
ON THE FIRST AND SECOND K-GROUPS OF AN ELLIPTIC
CURVE OVER A GLOBAL FIELD OF POSITIVE

CHARACTERISTIC

SATOSHI KONDO AND SEIDAI YASUDA

Abstract. It is shown that the maximal divisible subgroup of the K1 and K2

of an elliptic curve E over a function field are uniquely divisible, and those K-
groups modulo the uniquely divisible subgroups are computed explicitly. We
also calculate the motivic cohomology groups of the minimal regular model of
E, which is an elliptic surface over a finite field.

(This is a revised version of a part of our preprint RIMS-1564 (2006).)

1. Introduction

The aim of this paper is to compute explicitly the K1, K2 and the motivic coho-
mology groups of an elliptic curve over a function field, and the motivic cohomology
groups of an elliptic surface over a finite field. In this introduction, let us state the
thoerems (Theorems 1.1, 1.2) concerning the K1 and K2 of an elliptic curve. We
refer to Theorems 6.1, 6.2, 6.3, 7.1, 7.2 for other main results.

Let k be a global field of positive characteristic p and let E be an elliptic curve
over Spec k. Let C be the proper smooth irreducible curve over a finite field whose
function field is k. We regard a place ℘ of k as a closed point of C and vice
versa. We let κ(℘) denote the residue field at ℘ of C. Let f : E → C denote the
minimal regular model of the elliptic curve E → Spec k. This f is a proper, flat,
generically smooth morphism such that for almost all closed points ℘ of C, the fiber
E ×C Spec κ(℘) at ℘ is a genus one curve, and such that the generic fiber is the
elliptic curve E → Spec k.

Let us identify the K-theory and the G-theory of regular noetherian schemes.
There is a localization sequence of G-theory:

Ki(E)→ Ki(E)
⊕∂i

℘−−−→
⊕

℘

Gi(E℘)→ Ki(E)

where ℘ runs over all primes of k. Let us denote by ∂2 the boundary map ⊕∂2
℘,

by ∂ : K2(E)red →
⊕

℘∈C0
G0(E℘) the boundary map induced by ∂2, and by ∂1 :

K1(E)red →
⊕

℘∈C0
G0(E℘) the boundary map induced by ⊕∂1

℘. Here, for an
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abelian group M , we let Mdiv denote the maximal divisible subgroup of M , and we
put M red = M/Mdiv.

In Theorems 1.1, 1.2 below, we use the following notation. We use the subscript
−Q to mean − ⊗Z Q. For a scheme X, let X0 (resp. Irr(X)) denote the set of the
closed points (resp. the irreducible components) of X. Let Fq denote the field of
constants of C. For a scheme X of finite type over Spec Fq and for i ∈ Z, choose
a prime number ` 6= p and put L(hi(X), s) = det(1 − Frob · q−s;Hi

et(X ×Spec Fq

Spec Fq, Q`)) where Fq is an algebraic closure of Fq and Frob ∈ Gal(Fq/Fq) is the
geometric Frobenius element. In all the cases considered in Theorems 1.1, 1.2, the
function L(hi(X), s) does not depend on the choice of `. We let T ′(1) denote what we

call the twisted Mordell-Weil group T ′(1) =
⊕

` 6=p(E(k⊗Fq Fq)tors⊗ZZ`(1))Gal(Fq/Fq).
We write S0 (resp. S2) for the set of primes of k at which E has split multiplicative
(resp. bad reduction); we also regard it as a closed subscheme of C with the reduced
structure (The set of primes S1 will be introduced later). For a set M , we denote
its cardinality by |M |. We put r = |S0|.

Theorem 1.1 (see Theorem 6.1(1)(2), Theorem 7.2(2)). Suppose that S2 is nonempty,
or equivalently f is not smooth.

(1) The dimension of the Q-vector space (K2(E)red)Q is r.
(2) The cokernel of the boundary map ∂2 : K2(E)→

⊕
℘∈C0

G1(E℘) is a finite
group of order

(q − 1)2|L(h0(Irr(ES2)),−1)|
|T ′(1)| · |L(h0(S2),−1)|

.

(3) The group K2(E)div is uniquely divisible, and the kernel of the boundary
map ∂ : K2(E)red →

⊕
℘∈C0

G1(E℘) is a finite group of order |L(h1(C),−1)|2

Let L(E, s) denote the L-function of E (see Section 6.3). We write Jac(C) for
the Jacobian of C.

Theorem 1.2 (see Theorem 6.1(3)(4)). Suppose that S2 is nonempty, or equiva-
lently f is not smooth.

(1) The group K1(E)div is uniquely divisible.
(2) The kernel of the boundary map ∂1 : K1(E)red →

⊕
℘∈C0

G0(E℘) is a finite
group of order (q − 1)2|T ′(1)| · |L(E, 0)|. The cokernel of ∂1 is a finitely
generated abelian group of rank 2 + |Irr(ES2)| − |S2| whose torsion subgroup
is isomorphic to Jac(C)(Fq)⊕2.

Remark 1.1. Takao Yamazaki has pointed the authors to the similarity between
Theorem 1.2(2) and the Birch-Tate conjecture (see [44, p.206-207]). The Birch-Tate
conjecture concerns the K2 of a global field in any characteristic. They study the
boundary map, denoted λ, from K2 to the direct sum of the K1 of the residue fields.
A part of the conjecture is that the order of the kernel of the boundary map λ is
expressed using the special value ζF (−1) and an invariant wF , which is expressed
in terms of the number of roots of unity).

In our theorem, we consider K1 instead of K2, an elliptic curve over a function
field instead of the function field itself (regarded as a zero-dimensional variety over a
function field), the Hasse-Weil L-function L(E, s) instead of the zeta function. The
value |T ′(1)| plays the role of wF in our setting. There is no counterpart for the factor
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(q − 1)2 in their conjecture. This is due to the fact that there are more than one
degrees for which the cohomology groups are (conjecturally) nonzero in our setting
because the variety is one-dimensional as opposed to being zero-dimensional.

It seems interesting to formulate a conjecture for curves of higher genus over a
function field, and over a global field of characteristic zero, but we have not persued
this point.

The principal ingredient in proving these theorems is the following theorem which
was proved in our previous paper:

Theorem 1.3. [25, Theorem 1.1] Let the notations be as above. Then for an
arbitrary set S of closed points of C, the homomorphism induced by the boundary
map ∂2

K2(E)Q
⊕∂℘Q−−−→

⊕
℘∈S

G1(E℘)Q

is surjective.

Let us give an outline of proof. First, given an elliptic surface E , we relate the
order of (a quotient by some divisible subgroup of) the motivic cohomology groups
and the special values of the zeta function of E . For many of the (bi-)degrees, this is
made possible by the Beilinson-Lichtenbaum conjecture (now a theorem using the
Bloch-Kato conjecture and a theorem of Geisser and Levine), but there are degrees
where it is not a direct consequence of the conjecture. In such cases, we need some
extra work. The details on this extra work are found in the beginning of Section 6.

Then, we recall in Section 6.3 that the main part of the zeta function of E is the
L-function of E. We note that there are contributions from the L-function of the
base curve C and also of the singular fibers of E (Lemma 6.3, Corollary 6.4). We
relate the G-groups of the singular fibers to the motivic cohomology groups and
then they are in turn related to the values of the L-function (Lemmas 6.8 and 6.9).
The technical input for these lemmas are our result from our paper [24] and the
classification of the singular fibers of an elliptic fibration.

The sections are organized as follows. In Sections 2–5, we consider the general
case of a curve of arbitrary genus over a function field and a smooth surface over
a finite field. Those sections are fairly independent of others. In Section 2, we
compute the motivic cohomology groups of an arbitrary smooth surface X over
finite fields. The difficult case is that of H3

M(X, Z(2)) and is treated in Section 2.2.
In Section 3, we prove the compatibility of Chern characters and the localization
sequence of motivic cohomology. In Section 4, we define Chern characters for
singular curves over finite fields. The treatment is quite ad hoc. In Section 5, we
give the relation via the Chern class map between the K1 and K2 of curves over
function fields and the motivic cohomology groups. We present our main result
in Section 6. Applying the results in Sections 2, 4, and 5, and using the special
features of elliptic surfaces, including Theorem 1.3, we compute the orders of certain
torsion groups explicitly. We treat the p-part separately in Appendix A. See its
introduction for more technical details. In Section 7, we will use the Bloch-Kato
conjecture (see Lemma 2.1) and generalize the results in Section 6.
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2. Motivic cohomology groups of smooth surfaces

Aside from the uniquely divisible part, we understand the motivic cohomology
groups of smooth surfaces over finite fields fairly well. The divisible part is conjec-
turally zero.

The main goal of this section is to prove Theorem 2.1. Let us give a brief
description of the statement. Let X be a smooth surface over a finite field. Then
we find that Hi

M(X, Z(j)) is an extension of a finitely generated abelian group
by a uniquely divisible group except when (i, j) = (3, 2). Except for the cases
(i, j) = (0, 0), (1, 1), (3, 2), (4, 2), the finitely generated abelian group is a finite
group, which is either 0 or is written in terms of étale cohomology groups of X.
We refer to Theorem 2.1, the following table, and the following paragraph for the
details.

For a prime number `, we let | |` : Q` → Q denote the `-adic absolute value
normalized so that |`|` = `−1.

2.1. Motivic cohomology of surfaces over a finite field. Let Fq be the field
of q elements of characteristic p. For a separated scheme X which is essentially
of finite type over Spec Fq, we define the motivic cohomology group Hi

M(X, Z(j))
as the homology group Hi

M(X, Z(j)) = H2j−i(zj(X, •)) of Bloch’s cycle complex
zj(X, •) ([7, Introduction, p. 267] see also [14, 2.5, p. 60] to remove the condition
that X is quasi-projective). When X is essentially smooth over Spec Fq, it coincides
with the motivic cohomology group defined in [26, Part I, Chapter I, 2.2.7, p. 21] or
[47] (cf. [27, Theorem 1.2, p. 300], [46, Corollary 2, p. 351]). For a discrete abelian
group M , we put Hi

M(X, M(j)) = H2j−i(zj(X, •)⊗Z M).
We apologize that this notation is not appropriate if X is not essentially smooth

(for in that case it should be a Borel-Moore homology group). A reason for using
this notation is that, in Section 4.2, we will define Chern classes for higher Chow
groups of low degrees as if higher Chow groups form a cohomology theory.

First let us recall that the groups Hi
M(X, Z(j)) have been known for j ≤ 1. By

definition, Hi
M(X, Z(j)) = 0 for j ≤ 0 and (i, j) 6= (0, 0), and H0

M(X, Z(0)) =
H0

Zar(X, Z). We have Hi
M(X, Z(1)) = 0 for i 6= 1, 2. By [7, Theorem 6.1, p. 287],

we have H1
M(X, Z(1)) = H0

Zar(X, Gm), and H2
M(X, Z(1)) = Pic(X).

The following is a conjecture of Bloch-Kato ([22, §1, Conjecture 1, p. 608]). and
now is proved by Rost, Voevodsky, Haesemeyer, and Weibel.

Lemma 2.1. Let j ≥ 1 be an integer. Then for any finitely generated field K over
Fq and for any positive integer ` 6= p, the symbol map KM

j (K)→ Hj
et(Spec K, Z/`(j))

is surjective.

Definition 2.1. Let M be an abelian group. We say that M is finite modulo
a uniquely divisible subgroup (resp. finitely generated modulo a uniquely divisible
subgroup) if Mdiv is uniquely divisible and M red is finite (resp. Mdiv is uniquely
divisible and M red is finitely generated).

We note that, if M is finite modulo a uniquely divisible subgroup, then Mtors is
a finite group and M = Mdiv ⊕Mtors.

Recall that for a scheme X, we let Irr(X) denote the set of irreducible components
of X. The aim of Section 2.1 is to prove the following theorem.
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Theorem 2.1. Let X be a smooth surface over Fq. Let R ⊂ Irr(X) denote the
subset of irreducible components of X which is projective over Spec Fq. For X ′ ∈
Irr(X), let qX′ denote the cardinality of the field of constants of X ′.

(1) The group Hi
M(X, Z(2)) is finitely generated modulo a uniquely divisible

subgroup if i 6= 3 or if X is projective. More precisely,
(a) The group Hi

M(X, Z(2)) is zero for i ≥ 5.
(b) The group H4

M(X, Z(2)) is a finitely generated abelian group of rank
|R|.

(c) If i ≤ 1 or if X is projective and i ≤ 3, the group Hi
M(X, Z(2)) is

finite modulo a uniquely divisible subgroup.
(d) The group H2

M(X, Z(2)) is finitely generated modulo a uniquely divis-
ible subgroup.

(e) For i ≤ 2, the cohomology group Hi
M(X, Z(2))tors is canonically iso-

morphic to the direct sum
⊕

` 6=p Hi−1
et (X, Q`/Z`(2)). In particular, the

group Hi
M(X, Z(2)) is uniquely divisible for i ≤ 0.

(f) If X is projective, then the group H3
M(X, Z(2))tors is isomorphic to the

direct sum of the group
⊕

` 6=p H2
et(X, Q`/Z`(2)) and a finite p-group of

order |Hom(Pico
X/Fq

, Gm)|·|L(h2(X), 0)|−1
p . Here we let Hom(Pico

X/Fq
, Gm)

denote the set of morphisms Pico
X/Fq

→ Gm of group schemes over
Spec Fq.

(2) Let j ≥ 3 be an integer. Then for any integer i, the group Hi
M(X, Z(j)) is

finite modulo a uniquely divisible subgroup. More precisely,
(a) The group Hi

M(X, Z(j)) is zero for i ≥ max(6, j +1), is isomorphic to⊕
X′∈R Z/(qj−2

X′ − 1) for (i, j) = (5, 3), (5, 4), and is finite for (i, j) =
(4, 3).

(b) The group Hi
M(X, Z(j))tors is canonically isomorphic to the direct sum⊕

` 6=p Hi−1
et (X, Q`/Z`(j)). In particular, the group Hi

M(X, Z(j)) is
uniquely divisible for i ≤ 0 or 6 ≤ i ≤ j, and the group H1

M(X, Z(j))tors
is isomorphic to the direct sum

⊕
X′∈Irr(X) Z/(qj

X′ − 1).

In the following table, we summarize the description of the groups Hi
M(X, Z(j))

stated in Theorem 2.1. Here we write u.d, f./u.d., f.g./u.d., f., f.g. for uniquely
divisible, finite modulo a uniquely divisible subgroup, finite generated modulo a
uniquely divisible subgroup, finite, finitely generated respectively.

j \ i < 0 0 0 < i < j j(6= 0) j + 1 j + 2 ≥ j + 3
0 0 H0(Z) - 0
1 0 - H0(Gm) Pic(X) 0

2 u. d. f./u. d.
f. g./u. d. ?

f. g. 0f./u. d. if projective
3 u. d. f./u. d. f. 0
4 u. d. f./u. d. f. 0

≥ 5 u. d.
f./u. d.

0u. d. if 6 ≤ i ≤ j

Lemma 2.2. Let X be a separated scheme essentially of finite type over Spec Fq.
Let i and j be integers. If both Hi−1

M (X, Q/Z(j)) and lim←−m
Hi
M(X, Z/m(j)) are fi-

nite, then Hi
M(X, Z(j)) is finite modulo a uniquely divisible subgroup and its torsion

subgroup is isomorphic to Hi−1
M (X, Q/Z(j)).
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Proof. Let us consider the exact sequence

(2.1) 0→ Hi−1
M (X, Z(j))⊗Z Q/Z→ Hi−1

M (X, Q/Z(j))
→ Hi

M(X, Z(j))tors → 0.

Since Hi−1
M (X, Q/Z(j)) is a finite group, all the groups in the above exact sequence

are finite groups. Then the group Hi−1
M (X, Z(j)) ⊗Z Q/Z must be zero since it is

finite and divisible. Hence we have a canonical isomorphism Hi−1
M (X, Q/Z(j)) →

Hi
M(X, Z(j))tors. The finiteness of Hi

M(X, Z(j))tors implies that the divisible group
Hi
M(X, Z(j))div is uniquely divisible and the canonical homomorphism

Hi
M(X, Z(j))red → lim←−

m

Hi
M(X, Z(j))/m

is injective. The latter group lim←−m
Hi
M(X, Z(j))/m is canonically embedded in

the finite group lim←−m
Hi
M(X, Z/m(j)). Hence we conclude that Hi

M(X, Z(j))red is
finite. This proves the claim. �

Lemma 2.3. Let X be a smooth projective surface over Fq. Let j be an integer.
Then the group Hi

M(X, Q/Z(j)) and the group lim←−m
Hi
M(X, Z/m(j)) are finite if

i 6= 2j or j ≥ 3.

Proof. The claim for j ≤ 1 is clear. Suppose that j = 2. Then the claim for i ≥ 5
is clear. If p - m, from [14, Corollary 1.2, p. 56. See also Corollary 1.4] and [30,
(11.5), THEOREM, p. 328], it follows that the cycle class map Hi

M(X, Z/m(2))→
Hi

et(X, Z/m(2)) is an isomorphism for i ≤ 2 and is injective for i = 3. By [9,
Théorème 2, p. 780] and the exact sequence [9, 2.1 (29) p. 781], for i ≤ 3, the group
lim−→m, p-m Hi

et(X, Z/m(2)) and the group lim←−m, p-m Hi
et(X, Z/m(2)) are finite.

Let WnΩ•X,log denote the logarithmic de Rham-Witt sheaf (cf. [21, I, 5.7, p. 596]).
This was introduced by Milne in [32]. There is an isomorphism Hi

M(X, Z/pn(2)) ∼=
Hi−2

Zar (X, WnΩ2
X,log) (cf. [13, Theorem 8.4, p. 491]). In particular, we have Hi

M(X, Qp/Zp(2)) =
0 for i ≤ 1.

By [9, §2, Théorème 3, p. 782], lim−→n
Hi

et(X, WnΩ2
X,log) is a finite group for i =

0, 1. By [9, Pas no 1, p. 783], the projective system {Hi(X, WnΩ2
X,log)}n satisfies

the Mittag-Leffler condition. Using the argument used in [9, Pas no 4, p. 784], we
obtain the exact sequence

0→ lim←−n
Hi(X, WnΩ2

X,log)⊗Z Qp/Zp → lim−→n
Hi(X, WnΩ2

X,log)
→ lim←−n

Hi+1(X, WnΩ2
X,log)tors → 0.

We then see that lim←−n
Hi

et(X, WnΩ2
X,log) is also finite for i = 0, 1 and is isomorphic

to lim−→n
Hi−1

et (X, WnΩ2
X,log). Since the homomorphism

Hi
Zar(X, WnΩ2

X,log)→ Hi
et(X, WnΩ2

X,log),

induced by the change of topology ε : Xet → XZar, is an isomorphism for i = 0
and is injective for i = 1, we see that lim←−n

H2
M(X, Z/pn(2)) is zero, and that both

H2
M(X, Qp/Zp(2)) and lim←−n

H3
M(X, Z/pn(2)) are finite groups. This proves the

claim for j = 2.
Suppose j ≥ 3. The claim for the case i ≥ 2j is clear. Since j ≥ 3, we

have Hi
M(X, Z/pn(j)) ∼= Hi−j

Zar (X, WnΩj
X,log) = 0. Using Lemma 2.1 for j, by

[14, Theorem 1.1, p. 56], the group Hi
M(X, Z/m(j)) is isomorphic to the group

Hi
Zar(X, τ≤jRε∗Z/m(j)) if p - m. Since any affine surface over Fq has `-cohomological
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dimension 3 for any ` 6= p, it follows that Hi
Zar(X, τ≤jRε∗Z/m(j)) ∼= Hi

et(X, Z/m(j))
for all i. Hence by [9, Théorème 2, p. 780] and the exact sequence [9, 2.1 (29)
p. 781], for i ≤ 2j − 1, the groups Hi

M(X, Q/Z(j)) and lim←−m
Hi
M(X, Z/m(j)) are

finite. This proves the claim for j ≥ 3. �

Lemma 2.4. Let Y be a scheme of dimension d ≤ 1 which is of finite type over
Spec Fq. Then Hi

M(Y, Z(j)) is a torsion group unless 0 ≤ j ≤ d and j ≤ i ≤ 2j.

Proof. By taking a smooth affine open subscheme of Yred whose complement is of
dimension zero, and using the localization sequence of motivic cohomology, we are
reduced to the case where Y is connected, affine, and smooth over Spec Fq. When
d = 0 (resp. d = 1), the claim follows from the result of Quillen [41, THEOREM
8(i), p. 583] (resp. Harder [19, Korollar 3.2.3, p. 175] (see [16, Theorem 0.5, p. 70]
for the correct interpretation of his result)) on the structure of the K-groups of Y ,
combined with the Riemann-Roch theorem for higher Chow groups [7, Theorem
9.1, p. 296]. �

We use the following lemma, whose proof is easy and is left to the reader.

Lemma 2.5. Let ϕ : M → M ′ be a homomorphism of abelian groups such that
Ker ϕ is finite and (Cokerϕ)div = 0. If Mdiv or M ′

div is uniquely divisible, then ϕ

induces an isomorphism Mdiv

∼=−→M ′
div. �

Proof of Theorem 2.1. Without loss of generality, we may assume that X is con-
nected. We first prove the claims assuming X is projective. It is clear that the
group Hi

M(X, Z(j)) is zero for i ≥ min(j + 3, 2j + 1). It follows from [9, p. 787,
Proposition 4] that the degree map H4

M(X, Z(2)) = CH0(X) → Z has finite ker-
nel and cokernel. This proves the claim for i ≥ min(j + 3, 2j). Fix j ≥ 2. For
i ≤ 2j − 1, the group Hi

M(X, Z(j)) is finite modulo a uniquely divisible subgroup
by Lemmas 2.2 and 2.3. The claim on the identification of Hi

M(X, Z(j))tors with the
étale cohomology follows immediately from the argument in the proof of Lemma 2.3
except for the p-primary part of H3

M(X, Z(2)), which follows from Proposition A.1.
To finish the proof, it remains to prove that Hi

M(X, Z(j))div is zero for j ≥ 3
and i = j + 1, j + 2. It suffices to prove that Hi

M(X, Z(j)) is a torsion group for
j ≥ 3 and i ≥ j + 1. Consider the limit

lim−→
Y

Hi−2
M (Y, Z(j − 1))→ Hi

M(X, Z(j))→ lim−→
Y

Hi
M(X \ Y, Z(j))

of the localization sequence where Y runs over the reduced closed subschemes of X
of pure codimension one. The group Hi−2

M (Y, Z(j−1)) is torsion by Lemma 2.4 and
we have lim−→Y

Hi−2
M (X \ Y, Z(j − 1)) = 0 for dimension reasons. Hence the claim

follows. This completes the proof in the case where X is projective.
For general connected surface X, take an embedding X ↪→ X ′ of X into a smooth

projective surface X ′ over Fq such that Y = X ′\X is of pure codimension one in X ′.
We can show that such an X ′ exists by using [35] and a resolution of singularities
([3, p. 111], [28, p. 151]). Then the claims, except for that on the identification of
Hi
M(X, Z(j))tors with the étale cohomology, easily follow from Lemma 2.5 and by

using the localization sequence

· · · → Hi−2
M (Y, Z(j − 1))→ Hi

M(X ′, Z(j))→ Hi
M(X, Z(j))→ · · · .
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The claim on the identification of Hi
M(X, Z(j))tors with the étale cohomology can

be obtained in a way similar to that in the proof of Lemma 2.3. This completes
the proof. �

2.2. A criterion for the finiteness of H3
M(X, Z(2))tors.

Proposition 2.1. Let X be a smooth surface over Fq. Let X ↪→ X ′ be an open
immersion such that X ′ is smooth projective over Fq and Y = X ′ \ X is of pure
codimension one in X ′. Then the following conditions are equivalent.

(1) The group H3
M(X, Z(2)) is finitely generated modulo a uniquely divisible

subgroup.
(2) The group H3

M(X, Z(2))tors is finite.
(3) The pull-back map H3

M(X ′, Z(2))→ H3
M(X, Z(2)) induces an isomorphism

H3
M(X ′, Z(2))div

∼=−→ H3
M(X, Z(2))div.

(4) The kernel of the pull-back map H3
M(X ′, Z(2))→ H3

M(X, Z(2)) is finite.
(5) The cokernel of the boundary map ∂ : H2

M(X, Z(2)) → H1
M(Y, Z(1)) is

finite.

Moreover, if the above equivalent conditions are satisfied, then the torsion group
H3
M(X, Z(2))tors is isomorphic to the direct sum of a finite group of p-power order

and the group
⊕

` 6=p H2
et(X, Q`/Z`(2))red, and the localization sequence induces the

long exact sequence

(2.2) · · · → Hi−2
M (Y, Z(1))→ Hi

M(X ′, Z(2))red → Hi
M(X, Z(2))red → · · ·

of finitely generated abelian groups.

Proof. The condition (1) clearly implies the condition (2). The localization se-
quence shows that the conditions (4) and (5) are equivalent and that the condition
(3) implies the condition (1). By the localization sequence and Lemma 2.5, the
condition (4) implies the condition (3).

We claim that the condition (2) implies the condition (4). Assume the con-
dition (2) and suppose that the condition (4) is not satisfied. We put M =
Ker[H3

M(X ′, Z(2))→ H3
M(X, Z(2))]. The localization sequence shows M is finitely

generated. By assumption, M is not torsion. Since H3
M(X ′, Z(2)) is finite modulo

a uniquely divisible subgroup, the intersection H3
M(X ′, Z(2))div∩M is a non-trivial

free abelian group of finite rank. Hence the group H3
M(X, Z(2)) contains a group

isomorphic to H3
M(X ′, Z(2))div/(H3

M(X ′, Z(2))div∩M), which contradicts the con-
dition (2). Hence the condition (2) implies the condition (4). This completes the
proof of the equivalence of the conditions (1)-(5).

Suppose that the conditions (1)-(5) are satisfied. The localization sequence shows
that the kernel (resp. the cokernel) of the pull-back Hi

M(X ′, Z(2))→ Hi
M(X, Z(2))

is a torsion group (resp. has no non-trivial divisible subgroup) for any i ∈ Z. Hence,
by Lemma 2.5, Hi

M(X, Z(2))div is uniquely divisible and the sequence (2.2) is exact.
The condition (2) and the exact sequence (2.1) for (i, j) = (3, 2) give the isomor-
phism H3

M(X, Z(2))tors ∼= H2
M(X, Q/Z(2))red. Then the claim on the structure of

H3
M(X, Z(2))tors follows from [14, Corollary 1.2, p. 56. See also Corollary 1.4] and

[30, (11.5), THEOREM, p. 328]. This completes the proof. �

Let X be a smooth projective surface over Fq. Suppose that X admits a flat,
surjective and generically smooth morphism f : X → C to a connected, smooth
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projective curve C over Fq. For each point ℘ ∈ C, let X℘ = X ×C ℘ denote the
fiber of f at ℘.

Corollary 2.1. Let the notations be as above. Let η ∈ C denote the generic
point. Suppose that the cokernel of the homomorphism ∂ : H2

M(Xη, Z(2)) →⊕
℘∈C0

H1
M(X℘, Z(1)), which is the inductive limit of the boundary maps of the

localization sequences, is a torsion group. Then the group Hi
M(Xη, Z(2))div is

uniquely divisible for all i ∈ Z and the inductive limit of localization sequences
induces the long exact sequence

· · · →
M

℘∈C0

Hi−2
M (X℘, Z(1))→ Hi

M(X, Z(2))red → Hi
M(Xη, Z(2))red → · · · .

Proof. Since the group
⊕

℘∈C0
Hi
M(X℘, Z(1)) has no non-trivial divisible subgroup

for all i ∈ Z, and is torsion for i 6= 1 by Lemma 2.4, the claim follows from
Lemma 2.5. �

3. The compatibility of Chern characters and the localization
sequence

The aim of this section is to prove Lemma 3.1. What we will need in later sections
is the statement of Lemma 3.1 and Remark 3.1. We will not use the details of the
proof; the reader may skip them.

This lemma is known as the Riemann-Roch without denominators for higher K-
theory. For example, it is known to hold for the setup given in [15]. Throughout, we
use Bloch’s higher Chow groups as motivic cohomology theory, but the Riemann-
Roch without denominators is not known (at least not in the literature) for the
Chern class as defined in [7].

Instead, we will use as the Chern class, the Chern class for motivic cohomology
of Levine (see below) composed with the comparison isomorphism between Levine’s
motivic cohomology groups and higher Chow groups. Then since the Riemann-Roch
theorem is known to hold for Levine’s motivic cohomology, our task is to check
the compatibility of the localization sequence and the comparison isomorphisms
(Lemmas 3.2 and 3.3).

3.1. Main statement. Given an essentially smooth scheme X over Spec Fq and
integers i, j ≥ 0, let ci,j : Ki(X)→ H2j−i

M (X, Z(j)) be the Chern class map. Several
ways are proposed to construct the map ci,j ([7, p. 293], [26, Part I, Chapter III,
1.4.8. Examples. (i), p. 123], [40, DEFINITION 5, p. 315]). All of them are based
on the method of Gillet [15, p. 228–229, Definition 2.22]. In this paper we adopt
the definition of Levine [26, Part I, Chapter III, 1.4.8. Examples. (i), p. 123], where
the map ci,j is denoted by cj,2j−i

X . The definition, given in [26, Part I, Chapter
I, 2.2.7, p. 21], of the target H2j−i(X, Z(j)) = H2j−i

X (X, Z(j)) of cj,2j−i
X , which

we will denote by H2j−i
L (X, Z(j)), is different from the definition of the group

H2j−i
M (X, Z(j)). However [26, Part I, Chapter II, 3.6.6. THEOREM, p. 105] shows

that there is a canonical isomorphism

(3.1) βi
j : Hi

M(X, Z(j))
∼=−→ Hi

L(X, Z(j))

which is compatible with the product structures. The precise definition of our
Chern class map ci,j is the composition ci,j = (βi

j)
−1 ◦ cj,2j−i

X .
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The map ci,j is a group homomorphism if i ≥ 1 or (i, j) = (0, 1). We let
ch0,0 : K0(X) → H0

M(X, Z(0)) ∼= H0
Zar(X, Z) denote the homomorphism which

sends the class of a locally free OX -module F to the rank of F . For i ≥ 1 and
a ∈ Ki(X), we put formally chi,0(a) = 0.

Lemma 3.1. Let X be a scheme which is a localization of a smooth quasi-projective
scheme over Spec Fq. Let Y ⊂ X be a closed subscheme of pure codimension d which
is essentially smooth over Spec Fq. Then for i, j ≥ 1 or (i, j) = (0, 1), the diagram

(3.2)

Ki(Y )
αi,j−−−−→ H2j−i−2d

M (Y, Z(j − d))y y
Ki(X)

ci,j−−−−→ H2j−i
M (X, Z(j))y y

Ki(X \ Y )
ci,j−−−−→ H2j−i

M (X \ Y, Z(j))y y
Ki−1(Y )

αi−1,j−−−−→ H2j−i−2d+1
M (Y, Z(j − d))

is commutative. Here the homomorphism αi,j is defined as follows: for a ∈ Ki(Y ),
the element αi,j(a) equals

Gd,j−d(chi,0(a), ci,1(a), . . . , ci,j−d(a); c0,1(N ), . . . , c0,j−d(N )),

where Gd,j−d is the universal polynomial in [2, Exposé 0, Appendice, Proposition
1.5, p. 37] and N is the conormal sheaf of Y in X, and the left (resp. the right)
vertical sequence is the localization sequence of K-theory (resp. of higher Chow
groups established in [6, Corollary (0.2), p. 357]).

Proof. We may assume that X is quasi-projective and smooth over Spec Fq. It
follows from [26, Part I, Chapter III, 1.5.2, p. 130] and the Riemann-Roch theorem
without denominators [26, Part I, Chapter III, 3.4.7. THEOREM, p. 174] that the
diagram (3.2) is commutative if we replace the right vertical sequence by the Gysin
sequence

(3.3)
H2j−i−2d
L (Y, Z(j − d))→ H2j−i

L (X, Z(j))
→ H2j−i

L (X \ Y, Z(j))→ H2j−i−2d+1
L (Y, Z(j − d))

in [26, Part I, Chapter III, 2.1, p. 132]. It suffices to show that the Gysin sequence
(3.3) is identified with the localization sequence of higher Chow groups. We use
the notations in [26, Part I, Chapter I, II]. Let S = Spec Fq and let V denote
the category of schemes which is essentially smooth over Spec Fq. Let Amot(V) be
the DG category defined in [26, Part I, Chapter I, 1.4.10 DEFINITION, p. 15].
For an object Z in V and a morphism f : Z ′ → Z in V which admits a smooth
section, and for j ∈ Z, we have an object ZZ(j)f in Amot(V). When f = idZ is
the identity, we abbreviate ZZ(j)idZ

by ZZ(j). For a closed subset W ⊂ Z, let
ZZ,W (j) be the object introduced in [26, Part I, Chapter I, (2.1.3.1), p. 17]; it is an
object in the DG category Cb

mot(V) of bounded complexes in Amot(V). The object
ZZ(j)f belongs to the full subcategory Amot(V)∗ of Amot(V) introduced in [26,
Part I, Chapter I, 3.1.5, p. 38], and the object ZZ,W (j) belongs to the DG category
Cb

mot(V)∗ of bounded complexes in Amot(V)∗. For i ∈ Z we put Hi
L,W (Z, Z(j)) =
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HomDb
mot(V)(1, ZZ,W (j)[i]), where 1 denotes the object ZSpec Fq

(0) and Db
mot(V)

denotes the category introduced in [26, Part I, Chapter I, 2.1.4 DEFINITION,
p. 17–18].

Let X, Y be as in the statement of Lemma 3.1. Let Kb
mot(V) be the homotopy

category of Cb
mot(V). We have a distinguished triangle

ZX,Y (j)→ ZX(j)→ ZX\Y (j) +1−−→

in Kb
mot(V). This distinguished triangle yields a long exact sequence

(3.4)
· · · → Hi

L,Y (X, Z(j))→ Hi
L(X, Z(j))

→ Hi
L(X \ Y, Z(j))→ Hi+1

L,Y (X, Z(j))→ · · · .

In [26, Part I, Chapter III, (2.1.2.2), p. 132], Levine constructs an isomorphism ι∗ :
ZY (j−d)[−2d]→ ZX,Y (j) in Db

mot(V). This isomorphism induces an isomorphism
ι∗ : Hi−2d

L (Y, Z(j − d))
∼=−→ Hi

L,Y (X, Z(j)). This isomorphism, together with the
long exact sequence (3.4) gives the Gysin sequence (3.3).

We put zj
Y (X,−•) = Cone(zj(X,−•)→ zj(X \Y,−•))[−1] and define cohomol-

ogy with support Hi
M,Y (X, Z(j)) = Hi−2j(zj

Y (X,−•)). The distinguished triangle

zj
Y (X,−•)→ zj(X,−•)→ zj(X \ Y,−•) +1−−→

in the derived category of abelian groups induces a long exact sequence

(3.5)
· · · → Hi

M,Y (X, Z(j))→ Hi
M(X, Z(j))

→ Hi
M(X \ Y, Z(j))→ Hi+1

M,Y (X, Z(j))→ · · · .

The push-forward map zj−d(Y,−•) → zj(X,−•) of cycles gives a homomorphism
zj−d(Y,−•) → zj

Y (X,−•) of complexes of abelian groups, which is known to be
a quasi-isomorphism by [6, Theorem (0.1), p. 537]. Hence it induces an isomor-
phism ι∗ : H2j−i−2d

M (Y, Z(j − d))
∼=−→ H2j−i

M,Y (X, Z(j)). Then the claim follows from
Lemmas 3.2 and 3.3 below. �

3.2. Compatibility of localization sequences.

Lemma 3.2. For each i, j ∈ Z, there exists a canonical isomorphism

βi
Y,j : Hi

M,Y (X, Z(j))
∼=−→ Hi

L,Y (X, Z(j))

such that the long exact sequence (3.4) is identified with the long exact sequence
(3.5) via this isomorphism and the isomorphism (3.1).

Proof. The functor Zmot ([26, Part I, Chapter I, (3.3.1.2), p. 40]) from the category
Cb

mot(V) to the category of bounded complexes of abelian groups is compatible with
taking cones. Hence the DG functor Zmot( , ∗) ([26, Part I, Chapter II, 2.2.4. DEFI-
NITION, p. 68]) from the category Cb

mot(V)∗ to the category of complexes of abelian
groups which are bounded from below is also compatible with taking cones. Since
Zmot(ZX(j)idX

, ∗) is canonically isomorphic to the cycle complex zj(X,−•), the
complex Zmot(ZX,Y (j)idX

, ∗) is canonically isomorphic to the complex zj
Y (X,−•).

For an object Γ in Cb
mot(V)∗, let CH(Γ, p) be the higher Chow group defined

in [26, Part I, Chapter II, 2.5.2. DEFINITION, p. 76]. From the definition of
CH(Γ, p), we obtain canonical homomorphisms H2j−i

M (X, Z(j)) → CH(ZX(j), i),
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H2j−i
M (X \ Y, Z(j))→ CH(ZX\Y (j), i), and H2j−i

M,Y (X, Z(j))→ CH(ZX,Y (j), i) such
that the diagram

(3.6)

H2j−i
M,Y (X, Z(j)) −−−−→ CH(ZX,Y (j), i)y y

H2j−i
M (X, Z(j)) −−−−→ CH(ZX(j), i)y y

H2j−i
M (X \ Y, Z(j)) −−−−→ CH(ZX\Y (j), i)y y

H2j−i+1
M,Y (X, Z(j)) −−−−→ CH(ZX,Y (j), i− 1)

is commutative.
We recall the definition of the cycle class map cl(Γ) : CH(Γ) = CH(Γ, 0) →

HomDb
mot(V)(1,Γ) ([26, p. 76]) for an object Γ ∈ Cb

mot(V)∗. We recall that CH(Γ) =
lim−→Γ→Γ eU H0(Zmot(Tot ΓeU , ∗)) where Γ → ΓeU runs over the hyper-resolutions of Γ

([26, Part I, Chapter II, 1.4.1. DEFINITION, p. 59]), and Tot : Cb(Cb
mot(V)∗) →

Cb
mot(V)∗ denotes the total complex functor in [26, Part I, Chapter II, 1.3.2, p. 58].

The homomorphism cl(Γ) is defined as the inductive limit of the composite

clnaif(Tot ΓeU ) : H0(Zmot(Tot ΓeU , ∗))→ HomDb
mot(V)(1,TotΓeU )

∼=←− HomDb
mot(V)(1,Γ).

For an object Γ in Cb
mot(V)∗, the homomorphism clnaif(Γ) is, by definition ([26,

Part I, Chapter II, (2.3.6.1), p. 71]), equal to the composite

H0(Zmot(Γ, ∗))
∼=←− H0(Zmot(ΣN (Γ)[N ]))
∼=←− HomKb

mot(V)(e⊗a ⊗ 1,ΣN (Γ)[N ])
→ HomDb

mot(V)(e⊗a ⊗ 1,ΣN (Γ)[N ])
∼=←− HomDb

mot(V)(1,Γ)

for sufficiently large integers N, a ≥ 0. Here ΣN is the suspension functor in [26,
Part I, Chapter II, 2.2.2. DEFINITION, p. 68], and e is the object in [26, Part I,
Chapter I, 1.4.5, p. 13] which we regard as an object in Amot(V ). Let Γ → Γ′ be
a morphism in Cb

mot(V) and put Γ′′ = Cone(Γ→ Γ′)[−1]. Since the functor ΣN is
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compatible with cones, the diagram

(3.7)

CH(Γ′′, i)
cl(Γ′′[−i])−−−−−−→ HomDb

mot(V)(1,Γ′′[−i])y y
CH(Γ, i)

cl(Γ[−i])−−−−−→ HomDb
mot(V)(1,Γ[−i])y y

CH(Γ′, i)
cl(Γ′[−i])−−−−−−→ HomDb

mot(V)(1,Γ′[−i])y y
CH(Γ′′, i− 1)

cl(Γ′′[−i+1])−−−−−−−−→ HomDb
mot(V)(1,Γ′′[−i + 1])

is commutative.
The homomorphism βi

j : Hi
M(X, Z(j))→ H2j−i

L (X, Z(j)) is, by definition, equal
to the composite

Hi
M(X, Z(j))→ CH(ZX(j), 2j − i)

cl(ZX(j)[i−2j])−−−−−−−−−−→ HomDb
mot(V)(1, ZX(j)[i]) = Hi

L(X, Z(j)).

We define the homomorphism βi
Y,j : Hi

M,Y (X, Z(j)) → H2j−i
L,Y (X, Z(j)) to be the

composite

Hi
M,Y (X, Z(j))→ CH(ZX,Y (j), 2j − i)

cl(ZX,Y (j)[i−2j])−−−−−−−−−−−→ HomDb
mot(V)(1, ZX,Y (j)[i]) = Hi

L,Y (X, Z(j)).

By (3.6) and (3.7), we have a commutative diagram

H2j−i
M,Y (X, Z(j))

β2j−i
Y,j−−−−→ H2j−i

L,Y (X, Z(j))y y
H2j−i
M (X, Z(j))

β2j−i
j−−−−→∼= H2j−i

L (X, Z(j))y y
H2j−i
M (X \ Y, Z(j))

β2j−i
j−−−−→∼= H2j−i

L (X \ Y, Z(j))y y
H2j−i+1
M,Y (X, Z(j))

β2j−i+1
j−−−−−→ H2j−i+1

L,Y (X, Z(j))

where the right vertical arrow is the long exact sequence (3.4). Hence β2j−i
Y,j is an

isomorphism and the claim follows. �

3.3. Compatibility of Gysin maps.
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Lemma 3.3. The diagram

H2j−i−2d
M (Y, Z(j − d)) ι∗−−−−→∼= H2j−i

M.Y (X, Z(j))

β2j−i−2d
j−d

y∼= β2j−i
Y,j

y∼=
H2j−i−2d
L (Y, Z(j − d)) ι∗−−−−→∼= H2j−i

L,Y (X, Z(j))

is commutative.

Proof. Let us recall the construction of the upper horizontal isomorphism ι∗ in [26,
Part I, Chapter III, (2.1.2.2), p. 132]. Let Z be the blow-up of X ×Spec Fq A1

Fq

along Y ×Spec Fq {0}. Let W be the proper transform of Y ×Spec Fq A1
Fq

to Z. Then
W is canonically isomorphic to Y ×Spec Fq A1

Fq
. Let P be the inverse image of

Y ×Spec Fq {0} under the map Z → X ×Spec Fq A1
Fq

and let Q = P ×Z W . We put
Z ′ = Z q (X ×Spec Fq

{1})q P and let f : Z ′ → Z denote the canonical morphism.
We have canonical morphisms

ZP,Q(j)← ZZ,W (j)f → ZX×Spec Fq{1},Y×Spec Fq{1}(j) = ZX,Y (j)

in Cb
mot(V)∗, which become isomorphisms in the category Db

mot(V).
Let g : P → Y ×Spec Fq {0} ∼= Y be the canonical morphism. The restriction of g

to Q ⊂ P is an isomorphism and hence gives a section s : Y → P to g. The cycle
class cldP,Q(Q) ∈ H2d

Q (P, Z(d)) in [26, Part I, Chapter I, (3.5.2.7), p. 48] comes from
the map [Q]Q : e ⊗ 1 → ZP,Q(d)[2d] in Cb

mot(V) defined in [26, Part I, Chapter I,
(2.1.3.3), p. 17]. We have morphisms

(3.8)

e⊗ ZP (j − d)[−2d]→ ZP,Q(d)⊗ ZP (j − d)
γ−→ ZP×Spec Fq P,Q×Spec Fq P (j)

← ZP×Spec Fq P,Q×Spec Fq P (j)f ′
∆∗

P−−→ ZP,Q(j).

in Cb
mot(V). Here γ is the map induced from the external products �P,P : ZP (d)⊗

ZP (j − d) → ZP×Spec Fq P (j) and �Q,P : ZQ(d) ⊗ ZP (j − d) → ZQ×Spec Fq P (j), the
morphism ∆P : P → P ×Spec Fq P denotes the diagonal embedding, and f ′ is the
morphism

f ′ = idP×Spec Fq P q∆P : P ×Spec Fq P q P → P ×Spec Fq P.

The morphisms in (3.8) induce a morphism δ : ZP (j − d)[−2d] → ZP,Q(j) in

Db
mot(V). The composite morphism ZY (j − d)[−2d]

q∗−→ ZP (j − d)[−2d] δ−→ ZP,Q(j)
induces a homomorphism δ∗ : Hi−2d

L (Y, Z(j − d))→ Hi
L,Q(P, Z(j)) for each i ∈ Z.

From the construction of the morphism δ∗, we see that the diagram

Hi−2d
M (Y, Z(j − d)) s∗−−−−→ Hi

M,Q(P, Z(j))

βi−2d
j−d

y βi
Q,j

y
Hi−2d
L (Y, Z(j − d)) δ∗−−−−→ Hi

L,Q(P, Z(j))

is commutative. Here the upper horizontal arrow s∗ is the homomorphism which
sends the class of a cycle V ∈ zj−d(Y, 2j − i) to the class in Hi

M,Q(P, Z(j)) of the
cycle s(V ) which belongs to the kernel of zj(P, 2j − i)→ zj(P \Q, 2j − i).
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The isomorphism ι∗ : H2j−i−2d
L (Y, Z(j − d))

∼=−→ H2j−i
L,Y (X, Z(j)) equals the com-

posite

H2j−i−2d
L (Y, Z(j − d)) δ∗−→ H2j−i

L,Q (P, Z(j))← H2j−i
L,W (Z, Z(j))

→ H2j−i
L,Y×Spec Fq{1}

(X ×Spec Fq
{1}, Z(j)) = H2j−i

L,Y (X, Z(j)).

It can be checked easily that the isomorphism ι∗ : H2j−i−2d
M (Y, Z(j − d))

∼=−→
H2j−i
M,Y (X, Z(j)) equals the composite

H2j−i−2d
M (Y, Z(j − d)) s∗−→ H2j−i

M,Q(P, Z(j))← H2j−i
M,W (Z, Z(j))

→ H2j−i
M,Y×Spec Fq{1}

(X ×Spec Fq
{1}, Z(j)) = H2j−i

M,Y (X, Z(j)).

Hence the claim follows. �

Remark 3.1. For j = d, we have αi,d = (−1)d−1(d − 1)! · chi,0. For i ≥ 1 and
j = d + 1, we have αi,d+1 = (−1)dd! · ci,1.

Suppose that d = 1 and N ∼= OY . Then we have αi,1 = chi,0 and αi,j(a) =
(−1)j−1Qj−1(ci,1(a), . . . , ci,j−1(a)) for i ≥ 0, j ≥ 2, where Qj−1 denotes the (j−1)-
st Newton polynomial which expresses the (j−1)-st power sum polynomial in terms
of the elementary symmetric polynomials. In particular, αi,2 = −ci,1 for i ≥ 0, and
αi,j = −(j − 1)ci,j−1 for i ≥ 1, j ≥ 2.

4. Motivic Chern characters for singular curves over finite fields

We construct Chern characters of low degrees for singular curves over finite fields
with values in the higher Chow groups in an ad hoc manner. Bloch defines Chern
characters with values in the higher Chow groups tensored with Q in [7, (7.4),
p. 294]. We restrict ourselves to one dimensional varieties over finite fields but the
target group is with coefficients in Z.

4.1. Let us record a lemma to be used in this section, and later in Lemma 5.4. For
a scheme X, we let O(X) = H0(X,OX) denote the coordinate ring of X.

Lemma 4.1. Let X be a connected scheme of pure dimension 1 which is separated
and of finite type over Spec Fq. Then the push-forward map

αX : H3
M(X, Z(2))→ H1

M(SpecO(X), Z(1))

is an isomorphism if X is proper, and the group H3
M(X, Z(2)) is zero if X is not

proper.

Proof. This follows from Thoerem 1.1 of [24]. �

4.2. Let Z be a scheme over Spec Fq of pure dimension one which is separated of
finite type over Spec Fq. We construct a canonical homomorphism ch′i,j : Gi(Z)→
H2j−i
M (Z, Z(j)) for (i, j) = (0, 0), (0, 1), (1, 1), and (1, 2). Then we will show (Propo-

sition 4.1) that the homomorphism

(4.1) (ch′i,i, ch
′
i,i+1) : Gi(Z)→ Hi

M(Z, Z(i))⊕Hi+2
M (Z, Z(i + 1))

is an isomorphism for i = 0, 1. Since the G-theory of Z and the G-theory of Zred

are isomorphic, and the same holds for the motivic cohomology, it suffices to treat
the case where Z is reduced.
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Take a dense affine open smooth subscheme Z(0) ⊂ Z, and let Z(1) = Z \Z(0) be
the complement of Z(0) with the reduced scheme structure. We define ch′0,0 to be
the composite

G0(Z)→ K0(Z(0))
ch0,0−−−→ H0

M(Z(0), Z(0)) ∼= H0
M(Z, Z(0)).

We use the following lemma.

Lemma 4.2. For i = 0 (resp. i = 1), the diagram

Ki+1(Z(0)) −−−−→ Ki(Z(1))

ci+1,i+1

y ych0,0 (resp. c1,1)

Hi+1
M (Z(0), Z(i + 1)) −−−−→ Hi

M(Z(1), Z(i))

where each horizontal arrow is a part of the localization sequence, is commutative.

Proof. Let Z̃ denote the normalization of Z. We write Z̃(0) = Z(0) ×Z Z̃(∼= Z(0))
and Z̃(1) = (Z(1) ×Z Z̃)red. Comparing the diagrams

Ki+1(Z̃(0)) → Ki(Z̃(1))
↓ ↓

Ki+1(Z(0)) → Ki(Z(1))
and

Hi+1
M (Z̃(0), Z(i + 1)) → Hi

M(Z̃(1), Z(i))
↓ ↓

Hi+1
M (Z(0), Z(i + 1)) → Hi

M(Z(1), Z(i))

reduces us to proving the same claim for Z̃(0) and Z̃(1), This then follows from
Lemma 3.1. �

We define ch′1,1 to be the composite

G1(Z)→ Ker[K1(Z(0))→ K0(Z(1))]
c1,1−−→ Ker[H1

M(Z(0), Z(1))→ H0
M(Z(1), Z(0))] ∼= H1

M(Z, Z(1)).

Next we define ch′1,2 when Z is connected. If Z is not proper, then H3
M(Z, Z(2))

is zero by Lemma 4.1. We put ch′1,2 = 0 in this case. If Z is proper, then the push-
forward map H3

M(Z, Z(2)) → H1
M(Spec H0(Z,OZ), Z(1)) ∼= K1(Spec H0(Z,OZ))

is an isomorphism by Lemma 4.1. We define ch′1,2 to be (−1)-times the composite

G1(Z)→ K1(Spec H0(Z,OZ)) ∼= H3
M(Z, Z(2)).

We define ch′1,2 for non-connected Z to be the direct sum of ch′1,2 for each connected
component of Z.

Observe that the group G0(Z) is generated by the two subgroups

M1 = Image[K0(Z(1))→ G0(Z)] and M2 = Image[K0(Z̃)→ G0(Z)].

One can see by using Lemma 4.2 and the localization sequences that the iso-
morphism ch0,0 : K0(Z(1))

∼=−→ H0
M(Z(1), Z(0)) induces a homomorphism ch′0,1 :

M1 → H2
M(Z, Z(1)). The kernel of K0(Z̃) → G0(Z) is contained in the image of

K0(Z̃(1))→ K0(Z̃). It can be checked easily that the composite

K0(Z̃(1))→ K0(Z̃)
c0,1−−→ H2

M(Z̃, Z(1))→ H2
M(Z, Z(1))

equals the composite

K0(Z̃(1))→ K0(Z(1)) � M1

ch′0,1−−−→ H2
M(Z, Z(1)).
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Hence the homomorphism c0,1 : K0(Z̃) → H2
M(Z̃, Z(1)) induces a homomorphism

ch′0,1 : M2 → H2
M(Z, Z(1)) such that the two homomorphisms ch′0,1 : Mi →

H2
M(Z, Z(1)), i = 1, 2, coincide on M1 ∩M2. Thus we obtain a homomorphism

ch′0,1 : G0(Z)→ H2
M(Z, Z(1)).

It is easily seen that the four homomorphisms ch′0,0, ch′0,1, ch′1,1, and ch′1,2 do
not depend on the choice of Z(0).

Proposition 4.1. The homomorphism (4.1) for i = 0, 1 is an isomorphism.

Proof. It follows from [4, Corollary 4.3, p. 95] that the Chern class map c1,1 :
K1(Z(0)) → H1

M(Z(0), Z(1)) is an isomorphism. Hence, by construction, ch′1,1 is
surjective and its kernel equals the image of K1(Z(1))→ G1(Z). It follows from the
vanishing of K2 groups of finite fields that the homomorphism c2,2 : K2(Z(0)) →
H2
M(Z(0), Z(2)) is an isomorphism. We then have isomorphisms

Image[K1(Z(1))→ G1(Z)]
∼= Image[H1

M(Z(1), Z(1))→ H3
M(Z, Z(2))] ∼= H3

M(Z, Z(2)),

the first of which is by Lemma 4.2, and the second is by [4, Corollary 4.3, p. 95].

Therefore the composite Ker ch′1,1 ↪→ G1(Z)
ch′1,2−−−→ H3

M(Z, Z(2)) is an isomorphism.
This proves the claim for G1(Z).

By the construction of the map ch′0,1, the image of ch′0,1 contains the image

of H0
M(Z(1), Z(0)) → H2

M(Z, Z(1)), and the composite K0(Z̃) → G0(Z)
ch′0,1−−−→

H2
M(Z, Z(1))→ H2

M(Z(0), Z(1)) equals the composite

K0(Z̃)→ K0(Z̃(0)) ∼= K0(Z(0))
c0,1−−→ H2

M(Z(0), Z(1)).

This implies that ch′0,1 is surjective and the homomorphism

Ker ch′0,1 → Ker[K0(Z(0))
c0,1−−→ H2

M(Z(0), Z(1))]

is an isomorphism. This proves the claim for G0(Z). �

5. K-groups and motivic cohomology of curves over a function field

From the computations of the motivic cohomology of a surface with a fibration,
we deduce some results concerning the K-groups of low degrees of the generic fiber.
We relate the two using the Chern class maps and by taking the limit.

Let C be a smooth projective, geometrically connected curve over a finite field
Fq. Let k denote the function field of C. Let X be a smooth projective geometrically
connected curve over k. Let X be a regular model of X which is proper and flat
over C.

Lemma 5.1. The map

K1(X)
(c1,1,c1,2)−−−−−−→ k× ⊕H3

M(X, Z(2))

is an isomorphism. The group H4
M(X, Z(3)) is a torsion group and there exists a

canonical short exact sequence

0→ H4
M(X, Z(3))

β−→ K2(X)
c2,2−−→ H2

M(X, Z(2))→ 0

such that the composite c2,3 ◦ β equals the multiplication-by-2 map.
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Proof. Let X0 denote the set of closed points of X. We let κ(x) denote the residue
field at x ∈ X0. Construct a commutative diagram by connecting the localization
sequence ⊕

x∈X0
K2(κ(x))→ K2(X)→ K2(k(X))

→
⊕

x∈X0
K1(κ(x))→ K1(X)→ K1(k(X))→

⊕
x∈X0

K0(x)

with the localization sequenceL
x∈X0

H0
M(Spec κ(x), Z(1))→ H2

M(X, Z(2))→ H2
M(Spec k(X), Z(2))

→
L

x∈X0
H1
M(Spec κ(x), Z(1))→ H3

M(X, Z(2))→ H3
M(Spec k(X), Z(2)),

using the Chern class maps. Since H0(Spec κ(x), Z(1)) = 0 and the K-groups and
the motivic cohomology groups of fields agree in low degrees, the claim for K1(X)
follows from diagram chasing.

It also follows from diagram chasing that

K3(k(X))→
⊕

x∈X0

K2(κ(x))→ K2(X)
c2,2−−→ H2

M(X, Z(2))→ 0

is exact. By [36, THEOREM 4.9, p. 143] and [45, THEOREM 1, p. 181], the groups
H3
M(Spec k(X), Z(3)) and H2

M(Spec κ(x), Z(2)) for each x ∈ X0 are isomorphic to
the Milnor K-groups KM

3 (k(X)) and KM
2 (κ(x)) respectively. We easily see from the

definition of these isomorphisms in [45] that the boundary map H3
M(k(X), Z(3))→

H2
M(Spec κ(x), Z(2)) is identified under these isomorphisms with the boundary map

KM
3 (k(X)) → KM

2 (κ(x)). Hence by [31, Proposition 11.11, p. 562], we have the
first of the two isomorphisms:

Coker[K3(k(X))→
⊕

x∈X0
K2(κ(x))]

∼=−→ Coker[H3
M(k(X), Z(3))→

⊕
x∈X0

H2
M(Spec κ(x), Z(2))]

∼=−→ H4
M(X, Z(3)).

This gives the desired short exact sequence. The identity c2,3 ◦ β = 2 follows from
Remark 3.1. Since H2

M(Spec κ(x), Z(2)) is a torsion group for each x ∈ X0, the
group H4

M(X, Z(3)) is a torsion group. This completes the proof. �

Lemma 5.2. Let U ⊂ C be a non-empty open subscheme. We denote by XU the
complement X \X ×C U with the reduced scheme structure. Then for (i, j) = (0, 0),
(0, 1) or (1, 1), the diagram

(5.1)

Ki+1(X) −−−−→ Gi(XU )

ci+1,j+1

y (−1)jch′i,j

y
H2j−i+1
M (X, Z(j + 1)) −−−−→ H2j−i

M (XU , Z(j))

where each horizontal arrow is a part of the localization sequence, is commutative.

Proof. Let XU
sm ⊂ XU denote the smooth locus. The commutativity of the diagram

(5.1) for (i, j) = (1, 1) (resp. for (i, j) = (0, 0)) follows from the commutativity,
which follows from Lemma 3.1, of the diagram

Ki+1(X) −−−−→ Ki(XU
sm)

ci+1,j+1

y y −c1,1
(resp. ch0,0)

H2j−i+1
M (X, Z(j + 1)) −−−−→ H2j−i

M (XU
sm, Z(j))
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and the injectivity of H2j−i
M (XU , Z(j))→ H2j−i

M (XU
sm, Z(j)).

By Lemma 5.1, the group K1(X) is generated by the image of the push-forward⊕
x∈X0

K1(κ(x))→ K1(X) and the image of the pull-back K1(k)→ K1(X). Then
the commutativity of the diagram (5.1) for (i, j) = (0, 1) follows from the commu-
tativity of the diagram

K0(Y ) −−−−→ G0(XU )

ch0,0

y ch′0,1

y
H0
M(Y, Z(0)) −−−−→ H2

M(XU , Z(1))

for any reduced closed subscheme Y ⊂ XU of dimension zero, where the horizontal
arrows are the push-forward maps by the closed immersion, and the fact that the

composite K0(C \ U)
fU∗

−−→ G0(XU )
ch′0,1−−−→ H2

M(XU , Z(1)) is zero. Here fU : XU →
C \ U denotes the morphism induced by the morphism X → C. �

Lemma 5.3. The diagram
(5.2)

0→ H4
M(X, Z(3)) → K2(X)

c2,2−−→ H2
M(X, Z(2)) → 0

↓ ↓ ↓

0→
M

℘∈C0

H3
M(X℘, Z(2)) →

M
℘∈C0

G1(X℘)
−ch′1,1−−−−→

M
℘∈C0

H1
M(X℘, Z(1)) → 0

where the first row is as in Lemma 5.1, the second row is obtained from Proposi-
tion 4.1, and the vertical maps are the boundary maps in the localization sequences,
is commutative.

Proof. It follows from Lemma 5.2 that the right square is commutative. For each
closed point x ∈ X0, let Dx denote the closure of x in X and write Dx,℘ = Dx ×C

Spec κ(℘) for ℘ ∈ C0. Then the commutativity of the left square in (5.2) follows
from the commutativity of the diagram

H4
M(X, Z(3)) ← H2

M(Spec κ(x), Z(2)) ∼= K2(κ(x)) → K2(X)
↓ ↓ ↓ ↓M

℘∈C0

H3
M(X℘, Z(2)) ←

M
℘∈C0

H1
M(Dx,℘, Z(1)) ∼=

M
℘∈C0

G1(Dx,℘) →
M

℘∈C0

G1(X℘)

Here, each vertical map is a boundary map, the middle horizontal arrows are Chern
classes, and the left and right horizontal arrows are the push-forward maps by the
closed immersion. �

Lemma 5.4. Let U be an open subscheme of C such that U 6= C. Let ∂ : H4
M(X×C

U, Z(3)) → H3
M(XU , Z(2)) denote the boundary map of the localization sequence.

Then the following composite is an isomorphism:

α : Coker ∂ ↪→ H5
M(X , Z(3))→ H1

M(Spec Fq, Z(1)) ∼= F×q .

Here the first map is induced by the push-forward map by the closed immersion,
and the second map is the push-forward map by the structure morphism.

Proof. For each closed point x ∈ X0, let Dx denote the closure of x in X . We put
Dx,U = Dx ×C U . Let DU

x denote the complement Dx \ Dx,U with the reduced
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scheme structure. Let ιx : Dx ↪→ X , ιx,U : Dx,U ↪→ XU , ιUx : DU
x ↪→ XU denote

the canonical inclusions. Let us consider the commutative diagram

H2
M(Dx,U , Z(2)) −−−−→ H1

M(DU
x , Z(1))

β−−−−→ H3
M(Dx, Z(2))

ιx,U∗

y ιU
x ∗

y
H4
M(X ×C U, Z(3)) ∂−−−−→ H3

M(XU , Z(2)) −−−−→ Coker ∂ → 0

where the first row is the localization sequence. Since X is geometrically connected,
it follows from [18, Corollaire (4.3.12), p. 134] that each fiber of X → C is con-
nected. In particular Dx intersects every connected component of XU . This implies
that the homomorphism ιUx ∗ in the above diagram is surjective. Hence we have a
surjective homomorphism Image β � Coker ∂. Let F(x) denote the finite field
H0(Dx,ODx). Then the isomorphism H3

M(Dx, Z(2)) → H1
M(Spec F(x), Z(1)) ∼=

F(x)× (see Lemma 4.1) gives an isomorphism Image β ∼= F(x)×. Hence |Coker ∂|
divides gcdx∈X0

(|F(x)×|) = q−1, where the equality follows from [43, 1.5.3 Lemme
1, p. 325]. It can be checked easily that the composite

F(x)× ∼= Image β � Coker ∂
α−→ F×q

equals the norm map F(x)× → F×q , which implies |Coker ∂| ≥ q − 1. Hence
|Coker ∂| = q − 1 and the homomorphism α is an isomorphism. The claim is
proved. �

6. Main results for j ≤ 2

The objective is to prove Theorems 6.1, 6.2, 6.3. The statements give some
information on the structures of K-groups and motivic cohomology groups of elliptic
curves over global fields and of the (open) complements of some fibers of an elliptic
surface over finite fields. Milne [33] expresses the special values of zeta functions in
terms of the order of arithmetic étale cohomology groups. We compute the orders
of some torsion groups, in terms of the special values of L-functions, the torsion
subgroup of (twisted) Mordell-Weil groups, and some invariants of the base curve.

Let us list the ingredients of the proof. Using Theorem 1.3, we deduce that
the torsion subgroups we are interested in are actually finite. Then the theorem
of Geisser and Levine and the theorem of Merkurjev and Suslin relate the motivic
cohomology groups modulo their uniquely divisible parts and the étale cohomology
and the cohomology of de Rham-Witt complexes. We use the arguments which
appear in [32], [9], [17] to compute such cohomology groups. The computation
of the exact orders of the torsion may be new. One geometric property of an
elliptic surface which makes this explicit calculation possible is that the (abelian)
fundamental group is isomorphic to that of the base curve. This follows from a
theorem in [42] for the prime-to-p part. The use of the class field theory of Kato
and Saito for surfaces over finite fields ([23]) is somewhat indirect but we then
know that the groups of zero-cycles on the elliptic surface and on the base curve
are isomorphic.

6.1. Notations. Let k, E, S0, S2, r, C, and E be as in Section 1. We also let
S1 denote the set of primes of k at which E has multiplicative reduction. Thus we
have S0 ⊂ S1 ⊂ S2. Let p denote the characteristic of k. The closure of the origin
of E in E gives a section to E → C, which we denote by ι : C → E . Throughout



ON K1 AND K2 OF AN ELLIPTIC CURVE 21

this section, we assume that the structure morphism f : E → C is not smooth. For
any scheme X over C, let EX denote the base change E ×C X. For any non-empty
open subscheme U ⊂ C, we denote by EU the complement E \ EU with the reduced
scheme structure.

Let Fq denote the field of constants of C. We take an algebraic closure Fq of Fq.
Let Frob ∈ GFq

= Gal(Fq/Fq) denote the geometric Frobenius. For a scheme X

over Spec Fq, we denote by X its base change X = X ×Spec Fq Spec Fq to Fq. We
often regard the set Irr(X) of irreducible components of X as a finite étale scheme
over Spec Fq corresponding to the GFq -set Irr(X).

6.2. Results. We put T = E(k ⊗Fq Fq)tors. For each integer j ∈ Z, we let T ′(j) =⊕
` 6=p(T ⊗Z Z`(j))GFq .

Theorem 6.1. Let the notations and the assumptions be as above. Let L(E, s)
denote the L-function of the elliptic curve E over the global field k (see Section 6.3).

(1) The Q-vector space (K2(E)red)Q is of dimension r.
(2) The cokernel of the boundary map ∂2 : K2(E)→

⊕
℘∈C0

G1(E℘) is a finite
group of order

(q − 1)2|L(h0(Irr(ES2)),−1)|
|T ′(1)| · |L(h0(S2),−1)|

.

(3) The group K1(E)div is uniquely divisible.
(4) The kernel of the boundary map ∂1 : K1(E)red →

⊕
℘∈C0

G0(E℘) is a finite
group of order (q − 1)2|T ′(1)| · |L(E, 0)|. The cokernel of ∂1 is a finitely
generated abelian group of rank 2 + |Irr(ES2)| − |S2| whose torsion subgroup
is isomorphic to Jac(C)(Fq)⊕2, where Jac(C) denotes the Jacobian of C
(when the genus of C is 0, we understand it to be a point) .

Let X be a scheme of finite type over Spec Fq. For an integer i ∈ Z and a prime
number ` 6= p, we put L(hi(X), s) = det(1−Frob ·q−s;Hi

et(X, Q`)). In all the cases
considered in this paper, the function L(hi(X), s) does not depend on the choice of
`.

For each non-empty open subscheme U ⊂ C, let TU denote the torsion subgroup
of the group Div(EU )/ ∼alg of divisors on EU modulo algebraic equivalence. For
each integer j ∈ Z, we put T ′U,(j) =

⊕
` 6=p(TU ⊗Z Z`(j))GFq . One can deduce from

[42, THEOREM 1.3, p. 214] that the canonical homomorphism lim−→U ′
TU ′ → T ,

where the limit is taken over the open subschemes of C, is an isomorphism. It can
be checked easily that the canonical homomorphism TU → lim−→U ′

TU ′ is injective
and is an isomorphism if EU → U is smooth. In particular, we have an injection
T ′U,(j) ↪→ T ′(j) which is an isomorphism if EU → U is smooth.

In Section 6.7, we deduce Theorem 6.1 from the following two theorems.

Theorem 6.2. Let the notations and the assumptions be as above. Let ∂i
M,j :

Hi
M(E, Z(j))red →

⊕
℘∈C0

Hi−1
M (E℘, Z(j − 1)) denote the homomorphism induced

by the boundary map of the localization sequence established in [6, Corollary (0.2),
p. 537].

(1) For any i ∈ Z, the group Hi
M(E, Z(2))div is uniquely divisible.
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(2) For i ≤ 0, the cohomology group Hi
M(E, Z(2)) is uniquely divisible. The

group H1
M(E, Z(2)) is finite modulo a uniquely divisible subgroup and the

group H1
M(E, Z(2))tors is cyclic of order q2 − 1.

(3) The kernel (resp. cokernel) of the homomorphism ∂2
M,2 is a finite group of

order |L(h1(C),−1)| (resp. of order

(q − 1)|L(h0(Irr(ES2)),−1)|
|T ′(1)| · |L(h0(S2),−1)|

).

(4) The kernel (resp. cokernel) of the homomorphism ∂3
M,2 is a finite group of

order (q − 1)|T ′(1)| · |L(E, 0)| (resp. is isomorphic to Pic(C)).
(5) For i ≥ 4, the group Hi

M(E, Z(2)) is zero.
(6) The group H4

M(E, Z(3)) is a torsion group, and the cokernel of the homo-
morphism ∂4

M,3 is a finite cyclic group of order q − 1.

Theorem 6.3. Let U ⊂ C be a non-empty open subscheme. Then
(1) For any i ∈ Z, the group Hi

M(EU , Z(2)) is finitely generated modulo a
uniquely divisible subgroup.

(2) For i ≤ 0, the cohomology group Hi
M(EU , Z(2)) is uniquely divisible. The

group H1
M(EU , Z(2)) is finite modulo a uniquely divisible subgroup and the

group H1
M(EU , Z(2))tors is cyclic of order q2 − 1.

(3) The rank of H2
M(EU , Z(2))red is |S0 \ U |. If U = C (resp. U 6= C), the

torsion subgroup of H2
M(EU , Z(2))red is of order |L(h1(C),−1)| (resp. of

order |T ′U,(1)| · |L(h1(C),−1)L(h0(C \ U),−1)|/(q − 1)).
(4) If U = C (resp. U 6= C), the cokernel of the boundary homomorphism

H2
M(EU , Z(2))→ H1

M(EU , Z(1)) is zero (resp. is finite of order

(q − 1)|L(h0(Irr(EU )),−1)|
|T ′U,(1)| · |L(h0(C \ U),−1)|

).

(5) The rank of H3
M(EU , Z(2))red is max(|C\U |−1, 0). If U = C (resp. U 6= C),

the torsion subgroup H3
M(EU , Z(2))tors is finite of order |L(h2(E), 0)| (resp.

of order

|T ′U,(1)| · |L(h2(E), 0)L∗(h1(EU ), 0)L(h0(C \ U),−1)|
(q − 1)|L(h0(Irr(EU )),−1)|

).

Here
L∗(h1(EU ), 0) = lim

s→0
(s log q)−|S0\U |L(h1(EU ), s)

is the leading coefficient of L(h1(EU ), s).
(6) The group H4

M(EU , Z(2)) is canonically isomorphic to Pic(U). For i ≥ 5,
the group Hi

M(EU , Z(2)) is zero.

6.3. Relation between L(E, s) and the congruence zeta function of E. Let
` 6= p be a prime number. By the Grothendieck-Lefschetz trace formula, we have

L(E, s) =
2∏

i=0

det(1− Frob · q−s;Hi
et(C, R1f∗Q`))(−1)i−1

.

Lemma 6.1. Let D be a scheme of dimension ≤ 1 which is proper over Spec Fq.
Let ` 6= p be an integer. Then the group Hi

et(D, Z`) is torsion free for any i ∈ Z,
and is zero for i 6= 0, 1, 2. The group Hi

et(D, Q`) is pure of weight i for i 6= 1, and
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is mixed of weight {0, 1} for i = 1. The group H1
et(D, Q`) is pure of weight one

(resp. pure of weight zero) if D is smooth (resp. every irreducible component of D
is rational).

Proof. We may assume that D is reduced. Let D′ be the normalization of D. Let
π : D′ → D denote the canonical morphism. Let Fn denote the cokernel of the
homomorphism Z/`n → π∗(Z/`n) of étale sheaves. The sheaf Fn is supported on
the singular locus Dsing of D and is isomorphic to i∗(Coker[Z/`n → πsing∗(Z/`n)]),
where i : Dsing ↪→ D is the canonical inclusion and πsing : D′ ×D Dsing → Dsing is
the base change of π. Then the claim follows from the long exact sequence

· · · → Hi
et(D, Z/`n)→ Hi

et(D
′
, Z/`n)→ Hi

et(D,Fn)→ · · · .

�

Lemma 6.2. If i 6= 1, then Hi
et(C, R1f∗Q`) = 0.

Proof. For any point x ∈ C(Fq) lying over a closed point ℘ ∈ C, the canonical homo-
morphism H0

et(C, R1f∗Q`)→ H1
et(Ex, Q`) is injective since H0

et,c(C\{x}, R1f∗Q`) =
0. By Lemma 6.1, the module H1

et(Ex, Q`) is pure of weight 1 (resp. of weight 0) if
Ex is smooth (resp. is not smooth). Since we have assumed that f : E → C is not
smooth, H0

et(C, R1f∗Q`) = 0.
Take a non-empty open subscheme U ⊂ C such that fU : EU → U is smooth.

The group H2
et(C, R1f∗Q`) ∼= H2

et,c(U,R1fU∗Q`) is the dual of H0
et(U,R1fU∗Q`(1))

by Poincare duality. Assume that H0
et(U,R1fU∗Q`(1)) 6= 0. Let T`(E) denote the

`-adic Tate module of E. The étale fundamental group π1(U) acts on T`(E). By
the assumption, the π1(U)-invariant part V = (T`(E)⊗Q`)π1(U) is non-zero. Since
f is not smooth, V is one dimensional. Hence we have a non-zero homomorphism
π1(U)ab → Hom(T`(E) ⊗ Q`/V, V ) of GFq -modules. By the weight argument, we
see that this is impossible. Hence H2

et(C, R1f∗Q`(1)) = 0. �

As an immediate consequence, we obtain the following corollary.

Corollary 6.1. The spectral sequence

Ei,j
2 = Hi

et(C, Rjf∗Q`)⇒ Hi+j
et (E , Rjf∗Q`)

is E2-degenerate. �

Lemma 6.3. Let U ⊂ C be a non-empty open subscheme such that fU : EU → U
is smooth. Let Irr0(EU ) ⊂ Irr(EU ) denote the subset of the irreducible components
of EU which does not intersect ι(C). We regard Irr0(EU ) as a closed subscheme of
Irr(EU ) (recall the convention 6.1 on Irr(EU )). Then

L(hi(E), s) =


(1− q−s), if i = 0,
L(h1(C), s), if i = 1,
(1− q1−s)2L(E, s)L(h0(Irr0(EU )), s− 1), if i = 2,
L(h1(C), s− 1), if i = 3,
(1− q2−s), if i = 4.

Proof. We prove the lemma for i = 2; other cases are easy. Since R2fU∗Q`
∼=

Q`(−1), there exists an exact sequence

0→ H0
et(C, R2f∗Q`)→ H2

et(EU , Q`)→ H1
et,c(U, Q`(−1)).
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The map H2
et(EU , Q`)→ H1

et,c(U, Q`(−1)) decomposes as

H2
et(EU , Q`)→ H0

et(C \ U, Q`(−1))→ H1
et,c(U, Q`(−1)).

Hence H0
et(C, R2f∗Q`) is isomorphic to the inverse image of the image of the homo-

morphism H0
et(C, Q`(−1)) → H0

et(C \ U, Q`(−1)) under the surjective homomor-
phism H2

et(EU , Q`)→ H0
et(C \ U, Q`(−1)). This proves the claim. �

6.4. The fundamental group of E.

Lemma 6.4. For i = 0, 1, the pull-back Hi(C,OC) → Hi(E ,OE) is an isomor-
phism.

Proof. The claim for i = 0 is clear. We prove the claim for i = 1. Let us write
L = R1f∗OE . It suffices to prove H0(C,L) = 0. We note that L is an invertible
OC-module since the morphism E → C has no multiple fiber. The Leray spectral
sequence Ei,j

2 = Hi(C,Rjf∗OE) ⇒ Hi+j(E ,OE) shows that the Euler-Poincare
characteristic χ(OE) equals χ(OC)−χ(L) = −degL. By the well-known inequality
χ(OE) > 0 (cf. [38], [12], or [39, Theorem 2, p. 81]), we have degL < 0. This proves
H0(C,L) = 0. �

Lemma 6.5. (1) The canonical homomorphism πab
1 (E)→ πab

1 (C) between the
abelian (étale) fundamental groups is an isomorphism.

(2) The canonical morphism Pico
C/Fq

→ Pico
E/Fq

between the identity compo-
nents of the Picard schemes is an isomorphism.

Proof. The homomorphism Pico
C/Fq

→ Pico
E/Fq,red is an isomorphism by [42, Theo-

rem 4.1, p. 219]. This, combined with the cohomology long exact sequence of the
Kummer sequence, implies that, if p - m, then H1

et(C, Z/m) → H1
et(E , Z/m) is an

isomorphism. Hence, to prove (1), we are reduced to showing that H1
et(C, Z/pn)→

H1
et(E , Z/pn) is an isomorphism for all n ≥ 1.
For any scheme X which is proper over Spec Fq, there exists an exact sequence

0→ Z/pnZ→WnOX
1−σ−−−→WnOX → 0

of étale sheaves, where WnOX is the sheaf of Witt vectors and σ : WnOX →WnOX

is the Frobenius endomorphism. This gives rise to the following commutative dia-
gram with exact rows:

· · · 1−σ−−−→ H0(C,WnOC) → H1
et(C, Z/pn) → H1(C,WnOC) 1−σ−−−→ · · ·

↓ ↓ ↓
· · · 1−σ−−−→ H0(E ,WnOE) → H1

et(E , Z/pn) → H1(E ,WnOE)
1−σ−−−→ · · · .

By Lemma 6.4 and induction on n, we see that the homomorphism Hi(C,WnOC)→
Hi(E ,WnOE) is an isomorphism for i = 0, 1. Thus the map H1

et(C, Z/pn) →
H1

et(E , Z/pn) is an isomorphism. This proves the claim (1).
For (2), it suffices to prove that the homomorphism Lie PicC/Fq

→ Lie PicE/Fq

between the tangent spaces is an isomorphism. Since this homomorphism is identi-
fied with the homomorphism H1(C,OC) → H1(E ,OE), the claim (2) follows from
Lemma 6.4. �

Remark 6.1. Using Lemma 6.5 (1), we can prove that the homomorphism π1(E)→
π1(C) is an isomorphism. Since it is not used in this paper, let us only sketch the
proof.



ON K1 AND K2 OF AN ELLIPTIC CURVE 25

Let x → C be a geometric point. Since the morphism f : E → C has a section,
the fiber Ex of f at x has a reduced irreducible component. This, together with the
regularity of E and C, shows that the canonical ring homomorphism H0(x,Ox)→
H0(Y,OY ) is an isomorphism for any connected finite etale covering Y of Ex. Hence,
by the same argument as in the proof of [1, X, Proposition 1.2, Théorème 1.3,
p. 262], we have an exact sequence

π1(Ex)→ π1(E)→ π1(C)→ 1.

In particular, the kernel of π1(E) → π1(C) is abelian. Applying Lemma 6.5(1) to
E×C C ′ → C ′ for each finite connected étale cover C ′ → C, we obtain the bijectivity
of π1(E)→ π1(C).

The statements in Lemma 6.5 and the statement above that the fundamental
groups are isomorphic are also valid for E , a regular, proper, non-smooth, minimal
elliptic fibration with a section over C, a proper smooth curve over an arbitrary
perfect base field.

Corollary 6.2. For any prime number ` 6= p and for any i ∈ Z, the group
Hi

et(E , Q`/Z`) is divisible.

Proof. The claim for i 6= 1, 2 is obvious. By Lemma 6.5, we have H1
et(E , Q`/Z`) ∼=

H1
et(C, Q`/Z`). Hence H1

et(E , Q`/Z`) is divisible. The group H2
et(E , Q`/Z`) is divisi-

ble since H2
et(E , Q`/Z`)red is isomorphic to the Pontryagin dual of H1

et(E , Q`/Z`(2))red.
�

Corollary 6.3. For i ∈ Z, we put M i
j =

⊕
` 6=p Hi

et(E , Q`/Z`(j)). For a rational
number a, we write |a|(p′) = |a| · |a|p.

(1) For i ≤ −1 or i ≥ 6, the group M i
j is zero.

(2) For j 6= 2 (resp. j = 2), the group M5
j is zero (resp. is isomorphic to⊕

` 6=p Q`/Z`).
(3) For j 6= 0, the group M0

j is cyclic of order q|j| − 1. The group M0
0 is

isomorphic to
⊕

` 6=p Q`/Z`.
(4) For j 6= 0, the group M1

j is finite of order |L(h1(C), 1− j)|(p′).
(5) For j 6= 1, the group M2

j is finite of order |L(h2(E), 2− j)|(p′).
(6) For j 6= 1, the group M3

j is finite of order |L(h1(C), 2− j)|(p′).
(7) For j 6= 2, the group M4

j is cyclic of order q|2−j| − 1. The group M4
2 is

isomorphic to
⊕

` 6=p Q`/Z`.

Proof. By Corollary 6.2, if i 6= 2j + 1 and ` 6= p, the group Hi
et(E , Q`/Z`(j)) is

isomorphic to Hi
et(E , Q`/Z`(j))GFq . Then we have

|Hi
et(E , Q`/Z`(j))| = |L(h4−i(E), 2− j)|−1

`

by Poincare duality for i 6= 2j, 2j +1. Hence the claim follows from Lemma 6.3. �

6.5. Torsion in the étale cohomology of open elliptic surfaces. We fix a
non-empty open subscheme U ⊂ C.

Lemma 6.6. Let ` 6= p be a prime number. For i ∈ Z, let γi denote the pull-back
γi : Hi

et(E , Z`)→ Hi
et(EU , Z`).

(1) For i 6= 0, 2, the homomorphism γi is zero.
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(2) The cokernel (Coker γ2)Q`
is isomorphic to the kernel of H0

et(C\U, Q`(−1))→
H0

et(Spec Fq, Q`(−1)).
(3) There is a canonical isomorphism

HomZ(TU , Q`/Z`(−1)) ∼= (Coker γ2)tors.

Proof. By Lemma 6.5, the pull-back H1
et(C, Z`) → H1

et(E , Z`) is an isomorphism.
Hence the homomorphism H1

et(E , Z`)→ H1
et(EU , Z`) is zero. The claim (1) follows.

Let NS(E) = PicE/Fq
(Fq)/Pico

E/Fq
(Fq) denote the Neron-Severi group of E . For

a prime number `, we put T`M = Hom(Q`/Z`,M).
We have an exact sequence from the Kummer theory:

0→ NS(E)⊗Z Z`
cl`−−→ H2

et(E , Z`(1))→ T`H
2
et(E , Gm)→ 0.

We note that T`H
2
et(E , Gm) is torsion free. For D ∈ Irr(EU ), let [D] ∈ NS(E)

denote the class of the Weil divisor Dred on E . By [10, Cycle, Definition 2.3.2,
p. 145], the D-component of the homomorphism γ2 : H2

et(E , Z`) → H2
et(EU , Z`) ∼=

Map(Irr(EU ), Z`(−1)) is identified with the homomorphism

H2
et(E , Z`)

∪cl`([D])−−−−−−→ H4
et(E , Z`(1)) ∼= Z`(−1).

Let M ⊂ NS(E) denote the subgroup generated by {[D] | D ∈ Irr(EU )}. By
Corollary 6.2, the cup-product

H2
et(E , Z`(1))×H2

et(E , Z`(1))→ H4
et(E , Z`(2)) ∼= Z`

is a perfect pairing. Hence the image of γ2 is identified with the image of the
composite

HomZ`
(H2

et(E , Z`(1)), Z`(−1)) α∗−−→ HomZ(M, Z`(−1))
β∗−→ Map(Irr(EU ), Z`(−1)) ∼= H2

et(EU , Z`),

where the homomorphism α∗ is induced by the restriction α : M⊗ZZ` ↪→ H2
et(E , Z`(1))

of the cycle class map cl` to M , and the homomorphism β∗ is induced by the canon-
ical surjection β :

⊕
D∈Irr(EU )

Z � M . Since β is surjective, the homomorphism β∗

is injective and we have an exact sequence

0→ Cokerα∗ → Coker γ2 → Cokerβ∗ → 0.

Since α is a homomorphism of finitely generated Z`-modules which is injective, the
cokernel Coker α∗ is a finite group. The group M is a free abelian group with basis
Irr0(EU )∪ {D′}, where D′ is an arbitrary element in Irr(EU ) \ Irr0(EU ). Hence the
cokernel Cokerβ∗ is isomorphic to the group HomZ(Kerβ, Z`(−1)). This proves
(2).

The torsion part of Coker γ2 is identified with the group Cokerα∗. The homo-
morphism α∗ is the composite of the two homomorphisms

HomZ`
(H2

et(E , Z`(1)), Z`(−1))
cl∗`−−→ HomZ(NS(E), Z`(−1)) ι∗−→ HomZ(M, Z`(−1))

where the first (resp. the second) homomorphism is induced by the cycle class map
cl` : NS(E) ⊗Z Z` ↪→ H2

et(E , Z`(1)) (resp. the inclusion M ⊗Z Z` ↪→ NS(E)). Since
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Coker cl` is torsion free as we noted, the homomorphism cl∗` is surjective. Hence we
have isomorphisms

Cokerα∗ ∼= Coker ι∗ ∼= Ext1Z(NS(E)/M, Z`(−1))
∼= HomZ(NS(E)/M, Q`/Z`(−1)) = HomZ(Div(EU )/ ∼alg, Q`/Z`(−1)).

Thus we have the claim (3). �

Corollary 6.4. For i 6= 3, the group Hi
c,et(EU , Z`) is torsion free, and the group

H3
c,et(EU , Z`)tors is canonically isomorphic to the group HomZ(TU , Q`/Z`(−1)). We

put
L(hi

c,`(EU ), s) = det(1− Frob · q−s;Hi
c,et(EU , Q`)).

Then if U 6= C, we have

L(hi
c,`(EU ), s) =



1, if i ≤ 0 or i ≥ 5,
L(h1(C),s)L(h0(C\U),s)

1−q−s if i = 1,
L(h2(E),s)L(h1(EU ),s)L(h0(C\U),s−1)

(1−q1−s)L(h2(EU ),s)
if i = 2,

L(h1(C),s−1)L(h0(C\U),s−1)
1−q1−s if i = 3,

1− q2−s, if i = 4.

Proof. This follows from Lemmas 6.3 and 6.6, and the long exact sequence

· · · → Hi
et,c(EU , Z`)→ Hi

et(E , Z`)→ Hi
et(EU , Z`)→ · · · .

�

Remark 6.2. Corollary 6.4 in particular shows that the function L(hi
c,`(EU ), s) is

independent of ` 6= p. We can show the `-independence of L(hi
c,`(X), s) = det(1−

Frob · q−s;Hi
c,et(X, Q`)) for any normal surface X over Fq which is not necessarily

proper. Since we will not need it, let us only give a sketch. There is a proper smooth
surface X ′ and a closed subset D ⊂ X ′ of pure codimension one such that X = X ′\
D. One can express the cokernel and kernel of the restriction map H1

et(X
′
, Ql) →

H1
et(D, Ql) in terms of PicX′/Fq

and the Jacobian of the normalization of each
irreducible component of D. Then we apply the same method as above to obtain
the result.

Corollary 6.5. Suppose that U 6= C. Then

(1) The group Hi
et(EU , Q`/Z`(j)) is zero for i ≤ −1 or i ≥ 5.

(2) For j 6= 0, the group H0
et(EU , Q`/Z`(j)) is isomorphic to Z`/(qj − 1), and

H0
et(EU , Q`/Z`(0)) = Q`/Z`.

(3) For j 6= 0, 1, the group H1
et(EU , Q`/Z`(j)) is finite of order

|T ′U,(j−1)|
−1
` · |L(h1(C), 1− j)L(h0(C \ U), 1− j)|−1

`

|qj−1 − 1|−1
`

.

The group H1
et(EU , Q`/Z`(0)) is isomorphic to the direct sum of Q`/Z` and

a finite group of order

|T ′U,(−1)|
−1
` · |L(h1(C), 1)L(h0(C \ U), 1)|−1

`

|q − 1|−1
`

.
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(4) For j 6= 1, 2, the cohomology group H2
et(EU , Q`/Z`(j)) is finite of order

|T ′U,(j−1)|−1
` · |L(h2(E), 2− j)L(h1(EU ), 2− j)L(h0(C \ U), 1− j)|−1

`

|(qj−1 − 1)L(h2(EU ), 2− j)|−1
`

.

(5) For j 6= 1, 2, the group H3
et(EU , Q`/Z`(j)) is finite of order

|L(h1(C), 2− j)L(h0(C \ U), 2− j)|−1
`

|qj−2 − 1|−1
`

.

The cohomology group H3
et(EU , Q`/Z`(1)) is isomorphic to the direct sum

of (Q`/Z`)⊕|C\U |−1 and a finite group of order

|L(h1(C), 1)L(h0(C \ U), 1)|−1
`

|q − 1|−1
`

.

(6) For j 6= 2 (resp. j = 2), the group H4
et(EU , Q`/Z`(j)) is zero (resp. is

isomorphic to (Q`/Z`)⊕|C\U |−1).

Proof. The cohomology group Hi
et(EU , Q`/Z`(j)) is the Pontryagin dual of the

group H5−i
et,c (EU , Z`(2 − j)). The claims follow from Corollary 6.4 and the short

exact sequence

0→ H4−i
c,et (EU , Z`(2− j))GFq

→ H5−i
c,et (EU , Z`(2− j))

→ H5−i
c,et (EU , Z`(2− j))GFq → 0.

�

Lemma 6.7. Suppose that U 6= C. Then H2
et(EU , Q`/Z`(2))red is finite of order

|T ′U,(1)|
−1
` · |L(h2(E), 0)L∗(h1(EU ), 0)L(h0(C \ U),−1)|−1

`

|(q − 1)L(h0(Irr(EU )),−1)|−1
`

.

Proof. We note that the group H2
et(EU , Q`/Z`(2))red is canonically isomorphic to

the group H3
et(EU , Z`(2))tors. Let us consider the long exact sequence

· · · → Hi
EU ,et(E , Z`(2))

µi−→ Hi
et(E , Z`(2))→ Hi

et(EU , Z`(2))→ · · ·

The group Kerµ4 is isomorphic to the Pontryagin dual of the cokernel of the
homomorphism H1

et(E , Q`/Z`) → H1
et(EU , Q`/Z`). By Lemma 6.5, this homomor-

phism factors through H1
et(C \ U, Q`/Z`) → H1

et(EU , Q`/Z`). In particular, the
group (Kerµ4)tors is isomorphic to the Pontryagin dual of (H1

et(EU , Q`/Z`)GFq )red.
By the weight argument we see that Cokerµ3 is a finite group. It follows that

|H3
et(EU , Z`(2))tors| = |L∗(h1(EU ), 0)| · |Cokerµ3|.

Let µ′ denote the homomorphism H2
EU ,et

(E , Z`(2)) → H2
et(E , Z`(2)). We have the

exact sequence

(6.1) Kerµ3 → H3
EU ,et

(E , Z`(2))GFq → (Cokerµ′)GFq
→ Cokerµ3 → 0.

Since Kerµ3
∼= Coker[H2

et(E , Z`(2)) → H2
et(EU , Z`(2))], the cokernel of Kerµ3 →

H3
EU ,et

(E , Z`(2))GFq is isomorphic to the cokernel of the homomorphism

ν′ : H2
et(EU , Z`(2))GFq → H3

EU ,et
(E , Z`(2))GFq .



ON K1 AND K2 OF AN ELLIPTIC CURVE 29

Let us consider the diagram with exact rows

0 −−−−→ Cokerµ′ −−−−→ H2
et(EU , Z`(2)) ν−−−−→ H3

EU ,et
(E , Z`(2))

1−Frob

y 1−Frob

y 1−Frob

y
0 −−−−→ Cokerµ′ −−−−→ H2

et(EU , Z`(2)) ν−−−−→ H3
EU ,et

(E , Z`(2)).

Since (Coker ν)GFq ⊂ H3
et(E , Z`(2))GFq = 0, we have that Coker ν′ is isomorphic to

the kernel of (Coker µ′)GFq
→ H2

et(EU , Z`(2))GFq
. Hence by (6.1), |Cokerµ3| equals

the order of
M ′′ = Image[(Cokerµ′)GFq

→ H2
et(EU , Z`(2))GFq

]
= Image[H2

et(E , Z`(2))GFq
→ H2

et(EU , Z`(2))GFq
].

We put M ′ = Image[H2
et(E , Z`(2)) → H2

et(EU , Z`(2))]. From the commutative
diagram with exact rows

(6.2)
0 → NS(E)⊗Z Z` → H2

et(E, Z`(1)) → T`H
2
et(E, Gm) → 0

↓ ↓ ↓
0 → (Div(EU )/ ∼alg)⊗Z Z` → H2

et(EU , Z`(1)) → T`H
2
et(EU , Gm) → 0

and the exact sequence

0→ H2
et(E , Gm)→ H2

et(EU , Gm)→ H1
et(EU , Q/Z),

we obtain an exact sequence

0→M ′ → H2
et(EU , Z`(2))→ T`H

1
et(EU , Q`/Z`(1)).

By the weight argument, we have (T`H
1
et(EU , Q`/Z`(1)))GFq = 0. Hence the canon-

ical surjection M ′
GFq
→ M ′′ is an isomorphism. From (6.2) we have an exact

sequence

0→ (Div(EU )/ ∼alg)⊗Z Z`(1)→M ′ → T`H
2
et(E , Gm)(1)→ 0.

By the weight argument, we have (T`H
2
et(E , Gm)(1))GFq = 0. Hence

0 → ((Div(EU )/ ∼alg)⊗Z Z`(1))GFq
→M ′

GFq

→ (T`H
2
et(E , Gm)(1))GFq

→ 0

is exact. Therefore |Cokerµ3| = |M ′
GFq
| equals

|(TU ⊗Z Z`(1))GFq
| · |det(1− Frob; H2

et(E , Q`(2)))|−1
`

|det(1− Frob; Ker[NS(E)→ Div(EU )/ ∼alg]⊗Z Q`(1))|−1
`

.

This proves the claim. �

6.6. Fix a non-empty open subscheme U ⊂ C. Let fU : EU → C \ U denote the
structure morphism and let ιU : C \ U → EU denote the morphism induced from
ι : C → E .

Lemma 6.8. The homomorphism

(ch′1,1, f
U
∗ ) : G1(EU )→ H1

M(EU , Z(1))⊕K1(C \ U)

is an isomorphism.

Proof. The morphism fU : EU → C \ U has connected fibers. Hence the claim
follows from Proposition 4.1 and the construction of ch′1,2. �
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Lemma 6.9. The group H2
M(EU , Z(1)) is finitely generated of rank |C \U |. More-

over, H2
M(EU , Z(1))tors is of order |L∗(h1(EU ), 0)|.

Proof. It suffices to prove the following claim: if E has good reduction (resp. non-
split multiplicative reduction, resp. split multiplicative or additive reduction) at
℘ ∈ C0, then H2

M(E℘, Z(1)) is a finitely generated abelian group of rank one, and
|H2

M(E℘, Z(1))tors| equals |E℘(κ(℘))| (resp. 2, resp. 1). We put E℘,(0) = (E℘,red)sm \
ι(℘) and E℘,(1) = EU \ E℘,(0). We have an exact sequence

H1
M(E℘,(0), Z(1))→ H0

M(E℘,(1), Z(0))
→ H2

M(E℘, Z(1))→ Pic(E℘,(0))→ 0.

First suppose that E does not have non-split multiplicative reduction at ℘, or E
has non-split multiplicative reduction at ℘ and E℘ ⊗κ(℘) Fq has an even number of
irreducible components. Then, using the classification due to Kodaira, Neron and
Tate (cf. [29, 10.2.1, p. 484–489]) of singular fibers of E → C, we can verify the
equality

Image[H0
M(E℘,(1), Z(0))→ H2

M(E℘, Z(1))]
= Image[ι∗ : H0

M(Spec κ(℘), Z(0))→ H2
M(E℘, Z(1))].

This shows that the group H2
M(E℘, Z(1)) is isomorphic to the direct sum of the

Picard group Pic(E℘,(0)) and H0
M(Spec κ(℘), Z(0)) ∼= Z. In particular, we have

H2
M(E℘, Z(1))tors ∼= Pic(E℘,(0)), from which we easily deduce the claim.
Now suppose that E has non-split multiplicative reduction at ℘ and E℘⊗κ(℘) Fq

has an odd number of irreducible components. In this case, we can verify directly
that the image of H0

M(E℘,(1), Z(0))→ H2
M(E℘, Z(1)) is isomorphic to Z⊕ Z/2 and

Pic(E℘,(0)) = 0. The claim in this case follows. �

Lemma 6.10. The diagram

K1(E) −−−−→ G0(EU )

ι∗
y ιU∗

y
K1(k) −−−−→ K0(C \ U)

is commutative.

Proof. The group K1(E) is generated by the image of f∗ : K1(k) → K1(E) and
the image of

⊕
x∈E0

K1(κ(x))→ K1(E). The claim follows from the fact that the
localization sequence in G-theory commutes with flat pull-backs and finite push-
forwards. �

6.7. Proofs of Theorems 6.1, 6.2 and 6.3.

Lemma 6.11. For any non-empty open subscheme U ⊂ C, the cokernel of the
boundary map ∂U : H2

M(EU , Z(2))→ H1
M(EU , Z(1)) is finite.

Proof. If suffices to prove the claim for sufficiently small U . Hence we may assume
that EU → U is smooth. Since K2(EU )Q → K2(E)Q is an isomorphism in this case,
the claim follows from Theorem 1.3 and Lemma 5.2. �
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Proof of Theorem 6.3. The claims (1) and (2) follow from Theorem 2.1, Proposi-
tion 2.1 and Lemma 6.11. Proposition 2.1 gives the exact sequence

0→ H2
M(E , Z(2))tors → H2

M(EU , Z(2))red
∂2

U−−→ H1
M(EU , Z(1))→ H3

M(E , Z(2))tors → H3
M(EU , Z(2))red

∂3
U−−→ H2

M(EU , Z(1))→ CH0(E)→ CH0(EU )→ 0.

From Lemma 6.11, it follows that Coker ∂2
U is a finite group, which implies that

the group H2
M(EU , Z(2))red is of rank |S0 \U |. By Theorem 2.1, |H2

M(EU , Z(2))tors|
equals ∏

` 6=p

|H1
et(EU , Q`/Z`(2))|.

By Corollaries 6.3 and 6.5, it equals

|T ′U,(1)| · |L(h1(C),−1)L(h0(C \ U,−1)/(q − 1)|.

This proves the claim (3).
As we have noted in the proof of Theorem 2.1 (1), the group CH0(E) is a finitely

generated abelian group of rank one and CH0(EU ) is finite if U 6= C. By Lemma 6.9,
H2
M(EU , Z(1)) is a finitely generated abelian group of rank |C \U |. Hence the rank

of H3
M(EU , Z(2))red equals max(|C \ U | − 1, 0).

From the class field theory of varieties over finite fields ([23, Theorem 1, p. 242],
see also [8, p. 283–284]) and Lemma 6.5, it follows that the push-forward map
CH0(E)→ Pic(C) is an isomorphism. Hence the homomorphism H2

M(EU , Z(1))→
CH0(E) ∼= Pic(C) factors though the push-forward map fU

∗ : H2
M(EU , Z(1)) →

H0
M(C \ U, Z(0)). By the surjectivity of fU

∗ , we have isomorphisms

CH0(EU ) ∼= Coker[H0
M(C \ U, Z(0))→ Pic(C)] ∼= Pic(U),

which proves the claim (6). Since the group H0
M(C \ U, Z(0)) is torsion free, the

image of H2
M(EU , Z(1))tors in CH0(E) is zero. Thus we have the exact sequence

0→ Coker ∂2
U → H3

M(E , Z(2))tors
→ H3

M(EU , Z(2))tors → H2
M(EU , Z(1))tors → 0.

By Proposition 2.1 and Lemma 6.7, the group H3
M(EU , Z(2))tors is finite of order

pm|T ′U,(1)| · |L(h2(E), 0)L∗(h1(EU ), 0)L(h0(C \ U),−1)|
(q − 1)|L(h0(Irr(EU )),−1)|

for some m ∈ Z. By Lemma 6.9, the group H2
M(EU , Z(1))tors is finite of order

|L∗(h1(EU ), 0)|. By Lemma 6.5, the Picard scheme Pico
E/Fq

is an abelian variety
and in particular Hom(Pico

E/Fq
, Gm) = 0. Hence by Theorem 2.1 and Corollary 6.3,

the group H3
M(E , Z(2))tors is of order |L(h2(E), 0)|. Therefore,

|Coker ∂2
U | = |H3

M(E,Z(2))tors|·|H2
M(EU ,Z(1))tors|

|H3
M(EU ,Z(2))tors|

= p−m(q−1)|L(h0(Irr(EU )),−1)|
|T ′

U,(1)|·|L(h0(C\U),−1)| .

Since |Coker ∂2
U | is prime to p, we have m = 0. This proves the claims (4) and (5).

This completes the proof. �



32 SATOSHI KONDO AND SEIDAI YASUDA

Proof of Theorem 6.2. The claim (5) is clear. The claim (1) follows from Corol-
lary 2.1 and Theorem 1.3. It can be checked easily that Hi

M(EU , Z(1)) is zero for
i ≤ 0. By the localization sequence of higher Chow groups (cf. [6, Corollary (0.2),
p. 537]), we have Hi

M(E , Z(2)) ∼= Hi
M(EU , Z(2)) for i ≤ 1. Taking the inductive

limit with respect to U , we obtain the claim (2).
By Corollary 2.1, we have an exact sequence

(6.3)

0→ H2
M(E , Z(2))tors

α−→ H2
M(E, Z(2))red

∂2
M,2−−−→

⊕
℘∈C0

H1
M(E℘, Z(1))→ H3

M(E , Z(2))tors.→ H3
M(E, Z(2))red

∂3
M,2−−−→

⊕
℘∈C0

H2
M(E℘, Z(1))→ Pic(C)→ 0.

Hence by Theorem 2.1 and Corollary 6.3, the group Ker ∂2
M,2 is finite of order

|L(h1(C),−1)|. For a non-empty open subscheme U ⊂ C, let us consider the
group Coker ∂2

U in the proof of Theorem 6.3. For two non-empty open subschemes
U ′, U ⊂ C with U ′ ⊂ U , the homomorphism Coker ∂2

U → Coker ∂2
U ′ is injective

since both Coker ∂2
U and Coker ∂2

U ′ canonically inject into H3
M(E , Z(2))tors. The

claim (3) follows from the claim (4) of Theorem 6.3 by taking the inductive limit.
The claim (4) follows from the exact sequence (6.3) and Lemma 6.3.

From the localization sequence, it follows that the push-forward homomorphism⊕
x∈E0

H2
M(Spec κ(x), Z(2)) → H4

M(E, Z(3)) is surjective. Hence H4
M(E, Z(3)) is

a torsion group and the claim (6) follows from Lemma 5.4. This completes the
proof. �

Proof of Theorem 6.1. Let us consider the restriction γ : Ker c2,3 → H2
M(E, Z(2))

of c2,2 to Ker c2,3. By Lemma 5.1, both Ker γ and Coker γ are annihilated by the
multiplication-by-2 map. This implies that the image of γ contains H2

M(E, Z(2))div

and that Ext1Z(H2
M(E, Z(2))div,Ker γ) is zero. From this it follows that the homo-

morphism γ induces an isomorphism (Ker c2,3)div

∼=−→ H2
M(E, Z(2))div. This shows

that the homomorphism K2(E)red → H2
M(E, Z(2))red induced by c2,2 is surjective

with torsion kernel. Thus the claim (1) follows from Theorem 6.2 (3).
The claim (3) follows from Theorem 6.2 (1) and Lemma 5.1.
For ℘ ∈ C0, let ι℘ : Spec κ(℘)→ E℘ denote the reduction at ℘ of the morphism

ι : C → E . The diagram (5.2) gives an exact sequence

Coker ∂4
M,3 → Coker ∂2 → Coker ∂2

M,2 → 0.

By Lemma 5.4, we have an isomorphism Coker ∂4
M,3
∼= F×q . By the construction of

this isomorphism, we see that the composite

F×q ∼= Coker ∂4
M,3 → Coker ∂2 ↪→ K1(E)→ K1(Spec Fq) ∼= F×q

equals the identity. Hence the map Coker ∂4
M,3 → Coker ∂2 is injective. Then the

claim (2) follows from Theorem 6.2 (3).
From Proposition 4.1 and Lemmas 5.1, 5.2, and 6.10, it follows that the homo-

morphism ∂1 : K1(E)red →
⊕

℘∈C0
G0(E℘) is identified with the direct sum of the

map ∂′1 : k× →
⊕

℘∈C0
H0
M(Spec κ(℘), Z(0)) →

⊕
℘ H0

M(E℘, Z(0)) and the map
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∂3
M,2 : H3

M(E, Z(2))red →
⊕

℘ H2
M(E℘, Z(1)). We have isomorphisms

Ker ∂′1
∼= F×q , Coker ∂′1

∼= Pic(C)⊕
⊕

℘ Z|Irr(E℘)|−1,

Ker ∂3
M,2
∼= H3

M(E , Z(2))tors/Coker ∂2
M,2, Coker ∂3

M,2
∼= Pic(C).

The claim (4) follows. This completes the proof of Theorem 6.1. �

7. Results for j ≥ 3

We obtain results for j ≥ 3, generalizing the theorems in Section 6, but the
proofs of the results use neither class field theory nor Drinfeld modular curves. The
notations are as in Section 6.

For integers i, j, let us consider the boundary map

∂i
M,j : Hi

M(E, Z(j))red →
⊕

℘∈C0

Hi−1
M (E℘, Z(j − 1)).

Theorem 7.1. Let j ≥ 3 be an integer.
(1) For any i ∈ Z, both Ker ∂i

M,j and Coker ∂i
M,j are finite groups.

(2) We have

|Ker∂i
M,j | =



1, if i ≤ 0 or i ≥ 5,
qj − 1, if i = 1,
|L(h1(C), 1− j)|, if i = 2,
|T ′(j−1)|·|L(h2(E),2−j)|

qj−1−1 , if i = 3,

|L(h1(C), 2− j)|, if i = 4.

Moreover, the group Ker∂1
M,j is cyclic of order qj − 1.

(3) We have

|Coker ∂i
M,j | =


1, if i ≤ 1, i = 3, or i ≥ 5,
qj−1−1
|T ′(j−1)|

, if i = 2,

qj−2 − 1 if i = 4.

(4) Let U ⊂ C be a non-empty open subscheme. Then the group Hi
M(EU , Z(j))

is finite modulo a uniquely divisible subgroup for any i ∈ Z. The group
Hi
M(EU , Z(j)) is zero if i ≥ max(6, j), and is finite for (i, j) = (4, 3), (5, 3),

(4, 4), (5, 4), or (5, 5).
(5) The group Hi

M(EU , Z(j)) is uniquely divisible for i ≤ 0 or 6 ≤ i ≤ j, and
the group H1

M(EU , Z(j))tors is cyclic of order qj − 1.
(6) Suppose that U = C (resp. U 6= C). The group H2

M(EU , Z(j))tors is of
order |L(h1(C), 1− j)| (resp. of order

|T ′U,(j−1)| · |L(h1(C), 1− j)L(h0(C \ U), 1− j)|
qj−1 − 1

).

The group H3
M(EU , Z(j))tors is of order |L(h2(E), 2− j)| (resp. of order

|T ′U,(j−1)| · |L(h2(E), 2− j)L(h1(EU ), 2− j)L(h0(C \ U), 1− j)|
(qj−1 − 1)|L(h0(Irr(EU )), 1− j)|

).

The group H4
M(EU , Z(j))tors is of order |L(h1(C), 2− j)| (resp. of order

|L(h1(C), 2− j)L(h0(C \ U), 2− j)|
qj−2 − 1

).
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The group H5
M(EU , Z(j))tors is cyclic of order qj−2 − 1 (resp. is zero).

Theorem 7.2. The following statements hold.

(1) The group K2(E)div is uniquely divisible and the map c2,2 induces an iso-
morphism K2(E)div

∼= H2
M(E, Z(2))div.

(2) The kernel of the boundary map ∂ : K2(E)red →
⊕

℘∈C0
G1(E℘) is a finite

group of order |L(h1(C),−1)|2.

Lemma 7.1. Let X be a smooth projective geometrically connected curve over a
global field k′. Let k′(X) denote the function field of X. Then the Milnor K-group
KM

n (k′(X)) is torsion for n ≥ 2 + gon(X), and is of exponent 2 (resp. is zero) for
n ≥ 3 + gon(X) if char(k′) = 0 (resp. char(k′) > 0). Here gon(X) denotes the
gonality of X, namely, the minimal degree of morphisms from X to P1

k′ .

Proof. The field k′(X) is an extension of degree gon(X) of a subfield K of the form
K = k′(t). Looking at the split exact sequence

0→ KM
n (k′)→ KM

n (K)→
⊕
P

KM
n−1(k

′[t]/P )→ 0

in [34, Theorem 2.3, p. 325] (where P runs over the irreducible monic polynomials
in k′[t]), and using [5, Chapter II, (2.1), p. 396], we see that KM

n (K) is torsion
for n ≥ 3, and is of exponent 2 (resp. is zero) for n ≥ 4 if char(k′) = 0 (resp.
char(k′) > 0).

Take a flag K = V1 ⊂ V2 ⊂ · · · ⊂ Vgon(X) = k′(X) of K-subspaces of k′(X) with
dimK Vi = i. For each i we put V ∗

i = Vi \{0}. Suppose i ≥ 2 and take two elements
α, β ∈ Vi \ Vi−1. Then there exist a, b ∈ K× such that γ = aα + bβ ∈ Vi−1. If
γ = 0 (resp. γ 6= 0), then {aα, bβ} = 0 (resp. {aα/γ, bβ/γ} = 0) in KM

2 (k′(X)).
Expanding this equality, we see that {β, γ} belongs to the subgroup of KM

2 (k′(X))
generated by {V ∗

i , V ∗
i−1}. Hence for n ≥ gon(X) − 1, the group KM

n (k′(X)) is
generated by the image of {V ∗

gon(X), . . . , V
∗
2 } × KM

n−gon(X)+1(K). This proves the
claim. �

Lemma 7.2. Then the push-forward homomorphism H2
M(EU , Z(j−1))→ H4

M(E , Z(j))
is zero.

Proof. Let us consider the composite

H2
M(EU , Z(j − 1))→ H4

M(E , Z(j))
f∗−→ H2

M(C, Z(j − 1))

of push-forwards. This is the zero map since this factors through the group H0
M(C\

U, Z(j − 2)) which is zero by [14, Corollary 1.2, p. 56]. By Lemma 2.4, the group
H2
M(EU , Z(j − 1)) is torsion. Hence it suffices to show that the homomorphism

f∗,tors : H4
M(E , Z(j))tors → H2

M(C, Z(j − 1))tors induced by f∗ is an isomorphism.
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Let us consider the commutative diagram

H4
M(E , Z(j))tors

f∗,tors−−−−→ H2
M(C, Z(j − 1))tors

∼=
x ∼=

x
H3
M(E , Q/Z(j)) −−−−→ H1

M(C, Q/Z(j − 1))

∼=
y ∼=

y⊕
` 6=p

H3
et(E , Q`/Z`(j))GFq −−−−→

⊕
` 6=p

H1
et(C, Q`/Z`(j − 1))GFq .

Here the horizontal arrows are push-forward maps, the upper vertical arrows are
the boundary maps obtained from the exact sequence 0→ Z→ Q→ Q/Z→ 0, and
the lower vertical arrows are obtained from Theorem 2.1(2)(b) (the same argument
also applies to curves) further using the weight argument. The homomorphism at
the bottom is an isomorphism by Lemma 6.5. Hence f∗,tors is an isomorphism, as
desired. �

Proof of Theorem 7.1. From Theorem 2.1(2) and Lemma 7.1, the claims (4) and
(5) follow. The claim (6) follows from Theorem 2.1(2) and Corollary 6.5. In a
manner similar to that in the proof of Corollary 2.1, we are able to show that the
pull-back map induces an isomorphism Hi

M(E , Z(j))div
∼= Hi

M(E, Z(j))div for all
i ∈ Z, and that the localization sequence induces the long exact sequence

(7.1)
· · · →

⊕
℘∈C0

Hi−2
M (E℘, Z(j − 1))

→ Hi
M(E , Z(j))tors → Hi

M(E, Z(j))tors → · · · .
Using Lemma 2.1, we easily see that for any ℘ ∈ C0, even if E℘ is singular, the
group Hi

M(E℘, Z(j − 1)) is finite for all i, is zero for i ≤ 0 or i ≥ 4, and is cyclic
of order qj−1

℘ − 1, where q℘ = |κ(℘)| is the cardinality of the residue field at ℘, for
i = 1. By looking at the exact sequence (7.1) and using Lemma 7.2, we can deduce
the claims (1), (2) and (3) from the claims (4), (5) and (6). This completes the
proof. �

Proof of Theorem 7.2. Let U 6= C. Then by Lemmas 5.4 and 7.2, the following
sequence is exact:

0→ H4
M(E , Z(3))→ H4

M(EU , Z(3)) ∂−→ H3
M(EU , Z(2)) α−→ F×q → 1.

Here ∂ and α are as in Lemma 5.4, and the second map is the pull-back. By taking
the inductive limit, we obtain the exact sequence

(7.2)
0 → H4

M(E , Z(3))→ H4
M(E, Z(3))

∂4
M,3−−−→

⊕
℘∈C0

H3
M(E℘, Z(2))→ F×q → 1.

By Theorem 2.1 and Corollary 2.1, the group H4
M(E, Z(3))div is zero. Hence, us-

ing Lemma 5.1, we have K2(E)div ⊂ Ker c2,3. We saw that the map c2,2 induces an
isomorphism (Ker c2,3)div

∼=−→ H2
M(E, Z(2))div in the proof of Theorem 6.1. Hence

c2,2 induces an isomorphism K2(E)div
∼= H2

M(E, Z(2))div, which proves the claim
(1). The claim (2) follows from Theorems 6.1 and 6.2, the commutative diagram
(5.2), and the exact sequence (7.2). This completes the proof. �
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Appendix A. A proposition on the p-part

The aim of this Appendix is to give a proof of Proposition A.1 below. It is used
in the proof of Theorem 2.1. Nothing in this Appendix is new except possibly the
definition of the Frobenius map on the inductive limit (not on the inverse limit)
given in Section A.3. A similar situation has already appeared in the work of Milne
([32]) and Nygaard ([37]).

Proposition A.1. Let X be a smooth projective geometrically connected surface
over a finite field Fq of q elements of characteristic p. Let WnΩi

X,log denote
the logarithmic de Rham-Witt sheaf (cf. [21, I, 5.7, p. 596]). Then the inductive
limit lim−→n

H0
et(X, WnΩ2

X,log) with respect to multiplication-by-p is finite of order
|Hom(Pico

X/Fq
, Gm)|−1

p · |L(h2(X), 0)|−1
p . Here Hom(Pico

X/Fq
, Gm) denotes the set

of homomorphisms Pico
X/Fq

→ Gm of Fq-group schemes, and L(h2(X), s) is the
(Hasse-Weil) L-function of h2(X).

A.1. The de Rham-Witt complex. In this Appendix, let k be a perfect field
of characteristic p. Let X be a scheme of dimension δ which is proper over
Spec k. For i, n ∈ Z, let WnΩ•X denote the de Rham-Witt complex (cf. [21, I,
1.12, p. 548]) of the ringed topos of schemes over X with Zariski topology. We
let R : WnΩi

X → Wn−1Ωi
X , F : WnΩi

X → Wn−1Ωi
X , and V : WnΩi

X → Wn+1Ωi
X

denote the restriction, the Frobenius, and the Verschiebung, respectively. For each
i ∈ Z, the sheaf WnΩi

X has a canonical structure of coherent WnOX -modules, which
enables us to regard WnΩi

X as an étale sheaf. From now on until the end of this
section, we work on the category of étale sheaves on schemes over X.

A.2. Logarithmic de Rham-Witt sheaves. For n ∈ Z, let WnΩi
X,log ⊂WnΩi

X

denote the logarithmic de Rham-Witt sheaf (cf. [21, I, 5.7, p .596]).

Lemma A.1. The homomorphism V : WnΩi
X → Wn+1Ωi

X sends WnΩi
X,log into

Wn+1Ωi
X,log.

Proof. Let x ∈ WnΩi
X,log be an étale local section. By the definition of WnΩi

X,log,
there exists an étale local section y ∈Wn+1Ωi

X,log such that x = Ry. We easily see
that Ry = Fy. Hence V x = V Ry = V Fy = py ∈Wn+1Ωi

X,log. �

Let CWΩi
X denote the inductive limit CWΩi

X = lim−→n, V
WnΩi

X with respect

to V . The above lemma enables us to define the inductive limit CWΩi
X,log =

lim−→n, V
WnΩi

X,log.

A.3. Modified Frobenius operator. In this section we define an operator F ′ :
CWΩi

X → CWΩi
X such that the sequence

(A.1) 0→ CWΩi
X,log → CWΩi

X
1−F ′−−−→ CWΩi

X → 0

is exact.
For n ≥ 0, let W̃nΩi

X denote the cokernel of the homomorphism V n : Ωi
X =

W1Ωi
X → Wn+1Ωi

X . The homomorphisms R, F and V on Wn+1Ωi
X induce ho-

momorphisms on W̃nΩi
X which we denote by the same notations. If n ≥ 1, the

homomorphisms R,F : Wn+1Ωi
X →WnΩi

X factor through the canonical surjection
Wn+1Ωi

X → W̃nΩi
X . We let R̃, F̃ : W̃nΩi

X →WnΩi
X denote the induced homomor-

phisms. Then both R̃ and F̃ commute with R, F and V . For n ≥ 0, we let W̃nΩi
X,log
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denote the image of Wn+1Ωi
X,log by the canonical surjection Wn+1Ωi

X → W̃nΩi
X .

The restriction of R̃ : W̃nΩi
X → WnΩi

X to W̃nΩi
X,log gives a surjective homomor-

phism R̃log : W̃nΩi
X,log →WnΩi

X,log.

Lemma A.2. The homomorphisms R̃, R̃log induce isomorphisms

lim−→
n≥0, V

W̃nΩi
X
∼= CWΩi

X , lim−→
n≥0, V

W̃nΩi
X,log

∼= CWΩi
X,log.

Proof. The surjectivity is clear. From [21, I, PROPOSITION 3.2, p. 568], it follows

that the kernel of R̃ equals the image of the composite W1Ωi
X

dV n

−−−→ Wn+1Ωi
X �

W̃nΩi
X . Since V d = pdV , we have V (Ker R̃) = 0. This proves the injectivity. �

We easily see that W̃nΩi
X,log is contained in the kernel of R̃ − F̃ : W̃nΩi

X →
WnΩi

X . Hence

(A.2) 0→ W̃nΩi
X,log → W̃nΩi

X

eR− eF−−−→WnΩi
X → 0

is a complex.

Lemma A.3. The inductive limit

0→ lim−→
n≥0, V

W̃nΩi
X,log → lim−→

n≥0, V

W̃nΩi
X → CWΩi

X → 0

of (A.2) with respect to V is exact.

Proof. The argument in the proof of [21, I, THÉORÈME 5.7.2, p. 597] shows that
the kernel of R − F : Wn+1Ωi

X → WnΩi
X is contained in Wn+1Ωi

X,log + KerR.
Hence the claim follows from Lemma A.2. �

The inductive limit of F̃ : W̃nΩi
X → W̃n+1Ωi

X gives the endomorphism F ′ :
CWΩi

X
∼= lim←−n≥1, V

W̃nΩi
X → CWΩi

X . By Lemma A.2 and Lemma A.3, we have
a canonical exact sequence (A.1).

A.4. The duality. Let H∗(X, WnΩi
X) denote the cohomology groups of WnΩi

X

with respect to the Zariski topology.
The trace map Tr : Hδ(X, WnΩδ

X) ∼= Wn(Fq) is defined in [20, 4.1.3, p. 49]. This
commutes with the homomorphisms R, F and V . For 0 ≤ i, j ≤ δ, the product
m : WnΩi

X ×WnΩδ−i
X →WnΩδ

X gives a Wn(k)-bilinear paring

( , ) : Hj(X, WnΩi
X)×Hδ−j(X, WnΩδ−i

X )→ Hδ(X, WnΩδ
X) Tr−→Wn(k).

By [20, COROLLARY 4.2.2, p. 51], this pairing is perfect.
Since m ◦ (id⊗ V ) = V ◦m ◦ (F ⊗ id), the diagram

Wn+1Ωi
X×Wn+1Ωδ−i

X −−−−→ Wn+1(k)

F

y V

x V

x
WnΩi

X × WnΩδ−i
X −−−−→ Wn(k)

is commutative. Hence this induces an isomorphism

(A.3) Hδ−j(X, CWΩδ−i
X ) ∼= lim−→

n

HomWn(k)(Hj(X, WnΩi
X),Wn(k))
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where the transition map in the inductive limit of the right hand side is given by
f 7→ V ◦ f ◦ F . We endow each Hj(X, WnΩi

X) with the discrete topology. We
put Hj(X, W ′Ωi

X) = lim←−n, F
Hj(X, WnΩi

X) and endow it with the induced topol-

ogy. We turn Hj(X, W ′Ωi
X) into a W (k)-module by letting a · (bn) = (σ−n(a)bn)

for a ∈ W (k), bn ∈ Hj(X, WnΩi
X). We put D = lim−→n, V

Wn(k) and endow
it with the discrete topology. We turn D into a W (k)-module by letting a ·
cn = σ−n(a)cn for a ∈ W (k), cn ∈ Wn(k). Then the right hand side of (A.3)
equals HomW (k),cont(Hj(X, W ′Ωi

X), D). The homomorphism R : Hj(X, WnΩi
X)→

Hj(X, Wn−1Ωi
X) induces the endomorphism R′ : Hj(X, W ′Ωi

X)→ Hj(X, W ′Ωi
X).

The Frobenius endomorphism σ : Wn(k) → Wn(k) induces the endomorphism
σ : D → D.

Lemma A.4. Under the isomorphism (A.3), the endomorphism

F ′ : Hδ−j(X, CWΩδ−i
X )→ Hδ−j(X, CWΩδ−i

X )

is identified with the endomorphism of HomW (k),cont(Hj(X, W ′Ωi
X), D) which sends

a homomorphism f : Hj(X, W ′Ωi
X)→ D to the homomorphism σ ◦ f ◦R′.

Proof. Immediate from the definition of the isomorphism (A.3) and the module
D. �

A.5. We are mainly concerned with the case where i = 0. We denote Hj(X, W ′Ω0
X)

by Hj(X, W ′OX). Recall that F : WnΩ0
X → Wn−1Ω0

X equals the composite
WnOX

σ−→ WnOX
R−→ Wn−1OX . From [21, II, PROPOSITION 2.1, p. 607], it

follows that Hj(X, WΩi
X) → lim←−n, R

Hj(X, WnΩi
X) is an isomorphism. Hence

Hj(X, W ′OX) is isomorphic to the projective limit

H̃j(X, WOX) = lim←−[· · · σ−→ Hj(X, WOX) σ−→ Hj(X, WOX)].

The endomorphism σ : Hj(X, WOX) → Hj(X, WOX) induces an automorphism
σ : H̃j(X, WOX)

∼=−→ H̃j(X, WOX). We easily see that the endomorphism R′ on
Hj(X, W ′OX) corresponds to the endomorphism σ−1 on H̃j(X, WOX).

Let K = Frac W (k) denote the field of fractions of W (k). The homomorphism
σn/pn : Wn(k) → K/W (k) for each n ≥ 1 induces a canonical isomorphism D ∼=
K/W (k) of W (k)-modules which commutes with the action of σ.

A.6. Proof of Proposition A.1. Suppose that k = Fq. Then by Lemma A.4,
H0(X, CWΩd

X) is isomorphic to the Pontryagin dual of H̃δ(X, WOX). Hence the
group

H0(X, CWΩδ
X,log) ∼= Ker[H0(X, CWΩδ

X) 1−F ′−−−→ H0(X, CWΩδ
X)]

is isomorphic to the Pontryagin dual of the cokernel of 1− σ−1 on H̃δ(X, WOX).

Proposition A.2. Let k = Fq be a finite field and X be a scheme of dimension
δ which is smooth and projective over Spec k. Suppose that the V -torsion part T
of Hδ(X, WOX) is finite. Then H0(X, CWΩδ

X) is a finite group of order |T σ| ·
|L(hδ(X), 0)|−1

p . Here T σ denotes the σ-invariant part of T .

Proof. By the argument above, the order of H0(X, CWΩδ
X) equals the order of

the cokernel of 1 − σ on H̃δ(X, WOX) if it is finite. The torsion subgroup of
H̃δ(X, WOX) is finite since it injects into T . By [21, II, COROLLAIRE 3.5, p. 616],
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H̃δ(X, WOX)⊗Zp Qp is isomorphic to the slope zero part of Hδ
crys(X/W (k))⊗Zp Qp.

Hence the claim follows. �

Proof of Proposition A.1. Let the notations be as above, and suppose that δ = 2.
Then by [21, II, Remarque 6.4, p. 641], the module T in the above proposition is
canonically isomorphic to the group

HomW (Fq)(M(Pico
X/Fq

/Pico
X/Fq,red),K/W (Fq))

where M( ) denotes the contravariant Dieudonne module functor. In particular T is
a finite group. Let Tσ denote the σ-coinvariants of T . Then by the Dieudonne theory
(cf. [11]), HomW (Fq)(Tσ,K/W (Fq)) is canonically isomorphic to Hom(Pico

X/Fq
, Gm).

Hence the claim follows from Proposition A.2. �
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