairs (o,v) with o € BT and v € BT a vertex of ¢, which we call a pointed
j-simplex. Here the element (L;);ez mod FY of BA’fj /FZ% corresponds to the pair
((Li)iez, Lo) via this identification.

We identify the set BT, with the coset GL4(F)/GL4(Os) by associating
to an element g € GL4(Fx)/GL4(Ox) the lattice Oy_g™'. Let T = {(ai;) €
GL4(Ox) |a;jmodwe, = 0 if ¢ > j} be the Iwahori subgroup. Similarly, we
identify the set BT 4_1 with the coset GL4(Fw)/Z by associating to an element
g € GL4(F)/T the chain of lattices (L;);cz characterized by L; = Oy_II;g~* for
1 =20,...,d. Here, for i = 0,...,d, we let II; denote the diagonal d x d matrix
II; = diag(@eos - - - s Woos 1, - - -, 1) with we, appearing ¢ times and 1 appearing d — i
times.

The reader is referred to Section 7.2.1 where we recall the relationship between
the building B7, and the Drinfeld symmetric space X.

3.2.4. We give an explicit description of a rigid analytic subspace ﬁL C X associ-
ated to a lattice L € BT in this section. A similar description for rigid analytic
subspaces U, C X associated to a simplex o € BT, is known and the details are
recalled in Section 7.2.1.

The underlying set of V;:*" is canonically isomorphic to the set of closed points
of Vi . For x € Vi, let Foo(x) denote the residue field at x. Since Foo(z) is
a finite extension of Fi,, the absolute value | | on Fiu is uniquely extended to
that on Fi(z), which we denote by the same symbol | |o. We let Op_(,) denote
the valuation ring Op_ () = {a € Fo () | |a|oo < 1} of Fo(x) with respect to the
absolute value | |o. We denote by koo the residue field of O and let ko (z) denote
the residue field of Op_(,). Since the closed point in V3, corresponding to = is a
F(z)-rational point, it gives an element 7, in VX ®p__ Foo(2) via the isomorphism
mentioned in the first paragraph of Section 3.2.2.

We let Uo,_ denote the set of elements x € V™ such that 7, € Oy ®o,,
OF..(e) and that 7, ®1 € (Ovz ®o., OF. (2)) @04 () Foo () = (Ovr R0, Koo) D,
Foo(x) does not belong to H @ keo(x) for any proper kog-vector subspace H S
Ov: @0, Keo- It is easy to check that the subset Zlovoo of V%2 is contained in the
subset X C Vi Let L € E’fo be an Oy-lattice in V. Take g € GL4(F) such
that L = Oy_g~'. We set 8, = gﬁovw. In other words, i, = {z € V4™ |vr, €

O;m(m) for allv € L\ woo L}.

It is easy to check that the subset iNJ.L is an open affinoid subset of V3" which is
contained in X. The coordinate Oso-algebra Ez of the formal model of the affinoid
$l;, has the following explicit description. Let Sym*L = €D, .,Symg_ L denote
the symmetric algebra on L over On. Let S;, C L\ woL be a complete set of
representatives of the set (L/wsoL) \ {0} with respect to the surjection

L\ woL — (L/wa L) \ {0}.

Then Ez is isomorphic to the wq,-adic completion of the O -subalgebra Sym'L[SZl]
of the field of fractions Frac Sym®L of Sym®L generated by Sym®L and the set
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{b=* | b € Sp}. The Ou-algebra Sym®L[S; '] is regular and excellent ([EGAIV,
7.8, p.214]) since it is a localization of the polynomial algebra Sym®L over O.
It follows that the O..-algebra Ef—: is regular. Since wy, is a prime element in
Sym®L[S; '], the ideal wooéz of Ej-j generated by we, is a prime ideal of height
one. Since gz is regular, its localization at woogz is a discrete valuation ring.
Hence the prime ideal wooéz defines via the homomorphism 7 a valuation vy on
the field of fractions of Ej—j

3.2.5. The order of rigid analytic functions on X at lattices. We define a homomor-
phism
ordy, : ['(%, Og) =7

of abelian groups for L € E’fo, to be the composite
I'(X,0%) = T(UL,0f,) » Z

where the first map is the restriction and the second map is the map given by the
valuation vy. Let h € T'(X, (9;) be an invertible rigid analytic function. Then by
the definition of the homomorphism ordy, we have ordph = inf,cp, log,  [h(7)]oo-

Given a lattice L € BT and a row vector a € Vo, we let ordy(a) = sup{n €
—ordy, (a)

Z|a€wiL}, and |a|L = ¢ . Note that |a|;, = 1 if and only if a € L\ wo L.
The abuse of notation is justified by the following proposition.

Proposition 3.1. Given a~lattice Le E’]J‘o and a row vector a € V, let Jia be the
rigid analytic function on X characterized by fa(x) = at, for every x € X. Then
we have ordy, fa = ordy(a).

Proof. We may without loss of generality that L = Oy_. Hence, if a = (aq,...,aq)
with a; € Foo(1 < i < d), then ordy fa = infi<icq (—log, _ |ailoo). The claim
follows. 0

3.2.6. Convention. Given an element g € GL4(A), we always denote by g the
component at infinity, and ¢g> the finite part. Given a function f on GLg4(A), we
write f(g) = f(9o0, 9°) for g = (9o, 9°) € GLa(A).

An A-lattice in V is a projective A-submodule in V' of rank d. Recall that we
defined an A-lattice L in V™ to be a free A-module of rank d contained in V>
such that the canonical map L ® 3 A — V' is an isomorphism. Let Lat (V)
(resp. Lat4(V)) denote the set of A-lattices in V> (resp. A-lattices in V). There
are canonical isomorphisms GLg(A>)/GLg(A) = Lat z(V*°) = Lat,(V), where
g € GLd(AOO)/GLd(A\) is sent to Oy g™~ " in Lat 3(V>°), and to Oy=g>® ' NV
in LatA(V).

Given A € Lata(V),let A =A@, A € Lat z(V°°) be the corresponding A-lattice
in V. If g> € GLg(A>) is given, we denote by Ag™®~! € Lat (V) the A-lattice
corresponding to the A-lattice Kgoo_l via the isomorphism above. Suppose we are
given an element b € V/A. We denote by bg™®~! € V/(Ag>®~!) the image of
b € V/A under the sequence of isomorphisms

V/IA2 VX /A2 V®/Ag> ! =V /Ag® !

where the first and third maps are those induced by the canonical inclusion V' C V'*°
and the second is the map induced by the multiplication-by-g>~1 on V>,
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3.2.7. Uniformization ([Dr]). Let Ly C Ly C V> be A-lattices. Let K 1, C
GL4(A>°) be the compact open subgroup consisting of those elements g° such that
L;g>®~! = L; (i = 1,2) and the induced action on Ly/L; is the identity. It is an

open compact subgroup of GL4(A). We have a canonical isomorphism ([Dr], see
[BL-St] for a different construction)

(3.1) (MG, /0, XUy, 1, SPEC Fog)™ 22 GL4(F)\(X x GLa(A™)/KF, 1)

of rigid analytic spaces over Spec I, Here in the right hand side, X x GL4(A>) /K% 1,
denotes the disjoint union of copies of X indexed by the set GL4(A>) /K% ; , and
GLa(F)\(X x GLq(A>)/KT 1,) denotes its quotient under the diagonal action of
GLq4(F).
We define a map
ordr, L, : O(M$, )" = Map(GLa(F)\(BTo) x GLa(A™)/K? ;,,C)

as the composite

1
ome,, ) oML, xu,,,,, Spec Fo)™)*
= O(GLa(F)\(X x GLa(A>)/KF 1,))*

@, Map(GLd(F)\(B\fo) x GLa(A*)/KE 1,.C)

where the map (1) is the analytification, and the map (2) is the map induced by
the functions ordy, for L € E’fo, as defined in Section 3.2.5, composed with the
pullback by the canonical quotient map XX

Let I,J g A be two nonzero ideals with J C I. We remark that if we let

Ly = A% and L, = (IA)®@=1 g (JA), we recover K7°, = K7, 1, of Section 2.4.7.
3.3. Analytic descriptions of theta functions and Siegel units.

3.3.1. Let € X and let 7, € VX ®@p_ Fao(z) be as in Section 3.2.4. Let A C V
be an A-lattice. We let Ay, = {A7,|A € A} C Fx(z). We define oy (2) €
F(Ganm(z)’ Ogan ( ) to be the rigid analytic function

@)
op,(2) =2 H (17§)

AeAL\{0}
where z is the coordinate function of G, r_(,). The function o, induces an isomor-
phism of rigid analytic groups G}"x_ ., /Ay 5 Gr () (We refer to [De-Hu, p.46]
for a similar statement over Cy, instead of Fi(z). Their argument readily applies
to our case.) On the additive group Gg r_(z) over Fuo(z), there exists a unique
structure @5, : A — End(G,, r(s)) of Drinfeld module of rank d over Fi(x) such
that the diagram

GZ?FOO (z) Gz?Foo (z)

oa, l oAy l

G @
a,Foo () a,Foo ()

commutes ([De-Hu, (2.1) Theorem, p.46]).

(qgc—l)27an an .
Let G(Ga,FOO(w),wA,)/Foo(x) € T(GYp_ () \ {O}’OXZ‘?FOC(I)\{O}) be the analytifi-

cation of the function fqg'o’1 defined in Section 2.2.2 for the Drinfeld module
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—1 n an
(Ga.po(s) . ) of rank d over Fa (). Let 950> ~0" € PG () \be: O \1)

—1)%,an
(G \Foo () PAx
function o, to G . \ A,. Tt follows from the formula (2.2) that the function

denote the composite of the function i )/ Foo () and the restriction of the

d 2
94%="1"" Jas the following description. For any a € A\ {0}, we have

d _ d _ qt -1
(qgo—l)z,an (lals—1)/(g5.—1) o, (2 )|a\OQ 1 oo
(9“’ (Z)) Neloa )

(ot =T
= HaEA/“UAm(éJra;I) .

Let b € (V/A)\{0}. Let L1 = A®a A C V™ and L, be the A-lattice generated
by L1 and bolec V®A A= V™ where b € V is a lift ofb € V/A. We intro-
duce an element gi%, € O(X)* ®z Q and its adelic version QA,b € O(GLg(F)\ (% x

2 d 2
GLd(A‘X’)/]KL1 Lz)) ®zQ. We let g(q‘x’ % (x) = glt=—b M (br,) € Foo(x) forx €
X. It follows from the formula (3.2) that for any a € A\{0}, there exists an invertible

rigid analytic function g}, , on X satisfying 3%, (%) = (gg b - (z ))(‘a‘iofl)/(qgo’l)

(3.2)

for every x € %, where T denotes the image of  under the canonical map XX
Since the rigid analytic space X is reduced, such a function I, 18 unique. We

put 61" = 9ib. ® 1/((Ja|t, — 1)(¢% — 1)) € O(X)* ®z Q. It follows from the
uniqueness of g, that the element giy does not depend on the choice of a.
For a € A\ {O} we define gAba € O(X x GLg(A®)/Kg 1,)* by setting
I 1.0 (T:97) = gRose 1 g1 o (). Tt follows from the formula (3.2) that g} y, , (v, 79>) =
gﬁybﬂ(x g>°) for any v € GL4(F). Hence gﬁvb,a is an element in (O(%xGLd(A‘”)/Kﬁ’M)X)GLd(F) =
O(GLA(F)\XXGLA(A)/KE, ;,)*. Weput g, = g 1 ,@1/((lald, ~1)(g.—1) €
O(GLg(F)\X x (}Ld(AOO)/]KL1 ,)" ®z Q. It follows from the uniqueness of g}"}, ,
that the element gA7b does not depend on the choice of a.

3.3.2. For z € X and for ¢ € GLg(A™), let (Eg, g%, ¢z,g) be the Drinfeld module
of rank d over Fy(x) with the level (Lo /L )-structure 9y goo : (La/L1)Spec Fo (z) =
E, 4 corresponding to the image of the point (z, gKT. LQ) under the composite

X x GLa(A®)/KE ;. — GLa(F)\(X x GLy(A®)/KE ;)

— (MG, 1, XUy, 1, SPec Foo)™
where the last map is the canonical isomorphism (3.1). It follows from the con-
struction of the isomorphism (3.1) given in [Dr, Proposition 6.6, p.583] that there
is an isomorphism o : (E; g, @z,g) = (Ga p_(2), P(Ag>-1),) of Drinfeld modules

over F(x) such that the analytification of the composite (La/L1)spec F.. () wm—ym>

Ey g = G p.(2) is equal to the composite

1 _ 00— 00— co— 3
Lo/ 2 Log™ /g™t 2 (4B + A)gt ag= Dy,

oco—1

where the map (1) is the isomorphism supplied by the left multiplication by g>~+,
the map (2) is the inverse of the isomorphism (Ab+A)g™ =1 /Ag®~1 =5 Lyg>~!/L,g>
given by the inclusions (Ab + A)g>®~! C Lyg™~! and Ag™®~! C L1g>®~!, and
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the map (3) is the morphism which sends the class of A € (Ab + A)g>~! to
G-(Agoofl)z ()\Tm)

Recall that we defined in Section 2.4.5 a Siegel unit g, /1, » € (9(/\/ICL12/L1)X ®zQ
where b is the class of b®1 in Lo/ L. Tt follows from the isomorphism in the previous
paragraph and the construction of gﬁ,b that the element in (9((/\/ldL2/L1 XUp, /1,

Spec Fio)™)* ®7 Q corresponding to gﬁ)b via the canonical isomorphism (3.1),
coincides with the analytification of gz, /1, -

3.4. Eisenstein series.

We define Eisenstein series Fy 1, in this section. We also define its adelic version
EAb.

3.4.1. We define C((¢5°))-valued functions E\ p on the set BT of Ou-lattices in
Voo. (Here, g5 is regarded as an indeterminate.) Given an A-lattice A C V' and
b e (V/A)\ {0}, we let

Ean(D)= > X*
xeV, xmod A=b

The sum is convergent in the (g-.*)-adic topology.
The following lemma is checked easily.

Lemma 3.2. Let A D A’ be two A-lattices in V, and b € (V/A)\ {0}. Then

(1) Eap = Zb’GV/A’,b’modA:b Ep s
(2) If a € A\ {0}, then Eqp.ab = Eaplalss.

3.4.2. Given an A-lattice A C V and b € (V/A) \ {0}, we let

Eab(go0s §°°) = Engoo—1 bg=—1(Ov..95),
for (goo, g™°) € GL4(A).
We note that Ej p is a C((g5))-valued function
Eab : GLa(F)\GL4(A)/(GLa(Oso) X K, 1,) = C((¢))

on the double coset space GL4(F)\GL4(A)/(GLa(Ox) x K3 1) where the A-
lattices Ly and Lo are as in Section 3.3.2 and the open compact subgroup K7 1,
is as in Section 3.2.7.

3.4.3. We write Vi = V ®p A = Vo x V. Let A C V be an A-lattice and
b e (V/A)\{0}. Weput A =A®4 A C V*®. Let us define a C((¢=*))-valued
function ¢ p on Vi. For x = (Xeo,x) € Vi, where X, (resp. x°°) denotes the
component at co (resp. the finite part) of x, we put

PAb(X) = hoo(Xoo) PR b (X™)

where ¢}, is defined to be the characteristic function on b1l+AcC V™ (see
Section 3.3.2 for notation), and ¢oo(Xec) = [Xeoler, -

Lemma 3.3. If g € GL4(A), then Ex b(9) = > wey #a,b(X9).

Proof. This is immediate from the definition of E4 1, and of ¢x . O
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3.5. Limit formula.

We give a short proof of the function field analogue of the Kronecker limit for-
mula. This was already proved in [Gro-Ro] for the rank one case and in [Ko] for
an arbitrary rank, but here we give another proof, mainly to fix some notation
concerning adeles.

Proposition 3.4. Let A C V be an A-lattice, b € (V/A)\ {0}, and (g, 9>) €
GL4(A). Welet L1 = A ®4 ACV>® and Lo be the A-lattice in V°° generated by
Ly andb®1 e (V/A) ®4 A where b is a lift of b. Then (1 — ¢ EA b(goos 9°°)
1s a Laurent polynomial in q2° which is diwvisible by 1 — q2°. Moreover we have

1

oo

A
OrdLhLQgA,b =

s=0

Proof. We prove the non-adelic version. Let L be an Oy-lattice in V,,. Using
Proposition 3.1 and the analytic description of theta functions given in Section 3.3.1,
we have

ordL gy,
1
=L =1 % [|a|§o ordz(b)+ Y (ordz(A—b) —ord(N))
lalee AeA\{0}
a+b a+b
_ Z ordy, ( " ) + Z (ordL (/\— - ) —ordL()\)> ]
acl/a AeA\{0}

for any a € A\ {0}. We note that the summands ordy (A — b) — ord(A) and
ord, (A — 2R) — ord; (X) are zero for almost all A € A\ {0}.

Let EX(L) = > 5eca\(o} [AlL°- The expression above equals

1 1 0
|2, — 1 loggeo Os

{l |2 (Eab(L) — EX(L))

— Y (Eaatby/a(L) — EX(L))

aclA/a

s=0
The terms in E} cancel and we obtain
1 1 0
A i e - E L
L, ~Tiogaw 05 | 1=Eanl) = 2 Paarwyall)

aclA/a =0

From Lemma 3.2, we have
> Baatby/a(L) = Ea-1an/a(L) = Ban(L)|al.
ac€l/a

Since Eap(L) — EX(L) and Ej (atb)/a(L) — E/*\(L) are finite sums, we see that
(1 — ¢%*)Eap(L) is a Laurent polynomial in ¢* divisible by 1 — ¢.* and the
expression above is equal to

1 4o — 45
1—q§o{1 ¢ P ()s:O
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The proposition now follows from the definition of adelic Eisenstein series Ex p
and the (adelic) Siegel unit gﬁwb. O

4. AUTOMORPHIC FORMS

We recall the definition of automorphic forms and Hecke operators. The defini-
tion of the local L-factor is given in terms of Hecke eigenvalues. For a new vector
(see Condition (3) in Section 4.2.2), the definition agrees with the (usual) definition
by Godement and Jacquet (Lemma 4.1).

4.1. Automorphic forms.

4.1.1. Automorphic forms. Let R be a commutative ring. By an R-valued automor-
phic form for the general linear group GL4 r over F, we mean an R-valued function
on GLy4(F)\GL4(A) which is invariant under right translation by an open compact
subgroup of GL4(A). The set of R-valued automorphic forms, denoted Ag, is an
R-module on which the group GL4(A) acts by right translation, that is, for an auto-
morphic form f, an element € GL4(F)\GL4(A), and an element g € GLg(A), we
put (gf)(x) = f(xg). For an R-valued character xo, of the co-component Z(F,) of
Z(A), let Ar(xoo) denote the R-module of R-valued automorphic forms on which
Z(Fs) acts via Xoo. For two nonzero ideals I, J of A with J C I, let Ar(I,J, Xoo)
denote the Kg°;-invariant part of Ag(xoo) where K2°; is as in Section 2.4.7.

In this paper we will deal with several subspaces of A¢ whose inclusive relations
are expressed in the following diagram

./4([: > A D .ASJE

U U U

A2 D A D Ag,.
Among the five subspaces (other than Ac itself) in the diagram above, the three
subspaces A2, A; and A{ are stable under the action of GL4(A) and will be intro-
duced in the next paragraph. The remaining two subspaces Ag; and Ag, are stable
under the action of the subgroup GL4(A%) C GL4(A) and will be introduced in
Section 9.1.

We let A2 C Ac denote the space of cusp forms. We put A; = Ac(1), where 1

denotes the trivial character, and A9 = A; N A%. We let A2(xoo) = A2 N Ac(Xoo)
and A2(I, J, Xoo) = A2 N Ac(1, J, Xoo) Where xoo, I, J are as above.

4.1.2. For each place p of F, we let F, denote the completion of F' at p and O
denote the ring of integers of Fi,. We fix a Haar measure dg,, of GL4(F},) such that
[I,, dg defines a Haar measure of GLq(A) with vol(GLa(]], Op)) = 1.

Let R = C((q®)). We define a C-bilinear map

() ) A7 < Ar( |09 — R,

where | | ¢ is regarded as a character FX — R, by setting

(1o o) = / £1(9) f2(9)| det g|*dg.
Z(Foo)GL4(F)\GLg(A)

Here the bracket | | denotes the idelic norm, that is, for (a,,) € A*, we let [(ay,)| =
[1, laple with | | the absolute value at p. We note that the above integral is
convergent since the support of f; is compact modulo center by Harder’s result

([Hal).
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4.2. L-functions.

4.2.1. Hecke operators. Let J C I be nonzero ideals of A, and let p be a prime
ideal. We put

0 if p|1,
ep =1 d—1 if ptI, p|J,
d if p1J.
We write diag(ay, ..., aq) for the diagonal (d x d)-matrix whose diagonal entries
are ai,...,aq. Let w,, denote the element in A* whose component at p is a (fixed)

uniformizer and whose components at other places are 1.

We define the Hecke operators T, , and the dual Hecke operators 77, for the
open compact subgroup K7°, C GL4(A>) where r = 0,...,e,. We define T,
(vesp. T} ) to be the operator given by the double coset

K diag(w, . .., @e, 1,..., K,

(resp. Ki°ydiag(w, ..., "t 1, o 1K)

where w,, (resp. wgl) appears 7 times. In particular, the operators 7}, o and T7
are the identity.

4.2.2. Let f € Ac be a C-valued automorphic form. Suppose that f satisfies the
following conditions for some nonzero ideals J C I C A of A.
(1) The open compact subgroup K2°; of GL4(A>) acts trivially on f.
(2) Let p be a nonzero prime ideal of A, and define the integer e,, as in Sec-
tion 4.2.1. Then f is an eigenform with respect to the operator T}, , for all
r < eg.
Let a,, denote the eigenvalue of the operator T, , on f. We define the L-function
L17(f,s) of f to be the infinite product

-1
r(r 1)

LIJ f7 —H Zap,TQp

r(9+—)

in C((¢~*%)) where p runs through the nonzero prime ideals of A. The infinite
product LT7(f,s) is convergent for the (¢~*)-adic topology. We also consider the
following condition.

(3) There exists a cuspidal automorphic representation 7 = ®/,m, C A¢ such
that f is of the form (®y700 fo) ® froe € ™, where f, € m, is a new vector
(“vecteur essentiel” in [Ja-Pi-Sh, p.211,(4.4)]) for each v { Ioo, and fro €
Moo @ ®’U‘I Ty~

We note that (3) implies (2). We will need the following lemma.

Lemma 4.1. Let the notation be as above. Suppose Condition (3) is satisfied. Let
p be a prime ideal such that e, > d —1. Then
-1

e 'r(r 1) d—1
—r(s+557)

L(mg, s Z Op,rdp
where the left hand side is the local L-factor of Godement and Jacquet (see [Go-Ja]).

Proof. This is well known in the case e, = d (see, for example, [Cog, Lecture 7]).
The case e, > d — 1 is [Ko-Ya4, Theorem 4.2]. O
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4.3. Projection to cusp forms.
The pairing introduced below appears in Theorem 6.3. The map P° given in

this section is used in Theorem 9.1.

4.3.1. Let A; = Ac(1) € Map(GLy4(F)FZ\GL4(A),C) denote the space of FJ-
invariant C-valued automorphic forms, as defined in Section 4.1.1. Let A C A;
denote the subspace of FJ-invariant cusp forms. We consider the map ( , ) :
A$ x Ay — C defined by the integral

(o o) = / £1(9)Ta(9)dg
Z(Foo)GLGg(F)\GLg(A)

where the bar denotes the complex conjugate.

4.3.2. For any open compact subgroup K C GLg4(A), the space (A9)X is finite
dimensional. (This follows from Harder’s result [Ha, COROLLARY 1.2.3, p.256].)
Since (f, f) > 0 for any nonzero f € AS, the restriction of (,) to (A$)¥ x (A9)K is
non-degenerate. Hence for any f € AY, there exists a unique f© € (A9 satisfying
(f' f) = {f, f°) for all f' € (A)X. We claim that the equality (f”, f) = (f”, f°)

holds for any f” € A$. By setting f"'(g) = ﬁ@() Jx " (gk)dk, we obtain

(7 0y =" =" 1) =" 0.

Passing to the inductive limit, the map f — f° gives a surjective GL4(A)-equivariant
homomorphism P°: A; — A9, which is a left inverse to the inclusion A9 — A;.

5. BOREL-MOORE HOMOLOGY OF THE BRUHAT-TITS BUILDING

In Section 8, we will compute the image of the elements xy s, under the regulator
map. Borel-Moore homology is the dual of cohomology with compact support, and
the Borel-Moore homology groups of top degree of the Bruhat-Tits building is a
synonym of the group of harmonic cochains ([Ga, Definition 3.15]) of top degree.
We describe the Borel-Moore homology of (the top degree of the quotient of) the
Bruhat-Tits building in this section.

5.1. Borel-Moore homology.

Recall from the introduction that there appeared a subspace Ag, of the space Ac
of automorphic forms on GL4(A) in the statement of Theorem 1.2. In Section 5.1,
the setup which leads to the definition of A%, is given.

Let Y, be a simplicial complex. As we have remarked at the end of Section 3.1.3,
the geometric realization |Y,| has a canonical structure of CW-complex. The no-
tions of homology and cohomology for |Y,| are well known. If Y, is locally finite (see
Section 5.1.2), we have two more similar notions: cohomology with compact sup-
port and Borel-Moore homology. Borel-Moore homology is the dual of cohomology
with compact support, as cohomology is the dual of homology.

Let us recall these four notions of (co)homologies. Usually the homology groups
of Y, are defined to be the homology groups of a complex Cy whose component in
degree 7 is the free abelian group generated by the i-simplices of Y,. For a precise
definition of the boundary homomorphism of the complex C,, we need to choose
an orientation of each simplex. In this paper we adopt an alternative, equivalent
definition of homology groups which does not require any choice of orientations.



ZETA ELEMENTS IN THE K-THEORY OF DRINFELD MODULAR VARIETIES 21

The latter definition seems a little complicated at first glance, however it will soon
turn out to be a better way for describing the (co)homology of the arithmetic
quotients Bruhat-Tits building, which seems to have no canonical, good choice of
orientations.

5.1.1. We recall in Sections 5.1.1 and 5.1.2 the precise definitions of the (co)homology,
the cohomology with compact support and the Borel-Moore homology of a simpli-
cial complex. When computing (co)homology, one usually fixes an orientation of
each simplex once and for all, but we do not. This results in an apparently different
definition, but they indeed agree with the usual definition. This will be useful when
defining the map ¢ in Section 5.2.1, since the Bruhat-Tits building is not naturally
oriented.

We introduce the notion of orientation of a simplex. Let Y, be a simplicial
complex and let ¢« > 0 be a non-negative integer. For an ¢-simplex o € Y;, we let
T(c) denote the set of all bijections from the finite set {1,...,i + 1} of cardinality
i+ 1 to the set V(o) of vertices of o. The symmetric group S;+1 acts on the set
{1,...,i+ 1} from the left and hence on the set T'(¢) from the right. Through this
action the set T'(¢) is a right S;11-torsor.

We define the set O(o) of orientations of o to be the {£1}-torsor O(c) =
T(0) Xs,,1,sen {£1} which is the push-forward of the S;ii-torsor T'(c) with re-
spect to the signature character sgn : S;11 — {£1}. When ¢ > 1, the {£1}-torsor
O(o) is isomorphic, as a set, to the quotient T(0)/A;+1 of T(o) by the action of
the alternating group A;y; = Kersgn C S; ;. When i = 0, the {£1}-torsor O(0)
is isomorphic to the product O(c) = T'(o) x {£1}, on which the group {£1} acts
via its natural action on the second factor.

Let ¢ > 1 and let ¢ € Y;. For v € V(o) let o, denote the (i — 1)-simplex
0y = 0 Xy (o) (V(o) \ {v}). There is a canonical map s, : O(c) — O(o,) of {£1}-
torsors defined as follows. Let v € O(c) and take a lift 7: {1,...,i+1} — V() of
vin T(o). Let 7, : {1,...,i} <= {1,...,i+ 1} denote the unique order-preserving
injection whose image is equal to {1,...,i + 1} \ {#7}(v)}. It follows from the
definition of 7,, that the composite v o7, : {1,...,i} — V(o) induces a bijection
Uy {1,... 1} N V(o) \ {v} = V(o,). We regard v, as an element in T'(o,). We
define s, : O(c) — O(0,) to be the map which sends v € O(c) to (—1)7 () times
the class of v,. It is easy to check that the map s, is well-defined.

Leti > 2and o € Y;. Let v,v’ € V(o) with v # v'. We have (0y,) = (04 )». Let
us consider the two composites s,s 0 8, : O(c) = O((04)v) and s, 0 8y : O(0) —
O((04)v). Tt is easy to check that the equality

(5.1) Sy 0 8y(V) = (—=1) - 8y 0 8 (V)
holds for every v € O(0).

5.1.2. We say that a simplicial complex Y, is locally finite if for any ¢ > 0 and
for any 7 € Y;, there exist only finitely many o € Y;;1 such that 7 is a face of o.
We recall the four notions of homology or cohomology for a locally finite simplicial
complex. Let Y, be a simplicial complex (resp. a locally finite simplicial complex).
For an integer i > 0, we let Y/ = [[, cy. O(0) and regard it as a {£1}-set. Given an
abelian group M, we regard the abelian groups @, .y, M and [], ¢y, M as {£1}-
modules in such a way that the component at € - v of € - (my) is eqtfal to em,, for
e € {x1} and for v € Y].
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For i > 1, we let 517@ : EBVeYi/M — GaveYi’,l M (resp. 51»71—[ : HueY;M —
1L evr M) denote the homomorphism of abelian groups which sends m = (m,,),ey;

to the element ;(m) whose coordinate at v/ € O(c0’) C Y/, is equal to

(5.2) d;(m), = Z my
(v,0,v)

where in the sum in the right hand side (v, o, ) runs over the triples of v € Yp\V (¢”),
an element o € Y;, and v € O(o) which satisty V(o) = V(¢’) I {v} and s,(v) = v'.
Note that the sum on the right hand side is a finite sum for 5,»7@ by definition.
One can see also that the sum is a finite sum in the case of 51»,11 using the lo-
cally finiteness of Y,. Each of a»@ and 51-,1—[ is a homomorphism of {£1}-modules.
Hence it induces a homomorphism 0; g : (®V€Yi/ M) 41y — (EBVGYi/_1 M) 41y
(resp. 017 : (HuEY,{ M)ty — (HVEY/,I M)+1y) of abelian groups, where the
subscript {£1} means the coinvariants. It follows from the formula (5.1) and the
definition of 0; ¢ and 0; 7 that the family of abelian groups ((,cys M){+1})i>0
(resp. ((II,eys M){+1y)iz0) indexed by the integer ¢ > 0, together ‘with the ho-
momorphisms 181-7@ (resp. 0; ) for i > 1, forms a complex of abelian groups. The
homology groups of this complex are the homology groups H,.(Y,, M) (resp. the
Borel-Moore homology groups HEM(Y,, M)) of Y, with coefficients in M.

The family of abelian groups (Map{il}(Yi’, M))i>o (resp. (Map?il}(Yi’, M))i>o0
where the superscript fin means finite support) of the {£1}-equivariant maps from
Y/ to M forms a complex of abelian groups in a similar manner. (One uses the
locally finiteness of Y, for the latter.) The cohomology groups of this complex are

the cohomology groups H*(Y,, M) (resp. the cohomology groups with compact
support H} (Ys, M)) of Y, with coefficients in M.

5.1.3. Tt follows from the definition that the following universal coefficients theo-
rem holds. That is, for a simplicial complex Y,, there exist canonical short exact
sequences

0— H;(Ye,Z)y® M — H;(Yo, M) — Tor%(Hi_l(Y.,Z),M) —0
and
0— Ext%(Hi_l(Y.,Z),M) — Hi(Y.,M) — Homy(H;(Y,,Z), M) — 0.

for any abelian group M.
Similarly, for a locally finite simplicial complex Y,, we have short exact sequences

0 — Bxty,(HTY(Y,, Z), M) — HPM(Y,, M) — Homy(H!(Y,,Z), M) — 0
and
0— H{(Y,,Z) ® M — H!(Yy, M) — Tork(H* Y (Y,,Z), M) — 0

for any abelian group M. The canonical inclusions

(@Uei’/ M){il} < (Mev, M) oy

Map{il}(}/i/a M) — Map{:ﬁ:l}(Yi/7M)
for i > 0 induce homomorphisms H;(Y,, M) — HEM(Y,, M) and H.(Y,, M) —
Hi(Y,, M) of abelian groups, respectively.
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5.14. Let f = (fi)i>0 : Yo — Zo be a map of simplicial complexes. For each integer
1 > 0 and for each abelian group M, the map f canonically induces homomorphisms
fe: Hi(Yo, M) — H;(Ze, M) and f* : H(Zy, M) — H'(Y,, M). We say that the
map [ is finite if the subset f;l(a) of Y; is finite for any ¢ > 0 and for any
o € Z;. If Yy and Z, are locally finite, and if f is finite, then f canonically
induces homomorphisms f, : HPM(Y,, M) — HEM(Z,, M) and f* : Hi(Ze, M) —
HY{(Ys, M).

5.2. Borel-Moore homology of Bruhat-Tits building.

In Section 5.2.1, we construct a homomorphism (5.3) from the Borel-Moore ho-
mology of the building to the space of function on GL4(F,). We prove in Lemma 5.1
that the homomorphism (5.3) is injective and we determine its image in Corol-
lary 5.5.

Let d > 1 be an integer. Let BT 4 be the Bruhat-Tits buildirflg/of PGL, over F,
which is introduced in Section 3.2.3. For an integer ¢ > 0, let BT; and BT . be as
in Section 3.2.3.

5.2.1. We define a canonical, GL4(F )-equivariant homomorphism
(5.3) H™ (BT.,C) — Map(GL4(Fx), C)

of complex vector spaces. Here the group GL4(F) acts on the space Map(GL4(Fs ), C)
by the right translation. Let us define ¢ : BT 4-1+ — [[,c57, , T(0) as follows.
Take (0 = (L;)icz, Lo) in BT 4—1,.. We define (0, Ly) to be the bijection in T'(o)
from {1,...,d} to V(o) which sends i to the class of L;_1 in BT . We denote by ¢
the composite

L GLg(Foo)/TFX 2 BT = [[ T0)— ] Olo)=(BTa1)-
c€EBT 41 oc€BT 41

Here 7 is the Iwahori subgroup introduced in Section 3.2.3, and ZFJ denotes the
subgroup of GL4(F.) generated by the center FX of GL4(Fw) and and Z. The

first map is the isomorphism induced by the isomorphism B7 43— = GL4(F)/Z
given in Section 3.2.3. Let us consider the composite

(5.4) Il c £ Map1y((BT 4-1)', C) = Map(GLa(F ) /ZFZ, C).
ve(BT a-1)’ {£1}

Here the first map p is the isomorphism which sends the class of an element a =
(av) € Il,emr, .y C to the map (BT 4-1)" — C, which sends v € (BT 4-1)" to
a, — a(—1).,- The second map is the homomorphism induced by the map ¢. Since
HBM(BT.,C) is a subspace of the source of the map (5.4) and since the target of
the map (5.4) is a subspace of Map(GL4(Fx ), C), the map (5.4) induces the desired
homomorphism (5.3). It follows from the construction that this homomorphism is
GL4(Fw)-equivariant.

Lemma 5.1. The homomorphism (5.3) is injective.

Proof. We have defined the homomorphism (5.3) to be the composite of several ho-
momorphisms which are obviously injective except for the second homomorphism
in (5.4) which we denote by ¢*. We prove the injectivity of ¢*. Let S C (BT 4—1)
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denote the image of the map ¢ in Section 5.2.1. The composite GL4(F)/ZF
of ¢ with the canonical surjection (BT 4—1)" — BTa4—1 is surjective, since it is
equal to the canonical map GL4(Fx)/ZFY = BTi-1. — BTq-1. Hence we
have S U (=1) - S = (BTq4-1). It follows that the restriction homomorphism
Map413((BT4-1)",C) — Map(S,C) is injective. The homomorphism ¢* is the
composite of this (injective) restriction homomorphism with the pullback homo-
morphism Map(S,C) — Map(GL4(Fw)/ZFX,C) with respect to the surjection
GL4(Fso)/IFZ — S induced by the map ¢. Hence the homomorphism ¢* is injec-
tive. ]

5.2.2. We say that an element f € Map(B7 41, C) is a (C-valued) harmonic
cochain if the following two conditions are satisfied:
(1) Let 0y, = ((Li)iez, Ln) € BT 4—1,« be a pointed (d — 1)-simplex for n € Z.
Then f(o,) = (—1)*" f(0,/) holds for n,n’ € Z.
(2) Let 7 € BT 4—2,« be a pointed (d — 2)-simplex. Let {7% }o<i<4 be the set
of pointed (d — 1)-simplices, each of which contains 7 as its (pointed) face.
Then 377, f(7}) = 0.

Lemma 5.2. The space of harmonic cochains coincides with the image of the map
(5.3).

Proof. Let f be a harmonic cochain. Let us show that it lies in the image of the map
(5.3). As f satisfies the condition (1) above, we can find an element (f,),eB7,_,)
of [I,es7, .y C which maps to f via the map (5.4).

By the definition of HFM (BT, C) given in Section 5.1.2, an element of [Lesr, .yC
lies in the image of H?M (BT,,C) if and only if (5.2) is zero. Using Condition (2)
of the definition of harmonic cochain, one can verify that it holds true. ]

5.2.3. We give an alternative description of the homomorphism (5.3). Since BT 4 is
an empty set, it follows from Section 5.1.3 that we have a canonical isomorphism
HPM(BT., M) = Homc(HZ"Y(BT.,Z), M) for any abelian group M. From this it
follows that

HBM(BT,,C) = Homc(HI"Y(BT.,C),C)

(5:5) =~ Homgr,,(r..)(HI™ (BT, C), Map(GLq4(Fx ), C))

where the second isomorphism follows from the Frobenius reciprocity.

Let o9 € BT g—1,» = GL4(Fx)/IFZ be the pointed (d—1)-simplex corresponding
to the coset ZFX. Let [1(00)] : (BT 4—1)" — C denote the {£1}-equivariant map
with finite support which sends € - ¢(cg) € (BT 4—1)" to € for e € {£1} and which
sends the other elements in (BT 4_1)" to zero. Since BT 4 is an empty set, the
element [t(00)] € Map{{iil}((BTdfl)’,(C) defines a class in H~1(BT,,C). We also
denote this class by [t(0p)]. Let us consider the composite

BM @) d—1
HPY(BT,,C) —= Homgr,,(r)(HE (BT, C),Map(GL4(Fx),C))

), Map(GL4(Fa), C)

(5.6)

where (1) is the isomorphism (5.5) and (2) is given by the evaluation at [t(op)].

Lemma 5.3. The homomorphism (5.6) coincides with the homomorphism (5.5).
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Proof. We put M = Map(GL4(Fw),C). Tt follows from the definition that the ho-
momorphism (5.6) is equal to the restriction to HZ™ (BT, C) C (I ewre )y Oy
of the composite

(Mecsr, v ©),,, = Home(Mapfiy (BT4-1)'.©).C)

(57) = HOmGLd(FOO)(Map?il}((BTd—l)/;(C)aM)
- M

where the second isomorphism follows from the Frobenius reciprocity and the
last map is the homomorphism given by the evaluation at [t(0p)]. It is straight-
forward to check that the homomorphism (5.7) sends the class of the element
(av) € [lewr, 1)y C to the map GLq(Fso) — C which sends g € GLq4(Fix) to
Ay TFZ) — A(—1).(gTF)- Hence the homomorphism (5.7) is equal to the compos-
ite of (5.4) with the canonical inclusion Map(GL4(Fw)/ZFo,C) C M. Hence it
follows from the definition that the homomorphism (5.3) is equal to the restriction
to H (BT, C) € (IT,es7, .y C)a1y of the homomorphism (5.7), which proves
the claim. [l

5.2.4. We give a consequence of Lemma 5.3. It is shown by Borel ([Bo, 6.2, 6.4])
that there is an isomorphism Stq & HY~1(BT., C) of C[GL4(Fx )]-modules, where
Stq is the Steinberg representation (see [Lau, p.193] for definition). By Schur’s
lemma this isomorphism is unique up to scalar; we fix one. It is known that the
subspace St} C Sty of Z-invariant vectors is one-dimensional. Let us fix a basis
eo € St. Since [1(00)] € HI'(BT,,C) is Z-invariant, it corresponds to a scalar
multiple ceq of eg under the fixed isomorphism H¢~1(BT,,C) = St,.

Lemma 5.4. The scalar c is non-zero.

Proof. Since the group GL4(Fw) acts transitively on the set BT 4-1 which is a
quotient of the set BT g_1 = GLa(Fix)/Z, the space Mapy 13 ((BTa-1)",C) of (d —
1)-cochains computing the group HZ~!(BT,,C) is generated, as a C[GL4(Fx)]-
module, by the map [t(o0)] : (BT4q-1) — C. It follows that the C[GLq(Fx)]-
module H?~1(BT,,C) is generated by the element [.(0¢)] € HS~1(BT,,C). Hence
the C[GL4(F)]-module Stq is generated by the element ceg. Hence we have ¢ #
0. (]

It follows from Lemma 5.3 that the homomorphism (5.3) is the composite of the
isomorphism (5.5) with the composite

Homgr, (p. ) (HS (BT, C), Map(GLq4(Fx), C))
= HomGLd(Foo)(Std’ Map(GLd(FOO>’C))
— Map(GL4(Fw),C)

where the last map is given by the evaluation at cey. Hence, by Lemma 5.4, we
have:

Corollary 5.5. The image of the homomorphism (5.3) is equal to the image of
the map Homgr,,(r.)(Sta, Map(GL4(Fw ), C)) — Map(GL4(Fw),C) given by the
evaluation at eg. O



26 SATOSHI KONDO AND SEIDAI YASUDA

5.2.5. We need the following fact in Section 5.3.1 and in Section 5.4.4.

Lemma 5.6. Let i > 0 be an integer, let o € BT; and let v,v' € V(o) be two
vertices with v # v'. Suppose that an element g € GL4(Fy) satisfies |det gloo = 1.
Then we have gv # v'.

Proof. Let & be an element (L) ez in BT, such that the class of & in BT is equal
to o. There exist two integers j,j’ € Z such that v, v' is the class of L;, Lj,
respectively. Assume that gv = v’. Then there exists an integer k € Z such that
ng_l = w’goLj/ = Ljiy(i+1)k- Let us fix a Haar measure dy of the Fi-vector space
V. As is well-known, the push-forward of du with respect to the automorphism
Voo — Vo given by the right multiplication by v is equal to | det | ldu for every
v € GL4(Fx). Since |det g|s = 1, it follows from the equality L;g~! = Lt (it1)k
that the two O-lattices L; and L/ (;11), have a same volume with respect to dpu.
Hence we have j = j’ + (i + 1)k, which implies L; = w® L;. It follows that the
class of L; in BTy is equal to the class of L;/, which contradicts the assumption
v#£v. O

5.3. Borel-Moore homology of some arithmetic quotients of Bruhat-Tits
building.

We define a certain simplicial complex in Section 5.3.1, whose Borel-Moore ho-
mology groups play a major role in this article. The homomorphism constructed
in Section 5.2.1 induces a homomorphism from the Borel-Moore homology of the
simplicial complex to the space of automorphic forms. Using an isomorphism of
Borel (which is recalled in Section 5.2.3), we see in Corollary 5.7 that the image
of this homomorphism inside the space of cusp forms is the A3, (see Section 9.1
for the precise definition). We note that these functions lying in the image of the
homomorphism constructed are usually called “harmonic cochains”.

5.3.1. For an open compact subgroup K> C GL4(A>), we define the simplicial
complex X~ o as the disjoint union Xge o = BT s x GLg(A®)/K> of copies of
BT, indexed by GL4(A*)/K>. The group GLg(A) canonically acts on )?Koc,
from the left. For i > 0, we let Xk~ ; denote the quotient Xge ; = GLd(F)\)?Koo,i
under the action of GL4(F') C GL4(A). Let us introduce the structure of simplicial
complex on the collection Xgoo o = (Xkoo ;)i>0-

Let v € GL4(A®). For each i > 0, consider the inclusion BT; — )Z'Koo}i which
sends o € BT; to (o,7K*). This induces an injection

GLy(F) NyK>®y N\BT; «— Xgeo ;.

We give an explanation for the notation GLg4(F)NyK>~~1\BT; in the source of this
injection. It should be read as follows. We regard the group GL4(F) as a subgroup
of GL4(A*) via the diagonal embedding GL4(F) — GL4(A*>) when we take the
intersection GL4(F) NyK>~y~1. We then regard GLy4(F) N~yK*>~~! as a subgroup
of GL4(Fy) via the homomorphism GLg4(F) Ny K>y < GLg(F) — GL4(Fx)
when we let it act on BT ;.

If g is an element in GL4(F) NyK>~~!, the product formula [],|det g|, = 1
(where v runs over all places of F') implies that | det g|ooc = 1. Hence for (o,7K>) €
)?Kocﬂ:’ it follows from Lemma 5.6, that the image of the set of vertices V ((o, vYK*°))

under the surjection _Xv]Koo,O — Xgeo g is a subset of Xge ¢ with cardinality 7 + 1.
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We denote this subset by V(cl(o,vK>)), since it is easily checked that the set
V(cl(o,vK>)) depends only on the class cl(o, yK*) of (o, yK*) in Xge ;. Thus
the collection Xgoo o = (Xge ;)i>0 has a structure of a simplicial complex.

5.3.2. The structure of the simplicial complex is uniquely characterized by the
property that the collection of the canonical surjection )}Kwﬂ, — Xkoo ; is a map of
simplicial complexes )?Koo,. — XKoo o

This means in particular that if 0 € Xk~ ; is an i-simplex and if o € )?Kooﬂ;
is an ¢-simplex which maps to o, then V(o) is the image of V() under the map
Xgoo,0 = Xk 0

For a non-empty subset V C V(o) of cardinality i’ 4+ 1, let V C V(&) be the
unique subset which maps bijectively onto V under the map )~(Koo70 — XKe,0. Then
the i'-simplex o Xy/(») V' is equal to the image of o Xy (5 V under the surjection
Xioo i# — Xgoo ir- It is straightforward to check that the simplicial complex Xgo o
is locally finite.

5.3.3. The homomorphism (5.3) in Section 5.2.1 induces the homomorphism

HE_N{ (XKOO’.’ C) = HQKOOGGLd,(AOO)/KOC HE_N{ (BTO7 (C)
(5.8) - HgKmeGLd(Aw)/Koo Map(GL4(Fix),C)
>~ Map(GL4(A) /K>, C)
which is GLg(A)-equivariant. It follows from the definition of Borel-Moore homol-
ogy and the fact that the simplicial complex Xko o has no i-simplex for ¢ > d that

the GL4(F)-invariant subspace of the source of (5.8) is isomorphic to HZ™ (X o, C).
Hence we have a homomorphism

(5.9) HEM (X o, C) = (Map(GLg(A) /K>, C))SkalF) = A%~
The following is a consequence of Lemma 5.1 and Corollary 5.5.

Corollary 5.7. The homomorphism (5.9) is injective and its image is equal to the
image of the homomorphism

HomGLd(Fm) (Std, A%w) — A%OO
given by the evaluation at ey € Stg. O

5.4. Apartments.

Here we recall the definition of the apartments which are simplicial subcom-
plexes of the Bruhat-Tits building. We then associate to each apartment a class
in the Borel-Moore homology of a quotient of the Bruhat-Tits building. This class
is an analogue of a modular symbol, and for its construction we require a lemma
(Lemma 5.11) from our other paper [Ko-Ya2] where this analogue of a modular sym-
bol is the main subject for study. The classes nge , € A% defined in Section 5.4.7
will be of use in Section 6.2, especially in the proof of Proposition 6.5.

We recall one more lemma (Lemma 5.12) from [Ko-Ya2]. This lemma states that
a class in the Borel-Moore homology which comes from the homology is expressed
as a linear combination of the classes of apartments. Corollary 5.16 is the form we
will use, and will appear in the proof of Lemma 9.4.

For the general theory of Bruhat-Tits building and apartments, the reader is
referred to the book [Ab-Br].
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5.4.1. We give an explicit description of the simplicial complex A, below without
making use of the theory of root systems. For the viewpoint in the general theory
of root systems, we refer the reader to [Ab-Br, p. 523, 10.1.7 Example].

Put Ay = Z%®/Z(1,...,1). For two elements z = (z;),y = (y;) € Z%, we
write < y when z; < y; for all 1 < j < d. We say that a subset 0 C 794 is

small if for any two elements x,y € ¢ we have either ¢ <y < z+ (1,...,1) or
y<z<y+(1,...,1). Explicitly, this means that & is a finite set and is of the form
o = {xo,...,x;} for some elements xo,...,z; satisfying o < - < 2; < ®jy1 =

zo+ (1,...,1). We say that a finite subset ¢ C A has a small lift to Z®9 if there
exists a small subset & C Z%? which maps bijectively onto o under the canonical
surjection Z®? — Ay. Fori > 0, we let A; denote the set of the subsets 0 C Ay with
cardinality i+ 1 which has a small lift to Z®?. It is clear that the pair (Ao, [[;50 A:)
forms a strict simplicial complex and the collection Ae = (A;);>0 is the simplicial
complex associated to the strict simplicial complex (Ao, [[;~, Ai). We note that A;
is an empty set for i > d, since by definition there is no small subset of Z®¢ with
cardinality larger than d.

5.4.2. Let vq,...,vq be a basis of Vo, = FE4. We define a map iy, .o, : Ao — BT,
of simplicial complexes.

Let Ty, 0y ¢ 7951 — BT denote the map which sends the element (ny,...,ng) €
7% to the Oy-lattice Opm@w™v; © One@@vy @ -+ ® Opow™@vy. Let i > 0 be an
integer and let o € A;. Take a small subset o C Z®? with cardinality i + 1 which
maps bijectively onto ¢ under the surjection Z®? — Z®4/7(1,... 1) = Ay. By
definition the set & is of the form & = {xo,...,7;} where xy,...,x; € Z%¢ satisfy
2o < -+ < x; < xip1 where we have put ;41 = 29 + (1,...,1). For each integer
Jj € Z we write j in the form j = m(i + 1) +r with m € Z and r € {0,...,i},
and put z; = z, + m(1,...,1) and L; = 7, .4, (x;). The sequence (L;);ez of
Oco-lattices gives an element Z,, . ,,.:(0) in l/”fa'\7/'z We denote by ty,,... v,,i(0) the
class of 7y, ... v,.i(0) in BT;.

Lemma 5.8. The class ty, ... 4,,i(0) does not depend on the choice of a small lift 7.

Proof. The inverse image of & under the canonical surjection Z®¢ — Z%/7,(1,...,1)
is equal to {x; | j € Z}. Since z; < zj for j < j and zj4i+1 = z; + (1,...,1),
any small subset o’ of Z®? with cardinality i + 1 which maps bijectively onto o is
of the form ¢’ = {z;, zi41,..., 214} for some | € Z. The element @y, . 4,:(0') is
the sequence (L’) ez, where L = L;;. Hence the two elements 7,, . 4,,i(d) and
Ty ,...wa,i(0") gives the same element in BT;. O

It is easily checked that the map ty,, . v, * A; = BT is injective for every ¢ > 0
and that the collection of the maps ... 4,,; forms a map ¢y, . o, : Ae = BT of
simplicial complexes. We define a simplicial subcomplex A,,, .y, of BT o to be
the image of the map ¢y, o, so that A,, ., is the image of the map ty,, . v,
for each ¢ > 0. We call the subcomplex A, . ., 0f BT s the apartment in BT,

corresponding to the basis vy,...,v4. Since the map vy, ... v, is injective for every
i > 0, the map ¢y, ., induces an isomorphism A, — A, ,,e of simplicial

complexes.

d

5.4.3. We introduce a special element 3 in the group HPM (A,,Z), which is an
analogue of the fundamental class. Let 0 € A4_; and take a small lift & C Z®¢ to
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724, By definition the set & is of the form & = {zy,..., 24} withag < 21 < -+ < 24
where we have put g = x4 — (1,...,1). It follows from this property that for each
integer ¢ with 1 < i < d there exists a unique integer w(i) with 1 < w(7) < d such
that the w(i)-th coordinate of x; — ;1 is equal to 1 and the other coordinates of
x; — x;—1 are equal to zero. Since we have Zle(xi —xi1)=xzg—x0=(1,...,1),
the map w : {1,...,d} — {1,...,d} is injective. Hence it defines an element w
in the symmetric group Sy. The maps {1,...,d} — Ag = Z9%/7Z(1,...,1) which
sends i to the class of z,,-1(;) in Ag gives an element [7] in T'(0).

Lemma 5.9. The element [0] € T(0) does not depend on the choice of a lift &.

Proof. For each integer j € Z we write j of the form j = md 4+ r with m € Z
and r € {0,...,d — 1} and put z; = =, + m(1,...,1). As we have mentioned in
the proof of Lemma 5.8, The inverse image of o under the canonical surjection
7% — 7%4)7,(1,...,1) is equal to {z; | j € Z} and any small lift ¢’ of o to Z%? is
of the form ¢’ = {z;, 2141, ..., 211q—1} for some | € Z. For each i € {1,...,d}, the
unique integer j € {l,{+1,...,l+d—1} such that the i-th coordinate of z; —z;_;
is equal to 1 and the other coordinates of z; — x;_1 are equal to zero is congruent
to w™!(i) modulo d. Hence the class of z; in Ay does not depend on the choice of
a small lift o/. This proves the claim. (I

We denote by [o] the class of [5] in O(c). We let 8 denote the element 3 =
(Bu)vear, | in HueA;_l Z where 5, = 1 if v = [o] for some 0 € A4_1 and f,r =0

otherwise. We denote by 3 the class of E in (HVGA,(F1 Z){+1)-

Proposition 5.10. The element 3 € (Hue%i1 Z)¢+1y 18 a (d — 1)-cycle in the
chain complex which computes the Borel-Moore homology of Ase.

Proof. The assertion is clear for d = 1 since the (d — 2)-nd component of the
complex is zero. Suppose that d > 2. Let 7 be an element in A;_». Take a small

lift 7 C Z%? of 7 to Z®?. By definition the set 7 is of the form 7 = {z1,...,24}
with 29 < 21 < -+ < 24-1 where we have put zyp = z4 — (1,...,1). There is a
unique ¢ € {1,...,d — 1} such that z; — 2;_1 has two non-zero coordinates. There

are exactly two elements in Z®¢ which is larger than z;_; and which is smaller
than z;. We denote these two elements by y; and y». We put o; = 7 U {y;} for
j =1,2. The sets o1, o are small subsets of Z9? of cardinality d and their images
o1, 02 under the surjection Z®? — Z®4/7(1,...,1) are elements in Ay_;. For
j = 1,2, let w; denote the element w in the symmetric group Sy which appeared
in the first paragraph of Section 5.4.3 for ¢ = o0;. It follows from the definition
of o; that we have wy = wa (4,7 + 1), where (7,7 4+ 1) denotes the transposition of
i and i + 1. It is easily checked that the set of the elements in A;_; which has
T as a face is equal to {o1,02}. Since we have sgn(w;) = —sgn(ws), it follows
that the component in (][], co(,) Z){+1} of the image of 3 under the boundary map
(HV€A;71 Z)gx1y — (HV’GA;,Q Z)¢+1y is equal to zero. This proves the claim. [

5.4.4. Let us define simplicial complexes I'\BT 4 in this paragraph.

Let K* C GL4(A*) be an open compact subgroup. Let v € GL4(A*) and
put I' = GLg(F) N yK*®~~1. As we have explained in Section 5.3.1, any element
g € I satisfies | det g|oc = 1. Hence it follows from Lemma 5.6 that for each ¢ > 0
and for each o € BT;, the image of V(o) under the surjection BTo — I'\BTy
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is a subset of I'\BT ¢ with cardinality ¢ + 1. We denote this subset by V(cl(0)),
since it is easily checked that it depends only on the class cl(o) of o in T'\BT,.
Thus the collection I'\BT ¢ = (I'\BT;)i>0 has a canonical structure of a simplicial
complex such that the collection of the canonical surjection BT ; — I'\BT; is a map
of simplicial complexes BT 4 — ['\BT,.

5.4.5. We need two statements (Lemma 5.11, Lemma 5.12) whose proof will be
given in our forthcoming paper [Ko-Ya2]. Let ' be as in Section 5.4.4. For an
F-basis vy,...,v4 (that is, a basis of F%d regarded as a basis of ng), we consider
the composite

(5.10) A, 2y BT, — T\BT..

Lemma 5.11. The map (5.10) is a finite map of simplicial complezes in the sense
of Section 5.1.4.

Proof. See [Ko-Ya2]. O

It follows from Lemma 5.11 that the map (5.10) induces a homomorphism
H™\ (e, Z) — HG2 (T\BT ., Z).

We let By, v, € HEM(I'\BT.,Z) denote the image under this homomorphism of
the element 8 € HPM (As,Z) introduced in Section 5.4.3. We call this the class of
the apartment A,, .. ;.-

Lemma 5.12. The image of the canonical map
del (F\BTM (C) - H(]i?)iv{ (F\BT07 (C)

is contained in the sub C-vector space generated by the classes of apartments asso-
ctated to an F'-basis.

Proof. See [Ko-Ya2]. O

5.4.6. Let the notation be as in Section 5.4.4. Since BT 4 is an empty set, the
abelian group H, (113_1\/{(1" \BT,,Z) is canonically isomorphic to the I-invariant part of
H}?iv{ (BT, Z). We describe the image of 5, ..., under the composite

HEM(T\BT,,Z) — H (BT.,Z) - HE™M (BT,,C) — Map(GL4(Fx),C)

where the last map is the homomorphism (5.3).

Let T' C GLg be the maximal torus of diagonal matrices and let N(T'(F))
denote be the normalizer of T'(F) in GLg(Fs). As aset, N(T(Fw)) is the disjoint
union N(T'(F)) = [[es, WT (F) where w runs over the symmetric group S4 and
W = (0;,1(;)) denotes the permutation matrix associated with w. Let

(5.11) ¢ N(T(Fw))/T(Fo) — {1}
denote the map which sends the coset WwT'(Fu) to sgn(w).
Lemma 5.13. We have N(T(Fso)) NZEYL = T(Ox)FX .

Proof. If g € ZFZ, then the diagonal entries of g are non-zero and have the same
oo-adic valuation. This implies that WwT (F) NZF} is empty except for w = 1.
Since T(Fso) NZFX = T (O ) FX, the claim follows. O
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Lemma 5.13 shows that the canonical map
(5.12) N(T(Fi))/T(O)FS — GLa(Fu) /TF2

is injective. Let g € GL4(F) denote the matrix whose i-th row is equal to v; for
1<i<g. Let pg : N(T(Fo))/T(Ooo) FX — GL4(Foo)/ZFZ denote the injection
which is the composite of (5.12) with the automorphism of GLy4(Foo)/ZFX given by
the left multiplication by g=1. Let ¢y, . ., : GLa(Fx)/ZFX — {—1,0,1} denote
the map characterized by the following properties:

e For h € N(T(Fx)), the map ¢, ... v, sends the image of hT(Ox)FE €

N(T(Fx))/T(Oo)F% under the injection pg to ¢(hT(Fu)) € {£1}. Here
¢ is the map in (5.11).
e Ifan element ¢’ZF does not belong to the image of pg, then ¢,,

0.

va(9'TFZ) =

.....

Lemma 5.14. The composite GL4(Foo) — GL4(Foo)/ZFZ BACIETN {-1,0,1} C

C is equal to the image of the class of the apartment A,, .. ., e under the homo-
morphism (5.3).

Proof. Let (L;)jez be an element in E’Y/‘d_l whose class in BT 4_1 belongs to the
subset Ay, v;,d—1 C BT 4—1. Let o be the unique element in A4_; such that the
class of (Lj;) in BT 4-1 is equal to the image of o under the map ty, . v .d-1 :
Aq—1 — BT4-1. It follows from the definition of the map ¢, . 4,,d—1 that there
exists a small lift & = {zg,...,2q-1}, with 29 < --- S wg—1 S zg =20+ (1,...,1),
of o to Z®¢ such that for i = 0,...,d, the image of x; under the map Tor,.0g
in Section 5.4.2 is equal to L; € BA’7/'0. We write zg = (m1,...,mg), where
my,...,mg € Z. Let w be the element in the symmetric group Sy which was con-
structed from & in Section 5.4.3. Then for i = 0,...,d — 1, the element z; € Z%¢
is characterized by the following property: the w(j)-th coordinate of z; is equal to
m; +1if 0 < j <4, and is equal to m; if ¢ < j < d — 1. Hence it follows from the
definition of the map 7y, .. .,, that fori =0,...,d, the Oy-lattice L; is of the form

L, = @ ng'ﬂooouw(j) D @ ngooovw(j)-

1<5<i i<j<d

It is straightforward from the definition of the isomorphism B\T’d_l >~ GL4(Fx)/T
in Section 3.2.3 to check that the element (Lj)jeZ in 1/5’7'(1,1 corresponds via this
isomorphism to the coset g~ 'wdiag(w ™, ..., w ™4)Z. The class [0] € O(o) is
sgn(w) times the class of the element in T'(o) given by the map {1,...,d} — A
which sends ¢ to the class of x;. Consider the composite map c : H}f’i\/{ (BT,.,C) —
Map(GL4(Fs)/ZFEZ,C) of the homomorphism (5.4) with the canonical inclusion
HMM(BT.,C) — (IL e, 1y ©) (13- Then the image of the class of the apart-
ment A, .. ,, under this map c is equal to the map ¢,,,.. ,,. Thus the claim follows
from the definition of the homomorphism (5.3). O

Let pg—1 : GL4(Fso)/IFX — I'\GL4(Fs)/ZFZ denote the canonical surjection.
It follows from Lemma 5.11 that for every a € T\GL4(F)/ZFZ the sum

bep;t(a)
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is a finite sum and hence gives an element $v1,---,v ,(a) € Z. The following statement
is a consequence of Lemma 5.14.

Corollary 5.15. The map 51}17.““ : T\GLy(F)/ZF} — Z C C is equal to the
image of By, ..., € HEM(D\BT,,Z) under the composite

HPY(I\BT., Z) - HP|(I\BT.,C)
(1)
= (Moemsra 1y ©) ,,, > Map(T\GLa(F) /ZF, )

where the map (1) is the homomorphism induced by the homomorphism (5.4). O

5.4.7. Let K C GL4(A*) be an open compact subgroup. For v € GL4(A>), we
construct a function

Mooy GLa(F)\(BT 41, x GLg(A®)/K®) = C

in A%OO as follows. Take a complete set of representatives {g;};cs C GLgq(A>) of
GLd(F)\GLd(AOO)/KOO We then have HjEJ Fj\BTd_l,* = GLd(F)\(BTd_L* X
GL4(A>)/K*>) where I'; = GLg(F) N gj]Koogj_1 for each j € J. Suppose v = gg;k
with g € GL4(F),k € K*® and j € J. Let v; denote the i-th row of the matrix g.
Then we put ke y = Pyy,... v, 00 I';\BT 4—1,« and zero on I'j)\BT q_1 . for j' # j.
This is independent of the choice of the g;’s, g, and k.

It follows from Corollary 5.15 that nge , € .A%Oo is equal to the image under the
homomorphism (5.9) of the element HPM (Xke o,C) = Dy HBM(T;\BT.,,C)
which is equal to the class of A,, .. ., e on [';\BTe and which is zero on I';/\BT,
for j' # j. Let us also denote by 7k~ - the element in HPM Xk o,C) described
above.

Corollary 5.16. The image of the canonical map
Hy 1 (Xg= o, C) = HPM (Xg o, C)

is contained in the subspace generated by the elements of the form nge , with v €
GL4(A®).

Proof. Let {g;};es be as above. Then HPM (Xg o,C) 2 D,cs HPM(T,\BT.,C).
Fix jo € J. From Lemma 5.12, it follows that the subspace generated by the ele-
ments nge ~, where v runs over the set {gg;, | ¢ € GLq(F')}, contains the subspace
of elements e = (ej)jes € HPM (Xk=..,C) with e; = 0 if j # jo and with e;,
coming from Hy_1(Xge o,C). The claim follows. O

6. ZETA INTEGRAL

The aim of this section is to prove Theorem 6.3. It states that the integral
of a Hecke eigen cusp form against a certain automorphic form with a complex
parameter is expressed as the product of the L-function of the cusp form and
a certain integral not involving the complex parameter. The case d = 2 is the
analogue of the case of GL3 g, and may be proved using the Rankin-Selberg method.
Here we use instead the fact, whose proof is given in our other paper [Ko-Yal], that
the automorphic forms constructed using the homomorphism £ satisfy certain trace
relations.

In Section 6.1 (especially in Proposition 6.2), we express the fact that this trace
relation holds as that a certain family of automorphic forms is an “Euler system”.
This is an abuse of terminology, since an Euler system in the usual sense is a family
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of elements in certain Galois cohomology groups. The reader familiar with the
theory of Euler systems will easily find that the notion of Euler system in this
section is an automorphic counterpart of that in usual sense. The reader who is
not familiar with the theory of Euler systems should regard the properties stated
in Proposition 6.2 as the definition of Euler system in our sense.

6.1. Euler systems.

We recall below the statement (Proposition 6.2) that certain automorphic forms
constructed from distributions satisfies certain trace relation. The proof is given in
our other paper [Ko-Yal].

6.1.1. Let R =C((q’)). We define a homomorphism
£:8'(V>)¥" = An(| )

as follows. (See Section 2.4.4 for the definition of §'(V*°).) Let @0, : Maty(Foo) —
C((g?)) denote the function which sends Mo, € Maty(Fx) to det(gboo(Moo,iH;ll)),
where ¢ is as in Section 3.4.3, II;_; is as in Section 3.2.3, and M ; is the i-th
row of My,. For @ € §'(V°)®4 and g = (9°°, gs) € GL4(A), we regard O
as an element in S(Maty(A>)) via the isomorphism S(V>)®? = §(Maty(A>)) in
Section 2.4.4 and we put

(6.1) E@F)(g)= D,  ®(Mg®)Du(Mgoo).

MeMaty(F)
Let us show that the sum on the right hand side is convergent. Note that any
@> € §'(V°°)®4 i5 a linear combination of functions of the form ¢, b, @ @ P, b,
where each A; C V is an A-lattice and b; € (V/A;) \ {0} (We refer to Section 3.4.3
for the definition of ¢5°,).

Lemma 6.1. Let the notation be as above. For ®* = ¢\ ® - ® ¢34, and
for g € GLq(A), we have

E(2™)(g) = det((Ea, b, (9115 1)))1<ij<d),

where Ep, b, is the Fisenstein series defined in Section 3.4.2.
Proof. This follows from the definitions using Lemma 3.3. O

This lemma implies that the sum on the right hand side of (6.1) above is con-
vergent.

6.1.2. Let J C I & A be nonzero ideals. Given v € GL4(A™), we put &5, =
5(Ch,y‘yij).

Proposition 6.2. Let v € GLy(A™). The system of automorphic forms (Er,5~)1.7
indexed by two nonzero ideals J C I ; A is an Euler system. That is, the following
statement holds (see the comments in the second paragraph of Section 6 on our
usage of this terminology).

Let I', J' C A be nonzero ideals satisfying J' C I' C T and J' C J. We let p be a
prime ideal dividing I', and assume that Supp (I/I") C {p} and that Supp (J/J') C
{p}. Let e, be as in Section 4.2.1. Then

[

Try ) €y =Y (1) IPT &g

r=0
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Here T, 14s the dual Hecke operator defined in Section 4.2.1, and

Trg"]‘]/ AR | 153%) = Ag(LL J, | |22 is the trace map.

Proof. See [Ko-Yal]. See also the thesis by Grigorov [Gr, p.25, Theorem 1.4.6]
where a relevant portion of the proof is presented. ([

6.2. Zeta Integral.
Let J C I be two nonzero ideals of A. For an element v € GLg(A™), we write
N7y = Mg,y € Ac(l, J,1), where Nk, | € Ac(I,J,1) is as in Section 5.4.7.

Theorem 6.3. Let f be an element in A2(I,J,1). Suppose Conditions (1)(2) of
Section 4.2.2 are satisfied. We have

d—
(FEnm) = (L= a2V L (s = S0 Fnns).

Corollary 6.4. If L'/ (f,—%51) # 0, then (f,n1,54) = 0.

Proof of Corollary 6.4. From Proposition 3.4 it follows that the left hand side of
the equation in Theorem 6.3 has a zero of order d at s = 0. Then counting the
number of zeros on the right hand side gives the claim. (I

We refer to Remark 8.3 for an implication of this corollary.

6.2.1. Proof of Theorem 6.3: Step 1. Application of Euler systems. For
any nonzero ideal I’ of A with I’ C J, we consider the element

Erarn =Ty (Er1,)
in Ar(I,J,| |3*%). By Proposition 6.2, we have

Co
Erur = H <Z(1)qu(rl)/2T;,r> Ergms

o|I', ptl \r=0

where e, is as in Section 4.2.1. Thus

e r(r—1) _rs
(fi €101 ~) = H (Z(—l)r% : Tor)f,E1,04)
plI’, ot r=0

and hence

e -1
£ =1
(f.€04) =[] [Z(—l)fawqp 2 ] (Fr €001 )

plI’, ptl Lr=0

Next we consider the limit of & 5/, as I’ gets smaller. We note that for all
I' C J, the function Er.5,1' ~ is invariant under the action of Z x K}’?J where 7 is
the Iwahori subgroup, since Z = ﬂ?zl Hj_flGLd((’)oo)Hj_l.

We put

Y[ﬁ]’p = {g S Y[ﬂ] | ngdI/ S GLd(A/II)}
where Y7 ; is as in Section 2.4.6. It is easy to check that the set Y7 ;- is written
as the disjoint sum
Yror= H Y- h
heKss |, \Kg,
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It follows that Tr?z,l (Chw~Y11,1/) = chy.y, ,,,. Hence we have & 1, = g(Ch'Y'YI,J,I’ ).
Since 7 - Y7, 517 is a subset of v - Y7 ; and since v - Yz j v C 7y - Yy g0 for I C T,
the limit of £ 71/ 4(g) € R as I’ gets smaller exists for any g = (¢°°, goo) € GLqa(A)
and is equal to

ErarA(9) = Z Do (Mgoo)-

MeMat g (F)
Mg €N v Yy 51/

Since ;v - Yr,51r = 7K$;, we have

Erunma(9) = ZXeGLd(F),ngewK;?J‘I’oo(Xgoo)

(6.2)

= ZXEGLd(F),XgWE'yK?f’J det((\lz‘Xgoon__ll\aiw)1§¢,jgd)7
where 1; = (0,...,0,1,0...,0) with 1 placed in the i-th place, with respect to the
(¢=5)-adic topology.

Recall that since f is a cusp form, the support of the function f(g) is contained in
Z(A)K for some compact open subset K C GL4(A). We note also that Z(F) acts
trivially on f(9)€r,7,1~(g)| det g|*. It follows that the inner product (f,&r s1 ~)
is a sum over the finite set GLq(F")Z(Fu)\Supp (f)/(K N (Z x K7°;)) which does
not depend on I’. Hence the limit of (f, &7 s ~) with respect to I’ commutes with
the bracket (,). Thus we obtain

<f’ 51,J7’Y> = LLJ(f? s = %)(ﬂ gI,J,limﬁ>~

6.2.2. Proof of Theorem 6.3: Step 2. Unfolding the integral. Now to prove
the theorem, it suffices to prove the following proposition.

Proposition 6.5. Let the notation be as above. We have
(f,€1,00m,5) = (1 — q;os>d_1<f7 N1,J)-

Proof. Given two nonzero ideals I,J of A with J C I ; A, we define a function
¢1,74 on GLg(A) as follows. For g = (¢oo, ™) € GL4(A), we let

O1,77(9) = 07.(9°) boo (goo),

where ¢oo(gos) = det(\ligool_[;_lﬂ(gf/ ), and 5}’2}77 is the characteristic function of
vK72;. We have
51,J,lirn,'y = Z ¢I,J,'y (7/9)
v €GLq4(F)
Hence (f, &1 jlim,y) is equal to

flo) Y. br.u4(yg)ldetgl*dg

v €GLq4(F)
f(9)b1.1~(9)| det g|°dg

/Z(FOG)GLd(F)\GLd(A)

‘/Z(Foc)\GLd(A)

VOI(K??J) f(goov'Y)q;oo(QOO)ldet Joo |2 dgoo-
Z(FOO)\GLd(FOO)

Now let us fix goo € GL4(Fw) and consider the value 500(900). Let us write
H; j(9o0) = [1igoollj—1]o), .. and let H(goo) = (Hi,j(goo))1<i,j<d SO that ¢oo(gec) =
det H(gso). For each i = 1,...,d, there exists a unique n; = n;(g0) € {1,...,d}
such that H; ;(9o0) = Hi1(goo) for 1 < j < n; and H; j(goo) = 957 Hi1(goo) for
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n;+1<j<d. Ifn; =mn,, for some i; # iy, the i;-st row and is-nd row of H(geo)
are linearly dependent and hence det H(g) = 0. Suppose that nq,...,ng are
distinct, and let w denote the element in the symmetric group Sy which sends i €
{1,...,d} ton;. This occurs exactly when go, € WT(Fs)Z where T C GL4 denotes
the subgroup of diagonal matrices and w € GLg(Fx) C GLg4(A) is the permutation
matrix associated with w. Then we have Hle H; 1(9goo) = | det(goo)|5” and hence

det H(goo) = sgn(w) det H (i 'go) = sgn(w) |det(goo )| det D(s),

where D(s) is the d x d matrix

1 g% ... a°
I I
D(s) = '
I
1 1

Simple calculation shows that det D(s) = (1 — ¢%)4 1.
This shows that the left hand side of the equation in Theorem 6.3 equals

1- q;S)dflvol(ch’J) Z /Z f(goo,7)sgn(w)dgoo.

wESy (Foo)\wT(FOO)I

One can then verify that this equals the right hand side by checking the definition
of 17,7~ and the definition of 3, . . in Section 5.4.4. O

This completes the proof of Theorem 6.3. O

7. REGULATOR

In this section, we construct a homomorphism which we call regulator map from
the K-group of Drinfeld modular varieties to the space of automorphic forms.

7.1. K-theory for rigid analytic spaces.

For a rigid analytic space ), we may define the K-theory ring K,(2) using
the exact category of locally free coherent Og-modules. Let us collect the basic
properties in this section.

7.1.1. Let 2 be arigid analytic space (of finite type) over F,. We let K,,,(2)) denote
the m-th K-group constructed from the exact category of locally free coherent Ogy)-
modules. The graded abelian abelian group K, (2)) becomes a graded ring by giving
the product structure following [Wa, §9]. For a morphism 2); — 2)» of rigid analytic
spaces over Fi,, we have a pullback morphism K. (1) — K.(22) of graded rings.

7.1.2. Let Y be a scheme of finite type over F,. Let Y?" denote the rigid analytic
space associated with Y. There is an exact functor — ®p, Oyan from the exact
category of locally free coherent Oy -modules to that of Oyan-modules. This functor
induces a morphism of graded rings K, (Y) — K.(Y?"). Here the ring structure of
K.(Y) is as defined in [Gi], which uses the recipe of [Wa, §9].
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7.1.3. Let B be an affinoid algebra over F,. It is known ([Bos-Gu-Re, p.378,
Theorem 3], [Bos-Gu-Re, p.374, Proposition 2] and [Fr-vdPu, p.98, Proposition
4.7.2]) that the abelian category of finitely generated projective B-modules and the
category of locally free coherent Ogpr, p-modules are equivalent. This induces an
isomorphism of graded rings K. (Spec B) = K, (Spm B).

7.1.4. Let 9 be a rigid analytic space over Fi. Let us construct the symbol map
O0Q)* — Ki(9). Let f € O()*. Then f gives a morphism f :9) — G} of
rigid analytic spaces. We define the image of f in K7(2)) under the symbol map to
be the image of the coordinate function ¢ in O(Spec Fuo[t,t71]) = O(Gyy p,) via
the map

OGur ) = K1 (G p) 2 K1 (G2, ) 2 Ky (D)

m,Foo

where the map (1) is as in Section 7.1.2 and is the map (2) is the pullback by f.

To see that it is a group homomorphism, let us first recall the following fact.
Let m,pry,pry : G, X Gy, — Gy, denote the multiplication, the first projection,
and the second projection respectively. Let t € O(G,,)* = Ki(G,,) denote the
coordinate function. Then we have an equality m*t = prit+prit in K1(G,, X G,).

Now let f1, fa, f3 = fif2 € O()* and regard each of them as a morphism ) —
Gyt g Since mo (f1, f2) = f3, we obtain f5t = (f1, fo)*m*t = (f1, f2)*(prit +
prit) = fit+ f5t using the fact above. Here we used the same notation m, pry, pry, t
for its analytification by abuse. This shows that the symbol map is a group homo-
morphism.

We remark that the symbol map for schemes may be defined in an analogous
manner.

7.1.5. Let f : Y1 — Y2 be a morphism of rigid analytic spaces over F,. The
symbol maps O();)* — K1(9);) for i = 1,2 defined in the previous section are
compatible in the sense that the following diagram is commutative:

0®2) —— Ki1(92)

| |
O@1)* —— Ki()

where the horizontal arrows are the symbol maps. The commutativity follows
immediately from the definitions.

7.1.6. Let Y be a scheme of finite type over F, and let Y*" denote the associated
rigid analytic space. Then the diagram

o)y —2. K(v)

<2)l l(zn

O(yan)x 4) Kl (Yan)
where the map (1) is the symbol map (for a scheme), the map (2) is the analytifi-
cation map, the map (3) is the map in Section 7.1.2, and the map (4) is the symbol
map (Section 7.1.4, is commutative. The commutativity follows from the fact that
the symbol map O(Y)* — K;(Y) for a scheme can be constructed in a similar way
as we did in Section 7.1.4 for rigid analytic spaces.
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7.1.7. Let B be an affinoid algebra over F,. Then the diagram
B* —— K;(Spm B)

H *

B* —— K;(SpecB)

where the horizontal arrows are the symbol maps and the right vertical arrow is the
map defined in Section 7.1.3, is commutative. The commutativity can be checked
in the same manner as in Section 7.1.6.

7.2. Affinoid covering of Drinfeld symmetric spaces.

The Drinfeld symmetric space X has a canonical covering of affinoids U, where
o is a simplex in the Bruhat-Tits buildings BT ,. The aim of this section is to give
an explicit description of this covering and of the coordinate rings of the affinoid
and the corresponding formal model.

All the results in this subsection is well-known and some of them are found in
the literature. In particular, the explicit local description of the formal model of X
is found in [Ge, p.75-76, I111.1.3]. However we reproduce the results here because
we need to point out some ring theoretic properties and to describe explicitly the
relation with the continuous map A : X — |B7,| in Section 7.2.1.

7.2.1. Let |BT,| be the geometric realization of the Bruhat-Tits building B7,. In
[Dr, p.579, §6, 3)], Drinfeld constructs a canonical continuous map A : X — |B7,|
from the underlying topological space of X to |BT,|. Let 0 € [[,<,«,_1 BT be a
simplex of BT,. Let |o| C BT denote the geometric realization of the simplicial
subcomplex of BT, which consists of the faces of o. It follows from [Dr, Proposition
6.1, p.579] that the subset A™!(|o|) C X is an admissible open subset of X such
that the restriction 4, of (X,0x) to A71(|o|) is an affinoid. The map A : X —
|BT,| is GLy4(Fx)-equivariant. The action of ¢ € GL4(Fs) induces for each o €
[Ho<i<q_1 BT a canonical isomorphism U, =N Uger.

Let U, denote the formal model of 4, over Spf O, and let B2 denote the
coordinate O-algebra of U,,. In this section, we give a list of properties of the ring
B2 which will be used later.

7.2.2. Let i be an integer with 0 < ¢ < d — 1 and let ¢ € BT; be an i-simplex of
BT.. Let us take a representative (L;) ez € BT; of 0. We use the notation in
Section 3.2.2 and in Section 3.2.4. For x € X = V& \ (Ug,en, H2™), we let [z]
denote the image of x under the canonical morphism X — X. It follows from the
construction of the map A that the subset A~!(|o|) C X is equal to the set of classes
[z] € X of z € X satisfying the following condition.

e For j =0,...,7 and for any v,v’ € L; with v ¢ L;41 and v/ & weo Lo, we

have [vTz]co = [V T2loo = |Woo¥T 1z |0o0-

From this we have the following explicit description of the O.-algebra B2. For
j=0,...,941, choose a finite subset S; C L; \ Lj;+1 such that the composite

Sj = Li\Lj+1 = (Lj/@oo Li)\(Lj41/®ocLj) = ((Lj/@ooLj)\(Ljt+1/@ec L))/ K
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is surjective. Then the O-algebra B is isomorphic to the wq.-adic completion of
the O.-subalgebra of Frac Sym® Ly generated by the set

U {weiees; i es;y

0<j <y <itl

7.2.3. For a more explicit description of the O-algebra B2, we choose the sets
So,...,.5; in the following way. Take a complete set S C O of representatives of
Koo = Ooo /WO in Ox. For j =0,...,i4 1, let d; denote the the dimension of
Ly/Lj over ko Take an Og-basis e1, ..., eq of Lo such that for j = 0,..., the set

{wel,- -  WooCdys €d;+1s - - .,eq} forms an Oy-basis of L;. For j =1,...,d —1
we put eqq; = weeej. For 7 =0,...,12, we put
Sj = U {ej’ +ai1€j 41+ ag€jr 42 - Ag—1€5 +d—1 | a1,...,04—1 € S}
d;j<j'<djt1

This particular choice of the sets Sy,...,.S; gives the following description of the
O-algebra BY. For j € Z/dZ, define an element T; € Frac Sym®Lg as follows. For
j=1,....,d—1weput Tj =e;jt1/e;. For j =0 we put Ty = weoep/eq. Let y be
the product

v=[1 I Q+al+aelTm+: - +aiTiTjias)
JEZ/dZ ax,...,aq_1E€S

and let z be the product

z= H T;.

§€{0,...,d—1}\{do,....,d4_1}

Then Tp,...,T4;—1 are algebraically independent over Oy, and the O.-algebra BS
is isomorphic to the wy,-adic completion of the O4.-algebra

Ry = Ox[To, Ty, Ta1,y™ Y 27 ) (ToTy - Tyq — @oo)-

Let I be a subset of {0,1,...,i} and let ¢’ be a face of o corresponding to the subset
{cl(L;) |i € I} of the set V(o) = {cl(Ly),...,cl(L;)} C BT of vertices of 0. Then
the Ox-algebra B2 is isomorphic to the weo-adic completion of the O.-algebra
R, [Tl_l} where Ty = Hje{o,...,i}\l Ty4,;. The homomorphism By — B, obtained by
taking we-adic completion of the canonical homomorphism R, — R, [T} 1] is equal
to the homomorphism B2 — B¢, induced from the inclusion A7'(|¢’|) € A71(|o])
of admissible open subsets of X.

7.2.4. Let the notation be as in Section 7.2.3. If follows easily from the definition
that the Oy -algebra R, has the following properties:
(1) The ring R, is a regular integral domain of dimension d,
(2) The ring R, is flat and finitely generated over O,
(3) The O-algebra R, has semistable reduction, that is, the special fiber
Spec R, /weoRs is a simple normal crossing divisor of Spec R, .

The property (2) implies that the ring R, is excellent ([EGAIV, 7.8, p.214]). Hence
its woo-adic completion BY is also a regular noetherian integral domain.
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7.2.5. For each simplex o € [[y<;<4_1 BT, let X, denote the intersection of all
irreducible components in Spec B,,, where B, = B /w., BS. Since B, is isomorphic
to Ry /woo Ry, it follows from the definition of R, that the schemes Spec B, and
X, have the following properties.

(1) The set of irreducible components of Spec B, is canonically isomorphic to
the set of vertices of o.

(2) Each irreducible component of Spec B, is smooth of dimension d — 1 over
Spec Keo-

(3) The scheme X, is non-empty, irreducible and smooth of dimension d—1—4
over Spec Koo -

(4) For each vertex v € V(0), let 0/ = 0 Xy (o) (V(0) \ {v}) be the face of &
corresponding to the subset V(o) \ {v} C V(0), and let X, , denote the
intersection of all irreducible components of Spec B,, except for the compo-
nent corresponding to v. Then X, , is non-empty, irreducible and smooth of
dimension d—¢ over Spec koo. The scheme X, is a closed subscheme of X, ,,
and the canonical morphism Spec B, — Spec B, induces an isomorphism
from X, to the open complement X, , \ X, of X, in X, ,.

(5) If i =d — 1, then X, is isomorphic to Spec K.

(6) If i = d — 2, then X, is isomorphic to the projective line over Spec ko
minus all the ko-rational points.

7.2.6. Let v € BT, be a 0-simplex of BT,. It follows from the properties of Bf
described above that the ideal we, BY of B generated by ws, is a prime ideal and
that the localization of the ring B? at (we) C BY is a discrete valuation ring.
Hence the prime ideal ., BY defines a valuation on (the field of fractions of) B,,
which will be denoted by v : B, — Z by abuse of notation. For a unit f € O(X)*
on X, we write v(f) for the image of f under the map O(X)* — B, — Z where
the first map is the pullback by the canonical open immersion and the second map
is the valuation v.

7.3. Regulator for Drinfeld symmetric spaces.

7.3.1. For an integer i > 0, let 0 € BT; be an i-simplex. We have a canonical
homomorphism
1) (2)

(7.1) K.(X) — K.(SpmB,) — K.(Spec B,)
where the map (1) is the pullback map with respect to the open immersion 4, < X.
The map (2) is the map constructed in Section 7.1.3 B

One can then apply the localization sequence to the triple Spec B, C Spec By D
Spec B,, and obtain a boundary homomorphism K,,1(Spec B,) — K,,(Spec B,)
for each integer m > 0. In this way we obtain a canonical homomorphism

by : Ki(X) = K._1(Spec B,)

as the composite of the boundary map with the map (7.1)

7.3.2. Let 0 € BT; be an i-simplex and let 7 be a face of 0. Then there is a
canonical open immersion i, — i, which in turn induces a flat map of rings
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B? — BS. This implies that the diagram
K.(Spec B;) —— K,_1(Spec B,)

! l

K.(Spec B,) —— K,_1(Spec B,)

where the vertical arrows are the boundary maps and the vertical arrows are the
pullback maps, is commutative.

7.3.3. For a pointed simplex o, € BT, ., we let by, : K.(X) — K._1(Spec B,)
denote the map b, where o € BT, is the (not pointed) underlying simplex of o .
Using the remarks in Section 7.3.2, we see that the maps b,, assemble together to
give a GL4(Fw)-equivariant homomorphism

(7.2) K.(%)— Jim K._1(Spec B,).
U+€BT.,*

7.34. Let 04 = ((Ls)iez, Lo) € BT m—1,« be a pointed (m — 1)-simplex. We let
oj=(2Lo2 - 2L;j 2Ly 2---) € BT, for 0 <j<m-—1so that g, is a
face of 041 and oy, is the underlying simplex of o.. We obtain a homomorphism

Km,l(SpeCE) — Kmfl(Xa-O) — s — Ko(XUm_l) >~ 7.

where the first map is the pullback map and each of the rest is the boundary map
(See Section 7.2.5 for the notation X,). Thus we obtain a GLg(Fu)-equivariant
homomorphism

regy , K (X) = Map(BT —1.%,Z),

as the composition of the map above with the map (7.2), which we call the (m-th)
regulator for X.

7.3.5. In this section, we show that the image of the regulator map is contained in
the space of harmonic cochains.

Let m > 0 be an integer. Let o € BT; with i < m — 1. For j = 0,...,1,
let us take a j-simplex o; € BT such that o; = ¢ and o5 is a face of 0,41 for
j=0,...,i—1. We obtain a sequence of homomorphisms

Kmfl(Xa'o) — Km72(Xa'1) — = Kmflfi(XU)

where each arrow is the boundary map in a localization sequence. We consider the
map K,,—1(Spec B,) — Km,l,z-(Xi) obtained as the composite of the map above
with the pullback map K,,_1(Spec By) = Kp—1(Xo,)-

Lemma 7.1. The homomorphism K,,_1(Spec By) — Kp—1-i(Xs) defined above
is independent, up to sign, of the choice of o;’s.

Proof. Let 0, 0% (0 < j <) be two choices. We claim that the two homomor-
phisms G,,,_1(By) = Gm_1-i(Xy) for o;’s and for U;"S coincide. We may assume
that there exists jo with 0 < jo <4 — 1 such that o, # o’ and o; = o’ for j # jo.
We put Y = X, if jo > 1 and put Y = Spec B, if jo = 0. Let X denote the
locally closed reduced subscheme of Spec B, whose underlying set is X, U XU; U

0

Xo,,11- Then the connecting homomorphism Ky, —j, (Y) = K jo—1(Xo;, ) is equal
to the composition of the connecting homomorphism K,,—;, (Y) = Ky—jy—1(X)

1
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and the restriction K,,_;,—1(X) — Km_jo_l(Xo-jO) with respect to the open im-
mersion X, C X. Similar fact also holds for the connecting homomorphism
Kpjo(Y) — Km,jg,l(Xg} ). Since the two homomorphisms

0

Km*jo*l(X) — Kmfjofl(Xo—jO) — Kmfjofz(Xo-j0+l>
and
Kn—jo-1(X) = Km—jo-1(Xor ) = Kin—jo—2(Xo,, 1)
differ by the multiplication by —1, the claim follows. 0

Lemma 7.2. The image of regy 4_1 s contained in the space of harmonic cochains.

Proof. Let k € Kq(X) and consider f =regy 4 1(x). We need to verify Conditions
(1)(2) of Section 5.2.2. Condition (1) follows from Lemma 7.1. To verify Condition
(2), let us use the notation 7, and 7. there. Let o; € BT, be a j-simplex for
0 <j <d—2such that 0q_2 = 7 and o; is a face of ;4. Then using Lemma 7.1,
we see that the value (regyr)(74) is, up to sign (but the same sign for all i), the
image of k under the map

Kap1(X) = Ka(Xoy) = Ka1(Xoy) = -+ = K1( X0, ) 25 Ko(X,,)

where the first map is the composition of the restriction map and the boundary map,
and the rest are boundary maps; we labeled the last map for later use. We note
that X,, , = X, is the projective line minus all the x-rational points, and the set
{X7, Yo<j<q is the set of all the r.-rational points of X,. By explicit computation,
we know that Ki(X,) = O(X,)* and Ko(X;;) = Z for all j. Furthermore, the
boundary map 9; sends a unit f € O(X,)* to its order at X,,. Thus the sum is
zero as claimed. O

Od—1

7.4. Regulator on symbols.

7.4.1. We define a map reg,, : O(X)*®? — Hom(BT 4_1.+,7Z) as follows. Let f; ®
@ fq € O(X)*®? and ((L;i)iez, Lo) € BT 4—1.« be a pointed (d—1)-simplex. Then
we put
OI‘dLofl orde71f1
(reg, (f1 ® -+ @ fa))((Ls)iez, Lo) = det : : :
ordr,fa ... ordp, ,fa

where the symbol ord is as in Section 3.2.5.

We have a symbol map sym : O(—)*®? — K,(—) which is obtained from the
symbol map O(—)* — K;(—) (Section 7.1.4) and the product structure K;(—)®¢ —
K4(—) (Section 7.1.1).

Proposition 7.3. Let the notation be as above. We have reg, = regy o sym.

Let g4 = ((Li)iGZaLO) S BTd—l,*- We let g = ( ; LQ 2 2 Lj 2 Ld ;
...) € BT (as in Section 7.3.4). Then by definition, reg o sym(F’) evaluated at o
is the image of the element F' under the composition
Kq(%) @, K4(Spec B,) Sa, Kg_1(Spec By) @), Ki-1(X5,)

Qi KXy, ) 2T

where the map (1) is the map (7.1), the map (2) is the pullback map, and each 9;
for 1 < j < d is the boundary map in a localization sequence.

(7.3)
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7.4.2. Let o € BT 41 be the class of 0. We use the notation in Section 7.2.2.
Let ]TEU denote the completion of R, at the maximal ideal (Tp,...,Ty—1). Let

pj = (Tj,...,Ta—1) C Ry forj=0,...,d—1and pg = (0). Each p; is a prime ideal;

we let n(pj) denote the field of fractlons of R, /pJR For j =0,...,d — 1, note

that Rg’pj /p]HRU,pJ is a discrete valuation ring. Its field of fractlons is K(pjt1)
and the residue field is k(p;). We obtain a homomorphism

(7.4)  Ka(Speck(pa)) = Ka-1(Speck(pa-1)) = -+ = Ko(Specr(po)) = Z

where each map is the boundary map in the localization sequence associated to the
triple Spec f@(pj_H) C Spec]fl\/pjf{\ D Spec ﬁ(pj)

For j =0,...,d —1, the element Ty_;_; € RJ is a prime element of the regular
noetherian ring R. Hence the localization R (Ta_;_1) Of R at the prime ideal
(Ti—j-1) is a discrete valuation ring. Let v denote the valuation (Frac Rg) —Z

given by the discrete valuation ring R (Ta_j_1)-

Lemma 7.4. Let hy, ..., hg € Ry[1/@o0]*. The image of hi®---®hg € (Ry[1/m00] )4

under the map (Ry[1/w00]* )®d — (k(pg)*)®? — Kq(Speck(pg)) @, 7, where the
map (1) is (7.4), equals det(v;_;(hi))1<i,j<d-

Proof. Note that ]%,[1/1200]X is generated by Rf and Tp,...,Ty_1. Hence the

claim above follows by using the computation of boundary maps of K-theory in
localization sequences of Gillet described in [Gi, Theorem 7.21, p.274]. Note also
that since the target group Z is torsion free, the 2-torsion appearing in the formula
of Gillet may be ignored. O

7.4.3. Let v; denote the class of L; in BT(. Then the composite B — R— }AE(T(]H)
factors through the canonical homomorphism By — By . Let ; : By — R, )
denote the induced homomorphism.

Lemma 7.5. the diagram

O(X)* —— B [/me] —2 Rir, ,)[L/@oc]”

ordLj J, h l v; l
18 commutative.
Proof. Since B we) 7 By () R(Td ,)» where Bz is as in Section 3.2.5, are

the homomorphlsm of discrete valuation rings with unlformlzer Weo, the commu-
tativity follows from Lemma 7.6 below. O

Lemma 7.6. Let L be an O -lattice of Voo and let v € BTy denote its class. Then
for f € O(X)* we have ordr(f) = v(f), where in the left hand side we regard f as

an element in O(X)* wvia the pullback by the canonical quotient map X — X.

Proof. This follows from the definitions given in Sections 3.2.5, 7.2.6. (]
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7.4.4. Proof of Proposition 7.3. One can check that the homomorphism (7.3) equals
the composition

1 2
Ka(X) = Ka(Spee By) 2 Ka(Spec x(po)) 25 Ko(Spec w(pa)) = Z
where the map (1) is the pullback map and the map (2) is the map (7.4). Then the
claim follows from Lemma 7.4 and Lemma 7.5. O

7.5. Regulator for Drinfeld modular varieties.

Let L1 C Lo C V™ be A-lattices. Using the uniformization of Drinfeld modular
varieties (see Section 3.2.7), we obtain a homomorphism, which is denoted reg;, .,
as the composite

1)

Kd(Msz/Iq,F) — Kd(M%g/Ll,F XSpec F SpecFoo)

(2 00\ /TR 00
HMapGLd(F)(GLd(A )/KLl,LZ’Kd(x))

(3) (4) o

— Mapgr,, () (BT a-1,» X GLa(A®) /K3 |, 7Z) — (A)SEr L2
where the map (1) is the pullback map, the map (2) is the analytification, the
map (3) is the map induced by regy, and the map (4) is the inclusion. We write
reg : Kg(M?) ®z Q — A; for the map induced by the limit @(L L) T8Ly, Lo

1,2 ’
Again using the uniformization, we define reg, ;. r, as the composite

(1)
O(MS, /1, 2) " == Mapgr, () (GLa(A®) /KE, 1, O(X)*®?)
2 3 o
2 Mapgr, py (BT 1,0 x GLa(A%) /K, 7) 2 (Ay) Er s

where the map (1) is the analytification using the uniformization, the map (2) is
the map obtained using reg,,, and the map (3) is the inclusion.
The following is a corollary to Proposition 7.3. We omit the proof.

Corollary 7.7. Let the notation be as above. We have an equality of two maps:
KOO
regy 1,1, = €81, 1, OSym: O(M(Li,z/Ll,F)X(g)d = (Ay) Frte,
|

8. ZETA VALUE FORMULA

The aim of this section is to prove Theorem 8.2. This states that the image of
the regulator map is expressed in terms of the L-function. This may be regarded
as the function field analogue of Kato’s refinement ([Ka, p.127, Theorem 2.6]) of
Beilinson’s theorem [Be, Theorem 5.1.2].

Recall that we defined a homomorphism x in Section 2.4.5 and a homomorphism
£ in Section 6.1.1. We defined a homomorphism reg in Section 7.5.

Lemma 8.1. Let & € §'(V>®)®4, Then

reg(x(®>)) = lim

——&(0*
s—0 (1 — qo_os)d ( )’

where
reg : Ky(M%) ©7,Q — Ay
is the regulator map defined in Section 7.5.

Proof. This follows from Lemma 6.1 and Proposition 3.4 using Corollary 7.7. O
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Theorem 8.2. Let J C I be nonzero ideals of A. Let f € A2(I,J,1) be a cusp

form satisfying Conditions (1)(2) of Section 4.2.2. Let Ly and Lo be A-lattices as
defined in Section 2.4.7. Let v € GLq(A>). Then

1 9 1. o d-1
(firegr, r,(K1,u7)) = 1og 40 lim == L7 (f, 5 — =5 =)y e, )
Proof. Divide both sides of the equation in Theorem 6.3 by (1 — ¢ *)?. Then
compute the limit as s tends to 0 using Lemma 8.1. The claim follows. O
Remark 8.3. Theorem 8.2 describes the value at s = — 2 of the first derivative
of the L-function L(f,s). We note that when L(f, ——) £ 0, then the right hand

side of the formula of Theorem 8.2 is zero by Corollary 6.4.

9. NONTRIVIALITY

The aim of this section is to prove Theorem 9.1. This states that the cusp form
part of the image of the regulator map of (the limit of) Drinfeld modular varieties
contains the space Ag, (defined below). This may be regarded as the function field
analogue of the surjectivity of the regulator map of the Beilinson conjectures.

The proof uses the zeta value formula (Theorem 8.2), Corollary 5.16, and some
standard results from the theory of automorphic forms.

9.1. The image of the regulator map.

We defined an element [1(c)] € HI~!(BT,,C) in Section 5.2.3. We also write
[t(00)] for the corresponding element in Sty under the isomorphism (see Section 5.2.3)
of Borel. Note that it is an Iwahori spherical vector, i.e., a nonzero element which
is invariant under the action of the Iwahori subgroup Z. We let Ag; denote the
image of the map Homgy,, (7 )(Sta, A1) — A1 given by the evaluation at [t(00)].

We put A, = As:NAS. Let us consider the composite of the projection P° : A —
A° defined in Section 4.3 and the homomorphism in the statement of Corollary 5.7.
We claim that the group A, is equal to the image of this composite map. Note
that the center FX of GLg(Fs) acts trivially on Stg. It follows that the image
of the latter homomorphism is contained in A;. Hence by Corollary 5.7, it is also
equal to the image of the composite with the projection P° of the homomorphism
(5.9).

Theorem 9.1. Let the notation be as above. Then the image of the composite map
Ka(M%) @7 C =5 A, 5 A3,
equals Ag, .

Remark 9.2. Although we omit the proof, it is not difficult to show that the
homomorphisms reg and P° are defined over QQ in the sense that we have a sequence
of homomorphisms

rego P(S o
Kd(./\/l )®ZQ — A1 NAg — A7 N Ag,

which gives the sequence in Theorem 9.1 after tensoring by C. We have a corollary
that the image of the sequence above equals Ag, N Ag. We also remark that the
variant of Corollary 1.2 holds.
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9.2. Proof of Theorem 9.1.

Using Lemma 7.2 and Corollary 5.5, we see that the image of the regulator map
reg is contained in Ag;. It remains to show that P° o reg surjects onto Ag,.

Let 7 = ®)m, C A9 be an irreducible cuspidal automorphic representation
such that 7 is isomorphic to the Steinberg representation Stq. By [Sh, p.190,
COROLLARY], the representation m, is generic for each v. Thus we can take a
nonzero f = ®,f, € m such that f, is a new vector for v # oo and f, is an Iwahori
spherical vector. Let I be the prime-to-oo-part of the conductor of w. Then it is
known that f € 7%= . We note that f satisfies Condition (3) of Section 4.2.2.

We consider the map

(9.1) KoM @5 C 25 4, L7 ¢,
Lemma 9.3. If the homomorphism (9.1) is nonzero for every irreducible cuspidal
automorphic representation ™ = Q. m, C A such that moo = Sty, then Theorem 9.1

holds.

Proof. As is well known, there is a direct sum decomposition A = @7’ where
7' C Aj runs over the irreducible automorphic representations contained in .AS.
The multiplicity one theorem says that no two direct summands are isomorphic.

Let M = Image[P° oreg] N Ag,. One can check that the maps P° and reg
are GL4(A™)-equivariant. So M C Ag, is a GLq(A>)-submodule. From the as-
sumption of the lemma, we have, for any irreducible automorphic representation
T = ®,m, C AS such that mo = Sty, the anti-linear map

M C AS Y e

where f is constructed from 7 as above, is nonzero. Let h = (hy ) € M C Ag, be
an element which is not in the kernel of the map above. Take a sufficiently small
compact open subgroup K> C GLd(ﬁ) such that all h, are fixed under K.
From the strong multiplicity one theorem, it follows that one can find a Hecke
operator T (for K*) such that 7' = id on 7%~ and T'= 0 on 7% for i/ such that
7' # 7 and h. # 0. One applies this T to h as an element in M%™ | and sees that
hr € M. The claim follows. ([l

Lemma 9.4. The map (9.1) is nonzero.

Proof. We choose an auxiliary prime vg as follows. If d = 1 and 7 is the trivial
representation, we fix an arbitrary finite prime vg. Otherwise, we fix a finite prime
vo satisfying the following condition: The local L-factor L(m,,,s) does not have a
pole at s = —(d—1)/2. The existence of such v is obvious when d = 1, and follows
from [Ja-Sh, p. 515, (2.5)] when d > 2.
We obtain the following isomorphism
Homgr,, (.. )(Sta, Ac(vo, Irvo, 1)) = HPM (Xg

00, Invg’

«.C)

using Corollary 5.6. There is an element in the left hand side which sends ¢(oq) €
Sty to f since f., is an Iwahori spherical vector. As the support of f is com-
pact modulo center, the corresponding element on the right hand side lies in the
image of the canonical map Hy_1(Xge e.C) = HPM (X «,C). Using

v, Invg’ v, Ixvg?
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Corollary 5.16, we can express f as a sum
f = Z a”YT}Uo,I-,r’Uo,’Y 6 AC(UOa ITI'UOa 1)
YEGLg(A>®)
with a, € C. We let
KE= D Gykug gy € Ka(MS ;0 p) @2C.
YEGLg(A%)
Using Lemma 4.1, it follows from Theorem 8.2 that
0 d—1

lim — [,{oo:vo} -z -
oz 7 1 55 (m, 8 = ——=){f, f),

(firegrg) =

where L{>v0} (7, 5) is the global L-function of the representation 7 without the

local factors at oo and at vg. If d = 1 and « is the trivial representation, the

global L-function L(m,s) = L{®v} (7 s)L(r,,,s)L(Ts,s) has a simple pole at

s = 0. Otherwise, by [Ja-Sh, p. 557, (5.4)], L(w, s) has neither a pole nor a zero at
d—1

s=—(d—1)/2. Since L(ms0, ) = L(Stq,s) = (1 — goo ™ 2 )71, it follows with our

choice of vg that lim,_,q %L{OO’UO}(W7 5 — %) is nonzero. ]

This completes the proof of Theorem 9.1. O

Proof of Theorem 1.2. Recall that we defined the action of GL4(A>) on the moduli
space M% in Section 2.4.2. Take the Kzo %0 ,-invariant part of the statement of

Theorem 9.1 as we have done in Section 2.4.7. Then use the étale descent of

rational K-theory to conclude. O
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