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Abstract. In order to analyze the singularities of a power series
function P (t) on the boundary of its convergent disc, we introduced
the space Ω(P ) of opposite power series in the opposite variable
s = 1/t, where P (t) was, mainly, the growth function (Poincaré
series) for a finitely generated group or a monoid [S1]. In the
present paper, forgetting about that geometric or combinatorial
background, we study the space Ω(P ) abstractly for any suitably
tame power series P (t)∈C{t}. For the case when Ω(P ) is a finite
set and P (t) is meromorphic in a neighbourhood of the closure of
its convergent disc, we show a duality between Ω(P ) and the highest
order poles of P (t) on the boundary of its convergent disc.
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1. Introduction

There seems a remarkable “resonance” between oscillation behavior1

of a sequence {γn}n∈Z≥0
of complex numbers satisfying a tame condition

(see equation (2.1.2)) and the singularities of its generating function
P (t)=

∑∞
n=0 γnt

n on the boundary of the disc of convergence in C. The
idea was inspired by and strongly used in the study of growth functions
(Poincaré series) for finitely generated groups and monoids [S1, §11].

Let us explain the “resonance” by a typical example due to Mach̀ı
[M] (for details, see Examples in §3.3 and §5.4 of the present paper.
Other simple examples are given in §3.4 (see [C, S2, S3]) and §3.5). By
choosing generators of order 2 and 3 in PSL(2, Z), Mach̀ı has shown
that the number γn of elements of PSL(2, Z) which are expressed in
words of length less or equal than n∈Z≥0 w.r.t. the generators is given
by γ2k =7 ·2k−6 and γ2k+1 =10 ·2k−6 for k∈Z≥0. On one hand, this
means that the sequence of ratios γn−1/γn (n=1, 2, · · · ) accumulates to
two distinct “oscillation” values {5

7 , 7
10} according as n is even or odd.

On the other hand, the generating function (or, so called, the growth

function) can be expressed as a rational function P (t)= (1+t)(1+2t)
(1−2t2)(1−t)

, and
it has two poles at {± 1√

2
} on the boundary of its convergent disc of

radius 1√
2
. We see that there is a “resonance” between the set {5

7 , 7
10} of

“oscillations” of the sequence {γn}n∈Z≥0
and the set {± 1√

2
} of “poles”

of the function P (t), in the way we shall explain in the present paper.
In order to analyze these phenomena, in [S1, §11], we introduced a

space Ω(P ) of opposite power series in the opposite variable s = 1/t,
as a compact subset of C[[s]], where each opposite series is defined by
using “oscillations” of the sequence {γn}n∈Z≥0

so that Ω(P ) carries a
comprehensive information of oscillations (see §2.2 Definition (2.2.2)).
On the other hand, the space Ω(P ) has duality with the singularities of
the function P (t) (§5 Theorem). Thus, Ω(P ) becomes a bridge between
the two subjects: oscillations of {γn}n∈Z≥0

and singularities of P (t).
Since the method is independent of the group theoretic background
and is extendable to a wider class of series (see §2.1 Example 2), which
we call tame, we separate the results and proofs in a self-contained way
in the present paper. We study in details the case when Ω(P ) is finite,
where we have good understanding of the above mentioned resonance
by a use of rational subset explained in the following paragraph, and
Mach̀ı’s example is understood in that frame.

One key concept in the present paper is a rational subset U (§3),
which is a subset of the positive integers Z≥0 such that the sum

∑
n∈U tn

1By an oscillation behavior, we mean that, for each fixed k∈Z≥0 called a period,
the sequence of the rate γn−k/γn (n∈Z>>0) has several different accumulation values.
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is a rational function in t (i.e. U , up to finite, is a finite union of arith-
metic progressions). The concept is used twice in the present paper.
The first time it is used is in §3, where we show that, if the space of op-
posite series Ω(P ) is finite, then there is a finite partition Z≥0 = qiUi of
Z≥0 into rational subsets so that there is no longer oscillation inside in
each {γn : n ∈ Ui}. We call such phenomena “finite rational accumula-
tion” (§3.2 Theorem) (such phenomena already appeared when we were
studying the F-limit functions for monoids [S1, §11.5 Lemma]). The
second time it is used is in §5, where we introduce a rational operator TU

acting on a power series P (t) ∈ C[[t]] by letting TUP (t) :=
∑

n∈U γnt
n.

The rational operators form a machine that “manipulates” singularities
of the power series P (t). In this way, rational subsets combine the os-
cillation of a sequence {γn}n∈Z≥0

and the singularities of the generating
function P (t) :=

∑∞
n=0 γnt

n for the case when Ω(P ) is finite.

The contents of the present paper are as follows.
In §2, we introduce the space Ω(P ) of opposite series as the accu-

mulating subset in C[[s]] of the sequence Xn(P ) :=
∑n

k=0
γn−k

γn
sk (n =

0, 1, 2, · · · ) with respect to the coefficient-wise convergence topology,
where the kth coefficient describes an oscillation of period k. Dividing
by period-one oscillation, we construct a shift action τΩ on the set Ω(P )
to itself, which shifts k-period oscillations to k − 1-period oscillations.

In 3.1, we introduce the key concept: finite rational accumulation.
We show that if Ω(P ) is a finite set, then Ω(P ) is automatically a
finite rational accumulation set and the τΩ-action becomes invertible
and transitive. That is, τΩ is acting cyclically on Ω(P ).

Starting with §4, we assume always finite rational accumulation for
Ω(P ). In §4, we analyze in details of the opposite series in Ω(P ) and
the module CΩ(P ) spanned by Ω(P ), showing that the opposite series
become rational functions with the common denominator ∆op(s) in 4.1,
and that the rank of CΩ(P ) is equal to deg(∆op(s)) in §4.4.

In §5, we assume that the series P (t) defines a meromorphic function
in a neighbourhood of the closed convergent disc. Then we show that
∆op(s) is opposite to the polynomial ∆top(t) of the highest order part of
poles of P (t) (Duality Theorem in §5.3), and, in particular, the rank of
the space CΩ(P ) is equal to the number of poles of the highest order of
P (t) on the boundary of the convergent disc. We get an identification
of some transition matrices obtained in s-side and in t-side, which plays
a crucial role in the trace formula for limit F-function [S1, 11.5.6].

Problems. The space Ω(P ) is new with respect to the study of the
singularities of a power series function P (t), and the author thinks the
following directions of further study may be rewarding.
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1. Generalize the space Ω(P ) in order to capture lower order poles of
P (t) on the boundary of its convergent disc (c.f. [S1, §12, 2.]).

2. Generalize the duality for the case when Ω(P ) is infinite. Some
probabilistic approach may be desirable (c.f. [S1, §12, 1.]).

2. The space of opposite series.

In this section, we introduce the space Ω(P ) of opposite series for a
tame power series P ∈ C[[t]], and equip it with a τΩ-action.

2.1. Tame power series.
Let us call a complex coefficient power series in t

(2.1.1) P (t) =
∑∞

n=0 γnt
n

to be tame, if there are positive real numbers u, v ∈ R>0 such that

(2.1.2) u ≤ |γn−1/γn| ≤ v

for sufficiently large integers n (i.e. for n ≥ NP for some NP ∈ Z≥0).
This implies that there are positive constants c1, c2 with c1≤c2 so that

(2.1.3) c1v
−n ≤ |γn| ≤ c2u

−n

for sufficiently large integer n ∈ Z≥0 (actually, put c1 = |γNP
|vNP and

c2 = |γNP
|uNP for n ≥ NP ). Let us consider two limit values:

(2.1.4) u ≤ rP :=1/ lim
n→∞

|γn|1/n ≤ RP :=1/ lim
n→∞

|γn|1/n ≤ v.

Cauchy-Hadamard Theorem says that P is convergent of radius rP .

Example 1. Let Γ be a group or a monoid with a finite generator
system G. Then the length l(g) of an element g ∈ Γ is the shortest
length of words expressing g in the letter G. Set Γn := {g ∈ Γ |
l(g) ≤ n} and γn := #(Γn). Then the growth function (Poincaré
series) for Γ with respect to G is defined by PΓ,G(t) :=

∑∞
n=0 γnt

n. The
sequence {γn}n∈Z≥0

is increasing and semi-multiplicative γm+n≤γmγn.
Therefore, by choosing u=1/γ1 and v=1, the growth series is tame.

2. Ramsey’s theorem says that, for any n ∈ Z>0, there exists a
positive integer N such that if the edges of the complete graph on
N vertices are colored either red or blue, then there exists n vertices
such that all edges joining them have the same colour. The least such
integer N is denoted by R(n), and is called the nth diagonal Ramsey
number, e.g. R(1) = 1, R(2) = 2, R(3) = 6, R(4) = 18 (c.f. [SR]). Then,
the following estimates are known due to Erdös [E] and Szekeres:

2n/2 ≤ R(n) ≤ 22n.

So, R(t) :=
∑∞

n=0 R(n)tn (where put R(0)=1) form a tame series.



OPPOSITE POWER SERIES 5

2.2. The space Ω(P ) of opposite series.
Let P be a tame power series. Then, there is a positive integer NP

such that γn is invertible for all n ≥ NP . Therefore, for n ∈ Z≥NP
, we

define the opposite polynomial of degree n by

(2.2.1) Xn(P ) :=
∑n

k=0
γn−k

γn
sk.

Regarding {Xn(P )}n≥NP
as a sequence in the space C[[s]] of formal

power series, where C[[s]] is equipped with the classical topology, i.e.
the product topology of coefficient-wise convergence in classical topol-
ogy, we define the space of opposite series by

Ω(P ) :=
the set of accumulation points of the sequence
(2.2.1) with respect to the classical topology.(2.2.2)

That is, an element of Ω(P ) can be viewed as an equivalence class of
infinite convergent subsequences {Xnm(P )}m of opposite polynomials.

The first statement on Ω(P ) is the following.

Assertion 1. Let P be a tame series. Then Ω(P ) is a non-empty
compact closed subset of C[[s]].

Proof. For each k ∈ Z≥0, the kth coefficient γn−k

γn
of the polynomial

Xn(P ) for sufficiently large n∈Z≥0 with respect to P and k (i.e. for n ≥
NP +k−1) has the approximation uk ≤ |γn−k

γn
|= |γn−1

γn
||γn−2

γn−1
| · · · | γn−k

γn−k+1
| ≤

vk, i.e. it lies in the compact annulus

D̄(0, uk, vk) := {a∈C | uk≤|a|≤vk}.

Thus, for each fixed m∈Z≥0, the image of the sequence (2.2.1) under
the truncation map π≤m : C[[s]] → Cm+1,

∑∞
k=0 aks

k 7→ (a0, · · · , am)
accumulates to an non-empty compact subset of

∏m
k=0 D̄(0, uk, vk), say

Ω≤m. Then, we have:

Ω(P ) = ∩∞
m=0

(
(π≤m)−1Ω≤m ∩

∏∞
k=0 D̄(0, uk, vk)

)
,

where the RHS, as an intersection of decreasing sequence of compact
sets, is non-empty and compact. ¤

An element a(s) = Σ∞
k=0aks

k of Ω(P ) is called an opposite series.
Its kth coefficients ak, i.e. an oscillation value of period k, belongs to
D̄(0, uk, vk). Given an opposite series a(s), the constant term a0 is
equal to 1. The coefficient a1, i.e. oscillation value of period 1, is called
the initial of the opposite series a, and denoted by ι(a).

For later use, let us introduce an auxiliary space of the initials:

(2.2.3) Ω1(P ) := the accumulation set of the sequence
{γn−1

γn

}
nÀ0

,
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which is a compact subset in D̄(0, u, v). The projection map Ω(P ) →
Ω1(P ), a 7→ ι(a) is surjective but may not be injective (see §3.5 Ex.).

2.3. The τΩ-action on Ω(P ).
We introduce a continuous map τΩ form Ω(P ) to itself.

Assertion 2. a. Let {nm}m∈Z≥0
be a subsequence of Z≥0 tending to ∞.

If the sequence {Xnm(P )}m∈Z≥0
converges to an opposite series a, then

the sequence {Xnm−1(P )}m∈Z≥0
also converges to an opposite series,

whose limit depends only on a and is denoted by τΩ(a). Then, we have

(2.3.1) τΩ(a) = (a − 1)/ι(a)s.

b. Let CΩ(P ) be the C-linear subspace of C[[s]] spanned by Ω(P ).
Then the map τ : Ω(P ) −→ CΩ(P ), a 7→ ι(a)τΩ(a) naturally extends
to an endomorphism of CΩ(P ).

(2.3.2) τ ∈ EndC(CΩ(P ))

Proof. a. By definition, for any k ∈ Z≥0, the sequence
γnm−k

γnm
converges

to a constant ak ∈ D̄(uk, vk). Then,
γ(nm−1)−(k−1)

γnm−1
=

γnm−k

γnm
/γnm−1

γnm
con-

verges to ak/a1. That is, the sequence {Xnm−1(P )}m∈Z≥0
converges to

an opposite series, whose (k−1)th coefficient is equal to ak/a1.
b. This is trivial, since a 7→ ι(a)τΩ(a) is a restriction on Ω(P ) of an

affine linear endomorphism (a − 1)/s on C[[s]]. ¤
2.4. Examples of τΩ-actions.

At present, except for the trivial cases when #Ω(P ) = 1 so that
τΩ = id, there are only few examples where the action (Ω(PΓ,G), τΩ) is
explicitly known: namely, the groups of the form Γ = (Z/p1Z)∗ · · · ∗
Z/pnZ for some p1, · · · , pn∈Z>1 (n≥2) with the generator system G=
{a1, · · · , an} where ai is the standard generator of Z/piZ for 1≤ i≤n,
which include Mach̀ı’s example (see §3.3-4).

For the tame series R(t) in §2.1 Example 2, we know nothing about
(Ω(R), τΩ). It is already a question whether #Ω(R) is equal to 1, finite
many (>1), or infinite? The author would like to expect #Ω(R)=1.

2.5. Stability of Ω(P ).
In the present subsection, we are (mainly) concerned with follow-

ing type of questions, which we will call stability questions concerning
Ω(P ): for a given tame series P , under which assumptions on another
power series Q, is P + Q again tame and Ω(P ) = Ω(P + Q)? Or, if
Ω(P + Q) changes from Ω(P ), how does it change?

We discuss some miscellaneous results related to stability questions,
but we do not pursue full generalities. Except that Assertion 3 is used
in the proof of Assertion 13, results in the present paragraph are not
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used in the present article. Therefore, the reader may choose to skip
the part of this subsection after Assertion 3 without substantial loss.

Assertion 3. Let Q=
∑∞

n=0 qntn converge in the disc of radius rQ such
that rQ > RP . Then P + Q is tame and Ω(P ) = Ω(P + Q).

Proof. Let c be a real number satisfying rQ > c > RP . Then, one
has lim

n→∞
qnc

n = 0 and cn ≥ 1/|γn| for sufficiently large n. This implies

lim
n→∞

γn+qn

γn
=1+ lim

n→∞
qn

γn
=1. The required properties follow. ¤

Assertion 4. Let r be a positive real number with r<RP . If Ω1(P ) ∩
{z∈C : |z|=r}=∅. Then there exists a power series Q(t) of radius of
convergence rQ =r such that P +Q is tame and Ω(P +Q) 6⊂ Ω(P ).

Proof. We define the coefficients of Q(t) =
∑∞

n=0 qnt
n by the following

conditions: |qn| = r−n and arg(qn) = arg(γn). Then, for tameness of
P + Q, we have to show some positive bounds 0<U ≤An≤V for An =

|γn−1+qn−1

γn+qn
|. Since |γn+qn|= |γn|+r−n, we have An = |γn−1/γn|+r/(|γn|rn)

1+1/(|γn|rn)
.

Then, evaluating term-by-term in the numerator, one gets An≤v+r=:
V . On the other hand, according as 1 ≥ 1/(|γn|rn) or not, we have
An ≥ u/2 or An ≥ r/2. Therefore, we may set U :=min{u/2, r/2}.

Let us find a particular element d ∈ Ω(P + Q) such that d 6∈ Ω(P ).
For a small positive real number ε satisfying the inequality (1−ε)/r>
1/RP , there exists an increasing infinite sequence of integers nm (m∈
Z≥0) such that ((1− ε)/r)nm > |γnm| for m ∈ Z≥0. By choosing a
suitable sub-sequence (denoted by the same nm), we may assume that
Xnm(P +Q) converges to an element, say d, in Ω(P + Q). Its kth
coefficient dk is equal to the limit of the sequence (γnm−k+qnm−k)/(γnm+
qnm) for nm →∞. For each fixed nm, dividing the numerator and the
denominator by qnm , we get an expression (X + rkY )/(Z +1) where
|X| = |γnm−k/γnm| · |γnmrnm| ≤ vk · (1−ε)nm (for n >> k), Y ∈ S1,
and |Z| = |γnmrnm| < (1−ε)nm . Thus, taking the limit nm → ∞, we
have X → 0, Y → eiθk for some θk ∈ R and Z → 0 so that dk =rkeiθk .
On the other hand, we see that d 6∈Ω(P ), since ι(d)= reiθ1 6∈Ω1(P ) by
assumption. ¤

We do not use following Assertion in the present paper, since we know
more precise information for the cases #Ω(P ) <∞. However, it may
have a significance when we study the general case with #Ω(P )=∞.

Assertion 5. An opposite series converges with radius 1/ sup{|a| : a∈
Ω1(P )} ≤ 1/RP .

Proof. Let a(s) = lim
m→∞

Xnm(P ) for an increasing sequence {nm}m∈Z≥0

be an opposite series. By the Cauchy-Hadmard theorem, the radius of
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convergence of a is given by

ra = 1/ lim
k→∞

|ak|1/k = 1/ lim
k→∞

| lim
m→∞

γnm−k/γnm |1/k,

where the RHS is lower bounded by 1/ sup{|a| : a ∈ Ω1(P )} from below.
¤

It seems natural to ask when we can replace sup{|a| : a ∈ Ω1(P )} by
RP ? Finally, we state a result, which is not related to the stability.

Assertion 6. For any positive integer m, we have the equality

(2.5.1) Ω(P ) = Ω
(

dmP
dtm

)
which is equivariant with the action of τΩ

Proof. It is sufficient to show the case m = 1. We show a slightly
stronger statement: the subsequence {Xnm(P )}m∈Z≥0

converges to a

series a(s) if and only if {Xnm

(
dP
dt

)
}m∈Z≥0

also converges to a(s).
For an increasing sequence {nm}m∈Z≥0

and for any fixed k∈Z≥0, the

convergence of the sequence
γnm−k

γnm
to c is equivalent to the convergence

of the sequence
(nm−k)γnm−k

nmγnm
=(1−k/nm)

γnm−k

γnm
to the same c. ¤

3. Finite rational accumulation

We show that, if Ω(P ) is a finite set, then it has a strong structure,
which we call the finite rational accumulation (§3.2 Theorem and its
Corollary). The whole sequel of the present paper focuses on its study.

3.1. Finite rational accumulation.
We introduce the concept of finite rational accumulation. To this

end, we start with a preliminary concept: a rational subset of Z≥0.
The following fact is easy and well known, so we omit its proof.

Fact. The following conditions for a subset U ⊂Z≥0 are equivalent.
i) Put U(t) :=

∑
n∈U tn. Then, U(t) is a rational function in t.

ii) There exists h ∈ Z>0 and a polynomial V (t) such that U(t) = V (t)
1−th

.
iii) There exists h ∈ Z>0 such that n + h ∈ U iff n ∈ U for n >> 0.
iv) There exists h∈Z>0, a subset u⊂Z/hZ and a finite set D⊂Z≥0

such that U \D=∪[e]∈uU
[e]\D, where, for a class [e]∈Z/hZ of e, put

(3.1.1) U [e] :={n∈Z≥0 | n≡e mod h}.

Further more, ii), iii) and iv) are equivalent for a pair (U, h). The
least such h for a fixed U will be called the period of U .
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Definition. 1. A subset U of Z≥0 is called a rational subset if it satisfies
one of the above four equivalent conditions.

2. A finite rational partition of Z≥0 is a finite collection {Ua}a∈Ω of
rational subsets Ua⊂Z≥0 indexed by a finite set Ω such that there is a
finite subset D of Z≥0 so that one has the disjoint decomposition

Z≥0 \ D = qa∈Ω(Ua \ D).

In particular, for h ∈ Z>0, the partition Uh := {U [e]}[e]∈Z/hZ of Z≥0 is
called the standard partition of period h.

3. For a finite rational partition {Ua}a∈Ω of Z≥0, the period of a stan-
dard partition, which subdivide {Ua}a∈Ω, is called a period of {Ua}a∈Ω.
The smallest period (= lcm{period of Ua| a ∈ Ω}) of a finite rational
partition {Ua}a∈Ω is called the period of {Ua}a∈Ω.

We, now, arrived at the key concept of the present paper.

Definition. A sequence {Xn}n∈Z≥0
of points in a Hausdorff space is

finite rationally accumulating if the sequence accumulates to a finite set,
say Ω, such that for a system of pairwise-disjoint open neighborhoods
Va for a ∈ Ω, the system {Ua}a∈Ω for Ua := {n ∈ Z≥0 | Xn ∈ Va} is a
finite rational partition of Z≥0. The (resp. a) period of the partition is
called the (resp. a) period of the finite rational accumulation set Ω.

3.2. τΩ-periodic point in Ω(P ).
Generally speaking, finiteness of the accumulation set Ω of a sequence

does not imply that it is finite rationally accumulating (see §3.5 Ex-
ample a). Therefore, the following theorem describes a distinguished
property of the accumulation set Ω(P ). This justifies the introduction
of the concept of “finite rational accumulation”.

Theorem. Let P (t) be a tame power series in t. Suppose there exists
an isolated point of Ω(P ), say a, which is periodic with respect to the
τΩ-action on Ω(P ). Then Ω(P ) is a finite rational accumulation set,
whose period hP is equal to #Ω(P ). Furthermore, we have a natural
bijection that identifies Ω(P ) with the τΩ-orbit of a:

(3.2.1)
Z/hP Z ' Ω(P )

e mod hP 7→ a[e] := lim
n→∞

Xe+hP ·n(P ),

where the standard subdivision UhP
of the partition of Z≥0 is the exact

partition for the space Ω(P ) of the opposite series of P . The shift
action [e] 7→ [e−1] in the LHS is equivariant to the τΩ action in the
RHS.

Proof. The assumption on a means:
i) There exists a positive integer h ∈ Z>0 such that
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(τΩ)ha=a 6=(τΩ)h′
a for 0<h′<h.

ii) There exists an open neighbourhood Va of a in C[[s]] such that

Ω(P ) ∩ Va ={a}.

In particular, Ω(P )\{a} is a closed set.

Since Ω(P ) is a compact Hausdorff space, it is a regular space, so
we may assume further that Ω(P ) ∩ Va = {a}. Then, by setting Ua :=
{n ∈ Z≥0 | Xn(P ) ∈ Va}, the sequence {Xn(P )}n∈Ua converges to the
unique limit element a. By the definition of τΩ in §2, the relation
(τΩ)ha = a implies that the sequence {Xn−h(P )}n∈Ua converges to a.
That is, there exists a positive number N such that for any n∈Ua with
n>N , Xn−h(P ) ∈ Va, and hence n−h belongs to Ua.

Consider the set A :={[e]∈Z/hZ | there are infinitely many elements
of Ua which are congruent to [e] modulo h }. By the defining property of
N , if [e] ∈ A, then Ua contains U [e]∩Z≥N (Proof. For any m ∈ Z≥N with
m mod h ≡ [e], there exists an integer m′ ∈ Ua such that m′ > m and
m′ mod h = [e] by the definition of the set A. Then, by the definition
of N , m′−h ∈ Ua. Obviously, either m′−h = m or m′−h > m occurs.
If m′ − h > m then we repeat the same argument to m′′ :=m′ − h so
that m′′ − h = m′ − 2h ∈ Ua. Repeating, similar steps, after finite
k-steps, we show that m′ − kh = m ∈ Ua).

Thus, Ua is, up to a finite number of elements, equal to the rational
subset ∪[e]∈AU [e]. This implies A 6= ∅. Consider the rational subset
U(τΩ)ia := {n − i | n ∈ Ua} for i = 0, 1, · · · , h − 1. Due to §2.3
Assertion 2, {Xn(P )}n∈U(τΩ)ia

converges to (τΩ)ia, so U(τΩ)ia is, up to

a finite number of elements, equal to the rational subset ∪[e]∈AU [e−i].
By the assumption a 6= τ i

Ωa for 0 ≤ i < h, any pair of rational subsets
U(τΩ)ia (0≤ i < h) have at most finite intersection, so A is a singleton of

the form A={[e0]} for some e0 ∈ Z and U(τΩ)ia =U [e0−i] up to a finite

number of elements. On the other hand, since the union ∪h−1
i=0 U(τΩ)ia

already covers Z≥0 up to finite elements and since each {Xn(P )}n∈U(τΩ)ia

converges only to (τΩ)ia, the opposite sequence (2.2.1) can have no
other accumulating point than the set {a, τΩa, · · · , (τΩ)h−1a}. That
is, Ω(P ) is a finite rational accumulation set with the transitive hP -
periodic action of τΩ. ¤

Corollary. If the set of isolated points of Ω(P ) is finite, then Ω(P ) is
a finite rational accumulation set with the presentation (3.2.1).

Proof. Since the τΩ action preserves the set of isolated points of Ω(P ),
there should exists a periodic point. ¤
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3.3. Example by Mach̀ı [M].
Let Γ := Z/2Z ∗ Z/3Z ' PSL(2, Z) with the generator system G :=

{a, b±1} where a, b are the generators of Z/2Z and Z/3Z, respectively.
Then, the number #Γn of elements of Γ expressed by the words in the
letters G of length less or equal than n for n ∈ Z≥0 is given by

#Γ2k = 7 · 2k − 6 and #Γ2k+1 = 10 · 2k − 6 for k ∈ Z≥0.

Therefore, we get the following expression of the growth function:

PΓ,G(t) :=
∑∞

k=0 #Γkt
k = (1+t)(1+2t)

(1−2t2)(1−t)
.

Then, we see that Ω1(PΓ,G) and, hence, Ω(PΓ,G) are finite rationally
accumulating of period 2. Explicitly, they are given as follows.

Ω1(PΓ,G)=
{

a
[0]
1 := lim

n→∞
#Γ2n−1

#Γ2n
= 5

7
, a

[1]
1 := lim

n→∞
#Γ2n

#Γ2n+1
= 7

10

}
Ω(PΓ,G) =

{
a[0](s) , a[1](s)

}
where

a[0](s) :=
∞∑

k=0

2−ks2k +
5

7
s

∞∑
k=0

2−ks2k

=
(1+ 5

7s)

(1− s2

2 )
= 1

2 ·
1+5

7

√
2

1− s√
2

+ 1
2 ·

1−5
7

√
2

1+ s√
2

,

a[1](s) :=
∞∑

k=0

2−ks2k +
7

10
s

∞∑
k=0

2−ks2k

=
(1+ 7

10s)

(1− s2

2 )
= 1

2 ·
1+7

5
1√
2

1− s√
2

+ 1
2 ·

1− 7
5

1√
2

1+ s√
2

.

In §5.4, these coefficients of fractional expansions are recovered by a
use of, so called, rational operators (see §5.3 Theorem ii)).

We calculate also r2
P = R2

P = a
[0]
1 a

[1]
1 = 5

7
7
10

= 1
2
.

3.4. Simply accumulating Examples.
A tame power series P (t) is called simply accumulating if #Ω(P )=1.

Growth functions PΓ,G(t) for surface groups and Artin monoids are
simply accumulating, respectively (Cannon [C], [S2, S3]). This fact for
Artin monoids enables one to determine their F-functions [S4].
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3.5. Miscellaneous Examples.
Before going further, we use a simple model of oscillating sequence

{γn}n∈Z≥0
to give some examples of the power series P (t) such that

a) Ω1(P ) is finite but is not finite rationally accumulating,
b) Ω1(P ) is finite rationally accumulating but #Ω1(P )<#Ω(P ),
c) Ω(P ) 6= Ω(P + Q) for a power series Q(t) for any RP > rQ > rP .

We do not use these results in the sequel so that the readers may skip
present subsection without substantial loss.

Given a triple U := (U, a, b), where U ⊂ Z≥1 is any infinite subset
with infinite complement and a, b ∈ C \ {0}, we associate a sequence
{γn}n∈Z≥0

defined by an induction on n: γ0 := 1 and γn := γn−1 · a if
n∈U and γn−1 · b if n 6∈U . Set PU(t) :=

∑∞
n=0 γnt

n. Then:

Fact i) The series PU(t) is tame and Ω1(PU) = {a−1, b−1}.
ii) The series PU(t) is finite rationally accumulating if and only if U

is a rational subset of Z≥0.

Proof. i) The inequalities: min{|a|, |b|} ≤ |γn/γn−1| ≤ max{|a|, |b|}
imply the tameness of PU. The latter half is trivial since the proportion
γn/γn−1 takes only the values a or b.

ii) This follows from: PU is rational ⇔ The sets {n∈Z≥1 | γn/γn−1 =
a}=U and {n∈Z≥1 | γn/γn−1 =b}=U c are rational⇔ U is rational. ¤

a) By choosing a non-rational subset U , we obtain an example a).
b) Even if U (and, hence, U c also) is a rational subset, if {U,U c} is

not the standard partition of Z≥0 of period 2, then the period of the
partition {U,U c}=#Ω(PU)>2=#Ω1(PU). This gives an example b).

c) To get an example satisfying c), we need a bit more consideration.

Define pU := lim
n→∞

#(U∩[1,n])
n

and qU := lim
n→∞

#(U∩[1,n])
n

. If U is a rational

subset, then pU = qU is a rational number. In general, the pair (pU , qU)
can be any of {(p, q) ∈ [0, 1]2 | p≥q}. Suppose |a|≥|b|.

1/rP := lim
n→∞

|a|
#(U∩[1,n])

n · |b|1−
#(U∩[1,n])

n = |a|pU |b|1−pU ,

1/RP := lim
n→∞

|a|
#(U∩[1,n])

n · |b|1−
#(U∩[1,n])

n = |a|qU |b|1−qU .

Thus, rP and RP can take any values, satisfying: |a|−1≤rP ≤RP ≤|b|−1.
If there is a gap rP <RP , then for any r∈R>0 such that rP <r <RP ,
Q(t) :=

∑∞
n=0 eiθn(t/r)n for θn = #(U ∩ Z1≤·≤n) arg(a)+(n−#(U ∩ Z1≤·≤n)) arg(b)

gives example c) (since Ω1(PU)∩{z∈C : |z|=r}=∅ and §2.4 Assertion4).
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4. Rational expression of opposite series

From this section, we restrict our attention to a tame power series
having the finite rational accumulation set Ω(P ).

4.1. Rational expression.
We show that opposite series become rational functions of special

form. We start with a characterization of a finite rational accumulation.

Assertion 7. Let P (t) be a tame power series in t. The set Ω(P ) is a
finite rational accumulation set of period hP ∈Z≥1 if and only if Ω1(P )
is so. We say P is finite rationally accumulating of period hP .

Proof. If Ω(P ) is finite rationally accumulating, then, in particular, the
sequence γn−1

γn
is finite rationally accumulating. To show the converse

and to show the coincidence of the periods, assume that {γn−1/γn}n∈Z≥0

accumulate finite rationally of period h1. Then, for the standard sub-
division Uh1 :={U [e]}[e]∈Z/h1Z, the subsequence {γn−1/γn}n∈U [e] for each

[e]∈Z/h1Z converges to some number, which we denote by a
[e]
1 ∈C .

For any k∈Z≥0 and sufficiently large (depending on k) n, one has
γn−k

γn

=
γn−1

γn

γn−2

γn−1

· · · γn−k

γn−k+1

.

For n ∈ U [e] with [e] ∈ Z/h1Z, we see that the RHS converges to

a
[e]
1 a

[e−1]
1 . . . a

[e−k+1]
1 . Then, for [e]∈Z/h1Z and k ∈Z≥0, by putting

(4.1.1) a
[e]
k := a

[e]
1 a

[e−1]
1 . . . a

[e−k+1]
1 ,

the sequence {Xn(P )}n∈U[e]
converges to a[e] :=

∑∞
k=0 a

[e]
k sk with a

[e]
1 =

ι(a[e]) so that Ω(P ) is finite rationally accumulating. Its period hP is a
divisor of h1, but it cannot be strictly smaller than h1, since otherwise
the sequence {γn−1/γn}n∈Z≥0

gets a period shorter than h1. ¤
Remark. That the period of the finite rational accumulation of Ω1(P )
is equal to hP does not imply #Ω1(P ) = hP . That is, the map a ∈
Ω(P ) 7→ ι(a)∈Ω1(P ) is not necessarily injective (see §3.5 Example b).

Assertion 8. Let P be finite rationally accumulating of period hP ∈
Z≥1. Then the opposite series a[e] =

∑∞
k=0 a

[e]
k sk in Ω(P ) associated

with the rational subset U [e] converges to a rational function

(4.1.2) a[e](s) =
A[e](s)

1 − AP shP
,

where the numerator A[e](s) is a polynomial in s of degree hP −1:

(4.1.3) A[e](s) :=
∑hP−1

j=0

(∏j
i=1 a

[e−i+1]
1

)
sj
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and

(4.1.4) AP :=
∏hP−1

i=0 a
[i]
1 = a

[0]
hP

= · · · = a
[hP−1]
hP

.

We have a relation

(4.1.5) (rP )hP = (RP )hP = |AP |,
where rP is the radius of convergence of P (t) and RP is given by (2.1.4).

Proof. Due to the hP -periodicity of the sequence a
[e]
1 (e ∈ Z), formula

(4.1.1) implies the “semi-periodicity” with respect to the factor (4.1.4):

a
[e]
mhP +k =(AP )ma

[e]
k for m∈Z≥0, k=0,· · ·, hP −1.

This implies a factorization a[e] =A[e]·
∑∞

m=0(AP shP )m and hence (4.1.2).

To show (4.1.5), it is sufficient to show the existence of positive real
constants c1 and c2 such that for any k ∈ Z≥0 there exists n(k) ∈ Z≥0

and for any integer n ≥ n(k), one has c1r
k ≤

∣∣γn−k

γn

∣∣ ≤ c2r
k.

Proof. We may choose c1, c2∈R>0 satisfying c1<min{
∣∣a

[e]
i

ri

∣∣ | [e]∈Z/hZ, i∈
Z∩ [0, h−1]} and c2 >max{

∣∣a
[e]
i

ri

∣∣ | [e] ∈ Z/hZ, i∈Z∩ [0, h−1]}. ¤
This completes a proof of Assertion 8. ¤

Corollary. Let Ω(P ) be finite. For any power series Q(t) of radius rQ

of convergence larger than rP , P +Q is tame and Ω(P )=Ω(P +Q).

4.2. Coefficient matrix Mh of numerator polynomials.
In this and the next section, we study the linearly dependent rela-

tions among the opposite series a[e](s) for [e]∈Z/hP Z.
For the purpose, let us consider the matrix

(4.2.1) Mh := (
∏f

i=1 a
[e−i+1]
1 )e,f∈{0,1,··· ,h−1}

of the coefficients of the numerator polynomials (4.1.3). Regarding

a
[0]
1 ,· · ·, a[h−1]

1 as variables, let us introduce the “discriminant” by

(4.2.2) Dh(a
[0]
1 , · · · , a

[h−1]
1 ) := det(Mh) ∈ Z[a

[0]
1 , · · · , a

[h−1]
1 ].

Actually, Dh is an irreducible homogeneous polynomial of degree h(h−
1)/2. Under the cyclic permutation σ=(0, 1, · · · , h−1) of the variables,

(4.2.3) Dh◦σ=(−1)h−1Dh.

Our next task in §4.3 is to stratify the zero-loci of Dh according to the
rank of Mh. This is achieved by introducing the opposite denominator
polynomial ∆op, whose degree describes the rank of the matrix Mh (see
(4.3.3)). Here the coefficient is an arbitrary field K. In particular,
for the case of K = R, we give a precise stratification of the positive
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real parameter space (R>0)
h of the parameter (a

[0]
1 , · · · , a

[h−1]
1 ), whose

strata are labeled by cyclotomic polynomials i.e. an integral factor of
1 − sh which contains also the factor 1 − s (see Assertion 9.iv).

4.3. Linear dependence relations among opposite series.

Assertion 9. Fix h ∈ Z>0. For each [e] ∈ Z/hZ and each A ∈ K×,
let A[e](s) be the polynomial defined in equations (4.1.3) and (4.1.4)

associated with any h-tuple ā=(a
[0]
1 , · · ·, a[h−1]

1 )∈(K×)h.
i) In K[s], we have the equality of the greatest common divisors:

gcd(A[0](s), 1−Ash) = · · · = gcd(A[h−1](s), 1−Ash)
= gcd(A[0](s), A[1](s)) = · · · = gcd(A[h−1](s), A[h](s))

(whose constant term is normalized to 1), which we denote by δā(s).
Let us introduce the opposite denominator polynomial by

(4.3.1) ∆op
ā (s) := (1 − Ash)/δā(s).

ii) For [e]∈Z/hZ, put

(4.3.2) b[e](s) := A[e](s)/δā(s).

The polynomials b[e](s) for [e] ∈ Z/hZ span the space K[s]<deg(∆op
ā ) of

polynomials of degree less than deg(∆op
ā ). Hence, one has the equality:

(4.3.3) rank (Mh) = deg(∆op
ā ).

iii) For ϕ(s) ∈ K[s], ϕ(s) | ∆op
ā if and only if ϕ(s) | 1−Ash and

gcd(ϕ(s), A[e](s)) = 1. In particular, if ā∈ (R>0)
h, then ∆op

ā is always

divisible by 1−h
√

As.
iv) Let h∈Z>0. There exists a stratification Rh

>0 =q∆opC∆op, where
the index set is equal to

(4.3.4) {∆op∈R[s] : 1−s | ∆op(s) | 1−sh & ∆op(0)=1},
and C∆op is a smooth semi-algebraic set of R-dimension deg(∆op)−1,

such that ∆op
ā (s)=∆op(h

√
As) for ∀ā∈C∆op and C∆op

1
⊃C∆op

2
⇔ ∆op

1 |∆op
2

Proof. i) By Definitions (4.1.3), (4.1.4) and (4.1.1), we have the follow-
ing relations:

(4.3.5) a
[e+1]
1 sA[e](s) + (1 − Ash) = A[e+1](s)

for [e]∈Z/hZ. This implies gcd(A[e](s), 1−Ash) |gcd(A[e+1](s), 1−Ash)
for [e] ∈ Z/hZ. Thus, one may conclude that all of the polynomials
gcd(A[e](s), 1 − Ash) = gcd(A[e](s), A[e+1](s)) for [e] ∈ Z/hZ are the
same up to a constant factor. It is obvious that a factor of 1 − Ash

contains a nontrivial constant term, which we shall normalize to 1.



16 KYOJI SAITO

ii) Let V be the subspace of K[s]/(∆op
ā ) spanned by the images of

b[e](s) := A[e](s)/δā(s) for [e] ∈ Z/hZ. Relation (4.3.5) implies that
V is closed under multiplication by s. On the other hand, b[e](s) and
∆op

ā are relatively prime, so they generate 1 as a K[s]-module. That
is, V contains the class [1] of 1. Hence, V = K[s] · [1] = K[s]/(∆op

ā ).
Since deg(b[e](s)) = h−1−deg(δā(s)) = deg(∆op

ā )−1, V ∩ K[s]∆op
ā = 0.

This means that the polynomials b[e](s) for [e] ∈ Z/hZ span the space
of polynomials of degree less than deg(∆op

ā ). In particular, one has
rank(Mh)=rankKV =deg(∆op

ā ).
iii) The first half is a reformulation of the definition of δā and (4.3.1).

We see that if 1−rs 6 |∆op
ā ) then 1−rs | A[e](s) (4.3.2) so A[e](1/r) = 0.

This is impossible, since all coefficients of A[e] and 1/r are positive
reals.

iv) Let ∆op be a polynomial as given in (4.3.4) and put d = deg(∆op).
Consider the set C∆op := {c(s) = 1+ c1s+ · · ·+ cd−1s

d ∈ R[s] | ∃r ∈
R>0 s.t. all coefficients of A

[0]
c := c(s)(1− rhsh)/∆op(rs) are positive}.

Then C∆op is an open semi-algebraic set in Rd, which is nonempty since
∆op(rs)/(1−rs) belongs to C∆op . In particular, it is pure dimensional
of real dimension d − 1. To any c∈C∆op , one can associate a unique
ā∈(R>0)

h such that the associated polynomial A[0] (4.1.3) is equal to

A
[0]
c . We identify C∆op with the semi-algebraic subset {a∈(R>0)

h |a↔
c∈C∆op} of pure dimension d − 1 embedded in (R>0)

h. Similarly, for
any factor ∆′ of ∆op (over R) divisible by 1 − s, we consider the semi-
algebraic subsets C∆′ in Rh

>0 of pure dimension deg(∆′). Then, the

multiplication of ∆op/∆′ induces the inclusion C∆′ ⊂ C∆op . Then we
define the semi-algebraic set C∆op inductively by C∆op\∪∆′C∆′ , where
the index ∆′ runs over all factors of ∆op which are not equal to ∆op and
are divisible by 1−rs. By the induction hypothesis, d−1 > dimR(C∆′)
so that the difference C∆op is a non-empty open semi-algebraic set with
pure real dimension d − 1.

This completes the proof of Assertion 9. ¤

Suppose char(K) 6 | h, and let K̃ be the splitting field of ∆op
ā with

the decomposition ∆op
ā =

∏d
i=1(1−xis) in K̃ for d := deg(∆op

ā ). Then,
one has the partial fraction decomposition:

(4.3.6) A[e](s)
1−Ash =

∑d
i=1

µ
[e]
xi

1−xis

for [e] ∈ Z/hZ, where µ
[e]
xi is a constant in K̃ given by the residue:

(4.3.7) µ
[e]
xi = A[e](s)(1−xis)

1−Ash

∣∣∣
s=(xi)−1

= 1
h
A[e](x−1

i ).
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Corollary. The matrix
(
(µ

[e]
xi )[e]∈Z/hZ,x−1

i ∈V (∆op
ā )

)
is of maximal rank d.

Proof. The rational function on the LHS of (4.3.6) for [e]∈Z/hZ span
a vector space of rank d :=deg(∆op

ā ). Therefore, the coefficient matrix
on the RHS has rank equal to d. ¤

Remark. 1. One has the equivariance σ(µ
[e]
xi ) = µ

[e]
σ(xi)

with respect to

the action σ ∈ Gal(K̃, K) of the Galois group of the splitting field.
2. The index xi in (4.3.7) may run over all roots x of the equation

xh−A=0. However, if x−1 6∈ V (∆op
ā ) (i.e. ∆op

ā (x−1) 6=0), then µ
[e]
x =0.

3. For the given h ∈ Z>0, to consider the space of finite parameters

(a
[0]
1 , · · · , a

[h−1]
1 ) is equivalent to consider the space of infinite parame-

ters (ai)i∈Z with “quasi”-periodicity ai+h = Aai. Then it was suggested
by the referee to regard the latter space over C as a h-”quasi”-periodic
representation of Z and to decompose it to the direct sum the sequence
(ai = Ai/hχ(i))) for χ ∈ Z/hZ → C×.

4.4. The module CΩ(P ).
We return to a tame power series P (t) (2.1.1). Suppose P (t) is

finite rationally accumulating of a period hP . Let a
[e]
1 be the initial of

the opposite series a[e] ∈ Ω(P ) for [e] ∈ Z/hP Z. Since ∆op
ā (s) (4.3.1)

for ā := (a
[0]
1 , · · · , a

[h−1]
1 ) depends only on P but not on the choice

of a period hP , we shall denote it by ∆op
P (s) and call it the opposite

denominator polynomial of P . Then, §4.3 Assertion 9.ii) says that we
have the C-isomorphism:

(4.4.1)
CΩ(P ) ' C[s]/(∆op

P (s)),
a[e] 7→ b[e] := ∆op

P · a[e] mod ∆op
P .

Let us rewrite equality (4.3.2) and introduce the key number:

(4.4.2) dP := rankC
(
CΩ(P )

)
= deg(∆op

P ).

Define an endomorphism σ on CΩ(P ) by letting

(4.4.3) σ(a[e]) :=τ−1
Ω (a[e])= 1

a
[e+1]
1

a[e+1].

Assertion 10. The actions of σ on the LHS and the multiplication of
s on the RHS of (4.4.1) are naturally identified. Hence, the linear de-
pendence relations among the generators a[e] ([e]∈Z/hZ) are obtained
by the linear dependence relations ∆op

P (σ)a[e] for [e]∈Z/hZ.

Proof. The first part of Assertion 10 is a matter of calculation.∑
[e]∈Z/hZ c[e]b

[e] ≡ 0 mod ∆op
P (σ)b[e] =0 for [e]∈Z/hZ. ¤

Note that the σ-action on CΩ(P ) is not s|CΩ(P ) in the ring C[[s]].
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5. Duality theorem

In this section, we restrict the class of functions P (t) to those that are
analytically continuable to a meromorphic function in a neighbourhood
of the closed disc of convergence.2 Under this assumption, we show a
duality between Ω(P ) and poles of P (t) on the boundary of the disc.

5.1. Functions of class C{t}r.
For r ∈ R>0, we introduce a class

(5.1.1) C{t}r :=

{
P (t)∈C[[t]]

∣∣∣ i) P (t) converges on the open disc D(0, r).
ii) P (t) is analytically continuable to a meromorphic

function on an open neighbourhood of D(0, r).

}
For an element P (t) of C{t}r, let us introduce a monic polynomial

∆P (t), called the polar part polynomial of P (t), characterized by
i) ∆P (t)P (t) is holomorphic in a neighbourhood of the circle |t| = r,
ii) ∆P (t) has lowest degree among all polynomials satisfying i).

Next, we decompose

(5.1.2) ∆P (t) =
∏N

i=1(t − xi)
di

where xi (i=1,· · ·,N , N ∈Z≥0) are mutually distinct complex numbers
with |xi|=r and di∈Z>0 (i=1,· · ·, N).

Definition. The top denominator polynomial ∆top
P (t) of P (t) is

(5.1.3) ∆top
P (t) :=

∏
i,di=dm

(t − xi) where dm :=max{di}N
i=1.

Note that ∆P (t) may be equal to 1, and then ∆top
P (t) = 1. The

converse: if ∆P (t) 6= 1, then ∆top
P (t) 6= 1, is also true.

5.2. The rational operator TU .
Associated with a rational subset U of Z≥0, we introduce a linear

operator TU acting on C{t}r to itself, which we call a rational operator
or a rational action of U .

2This assumption is necessary, since the finite rational accumulation of P (t) does
not imply that P (t) is meromorphic on the boundary of its convergent disc.

Example. Consider the function P (t) :=
√

1+t
1−t =

∑∞
n=0

(n−1)!
2n[n/2]![(n−1)/2]! t

n which
is tame. We see that the sequence of the proportion γn−1/γn of its coefficients
accumulates to the unique values 1, i.e. Ω1(P ) = {1} and Ω(P ) = {1/(1 − s)}. On
the other hand, we observe that the function P (t) has two singular points on the
boundary of the unit disc D(0, 1) which are not meromorphic but algebraic. Such
algebraic branching cases shall be treated in a forthcoming paper.
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Definition. The action TU on C[[t]] of a rational subset U of Z≥0 is

(5.2.1) TU : P =
∑

n∈Z≥0
γnt

n 7→ TUP :=
∑

n∈U γnt
n.

One may regard TUP as a product of P with the rational function U(t)
(§3.1 Definition) in the sense of Hadamard [H].

The action TU is continuous w.r.t. the adic topology on C[[t]] since
TU

(
tkC[[t]]

)
⊂ tkC[[t]] for any k∈ Z≥0. It is also clear that the radius

of convergence of TUP is not less than that of P .

Assertion 11. For h ∈ Z≥0 and [e] ∈ Z/hZ, let us define the rational
operator T [e] := TU [e]. Then, we have

h−1∑
e=0

T [e] = 1,(5.2.2)

T [e] · t = t · T [e−1] & T [e] · d

dt
=

d

dt
· T [e+1].(5.2.3)

Proof. The equation (5.2.2) is a consequence of Z≥0 = th−1
e=0U [e]. The

(5.2.3): for any tm (m ∈ Z≥0), both sides return the same tm+1δ[e],[m+1] =
tm+1δ[e−1],[m] and mtm−1δ[e],[m−1] =mtm−1δ[e+1],[m], respectively. ¤
Corollary. The action TU for a rational subset U ⊂ Z≥0 preserves
C{t}r for any r ∈ R>0. The highest order of poles on |t| = r of TUP
does not exceed that of P ∈C{t}r.

Proof. By decomposing the subset U as in §3.1 Fact iv), we need to
prove this only for the case U = U [e] for some [e ∈ Z/hZ] with 0 ≤
e < h. Since (5.2.3) implies T [e] = te−hT [0]th−e, we have only to prove
the case when U = U [0] = hZ. But, then, TU [0] , which maps P (t) to
1
h

∑
ζ P (ζt), has the required property. ¤

5.3. Duality theorem.
The following is the goal of the present paper.

Theorem. (Duality) Let P (t) be a tame power series belonging to
C{t}r for r=rP (= the radius of convergence of P ). Suppose that P (t)
is finite rationally accumulating of period hP . Then
i) The opposite denominator polynomial ∆op

P (s) (4.3.1) and the top de-
nominator polynomial ∆top

P (t) (5.1.3) of P (t) are opposite to each other.
That is,

(5.3.1) degt(∆
top
P (t)) = dP = degs(∆

op
P (s)),

and
(5.3.2) tdP ∆op

P (t−1) = ∆top
P (t), equivalently sdP ∆top

P (s−1) = ∆op
P (s).



20 KYOJI SAITO

ii) We have an equality of transition matrices:
(5.3.3)(

P (t)

T [e]P (t)

∣∣
t=xi

)
[e]∈Z/hP Z, xi∈V (∆top

P (t))
=

(
A[e]

∣∣
s=x−1

i

)
[e]∈Z/hP Z, x−1

i ∈V (∆op
P (s))

.

In particular,
(

P (t)

T [e]P (t)

∣∣
t=xi

)
[e]∈Z/hP Z, xi∈V (∆top

P (t))
is of maximal rank dP .

Proof. We start with the following obvious remark.

Assertion 12. Let c ∈ C× be any non-zero complex constant. Change
the variable t to t̃ := t/c and the opposite variable s to s̃ := cs, and,
for any tame series P , define a new tame series P̃ := P |t=ct̃.

Then we have,

Ω(P̃ ) = Ω(P )|s=s̃/c := {a(s̃/c) | a(t) ∈ Ω(P )} ,

Ω1(P̃ ) = Ω1(P )/c := {a1/c | a1 ∈ Ω1(P )}.

Proof. The equalities follows immediately from direct calculations. ¤
According to Assertion 12, we prove the theorem by changing the

variable t to t̃ = t/c for c = hP
√

AP (recall (4.1.4)) so that the new tame
series has the constant AP̃ equal to 1. Therefore, from now on, in the
present proof, we shall assume that P is a finite rationally accumulating
tame series with AP =1. In particular, this implies that the radius rP

of convergence of P is equal to 1 (recall (4.1.5)).

We first prove the theorem for a special but the key case when
#Ω(P )=1.

Assertion 13. If P (t) is simply accumulating then ∆top
P = t−1.

Proof. Consider the partial fractional expansion of P :

(5.3.4) P (t) =
∑N

i=1

∑di

j=1
ci,j

(t−xi)j + Q(t),

where xi (i = 1, ·, N) is the location of a pole of P of order di on the
unit circle |xi| = 1, ci,j (j = 1, · · · , di) is a constant in C, and Q(t) is
a holomorphic function on a disc of radius > 1.

We apply stability (Assertion 3 in §2.5) to the partial fractional ex-
pansion (5.3.4), to obtain Ω(P )=Ω(P−Q). That is, the principal part
P0 := P −Q gives rise to a simply accumulating power series. That

is, Xn(P0) =
∑n

k=0

PN
i=1

P

1≤j≤dm
ci,jxk−n−1

i (n−k;j)/(j−1)!
PN

i=1

P

1≤j≤dm
ci,jx−n−1

i (n;j)/(j−1)!
sk (n = 0, 1, 2, · · · )

converges to 1
1−s

=
∑∞

k=0 sk. Then, under this assumption, we’ll show
that if ci,dm 6=0 then xi =1.

For each fixed k ∈ Z≥0, the numerator and denominator of the coef-
ficient of sk in Xn(P0) are polynomials in n of degree ≤ dm. Let vn :=
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i=1 ci,dmx−n−1

i be the coefficients of the top-degree term ndm/(dm−1)!
in the denominator. Since the range of vn is bounded (i.e. |vn| ≤∑

i |ci,dm| due to the assumption |xi| = 1), the sequence for n=0, 1, 2, · · ·
accumulates to a non-empty compact set in C.

First, consider the case when the sequence {vn}n∈Zge0 has a unique
accumulating value v0. Let us show that v0 is non-zero and the result of
Assertion 13 is true. (Proof. The mean sequence: {(

∑M−1
n=0 vn)/M}M∈Z>0

also converges to v0 = lim
n→∞

vn. This means that
∑N

i=1 ci,dm

PM−1
n=0 x−n−1

i

M

converges to v0. If xi 6= 1, the mean sum
PM−1

n=0 x−n−1
i

M
=

1−x−M
i

(xi−1)M
tends

to 0 as M → ∞. That is, v0 = c1,dm , where we assume x1 = 1 (even
if, possibly c1,dm = 0). That is, the sequence v′

n := vn − c1,dm =∑N
i=2 ci,dmx−n−1

i converges to 0. For a fixed n0 ∈ Z>0, consider the

relations: v′
n0+k =

∑N
i=2(ci,dmx−n0

i )x−k+1
i for k = 1, · · · , N −1. Regard-

ing ci,dmx−n0
i (i = 2,· · ·, N) as the unknown, we can solve the linear

equation for them, since the Vandermonde determinant for the matrix
(x−k+1

i )i=2,···,N,k=1,···,N−1 does not vanish. So, we obtain a linear approx-
imation: |ci,dm | = |ci,dmx−n0

i | ≤ c · max{|v′
n0+k|}N−1

k=1 (i = 2,· · ·, N) for a
constant c > 0 which depends only on x′

is and N but not on n0. The
RHS tend to zero as n0 →∞, whereas the LHS are unchanged. This
implies |ci,dm | = 0, i.e. di < dm for i = 2,· · ·, N . As we have already
remarked ∆P (t) 6= 1 implies ∆top

P (t) :=
∏

di=dm
(t − xi) 6= 1, and hence

c1,dm cannot be 0. So ∆top
P (t) = t − 1.

Next, consider the case when the sequence vn has more than two
accumulating values. Then, one of them is non-zero. Suppose the sub-
sequence {vnm}m∈Z>0 converges to a non-zero value, say c. Recall the
assumption that the sequence γn−1/γn converges to 1. So, the subse-

quence γnm−1

γnm
= vnm−1+lower terms

vnm+lower terms
should also converge to 1 as m → ∞.

In the denominator, the first term tends to c 6=0 and the second term
(= (a polynomial in n of degree dm−1)/ndm) tends to zero. Similarly,
in the numerator, the second term tends to zero. This implies that the
first term in the numerator also converges to c 6= 0. Repeating the same
argument, we see that for any k ∈ Z≥0, the subsequence {vnm−k}m∈Z>>0

converges to the same c. Then, for each fixed M ∈ Z>0, the average
sequence {(

∑M−1
k=0 vnm−k)/M}m∈Z>>0 converges to c, whereas the values

is given by
∑N

i=2 ci,dmx−nm
i

1−x−M
i

(1−x−1
i )M

+ c1,dm which is close to c1,dm for

sufficiently large M and nm >> M . This implies c = c1,dm . Thus, the

sequences {v′
nm−k =

∑N
i=2 ci,dmxnm−k

i }m∈Z>>0 for any k ≥ 0 converge
to 0. Then, an argument similar to that of the previous case implies
|ci,dm |=0, i.e. di < dm (i=2,· · ·, N). Hence, we have ∆top

P (t) = t − 1.
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The proof of Assertion 13 is complete. ¤
We return to the proof of the general case, where P is finite rationally

accumulating of period h, but may no longer be simply accumulating.

Assertion 14. Let P ∈ C{t}1 be finite rational accumulating and the
top denominator polynomial of P is defined as in (5.1.3). Then,

i) The top denominator polynomial of P is a factor of th − 1.
ii) For any 0≤ f < h, T [f ]P as a power series in τ := th is simply

accumulating, where top order of its denominator is equal to dm.

Proof. Since P is rationally finite accumulating of period h with radius
of convergence rP = 1, we have limm→∞ γf+(m−1)h/γf+mh = 1(= rh

P )

for any 0 ≤ f < h. Regarding T [f ]P = tf
∑∞

m=0γf+mhτ
m as a power

series in τ = th and tf as a constant factor of the series, this implies
that Ω1(T

[f ]P ) = {1} and, hence, that T [f ]P is simply accumulating.
Then, Assertion 13 implies that the highest order poles of T [f ]P (in
the variable τ) is only at τ −1 = 0 for all [f ] ∈ Z/hZ, and Corollary
to Assertion 11 implies that the order of the pole at τ = 1 is less or
equal than dm :=the highest order of poles of P (t). Thus, we get an

expression T [f ]P = tf g[f ](τ)
(τ−1)dm , where g[f ] ∈ C{τ}1 such that orders of

poles of g[f ] is strictly less than dm. In view of (5.3.4), we obtain

∗) P =
∑h−1

f=0 T [f ]P =
Ph−1

f=0 tf g[f ](τ)

(τ−1)dm .

This means, in particular, the the location of poles of P of top order
df is contained in the solutions of th − 1 = 0, i.e. ∆top(t)|(th−1) and
i) is proven. To show the the latter half of ii), we need to show that
g[f ](1) 6= 0 for all f . However, ∗) says that g[f0](1) 6= 0 for some f0.

Assuming g[f ](1) = 0 for some f , we show a contradiction. Con-
sider the sequence {γf+mh/γf0+mh}m∈Z≥0

. On one side, this converges
to a non-zero number since P is finite rational accumulating of order
h. On the other hand, since g[f0](τ)/(τ −1)dm has pole of order dm

only at τ = 1, we have γf0+mh = g[f0](1)mdm +O(mdm−1) and order of
poles of g[f ](τ)/(τ −1)dm are strictly less than dm by assumption, we
have γf+mh = O(mdm−1). Thus the sequence converges to 0, which
contradicts to the non-zero limit! ¤

For 0≤ e, f <h, let us calculate the value of the proportion T [f ]P
T [e]P

(t)

at a root x of the equation th−1 (defined by cancelling the poles at the
point as a meromorphic function).

∗) T [f ]P

T [e]P
(t)

∣∣∣∣
t=x

= xf−e
g[f ]

∣∣
τ=1

g[e]
∣∣
τ=1

.

In order to calculate this value, we prepare an elementary Fact.
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Fact. Let A(τ) =
∑∞

m=0 amτm, B(τ) =
∑∞

m=0 bmτm ∈ C{τ}1 such that
their highest order poles of the same order d exist only at τ = 1. Then,

∗∗) A(τ)
B(τ)

∣∣
τ=1 = lim

m→∞
am

bm
.

Proof. Replacing t and cij in (5.3.4) with τ and aij or bij, respectively,

the RHS of ∗∗) is written as lim
m→∞

PN
i=1

P

j≤d ai,jx−m−1
i (m;j)/(j−1)!

PN
i=1

P

j≤d bi,jx−m−1
i (m;j)/(j−1)!

, where xi

is a complex number with |xi|=1 and x1 =1. Since a1,d =(τ−1)dA(τ)
∣∣
τ=1

and b1,d =(τ − 1)dB(τ)
∣∣
τ=1

are non-zero but ai,d = bi,d = 0 for i 6= 1, this

is equal to lim
m→∞

a1,d(m;d)/(d−1)!+O(md−1)

b1,d(m;d)/(d−1)!+O(md−1)
=

a1,d

b1,d
= A(τ)

B(τ)

∣∣
τ=1

. ¤

Applying this Fact, the RHS of ∗) is equal to xf−e lim
m→∞

γf+mh

γe+mh
. Then,

applying to this expression a similar argument for (4.1.1), we obtain:

(5.3.5)
T [f ]P

T [e]P
(t)

∣∣∣∣
t=x

=


xf−e/a

[f ]
1 a

[f−1]
1 · · · a[e+1]

1 if e < f

1 if e = f

xf−ea
[e]
1 a

[e−1]
1 · · · a[f+1]

1 if e > f.

Since the RHS are non-zero in all cases, the order of the poles of
T [e]P (t) at a solution x of the equation th − 1 is independent of [e] ∈
Z/hZ. Summing up both sides of (5.3.5) for 0≤ f <h, we obtain

(5.3.6)
P

T [e]P
(t)

∣∣∣∣
t=x

= A[e](x−1).

(recall the A[e](s) (4.1.3)). Let x be a solution of th − rh = 0 but
∆op

P (x−1) 6= 0. Then δa(x
−1) = 0 (see (4.3.1)) and A[e](x−1) = 0 for

all [e] ∈ Z/hZ (see Assertion 9. i)). That is, T [e]P
P

(t) has a pole at
t = x. This implies that P (t) cannot have a pole of order dm at t = x
(otherwise, due to Corollary to Assertion 11, the pole at t=x of T [e]P

is at most of order dm, which is cancelled in T [e]P
P

(t) by dividing by P ,
yielding a contradiction!). That is, we get one division relation.

Assertion 15. ∆top
P (t) | tdP ∆op

P (t−1) and deg(∆top
P ) ≤ dP .

Finally, let us show the opposite division relation.

Assertion 16. Let P (t) be a tame power series belonging to C{t}r,
which is finite rationally accumulating of period h. Then

i) There exists a constant c∈R>0 such that |γn|≥cr−nndm for n>>0.
ii) td∆op

P (t−1) | ∆top
P (t) .

Proof. i) Consider the Taylor expansion of the partial fractional
expansion eq:5.3.4. Using notation vn in Assertion 13, we have γn =

−vn
r−n−1(n;dm)

(dm−1)!
+(terms coming from poles of order <dm)+(terms coming from Q(t)),
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where vn =
∑

i ci,dm(xi/r)
−n−1 depends only on n mod h since xi is the

root of the equation th − rh = 0. They cannot all be zero (otherwise,
by solving the equations vn = 0 (0≤ n < h), we get ci,dm = 0 for all i,
which contradicts to the vanishing of dm). Let us show that none of
the vn is zero. Suppose the contrary and ve = 0 6= vf for some inte-
gers 0≤ e, f <h. Then, one observes easily that lim

m→∞
γe+mh

γf+mh
= 0. This

contradicts to formula (5.3.5) and the non-vanishing of a
[e]
1 ([e]∈Z/hZ).

ii) Since ∆top
P cancels all poles of maximal order, the fractional ex-

pansion of ∆top
P (t)P (t) has poles of order at most dm−1. Set ∆top

P (t)=
tl+α1t

l−1+· · ·+αl. Then, this means that the sequence {γN} (Taylor
coefficients of P ) satisfies

∗ ∗ ∗) γN · αl + γN−1 · αl−1 + · · · + γN−l · 1 ∼ o(Ndmr−N)

as N → ∞. Let
∑

k aks
k ∈ Ω(P ) be an opposite series given by a

sequence {Xnm(P )}m∈Z≥0 (2.2.1). For each fixed k∈Z≥l, substitute N
by nm−k+ l in ∗ ∗ ∗) and divide it by γnm . Then, taking the limit
m→ ∞ using the part i), the RHS converges to 0, so that we get

ak−lαl + ak−l+1αl−1 + · · · + ak = 0.

Thus sl∆top
P (s−1)a(s) is a polynomial of degree <l and the denominator

∆op
P (s) of a(s) divides sl∆top

P (s−1). So, dP ≤ l and ii) is proved.
This completes a proof of Assertion 16. ¤
The proof of the theorem: (5.3.1) and (5.3.2) are already shown by

Assertions 15 and 16, and (5.3.3) is shown by (4.3.7) and (5.3.6). ¤

5.4. Example by Mach̀ı (continued).
Recall §3.3 Mach̀ı’s example, where we learned that the growth func-

tion PΓ,G(t) =
∑∞

n=0 #Γntn for the modular group Γ = PSL(2, Z) with

respect to certain generator system G is equal to (1+t)(1+2t)
(1−2t2)(1−t)

and that

it is finite rationally accumulating of period h = 2.
Using this data, we calculate further the rational actions on it.

T [0]PΓ,G(t) =
∑∞

k=0 #Γ2kt
2k = 1+5t2

(1−2t2)(1−t2)
,

T [1]PΓ,G(t) =
∑∞

k=0 #Γ2k+1t
2k+1 = 2t(2+t2)

(1−2t2)(1−t2)
,

The opposite denominator polynomial of the series a[e] ([e] ∈ Z/2Z)
and the top denominator polynomial of PΓ,G(t) are given as follows.

∆op
PΓ,G

(s) = 1 − 1

2
s2 & ∆top

PΓ,G
(t) = t2 − 1

2
.
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Then the transformation matrix is given by PΓ,G(t)

T [0]P (t)
=(1+t)2(1+2t)

1+5t2
|t= 1√

2

PΓ,G(t)

T [1]P (t)
=(1+t)2(1+2t)

2t(2+t2)
|t= 1√

2
PΓ,G(t)

T [0]P (t)
=(1+t)2(1+2t)

1+5t2
|t=−1√

2

PΓ,G(t)

T [1]P (t)
=(1+t)2(1+2t)

2t(2+t2)
|t=−1√

2

=

1+ 5
7

√
2 1+ 7

5
1√
2

1− 5
7

√
2 1− 7

5
1√
2

.

In fact, this matrix coincides with the matrix 2 ·
(
µ

[e]
xi

)
[e]∈Z/2Z,xi∈{±

√
2
−1}

(4.3.7), which was already calculated in §3.3 Example as the coefficient
of fractional expansion of the opposite series a[0] and a[1]. In particular,

its determinant, equal to
√

2
35

, is non-zero. The matrix is an essential
ingredient of the trace formula for limit F-functions [S1, (11.5.6)]
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