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Abstract. We investigate mirror symmetry for toric Calabi-Yau manifolds

from the perspective of the SYZ conjecture. Starting with a non-toric special
Lagrangian torus fibration on a toric Calabi-Yau manifold X, we construct a

complex manifold X̌ using T-duality modified by quantum corrections. These

corrections are encoded by Fourier transforms of generating functions of certain
open Gromov-Witten invariants. We conjecture that this complex manifold

X̌, which belongs to the Hori-Iqbal-Vafa mirror family, is inherently written in

canonical flat coordinates. In particular, we obtain an enumerative meaning
for the (inverse) mirror maps, and this gives a geometric reason for why their

Taylor series expansions in terms of the Kähler parameters of X have integral

coefficients. Applying the results in [5] and [27], we compute the open Gromov-
Witten invariants in terms of local BPS invariants and give evidences of our

conjecture for several 3-dimensional examples including KP2 and KP1×P1 .
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1. Introduction

For a pair of mirror Calabi-Yau manifolds X and X̌, the Strominger-Yau-Zaslow
(SYZ) conjecture [31] asserts that there exist special Lagrangian torus fibrations
µ : X → B and µ̌ : X̌ → B which are fiberwise-dual to each other. In particular,
this suggests an intrinsic construction of the mirror X̌ by fiberwise dualizing a
special Lagrangian torus fibration on X. This process is called T-duality.

The SYZ program has been carried out successfully in the semi-flat case [25, 29,
28], where the discriminant loci of special Lagrangian torus fibrations are empty
(i.e. all fibers are regular) and the base B is a smooth integral affine manifold. On
the other hand, mirror symmetry has been extended to non-Calabi-Yau settings,
and the SYZ construction has been shown to work in the toric case [3, 4, 6], where
the discriminant locus appears as the boundary of the base B (so that B is an
integral affine manifold with boundary).

In general, by fiberwise dualizing a special Lagrangian torus fibration µ : X → B
away from the discriminant locus, one obtains a manifold X̌0 equipped with a
complex structure J0, the so-called semi-flat complex structure. In both the semi-
flat and toric cases, (X̌0, J0) already serves as the complex manifold mirror to X.
However, when the discriminant locus Γ appears inside the interior of B (so that
B is an integral affine manifold with singularities), X̌0 is contained in the mirror
manifold X̌ as an open dense subset and the semi-flat complex structure J0 does not
extend to the whole X̌. It is expected that the genuine mirror complex structure J
on X̌ can be obtained by deforming J0 using instanton corrections and wall-crossing
formulas, which come from symplectic enumerative information on X (see Fukaya
[9], Kontsevich-Soibelman [26] and Gross-Siebert [18]1). This is one manifestation
of the mirror phenomenon that the complex geometry of the mirror X̌ encodes
symplectic enumerative data of X.

To go beyond the semi-flat and toric cases, a good starting point is to work
with non-toric special Lagrangian torus fibrations2 on toric Calabi-Yau manifolds
constructed by Gross [17] 3, which serve as local models of Lagrangian torus fi-
brations on compact Calabi-Yau manifolds. Interior discriminant loci are present
in these fibrations, leading to wall-crossing phenomenon of disk counting invari-
ants and nontrivial quantum corrections of the mirror complex structure. In this
paper, we construct the instanton-corrected mirrors of toric Calabi-Yau manifolds
by running the SYZ program for these non-toric fibrations. This generalizes the
work of Auroux [3, 4], in which he considered non-toric Lagrangian torus fibrations
on Cn and constructed instanton-corrected mirrors by studying the wall-crossing
phenomenon of disk counting invariants.

What follows is an outline of our main results. We first need to fix some nota-
tions. Let N ∼= Zn be a lattice and M = Hom(N,Z) be its dual. For a Z-module

1This is related to the so-called “reconstruction problem”. This problem was first attacked

by Fukaya [9] using heuristic arguments in the two-dimensional case, which was later given a
rigorous treatment by Kontsevich-Soibelman in [26]; the general problem was finally solved by the
important work of Gross-Siebert [18].

2Here, “non-toric” means the fibrations are not those provided by moment maps of Hamiltonian

torus actions on toric varieties.
3These fibrations were also constructed by Goldstein [15] independently, but they were further

analyzed by Gross from the SYZ perspective.
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R, we let NR := N ⊗Z R, MR := M ⊗Z R and denote by (· , ·) : MR ×NR → R the
natural pairing.

Let X = XΣ be a toric manifold defined by a fan Σ in NR, and v0, v1, . . . , vm−1 ∈
N be the primitive generators of the 1-dimensional cones of Σ. Suppose that X is
Calabi-Yau. This condition is equivalent to the existence of ν ∈M such that

(ν , vi) = 1

for i = 0, 1, . . . ,m−1. As in [17], we also assume that the fan Σ has convex support,
so that X is a crepant resolution of an affine toric variety with Gorenstein canonical
singularities. Equip X with a toric Kähler structure ω.

We study the SYZ aspect of mirror symmetry for every toric Calabi-Yau manifold
X, which is usually called “local mirror symmetry” in the literature, because it was
derived by considering certain limits in the Kähler and complex moduli spaces of
Calabi-Yau hypersurfaces in toric varieties (see Katz-Klemm-Vafa [23]). Chiang-
Klemm-Yau-Zaslow [7] verified by direct computations that closed Gromov-Witten
invariants of a local Calabi-Yau match with the period integrals in the mirror side;
in [20], Hori-Iqbal-Vafa wrote down the following formula for the mirror X̌ of X:

(1.1) X̌ =

{
(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 : uv =

m−1∑
i=0

Ciz
vi

}
,

where Ci ∈ C are some constants (which determine the complex structure of X̌)

and zvi denotes the monomial
∏n−1
j=1 z

(νj , vi)
j . Here {νj}n−1

j=0 ⊂ M is the dual basis

of {vj}n−1
j=0 ⊂ N . One of the aims of this paper is to explain why, from the SYZ

viewpoint, the mirror X̌ should be written in this form.
We now outline our SYZ mirror construction. To begin with, fix a constant K2,

and let D ⊂ X be the hypersurface {x ∈ X : w(x)−K2 = 0}, where w : X → C is
the holomorphic function corresponding to the lattice point ν ∈ M . In Section 4,
we consider a non-toric special Lagrangian torus fibration µ : X → B constructed
by Gross [17], where B is a closed upper half space in Rn. As shown in [17], the
discriminant locus Γ of this fibration consists of ∂B together with a codimension two
subset contained in a hyperplane H ⊂ B. We will show that the special Lagrangian
torus fibers over H are exactly those which bound holomorphic disks of Maslov
index zero (Lemma 4.24). H, which is called ‘the wall’, separates B0 := B−Γ into
two chambers:

B0 −H = B+ ∪B−.

As we have discussed above, fiberwise dualizing the torus bundle over B0 gives
a complex manifold X̌0 which is called the semi-flat mirror. Yet this procedure
ignores the singular fibers of µ, and ‘quantum corrections’ are needed to construct
the mirror X̌ out from X̌0. To do this, we consider virtual counting of Maslov
index two holomorphic disks with boundary in special Lagrangian torus fibers.
The result for the counting is different for fibers over the chambers B+ and B− (see
Propositions 4.30 and 4.30). This leads to a wall-crossing formula for disk counting
invariants, which is exactly the correct formula we need to glue the torus bundles
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over B+ and B−. This wall-crossing phenomenon has been studied by Auroux [3, 4]
in various examples including P2 and the Hirzebruch surfaces F2,F3.4

Now, one of the main results of this paper is that by the SYZ construction (see
Section 2.3 for the details), the instanton-corrected mirror of X is given by the
following noncompact Calabi-Yau manifold (Theorem 4.37):
(1.2)

X̌ =

(u, v, z) ∈ C2 × (C×)n−1 : uv = (1 + δ0) +

n−1∑
j=1

(1 + δj)zj +

m−1∑
i=n

(1 + δi)qi−n+1z
vi


where

δi(q) =
∑

α∈Heff
2 (X,Z)−{0}

nβi+αq
α

and qa are Kähler parameters of X. Here, Heff
2 (X,Z) is the cone of effective classes,

qα denotes exp(−
∫
α
ω) which can be expressed in terms of the Kähler parameters

qa, βi ∈ π2(X,T) are the basic disk classes (see Section 4.2.3), and the coeffi-
cients nβi+α are one-pointed genus zero open Gromov-Witten invariants defined by
Fukaya-Oh-Ohta-Ono [13] (see Definition 2.14). Furthermore, we can show that
the symplectic structure ω on X is transformed to a holomorphic volume form on
the semi-flat mirror X̌0, which naturally extends to a holomorphic volume form Ω̌
on X̌ (Proposition 4.38).

Note that the instanton-corrected mirror (1.2) that we write down is of the form
(1.1) suggested by Hori-Iqbal-Vafa [20]. Yet (1.2) contains more information: it
is explicitly expressed in terms of symplectic data, namely, the Kähler parameters
and open Gromov-Witten invariants on X. Morally speaking, the semi-flat complex
structure is the constant term in the fiberwise Fourier expansion of the corrected
complex structure J . The higher Fourier modes correspond to genus-zero open
Gromov-Witten invariants nβi+α in X, which are virtual counts of Maslov index
two holomorphic disks with boundary in Lagrangian torus fibers.

Local mirror symmetry asserts that there is (at least locally near the large com-
plex structure limits) a canonical isomorphism

ψ :MC(X̌)→MK(X),

called the mirror map, from the complex moduli space MC(X̌) of X̌ to the (com-
plexified) Kähler moduli space MK(X) of X, which gives flat coordinates on
MC(X̌). The mirror map is defined by periods as follows. For a point q̌ =
(q̌1, . . . , q̌l) ∈MC(X̌), where l = m− n, let

X̌q̌ =

(u, v, z) ∈ C2 × (C×)n−1 : uv = 1 +

n−1∑
j=1

zj +

m−1∑
i=n

q̌i−n+1z
vi


be the corresponding mirror Calabi-Yau manifold equipped with a holomorphic
volume form Ω̌q̌. Then, for any n-cycle γ ∈ Hn(X̌,Z), the period

Πγ(q̌) :=

∫
γ

Ω̌q̌,

4We shall emphasize that the wall-crossing formulas (or gluing formulas) studied by Auroux
and us here are special cases of those studied by Kontsevich-Soibelman [26] and Gross-Siebert

[18].
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as a function of q̌ ∈MC(X̌), satisfies the A-hypergeometric system of linear differ-
ential equations associated to X (see e.g. Hosono [21]). Let Φ1(q̌), . . . ,Φl(q̌) be a
basis of the solutions of this system with a single logarithm. Then there is a basis
γ1, . . . , γl of Hn(X̌,Z) such that

Φa(q̌) =

∫
γa

Ω̌q̌

for a = 1, . . . , l, and the mirror map ψ is given by ψ(q̌) = (q1(q̌), . . . , ql(q̌)) ∈
MK(X), where

qa(q̌) = exp(−Φa(q̌)) = exp

(
−
∫
γa

Ω̌q̌

)
,

for a = 1, . . . , l.
A striking feature of our instanton-corrected mirror family (1.2) is that it is

inherently written in flat coordinates.5 We formulate this as a conjecture as follows.
By considering Equation (1.2), one obtains a map φ : MK(X) → MC(X̌), q =
(q1, . . . , ql) 7→ φ(q) = (q̌1(q), . . . , q̌l(q)) defined by

q̌a(q) = qa(1 + δa+n−1)

n−1∏
j=0

(1 + δj)
−(νj , va+n−1), a = 1, . . . , l.

Then we claim that q̌1(q), . . . , q̌l(q) are flat coordinates onMC(X̌) (see Conjecture
1.1 for more details):

Conjecture 1.1. The map φ is an inverse of the mirror map ψ. In other words,
there exists a basis γ1, . . . , γl of Hn(X̌,Z) such that

qa = exp

(
−
∫
γa

Ω̌q̌

)
,

for a = 1, . . . , l, where q̌ = φ(q) is defined as above.

In particular, our construction of the instanton-corrected mirror via SYZ pro-
vides an enumerative meaning to the inverse mirror map. This also shows that the
integrality of the coefficients of the Taylor series expansions of the functions q̌a in
terms of q1, . . . , ql (see, e.g. [32]) is closely related to enumerative meanings of the
coefficients.

In Section 5, we shall provide evidences to Conjecture 1.1 in some 3-dimensional
examples including KP2 and KP1×P1 . This is done by computing the one-pointed
genus zero open Gromov-Witten invariants of a toric Calabi-Yau 3-fold of the form
X = KZ , where Z is a toric del Pezzo surface, in terms of local BPS invariants of
the toric Calabi-Yau 3-fold KZ̃ , where Z̃ is a toric blow-up of Z at a toric fixed
point. The computation is an application of the results in [5] and [27]. In [5], the
first author of this paper shows that the open Gromov-Witten invariants of X = KZ

are equal to certain closed Gromov-Witten invariants of a suitable compactification
X̄ (see Theorem 5.4). In the joint work [27] of the second and third authors with
Wu, these closed Gromov-Witten invariants are shown to be equal to certain local
BPS invariants of KZ̃ , where Z̃ denotes the blow-up of Z, by employing blow-up
and flop arguments. Now, these latter invariants have already been computed by
Chiang-Klemm-Yau-Zaslow in [7]. Hence, by comparing with period computations
such as those done by Graber-Zaslow in [16], we can give evidences to the above

5This was first observed by Gross and Siebert [18]; see Remark 1.2 below.
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conjecture for KP2 and KP1×P1 .

Example: X = KP2 . The primitive generators of the 1-dimensional cones of the
fan Σ defining X = KP2 are given by

v0 = (0, 0, 1), v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (−1,−1, 1) ∈ N = Z3.

We equip X with a toric Kähler structure ω associated to the moment polytope P
given as

P = {(x1, x2, x3) ∈ R3 : x3 ≥ 0, x1 + x3 ≥ 0, x2 + x3 ≥ 0,−x1 − x2 + x3 ≥ −t1},

where t1 =
∫
l
ω1 > 0 and l ∈ H2(X,Z) = H2(P2,Z) is the class of a line in P2. To

complexify the Kähler class, we set ωC = ω+ 2π
√
−1B, where B is a real two-form

(the B-field). We let t =
∫
l
ωC ∈ C.

Fix K2 > 0 and let D = {x ∈ X : w(x)−K2 = 0}. Then the base B of the Gross
fibration µ : X → B is given by B = R2 × R≥K2

. The wall is the real codimension
one subspace H = R2 × {0} ⊂ B. The discriminant loci Γ is a codimension two
subset contained in H as shown in Figure 1.

Figure 1. The base of the Gross fibration on KP2 , which is an
upper half space in R3.

By Equation (1.2), the instanton-corrected mirror is given by

X̌ =

{
(u, v, z1, z2) ∈ C2 × (C×)2 : uv =

(
1 +

∞∑
k=1

nβ0+klq
k

)
+ z1 + z2 +

q

z1z2

}
,

where q = exp(−t) and β0 is the basic disk class corresponding to the compact
toric divisor P2 ⊂ X. By Corollary 5.6, we can express the open Gromov-Witten
invariants nβ0+kl in terms of the local BPS invariants of KF1

, where F1 is the
blowup of P2 at one point. More precisely, let e, f ∈ H2(F1,Z) = H2(KF1 ,Z) be the
classes represented by the exceptional divisor and fiber of the blowing up F1 → P2

respectively. Then nβ0+kl is equal to the local BPS invariant GW
KF1 ,kf+(k−1)e
0,0 for

the class kf + (k − 1)e ∈ H2(KF1
,Z). These latter invariants have been computed

by Chiang-Klemm-Yau-Zaslow and listed in the ‘sup-diagonal’ of Table 10 on p. 56



SYZ FOR TORIC CY 7

in [7]:

nβ0+l = −2,

nβ0+2l = 5,

nβ0+3l = −32,

nβ0+4l = 286,

nβ0+5l = −3038,

nβ0+6l = 35870,

...

Hence, the instanton-corrected mirror for X = KP2 is given by

X̌ =

{
(u, v, z1, z2) ∈ C2 × (C×)2 : uv = c(q) + z1 + z2 +

q

z1z2

}
,

where

c(q) = 1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . . .

By a change of coordinates the above defining equation can also be written as

uv = 1 + z1 + z2 +
q

c(q)3z1z2

According to our conjecture above, the inverse mirror map φ :MK(X)→MC(X̌)
is then given by

q 7→ q̌ := q(1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . .)−3.

On the other hand, the A-hypergeometric system of linear differential equations
associated to KP2 is equivalent to the Picard-Fuchs equation

[θ3
q̌ + 3q̌θq̌(3θq̌ + 1)(3θq̌ + 2)]Φ(q̌) = 0,

where θq̌ denotes q̌ ∂∂q̌ (see, e.g. Graber-Zaslow [16].) The solution of this equation

with a single logarithm is given by

Φ(q̌) = − log q̌ −
∞∑
k=1

(−1)k

k

(3k)!

(k!)3
q̌k.

Then, Φ(q̌) is the period of some 3-cycle γ ∈ H3(X̌,Z) and we have the mirror map

ψ :MC(X̌)→MK(X), q = q̌ exp

( ∞∑
k=1

(−1)k

k

(3k)!

(k!)3
q̌k

)
.

We can then invert the mirror map and express q̌ = ψ−1(q) as a function of q ∈
MK(X). One can check by direct computation that

(exp(−Φ(q̌))/q̌)
1
3 = 1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . . .

This shows that φ agrees with the inverse mirror map at least up to the order q5,
thus providing ample evidence to Conjecture 1.1 for X = KP2 . In fact, by using a
computer, one can verify that φ agrees with the inverse mirror map up to a much
larger order. �
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Remark 1.2. The relevance of the work of Graber-Zaslow [16] to the relationship
between the series 1−2q+5q2−32q3+286q4−3038q5+. . . and canonical coordinates
was first mentioned in Remark 5.1 of the paper [18] by Gross and Siebert. They
were also the first to observe that the coefficients of the above series have geometric
meanings; namely, they show that these coefficients can be obtained by imposing
the “normalization” condition for slabs, which is a condition necessary to run their
program and construct toric degenerations of Calabi-Yau manifolds. They predict
that these coefficients are counting certain tropical disks. See Conjecture 0.2 in [18]
for more precise statements.

After reading a draft of our paper, Gross informed us that they have long been
expecting that the slabs are closely related to 1-pointed open Gromov-Witten invari-
ants, so they also expect that a version of our Conjecture 1.1 is true. While the
Gross-Siebert program constructs the mirror B-model starting from tropical data
(on which they impose the normalization condition) on the base of the Lagrangian
torus fibration, we start from the A-model on a toric Calabi-Yau manifold and
use symplectic enumerative data (holomorphic disk counting invariants) directly to
construct the mirror B-model. Our approach is in a way complementary to that of
Gross-Siebert.

The organization of this paper is as follows. Section 2 reviews the general con-
cepts in the symplectic side needed in this paper and gives the T-duality procedure
with quantum corrections. It involves a family version of the Fourier transform,
which is defined in Section 3. Then we carry out the SYZ construction of instanton-
corrected mirrors for toric Calabi-Yau manifolds in details in Section 4. The (in-
verse) mirror maps and their enumerative meanings are discussed in Section 5.

Acknowledgements. We are heavily indebted to Baosen Wu for generously shar-
ing his ideas and insight. In particular he was the first to observe that there is a
relation between the closed Gromov-Witten invariants of KZ and the local BPS in-
variants of KZ̃ , which was studied in more details in the joint work Lau-Leung-Wu
[27]. We are grateful to Mark Gross and Bernd Siebert for many useful comments
and for informing us about their related work and thoughts. We would also like
to thank Denis Auroux, Cheol-Hyun Cho, Kenji Fukaya, Yong-Geun Oh, Hiroshi
Ohta, Kaoru Ono and Shing-Tung Yau for numerous helpful discussions and the
referees for suggestions which greatly improve the exposition of this paper. The
second author thanks Mark Gross for inviting him to visit UCSD in February 2010
and for many enlightening discussions on wall-crossing. He is also grateful to Cheol-
Hyun Cho for the invitation to Seoul National University in June 2010 and for the
joyful discussions on disk-counting invariants.

The research of the first author was supported by Harvard University and the
Croucher Foundation Fellowship. The research of the second author was supported
by Institute for the Physics and Mathematics of the Universe. The work of the
third author described in this paper was substantially supported by a grant from
the Research Grants Council of the Hong Kong Special Administrative Region,
China (Project No. CUHK401809).

2. The SYZ mirror construction

This section gives the procedure to construct the instanton-corrected mirror us-
ing SYZ. First, we give a review of the symplectic side of SYZ mirror symmetry.
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Section 2.2 introduces the open Gromov-Witten invariants defined by Fukaya-Oh-
Ohta-Ono [11, 12], which are essential to our mirror construction. The construction
procedure of the instanton-corrected mirror is given in Section 2.3. We will apply
this procedure to produce the instanton-corrected mirrors of toric Calabi-Yau man-
ifolds in Section 4.6.

2.1. Proper Lagrangian fibrations and their semi-flat mirrors. This sub-
section is devoted to introduce the notion of a Lagrangian fibration, which is central
to the SYZ program. The setting introduced here includes moment maps on toric
manifolds as examples, whose bases are polytopes which are manifolds with corners,
but we also allow singular fibers.

Let X2n be a smooth connected manifold of dimension 2n, and ω be a closed
non-degenerate two-form on X. The pair (X,ω) is called a symplectic manifold. In
our setup, X is allowed to be non-compact. This is important for us since a toric
Calabi-Yau manifold can never be compact.

We consider a fibration µ : X → B (i.e. a smooth map such that µ(X) = B),
whose base B is a smooth manifold with corners:

Definition 2.1. A Hausdorff topological space B is a smooth n-manifold with cor-
ners if

(1) For each r ∈ B, there exists an open set U ⊂ B containing r, and a
homeomorphism

φ : U → V ∩ (Rk≥0 × Rn−k)

for some k = 0, . . . , n, where V is an open subset of Rn containing 0, and
φ(r) = 0. Such r is called a k-corner point of B.

(2) The coordinate changes are diffeomorphisms.

Basic examples of manifolds with corners are given by moment map polytopes
of toric manifolds (see Figure 3 for an example). A manifold B with corners is
stratified by the subsets B(k) consisting of all k-corner points of B. r ∈ B is called
a boundary point of B if it is a k-corner point for k ≥ 1. Let

(2.1) Bint := B(0) = {r ∈ B : r is not a boundary point}

be the open stratum, and

(2.2) ∂B := B −Bint.

We will be dealing with those fibrations µ : X → B which are proper and
Lagrangian. Recall that µ is proper if µ−1(K) is compact for every compact set
K ⊂ B. And Lagrangian means the following:

Definition 2.2. Let (X2n, ω) be a symplectic manifold of dimension 2n, and Bn

be a smooth n-fold with corners. A fibration µ : X → B is said to be Lagrangian if
at every regular point x ∈ X with respect to the map µ, the subspace Ker(dµ(x)) ⊂
TxX is Lagrangian, that is,

ω|Ker(dµ(x)) = 0.

From now on we always assume that µ : X → B is a Lagrangian fibration, whose
fibers are denoted by

Fr := µ−1({r}), r ∈ B.
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Fr is called a regular fiber when r is a regular value of µ; otherwise it is called a
singular fiber. It is the presence of singular fibers which makes the SYZ construction
of instanton-corrected mirrors non-trivial.

The SYZ program asserts that the mirror of X is given by the ‘dual torus fibra-
tion’. This dualizing procedure can be made precise if one restricts only to regular
fibers. In view of this we introduce the following notations:

Γ := {r ∈ B : r is a critical value of µ};(2.3)

B0 := B − Γ;(2.4)

X0 := µ−1(B0).(2.5)

Γ is called the discriminant locus of µ.
Now the restriction µ : X0 → B0 is a proper Lagrangian submersion with con-

nected fibers. Using the following theorem of Arnold-Liouville (see Section 50 of
[2]) on action-angle coordinates, it turns out that this can only be a torus bundle:

Theorem 2.3 (Arnold-Liouville [2]). Let µ : X0 → B0 be a proper Lagrangian
submersion with connected fibers. Then µ is a torus bundle. Moreover, an integral
affine structure is induced on B0 in a canonical way.

An integral affine structure on B0 is an atlas of coordinate charts such that the
coordinate changes belong to GL(n,Z) n Rn. The key to proving Theorem 2.3 is
the observation that every cotangent vector at r ∈ B0 induces a tangent vector field
on Fr by contracting with the symplectic two-form ω on X. Since Fr is smooth and
compact, a vector field integrates (for time 1) to a diffeomorphism on Fr. In this
way we get an action of T ∗rB0 on Fr, and the isotropy subgroup of a point x ∈ Fr
can only be a lattice L in T ∗rB0. Thus T ∗rB0/L ∼= Fr.

Knowing that µ : X0 → B0 is a torus bundle, we may then take its dual defined
in the following way:

Definition 2.4. Let µ : X0 → B0 be a torus bundle. Its dual is the space X̌0 of
pairs (Fr,∇) where r ∈ B0 and ∇ is a flat U(1)-connection on the trivial complex
line bundle over Fr up to gauge. There is a natural map µ̌ : X̌0 → B0 given by
forgetting the second coordinate.

The fiber of µ̌ at r is denoted as F̌r.

Proposition 2.5. In Definition 2.4, µ̌ : X̌0 → B0 is a torus bundle.

Proof. For each r ∈ B0, Hom(π1(Fr), U(1)) parameterizes all flat U(1)-connections
on the trivial complex line bundle over Fr by recording their holonomy. Thus

F̌r ∼= Hom(π1(Fr), U(1)).

Since Fr is an n-torus, one has π1(Fr) ∼= Zn, and so

Hom(π1(Fr), U(1)) ∼= Rn/Zn.

This shows that each fiber F̌r is a torus (which is dual to Fr).
To see that µ̌ is locally trivial, take a local trivialization µ−1(U) ∼= U × T of µ,

where U is an open set containing r and T is a torus. Then

µ̌−1(U) ∼= U ×Hom(π1(T ), U(1)) ∼= U × T ∗,

where T ∗ denotes the dual torus to T . �



SYZ FOR TORIC CY 11

For a Lagrangian torus bundle µ : X0 → B0, its dual X̌0 has a canonical complex
structure [28] (we will write this down explicitly for toric Calabi-Yau manifolds in
Section 4.6). Moreover, when the monodromies of the torus bundle µ : X0 → B0

belong to SL(n,Z), there is a holomorphic volume form on X̌0. Thus, by torus
duality, a symplectic manifold with a Lagrangian bundle structure gives rise to a
complex manifold. This exhibits the mirror phenomenon.

However, the above dualizing procedure takes place only away from the singular
fibers (see Equation (2.5)) and hence it loses information. X̌0 is called the semi-flat
mirror, which is only the ‘zeroth-order part’ of the mirror of X (see Remark 4.40).
To remedy this, we need to ‘add back’ the information coming from the singular
fibers. This is precisely captured by the open Gromov-Witten invariants of X,
which is discussed in the next subsection.

2.2. Open Gromov-Witten invariants. A crucial difference between X0 and
X is that loops in the fibers of X0 which represent non-trivial elements in π1

never shrink, that is, π2(X0, Fr) = 0 for every r ∈ B0; while this is not the case
for X in general. To quantify this difference one needs to equip X with an al-
most complex structure compatible with ω and count pseudo-holomorphic disks
(∆, ∂∆) → (X,Fr). This gives the genus-zero open Gromov-Witten invariants
defined by Fukaya-Oh-Ohta-Ono [11].

In this section, we give a brief review on these invariants (Definition 2.14). We
also explain how to pack these invariants to form a generating function under the
setting of Section 2.1 (Definition 2.18). We will see that via the fiberwise Fourier
transform defined in Section 3, these data serve as ‘quantum corrections’ to the
semi-flat complex structure of the mirror.

Let (X,ω) be a symplectic manifold equipped with an almost complex structure
compatible with ω. First of all, we need the following basic topological notions:

Definition 2.6. (1) For a submanifold L ⊂ X, π2(X,L) is the group of ho-
motopy classes of maps

u : (∆, ∂∆)→ (X,L),

where ∆ := {z ∈ C : |z| ≤ 1} denotes the closed unit disk in C. We have a
natural homomorphism

∂ : π2(X,L)→ π1(L)

defined by ∂[u] := [u|∂∆].
(2) For two submanifolds L0, L1 ⊂ X, π2(X,L0, L1) is the set of homotopy

classes of maps

u : ([0, 1]× S1, {0} × S1, {1} × S1)→ (X,L0, L1).

Similarly we have the natural boundary maps ∂+ : π2(X,L0, L1)→ π1(L1)
and ∂− : π2(X,L0, L1)→ π1(L0).

From now on, we shall always assume that L ⊂ X is a compact Lagrangian
submanifold. Given a disk class β ∈ π2(X,L), an important topological invariant
for β is its Maslov index:

Definition 2.7. Let L be a Lagrangian submanifold and β ∈ π2(X,L). Let u :
(∆, ∂∆)→ (X,L) be a representative of β. Then one may trivialize the symplectic
vector bundle

u∗TX ∼= ∆× V,
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where V is a symplectic vector space. Thus the subbundle (∂u)∗TL ⊂ (∂u)∗TX
induces the Gauss map

∂∆→ U(n)/O(n)→ U(1)/O(1) ∼= S1,

where U(n)/O(n) parameterizes all Lagrangian subspaces in V . The degree of this
map is called the Maslov index, which is independent of the choice of representative
u.

The Maslov index of β is denoted by µ(β) ∈ Z.6 µ(β) is important for open
Gromov-Witten theory because it determines the expected dimension of the moduli
space of holomorphic disks (see Equation (2.6)).

Now we are going to define the genus-zero open Gromov-Witten invariants. First
of all, we have the notion of a pseudoholomorphic disk:

Definition 2.8. (1) A pseudoholomorphic disk bounded by a Lagrangian L ⊂
X is a smooth map u : (∆, ∂∆) → (X,L) such that u is holomorphic with
respect to the almost complex structure J , that is,

(∂u) ◦ j = J ◦ ∂u,

where j is the standard complex structure on the disk ∆ ⊂ C.
(2) The moduli space M◦k(L, β) of pseudoholomorphic disks representing β ∈

π2(X,L) with k ordered boundary marked points is defined as the quotient

by Aut(∆) of the set of all pairs (u, (pi)
k−1
i=0 ), where

u : (∆, ∂∆)→ (X,L)

is a pseudoholomorphic disk bounded by L with homotopy class [u] = β,
and (pi ∈ ∂∆ : i = 0, . . . , k− 1) is a sequence of boundary points respecting

the cyclic order of ∂∆. For convenience the notation (u, (pi)
k−1
i=0 ) is usually

abbreviated as u.
(3) The evaluation map evi :M◦k(L, β)→ L for i = 0, . . . , k − 1 is defined as

evi([u, (pi)
k−1
i=0 ]) := u(pi).

M◦k(L, β) has expected dimension

(2.6) dimvirt(M◦k(L, β)) = n+ µ(β) + k − 3,

where the shorthand ‘virt’ stands for the word ‘virtual’ (which refers to ‘virtual
fundamental chain’ discussed below).

To define open Gromov-Witten invariants, one requires an intersection theory
on the moduli spaces. This involves various issues:

1. Compactification of moduli.
M◦k(L, β) is non-compact in general, and one needs to compactify the moduli.

Analogous to closed Gromov-Witten theory, this involves the concept of stable
disks. A stable disk bounded by a Lagrangian L with k ordered boundary marked
points is a pair (u, (pi)

k−1
i=0 ), where

u : (Σ, ∂Σ)→ (X,L)

6It should be clear from the context whether µ refers to a Lagrangian fibration or the Maslov
index.
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is a pseudoholomorphic map whose domain Σ is a ‘semi-stable’ Riemann surface
of genus-zero (which may have several disk and sphere components) with a non-
empty connected boundary ∂Σ and (pi ∈ ∂Σ) is a sequence of boundary points
respecting the cyclic order of the boundary, which satisfies the stability condition:
If a component C of Σ is contracted under u, then C contains at least three marked
or singular points of Σ.

A compactification ofM◦k(L, β) is then given by the moduli space of stable disks:

Definition 2.9 (Definition 2.27 of [11]). Let L be a compact Lagrangian submani-
fold in X and β ∈ π2(X,L). ThenMk(L, β) is defined to be the set of isomorphism
classes of stable disks representing β with k ordered boundary marked points. Two
stable disks (u, (pi)) and (u′, (p′i)) are isomorphic if the maps u and u′ have the
same domain Σ and there exists φ ∈ Aut(Σ) such that u′ = u ◦ φ and φ(p′i) = pi.

Remark 2.10. In the above definition we require that the ordering of marked points
respects the cyclic order of ∂Σ. In the terminologies and notations of [11], the above
moduli is called the main component and is denoted by Mmain

k (β) instead.

The moduli spaceMk(L, β) has a Kuranishi structure ([11]). We briefly recall its
construction in the following. First of all, let us recall the definition of a Kuranishi
structure. See Appendix A1 of the book [12] for more details.

Let M be a compact metrizable space.

Definition 2.11 (Definitions A1.1, A1.3, A1.5 in [12]). A Kuranishi structure on
M of (real) virtual dimension d consists of the following data:

(1) For each point σ ∈M,
(1.1) A smooth manifold Vσ (with boundary or corners) and a finite group

Γσ acting smoothly and effectively on Vσ.
(1.2) A real vector space Eσ on which Γσ has a linear representation and

such that dim Vσ − dim Eσ = d.
(1.3) A Γσ-equivariant smooth map sσ : Vσ → Eσ.
(1.4) A homeomorphism ψσ from s−1

σ (0)/Γσ onto a neighborhood of σ in
M.

(2) For each σ ∈M and for each τ ∈ Im ψσ,
(2.1) A Γτ -invariant open subset Vστ ⊂ Vτ containing ψ−1

τ (τ).7

(2.2) A homomorphism hστ : Γτ → Γσ.
(2.3) An hστ -equivariant embedding ϕστ : Vστ → Vσ and an injective hστ -

equivariant bundle map ϕ̂στ : Eτ × Vστ → Eσ × Vσ covering ϕστ .

Moreover, these data should satisfy the following conditions:

(i) ϕ̂στ ◦ sτ = sσ ◦ ϕστ .8

(ii) ψτ = ψσ ◦ ϕστ .
(iii) If ξ ∈ ψτ (s−1

τ (0) ∩ Vστ/Γτ ), then in a sufficiently small neighborhood of ξ,

ϕστ ◦ ϕτξ = ϕσξ, ϕ̂στ ◦ ϕ̂τξ = ϕ̂σξ.

The spaces Eσ are called obstruction spaces (or obstruction bundles), the maps
{sσ : Vσ → Eσ} are called Kuranishi maps, and (Vσ, Eσ,Γσ, sσ, ψσ) is called a
Kuranishi neighborhood of σ ∈M.

7Here we regard ψτ as a map from s−1
τ (0) to M by composing with the quotient map Vτ →

Vτ/Γτ .
8Here and after, we also regard sσ as a section sσ : Vσ → Eσ × Vσ .
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Now we come back to the setting of open Gromov-Witten invariants. Let
(u, (pi)

k−1
i=0 ) represent a point σ ∈Mk(L, β). Let W 1,p(Σ;u∗(TX);L) be the space

of sections v of u∗(TX) of W 1,p class such that the restriction of v to ∂Σ lies in
u∗(TL), and W 0,p(Σ;u∗(TX) ⊗ Λ0,1) be the space of u∗(TX)-valued (0, 1)-forms
of W 0,p class. Then consider the linearization of the Cauchy-Riemann operator ∂̄

Du∂̄ : W 1,p(Σ;u∗(TX);L)→W 0,p(Σ;u∗(TX)⊗ Λ0,1).

This map is not always surjective (i.e. u may not be regular), and this is why we
need to introduce the notion of Kuranishi structures. Nevertheless the cokernel of
Du∂̄ is finite-dimensional, and so we may choose a finite-dimensional subspace Eσ
of W 0,p(Σ;u∗(TX)⊗ Λ0,1) such that

W 0,p(Σ;u∗(TX)⊗ Λ0,1) = Eσ ⊕Du∂̄(W 1,p(Σ;u∗(TX);L)).

Define Γσ to be the automorphism group of (u, (pi)
k−1
i=0 ).

To construct Vσ, first let V ′map,σ be the space of solutions of the equation

Du∂̄ v = 0 mod Eσ.

Now, the Lie algebra Lie(Aut(Σ, (pi)
k−1
i=0 )) of the automorphism group of (Σ, (pi)

k−1
i=0 )

can naturally be embedded in V ′map,σ. Take its complementary subspace and let
Vmap,σ be a neighborhood of its origin. On the other hand, let Vdomain,σ be a neigh-
borhood of the origin in the space of first order deformations of the domain curve
(Σ, (pi)

k−1
i=0 ). Now, Vσ is given by Vmap,σ × Vdomain,σ.

Next, one needs to prove that there exist a Γσ-equivariant smooth map sσ : Vσ →
Eσ and a family of smooth maps uv,ζ : (Σζ , ∂Σζ)→ (X,L) for (v, ζ) ∈ Vσ such that
∂̄uv,ζ = sσ(v, ζ), and there is a map ψσ mapping s−1

σ (0)/Γσ onto a neighborhood
of σ ∈Mk(L, β). The proofs of these are very technical and thus omitted.

This finishes the review of the construction of the Kuranishi structure onMk(L, β).

2. Orientation.
According to Chapter 9 of [12],Mk(L, β) is canonically oriented by fixing a rel-

ative spin structure on L. Thus the issue of orientation can be avoided by assuming
that the Lagrangian L is relatively spin, which we shall always do from now on.
Indeed, in this paper, L is always a torus, and so this assumption is satisfied.

3. Transversality.
An essential difficulty in Gromov-Witten theory is that in general, the moduli

spaceMk(L, β) is not of the expected dimension, which indicates the issue of non-
transversality. To construct the virtual fundamental chains, a generic perturbation
is needed to resolve this issue. This is done by Fukaya-Oh-Ohta-Ono [11, 12] us-
ing the so-called Kuranishi multi-sections. We will not give the precise definition of
multi-sections here. See Definitions A1.19, A1.21 in [12] for details. Roughly speak-
ing, a multi-section s is a system of multi-valued perturbations {s′σ : Vσ → Eσ}
of the Kuranishi maps {sσ : Vσ → Eσ} satisfying certain compatibility conditions.
For a Kuranishi space with certain extra structures (this is the case forMk(L, β)),
there exist multi-sections s which are transversal to 0. Furthermore, suppose that
M is oriented. Let ev :M→ Y be a strongly smooth map to a smooth manifold Y ,
i.e. a family of Γσ-invariant smooth maps {evσ : Vσ → Y } such that evσ◦ϕστ = evτ
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on Vστ . Then, using these transversal multisections, one can define the virtual fun-
damental chain ev∗([M]vir) as a Q-singular chain in Y (Definition A1.28 in [12]).

4. Boundary strata of the moduli space.
Another difficulty in the theory is that in generalMk(L, β) has codimension-one

boundary strata, which consist of stable disks whose domain Σ has more than one
disk components. Then intersection theory on Mk(L, β) is still not well-defined
(which then depends on the choice of perturbation). Fortunately, for our purposes,
it suffices to consider the case when k = 1 and µ(β) = 2. In this case, the moduli
space of stable disks has empty codimension-one boundary. Let us first introduce
the concept of ‘minimal Maslov index’:

Definition 2.12. The minimal Maslov index of a Lagrangian submanifold L is
defined as

min{µ(β) ∈ Z : β 6= 0 and M0(L, β) is non-empty}.

Then one has the following proposition.

Proposition 2.13. Let L ⊂ X be a compact Lagrangian submanifold which has
minimal Maslov index at least two, that is, L does not bound any non-constant
stable disks of Maslov index less than two. Also let β ∈ π2(X,L) be a class with
µ(β) = 2. Then Mk(L, β) has no codimension-one boundary stratum.

Proof. Let u ∈ β be a stable disk belonging to a codimension-one boundary stratum
of Mk(L, β). Then, by the results of [11, 12], u is a union of two stable disks u1

and u2. Since L does not bound any non-constant stable disks of Maslov index less
than two, µ([u1]), µ([u2]) ≥ 2. But then 2 = µ([u]) = µ([u1]) + µ([u2]) ≥ 4 which is
impossible. �

WhenMk(L, β) is compact oriented without codimension-one boundary strata,
the virtual fundamental chain is a cycle. Hence, we have the virtual fundamental
cycle ev∗[Mk(L, β)] ∈ Hd(L

k,Q), where d = dimvirtMk(L, β). While one cannot
do intersection theory on the moduli due to non-transversality, by introducing the
virtual fundamental cycles, one may do intersection theory on Lk instead. We can
now define one-pointed genus-zero open Gromov-Witten invariants as follows.

Definition 2.14. Let L ⊂ X be a compact relatively spin Lagrangian submanifold
which has minimal Maslov index at least two. For a class β ∈ π2(X,L) with µ(β) =
2, we define

nβ := P.D.(ev∗[M1(L, β)]) ∪ P.D.([pt]) ∈ Q,
where [pt] ∈ H0(L,Q) is the point class in L, P.D. denotes the Poincaré dual, and
∪ is the cup product on H∗(L,Q).

The number nβ is invariant under deformation of complex structure and un-
der Lagrangian isotopy in which all Lagrangian submanifolds in the isotopy have
minimal Maslov index at least two (see Remark 3.7 of [3]). Hence, nβ is indeed a
one-pointed genus-zero open Gromov-Witten invariant. Also, notice that the vir-
tual dimension of M1(L, β) equals n + µ(β) − 2 ≥ n and it is equal to n = dimL
only when µ(β) = 2. So we set nβ = 0 if µ(β) 6= 2.

As in closed Gromov-Witten theory, a good way to pack the data of open
Gromov-Witten invariants is to form a generating function. This idea has been
used a lot in the physics literature.
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Definition 2.15. Let L ⊂ X be a compact relatively spin Lagrangian submanifold
with minimal Maslov index at least two. For each λ ∈ π1(L), we have the generating
function

(2.7) F(L, λ) :=
∑

β∈π2(X,L)λ

nβ exp

(
−
∫
β

ω

)
where

(2.8) π2(X,L)λ := {β ∈ π2(X,L) : ∂β = λ}.

Intuitively F(L, λ) is a weighted count of stable disks bounded by the loop λ
which pass through a generic point in L. In general, the above expression for
F(L, λ) can be an infinite series, and one has to either take care of convergence
issues or bypass the issues by considering the Novikov ring Λ0(Q), as done by
Fukaya-Oh-Ohta-Ono in their works.

Definition 2.16. The Novikov ring Λ0(Q) is the set of all formal series

∞∑
i=0

aiT
λi

where T is a formal variable, ai ∈ Q and λi ∈ R≥0 such that limi→∞ λi =∞.

Then F(L, λ)→ Λ0(Q) is defined by

F(L, λ) =
∑

β∈π2(X,L)λ

nβT
∫
β
ω.

The evaluation T = e−1 recovers Equation (2.7), if the corresponding series con-
verges. In the rest of this paper, Equation (2.7) will be used, while we keep in mind
that we can bypass the convergence issues by invoking the Novikov ring Λ0(Q).

Now let’s come back to the setting developed in Section 2.1 and restrict to the
situation that L = Fr is a torus fiber of µ at r ∈ B0. To make sense of open
Gromov-Witten invariants, we restrict our attention to those fibers with minimal
Maslov index at least two:

Definition 2.17. Let µ : X → B be a proper Lagrangian fibration under the setting
of Section 2.1. The subset H ⊂ B0 which consists of all r ∈ B0 such that Fr has
minimal Maslov index less than two is called the wall.

We will see that when µ is the Gross fibration of a toric Calabi-Yau manifold X,
the wall H is indeed a hypersurface in B0 (Proposition 4.27). This explains why
such a subset is called a ‘wall’. Then for r ∈ B0 −H and β ∈ π2(X,Fr), the open
Gromov-Witten invariant nβ is well-defined.

Under the setting of Lagrangian fibration, the generating functions given in
Definition 2.15 pack together to give a function on the fiberwise homotopy loop
space:

Definition 2.18. Given a proper Lagrangian fibration µ : X → B under the setting
of Section 2.1,

(1) The fiberwise homotopy loop space Λ∗ is defined as the lattice bundle over
B0 whose fiber at r is Λ∗r = π1(Fr) ∼= Zn.
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(2) The generating function for µ is FX : Λ∗|B0−H → R defined by

(2.9) FX(λ) := F(Fr, λ) =
∑

β∈π2(X,Fr)λ

nβ exp

(
−
∫
β

ω

)
where r ∈ B0 −H is the image of λ under the bundle map Λ∗ → B0.

(3) Let D ⊂ X be a codimension-two submanifold which has empty intersection
with every fiber Fr for r ∈ B0 −H. The corresponding generating function
ID : Λ∗|B0−H → R is defined by

(2.10) ID(λ) :=
∑

β∈π2(X,Fr)λ

(β ·D)nβ exp

(
−
∫
β

ω

)
where r ∈ B0 −H is the image of λ under the bundle map Λ∗ → B0; β ·D
is the intersection number between β and D, which is well-defined because
D ∩ Fr = ∅.

Intuitively speaking, ID is a weighted count of stable disks bounded by λ ema-
nating from D. In the next section, we’ll take Fourier transform of these generating
functions to obtain the complex coordinates of the mirror.

2.3. T-duality with corrections. Now we are ready for introducing a construc-
tion procedure which employs the SYZ program. A family version of Fourier trans-
form is needed, and it will be discussed in Section 3.2.

From now on, we will make the additional assumption that the base B of the
proper Lagrangian fibration µ is a polyhedral set in Rn with at least n distinct
codimension-one faces, which are denoted as Ψj for j = 0, . . . ,m − 1. Moreover,
the preimage

Dj := µ−1(Ψj)

of each Ψj is assumed to be a codimension-two submanifold in X. An important
example is given by a toric moment map µ on a toric manifold whose fan is strictly
convex. The Lagrangian fibrations constructed in Section 4.3 also satisfy these
assumptions.

Our construction procedure is the following:

(1) Take the dual torus bundle (see Definition 2.4)

µ̌ : X̌0 → B0

of µ : X0 → B0 . X̌0 has a canonical complex structure, and it is called the
semi-flat mirror of X.

The semi-flat complex structure only captures the symplectic geometry
of X0, and it has to be corrected to capture additional information (which
are the open Gromov-Witten invariants) carried by the symplectic geometry
of X.

(2) We have the generating functions IDi : Λ∗|B0−H → R (Equation (2.10))
defined by

(2.11) IDi(λ) :=
∑

β∈π2(X,Fr)λ

(β ·Di)nβ exp

(
−
∫
β

ω

)
.

We’ll abbreviate IDi as Ii for i = 0, . . . ,m−1. Applying a family version of
Fourier transform on each Ii (see Section 3.2), one obtains m holomorphic
functions z̃i defined on µ̌−1(B0 −H) ⊂ X̌0.
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These z̃i serve as the ‘corrected’ holomorphic functions. In general
µ̌−1(B0−H) ⊂ X̌0 consists of several connected components, and z̃i changes
dramatically from one component to another component, and this is called
the wall-crossing phenomenon. This phenomenon will be studied in Section
4.6 in the case of toric Calabi-Yau manifolds.

(3) Let R be the subring of holomorphic functions on (µ̌)−1(B0 − H) ⊂ X̌0

generated by constant functions and {z̃±1
i }

m−1
i=0 . One defines Y = SpecR.

In Section 4.6, the above procedure will be carried out in details for toric Calabi-
Yau manifolds.

3. Fourier transform

This is a short section on Fourier transform from the torus bundle aspect. We
start with the familiar Fourier transform for functions on tori. Then we define
fiberwise Fourier transform for functions on torus bundle. Indeed Fourier transform
discussed here fits into a more general framework for differential forms which gives
the correspondence between Floer complex and the mirror Ext complex. This will
be discussed in a separate paper.

3.1. Fourier transform on tori. Let Λ be a lattice, and V := Λ ⊗ R be the
corresponding real vector space. Then T := V/Λ is an n-dimensional torus. We
use V ∗, Λ∗ and T∗ to denote the dual of V , Λ and T respectively. There exists
a unique T-invariant volume form dVol on T such that

∫
T

dVol = 1. One has the
following well-known Fourier transform for complex-valued functions:

l2(Λ∗) ∼= L2(T)

f ↔ f̌

where for each θ̌ ∈ T,

(3.1) f̌(θ̌) =
∑
λ∈Λ∗

f(λ)e2πi (λ , θ̌)

and for each λ ∈ Λ∗,

(3.2) f(λ) =

∫
T

f̌(θ̌)e−2πi (λ , θ̌)dVol(θ̌).

The above familiar expression comes up naturally as follows. Λ∗ = Hom(T, U(1))
parametrizes all characters of the Abelian group T, and conversely T = Hom(Λ∗, U(1))
parametrizes all characters of Λ∗. Consider the following diagram:

Λ∗ ×T

Λ∗ T

�
�
�	

π1 @
@
@R

π2

Λ∗ ×T admits the universal character function χ : Λ∗ ×T→ U(1) defined by

χ(λ, θ̌) := e2πi (λ , θ̌)
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which has the property that χ|{λ}×T is exactly the character function on T cor-

responding to λ, and χ|Λ∗×{θ̌} is the character function on Λ∗ corresponding to θ̌.

For a function f : Λ∗ → C, we have the following natural transformation

f̌ := (π2)∗
(
(π∗1f) · χ

)
where (π2)∗ denotes integration along fibers using the counting measure of Λ∗. This
gives equation (3.1). Conversely, given a function f̌ : T → C, we have the inverse
transform

f := (π1)∗
(
(π∗2 f̌) · χ−1

)
where (π1)∗ denotes integration along fibers using the volume form dVol of T. This
gives equation (3.2).

We will mainly focus on the subspace C∞(T) of smooth functions on T. Via
Fourier transform, one has

Cr.d.(Λ∗) ∼= C∞(T )

where Cr.d.(Λ∗) consists of rapid-decay functions f on Λ∗. f decays rapidly means
that for all k ∈ N,

||λ||kf(λ)→ 0

as λ→∞. Here we have chosen a linear metric on V and

||λ|| := sup
|v|=1

| (λ , v) |.

The notion of rapid decay is independent of the choice of linear metric on V .

3.2. Family version of Fourier transform. Now let’s consider Fourier transform
for families of tori. We turn back to the setting described in Section 2.1: µ : X0 →
B0 is a Lagrangian torus bundle which is associated with the dual torus bundle
µ̌ : X̌0 → B0. Λ∗ is the lattice bundle over B0 defined in Definition 2.18. Notice
that µ̌ always has the zero section (while µ may not have a Lagrangian section in
general), which is essential in the definition of Fourier transform.

Analogous to Section 3.1, we have the following commutative diagram

Λ∗ ×B0
X̌0

Λ∗ X̌0

B0

�
��+

π1 Q
QQs

π2

Q
Q
QQs

�
�
�+

Each fiber F̌r parametrizes the characters of Λ∗r , and vice versa. Λ∗ ×B0
X̌0

admits the universal character function χ : Λ∗ ×B0 X̌0 → U(1) defined as follows.
For each r ∈ B0, λ ∈ Λ∗r and ∇ ∈ F̌r,

χ(λ,∇) := Hol∇(λ)

which is the holonomy of the flat U(1)-connection ∇ over Fr around the loop λ.
Thus we have the corresponding Fourier transform between functions on Λ∗ and
X̌0 similar to Section 3.1:

Cr.d.(Λ∗) ∼= C∞(X̌0)



20 K. CHAN, S.-C. LAU, AND N.C. LEUNG

where Cr.d.(Λ∗) consists of smooth functions f on Λ∗ such that for each r ∈ B0,
f |Λ∗r is a rapid-decay function. Explicitly, f ∈ Cr.d.(Λ∗) is transformed to

f̌ : X̌0 → C,
f̌(Fr,∇) =

∑
λ∈Λ∗r

f(λ)Hol∇(λ).

Again, even without the condition of rapid-decay, the above series is well-defined
when it is considered to be valued in the Novikov ring Λ0(C) (Definition 2.16).

In Section 2.3, this family version of Fourier transform is applied to the generat-
ing functions Ii : Λ∗|B0−H → R (Equation (2.11)) to get the holomorphic functions
z̃i : µ̌−1(B0 −H)→ C given by

z̃i =
∑

λ∈π1(X′,Fr)

Ii(λ)Hol∇(λ) =
∑

β∈π2(X′,Fr)

(β ·Di)nβ exp

(
−
∫
β

ω

)
Hol∇(∂β).

In Section 4.6 this is applied to toric Calabi-Yau manifolds to construct their mir-
rors.

4. Mirror construction for toric Calabi-Yau manifolds

Throughout this section, we’ll always take X to be a toric Calabi-Yau manifold.
For such manifolds M. Gross [17] and E. Goldstein [15] have independently written
down a non-toric proper Lagrangian fibration µ : X → B which falls in the setting
of Section 2.1, and we’ll give a brief review of them. These Lagrangian fibrations
have interior discriminant loci of codimension two, leading to the wall-crossing of
genus-zero open Gromov-Witten invariants which will be discussed in Section 4.5.
Section 4.6 is the main subsection, in which we apply the procedure given in Section
2.3 to construct the mirror X̌.

4.1. Gross fibrations on toric Calabi-Yau manifolds. Let N be a lattice of
rank n and Σ be a simplicial fan supported in NR := N ⊗ R. We’ll always assume
that Σ is ‘strongly convex’, which means that its support |Σ| is convex and does
not contain a whole line through 0 ∈ NR. The toric manifold associated to Σ is
denoted by X = XΣ. The primitive generators of rays of Σ are denoted by vi
for i = 0, . . . ,m − 1, where m ∈ Z≥n is the number of these generators. Each
vi corresponds to an irreducible toric divisor which we’ll denote by Di. These
notations are illustrated by the fan picture of KP1 shown in Figure 2.

Definition 4.1. A toric manifold X = XΣ is Calabi-Yau if there exists a toric
linear equivalence between its canonical divisor KX and the zero divisor. In other
words, there exists a dual lattice point ν ∈M such that

(ν , vi) = 1

for all i = 0, . . . ,m− 1.

From now on we’ll always assume X is a toric Calabi-Yau manifold, whose holo-
morphic volume form can be explicitly written down (Proposition 4.3). An impor-
tant subclass of toric Calabi-Yau manifolds is given by total spaces of canonical line
bundles of compact toric manifolds.

The following are some basic facts in toric geometry:
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Figure 2. The fan picture of KP1 .

v0 v1v2

Proposition 4.2 ([17]). The meromorphic function w corresponding to ν ∈ M is

indeed holomorphic. The corresponding divisor (w) is −KX =
∑m−1
i=0 Di.

Proof. For each cone C in Σ, let vi1 , . . . , vin be its primitive generators, which form
a basis of N because C is simplicial by smoothness of XΣ. Let {νj ∈M}nj=1 be the
dual basis, which corresponds to coordinate functions {ζj}nj=1 on the affine piece
UC corresponding to the cone C. We have

ν =

n∑
j=1

νj

because
(
ν , vij

)
= 1 for all j = 1, . . . , n. Then

w|UC =

n∏
j=1

ζj

which is a holomorphic function whose zero divisor is exactly the sum of irreducible
toric divisors of UC . �

Proposition 4.3 ([17]). Let {νj}n−1
j=0 ⊂M be the dual basis of {v0, . . . , vn−1}, and

ζj be the meromorphic functions corresponding to νj for j = 0, . . . , n− 1. Then

dζ0 ∧ . . . ∧ dζn−1

extends to a nowhere-zero holomorphic n-form Ω on X.

Proof. dζ0 ∧ . . . ∧ dζn−1 defines a nowhere-zero holomorphic n-form on the affine
piece corresponding to the cone R≥0〈v0, . . . , vn−1〉. Let C be an n-dimensional

cone in Σ, {ν′j}
n−1
j=0 ⊂ M be a basis of M which generates the dual cone of C, and

let ζ ′0, . . . , ζ
′
n−1 be the corresponding coordinate functions on the affine piece UC

corresponding to C. Then

dζ0 ∧ . . . ∧ dζn−1 = ζ0 . . . ζn−1d log ζ0 ∧ . . . d log ζn−1

= w d log ζ0 ∧ . . . d log ζn−1

= (detA)w d log ζ ′0 ∧ . . . d log ζ ′n−1

= (detA)dζ ′0 ∧ . . . ∧ dζ ′n−1

where A is the matrix such that νi =
∑
j Aijν

′
j . Since the fan Σ is simplicial,

A ∈ GL(n,Z) and hence detA = ±1. Thus dζ0 ∧ . . .∧ dζn−1 extends to a nowhere-
zero holomorphic n-form on UC . This proves the proposition because X is covered
by affine pieces. �
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Remark 4.4. In Proposition 4.3 we have chosen the basis {v0, . . . , vn−1} ⊂ N . If
we take another basis {u0, . . . , un−1} ⊂ N which spans some cone of Σ, then the
same construction gives

dζ ′0 ∧ . . . ∧ dζ ′n−1 = ±dζ0 ∧ . . . ∧ dζn−1

where ζ ′j’s are coordinate functions corresponding to the dual basis of {ui}. The
reason is that both {vi} and {ui} are basis of N , and thus the basis change belongs
to GL(n,Z), and its determinant is ±1. Thus the holomorphic volume form, up to
a sign, is independent of the choice of the cone and its basis.

Let ω be a toric Kähler form on PΣ and µ0 : PΣ → P be the corresponding
moment map, where P is a polyhedral set defined by the system of inequalities

(4.1) (vj , ·) ≥ cj
for j = 1, . . . ,m and constants cj ∈ R as shown in Figure 3.

Figure 3. The toric moment map image of KP1 .

P v2v1

v0

T1

T0T01 T12

T2

[T1] [T01] [T0] [T12] [T2]

The moment map corresponding to the action of the subtorus

T⊥ν := N
⊥ν
R /N⊥ν ⊂ NR/N

on XΣ is

[µ0] : XΣ →MR/R〈ν〉
which is the composition of µ0 with the natural quotient map MR →MR/R〈ν〉.

Definition 4.5. Fixing K2 > 0, a Gross fibration is

µ : X → MR/R〈ν〉 × R≥−K2
2

x 7→
(
[µ0(x)] , |w(x)−K2|2 −K2

2

)
.

We’ll always denote by B the base (MR/R〈ν〉)× R≥−K2
2
.

One has to justify the term ‘fibration’ in the above definition, that is, µ : X → B
is surjective:

Proposition 4.6. Under the natural quotient MR →MR/R〈ν〉, ∂P is homeomor-
phic to MR/R〈ν〉. Thus µ maps X onto B.
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Proof. For any ξ ∈ MR, since (vj , ν) = 1 for all j = 1, . . . ,m, we may take t ∈ R
sufficiently large such that ξ + tν satisfies the above system of inequalities

(vj , ξ + tν) ≥ cj
and hence ξ + tν ∈ P . Let t0 be the infimum among all such t. Then ξ + t0ν still
satisfies all the above inequalities, and at least one of them becomes equality. Hence
ξ+t0ν ∈ ∂P , and such t0 is unique. Thus the quotient map gives a bijection between
∂P and MR/R〈ν〉. Moreover, the quotient map is continuous and maps open sets
in ∂P to open sets in MR/R〈ν〉, and hence it is indeed a homeomorphism. �

It is proved by Gross that the above fibration is special Lagrangian using tech-
niques of symplectic reduction:

Proposition 4.7 ([17]). With respect to the symplectic form ω and the holomorphic
volume form Ω/(w − K2) defined on µ−1(Bint) ⊂ X, µ is a special Lagrangian
fibration, that is, there exists θ0 ∈ R/2πZ such that for every regular fiber F of µ,
ω|F = 0 and

Re

(
e2πi θ0 Ω

w −K2

)∣∣∣∣
F

= 0.

This gives a proper Lagrangian fibration µ : X → B where the base B is the
upper half space, which is a manifold with corners in the sense of Definition 2.1.

4.2. Topological considerations for X. In this section, we would like to write
down the discriminant locus of µ and generators of π2(X,F ), where F ⊂ X is a
regular fiber of µ.

4.2.1. The discriminant locus of µ. First, we give a notation for each face of the
polyhedral set P :

Definition 4.8. For each index set ∅ 6= I ⊂ {0, . . . ,m − 1} such that {vi : i ∈ I}
generates some cone C in Σ, let

(4.2) TI :=
{
ξ ∈ P : (vi , ξ) = ci for all i ∈ I

}
which is a codimension-(|I| − 1) face of ∂P .

Via the homeomorphism described in Proposition 4.6, [TI ] gives a stratification
of MR/R〈ν〉. This is demonstrated in Figure 3.

We are now ready to describe the discriminant locus Γ of µ (see Equation (2.3)
for the meaning of Γ):

Proposition 4.9. Let µ be the Gross’ fibration given in Definition 4.5. The dis-
criminant locus of µ is

Γ = ∂B ∪

 ⋃
|I|=2

[TI ]

× {0}
 .

Proof. The critical points of µ = ([µ0], |w −K2|2 −K2
2 ) are where the differential

of [µ0] or that of |w −K2|2 −K2
2 is not surjective. The first case happens at the

codimension-two toric strata of X, and the second case happens at the divisor

defined by w = K2. The images under µ of these sets are
(⋃
|I|=2[TI ]

)
× {0} and

∂B respectively. �

An illustration of the discriminant locus is given by Figure 4.
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Figure 4. The base of the fibration µ : X → B when X = KP1 .
In this example, Γ = {r1, r2} ∪ R× {−K2}.

-K2

r20r1

4.2.2. Local trivialization. As explained in Section 2.1, by removing the singular
fibers, we obtain a torus bundle µ : X0 → B0 (see Equation (2.5) for the notations).
We now write down explicit local trivializations of this torus bundle, which will be
used to make an explicit choice of generators of generators of π1(F ) and π2(X,F ).
Let

Ui := B0 −
⋃
k 6=i

([Tk]× {0})

for i = 0, . . . ,m−1, which are contractible open sets covering B0, and hence µ−1(Ui)
can be trivialized. Without loss of generality, we will always stick to the open set

U := U0 = B0 −
⋃
k 6=0

([Tk]× {0}) =
{

(q1, q2) ∈ B0 : q2 6= 0 or q1 ∈ [T0]
}
.

Proposition 4.10.

[T0] =
{
q ∈MR/R〈ν〉 :

(
v′j , q

)
≥ cj − c0 for all j = 1, . . . ,m− 1

}
where

(4.3) v′j := vj − v0

defines linear functions on MR/R〈ν〉 for j = 1, . . . ,m− 1.

Proof. T0 consists of all ξ ∈MR satisfying{
(vj , ξ) ≥ cj for all j = 1, . . . ,m− 1;
(v0 , ξ) = c0.

which implies
(
v′j , q

)
≥ cj − c0 for all j = 1, . . . ,m− 1.

Conversely, if q = [ξ] ∈MR/R〈ν〉 satisfies
(
v′j , q

)
≥ cj−c0 for all j = 1, . . . ,m−1,

then since (ν , v0) = 1, there exists t ∈ R such that (v0 , ξ + tν) = c0. And we
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still have
(
v′j , ξ + tν

)
≥ cj − c0 for all j = 1, . . . ,m − 1 because

(
v′j , ν

)
= 0.

Then (vj , ξ) ≥ cj for all j = 1, . . . ,m − 1. Hence the preimage of q contains
ξ + tν ∈ T0. �

Using the above proposition, the open set U = U0 can be written as{
(q1, q2) ∈ Bint : q2 6= 0 or

(
v′j , q1

)
> cj − c0 for all j = 1, . . . ,m− 1

}
where v′j is defined by Equation 4.3. Now we are ready to write down an explicit

coordinate system on µ−1(U).

Definition 4.11. Let

TN/T〈v0〉 :=
NR/R〈v0〉
N/Z〈v0〉

.

We have the trivialization

µ−1(U)
∼−→ U × (TN/T〈v0〉)× (R/2πZ)

given as follows. The first coordinate function is simply given by µ.
To define the second coordinate function, let {ν0, . . . , νn−1} ⊂ M be the dual

basis to {v0, . . . , vn−1} ⊂ N . Let ζj be the meromorphic functions corresponding to
νj for j = 1, . . . , n− 1. Then the second coordinate function is given by(

arg ζ1
2π

, . . . ,
arg ζn−1

2π

)
: µ−1(U)→ (R/2πZ)n−1 ∼= (TN/T〈v0〉)

which is well-defined because for each j = 1, . . . , n − 1, νj ∈ M⊥v0 , implying ζj is
a nowhere-zero holomorphic function on µ−1(U).

The third coordinate is given by arg(w−K2), which is well-defined because w 6=
K2 on µ−1(U).

4.2.3. Explicit generators of π1(Fr) and π2(X,Fr). Now we define explicit gener-
ators of π1(Fr) and π2(X,Fr) for r ∈ U in terms of the above coordinates. For
r ∈ U , one has

Fr ∼= (TN/T〈v0〉)× (R/2πZ)

and hence

π1(Fr) ∼= (N/Z〈v0〉)× Z
which has generators {λi}n−1

i=0 , where λ0 = (0, 1) and λi = ([vi], 0) for i = 1, . . . , n−
1. This gives a basis of π1(Fr).

We take explicit generators of π2(X,Fr) in the following way. First we write
down the generators for π2(X,T), which are well-known in toric geometry. Then
we fix r0 = (q1, q2) ∈ U with q2 > 0, and identify π2(X,T) with π2(X,Fr0) by
choosing a Lagrangian isotopy between Fr0 and T. (The choice q2 > 0 seems
arbitrary at this moment, but it will be convenient for the purpose of describing
holomorphic disks in Section 4.5.) Finally π2(X,Fr) for every r ∈ B0 is identified
with π2(X,Fr0) by using the trivialization of µ−1(U) ∼= U × Fr0 . In this way we
have fixed an identification π2(X,Fr) ∼= π2(X,T). The details are given below.
1. Generators for π2(X,T). Let T ⊂ X be a Lagrangian toric fiber, which can be
identified with the torus TN . By [8], π2(X,T) is generated by the basic disk classes
βT
j corresponding to primitive generators vj of a ray in Σ for j = 0, . . . ,m−1. One

has

∂βT
j = vj ∈ N ∼= π1(TN ).
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These basic disk classes βT
i can be expressed more explicitly in the following way.

We take the affine chart UC ∼= Cn corresponding to the cone C = 〈v0, . . . , vn−1〉 in
Σ. Let

Tρ := {(ζ0, . . . , ζn−1) ∈ Cn : |ζj | = eρj for j = 0, . . . , n− 1} ⊂ X

be a toric fiber at ρ = (ρ0, . . . , ρn−1) ∈ Rn. For i = 0, . . . , n− 1, βT
i is represented

by the holomorphic disk u : (∆, ∂∆)→ (UC ,Tρ),

u(ζ) = (eρ0 , . . . , eρi−1 , eρiζ, eρi+1 , . . . , eρn−1).

By taking other affine charts, other disk classes can be expressed in a similar way.
Figure 5 gives a drawing for βT

i when X = KP1 . Since every disk class βT
i intersects

the anti-canonical divisor
∑m−1
i=0 Di exactly once, it has Maslov index two (Maslov

index is twice the intersection number [8]).

Figure 5. The basic disk classes in π2(X,T) for a toric fiber Tρ

of X = KP1 .

2. Lagrangian isotopy between Fr0 and T.
Fix r0 = (q1, q2) ∈ B0 with q2 > 0. We have the following Lagrangian isotopy

relating fibers of µ and Lagrangian toric fibers:

(4.4) Lt := {x ∈ X : [µ0(x)] = q1; |w(x)− t|2 = K2
2 + q2}

where t ∈ [0,K2]. L0 is a Lagrangian toric fiber, and LK2
= Fr0 . (This is also true

for q2 < 0. We fix q2 > 0 for later purpose.)
The isotopy gives an identification between π2(X,Fr0) and π2(X,T). Thus we

may identify {βT
j }

m−1
j=0 ⊂ π2(X,T) as a generating set of π2(X,Fr0), and we denote

the corresponding disk classes by βj ∈ π2(X,Fr0). They are depicted in Figure 6.
Finally by the trivialization of µ−1(U), every fiber Fr at r ∈ U is identified with

Fr0 , and thus {βj}m−1
j=0 may be identified as a generating set of π2(X,Fr).

Notice that since Maslov index is invariant under Lagrangian isotopy, each βj ∈
π2(X,Fr) remains to have Maslov index two. We will need the following description
for the boundary classes of βj :

Proposition 4.12.

∂βj = λ0 +

n−1∑
i=1

(νi , vj)λi ∈ (N/Z〈v0〉)× Z ∼= π1(Fr)

for all j = 0, . . . ,m− 1, where {νi}n−1
i=0 ⊂M is the dual basis of {vi}n−1

i=0 ⊂ N .
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Figure 6. Disks generating π2(X,Fr) when X = KP1 .

Proof. Under the identification

TN

∼=→ (TN/T〈v0〉)× (R/2πZ)

where the last coordinate is given by (ν , ·), ∂βT
j = vj ∈ π1(TN ) is identified with

([vj ], 1) =

(
n−1∑
i=1

(νi , vj) [vi], 1

)
=

n−1∑
i=1

(νi , vj)λi+λ0 ∈ π1 ((TN/T〈v0〉)× (R/2πZ))

because (ν , vj) = 1 for all j = 0, . . . ,m − 1. Under the isotopy given in Equation
(4.4), this relation is preserved. �

The following proposition gives the intersection numbers of the disk classes with
various divisors:

Proposition 4.13. Let r = (q1, q2) ∈ U with q2 6= 0, and βi ∈ π2(X,Fr) be the
disk classes defined above. Then

β0 ·Dj = 0

for all j = 1, . . . ,m− 1;

βi ·Dj = δij

for all i = 1, . . . ,m− 1, j = 1, . . . ,m− 1;

βi ·D0 = 1

for all i = 0, . . . ,m− 1, where

(4.5) D0 := {x ∈ X : w(x) = K2}

is the boundary divisor whose image under µ is ∂B, and Dj are the irreducible toric
divisors of X.

Proof. We need to use the following topological fact: Let {Lt : t ∈ [0, 1]} be an
isotopy between L0 and L1, and {St : t ∈ [0, 1]} be an isotopy between the cycles
S0 and S1. Suppose that for all t ∈ [0, 1], Lt ∩St = ∅. Then for β ∈ π2(X,L0), one
has the following equality of intersection numbers:

β · S0 = β′ · S1

where β′ ∈ π2(X,L1) corresponds to β under the isotopy Lt.
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First consider the case that r = r0. The first and second equalities follow by
using the isotopy Lt given by Equation (4.4) and the equalities

βT
0 ·Dj = 0

for j = 1, . . . ,m− 1 and

βT
i ·Dj = δij

for i = 1, . . . ,m− 1, j = 1, . . . ,m− 1 respectively.
We also have the isotopy

St = {x ∈ X : w(x) = t}

for t = [0,K2] between the anti-canonical divisor −KX =
∑m−1
l=0 Dl and D0. One

has St ∩ Lt = ∅ for all t, and so

βi ·D0 = βT
i · (−KX) = 1

for all i = 0, . . . ,m− 1.
For general r ∈ U , since U ∩ Dj = ∅ for all j = 1, . . . ,m − 1 and U ∩ D0 = ∅,

the isotopy between Fr and Fr0 never intersect D0 and Dj for all j = 1, . . . ,m− 1.
Thus the above equalities of intersection numbers are preserved. �

4.3. Toric modification. Our idea of constructing the mirror X̌ is to construct
coordinate functions of X̌ by counting holomorphic disks emanating from boundary
divisors of X. The problem is that in our situation, B has only one codimension-one
boundary, while we need n coordinate functions! To resolve this, one may consider
counting of holomorphic cylinders, which requires the extra work of defining rigor-
ously the corresponding Gromov-Witten invariants. Another way is to consider a
one-parameter family of toric Kähler manifolds with n toric divisors such that X
appears as the limit of this family when n− 1 of the toric divisors move to infinity.
We adopt the second approach in this paper.

Choose a basis ofN which generate a cone in Σ, say, the one given by v0, . . . , vn−1.
Since this is simplicial, {vj}n−1

j=0 forms a basis of N . We denote its dual basis by

{νj}n−1
j=0 ⊂M as before.

Remark 4.14. While all the constructions from now on depend on the choice of
this basis, we will see in Proposition 4.45 that the mirrors resulted from different
choices of basis differ simply by a coordinate change.

We define the following modification to XΣ:

Definition 4.15. Fix K1 > 0.

(1) Let

P (K1) :=
{
ξ ∈ P :

(
v′j , ξ

)
≥ −K1 for all j = 1, . . . , n− 1

}
⊂ P

where v′j := vj − v0 for j = 1, . . . , n − 1. K1 is assumed to be sufficiently

large such that none of the defining inequalities of P (K1) is redundant.
(2) Let Σ(K1) be the inward normal fan to P (K1), which consists of rays gener-

ated by v0, . . . , vm−1, v
′
1, . . . , v

′
n−1.

(3) Let X(K1) be the toric Kähler manifold corresponding to P (K1) and

µ
(K1)
0 : X(K1) → P (K1)

be the moment map.
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Notice that X(K1) is no longer a Calabi-Yau manifold. For notation simplicity,
we always suppress the dependency on K1 and write Σ′ in place of Σ(K1) and

µ′0 : X ′ → P ′ in place of µ
(K1)
0 : X(K1) → P (K1) in the rest of this paper. The

fan Σ′ and toric moment map image P ′ of X ′ are demonstrated in Figure 7 and 8
respectively.

Figure 7. The fan Σ′ of X ′ when X = KP1 .

v1v0v2

v1-v0

Figure 8. Toric moment map image P ′ of X ′ when X = KP1 .

P’ v2

v0

v1

v1-v0

T1’

T01’ T0’ T12’

T2’

[T1’] [T01’] [T0’] [T12’] [T2’]

E’

Analogously, one has a special Lagrangian fibration on X ′. The definitions and
propositions below are similar to that of Section 4.1, so we try to keep them brief.
The proofs are similar and thus omitted.

Proposition 4.16. ν corresponds to a holomorphic function w′ on X ′, whose zero
divisor is

(w′) =

m−1∑
i=0

Di

where we denote each irreducible toric divisor corresponding to vi by Di, and that
corresponding to v′j by D ′j. (Notice that w′ is non-zero on D ′j and so they do not
appear in the above expression of (w′).)

Proposition 4.17. Let ζj be the meromorphic functions corresponding to νj for
j = 0, . . . , n− 1. Then

Ω′ := dζ0 ∧ . . . ∧ dζn−1
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extends to a meromorphic n-form on X ′ with

(Ω′) = −
n−1∑
j=1

D ′j

where D ′j are the toric divisors corresponding to v′j.

Definition 4.18. Let

E(K1) :=
{
q ∈ (MR/R〈ν〉) :

(
v′j , q

)
≥ −K1 for all j = 1, . . . , n− 1

}
and

B(K1) := E(K1) × R≥−K2 .

We have the fibration

µ(K1) : X(K1) → B(K1) := E(K1) × R≥−K2

x 7→
(
[µ

(K1)
0 (x)], |w′(x)−K2|2 −K2

2

)
.

Again we’ll suppress the dependency on K1 for notation simplicity and use the
notations E and µ′ : X ′ → B′ instead.

Figure 8 gives an illustration to the notation E′, and Figure 9 depicts the fibra-
tion µ′ by an example.

Proposition 4.19. Under the natural quotient MR → MR/R〈ν〉, the image of P ′

is E. Indeed, this map give a homeomorphism between{
ξ ∈ ∂P ′ :

(
v′j , ξ

)
> −K1 for all j = 1, . . . , n− 1

}
and

Eint = {q ∈MR/R〈ν〉 :
(
v′j , q

)
> −K1 for all j = 1, . . . , n− 1}.

As a consequence, µ′ : X ′ → B′ is onto.

B′ is a manifold with corners with n connected codimension-one boundary
strata. Using the notations given in the beginning of Section 2.3, the connected
codimension-one boundary strata of B′ are

Ψj := {(q1, q2) ∈ B′ :
(
v′j , q1

)
= −K1}

for j = 1, . . . , n− 1 and

Ψ0 := {(q1, q2) ∈ B′ : q2 = −K2}.
Moreover, the preimages

(4.6) Dj = (µ′)−1(Ψj) ⊂ X ′

are divisors in X ′. Thus the assumptions needed in Section 2.3 for the mirror
construction are satisfied. (Notice that these Dj are NOT the toric divisors, which
are denoted by Di and D ′j instead.)

Proposition 4.20. µ′ : X ′ → B′ is a special Lagrangian fibration with respect to
the toric Kähler form and the holomorphic volume form Ω′/(w′ −K2) defined on

X ′ −
⋃n−1
j=0 Dj.

See Figure 9 for an illustration of the above notations. AsK1 → +∞, the divisors
Dj for j = 1, . . . , n − 1 move to infinity and hence µ′ tends to µ as Lagrangian
fibrations. We infer that the mirror of µ should appear as the limit of mirror of µ′

as K1 → +∞. We will construct the mirror of µ′ in the later sections.
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4.4. Topological considerations for X ′. In this section we write down the dis-
criminant locus of µ′ and generators of π2(X ′, F ), where F is a fiber of µ′. This is
similar to the discussion for X in Section 4.2, except that we have more disk classes
due to the additional toric divisors. The proofs to the propositions are similar to
that in Section 4.2 and thus omitted.

4.4.1. The discriminant locus of µ′.

Definition 4.21. For each ∅ 6= I ⊂ {0, . . . ,m− 1} such that {vi : i ∈ I} generates
some cone in Σ′, we define

T ′I := TI ∩
{
ξ ∈ P ′ :

(
v′j , ξ

)
> −K1 for all j = 1, . . . , n− 1

}
where TI is a face of P given by Equation (4.2). T ′I is a codimension-(|I| − 1) face
of {

ξ ∈ ∂P ′ :
(
v′j , ξ

)
> −K1 for all j = 1, . . . , n− 1

}
.

Proposition 4.22. The discriminant locus of µ′ is

Γ′ :=

 ⋃
|I|=2

[T ′I ]

× {0}
 ∪ ∂B′.

Figure 9 gives an example for the base and discriminant locus of µ′.

Figure 9. The base of µ′ when X = KP1 . The discriminant locus
is {r1, r2} ∪ ∂B′.

-K2

r20r1-K1

By removing the singular fibers of µ′, we get a Lagrangian torus bundle µ′ :
X ′0 → B′0, where

B′0 := B′ − Γ′;

X ′0 := (µ′)−1(B′0).
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4.4.2. Local trivialization. We define

U ′i := B′0 −
⋃
k 6=i

([T ′k]× {0})

for i = 0, . . . ,m− 1, so that (µ′)−1(U ′i) is trivialized. Without loss of generality we
stick to the trivialization over the open set

(4.7) U ′ := U ′0 = B′0 −
⋃
k 6=0

([T ′k]× {0}) =
{

(q1, q2) ∈ B′0 : q2 6= 0 or q1 ∈ [T ′0]
}
.

Similar to Proposition 4.10, one has

[T ′0] = {q ∈ Eint :
(
v′j , q

)
≥ cj − c0 for all j = 1, . . . ,m− 1}.

Thus the open set U ′ = U ′0 can be written as

{(q1, q2) ∈ Eint × R>−K2 : q2 6= 0 or
(
v′j , q1

)
> cj − c0 for all j = 1, . . . ,m− 1}.

Then the trivialization is explicitly written as

(µ′)−1(U ′)
∼=→ U ′ × (TN/T〈v0〉)× (R/2πZ)

which is given in the same way as in Definition 4.11.

4.4.3. Explicit generators of π1(Fr) and π2(X,Fr). For r ∈ U ′, every Fr is identified
with the torus (TN/T〈v0〉)× (R/2πZ) via the above trivialization. Then a basis of
π1(Fr) is given by {λi}n−1

i=0 , where λ0 = (0, 1) ∈ N/Z〈v0〉 × Z and λi = ([vi], 0) ∈
N/Z〈v0〉 × Z for i = 1, . . . , n− 1.

We use the same procedure as that given in Section 4.2.3 to write down explicit
generators of π2(X ′, Fr) for r ∈ B′0. First of all, π2(X ′,T) is generated by βi and β′j
corresponding to vi and v′j respectively, where i = 0, . . . ,m−1 and j = 1, . . . , n−1.
They are depicted in Figure 10.

Figure 10. Disks generating π2(X ′, T ) for a regular moment-map
fiber T when X = KP1 .

Then fixing a based point r0 = (q1, q2) ∈ U ′ with q2 > 0, the isotopy

Lt := {x ∈ X : [µ′0(x)] = q1; |w′(x)− t|2 = K2
2 + q2}

between Fr0 and a toric fiber T gives an identification π2(X ′, Fr0) ∼= π2(X ′,T).
Finally the trivialization of µ−1(U ′) gives an identification between Fr and Fr0
for any r ∈ U ′. Thus {βi}m−1

i=0 ∪ {β′j}
n−1
j=1 can be regarded as a generating set of

π2(X ′, Fr).
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Proposition 4.23.

∂βj = λ0 +

n−1∑
i=1

(νi , vj)λi ∈ (N/Z〈v0〉)× Z ∼= π1(Fr)

and
∂β′k = λk

for j = 0, . . . ,m− 1 and k = 1, . . . , n− 1.

Proposition 4.24. Let r = (q1, q2) ∈ U ′ with q2 6= 0, and βi ∈ π2(X ′, Fr) be the
disk classes defined above. Then

β0 ·Dj = 0 for all j = 1, . . . ,m− 1;

βi ·Dj = δij for all i, j = 1, . . . ,m− 1;

βi ·D ′k = 0 for all 0 = 1, . . . ,m− 1 and k = 1, . . . , n− 1;

βi ·D0 = 1 for all i = 0, . . . ,m− 1;

β′l ·D0 = 0 for all l = 1, . . . , n− 1;

β′l ·Dk = δlk for all l, k = 1, . . . , n− 1.

4.5. Wall crossing phenomenon. In Section 2.2 we give a review on the open
Gromov-Witten invariants nβ for a disk class β ∈ π2(X,L) bounded by a La-
grangian L (Definition 2.14). We find that when X is a toric Calabi-Yau manifold
and L = Fr is a Gross fiber, these invariants exhibit a wall-crossing phenomenon,
which is the main topic of this section. This is an application of the ideas and
techniques introduced by Auroux [3, 4] to the case of toric Calabi-Yau manifolds.
The main results are Proposition 4.30 and 4.32. In Section 5.2 we will give methods
to compute the open Gromov-Witten invariants.

Let’s start with the Maslov index of disks (Definition 2.7), which is important
because it determines the expected dimension of the corresponding moduli (Equa-
tion 2.6). The following lemma which appeared in [3] gives a formula for computing
the Maslov index, which can be regarded as a generalization of the corresponding
result by Cho-Oh [8] for moment-map fibers in toric manifolds.

Lemma 4.25 (Lemma 3.1 of [3]). Let Y be a Kähler manifold of dimension n, σ
be a nowhere-zero meromorphic n-form on Y , and let D denote its pole divisor. If
L ⊂ Y −D is a compact oriented special Lagrangian submanifold with respect to σ,
then for each β ∈ π2(Y,L),

µ(β) = 2β ·D.

Recall that the regular fibers Fr of µ : X → B are special Lagrangian with respect
to Ω/(w − K2) whose pole divisor is D0 (see Equation (4.5) for the definition of
D0). Using the above lemma, the Maslov index of β ∈ π2(X,Fr) is

µ(β) = 2β ·D0.

Similarly µ′ : X ′ → B′ are special Lagrangian with respect to Ω′/(w′ −K2) whose

pole divisor is
∑n−1
j=0 Dj . Thus the Maslov index of β ∈ π2(X ′, Fr) is

(4.8) µ(β) = 2β ·

n−1∑
j=0

Dj

 .

From this we deduce the following corollary:
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Corollary 4.26. For every β ∈ π2(X,Fr), if β is represented by stable disks, then
µ(β) ≥ 0.

Proof. From the above formulae, it follows that the Maslov index of any holomor-
phic disks in β ∈ π2(X,Fr) or β ∈ π2(X ′, Fr) is non-negative.

Every stable disk consists of holomorphic disk components and holomorphic
sphere components, and its Maslov index is the sum of Maslov indices of its disk
components and two times Chern numbers of its sphere components. The disk com-
ponents have non-negative Maslov index as mentioned above. Since X is Calabi-
Yau, every holomorphic sphere in X has Chern number zero. Thus the sum is
non-negative. �

4.5.1. Stable disks in X. First we consider the toric Calabi-Yau X. The lemma
below gives an expression of the wall (see Definition 2.17).

Lemma 4.27. For r = (q1, q2) ∈ B0, a Gross fiber Fr bounds some non-constant
stable disks of Maslov index zero in X if and only if q2 = 0.

Proof. Since X is Calabi-Yau, sphere bubbles in a stable disk have Chern number
zero and hence do not affect the Maslov index. We can restrict our attention to a
holomorphic disk u : (∆, ∂∆) → (X,Fr) whose Maslov index is zero. By Lemma
4.25, u has intersection number zero with the boundary divisor D0 = {w = K2}.
But since u is holomorphic and D0 is a complex submanifold, the multiplicity for
each intersection point between them is positive. This implies

Im(u) ⊂ µ−1(Bint).

Then w ◦ u − K2 is a nowhere-zero holomorphic function on the disk. Moreover,
|w ◦ u −K2| is constant on ∂∆. By applying maximum principle on |w ◦ u −K2|
and |w ◦ u−K2|−1, w ◦ u must be constant with value z0 in the circle{

|z −K2|2 = K2
2 + q2

}
⊂ C.

Unless z0 = 0, w−1(z0) is topologically Rn−1 × Tn−1, which contains no non-
constant holomorphic disks whose boundary lies in Fr ∩w−1(z0) ∼= Tn−1 ⊂ Rn−1×
Tn−1. Hence z0 = 0, which implies q2 = 0. Conversely, if q2 = 0, Fr intersects a
toric divisor along a (degenerate) moment map fiber, and hence bounds holomorphic
disks which are part of the toric divisor. They have Maslov index zero because they
never intersect D0. �

Combining the above lemma with Corollary 4.26, one has

Corollary 4.28. For r = (q1, q2) ∈ B0 with q2 6= 0, Fr has minimal Maslov index
two.

Using the terminology introduced in Definition 2.17, the wall is

H = MR/R〈ν〉 × {0}.

B0 −H consists of two connected components

(4.9) B+ := MR/R〈ν〉 × (0,+∞)

and

(4.10) B− := MR/R〈ν〉 × (−K2, 0).



SYZ FOR TORIC CY 35

For r ∈ B0 − H, the fiber Fr has minimal Maslov index two, and thus nβ is
well-defined for β ∈ π2(X,Fr) (see Section 2.2). There are two cases: r ∈ B+ and
r ∈ B−.

1. r ∈ B+.
One has the following lemma relating a Gross fiber Fr to a Lagrangian toric fiber

T:

Lemma 4.29. For r ∈ B+, the Gross fiber Fr is Lagrangian-isotopic to a La-
grangian toric fiber T, and all the Lagrangians in this isotopy do not bound non-
constant holomorphic disks of Maslov index zero.

Proof. Let r = (q1, q2) with q2 > 0. The Lagrangian isotopy has already been given
in Equation (4.4), which is

Lt := {x ∈ X : [µ0(x)] = q1; |w(x)− t|2 = K2
2 + q2}

where t ∈ [0,K2]. Since q2 > 0, for each t ∈ [0,K2], w is never zero on Lt. By
Lemma 4.27, Lt does not bound non-constant holomorphic disks of Maslov index
zero. �

Using the above lemma, one shows that the open Gromov-Witten invariants of
Fr when r ∈ B+ are the same as that of T:

Proposition 4.30. For r ∈ B+ and β ∈ π2(X,Fr), let βT ∈ π2(X,T) ∼= π2(X,Fr)
be the corresponding class under the isotopy given in Lemma 4.29. Then

nβ = nβT .

nβ 6= 0 only when
β = βj + α

where α ∈ H2(X) is represented by rational curves, and βj ∈ π2(X,Fr) are the basic
disk classes given in Section 4.2.3. Moreover, nβj = 1 for all j = 0, . . . ,m− 1.

Proof. It suffices to consider those β ∈ π2(X,Fr) with µ(β) = 2, or otherwise
nβ = 0 due to dimension reason.

The Lagrangian isotopy given in Lemma 4.29 gives an identification between
π2(X,Fr) and π2(X,T), where T is a regular fiber of µ0. Moreover, since every
Lagrangian in the isotopy has minimal Maslov index two, the isotopy gives a cobor-
dism between M1(Fr, β) and M1(T, βT), where βT ∈ π2(X,T) is the disk class
corresponding to β ∈ π2(X,Fr) under the isotopy. Hence nβ keeps constant along
this isotopy, which implies

nβ = nβT .

By dimension counting of the moduli space, nβT is non-zero only when βT is of
Maslov index two (see Equation 2.6 and the explanation below Definition 2.14).

Using Theorem 11.1 of [13], M1(T, βT) is non-empty only when βT = βj + α,
where α ∈ H2(X) is represented by rational curves, and βj ∈ π2(X,T) ∼= π2(X,Fr)
are the basic disk classes given in Section 4.2.3. For completeness we also give
the reasoning here. Let u ∈ M1(T, βT) be a stable disk of Maslov index two.
u is composed of holomorphic disk components and sphere components. Since
every holomorphic disk bounded by a toric fiber T ⊂ X must intersect some toric
divisors, which implies that it has Maslov index at least two, u can have only one
disk component. Moreover a holomorphic disk of Maslov index two must belong to
a basic disk class βj [8]. Thus β = [u] is of the form βj + α.
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Moreover, by Cho-Oh’s result [8], nβj = 1 for all j = 0, . . . ,m− 1. �

2. r ∈ B−.
When r ∈ B−, the open Gromov-Witten invariants behave differently compared

to the case r ∈ B+ (see Equation 4.10 for the definition of B−). For X = Cn, nβ
has been studied by Auroux [3, 4] (indeed he considered the cases n = 2, 3, but
there is no essential difference for general n). We give the detailed proof here for
readers’ convenience:

Lemma 4.31 ([3]). When the toric Calabi-Yau manifold is X = Cn and Fr ⊂ X
is a Gross fiber at r ∈ B−, we have

nβ =

{
1 when β = β0;
0 otherwise.

Proof. Let (ζ0, . . . , ζn−1) be the standard complex coordinates of Cn. In these
coordinates the Gross fibration is written as

µ = (|ζ0|2 − |ζ1|2, . . . , |ζn−2|2 − |ζn−1|2, |ζ0 . . . ζn−1 −K2|2 −K2
2 ).

Due to dimension reason, nβ = 0 whenever µ(β) 6= 2. Thus it suffices to consider

the case µ(β) = 2. Write β =
∑n−1
i=0 kiβi, where βi ∈ π2(X,Fr) are the basic

disk classes defined in Section 4.2.3. We claim that k0 = 1 and ki = 0 for all
i = 1, . . . , n− 1 if the moduli space M1(Fr, β) is non-empty.

Let u be a stable disk in Cn representing β with µ(β) = 2. Since Cn supports no
non-constant holomorphic sphere, u has no sphere component. Also by Corollary
4.28, Fr has minimal Maslov index two, and so u consists of only one disk component
(see Proposition 2.13). Thus u is indeed a holomorphic map ∆→ Cn.

Since q2 < 0, one has |(ζ0 . . . ζn−1)◦u−K2| < K2 on ∂∆. By maximum principle
this inequality holds on the whole disk ∆. In particular, ζ0 . . . ζn−1 is never zero
on ∆, and so u never hits the toric divisors Di = {ζi = 0} for i = 0, . . . , n − 1.
Thus β · Di = 0 for all i = 0, . . . , n − 1. By Proposition 4.13, (β0 , Dj) = 0 for all
j = 1, . . . , n− 1, and (βi , Dj) = δij for i = 1, . . . , n− 1 and j = 0, . . . , n− 1. Thus

(β , Dj) = kj = 0

for j = 1, . . . , n − 1. Thus β = k0β0. But µ(β) = k0µ(β0) = 2 and µ(β0) = 2, and
so k0 = 1.

This proves that nβ 6= 0 only when β = β0. Now we prove that nβ0 = 1. Since
every fiber Fr is Lagrangian isotopic to each other for r ∈ B− and the Lagrangian
fibers have minimal Maslov index 2, nβ0

keeps constant as r ∈ B− varies. Hence it
suffices to consider r = (0, q2) for q2 < 0, which means that |ζ0| = |ζ1| = . . . = |ζn−1|
for every (ζ0, . . . , ζn−1) ∈ Fr.

In the following we prove that for every p ∈ Fr ⊂ (C×)n, the preimage of p under
the evaluation map ev0 :M1(Fr, β0)→ Fr is a singleton, and so nβ0 = 1.

Write p = (p0, . . . , pn−1) ∈ (C×)n. p ∈ Fr implies that |p0| = |p1| = . . . = |pn−1|.
Consider the line

l := {(ζp0, ζp1, . . . , ζpn−1) ∈ (C×)n : ζ ∈ C×}

spanned by p. Then w = ζ0 . . . ζn−1 gives an n-to-one covering l→ C×. The disk

∆K2
:= {ζ ∈ C : |ζ −K2| ≤ (K2

2 + q2)1/2}
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never intersects the negative real axis {Re(ζ) ≤ 0}, and hence we may choose a
branch to obtain a holomorphic map ũ : ∆K2 → l (There are n such choices).

Moreover there is a unique choice such that ũ
(∏n−1

j=0 pj

)
= (p0, . . . , pn−1). The

image of ∂∆K2 under ũ lies in Fr: Let ζ ∈ ∂∆K2 and z = ũ(ζ). Then w(z) = ζ
satisfies |w(z)−K2|2 = K2

2 + q2. Moreover z ∈ l, and so |z0| = |z1| = . . . = |zn−1|.
ũ represents β0 because it never intersects the toric divisors Dj for j = 0, . . . , n− 1
and it intersect with D0 = {w = 0} once.

The above proves that there exists a holomorphic disk representing β0 such that
its boundary passes through p. In the following we prove that indeed this is unique.

Let u ∈ M1(Fr, β0) such that ev0(u) = p. By the above consideration u is a
holomorphic disk. Since β0 · Di = 0, u never hits the toric divisors {ζi = 0} for
i = 0, . . . , n− 1, and hence ζi ◦ u : ∆→ C are nowhere-zero holomorphic functions.
By applying maximum principle on |ζi/ζ1 ◦u| and |ζ1/ζi ◦u|−1 for each i = 2, . . . , n,
which has value 1 on ∂∆, we infer that u must lie on the complex line

{(ζ, c1ζ, . . . , cn−1ζ) ∈ (C×)n : ζ ∈ C×}
where |ci| = 1 are some constants for i = 1, . . . , n − 1. Moreover, the line passes
through p, and so this is the line l defined above.

Consider the holomorphic map w◦u : ∆→ C×. Since u has Maslov index two, it
has intersection number one with the divisor {w−K2 = 0}, implying that w ◦u|∂∆

winds around K2 only once. Hence w ◦u gives a biholomorphism ∆
∼=→ ∆K2 defined

above. One has ũ ◦ (w ◦ u) = (ũ ◦ w) ◦ u = u, where ũ is the one-side inverse of
w defined above. This means u is the same as ũ up to the biholomorphism w ◦ u.
Thus ũ is unique. �

Indeed the same statement holds for all toric Calabi-Yau manifolds:

Proposition 4.32. For r ∈ B− and β ∈ π2(X,Fr),

nβ =

{
1 when β = β0;
0 otherwise.

Proof. Due to dimension reason, nβ = 0 if µ(β) 6= 2, and so it suffices to assume
µ(β) = 2. Let r = (q1, q2) with q2 < 0.

First of all, one observes that when r ∈ B−, every holomorphic disk u : (∆, ∂∆)→
(X,Fr) has image

Im(u) ⊂ S− := µ−1({(q1, q2) ∈ B : q2 < 0}).
This is because (w − K2) ◦ u defines a holomorphic function on ∆. Since r ∈
B−, |w −K2| is constant with value less than K2 on Fr. By maximum principle,
|w −K2| ◦ u < K2. This proves the observation.

Notice that (S−, Fr) is homeomorphic to ((C×)n−1 × C, T ), where

T = {(ζ1, . . . , ζn) ∈ (C×)n−1 × C : |ζ1| = . . . = |ζn| = c}
for c > 0. In particular, π2(S−) = 0 which implies that S− supports no non-constant
holomorphic sphere. Moreover, every non-constant holomorphic disk bounded by
Fr with image lying in S− must intersect D0, and thus it has Maslov index at least
two.

Now let v ∈ M1(Fr, β) be a stable disk of Maslov index two, where r ∈ B−.
By the above observation, each disk component of v has Maslov index at least two,
and so v has only one disk component.
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Moreover, the image of a non-constant holomorphic sphere h : CP1 → X does
not intersect S−: Consider w◦h, which is a holomorphic function on CP1 and hence
must be constant. Thus image of h lies in w−1(c) for some c. But for c 6= 0, w−1(c)
is (C×)n−1 which supports no non-constant holomorphic sphere. Thus c = 0. But
w is never zero on S−, implying that w−1(0) ∩ S− = ∅.

Thus v does not have any sphere component, because any non-constant holo-
morphic sphere in X never intersect its disk component. This proves for all
β ∈ π2(X,Fr), M1(β, Fr) consists of holomorphic maps u : (∆, ∂∆) → (X,Fr),
that is, neither disk nor sphere bubbling never occurs.

In particular, all elements in M1(β, Fr) have images in S− and never intersect

the toric divisors. Writing β =
∑m−1
i=0 kiβi, one has

(β , Dj) = kj = 0

(see Proposition 4.13). Moreover, µ(β) = 2 forces k0 = 1. Thus M1(β, Fr), where
β has Maslov index two, is non-empty only when β = β0. Thus nβ = 0 whenever
β 6= β0.

Let V = Cn ↪→ X be the complex coordinate chart corresponding to the cone
〈v0, . . . , vn−1〉. We have Fr ⊂ S0 ⊂ V , and since β0 · D = 0 for every toric divisor
D ⊂ X, any holomorphic disk representing β0 in X is indeed contained in V . Thus

MX
1 (β0, Fr) ∼=MV

1 (β0, Fr).

Then nXβ0
= nVβ0

, where the later has been proven to be 1 in Lemma 4.31. �

From the above propositions, one sees that nβ for β ∈ π2(X,Fr) changes dramat-
ically as r crosses the wall H, and this is the so-called wall-crossing phenomenon.

4.5.2. Stable disks in X ′. Now we consider open Gromov-Witten invariants of X ′.
The statements are very similar, except that there are more disk classes due to the
additional toric divisors. The proofs are also very similar and thus omitted.

Lemma 4.33. For r = (q1, q2) ∈ B′0, a fiber Fr of µ′ bounds some non-constant
stable disks of Maslov index zero in X ′ if and only if q2 = 0.

Thus for every r = (q1, q2) ∈ B0 with q2 6= 0, Fr has minimal Maslov index two.
The wall (see Definition 2.17) is

H ′ = Eint × {0}.

The two connected components of B′0 −H ′ are denoted by

B′+ := Eint × (0,+∞)

and

B′− := Eint × (−K2, 0)

respectively. Again we have two cases to consider:

1. r ∈ B′+.

Lemma 4.34. For r ∈ B′+, the fiber Fr is Lagrangian-isotopic to a Lagrangian toric
fiber, and all the Lagrangians in this isotopy do not bound non-constant holomorphic
disks of Maslov index zero.
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Proposition 4.35. For r ∈ B′+ and β ∈ π2(X ′, Fr), nβ 6= 0 only when

β = β′k for k = 1, . . . , n− 1

or

β = βj + α for j = 0, . . . ,m− 1

where α ∈ H2(X) is represented by rational curves of Chern number zero. More-
over, nβ = 1 when β = β0, . . . , βm−1 or β′1, . . . , β

′
n−1.

2. r ∈ B′−.

Proposition 4.36. For r ∈ B′− and β ∈ π2(X ′, Fr),

nβ =

{
1 when β = β0 or β′1, . . . , β

′
n−1;

0 otherwise.

These invariants contribute to the ‘quantum correction terms’ of the complex
structure of the mirror, as we will discuss in the next section. In Section 5, we’ll
give two ways to compute these invariants: one is by relating to closed Gromov-
Witten invariants, and one is by predictions from complex geometry of the mirror.

4.6. Mirror construction. In this section, we use the procedure given in Section
2.3 to construct the mirror X̌ of a Calabi-Yau n-fold X with the Gross fibration
µ : X → B. The following is the main theorem:

Theorem 4.37. Let µ : X → B be the Gross fibration over a toric Calabi-Yau
n-fold X, and µ′ : X ′ → B′ be the modified fibration given by Definition 4.15.

(1) Applying the construction procedure given in Section 2.3 on the Lagrangian
fibration µ′ : X ′ → B′, one obtains a complex manifold

(4.11) Y =
{

(u, v, z1, . . . , zn−1) ∈ (C×)2 × (C×)n−1 : uv = G(z1, . . . , zn−1)
}

which admits a partial compactification

(4.12) X̌ =
{

(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 : uv = G(z1, . . . , zn−1)
}
.

Here G is a polynomial given by

(4.13) G(z1, . . . , zn−1) = (1 + δ0) +

n−1∑
j=1

(1 + δj)zj +

m−1∑
i=n

(1 + δi)qi−n+1z
vi

The notations δj , qa and zvi appeared above are explained in the end of this
theorem.

(2) Let H be the wall given in Definition 2.17. There exists a canonical map

ρ : µ̌−1(B0 −H)→ X̌

such that the holomorphic volume form

(4.14) Ω̌ := Res

(
1

uv −G(z1, . . . , zn−1)
d log z1 ∧ . . . ∧ d log zn−1 ∧ du ∧ dv

)
defined on X̌ ⊂ C2 × (C×)n−1 is pulled back to the semi-flat holomorphic
volume form (see Section 4.6.1 below) on µ̌−1(B0 − H) under ρ. In this
sense the semi-flat holomorphic volume form extends to X̌.
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(3) Let FX be the generating function given in Definition 2.18. The Fourier
transform of FX (see Definition 2.18) is given by ρ∗(C0u), where C0 is some
constant (defined by Equation (4.20)). In this sense the Fourier transform
of FX extends to a function on X̌, which is called the superpotential.

Explanation of the new notations δi, qa and zvi are as follows:

• δi’s are constants defined by

(4.15) δi :=
∑
α6=0

nβi+α exp

(
−
∫
α

ω

)
for i = 0, . . . ,m−1, in which the summation is over all α ∈ H2(X,Z)−{0}
represented by rational curves. (The basic disk classes βi ∈ π2(X,Fr) are
defined previously in Section 4.2.3.)
• zvi denotes the monomial

n−1∏
j=1

z
(νj , vi)
j

where {νj}n−1
j=0 ⊂M is the dual basis of {vj}n−1

j=0 ⊂ N .
• For a = 1, . . . ,m − n, qa are Kähler parameters defined as follows. Let
Sa ∈ H2(X,Z) be the classes defined by

(4.16) Sa := βa+n−1 −
n−1∑
j=0

(νj , va+n−1)βj

Then qa := exp(−
∫
Sa
ω).

X̌ is the complex manifold mirror to X. We need to check that the above
expression (4.16) of Sa does define classes in H2(X,Z):

Proposition 4.38. {Sa}m−na=1 is a generating subset of H2(X,Z).

Proof. One has the short exact sequence

0→ H2(X)→ π2(X,T)→ π1(T)→ 0

where T is a Lagrangian toric fiber, and the second to last arrow is given by the
boundary map ∂. For i = n, . . . ,m− 1,

∂

βT
i −

n−1∑
j=0

(νj , vi)β
T
j

 = ∂βT
i −

n−1∑
j=0

(νj , vi) ∂β
T
j

= vi −
n−1∑
j=0

(νj , vi) vj

= vi − vi = 0

where βT
i ’s are the basic disk classes given in Section 4.2.3. Thus

βT
i −

n−1∑
j=0

(νj , vi)β
T
j ∈ H2(X,Z).

Moreover, they are linearly independent for i = n, . . . ,m − 1, because βT
i ’s are

linearly independent. But H2(X,Z) ∼= Zm−n, and so they form a basis of H2(X,Z).
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βi’s are identified with βT
i ’s under the Lagrangian isotopy between Fr and T

given in Section 4.2.3. Thus {Sa}m−na=1 is a generating subset of H2(X,Z). �

By the above proposition, δi, and so X̌, can be expressed in terms of Kähler
parameters qa and open GW invariants nβ .

While throughout the construction we have fixed a choice of ordered basis {vi}n−1
i=0

of N which generates a cone of Σ, in Proposition 4.45 we will see that another choice
of the basis amounts to a coordinate change of the mirror. In this sense the mirror
X̌ is independent of choice of this ordered basis.

We now apply the construction procedure given in Section 2.3 on the Lagrangian
fibration µ′ : X ′ → B′ and prove Theorem 4.37.

4.6.1. Semi-flat complex coordinates and semi-flat holomorphic volume form. First
let’s write down the semi-flat complex coordinates on the chart (µ̌′)−1(U ′) ⊂ X̌0,
where U ′ ⊂ B′ is given in Equation (4.7), and µ̌′ : X̌ ′0 → B′0 is the dual torus
bundle to µ′ : X ′0 → B′0 (see Definition 2.4).

Fix a base point r0 ∈ U ′. For each r ∈ U ′, let λi ⊂ π1(Fr) be the loop classes
given in Section 4.4.3. Moreover define the cylinder classes [hi(r)] ∈ π2((µ′)−1(U ′), Fr0 , Fr)
as follows. Recall that we have the trivialization

(µ′)−1(U ′) ∼= U ′ × (TN/T〈v0〉)× (R/2πZ)

given in Section 4.4.2. Let γ : [0, 1] → U ′ be a path with γ(0) = r0 and γ(1) = r.
For j = 1, . . . , n− 1,

hj : [0, 1]× R/Z→ U ′ × (TN/T〈v0〉)× (R/2πZ)

is defined by

hj(R,Θ) :=

(
γ(R),

Θ

2π
[vk], 0

)
and

h0(R,Θ) := (γ(R), 0, 2πΘ).

The classes [hi(r)] is independent of the choice of γ.
Then the semi-flat complex coordinates zi on (µ̌′)−1(U ′) for i = 0, . . . , n− 1 are

defined as

(4.17) zi(Fr,∇) := exp(ρi + 2πi θ̌i)

where e2πi θ̌i := Hol∇(λi(r)) and ρi := −
∫

[hi(r)]
ω.

dz1∧ . . .∧dzn−1∧dz0 defines a nowhere-zero holomorphic n-form on (µ̌′)−1(U ′),
which is called the semi-flat holomorphic volume form. It was shown in [6] that this
holomorphic volume form can be obtained by taking Fourier transform of exp(−ω).
In this sense it encodes some symplectic information of X.

4.6.2. Fourier transform of generating functions. Next we correct the semi-flat
complex structure by open Gromov-Witten invariants. The corrected complex co-
ordinate functions z̃i are expressed in terms of Fourier series whose coefficients are
FOOO’s disk-counting invariants of X. The leading terms of these Fourier series
give the original semi-flat complex coordinates. In this sense the semi-flat complex
structure is an approximation to the corrected complex structure. The corrected
coordinates have the following expressions:
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Proposition 4.39. Let Ii be the generating functions defined by Equation (2.11).
The Fourier transforms of Ii’s are holomorphic functions z̃i on (µ̌′)−1(B′0 − H ′).
For i = 1, . . . , n− 1,

z̃i = C ′izi

where C ′i are constants defined by

(4.18) C ′i = exp

(
−
∫
β′i(r0)

ω

)
> 0.

For i = 0,

z̃0 :=

{
C0z0 on (µ̌′)−1(B′−)
z0g(z1, . . . , zn−1) on (µ̌′)−1(B′+)

where g(z1, . . . , zn−1) is the Laurent polynomial

(4.19) g(z1, . . . , zn−1) :=

m−1∑
i=0

Ci(1 + δi)

n−1∏
j=1

z
(νj , vi)
j ,

Ci are constants defined by

(4.20) Ci := exp

(
−
∫
βi(r0)

ω

)
> 0

for i = 0, . . . ,m − 1, and δi are constants previously defined by Equation (4.15).
Recall that r0 is the based point chosen to define the semi-flat complex coordinates
z0, . . . , zn−1 in Section 4.6.1.

Proof. The Fourier transform of each Ii is a complex-valued function z̃i on (µ̌′)−1(B′0−
H ′) given by

z̃i =
∑

λ∈π1(X′,Fr)

Ii(λ)Hol∇(λ) =
∑

β∈π2(X′,Fr)

(β ·Di)nβ exp

(
−
∫
β

ω

)
Hol∇(∂β).

By Proposition 4.35 and 4.36, nβ = 0 unless β = β′j for j = 1, . . . , n − 1 or
β = βk + α for k = 0, . . . ,m − 1 and α ∈ H2(X ′) represented by rational curves
with Chern number zero, which implies that α ∈ H2(X) ⊂ H2(X ′).

Now consider z̃i for i = 1, . . . , n − 1. Using Proposition 4.24, (βk + α) ·Di = 0
for all k = 0, . . . ,m− 1, i = 1, . . . , n− 1 and α ∈ H2(X). Also β′j ·Di = δji. Thus
z̃i consists of only one term:

z̃i = exp

(
−
∫
β′i(r)

ω

)
Hol∇(∂β′i) = exp

(
−
∫
β′i(r0)

ω −
∫

[hi(r)]

ω

)
Hol∇(λi)

= C ′izi.

Now consider z̃0. One has β′j · D0 = 0 and (βk + α) · D0 = 1. There are two
cases: When r ∈ B′−,

nβ =

{
1 for β = β0;
0 otherwise.

In this case

z̃0 = exp

(
−
∫
β0(r)

ω

)
Hol∇(∂β0) = exp

(
−
∫
β0(r0)

ω −
∫

[h0(r)]

ω

)
Hol∇(λ0)

= C0z0.
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When r ∈ B′+,

z̃0 =

m−1∑
j=0

∑
α

nβj(r)+α exp

(
−
∫
βj(r)+α

ω

)
Hol∇(∂βj(r))

=

m−1∑
j=0

(∑
α

nβj(r)+α exp

(
−
∫
α

ω

))
exp

(
−
∫
βj(r0)

−
∫

[h0(r)]

−
n−1∑
i=1

(νi , vj)

∫
[hi(r)]

)
ω

·Hol∇

(
λ0 +

n−1∑
i=1

(νi , vj)λi

)

=

m−1∑
j=0

Cj

(∑
α

nβj(r)+α exp

(
−
∫
α

ω

))
z0

n−1∏
i=1

z
(νi , vj)
i

= z0

m−1∑
j=0

Cj(1 + δj)

n−1∏
i=1

z
(νi , vj)
i .

�

Remark 4.40. Let r0 ∈ U ′ be chosen such that C0 equals to a specific constant,
say, 2. One may also choose the toric Kähler form such that the symplectic sizes
of the disks βi are very large for i = 1, . . . ,m−1, and so Ci � 1 (under this choice
every non-zero two-cycle in X ′ has large symplectic area, so this Kähler structure
is said to be near the large Kähler limit). According to the above expression of z̃0,
C0z0 = 2z0 gives an approximation to z̃0. Thus the semi-flat complex coordinates of
X̌0 are approximations to the corrected complex coordinates. The correction terms
encode the enumerative data of X ′.

4.6.3. The mirror X̌. Now we use {z̃i±1}n−1
i=0 derived from the previous subsection

to generate a subring of functions on µ−1(X ′ −H ′) and obtain

R = R− ×R0 R+

where R− = R+ := C[z±1
0 , . . . , z±1

n−1] and R0 is the localization of C[z±1
0 , . . . , z±1

n−1]

at g =
∑m−1
i=0 Ci(1 + δi)z

vi (see Equation (4.19)). The gluing homomorphisms are
given by [Id] : R− → R0 and

R+ → R0,

zk 7→ [zk] for k = 1, . . . , n− 1

z0 7→
[
g−1z0

]
.

z̃0 is identified with u = (C0z0, z0g) ∈ R, and z̃j is identified with (C ′jzj , C
′
jzj) ∈ R.

Setting
v :=

(
C−1

0 z−1
0 g, z−1

0

)
∈ R

one has

R ∼=
C[u±1, v±1, z±1

1 , . . . , z±1
n−1]

〈uv − g〉
.

Thus Spec(R) is geometrically realized as

Y =
{

(u, v, z1, . . . , zn−1) ∈ (C×)2 × (C×)n−1 : uv = g(z1, . . . , zn−1)
}

which admits an obvious partial compactification

X̌ =
{

(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 : uv = g(z1, . . . , zn−1)
}
.
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One has the canonical map

(4.21) ρ0 : µ̌−1(B0 −H)→ X̌

by setting

u :=

{
C0z0 on (µ̌′)−1(B−);
z0g on (µ̌′)−1(B+).

and

v :=

{
C−1

0 z−1
0 g on (µ̌′)−1(B−);

z−1
0 on (µ̌′)−1(B+).

By a change of coordinates, the defining equation of X̌ can be transformed to
the form appeared in Theorem 4.37:

Proposition 4.41. By a coordinate change on C2×(C×)n−1, the defining equation

uv =

m−1∑
i=0

Ci(1 + δi)z
vi

can be transformed to

uv = (1 + δ0) +

n−1∑
j=1

(1 + δj)zj +

m−1∑
i=n

(1 + δi)qi−n+1z
vi

where Ci’s are the constants defined by Equation (4.20).

Proof. Consider the coordinate change

ẑj =
Cj
C0
zj

for j = 0, . . . , n−1 on (C×)n−1. Recall that zvi denotes the monomial
∏n−1
j=1 z

(νj , vi)
j ,

where {νj}n−1
j=0 is the dual basis to {vj}n−1

j=0 . Thus the i = 0 term in the original

equation is simply C0(1 + δ0)zv0 = C0(1 + δ0).
For i = 1, . . . ,m− 1,

Ciz
vi = Ciẑ

vi

n−1∏
j=0

(
C0

Cj

)(νj , vi)

= C0Ciẑ
vi

n−1∏
j=0

C
(νj , vi)
j

−1

.

The last equality in the above follows from the equality

n−1∑
j=0

(νj , vi) = (ν , vi) = 1.

Thus for i = 1, . . . , n− 1,

Ciz
vi = C0ẑ

vi .

For i = n, . . . ,m− 1,

Ci

n−1∏
j=0

C
(νj , vi)
j

−1
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is exp(−Ai−n+1), where Ai−n+1 is the symplectic area of

Si−n+1 = βi −
n−1∑
j=0

(νj , vi)βj .

Thus it equals to qi−n+1.
Now set û = u/C0, the equation

uv =

m−1∑
i=0

Ci(1 + δi)z
vi

is transformed to

ûv = (1 + δ0) +

n−1∑
j=1

(1 + δj)ẑj +

m−1∑
i=n

(1 + δi)qi−n+1ẑ
vi .

�

This proves part (1) of Theorem 4.37 that the construction procedure given in
Section 2.3 produces the mirror as stated.

Remark 4.42. In our case we have an obvious candidate serving as the partial
compactification. In general the technique of toric degenerations developed by Gross-
Siebert [18, 19] is needed to ensure the existence of compactification.

Notice that the defining equation of X̌ is independent of the parameter K1 used
to define the modification X ′ in Section 4.3, while the toric Calabi-Yau manifold
X appears as the limit of X ′ as K1 → ∞. Thus the mirror manifold of X is also
taken to be X̌.

Remark 4.43. Hori-Iqbal-Vafa [20] has written down the mirror of a toric Calabi-
Yau manifold X as

uv = 1 +

n−1∑
j=1

zj +

m−1∑
i=n

qi−n+1z
vi

by physical considerations. They realize that the above equation needs to be ‘quantum
corrected’, but they did not write down the correction in terms of the symplectic
geometry of X. From the SYZ consideration, now we see that the corrections can
be expressed in terms of open Gromov-Witten invariants of X (which are the factors
(1 + δi)).

Composing the canonical map ρ0 with the coordinate changes given above, one
obtains a map

(4.22) ρ : µ̌−1(B0 −H)→ X̌

where

u :=

{
z0 on (µ̌′)−1(B−);
z0G(z1, . . . , zn−1) on (µ̌′)−1(B+).

and

v :=

{
z−1

0 G(z1, . . . , zn−1) on (µ̌′)−1(B−);
z−1

0 on (µ̌′)−1(B+).

Recall that G is the Laurent polynomial defined by Equation (4.13).
In the following we consider part (2) of Theorem 4.37.
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4.6.4. Holomorphic volume form. Recall that one has the semi-flat holomorphic
volume form on X̌0, which is written as d log z1∧ . . .∧d log zn−1∧d log z0 in Section
4.6.1. Under the natural map ρ (see Equation (4.22)) this semi-flat holomorphic
volume form extends to a holomorphic volume form Ω̌ on X̌ which is exactly the
one appearing in previous literatures (for example, see P.3 of [24]):

Proposition 4.44. There exists a holomorphic volume form Ω̌ on X̌ which has the
property that ρ∗Ω̌ = d log z0 ∧ . . .∧d log zn−1. Indeed in terms of the coordinates of
C2 × (C×)n−1,

Ω̌ = Res

(
1

uv −G(z1, . . . , zn−1)
d log z1 ∧ . . . ∧ d log zn−1 ∧ du ∧ dv

)
where G is the polynomial defined by Equation (4.13).

Proof. Let F = uv−G(z1, . . . , zn−1) be the defining function of X̌. On X̌∩(C×)n+1,
we have the nowhere-zero holomorphic n-form

d log z1 ∧ . . . ∧ d log zn−1 ∧ d log u

whose pull-back by ρ is d log z1 ∧ . . .∧ d log zn−1 ∧ d log z0. It suffices to prove that
this form extends to X̌ =

{
(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 : F = 0

}
. It is clear

that the form extends to the open subset of X̌ where u 6= 0. By writing the form
as

−d log z1 ∧ . . . ∧ d log zn−1 ∧ d log v

we see that it also extends to the open subset where v 6= 0. Since

udv + vdu =

m−1∑
i=1

Qi(1 + δi)

n−1∏
j=1

z
(νj , vi)
j

(
n−1∑
k=1

(νk , vi) d log zk

)
where Qi := 1 for i = 0, . . . , n − 1 and Qi = qi for i = n, . . . ,m − 1, the above
n-form can also be written as

udv + vdu∑m−1
i=1 Qi(1 + δi)

∏n−1
j=1 z

(νj , vi)
j (ν1 , vi)

∧ d log z2 ∧ . . . ∧ d log zn−1 ∧ d log u

=

(
∂F

∂z1

)−1

dv ∧ d log z2 ∧ . . . ∧ d log zn−1 ∧ du

which is holomorphic when ∂F
∂z1
6= 0. By similar change of variables, we see that

the form is holomorphic whenever dF 6= 0, which is always the case because X̌ is
smooth.

For u 6= 0,

1

F
d log z1 ∧ . . . ∧ d log zn−1 ∧ du ∧ dv

=d log z1 ∧ . . . ∧ d log zn−1 ∧ d log u ∧ udv

F

=d log z1 ∧ . . . ∧ d log zn−1 ∧ d log u ∧ dF

F

whose residue is d log z1 ∧ . . . ∧ d log zn−1 ∧ d log u. �

This proves part (2) of Theorem 4.37.
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4.6.5. Independence of choices of cones in Σ. If in the beginning we have chosen
another ordered basis which generates a cone of Σ to construct the mirror, the com-
plex manifold given in Theorem 4.37 differs the original one by a biholomorphism
which preserves the holomorphic volume form:

Proposition 4.45. Let {u0, . . . , un−1} ⊂ N and {v0, . . . , vn−1} ⊂ N be two or-

dered basis, each generates a cone of Σ. Let (X̃, Ω̃) and (X̌,Ω) be the two mirror
complex manifolds constructed from these two choices respectively. Then there ex-

ists a biholomorphism φ : X̃ → X̌ with the property that φ∗Ω = ±Ω̃.

Proof. Consider the mirror manifold given in Section 4.6.3,(u, v, z1, . . . , zn−1) ∈ (C×)2 × Cn−1 : uv = g(z) :=

m−1∑
i=0

Ci(1 + δi)

n−1∏
j=1

z
(νj , vi)
j


where Ci := exp

(
−
∫
βi(r0)

ω
)
> 0 and δi :=

∑
α 6=0 nβi+α exp

(
−
∫
α
ω
)

in which

the summation is over all α ∈ H2(X,Z) − {0} represented by rational curves.
If we choose another basis {u0, . . . , un−1} ⊂ N whose dual basis is denoted by
{µ0, . . . , µn−1}, then our mirror construction gives another equation(ũ, ṽ, ζ1, . . . , ζn−1) ∈ (C×)2 × Cn−1 : ũṽ =

m−1∑
i=0

Ci(1 + δi)

n−1∏
j=1

ζ
(µj , vi)
j


Recall that ν =

∑n−1
i=0 νi =

∑n−1
i=0 µi. Both {ν, ν1, . . . , νn−1} and {ν, µ1, . . . , µn−1}

are basis of M . Let a ∈ GL(n,Z) be the change of basis, and so µj = aj,0ν +∑n−1
k=1 ajkνk for j = 1, . . . , n− 1. Then since (ν , vi) = 1 for all i = 0, . . . ,m− 1,

m−1∑
i=0

Ci(1 + δi)

n−1∏
j=1

ζ
(µj , vi)
j =

m−1∑
i=0

Ci(1 + δi)

n−1∏
j=1

ζ
aj,0(ν , vi)
j

n−1∏
j=1

n−1∏
k=1

ζ
ajk(νk , vi)
j

=

(
n−1∏
p=1

ζap,0p

)
m−1∑
i=0

Ci(1 + δi)

n−1∏
k=1

n−1∏
j=1

ζ
ajk
j

(νk , vi)

.

Thus the coordinate change

zk =

n−1∏
j=1

ζ
ajk
j ;u = ũ

(
n−1∏
p=1

ζap,0p

)−1

; v = ṽ

gives the desired biholomorphism. Moreover under this coordinate change

Ω = d log z1 ∧ . . . ∧ d log zn−1 ∧ d log u

=

n−1∑
j=1

aj,1 log ζj

 ∧ . . . ∧
n−1∑
j=1

aj,n−1 log ζj

 ∧
log ũ−

n−1∑
j=1

aj,0 log ζj


= (detA) d log ζ1 ∧ . . . ∧ d log ζn−1 ∧ d log u

= ±Ω̃.

�
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4.6.6. The superpotential. Recall that we have defined the generating function FX
of open Gromov-Witten invariants (Definition 2.18). By taking Fourier transform,
we obtain the superpotential, which is a holomorphic function on (µ̌)−1(B0 −H),
and it extends to be a holomorphic function on X̌:

Proposition 4.46. Let z̃i be the holomorphic functions on (µ̌′)−1(B′0 −H) given
in Proposition 4.39.

(1) The Fourier transform of FX′ is the function

W ′ =

n−1∑
i=0

z̃i

on (µ̌′)−1(B′0 −H).
(2) The Fourier transform of FX is the function

W = z̃0

on (µ̌′)−1(B′0 −H), which equals to ρ∗(C0u). (C0 is a constant defined by
Equation (4.20).)

Proof. Recall that (in Definition 2.18)

FX′(λ) =
∑

β∈π2(X′,λ)

nβ exp

(
−
∫
β

ω

)
.

The sum is over all β with µ(β) = 2, which implies that β intersect exactly one of
the boundary divisors Di once (see Equation 4.8). Thus

FX′(λ) =

n−1∑
i=0

Ii(λ)

and so its Fourier transform W ′ is
∑n−1
i=0 z̃i. This proves (1).

The Fourier transform of FX is

W =
∑

λ∈π1(X,Fr)

FX(λ)Hol∇(λ) =
∑

β∈π2(X,Fr)

nβ exp

(
−
∫
β

ω

)
Hol∇(∂β).

For r ∈ B+, by Proposition 4.30, nβ = 0 unless β = βk + α for k = 0, . . . ,m− 1
and α ∈ H2(X) represented by rational curves. Moreover, nβk = 1. Thus

W =

m−1∑
j=0

∑
α

nβj(r)+α exp

(
−
∫
βj(r)+α

ω

)
Hol∇(∂βj(r))

= z̃0.

For r ∈ B−, by Proposition 4.32, nβ = 0 unless β = β0, and nβ0 = 1. Thus

W = exp

(
−
∫
β0(r)

ω

)
Hol∇(∂β0)

= z̃0.

By Equation (4.22), z̃0 = ρ∗(C0u). �

This ends the proof of Theorem 4.37.
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5. Enumerative meanings of (inverse) mirror maps

For a pair (X, X̌) of mirror Calabi-Yau manifolds, mirror symmetry asserts
that there is a local isomorphism between the moduli space MC(X̌) of complex
structures of X̌ and the complexified Kähler moduli space MK(X) of X near the
large complex structure limit and large volume limit respectively, such that the
Frobenius structures over the two moduli spaces get identified. This is called the
mirror map. It gives canonical flat coordinates on MC(X̌) by transporting the
natural flat structure onMK(X). A remarkable feature of the instanton-corrected
mirror family for a toric Calabi-Yau manifold we construct via SYZ is that it is
inherently written in these canonical flat coordinates. In this section, we shall
formulate this feature as a conjecture, and then give evidence for it for some 2- and
3-dimensional examples by applying the results in [5] and [27].

5.1. The conjecture. Let X = XΣ be a toric Calabi-Yau n-fold. We adopt the
notation used in Section 4: {vi}m−1

i=0 ⊂ N are primitive generators of rays in the fan

Σ, and {νj}n−1
i=0 ⊂ M is the dual basis of {vj}n−1

j=0 ⊂ N . Moreover, H2(X,Z) is of

rank l = m− n generated by {Sa}m−ni=1 (see Equation (4.16) and Proposition 4.38).

5.1.1. The complexified Kähler moduli. Let K(X) be the Kähler cone of X, i.e.
K(X) ⊂ H2(X,R) is the space of Kähler classes on X. Then let

MK(X) = K(X) + 2π
√
−1H2(X,R)/H2(X,Z).

This is the complexified Kähler moduli space of X. An element in MK(X) is
represented by a complexified Kähler class ωC = ω+2π

√
−1B, where ω ∈ K(X) and

B ∈ H2(X,R). B is usually called the B-field. We have the mapMK(X)→ (∆∗)l

defined by

qi = exp

(
−
∫
Sn+i−1

ωC

)
for i = 1, . . . , l. This map is a local biholomorphism from an open subset U ⊂
MK(X) to (∆∗)l, where ∆∗ = {z ∈ C : 0 < |z| < 1} is the punctured unit disk.
The inclusion (∆∗)l ↪→ ∆l, where ∆ = {z ∈ C : |z| < 1} is the unit disk, gives an
obvious partial compactification, and the origin 0 ∈ ∆l is called a large radius limit
point. From now on, by abuse of notation we will take MK(X) to be this open
neighborhood of large radius limit.

5.1.2. The mirror complex moduli. On the other hand, let MC(X̌) = (∆∗)l. We
have a family of noncompact Calabi-Yau manifolds {X̌q̌} parameterized by q̌ ∈
MC(X̌) defined as follows. For q̌ = (q̌1, . . . , q̌l) ∈MC(X̌),

(5.1) X̌q̌ :=

{
(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 : uv =

m−1∑
i=0

Ciz
vi

}
,

where Ci ∈ C are subject to the constraints

(5.2) Cn+a−1

n−1∏
i=0

C
−(νi , va+n−1)
i = q̌a, a = 1, . . . , l.

The origin 0 ∈ ∆l in the partial compactificationMC(X̌) ↪→ ∆l is called a large
complex structure limit point. Each {X̌q̌} is equipped with a holomorphic volume

form Ω̌q̌ (see Proposition 4.44).
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5.1.3. The mirror map. The mirror map ψ : MC(X̌) → MK(X) is defined by
periods:

ψ(q̌) :=

(∫
γ1

Ω̌q̌, . . . ,

∫
γl

Ω̌q̌

)
,

where {γ1, . . . , γl} is a suitable basis of Hn(X̌,Z).
Local mirror symmetry asserts that ψ :MC(X̌) →MK(X) is an isomorphism

onto U ⊂MK(X) (if U is small enough), and this gives canonical flat coordinates
on MC(X̌).

On the other hand, our construction of the instanton-corrected mirror gives a
natural map φ :MK(X)→MC(X̌) as follows: Recall from Theorem 4.37 that X̌
is defined by the equation

uv = (1 + δ0) +

n−1∑
j=1

(1 + δj)zj +

m−1∑
i=n

(1 + δi)qi−n+1z
vi .

Comparing this with Equation (5.1) and (5.2), one defines a map

φ :MK(X)→MC(X̌), (q̌1, . . . , q̌l) = φ(q1, . . . , ql)

by

(5.3) q̌a = qa(1 + δa+n−1)

n−1∏
j=0

(1 + δj)
−(νj , va+n−1), a = 1, . . . , l.

We claim that this gives the inverse of the mirror map:

Conjecture 5.1. The map φ is an isomorphism locally near the large radius limit
and gives the inverse of the mirror map ψ. In other words, there exists a basis
γ1, . . . , γl of Hn(X̌,Z) such that

qa = exp

(
−
∫
γa

Ω̌q̌

)
,

for a = 1, . . . , l, where q̌ = φ(q) is defined as above. Hence, q̌1(q), . . . , q̌l(q) are flat
coordinates on MC(X̌).

In the literature, various integrality properties of mirror maps and their inverses
(see e.g. [32]) have been established. This suggests that the coefficients in the
Taylor expansions of these maps have enumerative meanings. This is exactly what
the above conjecture says for the inverse mirror map, namely, it can be expressed in
terms of the open Gromov-Witten invariants nβi+α for X.9 See Remark 5.7 below
for a geometric reason why we have integrality for the inverse mirror map in case
X is a toric Calabi-Yau 3-fold of the form KS , where S is a toric Fano surface.

In practice, one computes the mirror map by solving a system of linear differential
equations associated to the toric Calabi-Yau manifold X. For i = 0, 1, . . . ,m − 1,

9As we mentioned in the introduction, Gross and Siebert were the first to conjecture such

a relation between canonical flat coordinates and disk counting invariants. More precisely, they

found that canonical coordinates can be obtained by imposing a normalization condition on slabs,
which are in-turn believed to be related to the counting of tropical disks. See Conjecture 0.2 in

[18].
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denote by θi the differential operator Ci
∂
∂Ci

. For j = 1, . . . , n, let

Tj =

m−1∑
i=0

vji θi,

where vji = (νj , vi). For a = 1, . . . , l, let

�a =
∏

i:Qai>0

(
∂

∂Ci

)Qai
−

∏
i:Qai<0

(
∂

∂Ci

)−Qai
where Qaj = − (νj , va+n−1) for j = 0, . . . , n − 1, and Qai = δi,a+n−1 for i =
n, . . . ,m − 1. Then, the A-hypergeometric system (also called GKZ system) of
linear differential equations associated to X is given by

TjΦ(C) = 0 (j = 1, . . . , n), �aΦ(C) = 0 (a = 1, . . . , l).

If we denote by X̌C the noncompact Calabi-Yau manifold (5.1) parameterized by
C = (C0, C1, . . . , Cm−1) ∈ Cm and Ω̌C a holomorphic volume form on it, then, for
any n-cycle γ ∈ H3(X̌,Z), the period

Πγ(C) =

∫
γ

Ω̌C ,

as a function of C = (C0, C1, . . . , Cm−1), satisfies the above A-hypergeometric
system (see e.g. [21] and [24]).

By imposing the constraints (5.2), the A-hypergeometric system is reduced to
a set of Picard-Fuchs equations (see the examples in Subsection 5.3), which are
satisfied by the periods

Πγ(q̌) =

∫
γ

Ω̌q̌, γ ∈ Hn(X̌,Z),

as functions of q̌ ∈ MC(X̌). Now, let Φ1(q̌), . . . ,Φl(q̌) be a basis of the solutions
of this set of Picard-Fuchs equations with a single logarithm. Then there is a basis
γ1, . . . , γl of Hn(X̌,Z) such that

Φa(q̌) =

∫
γa

Ω̌q̌

for a = 1, . . . , l, and the mirror map ψ :MC(X̌)→MK(X) is given by

ψ(q̌) = (exp(−Φ1(q̌)), . . . , exp(−Φl(q̌))).

In the literature, the mirror map is computed by solving the Picard-Fuchs equa-
tions ([1], [16]). One can then also compute (the Taylor series expansion of) its in-
verse. To give evidences for Conjecture 5.1, we need to compute the open Gromov-
Witten invariants nβi+α and then compare the map φ define by (5.3) with the
inverse mirror map.

5.2. Computation of genus-zero open Gromov-Witten invariants. In this
subsection, we compute the open Gromov-Witten invariants nβi+α for a class of
examples using the results in [5] and [27]. We first establish some general basic
properties for these invariants.
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Lemma 5.2. Let XΣ be a toric manifold defined by a fan Σ. Suppose that there
exists ν ∈ M such that ν defines a holomorphic function on XΣ whose zero set
contains all the toric prime divisors Di ⊂ XΣ. Then the image of any non-constant
holomorphic map u : P1 → XΣ lies entirely inside the union

⋃
i Di of the toric

prime divisors in XΣ. In particular this holds for a toric Calabi-Yau manifold X.

Proof. Denote the holomorphic function corresponding to ν ∈M by f . Then f ◦ u
gives a holomorphic function on P1, which must be a constant by the maximal
principle. f ◦ u cannot be constantly non-zero since otherwise, the image of u lies
entirely inside the open orbit (C×)n ⊂ XΣ, which forces u to be a constant map.
Thus f ◦ u ≡ 0, which implies that the image of u lies in the union of the toric
prime divisors in XΣ.

For a toric Calabi-Yau manifoldX, we have (ν , vi) = 1 > 0 for i = 0, 1, . . . ,m−1.
This implies that the meromorphic function corresponding to ν has no poles and
its zero set is exactly

⋃
i Di. �

It is known that nβi = 1 by the results of Cho-Oh [8]. In addition, we have

Proposition 5.3. Suppose that α ∈ Heff
2 (X,Z) − {0}, where Heff

2 (X,Z) is the
semi-group of all classes of holomorphic curves in X. Then nβi+α = 0 unless the
toric prime divisor Di ⊂ X corresponding to vi is compact.

Proof. Suppose thatM1(F, βi +α) is non-empty. Then α 6= 0 is realized by a non-

constant genus zero stable map to X, whose image Q must lie inside
⋃m−1
i=0 Di by

Lemma 5.2. Q has non-empty intersection with the holomorphic disk representing
βi ∈ π2(X,T) for generic toric fiber T. This implies that there must be some
components of Q which lie inside Di and have non-empty intersection with the
open orbit (C×)n−1 ⊂ Di. But if Di is non-compact, then the fan of Di is simplicial
convex incomplete, and so Di itself is a toric manifold satisfying the condition of
Lemma 5.2. This forces Q to have empty intersection with (C×)n−1 ⊂ Di, which
is a contradiction. �

From now on, we shall restrict ourselves to the case where X is the total space
of the canonical line bundle of a toric Fano manifold, i.e. X = KZ , where Z is
a toric Fano manifold. Note that there is only one compact toric prime divisor
D0 ⊂ X (the zero section Z ↪→ KZ) which corresponds to the primitive generator
v0. By the above proposition, it suffices to compute the numbers nβ0+α for α ∈
Heff

2 (X,Z)− {0}.
Let Σ̄ be the refinement of Σ by adding the ray generated by v∞ := −v0 (and then

completing it into a convex fan), and let X̄ = PΣ̄. This gives a toric compactification
of X, and v∞ corresponds to the toric prime divisor D∞ = X̄ −X.

Theorem 5.4 (Theorem 1.1 in Chan [5]). Let X = KZ , where Z is a toric Fano

manifold. Fix a toric fiber T ⊂ X. For α ∈ Heff
2 (X,Z)− {0} ⊂ Heff

2 (X̄,Z)− {0},
we have the following equality between open and closed Gromov-Witten invariants

nβ0+α = GWX̄,h+α
0,1 (P.D.[pt]).

Here, h ∈ H2(X̄,Z) is the fiber class of the P1-bundle X̄ → Z, P.D.[pt] ∈ H2n(X̄,C)
is the Poincaré dual of a point in X̄, and the 1-point genus zero Gromov-Witten
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invariant GWX̄,h+α
0,1 (P.D.[pt]) is defined by

GWX̄,h+α
0,1 (P.D.[pt]) =

∫
[M0,1(X̄,h+α)]

ev∗(P.D.[pt]),

where [M0,1(X̄, h+α)] is the virtual fundamental cycle of the moduli spaceM0,1(X̄, h+
α) of genus zero stable maps to X̄ with 1 marked point in the class h + α and
ev :M0,1(X̄, h+ α)→ X̄ is the evaluation map.

Sketch of proof. Denote by Mop and Mcl the moduli spaces M1(T, β0 + α) and

M0,1(X̄, h+ α) respectively. Fix a point p ∈ T ⊂ X̄. Then let

M ev=p
op := ev−1(p), M ev=p

cl := ev−1(p)

be the fibers of the evaluation maps ev : Mop → T and ev : Mcl → X̄ respectively.
M ev=p

op ,M ev=p
cl have Kuranishi structures induced naturally from those onMop,Mcl

respectively. We have (trivial) evaluation maps ev : M ev=p
op → {p}, ev : M ev=p

cl →
{p} and virtual fundamental cycles

[M ev=p
op ], [M ev=p

cl ] ∈ H0({p},Q) = Q.

Moreover, by Lemma A1.43 in [11], we have

nβ0+α = [M ev=p
op ] and GWX̄,h+α

0,1 (P.D.[pt]) = [M ev=p
cl ].

Hence, to prove the desired equality, it suffices to show that M ev=p
op ,M ev=p

cl are
isomorphic as Kuranishi spaces.

Let σop = ((Σop, z), u) be a point in M ev=p
op . This consists of a genus 0 nodal

Riemann surface Σop with nonempty connected boundary and a boundary marked
point z ∈ ∂Σop and a stable holomorphic map u : (Σop, ∂Σop) → (X̄,T) with
u(z) = p representing the class β0 + α. By applying the results of Cho-Oh [8],
we see that Σop must be singular and can be decomposed as Σop = Σop

0 ∪ Σ1,
where Σop

0 = ∆ is the unit disk and Σ1 is a genus zero nodal curve, such that
the restrictions of u to Σop

0 and Σ1 represent the classes β0 and α respectively
(Proposition 4.2 in [5]).

Now, there exists a unique holomorphic disk u∞ : (∆, ∂∆)→ (X̄,T) with class
β∞ (which corresponds to v∞ = −v0 and intersects D∞ at one point) such that its
boundary ∂u∞ coincides with ∂u but with opposite orientations (Proposition 4.3 in
[5]). We can then glue the maps u : (Σop, ∂Σop)→ (X̄,T), u∞ : (∆, ∂∆)→ (X̄,T)
along the boundary to give a map u′ : Σ→ X̄, where Σ is the union of Σop and ∆ by
identifying their boundaries. The map u′ has class β0 +β∞+α = h+α ∈ H2(X̄,Z).

This defines a map j : M ev=p
op → M ev=p

cl . To see that j is a bijective map, let

σcl = ((Σ, z), u) be representing a point in M ev=p
cl , which consists of a genus 0 nodal

curve Σ with a marked point z ∈ Σ and a stable holomorphic map u : Σ → X̄
such that u(z) = p. One can show that Σ must be singular and decomposes as
Σ = Σ0∪Σ1, where Σ0 = P1 and Σ1 is genus 0 nodal curve such that the restrictions
of u to Σ0 and Σ1 represent the classes h and α respectively (Proposition 4.4 in
[5]). Now, the Lagrangian torus T cuts the image of u|Σ0

into two halves, one
representing β0 and the other representing β∞. We can then reverse the above
construction and defines the inverse of j.

Furthermore, from these descriptions of the structures of the maps inM ev=p
op ,M ev=p

cl ,
it is evident that they have the same Kuranishi structures. We refer the reader to
Proposition 4.5 in [5] for a rigorous proof of this assertion. �



54 K. CHAN, S.-C. LAU, AND N.C. LEUNG

By the above theorem, we can use techniques for computing closed Gromov-
Witten invariants (e.g. localization) to compute the open Gromov-Witten invari-
ants nβ0+α. When dimX = 3, blow-up and flop arguments can be employed to

relate the 1-point invariant GWX̄,h+α
0,1 (P.D.[pt]) to certain local BPS invariants of

another toric Calabi-Yau manifold. This idea is developed in more details in [27].
As a special case of the results in [27], we have the following

Theorem 5.5 (Theorem 1.2 in Lau-Leung-Wu [27]). Let X = KS, where S is a

toric Fano surface, and let Y = KS̃ where S̃ is the toric blow up of S at a toric
fixed point q. Let X̄ and Ȳ be the toric compactifications of X and Y respectively
as before. Then we have

GWX̄,h+α
0,1 (P.D.[pt]) = GWȲ ,α̃−e

0,0 ,

where h ∈ H2(X̄,Z) is the fiber class as before, e ∈ H2(S̃,Z) ⊂ H2(Ȳ ,Z) is the class

of the exceptional divisor, and α̃ ∈ H2(S̃,Z) is the total transform of α ∈ H2(S,Z)

under the blowing up S̃ → S. If S̃ is also Fano, then we further have

GWX̄,h+α
0,1 (P.D.[pt]) = GWY,α̃−e

0,0 .

Here, the invariant on the right-hand-side is the local BPS invariant of the toric
Calabi-Yau 3-fold Y defined by

GWY,α̃−e
0,0 =

∫
[M0,0(S̃,α̃−e)]

ctop(R1forget∗ev∗KS̃),

where [M0,0(S̃, α̃−e)] is the virtual fundamental cycle of the moduli spaceM0,0(S̃, α̃−
e) of genus zero stable maps to S̃ in the class α̃ − e, forget : M0,1(S̃, α̃ − e) →
M0,0(S̃, α̃− e) is the map forgetting the marked point, ev :M0,1(S̃, α̃− e)→ S̃ is
the evaluation map and ctop denotes top Chern class.

Sketch of proof. A toric fixed point q ∈ S corresponds to a toric fixed point p ∈
D∞ ⊂ X̄. First we blow up p to get X1, whose defining fan Σ1 is obtained by adding
the ray generated by w = v∞ + u1 + u2 to Σ̄, where v∞, u1 and u2 are the normal
vectors to the three facets adjacent to p. Now 〈u1, u2, w〉R and 〈u1, u2, v0〉R form
two adjacent simplicial cones in Σ1, and we may employ a flop to obtain a new toric
variety Ȳ , whose fan contains the adjacent cones 〈w, v0, u1〉R and 〈w, v0, u2〉R (see

Figure 11). In fact Ȳ is the toric compactification of Y = KS̃ , where S̃ is the toric
blow up of S at the torus-fixed point q. By using the equalities of Gromov-Witten
invariants for blowing up [22, 14] and flop [30], one has

GWX̄,h+α
0,1 ([pt]) = GWX1,h+α

0,0 = GWȲ ,α̃−e
0,0 .

If we further assume that S̃ is Fano, then any rational curve representing α̃ − e ∈
H2(S̃,Z) ⊂ H2(Ȳ ,Z) never intersects D∞. Thus

GWȲ ,α̃−e
0,0 = GWY,α̃−e

0,0 .

�

Combining the above two theorems, we get
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u1 w

u0 u2

u1 w

u2u0

Figure 11. A flop.

Corollary 5.6. Let S be a smooth toric Fano surface and X = KS. Fix α ∈
Heff

2 (X,Z) − {0} = Heff
2 (S,Z) − {0}. Suppose the toric blow-up S̃ of S at a toric

fixed point is still a toric Fano surface. Then we have

(5.4) nβ0+α = GWY,α̃−e
0,0

where Y = KS̃, e ∈ H2(S̃,Z) is the class of the exceptional divisor, and α̃ ∈
H2(S̃,Z) is the pull-back (via Poincaré duality) of α ∈ H2(S,Z) under the blowing

up S̃ → S.

We conclude that the instanton-corrected mirror X̌ of X = KS is given by

X̌ =

(u, v, z1, z2) ∈ C2 × (C×)2 : uv = 1 + δ0(q) +

m−1∑
j=1

ecizwi


where

δ0(q) =
∑

α∈Heff
2 (X,Z)−{0}

GWY,α̃−e
0,0 qα.

Remark 5.7. Since the class α̃−e ∈ H2(S̃,Z) = H2(Y,Z) is primitive, there is no

multiple-cover contribution and hence GWY,α̃−e
0,0 is indeed an integer. Hence, the

coefficients of the Taylor series expansions of δ0 and hence the map ψ we define are
all integers. This explains why we have integrality properties for the inverse mirror
maps.

The invariants on the right hand side of the formula (5.4) have been computed
by Chiang-Klemm-Yau-Zaslow [7]. Making use of their results, we can now give
supportive evidences for Conjecture 5.1 in various examples.

5.3. Examples. In this subsection, we shall use the results in the previous section
to give evidences for Conjecture 5.1 in various examples.

5.3.1. KP1 . Consider our familiar example X = KP1 . The generators of the 1-
dimensional cones of the defining fan Σ are v0 = (0, 1), v1 = (1, 1) and v2 = (−1, 1),
as shown in Figure 2. We equip X with a toric Kähler structure ω so that the
associated moment polytope P is given by

P = {(x1, x2) ∈ R2 : x2 ≥ 0, x1 + x2 ≥ 0,−x1 + x2 ≥ −t1},
where t1 =

∫
l
ω > 0 and l ∈ H2(X,Z) is the class of the zero section in KP1 . To

complexify the Kähler class, we set ωC = ω + 2π
√
−1B, for some real two-form B

(the B-field). We let t =
∫
l
ωC ∈ C.
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Since D0, the zero section of KP1 → P1, is the only compact toric prime divisor,
by Proposition 5.3 and Theorem 4.37, the instanton-corrected mirror is given by

X̌ = {(u, v, z) ∈ C2 × C× : uv = 1 +

∞∑
k=1

nβ0+klq
k + z +

q

z
},

where q = exp(−t).
Now, the toric compactification of X is X̄ = P(KP1 ⊕OP1) = F2 (a Hirzebruch

surface). Using Theorem 5.4, the open Gromov-Witten invariants nβ0+kl can easily
be computed as F2 is symplectomorphic to F0 = P1 × P1 (see [5] and also [4] and
[10]). The result is

nβ0+kl =

{
1 if k = 0, 1;

0 otherwise.

Hence, the corrected mirror X̌ can be written as

X̌ = {(u, v, z) ∈ C2 × C× : uv = (1 +
q

z
)(1 + z)}.

We remark that this agrees with the formula written down by Hosono (See Propo-
sition 3.1 and the following remark in [21]). We have Q = (−2, 1, 1), and both
MC(X̌) andMK(X) can be identified with the punctured unit disk ∆∗. The map
φ : ∆∗ → ∆∗ we define is thus given by q 7→ q̌(q) = q(1 + q)−2.

In this example, the period of X̌ can be computed directly. Recall that the
holomorphic volume form on X̌ is given by Ω̌ = d log u ∧ d log z. There is an
embedded S2 ⊂ X̌ given by {(u, v,−1 + (1 − q)t) ∈ X̌ : |u| = |v|, 0 ≤ t ≤ 1}. Let
γ ∈ H2(X̌,Z) be its class. Then∫

γ

Ω̌ = − log q = t.

This verifies Conjecture 5.1 for KP1 . �

5.3.2. OP1(−1)⊕OP1(−1). For X = OP1(−1)⊕OP1(−1), the generators of the 1-
dimensional cones of the defining fan Σ are v0 = (0, 0, 1), v1 = (1, 0, 1), v2 = (0, 1, 1)
and v3 = (1,−1, 1). We equip X with a toric Kähler structure ω so that the
associated moment polytope P is given by

P = {(x1, x2, x3) ∈ R3 : x3 ≥ 0, x1 + x3 ≥ 0, x2 + x3 ≥ 0, x1 − x2 + x3 ≥ −t1},

where t1 =
∫
l
ω > 0 and l ∈ H2(X,Z) is the class of the embedded P1 ⊂ X. To

complexify the Kähler class, we set ωC = ω + 2π
√
−1B, for some real two-form B

(the B-field). We let t =
∫
l
ωC ∈ C.

Since there is no compact toric prime divisors in X (see Figure 12 below), by
Proposition 5.3 and Theorem 4.37, the instanton-corrected mirror is given by

X̌ = {(u, v, z1, z2) ∈ C2 × (C×)2 : uv = 1 + z1 + z2 + qz1z
−1
2 },

where q = exp(−t).
Both MC(X̌) and MK(X) can be identified with the punctured unit disk ∆∗

and the map φ : ∆∗ → ∆∗ we define in (5.3) is the identity map. This agrees
with the fact Φ(q̌) = − log q̌ is the unique (up to addition and multiplication by
constants) solution with a single logarithm of the Picard-Fuchs equation

((1− q̌)θ2
q̌)Φ(q̌) = 0,
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Figure 12. OP1(−1)⊕OP1(−1).

where θq̌ denotes q̌ ∂∂q̌ , which implies that that the mirror map ψ is the identity.

Hence, Conjecture 5.1 also holds for this example. �

5.3.3. KP2 . The primitive generators of the 1-dimensional cones of the fan Σ defin-
ing X = KP2 can be chosen to be v0 = (0, 0, 1), v1 = (1, 0, 1), v2 = (0, 1, 1) and
v3 = (−1,−1, 1). We equip X with a toric Kähler structure ω associated to the
moment polytope

P = {(x1, x2, x3) ∈ R3 : x3 ≥ 0, x1 + x3 ≥ 0, x2 + x3 ≥ 0,−x1 − x2 + x3 ≥ −t1},

where t1 =
∫
l
ω > 0 and l ∈ H2(X,Z) = H2(P2,Z) is the class of a line in P2 ⊂ X.

To complexify the Kähler class, we set ωC = ω + 2π
√
−1B, where B is a real

two-form (the B-field). We let t =
∫
l
ωC ∈ C.

There is only one compact toric prime divisor D0 which is the zero section P2 ↪→
KP2 and it corresponds to v0. By Proposition 5.3 and Theorem 4.37, the instanton-
corrected mirror X̌ is given by

X̌ =

{
(u, v, z1, z2) ∈ C2 × (C×)2 : uv =

(
1 +

∞∑
k=1

nβ0+klq
k

)
+ z1 + z2 +

q

z1z2

}
,

where q = exp(−t).
By Corollary 5.6, we have

nβ0+kl = GW
Y,kf+(k−1)e
0,0 ,

where Y = KF1 , F1 is the blowup of P2 at a point and e, f ∈ H2(F1,Z) are the
classes of the exceptional divisor and the fiber of the blowup F1 → P2. See Figure
13 below.
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l

f

e

l

Figure 13. Polytope picture for KP2 and KF1
.

The local BPS invariants GW
Y,kf+(k−1)e
0,0 have been computed by Chiang-Klemm-

Yau-Zaslow and the results can be found on the ”sup-diagonal” of Table 10 in [7]:

nβ0+l = −2,

nβ0+2l = 5,

nβ0+3l = −32,

nβ0+4l = 286,

nβ0+5l = −3038,

nβ0+6l = 35870,

...

Using these results, we can write the instanton-corrected mirror explicitly as

X̌ =

{
(u, v, z1, z2) ∈ C2 × (C×)2 : uv = 1 + δ0(q) + z1 + z2 +

q

z1z2

}
,

where

δ0(q) = −2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . . .

Now, both MC(X̌) and MK(X) can be identified with the punctured unit disk
∆∗. Our map φ : ∆∗ → ∆∗ is therefore given by

q 7→ q̌(q) := q(1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . .)−3.

On the other hand, the mirror map and its inverse have been computed by
Graber-Zaslow in [16]. First of all, the Picard-Fuchs equation associated to KP2 is

[θ3
q̌ + 3q̌θq̌(3θq̌ + 1)(3θq̌ + 2)]Φ(q̌) = 0,

where θq̌ denotes q̌ ∂∂q̌ , the solution of which with a single logarithm is given by

Φ(q̌) = − log q̌ −
∞∑
k=1

(−1)k

k

(3k)!

(k!)3
q̌k.

Hence, the mirror map ψ : ∆∗ → ∆∗ can be written explicitly as

q̌ 7→ q(q̌) = exp(−Φ(q̌)) = q̌ exp

( ∞∑
k=1

(−1)k

k

(3k)!

(k!)3
q̌k

)
.
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The inverse mirror map can be computed and is given by

q 7→ q + 6q2 + 9q3 + 56q4 + 300q5 + 3942q6 + . . .

= q(1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . .)−3.

This shows that φ coincides with the inverse mirror map up to degree 5 which
provides evidence to Conjecture 5.1 for KP2 .

5.3.4. KP1×P1 . For X = KP1×P1 , the primitive generators of the 1-dimensional
cones of the defining fan Σ can be chosen to be v0 = (0, 0, 1), v1 = (1, 0, 1), v2 =
(0, 1, 1), v3 = (−1, 0, 1) and v4 = (0,−1, 1). We equip X with a toric Kähler
structure ω so that the associated moment polytope P is defined by the following
inequalities

x3 ≥ 0, x1 + x3 ≥ 0, x2 + x3 ≥ 0,−x1 + x3 ≥ −t′1,−x2 + x3 ≥ −t′2.

Here, t′1 =
∫
l1
ω, t′2 =

∫
l2
ω > 0 and l1, l2 ∈ H2(X,Z) = H2(P1 × P1,Z) are the

classes of the P1-factors in P1 × P1. To complexify the Kähler class, we set ωC =
ω + 2π

√
−1B, where B is a real two-form (the B-field). We let t1 =

∫
l1
ωC, t2 =∫

l2
ωC ∈ C.

There is only one compact toric prime divisor D0 which is the zero section P1 ×
P1 ↪→ KP1×P1 . By Proposition 5.3 and Theorem 4.37, the instanton-corrected
mirror X̌ is given by

X̌ =

{
(u, v, z1, z2) ∈ C2 × (C×)2 : uv = 1 + δ0(q1, q2) + z1 + z2 +

q1

z1
+
q2

z2

}
,

where qa = exp(−ta) (a = 1, 2) and

1 + δ0(q1, q2) =
∑

k1,k2≥0

nβ0+k1l1+k2l2q
k1
1 qk22 .

For simplicity, denote nβ0+k1l1+k2l2 by nk1,k2 . By Corollary 5.6, we have

nk1,k2 = GW
Y,k1L1+k2L2+(k1+k2−1)e
0,0 ,

where Y = KdP2 , dP2 is the blowup of P1 × P1 at one point or, equivalently, the
blowup of P2 at two points, e ∈ H2(dP2,Z) is the class of the exceptional divisor
of the blowup dP2 → P1 × P1 and L1, L2 ∈ H2(dP2,Z) are the strict transforms of
l1, l2 ∈ H2(P1 × P1,Z) respectively. See Figure 14 below.

l1

l2

L1

L2

e

Figure 14. Polytope picture for KP1×P1 and KdP2 .
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The local BPS invariants GW
Y,k1L1+k2L2+(k1+k2−1)e
0,0 have again been computed

by Chiang-Klemm-Yau-Zaslow and the results can be read from ”anti-diagonals”
of Table 3 on p. 42 in [7]:

n0,0 = 1,

n1,0 = n0,1 = 1,

n2,0 = n0,2 = 0, n1,1 = 3,

n3,0 = n0,3 = 0, n2,1 = n1,2 = 5,

n4,0 = n0,4 = 0, n3,1 = n1,3 = 7, n2,2 = 35,

n5,0 = n0,5 = 0, n4,1 = n1,4 = 9, n3,2 = n2,3 = 135,

...

Hence,

δ0(q1, q2) = q1 + q2 + 3q1q2 + 5q2
1q2 + 5q1q

2
2 + 7q3

1q2 + 35q2
1q

2
2 + 7q1q

3
2

+9q4
1q2 + 135q3

1q
2
2 + 135q2

1q
3
2 + 9q1q

4
2 + . . . .

Now, both MC(X̌) and MK(X) can be identified with (∆∗)2, and we have
Q1 = (−2, 1, 0, 1, 0), Q2 = (−2, 0, 1, 0, 1). So our map φ : (∆∗)2 → (∆∗)2 is given
by

(q1, q2) 7→ (q1(1 + δ0(q1, q2))−2, q2(1 + δ0(q1, q2))−2).

On the other hand, we can compute the mirror map and its inverse by solving
the following Picard-Fuchs equations:

(θ2
1 − 2q̌1(θ1 + θ2)(1 + 2θ1 + 2θ2))Φ(q̌1, q̌2) = 0,

(θ2
2 − 2q̌2(θ1 + θ2)(1 + 2θ1 + 2θ2))Φ(q̌1, q̌2) = 0,

where θa denotes q̌a
∂
∂q̌a

for a = 1, 2. The two solutions to these equations with a

single logarithm are given by

Φ1(q̌1, q̌2) = − log q̌1 − f(q̌1, q̌2), Φ2(q̌1, q̌2) = − log q̌2 − f(q̌1, q̌2),

where

f(q̌1, q̌2) = 2q̌1 + 2q̌2 + 3q̌2
1 + 12q̌1q̌2 + 3q̌2

2 +
20

3
q̌3
1 + 60q̌2

1 q̌2 + 60q̌1q̌
2
2 +

20

3
q̌3
2

+
35

2
q̌4
1 + 280q̌3

1 q̌2 + 630q̌2
1 q̌

2
2 + 280q̌1q̌

3
2 +

35

2
q̌4
2

+
252

5
q̌5
1 + 1260q̌4

1 q̌2 + 5040q̌3
1 q̌

2
2 + 5040q̌2

1 q̌
3
2 + 1260q̌1q̌

4
2 +

252

5
q̌5
2

+ . . . .

This gives the mirror map ψ : (∆∗)2 → (∆∗)2:

(q̌1, q̌2) 7→ (q̌1 exp(f(q̌1, q̌2)), q̌2 exp(f(q̌1, q̌2))).

We can then invert this map and the result is given by

(q1, q2) 7→ (q1(1− F (q1, q2)), q2(1− F (q1, q2)))

where

F (q1, q2) = 2q1 + 2q2 − 3q2
1 − 3q2

2 + 4q3
1 + 4q2

1q2 + 4q1q
2
2 + 4q3

2

−5q4
1 + 25q2

1q
2
2 − 5q4

2 + . . . .



SYZ FOR TORIC CY 61

Now, we compute

(1− F (q1, q2))−1/2 = 1 + q1 + q2 + 3q1q2 + 5q2
1q2 + 5q1q

2
2

+7q3
1q2 + 35q2

1q
2
2 + 7q1q

3
2

+9q4
1q2 + 135q3

1q
2
2 + 135q2

1q
3
2 + 9q1q

4
2 + . . .

= 1 + δ0(q1, q2).

This shows that the inverse mirror map agrees with the map φ we define up to
degree 5, and this gives evidence to Conjecture 5.1 for KP1×P1 .
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