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ABSTRACT. In order to analyze the singularities of a power series
function P(¢) on the boundary of its convergent disc, we introduced
the space Q(P) of opposite power series in the opposite variable
s =1/t, where P(t) was, mainly, the growth function (Poincaré
series) for a finitely generated group or a monoid [S1]. In the
present paper, forgetting about that geometric or combinatorial
background, we study the space Q(P) abstractly for any suitably
tame power series P(t) € C{t}. For the case when Q(P) is a finite
set and P(t) is meromorphic in a neighbourhood of the closure of
its convergent disc, we show a duality between Q(P) and the highest
order poles of P(t) on the boundary of its convergent disc.
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1. INTRODUCTION

There seems a remarkable “resonance” between oscillation behavior!
of a sequence {7, }nez., of complex numbers satisfying a tame condition
(see equation (2.1.2)) and the singularities of its generating function
P(t)=> ", 7at" on the boundary of the disc of convergence in C. The
idea was inspired by and strongly used in the study of growth functions
(Poincaré series) for finitely generated groups and monoids [S1, §11].

Let us explain the “resonance” by a typical example due to Machi
[M] (for details, see Examples in §3.3 and §5.4 of the present paper.
Other simple examples are given in §3.4 (see [C, S2, S3]) and §3.5). By
choosing generators of order 2 and 3 in PSL(2,7Z), Machi has shown
that the number =, of elements of PSL(2,7Z) which are expressed in
words of length less or equal than n€Zx, w.r.t. the generators is given
by yor, =7 -28—6 and o541 =10 -28—6 for k € Z>o. On one hand, this
means that the sequence of ratios % 1/ (n=1,2,---) accumulates to
two distinct “oscillation” values {2, 5} accordmg as n is even or odd.
On the other hand, the generating function (or, so called, the growth
function) can be expressed as a rational function P(t)= (IHQ?Q(H%) and
it has two poles at {+ f} on the boundary of its convergent C{ISC of
radius - —5- We see that there is a “resonance” between the set {2,5} of

“oscillations” of the sequence {Vn}nez., and the set {j:f} of “poles”
of the function P(t), in the way we shall explain in the present paper.

In order to analyze these phenomena, in [S1, §11], we introduced a
space Q(P) of opposite power series in the opposite variable s =1/t,
as a compact subset of C|[s]], where each opposite series is defined by
using “oscillations” of the sequence {v,}nez., so that Q(P) carries a
comprehensive information of oscillations (see §2.2 Definition (2.2.2)).
On the other hand, the space Q(P) has duality with the singularities of
the function P(t) (§5 Theorem). Thus, Q(P) becomes a bridge between
the two subjects: oscillations of {7, }nez., and singularities of P(t).
Since the method is independent of the group theoretic background
and is extendable to a wider class of series (see §2.1 Example 2), which
we call tame, we separate the results and proofs in a self-contained way
in the present paper. We study in details the case when Q(P) is finite,
where we have good understanding of the above mentioned resonance
by a use of rational subset explained in the following paragraph, and
Machi’s example is understood in that frame.

One key concept in the present paper is a rational subset U (§3),
which is a subset of the positive integers Zxq such that the sum > _,, "

1By an oscillation behavior, we mean that, for each fixed k € Z>0 called a period,
the sequence of the rate v,_x/yn (1€ Zsyp) has several different accumulation values.
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is a rational function in ¢ (i.e. U, up to finite, is a finite union of arith-
metic progressions). The concept is used twice in the present paper.
The first time it is used is in §3, where we show that, if the space of op-
posite series {2(P) is finite, then there is a finite partition Z>q = IL;U; of
Z>( into rational subsets so that there is no longer oscillation inside in
each {7, : n € U;}. We call such phenomena “finite rational accumula-
tion” (§3.2 Theorem) (such phenomena already appeared when we were
studying the F-limit functions for monoids [S1, §11.5 Lemmal). The
second time it is used is in §5, where we introduce a rational operator Ty,
acting on a power series P(t) € C[[t]] by letting Ty P(t):=)", .y Tnt™.
The rational operators form a machine that “manipulates” singularities
of the power series P(t). In this way, rational subsets combine the os-
cillation of a sequence {7, }nez., and the singularities of the generating
function P(t):=> 00 ,nt" for the case when Q(P) is finite.

The contents of the present paper are as follows.

In §2, we introduce the space Q(P) of opposite series as the accu-
mulating subset in C[[s]] of the sequence X,(P):=3>7;_, =*s" (n=
0,1,2,---) with respect to the coefficient-wise convergence topology,
where the kth coefficient describes an oscillation of period k. Dividing
by period-one oscillation, we construct a shift action 7 on the set Q(P)
to itself, which shifts k-period oscillations to k& — 1-period oscillations.

In 3.1, we introduce the key concept: finite rational accumulation.
We show that if Q(P) is a finite set, then Q(P) is automatically a
finite rational accumulation set and the 7q-action becomes invertible
and transitive. That is, g is acting cyclically on Q(P).

Starting with §4, we assume always finite rational accumulation for
Q(P). In §4, we analyze in details of the opposite series in (P) and
the module CQ(P) spanned by Q(P), showing that the opposite series
become rational functions with the common denominator A°(s) in 4.1,
and that the rank of CQ(P) is equal to deg(A%(s)) in §4.4.

In §5, we assume that the series P(t) defines a meromorphic function
in a neighbourhood of the closed convergent disc. Then we show that
A°P(s) is opposite to the polynomial A'P(t) of the highest order part of
poles of P(t) (Duality Theorem in §5.3), and, in particular, the rank of
the space CQ2(P) is equal to the number of poles of the highest order of
P(t) on the boundary of the convergent disc. We get an identification
of some transition matrices obtained in s-side and in ¢-side, which plays
a crucial role in the trace formula for limit F-function [S1, 11.5.6].

Problems. The space (P) is new with respect to the study of the
singularities of a power series function P(t), and the author thinks the
following directions of further study may be rewarding.
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1. Generalize the space Q(P) in order to capture lower order poles of
P(t) on the boundary of its convergent disc (c.f. [S1, §12, 2.]).

2. Generalize the duality for the case when Q(P) is infinite. Some
probabilistic approach may be desirable (c.f. [S1, §12, 1.]).

2. THE SPACE OF OPPOSITE SERIES.

In this section, we introduce the space Q(P) of opposite series for a
tame power series P € C[[t]], and equip it with a Tg-action.

2.1. Tame power series.
Let us call a complex coefficient power series in ¢

(2.1.1) P(t) = Y52t
to be tame, if there are positive real numbers u,v € Ry such that
(2.1.2) u < |1/l < v

for sufficiently large integers n (i.e. for n > Np for some Np € Z>q).
This implies that there are positive constants ¢q, co with ¢; <cs so that

(2.1.3) v " <] <cu™

for sufficiently large integer n € Zsq (actually, put ¢; = |yn, |07 and
co=|yn,|ulN? for n > Np). Let us consider two limit values:
(214) w < rp:=1/lm |3|Y" < Rp:=1/lim |7,|"" < v.

Cauchy-Hadamard Theorem says that P is convergent of radius rp.

Example 1. Let I" be a group or a monoid with a finite generator
system G. Then the length [(g) of an element g € T" is the shortest
length of words expressing ¢g in the letter G. Set T',, :== {g € T |
l(9) < n} and ~, = #(I',). Then the growth function (Poincaré
series) for I" with respect to G is defined by Pr¢(t) :== >~ at™. The
sequence {7V, }nez., is increasing and semi-multiplicative Yyt <VimVn-
Therefore, by choosing u=1/7, and v=1, the growth series is tame.
2. Ramsey’s theorem says that, for any n € Z.q, there exists a
positive integer N such that if the edges of the complete graph on
N vertices are colored either red or blue, then there exists n vertices
such that all edges joining them have the same colour. The least such
integer N is denoted by R(n), and is called the nth diagonal Ramsey
number, e.g. R(1)=1,R(2)=2,R(3) =6, R(4) =18 (c.f. [SR]). Then,

the following estimates are known due to Erdos [E] and Szekeres:
2"/ < R(n) < 2%,
So, R(t) :== > "2, R(n)t" (where put R(0)=1) form a tame series.



OPPOSITE POWER SERIES 5

2.2. The space €)(P) of opposite series.

Let P be a tame power series. Then, there is a positive integer Np
such that ~, is invertible for all n > Np. Therefore, for n € Z>y,, we
define the opposite polynomial of degree n by
(2.2.1) X, (P) = Yo, =k k.

Tn

Regarding {X,,(P)}n>n, as a sequence in the space C|[s]] of formal
power series, where C|[s]] is equipped with the classical topology, i.e.
the product topology of coefficient-wise convergence in classical topol-
ogy, we define the space of opposite series by

___the set of accumulation points of the sequence

(2.2.2)  QP) = (2.2.1) with respect to the classical topology.

That is, an element of 2(P) can be viewed as an equivalence class of
infinite convergent subsequences { X, (P)},, of opposite polynomials.

The first statement on Q(P) is the following.

Assertion 1. Let P be a tame series. Then Q(P) is a non-empty
compact closed subset of C|[s]].

Proof. For each k € Z>(, the kth coeflicient %;"“ of the polynomial
X,,(P) for sufficiently large n € Z>( with respect to P and k (i.e. for n >
Np+k—1) has the approximation u* < \7’;;’“ | =222 In=k_| <

Tn—1 Yn—k+1' —
V¥, i.e. it lies in the compact annulus

D(0,u*,v") := {aeC | u" <|a| <v*}.

Thus, for each fixed m € Z>, the image of the sequence (2.2.1) under
the truncation map m<,, : C[[s]] — C™*!, S japs® — (ag, -, am)
accumulates to an non-empty compact subset of [],L, D(0, u*, v¥), say
Q<. Then, we have:

QP) = N ((m<m) ™ Qem N TT3Zo DO, u*, 0%)),

where the RHS, as an intersection of decreasing sequence of compact
sets, is non-empty and compact. 0]

An element a(s) = %2 axs® of Q(P) is called an opposite series.
Its kth coefficients ay, i.e. an oscillation value of period k, belongs to
D(0,u* v*). Given an opposite series a(s), the constant term aq is
equal to 1. The coefficient a4, i.e. oscillation value of period 1, is called
the initial of the opposite series a, and denoted by ¢(a).

For later use, let us introduce an auxiliary space of the initials:

(2.2.3)  Qy(P) := the accumulation set of the sequence {%_1} ,
Tn /n>0
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which is a compact subset in D(0,u,v). The projection map Q(P) —
Q1(P), a t(a) is surjective but may not be injective (see §3.5 Ex.).

2.3. The rg-action on (P).
We introduce a continuous map 7 form 2(P) to itself.

Assertion 2. a. Let {n,, }mez., be a subsequence of Z>q tending to oo.
If the sequence { X, (P)}mez., converges to an opposite series a, then
the sequence {X,, _1(P)}mez-, also converges to an opposite series,
whose limit depends only on a and is denoted by To(a). Then, we have

(2.3.1) 1o(a) = (a—1)/u(a)s.
b. Let CQ(P) be the C-linear subspace of C[[s]] spanned by Q(P).

]
Then the map T : Q(P) — CQ(P), a+ 1(a)1q(a) naturally extends
to an endomorphism of CQ(P).

(2.3.2) T € Endc(CQ(P))
Proof. a. By definition, for any k € Z>, the sequence 7”;”"“ converges
to a constant a, € D(uF v*). Then, 2em-(-D — Jnmk /Tnmd cop.

Tnm—1 Tnm Tnm
verges to ax/a;. That is, the sequence { X, 1(P)}mez., converges to

an opposite series, whose (k—1)th coefficient is equal to ay/a.
b. This is trivial, since a +— t(a)Tq(a) is a restriction on Q(P) of an
affine linear endomorphism (a —1)/s on C[[s]]. O

2.4. Examples of mg-actions.

At present, except for the trivial cases when #Q(P) = 1 so that
Tq =1d, there are only few examples where the action (Q2(Pr¢), ) is
explicitly known: namely, the groups of the form I' = (Z/p1Z)* - - - *
Z/pnZ for some py, - -+ ,p, € Z~q (n>2) with the generator system G =
{a1, -+ ,a,} where q; is the standard generator of Z/p,Z for 1<i<n,
which include Machi’s example (see §3.3-4).

For the tame series R(t) in §2.1 Example 2, we know nothing about
(Q(R), 1q). It is already a question whether #Q(R) is equal to 1, finite
many (>1), or infinite? The author would like to expect #Q(R)=1.

2.5. Stability of Q(P).

In the present subsection, we are (mainly) concerned with follow-
ing type of questions, which we will call stability questions concerning
Q(P): for a given tame series P, under which assumptions on another
power series @, is P + @ again tame and Q(P) = Q(P + Q)? Or, if
Q(P + @) changes from (P), how does it change?

We discuss some miscellaneous results related to stability questions,
but we do not pursue full generalities. Except that Assertion 3 is used
in the proof of Assertion 13, results in the present paragraph are not
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used in the present article. Therefore, the reader may choose to skip
the part of this subsection after Assertion 3 without substantial loss.

Assertion 3. Let Q=) 7 qnt" converge in the disc of radius rg such
that rg > Rp. Then P+ Q is tame and Q(P) = Q(P + Q).

Proof. Let ¢ be a real number satisfying rg > ¢ > Rp. Then, one
has lim ¢,¢" =0 and ¢* > 1/|y,]| for sufficiently large n. This implies

lim @ =1+ lim q—"L =1. The required properties follow. [
Assertion 4. Let r be a positive real number with r < Rp. If Q1 (P) N
{z€C:|z|=r}=0. Then there exists a power series Q(t) of radius of
convergence ro=r1 such that P+Q is tame and Q(P+Q) ¢ Q(P).

Proof. We define the coefficients of Q(t) = ">, g,t™ by the following
conditions: |g,| = r~" and arg(q,) = arg(+y,). Then, for tameness of
P + @, we have to show some positive bounds 0<U <A, <V for A, =
—V";ij:g:*l . Since |[Yn+qn| = |n|+77", we have A, = h”‘ifr'yl’;'(ﬁn/m;“’n).
Then, evaluating term-by-term in the numerator, one gets A, <v+r=:
V. On the other hand, according as 1 > 1/(]v,|r™) or not, we have
A, >u/2 or A, > r/2. Therefore, we may set U:=min{u/2,r/2}.
Let us find a particular element d € Q(P + Q) such that d ¢ Q(P).
For a small positive real number ¢ satisfying the inequality (1—¢)/r>
1/Rp, there exists an increasing infinite sequence of integers n,, (m €
Zso) such that ((1—¢)/r)" > |vy,,,| for m € Zso. By choosing a
suitable sub-sequence (denoted by the same n,,), we may assume that
X, (P+Q) converges to an element, say d, in Q(P + Q). Its kth
coefficient dy, is equal to the limit of the sequence (Y, &k +Gn, )/ (Vn,, +
(n,, ) for n, — oo. For each fixed n,,, dividing the numerator and the
denominator by g, , we get an expression (X +r*Y)/(Z+1) where
1 X| = =t/ Y|+ ™| < 0 - (1=g)" (for n >> k), ¥ € S,
and |Z| = |y, ™| < (1—¢)™. Thus, taking the limit n,, — oo, we
have X — 0, Y — € for some 0, € R and Z — 0 so that dj, =r"e®%.
On the other hand, we see that d ¢ Q(P), since 1(d) =re?* ¢Q,(P) by
assumption. O

n

We do not use following Assertion in the present paper, since we know
more precise information for the cases #Q(P) < co. However, it may
have a significance when we study the general case with #Q(P)=o0.

Assertion 5. An opposite series converges with radius 1/ sup{|a| : a €
0 (P)} <1/Rp.

Proof. Let a(s) = lim X,, (P) for an increasing sequence {1, }mez.,

be an opposite series. By the Cauchy-Hadmard theorem, the radius of
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convergence of a is given by
ro = 1/ Tim |a|V* = 1/ Tim | lim v, 1/ ",
k—o00 k—oco m—oo
where the RHS is lower bounded by 1/sup{ja| : a € Q1(P)} from below.
O

It seems natural to ask when we can replace sup{|a| : a € Q;(P)} by
Rp? Finally, we state a result, which is not related to the stability.

Assertion 6. For any positive integer m, we have the equality
(2.5.1) QP) = Q(LE)

dtm

which s equivariant with the action of Tq

Proof. 1t is sufficient to show the case m = 1. We show a slightly
stronger statement: the subsequence {Xy,,(P)}mez., converges to a
series a(s) if and only if {X,,, (9F) }mezo, also converges to a(s).

For an increasing sequence {1, }mez., and for any fixed k €Z>, the
convergence of the sequence %;;”—"“ to ¢ is equivalent to the convergence

of the sequence L=t nm=t _ (1—k/ny) == to the same c. O

NmYnm

3. FINITE RATIONAL ACCUMULATION

We show that, if Q(P) is a finite set, then it has a strong structure,
which we call the finite rational accumulation (§3.2 Theorem and its
Corollary). The whole sequel of the present paper focuses on its study.

3.1. Finite rational accumulation.

We introduce the concept of finite rational accumulation. To this
end, we start with a preliminary concept: a rational subset of Zxy.
The following fact is easy and well known, so we omit its proof.

Fact. The following conditions for a subset U CZ>q are equivalent.
i) Put U(t) :== 3, cpt". Then, U(t) is a rational function in t.
ii) There exists h € Z~q and a polynomial V (t) such that U(t) = IV_(QL
iii) There exists h € Z~qo such thatn+h € U iff n € U for n >> 0.
iv) There exists h € Zsy, a subset wCZ/hZ and a finite set D C Zx

such that U\ D=Uc, U\ D, where, for a class [e] €Z/RZ of e, put

(3.1.1) U= {neZsy | n=e mod h}.

Further more, ii), iii) and iv) are equivalent for a pair (U, h). The
least such h for a fixed U will be called the period of U.
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Definition. 1. A subset U of Zx is called a rational subset if it satisfies
one of the above four equivalent conditions.

2. A finite rational partition of Zq is a finite collection {U,}.cq of
rational subsets U, C Z>( indexed by a finite set €2 such that there is a
finite subset D of Z>( so that one has the disjoint decomposition

ZEO \ D= HaEQ(Ua \ D)

In particular, for h € Z-, the partition U, := {U[e]}[e]ez/hz of Z>g is
called the standard partition of period h.

3. For a finite rational partition {U, },cq of Z>o, the period of a stan-
dard partition, which subdivide {U, }4cq, is called a period of {U, }4cq-
The smallest period (= lem{period of U,| a € Q}) of a finite rational
partition {U, }.eq is called the period of {U,}aeq-

We, now, arrived at the key concept of the present paper.

Definition. A sequence {X,}nez., of points in a Hausdorff space is
finite rationally accumulating if the sequence accumulates to a finite set,
say (), such that for a system of pairwise-disjoint open neighborhoods
V, for a € Q, the system {U,}ueq for Uy :={n€Zsy | X, € V,} is a
finite rational partition of Zx,. The (resp. a) period of the partition is
called the (resp. a) period of the finite rational accumulation set .

3.2. Tq-periodic point in Q(P).

Generally speaking, finiteness of the accumulation set €2 of a sequence
does not imply that it is finite rationally accumulating (see §3.5 Ex-
ample a). Therefore, the following theorem describes a distinguished
property of the accumulation set Q(P). This justifies the introduction
of the concept of “finite rational accumulation”.

Theorem. Let P(t) be a tame power series in t. Suppose there exists
an isolated point of Q(P), say a, which is periodic with respect to the
Tq-action on Q(P). Then Q(P) is a finite rational accumulation set,
whose period hp is equal to #Q(P). Furthermore, we have a natural
bijection that identifies Q(P) with the tq-orbit of a:

Z/hpZ ~ Q(P)

(321) e mod hP — a[e] = hm X€+hp~n(P)’

where the standard subdivision Uy, of the partition of Zs. is the exact
partition for the space Q(P) of the opposite series of P. The shift

action |e] — [e—1] in the LHS is equivariant to the 1o action in the
RHS.

Proof. The assumption on a means:
i) There exists a positive integer h € Z~ such that
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(to)la=a#(1q)"a for 0<h'<h.
ii) There exists an open neighbourhood V, of a in C|[s]] such that

QP)NV,={a}.
In particular, Q(P)\{a} is a closed set.

Since 2(P) is a compact Hausdorff space, it is a regular space, so
we may assume further that Q(P) NV, = {a}. Then, by setting U, :=
{n € Zso| X,,(P) € V,}, the sequence {X,,(P)}na, converges to the
unique limit element a. By the definition of 7o in §2, the relation
(7q)"a = a implies that the sequence {X,_j,(P)}.c, converges to a.
That is, there exists a positive number N such that for any n € U, with
n>N, X, (P) € V,, and hence n—h belongs to U,.

Consider the set A:={[e] €Z/hZ | there are infinitely many elements
of U, which are congruent to [¢] modulo h }. By the defining property of
N, if [e] € A, then U, contains UllNZ= x (Proof. For any m € Zsy with
m mod h = [e], there exists an integer m’ € U, such that m’ > m and
m’ mod h = [e] by the definition of the set A. Then, by the definition
of N, m'—h € U,. Obviously, either m"—h = m or m"—h > m occurs.
If m" — h > m then we repeat the same argument to m”:=m’ — h so
that m” — h = m/ — 2h € U,. Repeating, similar steps, after finite
k-steps, we show that m' — kh =m € U,).

Thus, U, is, up to a finite number of elements, equal to the rational
subset UpealU [, This implies A # (). Consider the rational subset
Urgyia = {n—1 | n € U} fori =0,1,---,h —1. Due to §2.3
Assertion 2, {Xn(P)}WEU(TQ)ia converges to (7q)'a, $0 Uiry)ia 1S, up to

a finite number of elements, equal to the rational subset UjcaU [e=4],
By the assumption a # 74a for 0 <14 < h, any pair of rational subsets
Utrgyia (0<i < h) have at most finite intersection, so A is a singleton of
the form A= {[eo]} for some ey € Z and Ui =U"" up to a finite
number of elements. On the other hand, since the union Uf;_ol Ulro)ia
already covers Zx( up to finite elements and since each {Xn(P)}neU(m)ia

converges only to (7q)'a, the opposite sequence (2.2.1) can have no

other accumulating point than the set {a,7qa, -, (7q)" 'a}. That
is, 2(P) is a finite rational accumulation set with the transitive hp-
periodic action of 7. O

Corollary. If the set of isolated points of Q(P) is finite, then Q(P) is
a finite rational accumulation set with the presentation (3.2.1).

Proof. Since the 1 action preserves the set of isolated points of Q(P),
there should exists a periodic point. U
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3.3. Example by Machi [M].

Let I' :== Z /27 % 7./37 ~ PSL(2,Z) with the generator system G :=
{a,b*'} where a,b are the generators of Z/27 and Z /37, respectively.
Then, the number #I',, of elements of ' expressed by the words in the
letters G' of length less or equal than n for n € Z> is given by

#Do, =7-28—6 and #Dg =10-28 —6 for k € Zs.
Therefore, we get the following expression of the growth function:

L 0o ()2t
PF,G(t) = Zkzo#rktk - ((1—222()(1—75))'

Then, we see that Q(Pr¢) and, hence, Q(Pr ) are finite rationally
accumulating of period 2. Explicitly, they are given as follows.

N (Prg)= {a[lo] = lim #L2n=1 = 5 a[lll = hmM:l}

n—oo #F2n _?’

QU Prg) = { al’l(s) , alll(s) }
where

[e.o]

5 o0
al¥(s) = Z 27 kg2 4 =S Z 9k g2W
k=0

k=

o

_ (143s) 1 1+32 4 1 1-2V2
-2y 2 1-% T2 1+
o0 7 oo
() — —k 2k , —k 2k
a()—ZQ s +10322 s
k=0 k=0
71 71
_ Whgs) 1 M5 1 175
(1-52) 2 1—% 2 1+\ﬁ

In §5.4, these coefficients of fractional expansions are recovered by a
use of, so called, rational operators (see §5.3 Theorem ii)).
o [
We calculate also 72 = R% = a[l}a[l] = %% = %
3.4. Simply accumulating Examples.
A tame power series P(t) is called simply accumulating if #Q(P)=1.
Growth functions Prg(t) for surface groups and Artin monoids are

simply accumulating, respectively (Cannon [C], [S2, S3]). This fact for
Artin monoids enables one to determine their F-functions [S4].
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3.5. Miscellaneous Examples.

Before going further, we use a simple model of oscillating sequence
{Vn}nez-, to give some examples of the power series P(t) such that

a) (P) is finite but is not finite rationally accumulating,

b) Q4(P) is finite rationally accumulating but #Q;(P) <#Q(P),

c) Q(P) # QP+ Q) for a power series Q(t) for any Rp > rg > rp.
We do not use these results in the sequel so that the readers may skip
present subsection without substantial loss.

Given a triple { := (U, a,b), where U C Z>; is any infinite subset
with infinite complement and a,b € C\ {0}, we associate a sequence
{Vn}nez-, defined by an induction on n: vy := 1 and 7, := v,,—1 - a if
nel and y,_ - bif nU. Set Py(t) := Yoo o Ynt™. Then:

Fact i) The series Py(t) is tame and Qi (Py) = {a™',b71}.
ii) The series Py(t) is finite rationally accumulatmg if and only if U
is a rational subset of Zx.

Proof. 1) The inequalities: min{|al, |b|} < |vn/Yn-1| < max{|al,|b|}
imply the tameness of P. The latter half is trivial since the proportion
Yn/Vn—1 takes only the values a or b.

ii) This follows from: Py is rational < The sets {n€Z>1 | Vn/Yn-1=
a}=U and {n€Z>1 | Y/ n-1=>b}=U¢ are rational< U is rational. [J

a) By choosing a non-rational subset U, we obtain an example a).

b) Even if U (and, hence, U¢ also) is a rational subset, if {U, U} is
not the standard partition of Z>, of period 2, then the period of the
partition {U, U} =#Q(Py) >2=#Q(Py). This gives an example b).

c¢) To get an example satisfying c¢), we need a bit more consideration.

Uﬂ[l"- and ¢y := lim w If U is a rational

n—oo

subset, then py = gy is a rational number. In general, the pair (py, qu)
can be any of {(p,q) € [0,1)> | p>q}. Suppose |a|>1b|.

Define py := lim

n—oo

frp = T faf 755 b =T < app )t
—00

1/Rp := lim o] “550 - b =55 = [qo bl
n—oo

Thus, rp and Rp can take any values, satisfying: |a|'<rp < Rp<|b|7L.
If there is a gap rp < Rp, then for any r € Ry such that rp <r < Rp,
Q1) :=>"00 € (t/r)™ for O, = #(U N Zi<.<n) argla)+ (n—#(U N Zi<.<,)) arg(h)
gives example ¢) (since Qi (Py)N{z€C: |z|=r}=0 and §2.4 Assertion4).
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4. RATIONAL EXPRESSION OF OPPOSITE SERIES

From this section, we restrict our attention to a tame power series
having the finite rational accumulation set 2(P).

4.1. Rational expression.
We show that opposite series become rational functions of special
form. We start with a characterization of a finite rational accumulation.

Assertion 7. Let P(t) be a tame power series in t. The set Q(P) is a
finite rational accumulation set of period hp € Z>y if and only if Q1 (P)
is so. We say P is finite rationally accumulating of period hp.

Proof. 1f Q(P) is finite rationally accumulating, then, in particular, the
sequence 7";1 is finite rationally accumulating. To show the converse
and to show the coincidence of the periods, assume that {v,_1/7n tnez-,
accumulate finite rationally of period h;. Then, for the standard sub-
division Uy, :={U}ez/n,2, the subsequence {v,—1/7y ey for each

le] €Z/h17Z converges to some number, which we denote by ddecC .
For any k €Zso and sufficiently large (depending on k) n, one has
TIn—k _ Tn-1Tn-2  Tn—k
Tn B Tn Yn-1 Yn—kt1
For n € Ul with [e] € Z/hZ, we see that the RHS converges to

alal*™ " Then, for ] €Z/MZ and k € Zsg, by putting

(4.1.1) dd = ql¥alel gl

the sequence {X,(P)}nev,, converges to all:=377 al sk with ol =

1(al’)) so that Q(P) is finite rationally accumulating. Its period hp is a
divisor of hq, but it cannot be strictly smaller than hy, since otherwise
the sequence {7,_1/7n}nez., gets a period shorter than h;. O

Remark. That the period of the finite rational accumulation of ;(P)
is equal to hp does not imply #;(P) = hp. That is, the map a €
Q(P) — 1(a) €Q(P) is not necessarily injective (see §3.5 Example b).
Assertion 8. Let P be finite rationally accumulating of period hp €
Zsy1. Then the opposite series al¥l = Y22 af]sk in Q(P) associated
with the rational subset U'¥l converges to a rational function
Alel(s)
1-— APShP7

where the numerator All(s) is a polynomial in s of degree hp—1:

(4.1.3) All(s) = St (T o) s

(4.1.2) all(s) =
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and

i hp—
(4.1.4) Ap =1 e = ap) = = a7,

We have a relation
(4.1.5) (rp)'r = (Rp)" = |Ap],

where rp is the radius of convergence of P(t) and Rp is given by (2.1.4).

Proof. Due to the hp-periodicity of the sequence a[ l (e € Z), formula
(4.1.1) implies the “semi-periodicity” with respect to the factor (4.1.4):

a[Tfl]hP-f-k_ (AP>maEce] for mEZ207 kIO, ) hP_1~

This implies a factorization al = All.3">°_ (Aps"#)™ and hence (4.1.2).

To show (4.1.5), it is sufficient to show the existence of positive real

constants ¢; and ¢y such that for any k € Zs there exists n(k) € Zs

and for any integer n > n(k), one has c;rf < |7’;—;’“| < cyrk.

Proof. We may choose c¢1, leleZ/hZ,ie
ZN1[0,h—1] le] € Z/hZ,icZ N[0, h—1]}. O
This completes a proof of Assertion 8. 0

Corollary. Let Q(P) be finite. For any power series Q(t) of radius ¢
of convergence larger than rp, P+Q is tame and Q(P)=Q(P+Q).

4.2. Coefficient matrix M), of numerator polynomials.

In this and the next section, We study the linearly dependent rela-
tions among the opposite series al¥l(s) for [e] €Z/hpZ.

For the purpose, let us consider the matrix

(4.2.1) = (TTLy af e reqot ey

of the coefficients of the numerator polynomials (4.1.3). Regarding

a[lo], a[lh 1 as variables, let us introduce the “discriminant” by

(4.2.2) D@, a1y = det(My) € zZ[al, - el Y.
Actually, Dy, is an irreducible homogeneous polynomial of degree h(h—
1)/2. Under the cyclic permutation 0= (0, 1,- - - , h—1) of the variables,
(4.2.3) Dyoo=(-1)""Dy.

Our next task in §4.3 is to stratify the zero-loci of Dy according to the
rank of Mj,. This is achieved by introducing the opposite denominator
polynomial A, whose degree describes the rank of the matrix M), (see
(4.3.3)). Here the coefficient is an arbitrary field K. In particular,
for the case of K = R, we give a precise stratification of the positive
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real parameter space (Rsg)" of the parameter (a[lO], e ,a[lh_”), whose

strata are labeled by cyclotomic polynomials i.e. an integral factor of
1 — s" which contains also the factor 1 — s (see Assertion 9.iv).

4.3. Linear dependence relations among opposite series.

Assertion 9. Fiz h € Z~y. For each [e] € Z/hZ and each A € K*,
let A€l(s) be the polynomial defined in equations (4.1.3) and (4.1.4)

associated with any h-tuple a= (a[lo}, S a[lh_l]) e (K>
i) In K[s|, we have the equality of the greatest common divisors:
ged(Af(s),1-Ash) =... = ged(AlU(s),1—As")
= ged(All(s), All(s)) =--- = ged(AP~Y(s), AM(s))

(whose constant term is normalized to 1), which we denote by d5(s).
Let us introduce the opposite denominator polynomial by

(4.3.1) AP (s) == (1 — As")/5a(s).
ii) For [e]€Z/hZ, put
(4.3.2) bel(s) := Al(s)/64(s).

The polynomials bl¥)(s) for [e] € Z/hZ span the space K[8] cqeg(acry of
polynomials of degree less than deg(AZ’). Hence, one has the equality:
(4.3.3) rank (M) = deg(AZ).

iii) For o(s) € Kls], o(s) | AZ if and only if p(s) | 1— As" and
ged(p(s), All(s)) = 1. In particular, if a € (Rs)", then A2 is always
divisible by 1V As.

iv) Let h€Z~o. There exists a stratification R};OZHAOPCAOP, where
the index set is equal to
(4.3.4) {APER[s] : 1—5 | AP(s) | 1—s" & AP(0)=1},

and Cpaop is a smooth semi-algebraic set of R-dimension deg(A%)—1,

such that AP (s)=APX/As) forVYa € Caor and Caor DCppr & AT|AY

Proof. i) By Definitions (4.1.3), (4.1.4) and (4.1.1), we have the follow-
ing relations:

(4.3.5) CL[16+1]SA[6](S)—{—(1—A3}‘) _ A[e+1](s)

for [e] € Z/hZ. This implies gcd(Al¥l(s), 1—Ash) | ged (AT (s),1—As")
for [e] € Z/hZ. Thus, one may conclude that all of the polynomials
ged(All(s),1 — Ash) = ged(All(s), Aletl(s)) for [e] € Z/hZ are the
same up to a constant factor. It is obvious that a factor of 1 — As"
contains a nontrivial constant term, which we shall normalize to 1.
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ii) Let V' be the subspace of K[s|/(AZ’) spanned by the images of
blel(s) := All(s)/da(s) for [¢] € Z/hZ. Relation (4.3.5) implies that
V' is closed under multiplication by s. On the other hand, b[e](s) and
AZ are relatively prime, so they generate 1 as a K[s]-module. That
is, V contains the class [1] of 1. Hence, V = K][s| - [1] = K[s]/(AZ).
Since deg(bll(s)) = h—1—deg(da(s)) = deg(AZ)—1, V N K[s]AZ = 0.
This means that the polynomials bl (s) for [e] € Z/hZ span the space
of polynomials of degree less than deg(AZ). In particular, one has
rank (M) =rankV =deg(AZ).

iii) The first half is a reformulation of the definition of J; and (4.3.1).
We see that if 1 —7s JAZ) then 1 —rs | Alél(s) (4.3.2) so Al€l(1/r) = 0.
This is impossible, since all coefficients of AlYl and 1/r are positive
reals.

iv) Let A be a polynomial as given in (4.3.4) and put d = deg(A).
Consider the set Cpaop := {c(s) = 1+c15+---+cg 189 € R[s] | Ir €
R. s.t. all coefficients of AY := c(s)(1—r"s")/A°P(rs) are positive}.
Then Cacr is an open semi-algebraic set in R, which is nonempty since
A°(rs)/(1—rs) belongs to Caer. In particular, it is pure dimensional
of real dimension d — 1. To any ¢ € Caer, One can associate a unique
a €(R-o)" such that the associated polynomial Al (4.1.3) is equal to
A We identify Caer with the semi-algebraic subset {a€(Rsg)|a«
c€C pop} of pure dimension d — 1 embedded in (Rs()". Similarly, for
any factor A" of A% (over R) divisible by 1 — s, we consider the semi-
algebraic subsets C'as in R of pure dimension deg(A’). Then, the
multiplication of A°?/A’ induces the inclusion Car C Caor. Then we
define the semi-algebraic set Caop inductively by UAOP\U ACar, where
the index A’ runs over all factors of A° which are not equal to A°? and
are divisible by 1—rs. By the induction hypothesis, d—1 > dimg(Car)
so that the difference Caopr is a non-empty open semi-algebraic set with
pure real dimension d — 1.

This completes the proof of Assertion 9. O

Suppose char(K) A h, and let K be the splitting field of AZ with
the decomposition AP =], (1—z;s) in K for d := deg(AZ). Then,
one has the partial fraction decomposition:
(4.3.6) ) g~d

1—Ash i=1 1—x;s

for [¢] € Z/hZ, where p is a constant in K given by the residue:

e Alel(s)(1—z;s e —
(4.3.7) Mgzj = % = %AH(% Y.

s=(z;)~ 1
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Corollary. The matrix ((M,Ef})[e]ez/hz,flev(w)) is of maximal rank d.

Proof. The rational function on the LHS of (4.3.6) for [e] € Z/hZ span
a vector space of rank d:=deg(A7’). Therefore, the coefficient matrix
on the RHS has rank equal to d. O

Remark. 1. One has the equivariance U(MLZ]) = ,u([fgxi)

the action o € Gal(f( , ) of the Galois group of the splitting field.
2. The index z; in (4.3.7) may run over all roots = of the equation
zh— A=0. However, if 271 & V(A%) (i.e. A%(2~1)#£0), then pf =0.
3. For the given h € Z~, to consider the space of finite parameters
(a[lo], e ,a[lh_l]) is equivalent to consider the space of infinite parame-
ters (a;);ez with “quasi”-periodicity a;;5, = Aa;. Then it was suggested
by the referee to regard the latter space over C as a h-"quasi”-periodic

representation of Z and to decompose it to the direct sum the sequence
(a; = A0 for y € Z/hZ — C*.

4.4. The module CQ(P).
We return to a tame power series P(t) (2.1.1). Suppose P(t) is

with respect to

finite rationally accumulating of a period hp. Let a[le] be the initial of

the opposite series al) € Q(P) for [e] € Z/hpZ. Since AZ(s) (4.3.1)
for a = (a[lo], e ,a[lhfl]) depends only on P but not on the choice
of a period hp, we shall denote it by A% (s) and call it the opposite
denominator polynomial of P. Then, §4.3 Assertion 9.ii) says that we

have the C-isomorphism:

CQ(P) =~ C[s]/(A%(s)),

(4.4.1) ad b= A% . gl mod A%,

Let us rewrite equality (4.3.2) and introduce the key number:
(4.4.2) dp = rankc (CQ(P)) = deg(AP).

Define an endomorphism ¢ on CQ(P) by letting
(4.4.3) U(a[e]) = Til(a[e]) = [iH] ale+1l,

1

Assertion 10. The actions of o on the LHS and the multiplication of
s on the RHS of (4.4.1) are naturally identified. Hence, the linear de-
pendence relations among the generators al® (le] € Z/hZ) are obtained
by the linear dependence relations A% (a)al®) for [e] € Z/hZ.

Proof. The first part of Assertion 10 is a matter of calculation.
S jezyhz Ceb = 0 mod AR (o) =0 for [e] € Z/hLZ. 0

Note that the o-action on CQ(P) is not s|co(p) in the ring C[[s]].
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5. DUALITY THEOREM

In this section, we restrict the class of functions P(t) to those that are
analytically continuable to a meromorphic function in a neighbourhood
of the closed disc of convergence.? Under this assumption, we show a
duality between Q(P) and poles of P(t) on the boundary of the disc.

5.1. Functions of class C{t},.
For r € Ry, we introduce a class

ii) P(t) is analytically continuable to a meromorphic

(5.1.1) (C{t}r::{P(t)E(C[[tH

i) P(t) converges on the open disc D(0,r). }

function on an open neighbourhood of D(0,r).

For an element P(t) of C{t},, let us introduce a monic polynomial
Ap(t), called the polar part polynomial of P(t), characterized by

i) Ap(t)P(t) is holomorphic in a neighbourhood of the circle [t| = r,

ii) Ap(t) has lowest degree among all polynomials satisfying i).

Next, we decompose
(5.1.2) Ap(t) = [TiL, (t — z,)*

where z; (i=1---,N, N €Z>() are mutually distinct complex numbers
with |z;|=r and d;€Z~o (i=1, -+, N).

Definition. The top denominator polynomial A'SP(t) of P(t) is
(5.1.3) AP (1) =[lig—q(t —7:) where d,:=max{d;}}Y;.

Note that Ap(t) may be equal to 1, and then AP(t) = 1. The
converse: if Ap(t) # 1, then A'SP(t) # 1, is also true.

5.2. The rational operator 7y .

Associated with a rational subset U of Zsy, we introduce a linear
operator Ty acting on C{t}, to itself, which we call a rational operator
or a rational action of U.

2This assumption is necessary, since the finite rational accumulation of P(t) does
not imply that P(t) is meromorphic on the boundary of its convergent disc.

Ezample. Consider the function P(t) := /1t = 377 %t” which

is tame. We see that the sequence of the proportion ~,,_1/7, of its coefficients
accumulates to the unique values 1, i.e. Q;(P) = {1} and Q(P) = {1/(1 — s)}. On
the other hand, we observe that the function P(¢) has two singular points on the
boundary of the unit disc D(0,1) which are not meromorphic but algebraic. Such
algebraic branching cases shall be treated in a forthcoming paper.
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Definition. The action Ty on C[[t]] of a rational subset U of Zx is
(5.2.1) Ty « P= Znezzo Vl" = TyP =37 ™

One may regard Ty P as a product of P with the rational function U (t)
(§3.1 Definition) in the sense of Hadamard [H].

The action Ty is continuous w.r.t. the adic topology on C|[[t]] since
Ty (t*C[[t]]) € t*C[[t]] for any k € Zso. It is also clear that the radius
of convergence of Ty P is not less than that of P.

Assertion 11. For h € Z>q and [e] € Z/hZ, let us define the rational
operator T' := Ty, Then, we have

h—1
(5.2.2) STl =,
e=0
d d
5.2.3 Tl — p.ople=1l g pld. © L plet1]
( ) dt dt

Proof. The equation (5.2.2) is a consequence of Zsq = U'ZJUl. The
(5.2.3): for any t™ (m € Zxq), both sides return the same ¢ 1,11 =
tm—H(S[e_le] and mtmﬁl(s[e],[m_l] thmfl(s[e_l_l},[m], respectively.

Corollary. The action Ty for a rational subset U C Zso preserves
C{t}, for any r € Ryg. The highest order of poles on |t| =r of Ty P
does not exceed that of P€C{t},.

Proof. By decomposing the subset U as in §3.1 Fact iv), we need to
prove this only for the case U = Ul for some [e € Z/hZ] with 0 <
e < h. Since (5.2.3) implies T!¢ = t="T0lt"=¢ we have only to prove
the case when U = U = hZ. But, then, T, which maps P(t) to
%Z ¢ P((t), has the required property. O

5.3. Duality theorem.
The following is the goal of the present paper.

Theorem. (Duality) Let P(t) be a tame power series belonging to
C{t}, for r=rp (= the radius of convergence of P). Suppose that P(t)
1s finite rationally accumulating of period hp. Then

i) The opposite denominator polynomial AF (s) (4.3.1) and the top de-
nominator polynomial A% (t) (5.1.3) of P(t) are opposite to each other.
That is,

(5.3.1) deg,(AF"(t)) = dp = deg,(AP(s)),
and
(5.3.2) t7P APt = AP(1), equivalently s AP (s7V) = A% (s).
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ii) We have an equality of transition matrices:
(5.3.3)

(7)) o = (A ) . -
=i/ le]eZ/hpZ, z;€V (A "P()) 5 ) le]€Z/hpZ, x; ' €V(AP(s))

P(t)

1s of maximal rank dp.
EIP(t)}t %)[e]ezmpz 2, €V(ALP (1)) f F

In particular, (

Proof. We start with the following obvious remark.

Assertion 12. Let ¢ € C* be any non-zero complex constant. Change
the variable t to t := t/c and the opposite variable s to § := cs, and,
for any tame series P, define a new tame series P := Pli_-

Then we have,

QP) = QP)|o=sse = {a(3/c) | a(t) € AP)},
Ql(P) = Ql(P)/C = {CLl/C | ay € Ql(P)}

Proof. The equalities follows immediately from direct calculations. [J

According to Assertion 12, we prove the theorem by changing the
variable t to £ = t/c for c = "/ Ap (recall (4.1.4)) so that the new tame
series has the constant Az equal to 1. Therefore, from now on, in the
present proof, we shall assume that P is a finite rationally accumulating
tame series with Ap=1. In particular, this implies that the radius rp
of convergence of P is equal to 1 (recall (4.1.5)).

We first prove the theorem for a special but the key case when
#O(P) =
Assertion 13. If P(t) is simply accumulating then A'P=t—1.

Proof. Consider the partial fractional expansion of P:

(5.3.4) P(t) = Zz 123 1 tc;ﬂl)a +Q(1),

where z; (i = 1,-, N) is the location of a pole of P of order d; on the
unit circle |z;| =1, ¢;; (j = 1,--- ,d;) is a constant in C, and Q(t) is
a holomorphic function on a disc of radius > 1.

We apply stability (Assertion 3 in §2.5) to the partial fractional ex-
pansion (5.3.4), to obtain Q(P)=Q(P—). That is, the principal part
Py := P—( gives rise to a simply accumulating power series. That

k—n—1
IS X ( ) Zk L i 1Z1<g<dmczﬂ3 (n—k;j)/(5—1)! Sk ( :0’1’2 )

Zlel<j<dm cijw; (i) /(G—1)!
converges to T => 12, s". Then, under this assumption, we’ll show
that if ¢; 4,, #0 then z;=1.
For each fixed k € Z>(, the numerator and denominator of the coef-
ficient of s* in X,,(P,) are polynomials in n of degree < d,,. Let v, :=
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S, Cian ;" be the coefficients of the top-degree term nm /(d,, —1)!
in the denominator. Since the range of v, is bounded (i.e. |v,| <
> : |¢i.a,, | due to the assumption |z;| = 1), the sequence for n=0,1,2, - -
accumulates to a non-empty compact set in C.

First, consider the case when the sequence {v,}nez,., has a unique
accumulating value vy. Let us show that vy is non-zero and the result of

Assertion 13 is true. (Proof. The mean sequence: {(322" v,) /M } Mo

M-1_—n—
n=0 X
also converges to vy = nhjglo vy,. This means that Zpl G me’
Z len 1 1— x*k[
converges to vg. If x; # 1, the mean sum ==0—— = GO tends
1

to 0 as M — oo. That is, vy = ¢1,4,,, where we assume x; = 1 (even
if, possibly ¢;4,, = 0). That is, the sequence v}, = v, — ¢14,, =
ZL Cig, ;""" converges to 0. For a fixed ng € Zsg, consider the
relations: v, , = ZZQ(ci,dmxi_no)xi_kH for k=1,--- ,N—1. Regard-
ing ¢;q,x; " (i =2,--+,N) as the unknown, we can solve the linear
equation for them, since the Vandermonde determinant for the matrix
(x; k“)ﬁg Nk=1,.n—1 does not vanish. So, we obtam a linear approx-
imation: |cig4,| = |¢ia,z; ™| < ¢ max{[v), [} (1=2,--,N) for a
constant ¢ > 0 which depends only on x}s and N but not on ng. The
RHS tend to zero as ny — oo, whereas the LHS are unchanged. This
implies |¢;q,, | =0, i.e. d; < d,, for i =2,---,N. As we have already
remarked Ap(t) # 1 implies A%P(t) := [I;—q,(t —zi)#1, and hence
¢1.4,, cannot be 0. So AYP(t) =t — 1.

Next, consider the case when the sequence v, has more than two
accumulating values. Then, one of them is non-zero. Suppose the sub-
sequence {vy,, }mez., converges to a non-zero value, say c¢. Recall the
assumption that the sequence ~,_1/v, converges to 1. So, the subse-

lower t
quence Tmm=l — Unmoitowerlemns o oyjq also converge to 1 as m — 0.

Un,, +lower terms
In the denommator the first term tends to c¢#0 and the second term
(= (a polynomial in n of degree d,, —1)/n%") tends to zero. Similarly,
in the numerator, the second term tends to zero. This implies that the
first term in the numerator also converges to ¢ # 0. Repeating the same
argument, we see that for any k € Z, the subsequence {vy,, _k }mez-.,
converges to the same c¢. Then, for each fixed M € Z~(, the average

sequence { (30! Vnn 1) /M }mez..., converges to ¢, whereas the values

N 1=,

is given by ZZ]\LQ Cirdyy T; m + ¢1.4,, which is close to ¢4, for
sufficiently large M and n,, >> M. This implies ¢ = ¢, 4,,. Thus, the
sequences {v,, _, = Zfiz Cidn 1™ " hnez, for any k > 0 converge
to 0. Then, an argument similar to that of the previous case implies
|Cia,,| =0, ie. di < d, (i=2,---, N). Hence, we have AP(t) = — 1.
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The proof of Assertion 13 is complete. OJ

We return to the proof of the general case, where P is finite rationally
accumulating of period h, but may no longer be simply accumulating.

Assertion 14. Let P € C{t}, be finite rational accumulating and the
top denominator polynomial of P is defined as in (5.1.3). Then,

i) The top denominator polynomial of P is a factor of t" — 1.

i) For any 0< f <h, TVIP as a power series in 7 := t" is simply
accumulating, where top order of its denominator is equal to d,,.
Proof. Since P is rationally finite accumulating of period A with radius
of convergence rp = 1, we have limy, oo V+(m—-1)n/Vf+mn = 1(= ™)
for any 0 < f < h. Regarding TVIP = th::mehTm as a power
series in 7 =t" and t/ as a constant factor of the series, this implies
that Q;(TVY1P) = {1} and, hence, that TVIP is simply accumulating.
Then, Assertion 13 implies that the highest order poles of TP (in
the variable 7) is only at 7—1=0 for all [f] € Z/hZ, and Corollary
to Assertion 11 implies that the order of the pole at 7 = 1 is less or
equal than d,, :=the highest order of poles of P(¢). Thus, we get an

expression TP = t/ gm(TZn, where glfl € C{r}, such that orders of

(r—1)7

poles of glfl is strictly less than d,,. In view of (5.3.4), we obtain

) p =i rinp = 2ol
This means, in particular, the the location of poles of P of top order
d; is contained in the solutions of t" — 1 = 0, i.e. A"(¢)|(t"—1) and
i) is proven. To show the the latter half of ii), we need to show that
g1(1) # 0 for all f. However, ) says that gl/ol(1) # 0 for some fj.

Assuming ¢lf1(1) = 0 for some f, we show a contradiction. Con-
sider the sequence {Vsitmh/Vfo+mh fmezs,- On one side, this converges
to a non-zero number since P is finite rational accumulating of order
h. On the other hand, since g/ol(7)/(r —1)% has pole of order d,,
only at 7 =1, we have v, +mn = g0/ (1)m +O(m4~1) and order of
poles of glfl(7) /(7 —1)% are strictly less than d,, by assumption, we
have Vs imn = O(m4~1). Thus the sequence converges to 0, which
contradicts to the non-zero limit! O

T—1)dm

For 0 <e, f <h, let us calculate the value of the proportion ?[f]] g(t)

at a root x of the equation t"—1 (defined by cancelling the poles at the
point as a meromorphic function).

T p (]
*) i _ xf*€ %
Tlel P i g[e] ’721

In order to calculate this value, we prepare an elementary Fact.
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Fact. Let A(T)=> " _janm™, B(t)=>"_bnm™ € C{T}1 such that
their highest order poles of the same order d exist only at T = 1. Then,
A a,

= lim .

m—00

ko )

=
Proof. Replacing t and ¢;; in (5.3.4) with 7 and a;; or b;;, respectively,

T 1Zj<damxim71(m§j)/(j—1)!
the RHS of %) is written as h—r>no<ZfV1ZJ<d byr T [
is a complex number with |z;] =1 and z; =1. Since a; 4= (T—1)*A(7)| _,
and by g= (7 —1)?B(7)| _, are non-zero but a;q = b; 4 = 0 for i # 1, this

a1,a(mid) /(d=)HOmIY) _ ara _ A(r) 0
O(?l d(md d 1)!+O(md_1) - bld - B(T) =

where z;

is equal to h

Applying this Fact, the RHS of %) is equal to /7¢ lim 2™ Then,

m—oo Jet+tmh

applying to this expression a similar argument for (4.1.1), we obtain:
—e -1 e+1 .
e [ e

—(t = 1 ife=f
Tlelp™7|,_
= zf= ea[le}a[le u.. a[lerl] ife> f.

(5.3.5)

Since the RHS are non-zero in all cases, the order of the poles of
TEIP(t) at a solution  of the equation t" — 1 is independent of [e] €
Z/hZ. Summing up both sides of (5.3.5) for 0< f<h, we obtain

(5.3.6) = Az,

t=x

(recall the All(s) (4.1.3)). Let z be a solution of t" —r" = 0 but
AZ(z7Y) #0. Then §,(z7') =0 (see (4.3.1)) and All(z7!) =0 for
all [e] € Z/hZ (see Assertion 9. 1i)). That is, %(t) has a pole at
=z. This implies that P(t) cannot have a pole of order d,, at t ==z
(otherwise, due to Corollary to Assertion 11, the pole at t =z of TII P

is at most of order d,,, which is cancelled in =~ e]P (t) by dividing by P,
yielding a contradiction!). That is, we get one lelSlOIl relation.

Assertion 15. A%P(t) |t AR (t71) and deg(ASP) < dp.
Finally, let us show the opposite division relation.

Assertion 16. Let P(t) be a tame power series belonging to C{t},,
which s finite rationally accumulating of period h. Then
i) There exists a constant c€ R~ such that |y,| > cr—"n® forn>>0.
i) HAZ () | ARP(L) -

Proof. 1) Consider the Taylor expansion of the partial fractional

expansion eq:5.3.4. Using notation v, in Assertion 13, we have =, =
r~1(n; dm)

@) +Hterms coming from poles of order <d,, H{terms coming from Q(%)),

_fUn
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where v, = Y. ¢;q, (x;/7) 7" depends only on n mod h since z; is the
root of the equation t* — r" = 0. They cannot all be zero (otherwise,
by solving the equations v, =0 (0 <n < h), we get ¢; 4, =0 for all 1,
which contradicts to the vanishing of d,,). Let us show that none of
the v, is zero. Suppose the contrary and v, = 0 # vy for some inte-
gers 0 <e, f <h. Then, one observes easily that lim 2<=b — (. This

m—00 Vf+mh
contradicts to formula (5.3.5) and the non-vanishing of al? (Je] € Z/hZ).

i) Since A% cancels all poles of maximal order, the fractional ex-
pansion of ASP(¢)P(t) has poles of order at most d,, —1. Set A%P(t)=
t'+a t = 4. .4 Then, this means that the sequence {vy} (Taylor
coefficients of P) satisfies

***) fYN'Oél—i_nyfl'alfl_’_""i"YN,l'l ~ O(Nme,*N)

as N — oo. Let >, axs® € Q(P) be an opposite series given by a
sequence {X,,, (P)}mez-0 (2.2.1). For each fixed k € Z>,, substitute N
by Ny —k+1 in * % %) and divide it by 7, . Then, taking the limit
m — oo using the part i), the RHS converges to 0, so that we get

p—10q + Ap_j410q—1 + - +ap = 0.

Thus s'A’P (s )a(s) is a polynomial of degree < and the denominator
A% (s) of a(s) divides s'!AP(s71). So, dp <l and ii) is proved.
This completes a proof of Assertion 16. U

The proof of the theorem: (5.3.1) and (5.3.2) are already shown by
Assertions 15 and 16, and (5.3.3) is shown by (4.3.7) and (5.3.6). O

5.4. Example by Machi (continued).

Recall §3.3 Machi’s example, where we learned that the growth func-
tion Prg(t) =Y o7 #I,t" for the modular group I' = PSL(2, Z) with
respect to certain generator system G is equal to % and that
it is finite rationally accumulating of period h = 2.

Using this data, we calculate further the rational actions on it.

00 2
T[O}PF,G(t) = Zk:o #F%t% = (1—21tJ2r)5(tl—t2)’

o 2t (2412
T[HPF,G(t) = Zk:o #F2k+1t2k+1 = %7
The opposite denominator polynomial of the series al® ([e] € Z/27Z)
and the top denominator polynomial of Pr(t) are given as follows.

o 1 o
AI%;,G(S) =1- 582 & A;I?G(t) = t2 — 5
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Then the transformation matrix is given by

Prg(t) _ (1+t)2(1+2t) PF,G(t):(1+t)2(1+2t)| 1+22 1421
TOIP(t) 14582 ’t:% TPt 2t2+82) It=75| _ ! V2
Pra(t)  (1+t)2(142t) Pra(t)  (1+t)2(142t) -

TOIP@) . 1+562 h:% TP 2t(2+82) h:% 1-2v2 1-1 %

In fact, this matriz coincides with the matriz 2 - (uﬁfj)[e]ez/%xie{iﬁfl}
(4.3.7), which was already calculated in §3.3 Example as the coefficient
of fractional expansion of the opposite series al” and al’). In particular,

its determinant, equal to g/—g, is non-zero. The matrix is an essential

ingredient of the trace formula for limit F-functions [S1, (11.5.6)]
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