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Abstract. We introduce two real entire functions fA 1
2∞

and fD 1
2∞

in two variables, having only two critical values 0 and 1. Associ-
ated maps C2 → C define topologically locally trivial fibrations
over C\{0, 1}. The critical points over 0 and 1 are infinitely many
ordinary double points, whose associated vanishing cycles in the
generic fiber span its middle homology group and their intersec-
tion diagram forms bi-partitely decomposed quivers of type A 1

2∞
and D 1

2∞
, respectively. Coxeter element of type A 1

2∞
and D 1

2∞
are introduced as the product of the monodromies of the fibra-
tions around 0 and 1. We describe the spectra of the intersection
form (normalized in the iterval [0, 4]) and the Coxeter elements
(normalized in the interval (−1

2 , 1
2 )).

Contents

1. Functions of types A 1
2
∞ and D 1

2
∞ 2

1.1. Definition of fA 1
2∞

and fD 1
2∞

2

1.2. Real level sets XA 1
2∞,0,R and XD 1

2∞,0,R 2

1.3. Fibrations over C \ {0, 1} 3
2. Vanishing cycles 6
2.1. Middle homology groups 6
2.2. Quivers of type A 1

2∞
and D 1

2∞
10

2.3. Suspensions to higher dimensions 11
2.4. Monodromy Transformations and Coxeter elements 12
3. Spectra of Coxeter elements 14
3.1. Hilbert space HP,C 14

3.2. Extendability of I
(n)
P and Cox

(n)
P on HP 15

3.3. Spectral decomposition of I
(n)
P for odd n 17

3.4. Spectra of Coxeter elements 19
References 22

1Present paper is planned as the first part of a paper “Primitive forms of types
A 1

2∞
and D 1

2∞
” in preparation. We publish the present part (the spectra of Coxeter

elements) separately, because of its own interests.
1



2 KYOJI SAITO

1. Functions of types A 1
2
∞ and D 1

2
∞

We introduce functions of type A 1
2
∞ and D 1

2
∞ and associated fibrations.

1.1. Definition of fA 1
2∞

and fD 1
2∞

.

Definition. The function fP of type P ∈ {A 1
2
∞, D 1

2
∞} 1 is a real entire

function2 in two variables x and y given by

fA 1
2∞

(x, y) := xs2(x) − y2 = 1 − c2(x) − y2(1.1.1)

fD 1
2∞

(x, y) := xs2(x) − xy2 = 1 − c2(x) − xy2.(1.1.2)

Here s(x) and c(x) are real entire functions 3 in a variable x given by

s(x) :=
sin

√
x√

x
=

∞∏
n=1

(
1 − x

n2π2

)
(1.1.3)

c(x) := cos
√

x =
∞∏

n=1

(
1 − 4x

(2n − 1)2π2

)
.(1.1.4)

1.2. Real level sets XA 1
2∞,0,R and XD 1

2∞,0,R. .

We introduce the real level-0 set of the function fP of type P by

XP,0,R := R2 ∩ f−1
P (0) .

Conceptual figures of them are drawn in the following.

Figure 1

XA 1
2∞,0,R

Figure 2

XD 1
2∞,0,R

1In the present paper, the expression “of type P” automatically implies P ∈
{A 1

2∞
, D 1

2∞
}. Meaning for this name is given in §2.2 Quiver and its Remark.

2We mean by a real entire function of n-variables a holomorphic function on Cn

which is real valued on the real form Rn of Cn.
3In the sequel of the present paper, we shall freely use the following equalities:

c(0)=s(0)=1, xs2(x)+c2(x)=1, s′(x)= 1
2x (c(x)−s(x)) and c′(x)=−1

2s(x)
without referring to them explicitly (here f ′(x)=the differentiation of f(x)).
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Terminology 1. By a bounded connected component (bcc for short) of
type P , we mean a bounded connected component of R2 \ XP,0,R.

2. By a node of type P , we mean a point on the real curve XP,0,R

where two local smooth irreducible components are crossing normally.
3. We say that a node of type P is adjacent to a bcc of type P if the

node belongs to the closure of the bcc.

We state some immediate observations on the level set XP,0,R, which
can be easily verified by a use of absolutely convergent infinite products
(1.1.3) and (1.1.4).

Observation 1. For n = 0, 1, 2, · · · , there exists exactly one bounded
connected component of type P , containing the interval (n2π2, (n+1)2π2)
on the x-axis and contained in the domain (n2π2, (n+1)2π2) × y-axis.

2. For n = 1, 2, 3, · · · , the point c
(n)
P,0 := (n2π2, 0) on the x-axis is

a node of type P , which is adjacent to two bcc containing the interval
((n−1)2π2, n2π2) and the interval (n2π2, (n+1)2π2).

1.3. Fibrations over C \ {0, 1}. .
For each type P ∈ {A 1

2
∞, D 1

2
∞}, let us consider a holomorphic map

(1.3.5) fP : XP −→ C,

where the domain XP := C2 of fP is regarded as a contractible Stein
manifold equipped with the real form R2. The fiber XP,t := f−1

P (t)
over t ∈ C is an open Riemann surface, closely embedded in C2.

Remark. As we shall see in sequel, the fiber XP,t (t ∈ C) has infinite
genus. It is “wild” in the sense that the closure X̄P,t in P2

C is equal
to XP,t ∪ P1

C (i.e. the “ends” of XP,t is the P1
C, this fact can be easily

shown by the value distribution theory of one variable). By putting

(1.3.6) X̄P := XP ∪ (P1
C × C) := ∪t∈C(X̄P,t, t) ⊂ P2

C × C,

we obtain a proper map, i.e. a “compactification” of (1.3.5):

(1.3.7) f̄P : X̄P −→ C.

However, the spaces X̄P,t and X̄P are not manifolds with boundary
(note that their “boundaries” P1

C and P1
C × C, respectively, have the

same dimension as the “interior” XP,t and XP ).
By a lack of tools to handle such objects at present, we shall not use

this compactification in the present paper. Nevertheless, in the follow-
ing Theorem 3, we show that fP induces a locally topologically trivial
fibration over C\{0, 1}. The proof is an elementary handwork, however
it is not standard due to the transcendental nature of fP mentioned.
Therefore, we write the proof down to the earth.
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Theorem. For each type P ∈ {A 1
2
∞, D 1

2
∞}, we have the followings.

1. The function fP has only two critical values 0 and 1. That is, the
set of critical points CP of fP is contained in two fibers XP,0 and XP,1.

2. i) The critical set CP lies in the real form R2 of XP .
ii) The Hessian form of fP |R2 at a critical point is non-degenerate.

More precisely, the Hessian form is indefinite at a point in CP,0 :=
CP ∩XP,0 and is negative definite at a point in CP,1 :=CP ∩XP,1.

iii) We have the natural bijections:

CP,0 ' {nodes of type P} (identity map),(1.3.8)

CP,1 ' {bcc’s of type P} (c 7→ Bc := the bcc
containing c)(1.3.9)

3. The restriction of the map fP to the smooth fibers:

(1.3.10) fP |XP \(XP,0∪XP,1) : XP \ (XP,0 ∪ XP,1) → C \ {0, 1}
is a topologically locally trivial fibration.

Proof. 1. We proceed direct calculations separately for each type.

A 1
2
∞: The defining equations for CA 1

2∞
are ∂xfA 1

2∞
= cs = 0, ∂yfA 1

2∞
=

−2y=0. Hence, CA 1
2∞

={(x, 0) | s(x)=0 or c(x)=0}, where we have

fA 1
2∞

(x, 0) =

{
0 if s(x) = 0,

1 if c(x) = 0.

D 1
2
∞: The defining equations for CD 1

2∞
are ∂xfD 1

2∞
=cs−y2 =0, ∂yfD 1

2∞
=

−2xy = 0. Hence, CD 1
2∞

= {(0,±1)} ∪ {(x, 0) | s(x) = 0 or c(x) = 0},
where we have

fD 1
2∞

(0,±1)=0 and fD 1
2∞

(x, 0) =

{
0 if s(x) = 0,

1 if c(x) = 0.

2. i) Due to the descriptions of CP in 1., we have only to show that the

zero loci of s(x) = 0 and c(x) = 0 are real numbers. This follows from
the fact that the infinite product expressions (1.1.3) and (1.1.4) are
absolutely convergent and the zero loci of s(x)=0 and c(x)=0 are given
by the union of zero locus of factors of the expressions, respectively.

ii) Let us calculate the Hessian at a critical point.
The statement for the two critical points (0,±1) on XD 1

2∞,0 can be

verified directly. The other critical points are on the x-axis, i.e. one
always has y = 0. Since ∂x∂yfP |y=0= 0 for each type P ∈ {A 1

2
∞.D 1

2
∞},

the Hessian is a diagonal matrix of the form

[∂x(c(x)s(x)),−2]diag for type P = A 1
2
∞,
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[∂x(c(x)s(x)),−2x]diag for type P = D 1
2
∞,

where the second diagonal component is always negative. We calculate
the sign of the first diagonal component by
∂x(c(x)s(x)) |c=0= −1

2
s2 = − 1

2x
< 0 and ∂x(c(x)s(x)) |s=0=

1
2x

> 0,
implying the statement ii).

iii) Combining the explicit descriptions of the set CP,0, CP,1 in Proof of
1. with Observations 2. and 3. in §1.2, the correspondences are defined
and are injective (see Figure 1 and 2.). So, we need only to show their
surjectivity. But, this is again trivial since i) any node of a curve is
a critical point of the defining equation of the curve, where Hessian
is indefinite, and ii) inside of any bounded connected component of a
complement of a real curve in R2, there exists at least a point where fP

takes local maximum, then the Hessian at the point should be negative
definite since we saw in 2. ii) that it is already non-degenerate.

3. Let us show that the fibration (1.3.10) is locally topologically trivial.
Since our map is neither proper nor extendable to a suitably stratified
proper map (recall 1.3 Remark.), we cannot use standard technique
such as Thom-Ehrshman theorems. Instead, we use an elementary fact
that XP,t is a ramified covering space: namely, in view of the equations
(1.3.8) and (1.3.9), the projection map (x, y) ∈ C2 7→ x ∈ C to the
x-plane induces a proper and ramified double covering maps πP,t:

(1.3.11) XA 1
2∞,t→ C (t∈C) and XD 1

2∞,t→ C \{0} (t∈C \{0}),

(for XD 1
2∞,0, see 4). Let us denote by CP the base space of this covering,

i.e. CP := C if P = A 1
2
∞ and := C \ {0} if P = D 1

2
∞. In view of the

defining equation of XP,t, the covering is ramifying at XP,t ∩ {y = 0},
i.e. at solutions x ∈ CP of the equation

(1.3.12) xs2(x) − t = 0,

which, apparently, has infinitely many solutions, depending on t ∈ C.

We, now, state an elementary but a crucial fact on the function xs2.

Fact. The correspondence π : CP → C, x 7→ t :=xs2(x)=sin2(
√

x) is
ramifying exactly and only at the inverse images of the points 0 and 1,
and induces a (topological) covering map over C \ {0, 1}.
Proof of Fact. The critical points of the map t = xs2(x) are given by
the equation s(x)c(x) = 0, and are exactly the points where t = 0 or
1) (recall Proof of 1.). Thus, the restricted map π′ := π|π−1(C\{0,1})

4Since the fiber XD 1
2∞,0 contains an irreducible component L := {x = 0}, the

map on XD 1
2∞,0 is not a covering, but its restriction to XD 1

2∞,0 \ L is a covering.
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over C \ {0, 1} is a locally homeomorphism. To see that π′ is a cov-
ering (i.e. a proper map on each component of an inverse image of a
simply connected open subset of C \ {0, 1}), we need to show that the
inverse map of xs2(x)= t as a multivalued function in t is analytically
continuable everywhere on the set C \ {0, 1}. Since the equation is
equivalent to

√
x=± sin−1(

√
t), this fact follows from the fact that the

multivalued function sin−1(u) has singular points (i.e. points where the
function cannot be analytically continued) only at u=±1, easily seen
from the integral expression sin−1(u)=

∫ u

0
du√
1−u2 . ¤

Owing to Fact, we find a disc neighbourhood U for any t0∈C\{0, 1}
so that π−1(U) decomposes into components homeomorphic to U . For
each xi ∈ π−1(t0) (i ∈ I index set), let si(t) be the function on t∈ U,
defining a section of π such that si(t0) = xi (actually, si(t) =

(√
xi +∫ √

t√
t0

du√
1−u2

)2
for choices of

√
t0 and

√
xi such that

√
t0 =sin (

√
xi) and

path of integral in the connected component of ±
√

U containing
√

t0).
We can find a differentiable map ϕ : U×CP → CP such that i)

ϕ(t0, x) = x, ii) for each t∈U , the ϕt := ϕ(t, ·) is a diffeomorphism of
CP , and iii) for each i ∈ I, ϕ(t, si(t)) is constant (equal to si(t0)=xi).
The diffeomorphism ϕt can be uniquely lifted to a diffeomorphism ϕ̂t :
XP,t ' XP,t0 of the double covers such that ϕt ◦ πP,t = πP,t0 ◦ ϕ̂t. The
ϕ̂t gives the local trivialization of (1.3.10). ¤

This completes a proof of Theorem 1., 2. and 3. ¤

2. Vanishing cycles

We show that the middle homology group of a generic fiber of the
map (1.3.5) has basis consisting of vanishing cycles. The intersection
form among them forms the principal quiver5 of type A 1

2
∞ or D 1

2
∞.

2.1. Middle homology groups. In the present paragraph, we de-
scribe the middle homology group of the general fibers of (1.3.10) in
terms of vanishing cycles of the function fP of type P ∈ {A 1

2
∞, D 1

2
∞}.

Vanishing cycles: For a critical point c ∈ CP = CP,0 t CP,1, we
define an oriented 1-cycle γP,c in XP,t for t ∈ (0, 1) as follows.

Due to Theorem 2, we can choose holomorphic local coordinates
(u, v) in a neighborhood U of c in XP such that i) u and v are real

valued on UR := U ∩ R2, ii) ∂(u,v)
∂(x,y)

|UR
> 0 and iii) fP |U = u2 − v2 if

5We mean by a quiver an oriented graph. It is called principal, if the set of
vertices’s has a bipartite decomposition Γ0 t Γ1 such that the head (resp. tail) of
any edge belongs to Γ0 (resp. Γ1) (e.g. Figure 3 and 4). See [Sa2,3].
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c ∈ CP,0 and fP |U=1−u2 − v2 if c ∈ CP,1. Then, define cycles:

(2.1.13) γP,c :=

{
(
√

t cos(θ),
√
−1

√
t sin(θ)) (0 ≤ θ ≤ 2π), if c∈CP,0

(
√

1−t cos(θ),
√

1−t sin(θ)) (0≤θ≤2π), if c∈CP,1.

Fact. The oriented cycle γP,c in the surface XP,t is, up to free homotopy,
unique and independent of a choice of coordinates (u, v).

Definition. We shall denote the homology class in H1(XP,t,Z) of the
cycle γP,c by the same γP,c, and call it the vanishing cycle of the function
fP at the critical point c ∈ CP (vanishing along the path t↓0 or t↑1).

Sign convention of intersection numbers of 1-cycles onXP,t.

i) Let I be the skew symmetric intersection form between two oriented
1-cycles on a oriented surface. Then we define the convention of the
sign of intersection number locally as follows:

↘↗ γ2 ↘ ↗ γ1

Fig.3 I(γ1, γ2) = 1 if × , I(γ1, γ2) = −1 if ×
↗ ↘ γ1 ↗ ↘ γ2

ii) The orientation of the surface XP,t is
√
−1dz∧dz̄=2dx∧dy for a local

holomorphic coordinate z=x+iy on XP,t. Eg. Cycles γx and γy locally
homotopic to x-axis and y-axis intersects as I(γx, γy)=1 at z=0.

Theorem. 4. The middle homology group of XP,t, t∈(0,1) is given by

(2.1.14) H1(XP,t,Z) ' HP := HP,0 ⊕ HP,1,

where
HP,0 := ⊕c∈CP,0

ZγP,c(2.1.15)

HP,1 := ⊕c∈CP,1
ZγP,c(2.1.16)

are formally defined free abelian group spanned by vanishing cycles.
5. Let IP : H1(XP,t,Z) × H1(XP,t,Z) → Z be the intersection form

on the middle homology group. Then we have

(2.1.17) IP = JP − tJP

where JP and tJP are integral bilinear forms on HP given by

(2.1.18) JP (γP,c, γP,c′) :=


1 if c = c′,

−1 if c ∈ CP,0, c′ ∈ CP,1 and c ∈ Bc′ ,

0 else,
and

(2.1.19) tJP (γP,c, γP,c′) :=


1 if c = c′,

−1 if c ∈ CP,1, c′ ∈ CP,0 and c′ ∈ Bc,

0 else.

Remark. The meaning to use the form JP shall be clarified in §2.3.
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Proof. We first calculate intersection numbers between vanishing cycles
γP,c and γP,c′ as given in 5.

Suppose both critical points c, c′ belong to CP,0 (resp. CP,1). If c 6=c′

then we, for t close enough to 0 (resp. 1), the supports of the vanishing
cycles are close to c and c′ so that they are disjoint, i.e. γP,c∩γP.c′ =∅
and we get IP (γP,c, γP,c′)=0. Then, this equality holds for any t∈(0, 1).
If c=c′, then IP (γP,c, γP,c) = 0 due to skew-symmetry of IP .

Next, we consider a cycle γP,c for c∈CP,0 and a cycle γP,c′ for c′∈CP,1.
From their expressions in (2.1.13), we observe the following two facts:

i) The cycle γP,c intersects only with each of connected component

of R2\XP,0,R adjacent to c at one point (u, v) = (ε
√

t, 0) for ε ∈ {±1}.
ii) The underlying set |γP,c′| is presented by a circle of radius 1−t in

the bcc Bc′ containing c′, i.e. it is equal to {(u′, v′)∈Bc′ | fP (u′, v′)= t}.
These means that cycles γP,c and γP,c′ for the same t ∈ (0, 1) intersect

if and only if the critical point c is adjacent to the bounded component
Bc′ , and, then, they intersect transversely at one point, say p. Let
(u′, v′) be the coordinates for the cycle γP,c′ in (2.1.13). Then, by an
orientation preserving orthogonal linear transformation of the coordi-
nates, the intersection point p may be given by (u′, v′) = (

√
1−t, 0)

We determine the sign of the intersection as follows: in a neighbour-
hood of p, we have an equality fP = u2−v2 = 1−u′2−v′2. Then the
differentiation at p of the equation gives df |p =ε

√
tdu|p =−

√
1−tdu′|p.

Since du ∧ dv|p = cdu′ ∧ dv′|p for some positive c ∈ R>0, we get

a) ∂v
∂v′ |p = εc

√
t√

1−t
.

On the other hand, since du and du′ are co-normal vectors to XP,t at
p (i.e. df |p // du|p // du′|p), we use dv and dv′ as for complex coordinates
of the 1-dimensional complex tangent space T (XP,t)p at p, which are
compatible with the sign convention ii) of the surface XP,t.

Using these coordinates, the infinitesimal direction ∂
∂θ
|p of γP,c at p

is evaluated by
b) ∂v

∂θ
|p = ε

√
−1

√
t

and the infinitesimal direction ∂
∂θ′

|p of γc′,1 at p is evaluate by

c) ∂v′

∂θ′
|p =

√
1 − t.

Combining a), b) and c), we obtain that the angle from the cycle γP,c′

to the cycle γP,c at their intersection point p is given by the angle of
the complex number

d)
(

∂v
∂θ
|p/∂v′

∂θ′
|p

)
/ ∂v

∂v′ |p =
√
−1
c

,

i.e. the angle is π
2
. Then due to our sign convention, we obtain

IP (γP,c, γP,c′) = −1 and IP (γP,c′ , γP,c) = 1,
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which is independent of the sign ε ∈ {±1}. Thus, (2.1.17) is shown.

Finally in the following i)-v), we prove 4.
We formally put (2.1.15) and (2.1.16).

i) Let us first show a natural isomorphism.

(2.1.20) H1(XP,0,Z) ' HP,1.

Proof of (2.1.20). We first show that XP,0,R is a deformation retract of
XP,0. For the proof of it, recall the double cover expression of XP,0 over
CP , used in the proof of Theorem 3. In case of type P = A 1

2
∞, the

deformation retract of the plane CP to the half real axis R≥0 induces
the retract of the covering space XP,0 to its real form XP,0,R. In case
of type P = D 1

2
∞, we do the retraction irreducible-componentwisely to

the real axis R (details are left to the reader). Thus, in view of Figure
1 and 2, we have a natural isomorphism:

H1(XP,0,Z) ' H1(XP,0,R,Z) ' HP,1. ¤ )

ii) Using the double cover expressions of fibers XP,t in the proof of
Theorem 3., we can show that f−1

P ([0, t]) (t ∈ (0, 1)) retracts to its
subset XP,0. Then composing with the inclusion map XP,t ⊂ f−1

P ([0, t]),
we get an exact sequence

HP,0 → H1(XP,t,Z)
r→ H1(XP,0,Z) → 0,

where the restriction of r to the submodule HP,1 composed with the
isomorphism (2.1.20) induces the identity on HP,1. This implies that
HP,1 is a factor of H1(XP,t,Z).

iii) What remains to show is that HP,0 is injectively embedded in
H1(XP,t,Z). This can be partially shown by using the non-degeneracy
of the intersection relations (2.1.18) as follows.

Let γ ∈ HP,0 be a non-zero element, whose image in H1(XP,t,Z) is

zero. Then solving the relation IP (γ, γP,c) = 0 for c = c
(n)
P,1 ∈ CP,1 (see

Notation in §2.2) from large enough n∈Z>0 back wards to 1, we see
successive vanishings of the coefficients of γ, and finally see that γ, up
to a constant factor, is equal to γ+

D,0−γ−
D,0 (see §2.2 for Notation γ+

D,0

and γ−
D,0). In order to show that this is not possible, we prepare a fact.

iv) Fact. The function fP of type P is invariant by the involution σ :
XP →XP , (x, y) 7→(x,−y) on its domain, i.e. fP ◦σ=fP . The induced
involution on the surface XP,t, denoted again by σ, is equivariant with
the covering map πP,t (1.3.11), i.e. πP,t ◦ σ = πP,t. Then, one has
σ∗(γP,c) = −γP,c for all c ∈ CP , except for the following two cases

σ∗(γ
+
D,0) = −γ−

D,0 and σ∗(γ
−
D,0) = −γ+

D,0.
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Proof of Fact. Except for the cases γ+
D,0 and γ−

D,0, we can choose the
coordinate in (2.1.13) in such manner that σ(u, v) = (u,−v). ¤
v) Assuming γ+

D,0 = γ−
D,0, let us show a contradiction. Consider the

homomorphism (πD)∗ : H1(XD,t,Z) → H1(CD,Z) ' Z. Above Fact.
implies (πD)∗(γ

+
D,0)=(πD ◦ σ)∗(γ

+
D,0)=(πD)∗ ◦ σ∗(γ

+
D,0)=−(πD)∗(γ

−
D,0)

which, by the assumption, is equal to −(πD)∗(γ
+
D,0). Thus, we get

(πD)∗(γ
+
D,0)=0. This contradicts to the fact that (πD)∗(γ

+
D,0) generates

H1(CD,Z)'Z (observed easily from the fact that the equation x = 0
defines i) a branch of XD,0,R at the nodal point c+

D,0 and also ii) the

puncture in CD, and from the description of γ+
D,0 in (2.1.13)).

This completes a proof of Theorem 4. and 5. ¤
Remark. In the step v) in above proof, we may use a σ-invariant form
ω := Res

[
ydxdy
fD−t

]
. Since

∫
γ+

D,0
ω =

∫
γ+

D,0
σ∗(ω) =

∫
σ∗(γ+

D,0)
ω = −

∫
γ−

D,0
ω, the

assumption γ+
D,0 = γ−

D,0 implies
∫

γ+
D,0

ω = 0. On the other hand, ω =

Res
[

ydxdy
fD−t

]
= dx

2x
|XD,t

, and hence
∫

γ+
D,0

ω=±
√
−1π 6= 0. A contradiction!

2.2. Quivers of type A 1
2∞

and D 1
2∞

. .
We encode homological data of vanishing cycles of fP in a quiver ΓP .

Definition. A quiver ΓP of type P ∈ {A 1
2
∞, D 1

2
∞} is defined by

i) The set of vertices of ΓP is bijective to {γP,c | c ∈ CP,0 ∪ CP,1}.
ii) We put an oriented edge from γP,c to γP,c′ if and only if c∈CP,0,

c′∈CP,1 and c ∈ Bc′ , that is, when JP (γP,c, γP,c′) = −1.

Let us fix a numbering of elements in CP,0 ∪ CP,1 as follows.

CA,0 = {c(n)
A,0 := (n2π2, 0)}n∈Z>0

CA,1 = {c(n)
A,1 := ((n − 1

2
)2π2, 0)}n∈Z>0

CD,0 = {c(n)
D,0 :=(n2π2, 0)}n∈Z>0 ∪ {c+

D,0 :=(0, 1), c−D,0 :=(0,−1)}

CD,1 = {c(n)
D,1 := ((n − 1

2
)2π2, 0)}n∈Z>0 .

According to them, the vertices of the quiver ΓP are numbered as below.

ΓA 1
2∞

: γ
(1)
A,1 −→ γ

(1)
A,0 ←− γ

(2)
A,1 −→ γ

(2)
A,0 ←− γ

(3)
A,1 −→ γ

(3)
A,0 ←− · · ·

γ+
D,0

↖
ΓD 1

2∞
: γ

(1)
D,1 −→ γ

(1)
D,0 ←− γ

(2)
D,1 −→ γ

(2)
D,0 ←− γ

(3)
D,1 −→ · · ·

↙
γ−

D,0
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Note that the decomposition of the critical set CP into CP,0∪CP,1 gives
arise the bi-partite (or principal) decomposition of the quiver ΓP .

Remark. A real polynomial in one variable, such that 1) it has only
non degenerate critical points with two critical values 0 and 1 and 2)
vansihing cycles associated with its critical points form the bipartite
decomposed Dykin diagram of type Al, is (up to suspensions, see §2.3)
well-known as the Chebyshev polynomial. Thus, the functions fA 1

2∞

and fD 1
2∞

may be regarded as transcendental analogues of Chebyshev

poynomials.
More generally, for any Dynkin quiver of finite type P (i.e. P ∈

{Al (l ≥ 1), Bl (l ≥ 2), Cl (l ≥ 3), Dl (l ≥ 4), El (l = 6, 7, 8), F4, G2}),
there are real polynomials fP (x, y) such that they have only non-
degenerate critical points with only two critical values and 2) the van-
ishing cycles associated with the critical points give the bi-partite de-
composition of the Dynkin quiver of type P . They form a (half) line,
called the real vertex orbit axis, in the real deformation parameter space
of real simple singularities (see [Sa2, §2.5]). Thus, the functions fA 1

2∞

and fD 1
2∞

in the present paper are their transcendental analogues for

the quivers of types A 1
2
∞ and D 1

2
∞, respectively. Theory of primitive

forms for simple singularities is established [Sa1]. The present paper is
a step towards construction of primitive forms of types A 1

2
∞ and D 1

2
∞.

2.3. Suspensions to higher dimensions. .
In this subsection, we briefly describe the suspensions of the results

in previous subsections to higher dimensional cases.
For a type P ∈ {A 1

2
∞, D 1

2
∞} and n ∈ Z≥0, let us introduce the n-

th suspension of fP as the entire functions in 2 + n-variables x, y and
z = (z1, · · · , zn) defined by

(2.3.21) f
(n)
P (x, y, z) := fP (x, y) − z2

1 − · · · − z2
n.

Then, replacing the function fP by f
(n)
P and the domain XP = C2 by

X
(n)
P =C2×Cn, we obtain a holomorphic map (1.3.5)(n) whose fibers,

denoted by X
(n)
P,t (t∈C), are Stein variety of complex dimension n+1.

Replacing, further, the real form R2 of XP by the real form R2×Rn

of X
(n)
P , Theorem 1., 2., 3. in §1.3 hold completely parallely for f

(n)
P ,

where the set of critical points of f
(n)
P is bijective to that of fP by the

natural embedding XP ⊂ X
(n)
P so that we identify them. Then the

signature of Hessians of f
(n)
P at points of CP,0 is (1, n+1) and that at
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points of CP,1 is (0, n+2). The suspended fibration shall be referred by
(1.3.10)(n). The proof are reduced to the original case n=0.

Applying n-times suspension S on a homology class γ in H1(XP,t,Z),

we obtain an element Snγ of the middle homology group Hn+1(X
(n)
P,t ,Z)

of the fiber X
(n)
P,t . In particular, the suspension SnγP,c of a vanishing

cycle γP,c of fP at a critical point c ∈ CP is a vanishing cycle of f
(n)
P

at the same critical point, which, for simplicity, we shall denote again
by γP,c. Then replacing H1(XP,t,Z) by the middle homology group

Hn+1(X
(n)
P,t ,Z), Theorem 4. in §2.1 holds completely parallely, where

we keep notations (2.1.14) and (2.1.15).

The intersection form I
(n)
P on the middle homology group is well-

known to be symmetric or skew-symmetric according as cycles are even
or odd dimensional (i.e. according as n−1 is even or odd). It is also

wellknown that I
(n)
P (γP,c, γP,c) = (−1)

n+1
2 2 for even dimensional van-

ishing cycles (i.e. when n is odd). Therefore, the formula (2.1.17) of
the intersection form in Theorem 5. need to be slightly modified as in
the following theorem, where we keep the notation JP and tJP together
with the formulae (2.1.18) and (2.1.19).

Theorem 5(n). Let I
(n)
P : Hn+1(X

(n)
P,t ,Z)×Hn+1(X

(n)
P,t ,Z) → Z be the in-

tersection form on middle-homology groups of the fibers of the fibration
(1.3.10)(n). Then we have the following 4-periodic expression.

(2.3.22) I
(n)
P = (−1)[n+1

2
]JP − (−1)[n

2
] tJP .

The proof of Theorem is standard, and is omitted. Actually, the form

I
(n)
P is symmetric for n odd and is skew symmetric for n even.

Remark. We may regard that the form JP is an infinite rank analogue
of a Seifert matrix with respect to a “suitable compactification” of the
three-fold f−1

P (S1), where S1 is a circle in the base space C of (1.3.5)
which encloses the two points 0 and 1. However, we do not pursue any
further this analogy (see §1.3 Remark and the next subsection §2.4).

2.4. Monodromy Transformations and Coxeter elements. .
The fundamental group π1(C \ {0, 1}, t0) with t0 ∈ (0, 1) of the base

space of the fibration (1.3.10)(n) has two generators g0 and g1 which are
presented by circular paths in C\{0, 1} starting at t0 and turning once

around the point 0 and 1 counterclockwise, respectively. Let σ
(n)
P,0 (resp.

σ
(n)
P,1) be the monodromy action of g0 (resp. g1) on the middle homology

group (2.1.13)(n) of the fiber of the family (1.3.10)(n), which preserves

the intersection form (2.3.22). Though the singular fibers X
(n)
P,0 and
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X
(n)
P,1 have infinitely many critical points, we can apply Picard-Lefschetz

formula. That is, for u∈HP := HP,0⊕HP,1

(2.4.23)

σ
(n)
P,0(u) = u + (−1)[n

2
]
∑

c∈CP,0
I

(n)
P (u, γP,c)γP,c

= u +
∑

c∈CP,0
((−1)nJP (u, γP,c) − JP (γP,c, u))γP,c

=

{
(−1)nu if u∈HP,0

u −
∑

c∈CP,0
JP (γP,c, u)γP,c if u∈HP,1

(2.4.24)

σ
(n)
P,1(u) = u + (−1)[n

2
]
∑

c∈CP,1
I

(n)
P (u, γP,c)γP,c

= u +
∑

c∈CP,1
((−1)nJP (u, γP,c) − JP (γP,c, u))γP,c,

=

{
u + (−1)n

∑
c∈CP,1

JP (u, γP,c)γP,c if u∈HP,0

(−1)nu if u∈HP,1.

Note that σ
(n)
P,0 = σ

(n+2)
P,0 and σ

(n)
P,1 = σ

(n+2)
P,1 for n ∈ Z≥0.

Note. From the definition immediately, we see the involutivity relations

(2.4.25) (σ
(n)
P,0)

2 = (σ
(n)
P,1)

2 = idHP
for odd n ∈ Z≥0

are satisfied. Using the fact that the type of the quiver ΓP is either
A 1

2
∞ or D 1

2
∞, i.e. the “inductive limit” of Al or Dl for l → ∞, we can

show that there is no more relations among σ
(n)
P,0 and σ

(n)
P,1. Actually, we

shall see in the next section that the eigenvalues in a suitable sense of

the product σ
(n)
P,0 ◦ σ

(n)
P,1 is ”dense” in the unit circle S1 in C×.

Definition. In analogy with the classical simple singularities, let us

call the product of the two monodromy transformations σ
(n)
P,0 and σ

(n)
P,1

a Coxeter element. Two Coxeter elements depending on the order of
the product are conjugate to each other. We fix one order as follows
and call the product the Coxeter element.

(2.4.26)

Cox
(n)
P (u) := σ

(n)
P,0 ◦ σ

(n)
P,1 (u)

=


(−1)n

(
u +

∑
c∈CP,1

JP (u, γP,c)γP,c

−
∑

c∈CP,1

∑
d∈CP,0

JP (u, γP,c)JP (γP,d, γP,c)γP,d

)
if u∈HP,0

(−1)n
(
u −

∑
c∈CP,0

JP (γP,c, u)γP,c

)
if u∈HP,1.

Observation. The Coxeter element is, up to the sign factor (−1)n,
independent of the suspensions for n ∈ Z≥0 (2.3.21).

Remark. It is wellknown that a classical Coxeter element for a root
system of finite type is semisimple of finite order, and 1

2πi
log of its
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eigenvalues, referred as spectra, play important role ([Bo]). The Coxeter
elements of types A 1

2
∞ and D 1

2
∞ are no longer of finite order. However,

in the next section, we show that they are diagnalizable in suitable sense
and the spectra for them are introduced, where the sign factor (−1)n

of the Coxeter elements is lifted to the shift by n
2

of the spectra. The
spectra should play a key role for primitive forms of type A 1

2
∞ and D 1

2
∞

in a forth coming paper, where the shift of the spectra corresponds to
the n

2
-shift of the primitive forms in the semi-infinite Hodge filtration.

3. Spectra of Coxeter elements

We study spectra of the Coxeter element Cox
(n)
P for P ∈ {A 1

2
∞, D 1

2
∞}.

For the purpose, we extend the domain of the Coxeter element to the
completion of HP,C := HP ⊗Z C with respect to the l2-norm with
the orthonormal basis {γP,c}c∈CP

. The Coxeter element action on this
space is diagonalizable (in a suitable sense) where the eigenvalues take
values in the unit circle S1 ⊂ C×. Then, we introduce the spectra of the
Coxeter element as the 1

2π
√
−1

log of the eigenvalues where the branch

of the logarithm is normalized to the interval (n−1
2

, n+1
2

).

3.1. Hilbert space HP,C. .
Consider C-vector spaces obtained by the complexification of the

Z-lattices HP,0, HP,1 and HP (recall (2.1.14),(2.1.15) and (2.1.16)):

HP,0,C :=HP,0⊗ZC, HP,1,C :=HP,1⊗ZC and HP,C :=HP⊗ZC.(3.1.27)

We equip them with a hermitian inner product 〈·, ·〉 defined by

(3.1.28) 〈
∑
c∈CP

acγP,c,
∑
c∈CP

bcγP,c〉 :=
∑
c∈CP

acb̄c,

where ac, bc (c∈CP ) are complex numbers. Then, the l2-completions
of the spaces with respect to this inner product are separable Hilbert
spaces, denoted by HP,0,C, HP,1,C and HP,C, respectively. We have the
orthogonal direct sum decomposition:

(3.1.29) HP,C = HP,0,C ⊕ HP,1,C.

Let us denote by π0 and π1 the orthogonal projections of the space
HP,C to the subspaces HP,0C and HP,1,C, respectively, so that the sum

idHP,C
= π0 + π1

is the identity map on HP,C.
Remark that the lattice HP is self-dual: HomZ(HP,Z)∩HP,C = HP .

Convention. In the sequel of the present paper, we freely identify
a continuous bilinear form A on HP,C (resp. HP,C) and a continuous
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endomorphism Ȧ on HP,C (resp. HP,C) by the following relations:

A(ξ, η) = 〈Ȧ(ξ), η〉 and
∑
c∈CP

A(u, γP,c)γP,c = Ȧ(u).

Transposes tA of A and t(Ȧ) of Ȧ are defined by the relations tA(ξ, η)=

A(η, ξ) and 〈Ȧ(u), v〉=〈u,t(Ȧ)(v)〉, respectively. Then, t(Ȧ) = ˙(tA) .

3.2. Extendability of I
(n)
P and Cox

(n)
P on HP . .

In order to calculate the eigenvalues of the intersection forms I
(n)
P

and the Coxeter elements Cox
(n)
P , we use the identification mentioned

at the end of §3.1. Before we do this, we need to check that they are
continuously extendable to the completion HP,C. This is achieved by

using the extendabilities of the endomorphisms J̇P , tJ̇P associated with
the bilinear forms (2.1.18) and (2.1.19). Put

(3.2.30)

J̇P (u) :=
∑

c∈CP
J(u, γP,c)γP,c

=

{
u +

∑
c∈CP,1

JP (u, γP,c)γP,c if u ∈ HP,0

u if u ∈ HP,1

(3.2.31)

tJ̇P (u) :=
∑

c∈CP

tJ(u, γP,c)γP,c

=

{
u if u ∈ HP,0

u +
∑

c∈CP,0
JP (γP,c, u)γP,c if u ∈ HP,1

which are endomorphisms on HP,C, since the quiver ΓP in §2.2 is locally
finite, i.e. any vertex is connected with only finite number of other
vertices. The inverse action of J̇P (resp. tJ̇P ) on HP,C can be obtained
by just replacing “+” by “−” in RHS of (3.2.30) (resp. (3.2.31)).

Assertion 1. The endomorphisms J̇P , tJ̇P and their inverses J̇−1
P , tJ̇−1

P

acting on HP,C are extendable to bounded endomorphisms on HP,C.
The extensions are transpose to each other.

Proof. We show only the extendability of the domain of endomorphisms
J̇P , tJ̇P and their inverses J̇−1

P , tJ̇−1
P from HP,C to HP,C, where the exten-

sions are denoted by the same notation. Then the relations t(J̇P ) =tJ̇P ,
J̇P J̇−1

P = idHP
, . . . , etc. are automatically preserved for the extensions.

The quivers ΓA 1
2∞

and ΓD 1
2∞

show that any critical point c ∈ CP,0

is adjacent to at most two bdd components. In view of (3.2.30), this
implies the inequality ‖ J̇P (u)−u‖≤ 2‖u‖. Hence J̇P is extendable to
a bounded endomorphims on HP,C, denoted by the same J̇P .
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We observe also that, to any bdd component, at most 3 critical
points in CP,0 are adjacent (actually, 3 occurs only one bdd component

for the critical point c
(1)
D,1 of type D 1

2
∞). In view of (3.2.31), we get an

inequality ‖ tJ̇P (u) − u ‖≤ 3 ‖ u ‖, implying again the extendability
of tJ̇P to a bounded endomorphism on HP,C, denoted by the same tJ̇P .

Similar arguments shows the extendability of the inverses. ¤
An immediate consequence of Assertion 1 is that the endomorphism

(2.3.22)• İ
(n)
P := (−1)[n+1

2
]J̇P − (−1)[n

2
] tJ̇P

defined on HP,C is extendable to a bounded endomorphism on HP,C.
Another important consequence of Assertion 1 is the following.

Corollary. The Coxeter element Cox
(n)
P (n ∈ Z≥0) defined on HP,C is

extendable to an invertible bounded automorphism on HP,C.

Proof. Let us, first, show a formula:

(3.2.32) Cox
(n)
P = (−1)n (tJ̇P )−1J̇P ,

on HP by a direct calculation using formulae (2.4.26), (3.2.30) and

(3.2.30)−1 !!!(tJ̇P )−1(u) =

{
u if u ∈ HP,0

u −
∑

c∈CP,0
JP (γP,c, u)γP,c if u ∈ HP,1.

Then, RHS of (3.2.32) is extendable to a bounded operator on HP,C.

Invertibility of Cox
(n)
P follows from that of J̇P and tJ̇P . ¤

Remark. Let ȞP,C := HomC(HP,C,C) be the (formal) dual vector
space of HP,C. The contragradient actions on ȞP,C of the endomor-

phisms J̇P , tJ̇P , İ
(n)
P , tİ

(n)
P , Cox

(n)
P and tCox

(n)
P on HP,C shall be denoted,

as usual, by the super script “ t(-) ” such that “ tt(-)=(-) ”.
On the other hand, by regarding {γP,c}c∈CP

as the self-dual basis,
ȞP,C is identified with the direct product

∏
c∈CP

CγP,c so that we have
natural inclusions of C-vector spaces:

HP,C ⊂ HP,C ⊂ ȞP,C.

Then it is easy to verify that the extensions of J̇P , tJ̇P , İ
(n)
P , tİ

(n)
P , Cox

(n)
P

and tCox
(n)
P to the spaces HP,C and ȞP,C are naturally compatible

with respect to the above inclusions. The relationships between these
extensions and the transpositions are given as follows:

tİ
(n)
P = (−1)n+1İ

(n)
P and (tCox

(n)
P )−1 = J̇P Cox

(n)
P J̇−1

P .

However, the bilinear form IP,C itself is no longer extandable to ȞP,C

and the endomorphism İP on ȞP,C has non-trivial kernel.
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3.3. Spectral decomposition of I
(n)
P for odd n. .

Using the fact (2.3.22), the bilinear form I
(n)
P is symmetric for odd n.

Let us consider the operator for the cases n ∈ Z≥0 with n ≡ 3 mod 4,6

(3.3.33) İP := İ
(n)
P = J̇P + tJ̇P .

We, first, determine the point spectrum of the symmetric operator
İP on HP,C. Let us consider following two eigenspaces for λ ∈ C:
(3.3.34) ȞP,λ := {ξ∈ȞP,C | İP (ξ)=λξ} and HP,λ := ȞP,λ ∩ HP,C.

Assertion 2. For each type P ∈{A 1
2
∞, D 1

2
∞} and all λ∈C, we have

(3.3.35) dimC ȞP,λ = 1 and dimC HP,λ = 0,
except for the case P = D 1

2
∞ and λ = 2, where we have

(3.3.36) dimC ȞD 1
2∞,2 = 2 and dimC HD 1

2∞,2 = 1,

and HD 1
2∞,2 is spanned by a vector ηD 1

2∞,2 := γ+
D,0 − γ−

D,0.

Proof. This is shown by solving the equation İP (ξ) = λξ for the coef-
ficients of ξ =

∑
c∈CP

acγP,c ∈ ȞP,C formally and inductively according
to the following labeling and ordering of coefficients:

ΓA 1
2∞

: a0 −→ a1 ←− a2−→ a3←− a4−→ a5 ←− · · ·
b+
0 ↖ΓD 1

2∞
: b1 −→ b2 ←− b3 −→ b4 ←− b5 −→ · · ·↙

b−0
Details of the calculation are omitted. Results are summerized as:

A 1
2
∞: The space ȞA 1

2∞,λ for any λ∈C is spanned by

ξ̌A 1
2∞,λ : an =

exp((n + 1)
√
−1πθ) − exp(−(n + 1)

√
−1πθ)

exp(
√
−1πθ) − exp(−

√
−1πθ)

(n ≥ 0)

where θ is any complex number satisfying λ=4 sin2(π
2
θ). In case λ=0

or 4 (i.e. when θ ∈ Z), we interpret this formula as an = ±(n + 1).

D 1
2
∞: For all λ ∈ C, let us introduce a vector

ξ̌D 1
2∞,λ : b+

0 = 1, b−0 = 1, bn = exp(n
√
−1θ) + exp(−n

√
−1θ) (n ≥ 1)

where θ is any complex number satisfying the equation λ = 4 sin2(π
2
θ).

Then, the space ȞD 1
2∞,λ for any λ 6=2 is spanned by ξ̌D 1

2∞,λ. The space

ȞD 1
2∞,2 is spanned by ξ̌D 1

2∞,2 and

ηD 1
2∞

:= γ+
D,0 − γ−

D,0 : b+
0 = 1, b−0 = −1, bn = 0 (n ≥ 1).

The norm 〈ξ̌P,λ, ξ̌P,λ〉 (3.1.28) for all P ∈ {A 1
2
∞, D 1

2
∞} and λ∈C is

unbounded, whereas ηD 1
2∞

has the norm 〈ηD 1
2∞

, ηD 1
2∞

〉 = 2. ¤
6We choose the form IP for n ≡ 3 mod 4, since it is positive and symmetric,

defining a “root lattice structure of infinite rank” on HP (cf. Proof of Assertion 3.).
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Corollary. The point spectrum of the operator İA 1
2∞

on HP,C is empty,

and that of İD 1
2∞

consists in the single eigenvalue λ = 2 with multiplic-

ity 1. In particular, the operator İP is non-degenerate on HP,C.

Remark. By introducing the double cover of the λ-plane by µ :=
exp(π

√
−1θ) ∈ C \ {0} with the relation 2−λ = µ+µ−1, the base

ξ̌P,λ in the proof of Assertion 2 can be expressed in terms of Laurent
polynomials in µ. Then, the reader may be puzzled in the above proof
by the reason of introducing the parameter θ instead of µ. We used the
parameter θ since it shall parametrize the spectra of Coxeter elements
in the next paragraph. We remark also that λ ∈ [0, 4] ⇔ θ ∈ R.

For a symmetric operator İP on HP,C, the greatest lower bound and
the least upper bound are defined as the maximal real number m and
the minimal real number M satisfying the following inequalities, re-
spectively (see [R-N, §104]).

(3.3.37) m〈ξ, ξ〉 ≤ 〈İP (ξ), ξ〉 = IP (ξ, ξ) ≤ M〈ξ, ξ〉 ∀ξ ∈ HP,C

Assertion 3. The greatest lower bound m and the least upper bound
M of İP for both P ∈ {A 1

2
∞, D 1

2
∞} is given by m = 0 and M = 4.

Proof. For the definition of m and M , it is sufficient to run ξ only in
HP in the defining relation (3.3.37), since HP,C is dense in HP,C. Any
ξ ∈ HP is contained in a sublattice L of HP generated by the vertices of
a finite (connected) subdiagram Γ of ΓP (recall §2.2). Actually, Γ is a
diagram of type either Al or Dl for some l ∈ Z>0 and IP |L gives a root
lattice structure of that type on L. That is, {IP (γP,c, γP,d)}c,d∈Γ⊂CP

is the Cartan matrix of type Γ. In particular, the eigenvalues of İP |L
(n∈Z≥0) is given by 4 sin2

(
π
2

mi

h

)
(i=1,· · ·, l =rank(L)), where mi are

the exponents and h is the Coxeter number of the root system of type
Γ (see e.g. [Bo]). Since the smallest and the largest exponent of the
(finite) root system are 1 and h−1, respectively, the minimal and the
maximal of the eigenvalues are 4 sin2

(
π
2

1
h

)
and 4 cos2

(
π
2

1
h

)
, respectively.

Since h → ∞ according as Γ ”exhaust” ΓP , we obtain

m = inf
Γ⊂ΓP

4 sin2
(π

2

1

h

)
= lim

h→∞
4 sin2

(π

2

1

h

)
= 0.

M = sup
Γ⊂ΓP

4 cos2
(π

2

1

h

)
= lim

h→∞
4 cos2

(π

2

1

h

)
= 4.

¤
We apply the spectral decomposition theory of bounded symmetric

operators (see [R-N, §107 Theorem]) to the operator İP . Let us refor-
mulate the result in [ibid] by adjusting the notation to our setting.
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Theorem 6. For each type P ∈ {A 1
2
∞, D 1

2
∞}, there exists a unique

spectral family {EP,λ}λ∈R (i.e. a family of projection operators7 on HP,C

satisfying the following a), b), c)):

a) For λ ≤ µ, one has EP,λ ≤ EP,µ (⇔
def

EP,λEP,µ = EP,λ).

b) The family is strongly continuous with respect to λ, i.e.

EP,λ+0(:= lim
µ↓0

EP,λ+µ) = EP,λ−0(:= lim
µ↑0

EP,λ−µ),

except at λ = 2 for type P = D 1
2
∞, where we have

(3.3.38) ED 1
2∞,2+0 − ED 1

2∞,2−0 = the projection: HD 1
2∞,C → HD 1

2∞,2.

c) One has EP,λ = 0 for λ ≤ 0 and EP,λ = IdHP,C
for λ ≥ 4.

so that following (3.3.39) holds.

(3.3.39) (İP )r =

∫ 4

0

λrdEP,λ (for r = 0, 1, 2, · · · ).

where the integral is in the sense of Lebesgue-Stieltjes. 8

3.4. Spectra of Coxeter elements. .
Recall that λ ∈ [0, 4] in §3.3 Theorem 6 is the parameter for the

spectra of the intersection form IP := I
(n)
P for n ≡ 3 mod 4. What is

wonderful, is the fact that this parameter gives a clue to parametrize

the spectra of the Coxeter elements Cox
(n)
P for all n ∈ Z≥0. In order

to achieve this, we introduce another parameter θ and re-parametrize
λ by the relation (which we once observed in a proof of Assertion 2.)

(3.4.40) λ = 4 sin2
(
θ
π

2

)
for 0 ≤ θ ≤ 1.

We state now the goal results of the present paper.

Theorem 7. For each type P ∈{A 1
2
∞,D 1

2
∞}, by the coordinate trans-

form (3.4.40), we introduce a Stieltjes measure on the interval θ ∈ [0, 1]:

(3.4.41) ξP,θ := Uθ ·dEP,λ ·U−1
θ

7Here, we mean by a projection operator an orthogonal projection map from
HP,C to its closed subspace such that the real form HP,R is mapped into itself.
The fact that EP,λ is real, is not explicitly stated in the literature [R-N], but follows
trivially from its construction and from the fact that İP is real.

8More generally [R-N, §107 Theorem], for any complex valued continuous func-
tion u(λ) on the interval [0, 4], we have an equality u(İP ) =

∫ 4

0
u(λ)dEP,λ between

bounded operators, where LHS is defined by a (monotone decreasing) polynomial
aproximation of u and RHS is given by the norm-limit of the Stieltjes type sum-
mation. Then, for any ξ, η ∈ HP,C, we have 〈u(İP )ξ, η〉 =

∫ 4

0
u(λ)d〈EP,λξ, η〉.
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where Uθ (0≤θ≤1) is a family of unitary operators on HP,C given by

(3.4.42) Uθ := exp
(
− π

2

√
−1θ

)
π0 − exp

(π

2

√
−1θ

)
π1,

and (i) {EP,λ}λ∈[0,4] is the spectral family in §3.3 Theorem 6,

(ii) πi : HP,C → HP,C,i (i = 0, 1) are orthgonal projections.

Then the following two formulae hold:

(3.4.43) Cox
(n)
P ·ξP,θ = exp

(
2π

√
−1

(
θ +

n − 1

2

))
ξP,θ,

and

(3.4.44)

∫ θ=1

θ=0

ξP,θ =
1

2
İP .

Proof. 1. Proof of (3.4.43).
Consider the infinitesimal form of the formula (3.3.39) for r=1:

(3.4.45) İP ·dEP,λ = λdEP,λ.

Substitute the decomposition dEP,λ = π0 · dEP,λ + π1 · dEP,λ in this
formula. Then, using (3.3.33) , the LHS is equal to

İP ·dEP,λ = (J̇P +t J̇P )(π0 ·dEP,λ + π1 ·dEP,λ)
= 2 π0 ·dEP,λ + 2 π1 ·dEP,λ

+ (J̇P − id)(π0 ·dEP,λ) + (J̇P − id)(π1 ·dEP,λ)

+ (tJ̇P − id)(π0 ·dEP,λ) + (tJ̇P − id)(π1 ·dEP,λ).

On the other hand, recalling (3.2.30) and (3.2.31), we know that

(J̇P − id)(π1 ·dEP,λ) = 0, (J̇P − id)(π0 ·dEP,λ) ∈ Hom(HP,C, HP,C,1),

(tJ̇P − id)(π0 ·dEP,λ) = 0, (tJ̇P − id)(π1 ·dEP,λ) ∈ Hom(HP,C, HP,C,0).

Equating this with λdEP,λ =λπ0 ·dEP,λ+λπ1 ·dEP,λ (3.4.44), we obtain

(tJ̇P−id)(π1·dEP,λ)=(λ−2)π0·dEP,λ, (J̇P−id)(π0·dEP,λ)=(λ−2)π1·dEP,λ.

Rewriting these together in matrix expressions, we obtain

(3.4.46) J̇P

(
π0 ·dEP,λ

π1 ·dEP,λ

)
=

(
1 λ − 2
0 1

)(
π0 ·dEP,λ

π1 ·dEP,λ

)
.

(3.4.47) tJ̇P

(
π0 ·dEP,λ

π1 ·dEP,λ

)
=

(
1 0

λ − 2 1

)(
π0 ·dEP,λ

π1 ·dEP,λ

)
.

and, hence, also

(tJ̇P )−1

(
π0 ·dEP,λ

π1 ·dEP,λ

)
=

(
1 0

2 − λ 1

)(
π0 ·dEP,λ

π1 ·dEP,λ

)
.
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Thus, combining these with the expression (3.2.32), we obtain

(3.4.48) Cox
(n)
P

(
π0 ·dEP,λ

π1 ·dEP,λ

)
=(−1)n

(
1 λ − 2

2−λ 1−(λ−2)2

)(
π0 ·dEP,λ

π1 ·dEP,λ

)
.

Substitute λ in the RHS matrix by the expression (3.4.40) :

(−1)n

(
1 λ − 2

2 − λ 1 − (λ − 2)2

)
= (−1)n

(
1 −2 cos(πθ)

2 cos(πθ) sin2(πθ) − 3 cos2(πθ)

)
.

We see that the matrix is semi-simple for any θ. The eigenvalues are

exp

(
±2π

√
−1( θ +

n − 1

2
)

)
,

and associated row eigenvectors (independent of n) are(
exp

(
∓ π

2

√
−1θ

)
,− exp

(
± π

2

√
−1θ

))
.

Therefore, by introducing the unitary operators

(3.4.49) U±θ := exp
(
∓ π

2

√
−1θ

)
π0 − exp

(
± π

2

√
−1θ

)
π1

satisfying relations: tU±θ = U±θ = U∓θ and U±θ ·U∓θ = idHP,C
, we

introduce a Stieltjes measure on [0, 4] := {λ∈R | 0≤λ≤4} ' [0, 1] :=
{θ∈R | 0≤θ≤1}:

(3.4.50) ξ±θ := U±θ ·dEP,λ ·U∓θ.

Then, from (3.4.48), we obtain

(3.4.51) Cox
(n)
P ·ξ±θ = exp

(
±2π

√
−1

(
θ +

n − 1

2

))
ξ±θ .

Putting ξP,θ := ξ+
θ , we obtain (3.4.43).

2. Proof of (3.4.44).
Using (3.4.41) and (3.4.42), we decompose ξP,θ into 4 pieces:

π0·dEP,θ·π0+π1·dEP,θ·π1−exp(π
√
−1θ)π1·dEP,θ ·π0−exp(−π

√
−1θ)π0·dEP,θ·π1.

The first two terms are integrated easily by∫ θ=1

θ=0
π0 ·dEP,θ ·π0 = π0 ·

(∫ θ=1

θ=0
dEP,θ

)
·π0 = π0 · idHP,C

· π0 = π0,∫ θ=1

θ=0
π1 ·dEP,θ ·π1 = π1 ·

(∫ θ=1

θ=0
dEP,θ

)
·π1 = π1 · idHP,C

· π1 = π1.

The third and fourth terms are integrated by the use of Footnote 8.
First, we introduce bounded nilpotent operators K̇P :HP,0,C→HP,1,C

and tK̇P :HP,1,C→HP,0,C, by K̇P := idHP,C
−J̇P and tK̇P := idHP,C

−tJ̇P

so that we have K̇2
P =tK̇2

P =0 and İP =2 idHP,C
−K̇P −tK̇P . Then,
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∫ θ=1

θ=0
exp(π

√
−1θ)π1 ·dEP,θ · π0

= π1

[∫ θ=1

θ=0

(
1 − 2 sin2(π

2
θ) +

√
−1 2

√
1 − sin2(π

2
θ) sin(π

2
θ)

)
dEP,λ

]
π0

= π1

[∫ θ=1

θ=0

(
1 − λ

2
+

√
−1
2

√
(4 − λ)λ

)
dEP,λ

]
π0

= π1

[
idHP,C

− İP

2
+

√
−1
2

√
(4 idHP,C

− İP )İP

]
π0

After sandwitching by π1 and π0, the first and the second terms turn

out to be π1 · idH · π0 = 0 and π1 · İP

2
· π0 = − K̇P

2
, respectively. The

third term turns out to be zero, since the operator√
(4 idHP,C

− İP )İP =
√

(2 idHP,C
+ K̇P + tK̇P )(2 idHP,C

− K̇P − tK̇P )

=
√

4 idHP,C
− K̇P · tK̇P − tK̇P · K̇P

preserves the decomposition (3.1.29) so that it does not have the
“cross” term sandwitched by π1 and π0. Thus, we get∫ θ=1

θ=0
exp(π

√
−1θ)π1 ·dEP,λ · π0 =

K̇P

2
.

Similarly, we obtain also∫ θ=1

θ=0
exp(−π

√
−1θ)π0 ·dEP,λ · π1 =

tK̇P

2
.

These altogether show the formula (3.4.44) ¤
Corollary. Let ϕ(θ) =

∑
m∈Z am exp(2π

√
−1m(θ + n−1

2
)) be an ab-

solutely convergent Fourier expansion of a complex valued continuous
function on the interval θ ∈ [0, 1]. Then, we have

(3.4.52) 2
∫ θ=1

θ=0
ϕ(θ) · ξθ =

∑
m∈Z

am(Cox
(n)
P )m · İP .
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