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1 Introduction

In this paper we are going to study the following PDE on one unknown function ¥ in two complex

variables z, s:

U, + V(z)Uss =0, (1)
where V() is a given entire function which has finitely many zeros.

This equation is related to the Schrodinger equation
—h20%¢(x, h) + V(2)¢(z, h) = 0 (2)
by means of the Laplace transform 1/h — 0s. According to resurgent analysis, the analytic behavior

of ¥(x,s) determines quasi-classical asymptotics of solutions of (2).

A multivalued solution ¥ of (1) can be specified by means of prescribing its initial values. Our problem
is now as follows. Consider a class of initial value problems for (1) with a fixed type of the analytic

behavior of the initial data; we are to find a manifold where solutions of these problems are defined.

1.1 Cauchy problem

We study the Cauchy problem for (1) of the following type. We fix a point zy € C and prescribe
U(zg,s) = 1o(s) and %u:m = 11(s) as multivalued analytic functions of s. Let us now give a

more precise account.



1.1.1 Initial data

Fix an acute angle a € (0,7/2). Let S, := (0, 00) X (—a, a+27) be an open sector of aperture 27+ 2a.
Let g, : So — C be the covering map 7g, (7, ¢) := re’®. The map mg, induces a complex structure
on S, so that mg, is a local biholomorphism. The initial conditions are given by two holomorphic

functions

g and 1 on S,. (3)

1.2 Multi-valued solution to a multi-valued Cauchy problem

We first fix a complex surface S along with a local biholomorphism ps : § — C x C. Let us also fix a
map

h:Sq¢ —S (4)

fitting into the following commutative diagram

C—2CxC

h

So —>8
where i, : C — C x C is given by the formula i,(s) = (xo, s).

The equation (1) gets transferred onto S by means of a local biholomorphism ps. Call this equation

”the transferred equation”.

The coordinates (x, s) on C x C give rise to local coordinates on §. Given a function ¥ on S, we then

have a well defined derivative — as a holomorphic function on §.

ox

We say that a solution ¥ of the transferred equation is a solution of the Cauchy problem with initial

v
data (3) on S, if‘llohzwo;goh:djl.

X

1.3 Formulation of the result

Our main result is a construction of a complex surface S and a map h as in (4), such that for every

choice of the initial data, there exists a unique solution ¥ of the Cauchy problem on §.

We prove (Sec. 3.16) that the surface S is “extends infinitely in the direction of K”, where K € C is
the following cone:
K :={re;r >0;,—a < ¢ < a}. (5)



Let us give a more precise formulation. Fix a point z € C such that V(z) # 0. Consider a one-
dimensional complex manifold S* := pgl(x x C), where the projection onto z x C gives a local
biholomorphism P* : §% — C. Let U C C be an open parallelogram whose sides are parallel to

vectors e’ and e, Let o : U — S% be a section of P?. Let also r_, C K be the ray [0, 00).e7%.

We prove that

Theorem 1.1 There exists a set I' C C satisfying:
1) for every point s € C, the intersection (s — K)NT is at most finite,
2) U cC (U+ K\[ +r_4);

3) o extends uniquely onto (U + K)\(I' +r_4).

This theorem is proved in Sec.3.16: it easily follows from Theorem 3.12, as explained after its formu-

lation.
In [V83] a similar problem was treated non-rigorously.

Our construction of S, as well as the proof of the above Theorem 1.1, are based on sheaf-theoretical
methods [KS]. The relation between linear PDEs and sheaves is well known and consitutes the subject

of Algebraic Analysis.

In the next subsection, we will briefly describe the idea of our sheaf-theoretic approach.

1.4 Introducing sheaves

We start with introducing a covering space X of C, and defining the so-called action function on X.

1.4.1 A covering space X

Let TP be the set of zeros of V(z) — “turning points” of V(x). We assume throughout the paper that
TP is finite. We also assume zg ¢ TP. Let X be the universal covering of C\T'P. We can choose a
determination of 1/V(x) and its primitive S(z) = [*+/V(£)d¢ on X. Tt will be more convenient for
us to use the notation z := S(z). Since dS(z) is nowhere vanishing on X, we can use z as a local
coordinate on X. As above, we denote by s the coordinate on C, so that (z, s) are local coordinates
on X x C.

Equation (1) gets transfered onto X x C and in the coordinates (z, s) it looks as follows:

—0,, 4+ U, +Llot. = 0 (6)



where l.o.t. stands for a differential operator of order < 1 applied to ¥. We now pass to a sheaf-

theoretical consideration.

1.4.2 Solution sheaf and its singular support

Let Sol be the solution sheaf of (6). According to [KS, Th.11.3.3], the singular support of Sol is of a
very special form which is determined by the highest order term of (6) (see Sec. 3.2 for more details).

More specifically, let (z,s,(dz 4+ ods) be local coordinates on T%(X x C). Then
S.5.80l € Qx :={(z,8,(dz+0ds) : (=ocor(=—0}. (7)

It turns out that this condition contains enough information on Sol in order to deal with solving the
Cauchy problem. In fact, at this stage, we abstact from our PDE, and only remember that its solution

sheaf has its singular support as specified.

1.4.3 Initial value problem in sheaf-theoretical terms

Choose and fix a preimage xg € X of z9. Define a map g : S, — X x C by setting g(5) := (x0,7s,, (5)).
Cauchy-Kowalewski theorem implies that the initial conditions (3) are in 1-to-1 correspondence with

elements of I'(S,, g1 Sol), see Sec. 3.3 for more detail.

As explained in the same Sec., the latter group can be identified with R® Homy xc(Rgi1Zs,, [—2], Sol).

Therefore, the initial data (3) can be interpreted as a map
my : Rg'Zs, [—2] — Sol, (8)

see (22).

1.4.4 Semi-orhogonal decomposition of RgZg, [—2].

Let D(X xC) be the bounded derived category of sheaves of abelian groups on X xC. Let C C D(X xC)
be the full triangulated subcategory consisting of all objects whose singular support is contained in
Qx as in (7). Let *C € D(X x C) be the so-called left semi-orthogonal complement to C, i.e. a full
subcategory consisting of all objects Y such that Rhom(Y, X) = 0 for all X € C. We prove

Theorem 1.2 1) There exists the following distinguished triangle in D(X x C):

— RgZs,[-2] 3@ — 553

where ® € C, § € +C (“semi-orthogonal decomposition”);

2) Stalks of ® at every point of X x C have no negative cohomology.



This theorem coincides (up-to slight reformulations) with Theorem 3.2. The object ® and the map
io : Rg\Zs,[—2] — ® are constructed in Sec 3.6-3.13. The bulk of the paper (Sec. 4-Sec. 6) is devoted

to showing that the constructed object ® and a map i satisfy the above theorem.

It is well known that the distinguished triangle in part 1 of Th.1.2 , if exists, is unique up to a unique

isomorphism, meaning that ® is defined uniquely. It also follows that the precomposition with ig:
ip :o— : ROHomyxc(®,Sol) — R°Hom(RgZs,[—2],Sol)
is an isomorphism of groups. This implies that the map my, cf. (8), uniquely factors as follows:

RgZg,[-2] — @ ¥ Sol.

Let ®g := 7<¢®. Condition 2) of Theorem 1.2 implies that ®q is a sheaf of abelian groups. We have
a composition

(mw)o : (I)() — ® — Sol.

1.4.5 Etale space of ) and solving the initial data problem

Let S’ be the étale space of ®;. We have a local homeomorphism pg: : &’ — X x C so that we
have a unique complex structure on 8’ making ps: into a local biholomorphism. It turns out, that
the map (my)o gives rise to a solution of the transferred equation on S’. Indeed, every such a
solution can be equivalently described as an element in ¥ € I'(S’; pg,lsol). We also have a canonical
section p € T'(S' ;pg,lq)o) (by the construction of the étale space); the map (my)o induces a map
v pg,léo — pg,lSol, and we set ¥ := v(p).

It is now straigtforward (Sec. 3.5.2) to prove that thus constructed solution ¥ is a solution on &’ of

the Cauchy problem with the initial data (3).

By choosing an appropriate connected component S of 8’ we finish the construction.

2 Conventions and Notations

Throughout the paper, we fix an acute angle a € (0,7/2).

2.1 Various subsets of C

We introduce the following subsets of C:



— K is the closed cone consisting of all complex numbers whose argument belongs to [—«,a],

including 0;
— 1y = €0,00); T_g 1= e [0, 00);
2.2 Sector S,

We set S, := (0,00) x (—a;a + 27). Let mg, : So — C be the map given by mg, (r, ¢) := re'®. It is
clear that mg, is a local homeomorphism, whence a structure of 1-dimensional complex manifold on

Sq. Complex analysts call S, an open sector with aperture 27 + 2a.

2.3 Potential V(z). Stokes lines. Assumptions

Throughout the paper, we fix an entire function V(z) on C. We assume that V(x) has only finitely

many zeros which are traditionally called 'turning points’.

The conditions in Sec 2.3.2 below will be also assumed throughout the paper.

2.3.1 Stokes curves and further assumptions

Let w € C, V(w) = 0 be a k-fold zero of V(x). We define an a-Stokes curve z(t), 0 <t < C, emanating

from w as follows:

—2(t) is a smooth curve with 2(0) = w and —V (2)(dz/dt)? € e**R~o.
The following facts are well known.

1) There are exactly k£ + 2 a-Stokes curves emanating from w.

2) One can choose C' (to be a positive real number or +00) in such a way that either z(C) := tliné

coincides with another turning point of V(z), or 2(C') = oo. In the latter case we say that the Stokes

curve terminates at infinity.

2.3.2 Further assumptions

We will assume the following properties of V'(z).
a) All a- and (—a)-Stokes curves terminate at infinity.

b) Every a-Stokes curve intersects only finitely many —a-Stokes curves, and every (—a«)-Stokes curve

intersects only finitely many a-Stokes curves.



It is well known in the complex WKB theory that for every entire V(x) with finitely many zeros one

can find an « satisfying these assumptions.

2.4 Universal cover X

Let U be the complement in C to the (finite) set of turning points of the potential V' (z). a-Stokes

curves split ¢/ into regions called a-Stokes regions; similarly, one can define —a-regions. Throughout

the paper, we denote by X the universal cover of U, and by px : X — U — C the covering map.

2.5 Initial point z,

We fix a point zp € X. We assume that px(zg) does not belong to any of a- or —a-Stokes lines.

2.6 Action function on X
Fix a choice of \/V(z) on U and a function

z: X —=C : dz(x)=+V(r)de. 9)

It follows that dz is nowhere vanishing, i.e. z is a local coordinate near every point of X. The function
z has the meaning of the action function. We use the notation z because z will play the role of a local

coordinate on X. The function z should not be confused with the map map px : X — C.

2.7 Subdivision of X into a-strips

Let P C U be a closed a-Stokes region on U, that is, P is one of the regions into which the complex

plane C is subdivided by a-Stokes curves.

Let us now switch to the universal cover p : X — U. It follows that p~!P splits into a disjoint
union of its connected components P = H«yer P,, where p : P, = P. Call each such P, (for every
a-Stokes region P) an a-strip. It follows that the function z maps each a-strip homeomorphically

into a generalized strip on C, i.e. a subset of C of one of the following types, fig. 1. Here the removed

points (, ( correspond to the turning points of V' (z).

Throughout the paper a-strips will be denoted by means of the letter P with different subscripts. We

will often identify « strips with their images in C under z.



Figure 1: Three types of a-strips

2.7.1 Boundary rays

Let Py, P> be a-strips and Py N Py # (). Then £ = Py N P, is a ray on X which is identified by means
of z with either é(¢) + €'*.(0,00) C C or é(f) — €“.(0,00) C C, where &(¢) is a complex number. We
denote by L£* the set of all such rays, to be called boundary a-rays. Every boundary a- ray belongs to

the boundaries of exactly two a-strips; the boundary of every a-strip is a disjoint union of boundary

a-rays. Boundary a-rays will be often denoted by the letter ¢ with different subscripts.

We say that a boundary a-ray £ goes to the left if its image under z is é(£) — €**.(0,00). Otherwise

(e}

we say that a boundary a-ray ¢ goes to the right. Accordingly, we get a splitting £% = Lf%;, U [,right.

2.7.2 Strips form a tree

Consider a graph whose vertices are a-strips and we join two distinct vertices with an edge if the
corresponding strips intersect (along some boundary a-ray). Since X is simply connected, it follows

that this graph is a tree.

2.8 (—a)-Strips

One has a similar decomposition of X into (—«)-strips which are defined based on —a-Stokes regions
of X. Throughout the paper, —a-strips will be denoted by means of the letter II with different
subscripts. Similar to above, every —a-strip is homeomorphically mapped under z into a generalized
strip whose each boundary ray is parallel to the line e *®*.R. We define boundary —a rays in a similar

way (as intersection rays of two —a-strips). The function z identifies each boundary ray ¢ with either



Figure 2: Intersection of an a-strip with several (—a)-strips. Thick gray lines indicate branch cuts

arising from the many sheets of the projection X — C,.

é(f) + e7%.(0,00) (we then say £ goes to the right), or é(f) — e™*.(0,00) (£ goes to the left). We

denote the set of all boundary —a-rays by £~*. We have a splitting L7 = £, g LI E;ight. Bounday

—a-rays will be denoted by the letter ¢ with various subscripts.

2.9 Interaction of o and —a-strips

Choose a (red) a-strip and look at all (—a)-strips (blue) that intersect it. These (—a)-strips cut the

a-strips into parallelograms and two semi-infinite parallelograms, e.g., fig. 2.

2.10 Categories

For a topological space M, we denote by D(M) the bounded derived category of sheaves of abelian
groups on M.

2.10.1 Sub-categories CY; +CY

Let Y be a one dimensional complex manifold equipped with a local biholomorphism z : Y — C. For

example, Y = X.

We then refer to points of T7*(Y x C) as follows (y, s,(dz,0ds), where y € Y, s € C and (,0 € C, so
that (y,s) € Y x C and ((, o) define the following real 1-form on Y x C:

(Cdz + (dz + ods + 7ds) /2.

Let us fix a closed subset 2y C T*(Y x C) to consist of all points (y, s,(, o), where { = +o.



We denote by C¥ c D(Y x C) the full triangulated subcategory consisting of all objects F with
SS(F) c €Y. We denote by +C¥ ¢ D(Y x C) the full subcategory consisting of all objects G such
that Rhom(G,F) =0 for all F € CY.

2.11 Sheaves

Let Y be a topological space endowed with a continuous map z : Y — C. If Y C X, then we always
assume that z : Y — C is the restriction of the action function z : X — C. We define the following

sheaves on Y x C:

K K-
AT =Ly sstawers AT = Ly s)ls—a()ek)-

3 Statement of the problem and Main resuts

We start this section with giving a precise formulation for the problem of analytic continuation of
solutions to (1). It turns out to be more convenient to transfer this PDE to X x C by means of the

covering map px : X — C.

Next, we give a sheaf-theoretical reformulation of the probem, and explain how the solution (i.e. a
complex surface S along with a local biholomorphism ps : § — X x C) can be deduced from of a
certain semi-orthogonal decomposition Theorem 3.2. The rest of this section is devoted to proving
basic properties of & modulo Theorem 3.2, namely Hausdorffness and infinite continuabilty in the
direction of K, which are the main results of this paper. To this end we need an explicit construction
of the distinguished triangle of the semi-orthogonal decomposition in Theorem 3.2. This triangle is

obtained via combining four other distinguished triangles.

It now remains to prove Theorem 3.2, which is now reduced to showing that each of the above
mentioned four triangles (and hence the combined triangle) gives a semi-orthogonal decomposition.

This is done in the rest of the paper.

3.1 Transfer of the equation —V,, + V(2)¥,, =0 to X x C

Our main equation (1) can be transferred to X x C via the covering map p x Idc : X x C — U x C.
We will use the action function z on X as in (9). Recall that z is a local coordinate near every point

of X. Our notation is summarized in fig.3.

It is easy to see that the transferred equation has the following form

—U,, + Uss + Lot =0, (10)

10



Figure 3

where l.o.t stands for the differential operator of order < 1 applied to V.

Let Sol be the sheaf of solutions of our transferred equation: Sol is a sheaf of abelian groups on X x C.

3.2 Singular support of the solution sheaf Sol

It is well known that to every linear PDE on a manifold M one can put into correspondence a Dj;-
module, where Dy is the sheaf of differential operators on M ; the solution sheaf of the PDE will then

match with the solution sheaf of the Dj; module.

In our situation, let us rewrite the equation (10) in the form L¥ = 0 for an appropriate linear

differential operator L on X x C. Define a Dx «c-module M as follows

M =Dxc/DxxcL.

We then have an obvious isomorphism
Sol — Homp,  .(M;Oxxc). (11)
Indeed, every solution ¥ of (10) on an open subset U C X x C gives rise to a Dx xc-module map

ly : Dxxclv — Oxxclu

where ly(T) := TW. Then, for any 7" € Dxxc(U), lg(T'L) = T'LY = 0. Hence, ly descends to a
map

ly : M|y — Oxxclu,
which determines the map (11). It is straightforward to see that thus constructed map (11) is in fact

an isomorphism of sheaves.

The usefulness of this fact comes from a Kashiwara-Schapira’s theorem on singular support of the
object
RHomp, . .(M;Oxxc) € D(X x C) (12)

11



(derived solution sheaf of M). Let us now prove that this object is quasi-isomorphic to Sol.

The object (12) can be conveniently computed by means of the following free resolution R of M:
(R) : 0— Dxxc > Dxxc — 0,

where the map A is as follows: A(T) = T'L. We obtain that the object Homp, .(M;Oxxc) is
represented in D?(X x C) by the two term complex

’HomDXXC (R; OXX(C)

which is the same as
0 — Oxxc L Oxxc — 0. (13)

It is classically known, e.g. [Sch, Th.3.1.1], that the action of the operator L is locally surjective,

meaning that we have a short exact sequence of sheaves
0 — Sol — Oxxc L Oxxc — 0.
This means that the complex of sheaves (13) is quasi-isomorphic to Sol so that finally

Sol = RhomDch(M; Oxxc)-

Kashiwara-Schapira’s theorem [KS, Th.11.3.3] says that the singular support of the object (12) equals
the characteristic variety of the Dxyc-module M. In our situation, this characteristic variety is

well-known to be equal to the zero set of the principal symbol of the operator L. This set is
{(z,8,{dz+ods) : (==x0} C T*(X xC), (14)

which is the same as Qx from Sec. 2.10.1. Thus, by Kashiwara-Schapira’s theorem, [KS, Th 11.3.3],
we conclude that
5.8.50l = Qx, SolecCX,

where C¥ is defined in Sec. 2.10.1.

3.3 Initial conditions

Let zg € X be an initial point satifying the assumptions from Sec 2.5. Let us pose a Cauchy problem

for the equation (10) similar to Sec. 1.2.
Let S, := (0,00) X (—a,a + 27) and 7g, : So — C be the same as in Sec 2.2. Set ¢ := Idx X 7g, :
X xS, — X xC. The equation (10) gets transfered to X x S, by means of the map g. The transfered

equation is of the form
L'V =0, (15)

12



where ¥ is an unknown function on X x S, and L’ is a linear differential operator. The solution sheaf

of this equation is canonically isomorphic to ¢~ Sol.

Let us fix two holomorphic functions 19,1 on S, and pose the initial conditions by requiring

U(xg,5) = ¥%(s) and 9, ¥(xq,s) = 1'(s), s€ Sq.

Cauchy-Kowalewski theorem implies that there exists a neighborhood
UCX xS, (16)

on which there exists a unique solution ¥ € I'(U, g~1Sol) of our Cauchy problem. We have a natural
map

P(U.q ™" S0l) = T(x0 X Sa g™ Sollxgxs.) = I(Saig ™" Sol),

where
g:Se = X xC : g(s)=(x0,7s,(5)). (17)

Thus, our initial data give rise to an element

Y € T'(Sa; g 1 Sol). (18)

3.3.1 Definition of a solution

Let us formulate the definition of a multivalued solution of the initial value problem in the sheaf-

theoretical language.

Suppose we are given a complex surface ¥ endowed with a local biholomorphism py; : 3 — X x C.
We can now transfer our differential equation from X x C to X. The solution sheaf of the transferred

equation is then Soly, := p£150l.

In order to transfer the initial condition (18), let us fix a factorization h of the map g:
S, Ly xxc, (19)
where h is a complex-analytic map. We then have
[(Sa; g ' Sol) = T(Sa; A pstSol) = T(Sa; h™*Sols).

The initial condition 1) now gives rise to an element s, € T'(Sqa; h~1Solys).

Let us now formulate the notion of a solution to this problem.

13



We have a restriction map res : I'(X; Soly) — I'(S,; h~1Sols), which is defined as follows:

res : I'(X; Soly) = hom(Zs; Sols) — hom(h ™' Zs; h~1Sols) = hom(Zs, ; h~ ' Sols) = T'(Sa; h ™' Solx).

We call an element U € I'(3; Soly;) a solution of the initial value problem with the initial data v, if

res(V) = ¢y. Since Soly is a sub-sheaf of Oy, ( the sheaf of analytic functions), the unicity of analytic

continuation implies:

Claim 3.1 Suppose ¥ is connected. For every initial condition v, the initial value problem has at

most a unique solution.

3.3.2 Equivalent formulation

One can define a notion of a solution to the initial value problem directly in terms of the initial

ov
data ¥°,1': we can require that a solution ¥ should satisfy: ¥ o h = 9°; 8—oh = ¢l Tt is clear
z
that this new notion of a solution coincides with the one from the previous subsection. Indeed, the
restriction of ¥ onto the neighborhood U as in (16) must coincide with the solution provided by the

Cauchy-Kowalewski theorem.

The notion of solution from this (or previous) subsection is related to the notion of solution from Sec
1.1 as follows. First of all we have dz = \/V (z)dz, where \/V (z) is a nowhere vanishing holomorphic
function on X. Set 1o = ¥° and v1(s) = \/V(x0)¥*(s). We then see that the notion of solution of
the Cauchy problem with the initial data g, 1, as in Sec 1.1, coincides with the current notion of

solution of the initial value problem given by the initial data ¥°, .

3.3.3 Formulation of the analytic continuation problem

Our analytic continuation problem is now as follows. Find a connected complex surface S along with a
complex analytic local diffeomorphism ps : S — X x C and a factorization g = hps, where h : S, — S
is as in the previous subsection, satisfying: given any initial condition v as in (18), there should exist
a solution to the initial value problem with the initial data ¥. By Claim 3.1, this solution is then

unique.

3.4 Semi-orthogonal decomposition of F

Our main tool in solving the analytic continuation problem is a certain semi-orthogonal decomposition

theorem, to be now stated.

Let Fo = RgiZs, [~2]; let CX,+C¥X be the same as in Sec. 2.10.1.

14



Theorem 3.2 1) There exists a distinguished triangle
NN SN L (20)

where ® € CX and § € +CX.

2) The object ® belongs to D>o(X x C) (that is: the stalks of ® at every point of X x C have no

negative cohomology).

Remark. The distinguished rectangle (20) is called “left semi-orthogonal decomposition of Fy”. It is

well known that such a triangle, if exists, is unique up-to a unique isomorphism.

We will devote the rest of this section by deducing a solution to the analytic continuation problem

from this theorem.

3.4.1 Factorization of the initial condition

Since g : S — X x C is locally a closed embedding of codimension 2, whose normal bundle is

canonically trivialized, we have a natural transformation of functors
kgt — g'[2]. (21)

Since Sol is microsupported on x, one can easily check that Sol is non-characteristic with respect
to g. Accoriding to [KS, Prop.5.4.13], & induces an isomorphism g~'Sol — ¢'Sol[2]. We now have an

isomorphism
['(Sy; g 1S0l) = R®hom(Zg, ;g 1 Sol) = RO hom(Zs, ; g'Sol[2]) = R hom(RgZs, [-2]; Sol).  (22)
Let us denote the images of 1 under these identifications as follows:
vy i Ls, — g 1 Sol;
miﬂ - Ls,, — g'Sol[2];
my : @Zs, [—2] — Sol.
Since Sol € C, the semi-orthogonal decomposition theorem 20 implies that m,, uniquely factors as

my : RgZs,[~2) % & ¥ Sol. (23)

The map ig defines, by the conjugacy, a map I’ : Zg, — ¢'®[2]. Let also ¥y : ¢'®[2] — ¢'Sol[2] be
the map induced by v¢’. The equation (23) now implies the following factorization (by the conjugacy
between Rgy and ¢'):

ml, : Ls, © g'®[2] & ¢'Sol[2]. (24)

15



Since ®[2] is microsupported within Qx, the transformation x, cf. (21), induces an isomorphism
ke : g '® — ¢'®[2] so that we have a unique map I : Zg, — ¢ '® such that I' = kgl. Let
¥ : g '® — g~ 150l be the map induced by ¥/. We can now rewrite (24) as follows:

vy s, LN g o ¥, g~ 1Sol. (25)

3.4.2 Truncation
The second statement of the theorem implies that &y := 7<o® is a sheaf of abelian groups. The
canonical map ¢ : 7<o® — ® induces a map ¢ : g~ Py — g1 ®.

Let us show that
Proposition 3.3 The map I factorizes uniquely through c’.

Proor.
We have a distinguished triangle

1 _ / _ _ 1
D700 S g7 — gl g® 5,

which induces a long exact sequence

- R 'hom(Zsg,; g '7-0®) — R hom(Zs,; g '®¢) = R®hom(Zg, ;g '®) — R®hom(Zg, ;g ‘rao®)--- .

1

where the arrow # is given by the composition with ¢/. Since the functor g~! is exact, g '7oo® €

D (S,) so that R<hom(Zg,; g~ '7-¢®) = 0, meaning that the map * is an isomorhism. This implies
the statement. O

Denote by
Iy : Zs, — g '@ (26)

the factorization map (unique by the above Proposition):
1:Zs, 2 g 100 < g0

We can also factorize: ~
vy Ls, Iy g 1d, Vo g tSol.

16



3.5 Etale space of ®,
3.5.1 Choice of a covering space X

Set py. : ¥ — X x C to be the etale space of ®;. Observe that the etale space of g~'®q is S, X xxc 2.

The etale space of Zg, is S4 X Z, so that we have a map
Sa X Z — Sq XxxC 2

over Sy, induced by the map Iy. Let us restrict this map to S, = S, X 1 and denote by h the through
map
h:Sa=84x1— 84 XZ — Sy XxxcX — X. (27)

By the definition of fibered product, we have psh = g.

Thus, py : ¥ — X x C and h : S, — X yield a factorization of the map (17), as required by (19).

3.5.2 Solving the initial value problem
Let us show that the initial value problem 1 € T'(S,; g~ 1Sol) has a solution on ¥, in the sense of Sec.
3.3.1, where ¥ is as in Sec.3.5.1.

We have a canonical map A : Zy — p;@o which comes from the canonical section of p;(I)o: over a
point of ¥ corresponding to ((7, ), ¥(z,s) € (P0)(a,s)), the stalk of this canonical section equals ¢, ).
Let us apply the functor A~! and obtain a map

I':Zs, =h'Zs — hpg'dg = g 1 ®.
Lemma 3.4 We have ' =1.

PROOF It is easy to see that for each s € S,, the map I’ induces the same map on stalks as I. O

CI

We have a composition Fy, : Zy LS pilfbo 4 pilSol. Let us prove that Fy is a solution to the
initial value problem. Indeed, applying h~! induces a map Zg, — g~ 'Sol which, by virtue of Lemma,

coincides with vy, which means that Fy, is a solution.

3.5.3 Solving the analytic continuation problem

We replace X with its connected component S containing the image of h. It is clear that S is a solution

to the analytic continuation problem as in Sec. 3.3.3.
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3.6 Structure of the object .

We construct the semi-orthogonal decomposition of ¢1Zg,, [—2] via representing ¢iZs,, [—2] as a cone of
some arrow A — B, and then constructing the semi-orthogonal decompositions for A and B; these

decompositions are then glued into the desired decomposition of ¢iZg,, [—2].

3.6.1 Decomposition of mZg, € D(C)

Let mg, : So — C be the projection. We are going to represent mg,1Zg, as a cone of a certain map.

To this end let us introduce the following subsets of C (same as in Sec 2.1)

We have natural restriction maps

in D(C).

The identification Zg, = 7T!Sa Zc induces, by conjugacy, a map
pc : w1 Ls, — L.

We are now up to defining a map px : 7s5,1Zs, — Zk. We have
ﬂgalK = (0,00) X (—aza] U (0,00) X 27 — ;27 + a) =: K1 U K.

Denote by i1 : K1 — S, the closed embedding. We have natural surjections of sheaves on S,:

112 Zs, — 1Ly, and o : Zg, — i9Zk,.

The map 7g, induces open embeddings 7g_ i1 : K1 — K and 7g_ iz : Ko — K. We have 7g, (K1) =
K\rq; mg, K2 = K\r_,. These open embeddings induce the following embeddings of sheaves on C:
ms lk, — Li; TS, 1ialk, — Zi. Combining these maps with ¢y, 12, we get the following through
map

L .
P WS Ls, = Tsinli, — Li.
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One checks that pgy, pr = pcr,pc- Let us now construct the following sequence of maps

PCrq

Ly

@

—PKrq

K
PKr_

Ty ——————

r—o

It is clear that the composition of every two consecutive maps is zero. In fact, this sequence is exact,

which can be shown by proving exactness of the induced sequences on stalks for every point z € C.

Let ¢’ : C — X x C be given by ¢'(s) = (x¢,s) so that g = ¢'7g,. Applying g to the exact sequence

above yields the following exact sequence of sheaves:

xox(C—> X0 X T (29)
gv (pc)
_g pKr
0 — gZs, orere)
gl(pK
pKr a

x0><K > X0><I'

3.6.2 Semi-orthogonal decomposition for Zyx «c,Zx,x K, Zxoxria

Theorem 3.5 There are objects ®C, ®K | dTe P« in the category of sheaves of abelian groups and
maps in D°(X x C):

ige : Zyoxc|—2] — @€ igr : Lxoxic[—2] — ®F

iq)ra : ZXOXI'Q [_2] — @I’a i@l‘,a : ZxOXr_a [_2] — @ria

whose cones are in +C and ®C, K Pre Pr-o ¢ C.

Based on this theorem, let us construct a semi-orthogonal decomposition of giZg,. Let us rewrite the
sequence (29) as
0— gZs, =X -V =0,

where X = Zy,xc ® Zxoxx and Y = Zy,xr, ® Lxyxr_,- By virtue of Theorem 3.5 we have semi-

orthogonal decompositions of X and )

P,

—>f—>X[—2]—“’>V By

X5 ooy =2y 8

)
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where X' = ®C @ &K € C; )/ = ®% @ ®"« € C; ¢, € *C. The map Pyq : X[-2] — ), by the

univerality of X/, uniquely factors as
Pyq = ¢'Px
for some ¢’ : X’ — )’ so that we have a commutative diagram

x[-2] —- Y[-2)

le | lpy

x— sy

(30)

We have ¢1Zg, [—2] = Coneg[—1]. Set @ := Coneq'[—1]. It is well known that the commutative diagram

above implies existence of a map i¢ : g1Zg, [—2] — P’ fitting into the following commutative diagram

whose rows are distinguished triangles:

— gils, [ 2] — X[-2]

e,

o X —

Furthermore, we have a distinguished triangle

— Cone(ip) — ConePy — ConePy =,

which implies that 6 := Cone(ig) € *C satisfies all the conditions of Theorem 3.2.

We will now give an explicit description of the sheaves ®C, &% d+o as well as the maps 1T, oK , bpT+a

from Theorem 3.5. This theorem will be proven below.

3.6.3 o€
We set € = Z v c. We have a codimension 2 embedding
icxy : C— X xC,

so that we have a natural map

Zsxyxc|—2] = Zxxc,

and we assign igc to be this map.
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3.7 Notation: convolution functor D(X x C) x D(C) — D(X x C)
Define a convolution functor
* : D(X xC)xD(C) — D(X xC) (31)
as follows. Let F € D(X x C), ¥ € D(C). Let
a: X xCxC—XxC : a(z,s1,s2) = (x,51 + s2)

Set
F*x¥ = Ra(FXY).

3.8 Construction of ¥
3.8.1 Subdivision into a-strips

Let us split X into a-strips as in Sec. 2.7. We will freely use the notation from this section below.
We will define a sheaf ®* on X x C via prescribing the following data.

1) For each a-strip P we will define a sheaf CI>§ on P x C. Recall that by a-strip we always mean a

closed a-strip.

2) Let Py, P be intersecting closed a-strips so that PiNP, = £ € L% We will construct an isomorphism
P, P ~
T2 ®F |oxe = 5, lexc,

where we assume ngpl = (ngﬁ)_l-

Since every triple of distinct closed a-strips has an empty intersection, the data 1),2) define a sheaf

®X unambiguously. More precisely, there exists a sheaf ®* endowed with the following structure:
— isomorphisms jp : ®X|pyc = q)g for every a-strip P satisfying: for every pair of intersecting strips
P and Py, P| N P, = ¢, the following maps must conicide:

. PPy
K JP1|Z K K K
D7 |pxc — Pp lexc —— Pp,lexc

and

JPylexc

"o DB, oxc-

The sheaf & is unique up-to a unique isomorphism compatible with all the structure maps jp.
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3.8.2 Words

We will use the notation from Sec. 2.7.1. Let W be the set of words from the alphabet £ U {L, R}
such that:

1) each word is non-empty and its rightmost letter in L or R

2) every word is either of the form

(Uy...L30201 L) (32)
where
51,53,65,... E‘nghtv f2,£4,€6,... E,Clcéft
or
(ln...l1 R) (33)
where

51,53, ... € ‘Cﬁ;ft; 52,54,@6, .. € ‘C?ight
(alternating pattern).
Let W* = W, U Wﬁght, where

Wit = {(ln-.) by € Ligg } U{L}; Wiiant = {(ln-r) 1 o € Ligne} U{R}.

Let us stress that W{; contains words both ending with L and words ending with R, and the same

3 o
is true for Wright.

3.8.3 Sheaves S;,S,, on C
Given a ray £ € Lj}y, let is define the following sheaf on C:

Sy = Liset2e(0)+K s (34)

3 (03
Given a ray £ € £right, we set

St = L{se—26(0)+K}-

Set
St = Z{sEz(xo)+K}; Sg = Z{SG—Z(X0)+K}' (35)

Let
Sw = Sgl *SEQ*W*SZ”*SL; if w:= gl.ﬁnLEWa,

Sy = Sp, *Sp, *...%x Sy, * Sp, fw:=40..,Re W,
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where * denotes the convolution functor D(C) x D(C) — D(C) in the sense of (31). It is clear that

Sw = Le(w)+ K> Where we set:

¢(w) = z(xg) — 2¢(0y) + 2¢(bp—1) — - - -+ (—=1)"¢(¢y) if w:=41.0,L; (36)
¢(w) = —z(xg) + 2¢(by) — 2¢(lp—1) + -+ - — (—=1)"¢(ly) f w:= 1.4, R. (37)

Let us further set
S_ = @wewggmsw; Sy = @weWﬁ;ftSw- (38>

3.8.4 Definition of <I>{§
For any subset U C X, we define the following sheaf on U x C:
Of = AJ xS_ @ AST xSy, (39)

where A{]{i = Z{(x,s)|s+=(z)cK} are the same as in Sec 2.11.

Set <I>IU( = A(IJ( * % S.. In particular, we have defined sheaves @g * for every a-strip P.
3.8.5 Constructuion of the identification Fgﬁxp?
We have identifications:
@ﬁ\gxc = q’g\mc = Af‘*‘ xSy B Af‘ *S_.
Let us now construct the gluing maps
PO AT xS, A T+ S_ AT xS @Af T xS

There are two cases.

Case A). Let £ € L.

Assume that the z-image of P; is above the z-image of P; in the complex plane, fig. 4, a).

Let us define the following morphism of sheaves on ¢ x C
Vit AT = S AN (40)
or, more explicitly,

VKK : Z{zeé(ﬁ)—ei‘".[o,oo)7 s—2€K} Z{sé?é(ﬁ)-{-K} * Z{zeé(ﬂ)—eia.[0,00),5—}—2’61(}' (41)
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We have Z{s€26(€)+K} * Z{zeé(f)—em.[0,00),s+zEK} = Z{zeé(l)—eio‘.[0,00);36—2+26(€)+K}' The map VZK is thus
determined by a closed embedding

{z € é(l) —€e.]0,00);8 € —2+2¢(0) + K} C {2z € é(f) — €.[0,00), s — 2 € K}.

Let us now define a map
N CAS % S- = AT« S,

K— K—
as follows. We have A, ™ x S_ = eBweW;‘;gm AS T % Sy
We denote
K
N A= 58, 25 AKX 5 5% S, = AKF % Sy, (42)

Observe that fw € Wi, so that Af T %Sy, is a direct summand of Af T %5,. We therefore can define
NZK as the direct sum of all N}’, w € nght'
Let
Nf:Aff*S,@AfJF*SJF —>A£<7*S,EBA£<+*S+

be the extension of IV, eK whose all components are zero, except for Af “xS5_ — Af * %S, which equals
NE.
We set

I =1d + Nf©. (43)
Finally, we set

Pl = (D) =1d - Nj*.

Let us now rewrite the definition for the gluing maps in a more uniform way. Let P and P’ be two

neighboring strips such that P N P’ goes to the left. Let us define the sign
J(P, P') =1 if P’ is above P, and 9(P, P') = —1 if P’ is below P. (44)

We now have
Pl =1d +9(P, P')NE. (45)

Case B). Let £ € Lyjght, fig. 4,b). Assume first that P, is below P;.

The formulas are similar to the case A but + and — get exchanged. We have a map

vt AT S AT S, (46)
which gives rise to a map
K
NE  AF* w5, AR w58, — AK xS (47)
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b)

cut”

Figure 4: Notations in the construction of the sheaf ®%: a) £ € L&, b) £ € Liignt

Similar to above, we define a map
N A xS @A 8- - AT+ S @A *S-

as the extension of NV, ZK whose all components are zero except for Af TxS, — Af ~%.S5_ which is N, EK .

We set
e =1d + N (48)

reeb = @)™ =1d - NJ~.

Similarly to above, let us rewrite the definition as follows. Let P and P’ be two neighboring strips

such that P N P’ goes to the right. Let us define the sign
I(P,P') = 1if P’ is below P; 9(P, P') = —1 if P is below P'. (49)

We now have
e .=1d + 9(P, P")NK. (50)

3.8.6 Description of the map igx : Zy,xx[—2] — &K

Let Py be the strip such that x¢ € IntFp.

By construction,

K _ AK+ K—
D% [mtpyxc = Aqpip, * S+ ® Aep, * 5-.

The direct summand inclusions

S, —Sy; Sp—S_

- K+ K+ K— K-
induce maps AIntP0 xSy, — AIntPO * Sy, AIntPg * Sp — AIntP0 xS_.
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We have the following closed embedding of codimension 2:

T = X z € IntF,
— :
se K s+ z(z) € £2(x0) + K

We have the following maps in D(IntPy x C):

yA

z € IntP

0 e Al S (51)
s+ z(x) € z(xo) + K

Z R [—2]
{ 0 } ® & - O |pxc

Z
z € Int Py
s—z(

4>A{§7P * Sp
x) € —z(x0) + K } o

We thus have constructed a map

Z{ r = %o }[2] = Lixoxi[~2] = " [mepyxc (52)

se K

AS Zyyx 1| 2] is supported on IntPy, our map extends canonically to a map igx : Zxyxx[—2] — ®F
in D(X x C).

3.9 Alternative construction of ®* via —a-strips

It is clear that one can repeat all the steps of the previous section using —a-strips instead of « strips.

We denote the resulting sheaf ¥¥; we also get an analogue of the map igx, to be denoted by
iy Doxic|—2] — UK. (53)

By means of X we also get a semiorthogonal decomposition of Zy,x x [—2]. This implies the existence
of a unique isomorphism

Iyg : UK — oK (54)

satisfying igx = Iyaigyx (because of the unicity of semiorthogonal decomposition). We will now

briefly go over the construction of WX,
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3.9.1 Notation for —a-strips

Let L7% = L, g U Er_igo‘ht be the set of all intersection rays of —a-strips. £, g consists of the rays going

to the left, E;gaht consists of the rays going to the right. Every ray £ € L, g (resp. £ € E;ight) is of the

form p,(¢) = é(¢) — (0,00)e™"; (vesp. p,(£) = &(£) + (0,00)e~**) for some &(¢) € C.

Let W= W, & W_%. be defined in the same way as W Wy, W

left> VY right (Wi consists of words

Hght-
of the form w = £, €, _1...0o01 L or w = {y,...04 R where ¢, € L, & and we have an alternating pattern
b1 € Er_ig‘ht, loo1 € Liggr 5 if 4y € Er_ight, then the right-most letter of w is L; if ¢ € £, g then
the right-most letter of w is R; we also add a one letter word L to W _g. ) Similarly to the previous
section, we set

SZ = Z{s:sEZé(Z)-i-K} € D((C)’ te Egg;
St = Lisse—nip+xy € D(C), L€ L ght'
SL = Z{s:sEz(xo)+K} € D((C)’

Sg = Z{s:sefz(xo)JrK} € D(C)7
For w € W% w = {,,..41(L or R) set

Sw = Sgn * S&hl X .. Sgl * (SL or SR)

Set

S_ = @wew—a Sw; S+ = @wewfasw-

right left

3.9.2 Sheaves \Ilﬁ(

Let AIU<jE mean the same thing as in Sec.2.11. On every (—«)-strip II consider the sheaf on II

Ul = ARt S oA +S.

3.9.3 Gluing maps

Let IIy, IIs be neighboring strips, II; N1l = /.

Case A. If ¢ goes to the left, we denote by II; the bottom strip, fig. 5, a).
We then define a map

A Af_ — Af+ % Sy
similar to Vg( from the previous subsection. The maps ﬂf induce maps
K . AK— _ & K+, &
Nt A S5 — Aj T xS
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cut '111:\\

B cut

Figure 5: Notations in the construction of the sheaf W¥: a) £ € L, b) £ € Lright

and
Nf:Af+*§+®Af_*5’_—>Af+*§+—>Af_*§_,

in the same way as in Sec 3.8.5.

We now set

I o= 1d + Nf. (55)

We set T3 := (D)1 = 1d — NE.
Similarly to the previous subsection, we can combine the definitions as follows. Let II and I’ be

intersecting —a-strips whose intersection ray ¢ := IINII’ goes to the left. Define a number (I, IT') = 1
if IT is below II" and 9(IL,II') = —1 otherwise. We then have FEE/ = Id + 9(II, I')N .

Case B. Analogously, assume that ¢ = II; NIy goes to the right and that Il is below Iy, fig. 5, b).
Similar to above, we have a map
A Agﬂ' — Af_ * Sy, (56)

which enables us to define maps
NE . Aﬁﬂ' xSy — Af_ *S_;
NS AT+ Ss oA +S. - Af T« SL oA +S-

in the same way as above. We set
I 11 <
Iok' =1d+ N, (57)
11 IT; Mo\ — <
o= TyL) " =1d - Nf (58)
Finally, given two intersecting —a-strips II and II’ whose intersection ray ¢ goes to the right, we set

Y(ILIT') = 1 if I’ is below IT and ¥(IT, II') = —1 otherwise so that Fgl}(’ =1d + 9(IT, )N K.
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The sheaf WX is obtained by gluing of the sheaves Wy along the boundary rays by means of the maps

FHH/

pi » similarly to oK,

The map
iy Ly rc|—2] — UK, (59)

same as in (53), is constructed similarly to igx.

3.10 The map Ilyo

We now pass to discussing the identification Iye : UX — &K as in (54). Explicit formulas for the
map lye are complicated, see Sec. 7. Let us, however, formulate a result on this map, to be proven

in Sec . 7.

Let P be an a-strip and II be a —a-strip. Suppose P N1II # (). We have identifications
K| pan = ®plpan = AR T+ Sy @ AS +S-;
UK par = Un|pan = AR+ S & AR+ S
Set iip := Iy |pnm. In view of the above identifications, we can rewrite:
inp : Ag;n « S, @ Agm_n % S_ — Anger * Sy D Agr;r[ *S_.

We are now going to take advantage of direct sum decompositions of both parts of this map.

3.10.1 Decomposing iijp into components

Let us now rewrite both sides of this map as follows.

For aw € Wi, or w € W g, we define A(K,w) C (PNII) x C:
A(K,w) :={(z,s)|s + p.(x) € ¢(w) + K},

where ¢w is as in (36), (37).

For w e Wi, or w € W;ight, we set

A(K,w) :={(z,8)|s — p.(z) € —¢(w) + K}.

We then have

Apdn* S+ @ A+ S_ = @ LAk )
wEW™
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K O K— R
AP;H*S+@APQH*S—: @ ZA(K,’LT})'

BEW—
Next,
Hom( @ Zaway P Zaww) = [] Hom(Zaxaoy P Zarw)
wEW ~—« wWEW WEW — ¢ wEW
— H Hom\(Z o(k i) Z A(K w))- (60)

HEW — ;e Wo

In Sec 7.1 we prove that Hom(Z 4k 5); Za(kw)) = 0 unless A(K,w) C A(K,w), in which case
Hom(Z Ak, 5); ZA(K,w)) = Z-€dw, Where eg,, is the homomorphism induced by the embedding

A(K,w) C A(K,w). Elements of IT Hom(Z 4(k i) Za(K,w)) are thus identified with in-
WEW ~ ¢ weWe

Z NpwCw, (61)
w,w

where ng, € Z, and A(K,w) C A(K,w). By Prop.7.2, under the inclusion (60) the set

hom( @ Zakw); @D Zaikw)) is identified with the set of all sums as in (61), satisfying
weW—« weEW

finite sums of the form

for every point y € (P N1II) x C and every w € W™, there are only finitely many w € W such that
ngw 7 0 and y € A(K, w).

3.10.2 Identification W~ ¢ — W<,

Let us first define an identification A : L7% — L% Let £ € L~%. Suppose £ goes to the right. Let
P be the leftmost strip among all a-strips that intersect £. There are exactly two boundary rays of
P, ¢; and ¢, such that ¢(¢;) = é(¢,) = ¢é(£), € goes to the left, and ¢, goes to the right. Let us assign
A(l) =¢,.

Similarly, if £ € £L7%, £ goes to the left, we consider the leftmost strip P among all a-strips that

intersect £. There are exactly two boundary rays of P, ¢; and ¢, such that
c(0) =¢e(ly) = ¢(0). (62)

¢; goes to the left, and ¢, goes to the right. Let us assign A (¢) = ¢;. The map A extends in the obvious
way to a map A : W% — W% a word £, ---{1L € W™ (resp. £, ---¢1R € W™?) is mapped into
A(ly)---A(l1)L (resp. A(Ly)---A(f1)R). Because of (62), we have A(K,w) = A(K, A(w)) for all
we W™,
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3.10.3 Formulation of the result

Let us write irrp in the form (61):

iHP = E NowCahw - (63)
WEW ~¢weWe

In order to formulate the result, let us introduce some notation. For w €e W=, w =4/, ---{1L € W ¢
(resp. W =Ly, --- 1R € W), set || := n, to be the length of @ ( in particular |L| = |R| = 0).
Proposition 3.6 1) We have nga ) = (1),

2) If ngw # 0, then A(K,w) # A(K,w) (we have a strict embedding A(K,w) C A(K,)).

This proposition is proven in Sec 7.6.4.

3.11 Description of ¢*«

We construct the sheaf ' and a map igra in a way very similar to the construction ®¥, using the

decomposition of X into a-strips and replacing K with r, everywhere. We then get sheaves

at .
A" = Li(e,5)|vel;seCistrera}
Pl = AT xS, AT xS

If ¢ goes to the left (resp. to the right) we still have a map
vyt AT — ATt s Spresp. vy s ATt — ATeT % Sy,

so that we can define the gluing maps Fgﬁf? similarly to Fgﬁf 2,

3.12 Description of ¢"—«

In order to construct ®*—= and igr—o we switch to —a-strips ( sticking to a-strips leads to a failure
to define the maps v, ). The construction is then similar to the construction of UK (just replace K

with r_, everywhere).

3.13 Constructing the map (30)

Let us construct a map Q, satisfying (30). It will be convenient for us to replace ®X with the

isomorphic sheaf WX,
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First, we will construct maps gcr,, : PC — Pre; Kri, - UK — Wr+e satisfying igx = qCr,taC;
i@ria = quiai\I,K.

We define Q as follows:

4Crq

@C . @ra

dKrq
Q: @ ® (64)
K QKr_a @I‘
\J e,

The categorical definition of the maps in this diagram was discussed in section 3.6.

Let us now pass to constructing the above mentioned maps gcr, and qgr,,, -

3.13.1 The map qcr,
We have ®¢ = Zy ¢ so that
hom(®Y; ') = T'(X x C; ™)

so that a map gcy, can be defined by means of specifying a section q € I'(X x C; ®*«). This can be
done strip-wise: we can instead specify sections qp € I'(P x C; ®}%') which agree on intresections as

follows. Let P N P, = /. We then have restriction maps
lexc : T(P; (C;q);"i‘) - T xC;®p), i=1,2.

We then should have
ap lexc = ap,lexc (65)

It is clear that any collection of data qp, satisfying (65) for all pairs of neighboring strips, determines

a section q € I'(X x C; ®") in a unique way.
We have Z = I'(II x C; Aflg % Sy) for all w € W,

Let us take the direct sum of these identifications over all w € W% so as to get a map
sp: LW — T'(P x C; &),

where Z[W?] is the Z-span of the set W, Similarly, we define
sg: LW = T'(£ x C; @),

where £ is the intersection ray of a pair of neighboring a-strips . The maps syy, s¢ are inclusions; denote

by I'(P x C; @), I (¢ x C; ®,*) the images of these inclusions. As easily follows from the definition

of the gluing maps FQ&E?, the restriction maps induce isomorphisms

lexe : /(P x C; @) — IT'(¢ x C; ®j),
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where ¢ is a boundary ray of P.
Since the graph formed by a-strips and their intersection rays is a tree, it follows that given an element
ap, € I'"(Py x C; @), we have unique elements

qp € I'(P x C; ®}%)

satisfying (65). We set qp, := sp,(L+R), where L, R are words of of length 1 in W viewed as elements
in Z|W¢]. This way we get a section q and a map qcr,. It is clear that Condition igra = gor,ige is
satisfied.

Denote by ep € Z[W?] a unique element such that sp(ep) = qp. Denote by Wp € W a finite

subset such that
er= 3 epun,
weWp

where ep,, € Z\0.

3.13.2 Map qgr_, : UK — @F-a

Let us define this map stripwise. For every —a-strip II we have a map Af]( + ATH_‘*i induced by the
embedding of the corresponding closed subsets of Il xC. Whence induced maps Ag 48, — Arl{ai*gw.

Taking a direct sum over all w € W yields a map
A§+ %S, & Ag_ % S_ — Af{“Jr %S, @ AT * S,

and we assign qxr_, .11 : \I/[H( — CD;[_“ to be this map. It is clear that thus defined maps agree on all
intersection rays, thereby defining the desired map qg__. The condition igr—o = ¢%*-iyx is clearly

satisfied.

3.13.3 Map iy, : VE — Pre

We first construct a map q’Kr_a : K — T using « strip in the same way as we constructed qKr_ -

We set
UKra = Qxr, L0

The condition igra = qxr, tyx is clearly satisfied.
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3.13.4 Restriction of Q to a parallelogram

Let P and II be a pair of intersecting a- and (—a«)-strips.

First, in view of identification A, let us write w instead of A~lw € W~®. Next, for a w € W¢
and a subset A € C, let us define a subset A(A,w) C (P NII) x C as follows. If w € W{, (resp.,
w € Wiiy,), we set A(A,w) = {(z,s)|s+2(z) € é(w)+A} (resp., A(A,w) = {(, s)|s—2(x) € e+A}.
Set Ap := (ITN P) x C. We then have identifications

C .
<I>HﬁP = ZAm

\PIH(OP: @ L A(K )3

weW—«

@ra _ Z .
NP — A(ra;w)s
wEW

o= Pz
NP — A(r_q;w)-
wWEW —&

Let us now rewrite the maps from diagrams (64) in terms of these identifications.

3.13.5 The map qcr,,.

Let ECT . 7 Ao — L A(r,w) be the map induced by the closed embedding of the corresponding sets.
According to Sec 3.13.1,

G, = Y epuBL. (66)
weWp

3.13.6 The map gxr_,
It follows that the map

dKr_, : @ ZA(K,'LU) - @ ZA(I‘_o“w)

weEW weEW

is a direct sum, over all w € W<, of the maps

LaKw) = LA@_ow)

over all w € W,
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3.13.7 The map gxr,

Let w,w’ € W be such that A(K,w) D A(ry;w’). Let Eiiz% P Za(Kw) — LA(raswy De the map
induced by this embedding.

We then have

Kr Kr_
dKr, = E :nwwc’waw’ °.
ww

Proposition 3.7 1) nfre = (—1)lvl;

2) for every compact subset L € (PNII) x C and every w € W, there are only finitely many w' € W
such that Ny #0 and LN A(r_g;w') # 0;

3) If nfﬁ?‘ # 0, then we have a strict embedding A(w', K) C A(w, K).

PROOF. Parts 1) and 3) follow from Sec.3.13.3 and Prop. 3.6, part 2) follows from Prop.7.2. O

3.14 YandS are Hausdorff

Let us start with some general observations.

3.14.1 Generalities on étale spaces

Let F' be a sheaf of abelian groups on a topological space Z. Call F rigid if its étale space is Hausdorff.

The following facts are easy to check.

1) Let U C X be a Hausdorff open subset. Then Zy is rigid. Indeed, the corresponding étale space is
Z x U.

2) Every sub-sheaf F} of a rigid sheaf F' is rigid. Indeed, the étale space of Fj is identified with a

closed subspace of a Hausdorff étale space of F'.

3) Let 0 = A — B — C — 0 be an exact sequence of sheaves, where A, C are rigid. Then so is B.
Indeed, Let A’ — B’ 5 C' be the étale spaces of A, B, and C. Let by, by € B'. Suppose m(b1) # m(bs);
we then have separating neighborhoods m(by) € Uy; m(be) € Us so that 7~ Uy, 7~ U separate b; and
by. Let now m(b1) = m(b2) = ¢ but by # by. Since 7 is a local homeomorhisms, there are neigborhoods
W; of b; in B’ such that W; are projected homeomorhically into C’. By possible shrinking we may
achieve that W; project to the same open subset U € C’; ¢ € U. so that we have homeomorphisms
7,1 U — W;. We then have a continuous map & : U — A’, where §(u) = w5 'u — 7 'u € A, C A,
Since by # ba,0(c) # 0, so that we have a neighborhood U’ C U of ¢ on which § does not vanish. It

now follows that the neighborhoods ;- LU’ do separate by and bs.
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4) Let 4y, : F, — Fp,11, n > 0 be a directed sequence of embeddings, where Fjy and all F, 1 /iy F), are

rigid. Then F':= lim F;, is also rigid. Indeed, 3) implies that all F}, are rigid. Let F,, F’ be the étale
n

spaces of F,, F'. We have induced maps Fy, — F'; Fy, — Fy | which induce a map lim F;, — F” which

can be easily proven to be a homeomorphism. Since all the maps F), — F]_; are closed embeddings,

it follows that F’ is Hausdorff.

5) Let p: Y — X be a local homeomorphism, where Y is Hausdorff. Let () # U C V C X be open
sets, where V' is connected. Suppose we are given a section s : U — Y. There exist at most one
way to extend s to V. Indeed, let s1,s0 : V — Y be extensions of s. Let us prove that the set
W :={v eV :s1(v) # sa(v)} is open. Indeed, let v € W. The points s;(v), s2(v) can be separated
by neighborhoods U;,Us C Y. Let U := s; 'U; N so~'Us; U is a neighborhood of v. It now follows
that s;(U) C U, therefore s;(U) do not intersect; we have thus found an open neighborhood & C W

of v, hence W is open.

Let us now prove that W’ :={v € V : s1(v) = sa(v)}. It is clear that s;(U) are open subsets of Y, so
that W/ = s1(U) N s2(U) is open.

Finally, V. =W UW'’ and W’ # (). This implies W = ().

3.14.2 Reduction to rigidity on IIN P

Since S C X is a connected component, it suffices to prove that ¥ is Hausdorff. The latter reduces to
showing that pil((P N1II) x C) is Hausdorff for every pair of intersecting a-strip P and —a-strip II,
which is equivalent to the rigidity of the sheaf ®¢|(1npyxc, which is isomorphic to Ker Q.

3.14.3 Filtration on ®y|nnpxc

Let us choose an arbitrary identification Zsy — W; n — w,. Define a filtration on G := ®° @
U npyc by setting
G" 1= B nnpxc ® Zak ) B O La(i -
It is clear that
®|nnpxc =G Cc G Cc---G"C---CG
is an exhaustive filtration. It is also clear that G C G is a direct summand. Denote by Pg g — @gn

the projection.

Set
Fn(I)() = Ker Q’gn
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It follows that F' is an exhaustive filtration of ®¢|npxc. By Sec. 3.14.1 2), it suffices to show that
each sheaf F), is rigid.

3.14.4 Sheaf F| D F,

We have the following projection onto a direct summand

n
Pn : (pl{[aﬁp © érn_ﬂap - @ ZA(rodwm) b ZA(rfodwm) = £n

m=1

Let F] := Ker P, Q|grn. We have: F,, is a sub-sheaf of F], so that it suffices to show that each F) is
rigid.

3.14.5 Further filtrations on G", L,,, F,

Fix n € Z~o. Let us re-label the words wy, we, ..., w, to, say wi,wa, ..., W,, so that the following

holds true:

if ¢ > 7, then it is impossible that A(K, w;) is a proper subset of A(K, w;).

Since we are dealing with only finitely many words, this is always possible. Let j < n. Set FIG" :=
Z(K,w1) @ -+ @ Z(K,wj) C G" Set FIL,, = ZA(tsaw) @ © Za@i,w;) C G" We also set
Frtlgn = gn: F*HIL, = £,. Let Gr/G™; Gr/L,, be the associated graded quotients.

Proposition 3.7 and Sec. 3.13.6 imply that the map P,Q preserves the filtration F: P,Q : FIg" —
FiL,. Set F/F), := Ker P,Q|gjgn. It is clear that this way we get a filtration on F,. Let Gr’ F), be the
associated graded quotients. Our problem now reduces to proving rigidity of Gr/ F by Sec. 3.14.1,

3). Since P, Q preserves F, we have
Ger;b Cc KerGr'P,Q : Gr/G"™ — GriL,,.

By Sec 3.14.1 2), the problem reduces to showing rigidity of Ker Gr/P,Q : Gr/G" — Gr/L".

3.14.6 Finishing the proof

Let j < n. We then have GriG" = ZA(k,w;); GriL, = LaA(roiw;) D Lae_;wy)- By Sec. 3.13.6 and
Proposition 3.7, we have:
Gr'P,Q = (-1)™IES @ EX -,

where the morphisms

B Lagiwy) = LA(iasw;)
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are induced by the closed embeddings of the corresponding sets. It now follows that Ker Gr/P,Q =
Z A(tntK:w)» Which is rigid by Sec. 3.14.1,1).

Let now j = n + 1. We have Gr"*!£,, = 0; Gr"t1g" = Z a,, so that
Ker Gr' P,Q = Z4,,

which is also rigid, as a sheaf on (IIN P) x C = Ay, by Sec. 3.14.1,1). This finishes the proof.

3.15 Surjectivity of the projection ps: S — X.
In this subsection we will prove
Theorem 3.8 The projection ps : S — X is surjective.

Proof of this theorem will occupy the rest of this subsection. We will construct an open subset U C X

such that

1) U projects surjectively onto X;

2) U is connected;

3) UNh(Sy) # 0, where h: S, — X is as in (27).
Conditions 2),3) imply that & C S, and Theorem follows.

Let us now construct & and verify 1)-3).

3.15.1 Constructing U

We construct U stripwise. We will freely use the notation from Sec 3.13.1. Let P be an a-strip. Define

a closed subset

AP):= |J Alra,w)cPxCCX xC.
weWp

Let U := X x C\ |J A(P), where the union is taken over the set of all a-strips P. Denote by jif U —
P
X X C the open embedding.

Let us now embed U into ¥. We have a natural embedding Jy; : Zyy — Zxxc = ®C. As follows from

(66), we have gcy, Jiy = 0, which implies that the map Jp; factors through Ker oy, :

Jq
Ju . Zu ‘—M> Ker 4Cr, — <I>C.
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As follows from the diagram (64), we have a natural embedding ¢, : Ker gor, — Ker Q, and we set
Jo =1}, (67)
which is an injection Jg : Zy — Ker Q = &y.

The map Jg induces an embedding of the étale spaces: U x Z — X. Let ji; : Y — X be the restriction
of this map onto U x 1 C U x Z. This map is a local homeomorphism and an embedding, therefore, j

is an open embedding. Let us identify U with jp(U).

3.15.2 Verifying 1)

JX
Checking 1): we see that the composition pxjy; coincides with the composition # %4 X x C — X,
where the rightmost arrow is the obvious projection. Let us check that this map is surjective. Indeed,
let x € X. There are at most two a-strips which contain x. We therefore have: & Nz x C is obtained

from x x C = C by removing a finite number of a-rays, which is non-empty.

3.15.3 Verifying 2)

As the sets Wp are finite, it easily follows that
— the sets U(P) := P x C\A(P) are connected;
— if Py N Py # 0, then U(P1) NU(P2) # (. This implies that U is connected.

The rest of the subsection is devoted by verifying 3).

3.15.4 Reformulation of 3)

Recall that the map h : S, — ¥ is induced by the map Iy : S, — g '®q, see (26). The injection
Ju U — ¥ is induced by the map Jg : Zy — Ker Q = @, see (67). Let ix, : C — X x C be the
embedding ix,(s) = (xo,s). We have g = ix,7s,. Let us denote Uy, := iy, U. Observe that Uy, is

obtained from C by removing a finite number of a-rays.
Lemma 3.9 There exists a non-empty open subset V- C Uy, such that:

1) the map wg, induces a homeomorphism 7r§alV — V', so that we have ﬂEjZV = Zﬂ_glv;

2) the following diagram commutes

Vs
Zﬂ_l\/ 34> ZS
Sa a

ijvu ilo
J

_ e
9 Zu—=9g7'®
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where the arrow jyg s induced by the open embedding 7T§01V C Sa, and the arrow jyy is the com-
position nglv = ﬂngV 5 ngZuxo = g~ 'Zy, where the arrow * is induced by the open embedding
V C Uy,.

Let us first explain how Lemma implies 3). Indeed, it follows from Lemma that the embedding
h‘wgiv : 7T§alV — ¥ coincides with

TV SV C U, UM,
so that h(Sqa) N juU) D julix, V).

We will now prove Lemma.

3.15.5 Subset W C S,
Let W := ng((C\K) C Su. Denote by Jw : Zw — Zg, the map induced by the open embedding
jw : W C S,. Let us consider the composition hjy, which is induced by the map IoJw : Zw — g~ ®p.

Denote by 7 : &g — ®¢ @ &K the natural embedding (recall that &y = Ker Q). Set

o = Hgm: &g — OK, where I : D€ @ &K — ®K is the projection.

Let us show
Lemma 3.10 We have (¢ 'mox )IoJw = 0.

PROOF Indeed, the map 7 factors as
By 5 & = ConeQ[—1] 2 o€ @ oK
where the last arrow is the canonical map. Set g := I[Ix Pp. We have

(97 'morc)lo = (97 Tk) (g 'm)Io = (¢ 'k )(g ' Po)g 'edo = (97 'mi )L

Upon, the isomorphism ¢g~'® = ¢'®[2], the map I corresponds by the conjugacy to the map

1

io : 9Zs,[2] — ®. The map (¢~ 7wk )I corresponds by the conjugacy to mxie. Denote by

A gZw([-2] — 9Zs,|—2] the map induced by jy. The problem now reduces to showing that

mrieA = 0.

By the construction of the map ig, the map wxig factors as giZg, [—2] 2 Ly x K[ —2] ek K where

pK is as in (28), so that mxie\ = igrpr . It is easy to see that pxg A = 0, which finishes the proof. O

It now follows that the map IgJy : Zy — ¢~ ® factors as

Ly Ty g 'Kerqcor, — g1 @0,
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where the right arrow is induced by the obvious embedding Ker gcr, C ®¢ coming from the definition
o = Ker Q.

3.15.6 Finishing the proof

Recall that the map Jg : Zy — ®g factors as Jg := 143}, see (67).

Suppose that the susbet V' C U from Lemma 3.9 satisfies: 7r§a1V C W. The statement 2) of Lemma

3.9 now follows from the commutativity of the following diagram

Jvw
Zogiv —" s Ty

ljvu ljw
5y
9 7y —* g ' Ker qor,

where jy is the composition Zﬂ_;lv = WgalZV R ﬂgiZuxo = ¢~ 'Zy, where the arrow * is induced by
the open embedding V' C Uy,; the map jyw is induced by the open embedding WgalV C W. The map
(J53)" is induced by J5}.

We have an injection x : Kerqcy, — ®C = Zx ¢ which induces an injection &’ : g~ Ker qcr, —

¢ "Zxc. The commutativity of the above diagram is equivalent to the commutativity of

ZWE;V _dvw Zw (68)

J{jvu ln’Jw
W ()"

92— g Zxxc

Let us now define
V= (C\K) NUy,.
Let us check that V satisfies all the conditions:

a) V is non-empty. The set Uy, is obtained by removing from C a finite number of a-rays, which

implies non-emptyness of (C\K) N Ux,.
b) 7r§a1V C W —this is clear.
c) s, - ngv — V is a homeomorphism —clear.

d) Commutativity of (68). We have ¢~ 'Zx«c = Zs,. It follows that the composition x'Jy equals
the map Zw — Zg,, induced by the inclusion W C S,. Next, the map kJy : Zy — Zxxc is induced
by the open embedding j;; : Y — X x C. The commutativity now follows. This finishes the proof.
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3.16 Infinite continuation in the direction of K

We need some definitions

3.16.1 Parallelogram U

Let U C C be an open parallelogram with vertices A, B, C, and D, such that AB and DC are collinear

to e~ and BC and AD are collinear to e'®.

3.16.2 Small sets

Let I' € C. Call I small if for every point ¢ € C, the intersection I' "¢ — K is a finite set.

Claim 3.11 Let L C C be a bounded subset. The set I' N (L — K) is then also finite.

PROOF. Assuming the contrary, let {v1,72,...,Vn,...} € I'N(L — K) so that v, = ¢; — z;, z € K,
¢i € L. Since L is bounded, the sequence ¢; has a convergent sub-sequence ¢;, — ¢ for some ¢ € C.
Let € € IntK. It follows, that ¢;, € ¢+ ¢ — K for all n large enough, which contradicts to smallness
of I' O

3.16.3 Theorem

Theorem 3.12 Suppose we have a section o of P,:

P,
S. *)(T:
U
Then there exists a small subset I' C U+ K such that o extends to (U+ K)\(I'+r_,) and (F'+r_4)N
U = .

Remark For every bounded set L there are only finitely many v € T such that (y+r_,) N L # (), as

follows from Claim 3.11.

Before proving this theorem, let us observe that it easily implies Theorem 1.1. Indeed, given x € C, we
see that S% is a disjoint union of all S,, where px(z) = z, which reduces Theorem 1.1 to the current

Theorem. The rest of this subsection is devoted to its proof.
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3.16.4 Reformulation in terms of sheaves

By basic properties of an étale space of a sheaf, liftings ¢ as in Theorem, are in 1-to-1 correspondence

with maps of sheaves f, : Zy — Pol.xc-

For every w € W and a fixed z € X, set A,(K,w) = A(K,w)N(z x C) C C, where A(K,w) are the

same is in Sec 3.10.1 We define A (rqy,w), A,(r_qo,w) in a similar way.
We then have the following maps:

qOCra

¢

fo:Zu L o U

Kr_,
@fw Z.Az (K,w) L @w Z»Az (r_a,w)

Do Za.(row)

Krq

Kra g KT—a are the restrictions of the maps ¢“T«, ¢5Te, ¢5™= onto x¢ x C. Let Do

Cra Kr_o
s .

where go©*, qo

be the restriction of the map Q onto xg x C, so that Oy, is the sum of g —go™*e, and ¢

We now have

Qfo = 0. (69)

3.16.5 Writing f, in terms of its components

We have components:
fow) © Zu — Za, (kw)
fe(0) + Zy — Zc
we have (if UNA,(K,w) # 0):
hom(Zu; Za,(kw) = Z- gw
where
Gw Ly = Luna,(Kw) = La.(Kw) (70)

(the first arrow is induced by the closed embedding U N A(K,w) C U; the second arrow is an open
embedding)
if UNA.(K,w) =0, then hom(Zu,Z 4, (k,w)) = 0

So,
fo(w) =ny - gw, where ny € Z, (71)

and f,(w) =0if UNA,(K,w) = 0.
Analogously, hom(Zv,Zc) = Z - go, so
f(O) =N - 4go- (72)
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It also follows that:

Claim 3.13 for every point s € U there are only finitely many w such that f(w) # 0 and s €
AL (K, w).

PROOF This follows from consideration of the induced map on stalks at w:
(fo)s: (Zv)s=Z— @B Z=(P A(K w))s.
w:s€A; (K,w) weWe

The image of this map must be contained in the direct sum of only finitely many copies of Z, the

statement now follows. O

3.16.6 Restriction to a sub-parallelogram V

Let V C U be a parallelogram, V = AB'C'D’, such that B’ € (AB), D' € (AD) (so that C' € U).
The restriction

fov = folv : Zv = Zu B Zc @ P Za.xw)
w

can thus be expressed as

fcr,V = Z nw'gw|V-

weEW

Here gy |v is the following composition:

w

Zyv — Ty %8 Lp,(Kw)

and g, is the same as in (70).

Let S € W consist of all w such that n,, # 0 and g,|v # 0. We can now rewrite

fU,V = Z Ny - gw’V (73)
wesS
Observe that
gulv Z0iff VN A(K,w) # 0. (74)

Next, there are only finitely many w such that f(w) # 0 and A, (K, w)NV # . Indeed, A, (K, w)NV #
() implies C" € A,(K,w), and we can set z = C’ in Claim 3.13. This shows that S is a finite set.
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3.16.7 Proof of a weaker version of the Theorem

We are going to prove the following statement: there exists a small set I' C V 4+ K, such that o|lyy
extends to V, where V :=V 4+ K\(I' + K).

Define the extensions Zvy i L/ A, (K,w) as follows:

Gu ¢ Ivik = Lv+K)nA. (Kaw) — LA (K w)s

where the map c is the restriction onto a closed subset and the second map is induced by the embedding

of an open subset).
Let Go : Zv+x — Zc be the map coming from the open embedding of the corresponding sets.

Let

Fyv :=noGo + Z NGy : vk — ZLc © @ Lia, (Kw)
weS wEW

where the coefficients n,,, ng are the same as in (71), (72). Let Jyv : Zyv — Zv1x be the map coming

from the open embedding of the corresponding sets. We have:

fov =FovJv. (75)

Let us now find a a subset V C 'V + K such that Qo F,v|y = 0. This vanishing along with (75) imply

that F,v determines an extension of o[y onto V.

1) Consider the through map for some w € S:

L¢ @wewa Za, (ra;w)

fo, w
Bu : Ty @ / ® P Lo o)

@wewa ZAZ(K7U)) - ®’LU€WO‘ ZAZ (r—a§w)

pw 18 the projection onto a direct summand, and the middle map is Q..
By (69), B = 0; on the other hand, £, = ny, - hy, where

ho @ Zv S Za k) " Toa o)
But hy = 0iff VN A, (r_o;w) = 0. So if ny, # 0, then
VNA,(r_g;w) = 0. (76)
Since w € S and because of (74), we have

VNA,(K;w)# 0. (77)
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From (76) and (77) it follows that (V + K) N A,(r_,;w) = 0. Hence, we have
pw o Qo FU,V : Z(V—i—K) - ZAz(r,a,w) = 0. (78)

Let us now consider the maps x o Q o F,; v, where £ is the projection onto ©wZ 4, (r_,, w) as shown in

the following diagram:

¢ @wewa ZAZ (ra;w)
Py,
K O QOFO',V : ZV+K _)V ® / 3} 5 @ Z.Az(rmw)
wWEW
®IUEWD‘ ZAZ(K7w) - @wewa Z-Az (l‘,a;’u))
Let My : Z¢ — Z g, (v, ;w) De the components of the map qo°Te. Let
ACWY={w : Jwe S : Ny #0or My #0}.
Here S is as in (73), Nyw' 1= naA-1(w)uw> a0d Mgy are the same as in Prop. 3.6.
For each w’ € W% let us write
A (K, w') = dy + K.

Set I' := {d, : w' € A} € C. As S is finite (see end of section 3.16.6), for any s € C there are
only finitely many v’ € A : A(K,w') > s. Equivalently there are only finitely many w’ such that
dyr € s — K so that I' is small .

Let

Tw: P Za o) = La(waw)
w eWa

be the projection. It follows that m,kQF,v # 0 only if w € A. Set V := V + K\(I' + K). It
follows that 7,xQFyv|y = 0, which implies kQF,v|y = 0. Taking into account (78), we conclude

QF,v|y =0, ie. olyny extends onto V, as we wanted.

3.16.8 Proof of the theorem for U

Denote by ¢’ the extension of o|yqy onto V. Observe that the set ¥V N U is connected and that
VNV C VNU. Thus, o and ¢’ are two extensions of o|yny onto ¥V NU. By Sec 3.14.1 we have
olyau = ¢’'|yau. Thus, o extends to V U U which is of the required type. O

4 Orthogonality criterion — a simplified version

The goal of this section is to prove Theorem 4.1 below. This theorem will only be used in the next

Section 5.
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4.1 Formulation of the Theorem

Let X be a smooth manifold. We will work on a manifold ¥ = X x R x R. Let us refer to points of
Y as (z,s1,52) € X x RxR. Let P, P»: Y — X X R be projections

Pi(x,s1,52) = (x,5;).

Let us refer to points of 7Y as (z, s1, 52, w, a1ds1, azdsz), where w € T; X; ardsy € T R; azdsy €
Ty R. Let Qy C T*Y be the closed subset consisting of all points (,s1, s2,w, aids1, azdss) where
ap = 0 or ag = 0 (or both). Let Cy C D(Y) be the full subcategory consisting of all objects
microsupported within Qy. Let ~Cy be the left orthogonal complement to Cy (consisting of all
F € D(Y) such that RHom(F,G) =0 for all G € D(Y))).

Theorem 4.1 F € 'Cy iff RPyF = RPyF = 0.

Let us start with proving that F' € +Cy implies RP;|F = RPy F = 0. Indeed, given any G' € D(X xR),
we have

RHom(RPyF;G) = RHom(F, P.G).

It is well known that every element (z,sq,s2,w,aids; + asdss) € S.S.(piG) satisfies az = 0, i.e.
P{G € Cy and
RHom(RPyF;G) = RHom(F, P.G) = 0.

As G is arbitrary, we conclude RPy F' = 0. One can prove the equality RPyF = 0 in a similar way.

The rest of this section will be devoted to proving the opposite implication:
Theorem 4.2 Let F' € D(Y) satisfy RPF = RPyF =0. Let G € Cy. Then RHom(F,G) = 0.

We start with introducing the major tool, namely a version of Fourier-Sato transform.

4.2 Fourier-Sato Kernel

Let E be the dual real vector space to R? so that we have a pairing <,>: R? x E — R. Let us use

the standard coordinates s, s, on R? and 01,092 on E so that
< (s1,82), (01,09) >= s101 + $209.
Let Y5 := X x R? x R2. Define projections 71,7 : Yo — Y
m1(z,s,8) = (x,5);
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mo(z, 8,8) = (1,5,
where s = (s1,82) € R? and s’ = (s}, s) € R2.
Let K C Y2 x E be the following closed subset

K ={(y,s,s,0)|{(s — s, 0) >0}
Let us also define the projections
P YaxE — Y2 R Y;
py : Yox E mX4E y LR

We then have the following functor: ¥ : D(Y) — D(Y x E):

U(F) := Rpo. RHom(Zy; p\ F)

which are modified versions of Fourier-Sato transform. Let us establish certain properties of these

functors (similar to those of Fourier-Sato transform).

4.2.1 Properties of the modified Fourier-Sato transform.

Lemma 4.3 Let 7g : Y X E — Y be the projection. We then have a natural isomorphism

F — RrpV(F)[2].

PROOF Let pg : Yo X E — Y5 be the projection. We then have
Rrp U(F) ~ Ry, RHom(RpmZ; Rry F). (79)

(Indeed, one uses p; = 7 o pg, the adjunction formula for pg), and 7 o pg = T o T, )

A simple computation shows that we have
RquZK = ZA[—Q].

where A C Y5 is the diagonal, i.e. the set of all points of the form (z, s, s). The statement now follows.
O
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4.2.2 Singular support estimation

Let us define the following set
C :={(01,02)|loc1 =0o0r o9 =0} C E. (80)
Let U := E\C.
Lemma 4.4 Suppose G € Cy. Then we have:
SS(Y(GE)NT*(Y xU) C {(x,s,0,w,0,bdo)} C T*(Y x U),
where (v,8) € X xR?2=Y;0cU; w e TiX; bdo € T}U.
PRrROOF. First of all, by [KS, Prop.5.3.9],

SS(Zk) ={((s,8,0),Md{s —&",0)) : Ms—5",0)=0, A>0, (s—5,0) >0} (81)

By [KS, proof of Prop.5.4.2], S.S.pllG is contained in the following subset of T*(Y; x E):
(2,8,8,0,w,ads,0-ds',0-do),

where (z, s,w, ads) € Qy.

Let us now check that
S.8.piG N S.S.Zx C {zero section}. (82)

Suppose we have an element 7 in this intersection which does not belong to the zero section. It should
be of the form as in (81). Since n # 0, A > 0 and (s — s’,0) = 0. We have

Md(s — 8, 0) = \s— 8 ,do) + \ds — ds', o).

The ds’ component of 7 is thus —\(ds’,o). In order for € SS7|G, this component must vanish,
which implies 0 = 0. Analogously, do-component of 7 must vanish as well, i.e. s—s’ = 0. This implies

that 7 is in the zero section, contradiction. This proves (82).

It now follows that
SSRHom(Zg:; p\G) C SS(p\G) — SS(Zk)

(where “ —” means subtraction in each fiber of T*(Y> x E)), [KS, Cor.6.4.5]), i.e.
SSRHom(ZK;p%[G) C {(1’, 5,8 0,w,ads — A\d{s — ', U>)} (83)
where
(x,8,w,ads) € Qy (84)
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and s, s’, o, \ satisfy the same conditions as in (81).

Now let us estimate
SSRpy. RHom(Zy; pyG) = SS(¥(Q)).

By [T08, Lemma 3.3], we have: if (a/)°d(s")? # 0 , then
(2% ()°,0°,0° (a')0d(s')° + bodo®) & S.S.Rpa RHom(Z; pG)

as long as:

there  exists ¢ such  that RHom(Zg;piG) is  nonsingular at all  points

(s Sy Sy Oy Wa, axds + ads’ + bydo), where

|z, — 20| < e, any s, €R2 |s, — ()0 <e, |ow—00<e, (85)
lwy =0 <e,  axl <e, ai—(a)0] <e, |be =00 <e.
Thus, the proof of the lemma 4.4 reduces to the following statement:
Let (29, (s)°, 0%, w0, (a/)%d(s")? + boda®) € T*(Y x E) satisfy:
a) 0¥ = (09,09) is such that
o) #0 and 09 # 0; (86)

) ()0 £0.
Then for some e > 0 there are no solution (T, Sx, 84, Ox, Ws, ax, a,, by) of the inequalities (85) satisfying

the conditions (coming from (83) )

/ !/
{ $*:x, S*:S’ S*:S, Ox = 0O, (87)

Wy =w, ax=a—M\o, d,=Mo, b,=-\s—15),
such that condition of (81) and (84) hold.

Eliminating the variables with x and conditions on z,w, b, we must, for fixed 0-variables find £ making

the following list of conditions inconsistent:
1|8 = () <e
2. lo—d% <e
3. Jla—Xo| <e
4. Ao —(a")° < ¢
5. a1 =0o0ray=0
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Indeed, suppose there is a solution to this system of inequalities such that a; = 0. Then by condition

3, |\a1| < g, ie.

€
A< — 88
N < (58)

By condition 2,
o] < |0°] +e. (89)

Combining condition 4 with (88) and (89), obtain

e> (@)’ = Aol 2 |(@)°| = A~ (Jo°] +€) 2 ()] - ﬁ(|00| +e) (90)
If we choose £ > 0 to satisfy (cf. condition a) )
e < gmin{|o?], o8]} o1)
then (90) yields
> 1)) = (10"l +2) (92)

We have assumed a1 = 0 above; if we assume ay = 0 (cf. condition 5), we get an analogous inequality.

Choosing € > 0 to satisfy (91) and to violate both (92) and its analog for ag = 0, finishes the proof.
O

4.2.3

Lemma 4.5 Let G € Ob(Cy). Then ¥(G)|yxu = 0.

PROOF Let ¢ : Y x U — X x U be the projection ¢(z,s,o) = (z,0). We have a natural map

L 'R (U(Q) |y xv) — (G |y xu

By virtue of lemma 4.4 and the fact that the fibers of ¢ are diffeomorphic to R?, we see that ¢ is an

isomorphism.

It now remains to show that Rq.(V(G)|yxv) = 0.
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Let Ky .= KN (YoxU). Let ¢ : YoxU =Y xU, q:Y xU —Y,q3:Y xU — X xU be the
projections

q(z,s,8,0)= (2,5, 0);
@(z,s,0) = (z,s);
q3(x,s,0) = (x,0).
In this notation,

Rq.(V(G)|yxv) = Rgse RHomy xu (RqnZk,; 3G).

Finally, we observe that Rq11Zxxy = 0 (pointwise computation). O

4.2.4 Representation of G

Let ic : C C E be the closed embedding; here C' is as in (80). Let K¢ := K N (Y2 x C). Let
M YaxC—-Y, By
and
pS : Yax O mxide v e

Let ¢° : Y x C — Y be the projection. Let G € Cy. It now follows from Lemma 4.5 that ¥(G) =
(idy x i¢)«(idy x ic)"'¥(G), which together with Lemma 4.3 yields a natural isomorphism

G =~ R¢¢ Rp%RHomygxc(ZKc; (P?)!G)m'

So that we have an induced isomorphism
RHom(F,G) =2 RHom(F; R¢¢ RpS, RHomy,xc(Zky; (])'G))[2].

Let us rewrite the RHS.

First of all, set

7§ =q"pS : YaxC — Y : (x,5,5,0)— (z,5).

We then have
RHom(F; Rq€ RpS. RHomy, xc(Zk; (p§)'Q))

= RHom((n§) "' F; Hom(Zk; (p7)'G))

= RHom((7§)'F @ Zi.; (p§)'G)).
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Next, we factor p{ = ¢“7¢, where
xid
¢ Yo x 0 TESC Y x ©
so that we can continue

RHom((n$)™'F ® Zg; (07)'G)) = RHomy xc(R(x{)1(n§) ' F @ Zk.); (¢°)'G).

Let us show that F := Rr{{((n{)"'F ® Zk,) = 0 under assumtions on F' from Theorem 4.2. Indeed,
let (a,0) € C, a # 0. Then, for any F' € D(Y), we have

RPUF 2= Flyy(40)-
Similarly,
RPyF = Flyy(0,a)-

Finally,
RPyF = Flyx(0,0),

where Py : Y x C' — Y is the projection. Since Py passes through Pj, all the restriction listed vanish

under assumptions from Theorem 4.2. This concludes the proof.

5 Orthogonality criterion for a generalized strip

5.1 Conventions and notations

Let o € (0,7/2) be an acute angle, same as in Sec.1.1.1.

Set e = e, f = ¢! 50 that e, f is a basis of C over R and every complex number z can be uniquely

written as z = xe + yf, z,y € R so that we identify

C S5 R? (93)
using the coordinates (z,y).

Define a generalized strip which is a set of one of the following types:
First type:
S={re+yf : 2>7; ye (A, B)}CR*=C, (94)

where —oo <y < oo and —oc0o < A< B < .

Second type:
S={ze+yf : x<v; yc(4,B)}CR*=C, (95)

where —oo <y < oo and —oc0o < A < B < .
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5.1.1 Convolution
Let M, N be smooth manifolds Define a convolution bi-functor
% : D(M xR?) x D(N x R?) — D(M x N x R?)
as follows. Denote
A: MxR*xNxR*> - MxNxR?:  A(m,u,n,v) = (m,n,u+v)
We now define
FxS:=RA(FRES).
5.1.2 The category Cs.
Let s C T*(S x R?) be a closed conic subset consisting of all points
(w1,y1, T2, y2, ardzy + bidys; agdza + badys)

where (21,y1) € S and (a1,b1) = (a2, b2) .

In terms of the complex coordinate z = ze + yf and the identification (93) we have:

Qs = {(z,s,adz + bds|z € S, s € C,a = +b}.

Let Cs € D(S x R?) be the full subcategory consisting of all objects microsupported within Qg.

5.1.3 Rays !/, and [_

Let
Iy :=={(z,0)]z >0} CR?; [_:={(x,0);2 <0} CR?

5.1.4 Projectors Py
Let us define the following projectors P+ : S x R? — R?, where

Py (71,91, 72,92) = (21 £ 22591 T y2).
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5.2 Formutation of the criterion

Introduce the following projections.

QOur criterion is then as follows.

Proposition 5.1 Consider constant sheaves Z;, € D(R?). Let F € D(S x R?) and suppose that one

of the natural maps
Ly, *F —Zox F =F (98)

7y xF —ZyxF =F; (99)
18 a quasi-isomorphism.

Suppose that both RP. \F =0 and RP_\F =0. Then F € C.

The rest of this section is devoted to proving this criterion under the assumption (98). The case (99)

is treated in a fairly similar way and is omitted.

5.3 Fourier-Sato decomposition

Denote by E the dual vector space to R?. We have the standard identification E = R2. Let (,) be
the standard pairing £ x R? — R. Let Z C E x R?; Z = {(¢,u)[{¢,u) > 0}.

As was explained above, we have the convolution
x : D(ExR?*) xD(S x R?*) — D(E x S x R?).
For F' € D(S x R?) set
F(F):=Zz+ F € D(E x S x R?), (100)

where Zz € D(E x R?) is the constant sheaf on Z. Notice that F(F) is an analog of (but is not
directly equal to) the Fourier-Sato transform of [KS, Ch.3.7].

Lemma 5.2 (Fourier-Sato decomposition of F') Consider the projection q : E x S x R? — § x R?,

Then for any F € D(S x R?), we have a natural isomorphism

RqF(F)[2] = F.
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PROOF. Let us introduce the following projections (where, say ps4 means the projection onto the 2-nd

and the 4-th factor):

E xS xR%xR2

D23
P234

E x S x R? 7 S x R2 o SxR2xR2—= S x R?

Introduce the following closed subset
Z/ = {(é?z7x7y) : (é;x_y> Z 0} Cc F x S X RZ X Rz.

We can now rewrite:
F(F) = Rpia31(Zz @ pyl F),

hence
RqF(F) = Rp131Rpasa(Zy @ pyi F) =

(projection formula [KS, Prop.2.5.13(ii)] is used)
= Rp131(RpasaZy @ r 'F)

We have a natural isomorphism RposnZag = Zsxa[—2], where A C R? x R? is the diagonal. The

result now follows. O

5.4 Transfer of the conditions Py ' =0 to FF

Claim 5.3 Let F € D(S x R?) satisfy RPuF = 0. We then have R(idg x Py)\F(F) = 0.

PROOF. Let us pick a point (1,s9) € E x R? and show that, say, R(idp x Py)/F(F)|¢.s) = 0. We
have:
R(idg x PL)ZF(F)| (.50 = BU(E x 8 x R% (idp x Py) " 2, o) @ F(F))
= RU(E X 8 X R? Zidyx o)1 (n,50) © RAI(Zz R F))
[KS, Prop.2.5.13(ii)] _ _
D RT.(E xR? x S x RZ;ZA,IP?(WO) @ palz @ palF), (101)
where:

pr12: ExR? xS xR? - E x R?

is the projection onto the first two factors;
1034:E><]R2><S><IR2—>S><]R2
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is the projection onto the last two factors; and finally,
A: ExR*xSxR? - ExSxR*: (ns1,2,8)— (0,25 +s2)
(as in (96)).

We have:
A7Yidg x P)"Y(n, s0) = {(n, 51,2, 52)|s1 + 52 + 2 = s0}.

Note that
—1
Lia=1(idpxPy) " (n,s0) @ P12 Lz = Lia-1(idpxPy) " (ms0) @ Lpi 2 = Lia-1(dpx Py)~ (n,50))0pis 2
and put

T := (A" (idg x Py) "' (n,50)) Np1p Z = {(n, 51,2, s2)|s1 + 2 + s2 = s0; (n, 51) > 0}

Denote by 4 the restriction of p34 to T":
it T—SxR?: T3 (ns1,258) (2, 8).
We see that i is a closed embedding and that
i(T) = {(z,8)|(n,s0 —s — 2) > 0} = P,'K, K = {w|(n,so—w) >0} C R?,
where Py : S x R? — R? is as in (97).
We thus can continue our computation from (101)
= RT.(E xR* x S x R} Zr @ p3, F)
= RT.(S x R? (RpsnZr) ® F) = RTo(S x R* Zyp) ® F) =
=RT.(SxR%;PI'Zgk @ F) =

[KS, Prop.2.5.13(ii)] RTW(R% Z © RPyF) = 0.

The equality RP_)FF' = 0 can be proven in the same way. O

5.5 Fourier-Sato decomposition for sheaves satisfying (98)

Define:
I = {(&.n) € El¢ >0} C E. (102)

Suppose (98) is the case. Then we have
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5.5.1 Computing Zz * 7,
Lemma 5.4 We have an isomorphism

LyxTy, =1y, .

PRrROOF. The inclusion {0} < I induces a map

Zz*Zl+ HZz*ZQZZZ.

It suffices to prove the following two statements:

1) Let * € Z; C E x R%. The map
(Zz*Zy,)e — (Zz, )z =L,

induced by (105), is an isomorphism.
2) Let z € (E x R?)\Z,.. Then (Zz *Z;, ), = 0.

Let us now prove 1,2. First of all, for a point = := (¢,v) € E x R2, let us introduce a set
Ko ={(¢,u1,u2)|(C,u1) € Zyug € Lysur +ug =v} C E X R* x R?,

so that we have
(ZZ * ZL+)$ = R.FC(KI,ZKI).

Let
Lo{(zeta,ur,u2)|(C,u1) € Zyug = 0;up +ug = v} C E x R? x R?

so that
(ZZ * ZO)x = R.rc(an ZLI)

(104)

(105)

(106)

(107)

(108)

We have L, C K, is a closed subset. Under the identifications (107), (108), the map (106) corresponds

to the restriction map
R°T (K, Zk,) — R°T¢(Ly, Z1,,,).

Let v = (v1,v2). We then have

Ky = {((5’77)’ (1‘17’02)7 ($2,0)|€$1 +ny1 = 0;29 > 0;21 + 22 = 'Ul}

The subset L, C K, consists of all points with x5 = 0.
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The set K, is identified with the set
K} o= {(z1,91) € R*€ay +ny1 > 0321 < vy}

The set L, gets identified with the subset L! of K/ consisting of all points with z1 = v;.

Let us check 1). Let 7 : R? — R be the projection onto the second coordinate It suffices to check that
the natural map
RmZk: — RmZry,

(induced by the embedding L/, C K) is an isomorphism. We further reduce the statement so that it

reads: the following induced map on stalks at every point y € R is an isomorphism:

(RmZKé)y — (RmZL;)y. (109)
We have
(RmZrcy )y = RUc(Kyy; Zxy); (110)
(RmZ1s)y = RT(Lyyi 2, )
where

Ky = {(z1,9) € R*€x1 +ny = 01 S o) (111)
L, = {(z1,y) € R*|¢xy +ny > 0;21 = 01}

The map (109) corresponds to the natural map

RU(Kyy; Zxr,) — RUc(Ly,y; 2y, ) (112)

induced by the closed embedding L, C K, .

We have ¢ > 0 (because x € I, x R?), in which case either both L}, and K}, are empty sets, or
K, is a closed segment and L}, is its boundary point, which implies that (112) and hence (109) are

isomorphisms.
Let us now check 2). We have £ < 0. It suffices to check that (RmZg,),=0 for all y € R. Using (110),

we can equivalently rewrite this condition as follows:

RT(K},; Zg,,) = 0.

Ty’

As follows from (111), the condition £ < 0 implies that K :’Ey is homeomorphic to a closed ray, which

implies the statement. O.

Combining (103) and (104), we immediately obtain:
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Corollary 5.5 Suppose F € D(S x R?) satisfies (98). Then

supp F(F) cII; x S x R2 (113)

Motivated by the corollary 5.5, set
F'(F) := F(F)|m, xsxr2> € DIl x S x R?).
Introduce the following subset
Zy:=ZNI, xR? CII; x R2

so that
IF’(F) =%z, *x F. (114)

Let my : II; x S x R2 — S x R? be the projection.

Lemma 5.2 and (113) imply the following isomorphism:

F[-2] ~ Rr \F'(F) = Rr(Zz, + F). (115)

5.5.2 Further reformulation

Let us introduce a map
Q : I —-R, Q(fﬂ?)zn/f

Let also
¢g:RxSxR? -8 xR?

be the projection. Finally, let us set
W = {(a, (z,y))|z + ay > 0} C R x R%

There is a commutative diagram with a Cartesian square:

QXidp2 gy g2

Zy xSxR? c T, xR?x S xR? RxR2xSxR2 > W xSxR? (116)
AJ/ O lA
Qxidg,
II, x S x R? o R x S x R?,
S x R?
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The map A in this diagram is induced by the addition R? x R? — R2.
Lemma 5.6 i) ‘Zz, * F is constant along fibers of Q x idgyg2” in the sense that

Ly, «F = (Q X idgxpe) (T + F); (117)
ii) If F' satisfies (98), then there is a quasi-isomorphism

F = Rq(Zw * F)[1]. (118)

PROOF From the definition of a constant sheaf as a pull-back of Z,;, we have (Q x idg2) " Zy gxr2 =
Zyz, «sxw2; and then, by the base change [KS, (2.5.6)] in the Cartesian square of (116), we obtain
(117).

To prove (118), write

FY B2z, « F)[2) ") Rran(Q x idgme) ™ (2w * F)[2] =

-1 _ N1
— R (Q xidgyuge) " RA\(Zw B F) 2] =R R(Q x idgyz2 )i (Q x idgg2) " RA(ZwRF)[2] ¢ =271

= R R(Q X idgyp2)i(Q X idgyme) (Zw * F)[1]=Rq(Zw * F)[1].

5.5.3 Rewriting the map (118)

Define a map [ : R x R? — R, where R is another copy of R, as follows: l(a,z,y) := 2 + ay.

Let
L:RxSxR?-RxSxR;

be given by L(a, z,u) = (a, z,l(a,u)).
Let W' C R x R? x R be given by

W' = {(a, (z1,11),t)|t — x — ay > 0}.

Let
ps:RxSxR?x R— R xR?xR;

prR:RxSxRQXRHSxRQ;
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and
prz RXxSxR2XxR—-RxSxR

be projections.

We have the following cartesian diagram:

(CL,Ul, Z)UQ) — ((I, 2 UQ,Z((I, u + UQ))

m m

L

(a,u1,z,u3) € RxR2xS xR2 RxSxR2x R >

| a - lpm

(a,z,u1 +ug) € R x S x R2

w w

(a,z,u) ——(a, z,0(a,u))

and W x R2 xS =L~ (W'x8).

(119)

(a,2,u,t)

(a,z,t)

By the base change [KS, (2.5.6)] applied to the diagram (119), we have for all F satisfying (98):

Ly x F = L_lRpRzl(pﬂgiRF ®p§1ZW/).

Denote

(120)

O :=Zw * F := Rpr21(ppy pF ® pg'Zyr) € DR xS x R).

5.5.4 Transferring Claim 5.3 to g
Let P, :R xS x R— R x R be given by

Pl (a,(x,y),t) = (a,z + ay £ t).
Lemma 5.7 If F € D(S x R?) satisfies both (98) and RPy\F = 0 then

Analogously, if F' satisfies both (99) and RP_F = 0, then RP’ ,(®r) = 0.
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PROOF OF LEMMA 5.7. Extend the diagram (119) as follows:

RxRZxSxR2—2>RxSxR2xR (123)
\LA ipRZ
o txid QQXidsw@ 9
ExSxR2<—T, xSxR RxS xR RxSxR
lidEXP+ lidH_FXP#» \Lid}RXP_‘_ lp_@
i Qxid /

ExR2 <9 11, R 2 R xR L R x R

w w

(a7 ’U)) e (a7 g(aa ’LU))
where ¢ : II; — F is the open inclusion.

We have Z, = Z N (v x idg2)I; and Zyz, = (i x idg2) 'Zz. Thus by the base change [KS, (2.5.6)],
Zz, xF € D(Il} x S x R? is quasi-isomorphic to (¢ x idgyg2) " '(Zz * F). Thus,

R(idm, xp, x Po(Zz, * F) " 2 (s idpa) TR(idp x PL)(Zg « F) SR 23 0,
But on the other hand,
114 117 . _ 120 . _ _
F(F) L Zz, *F (@ x idgype) 1@ + F) "2 (Q x idgupe) L0

hence
R(idn+><p+ X P+)!(Q X ideR2)_1L_1(I)F =0,

or applying the base change [KS, (2.5.6)] to the middle and right bottom squares of (123), we have
(@ x idg2) (L)' RPL(®F) = 0.

Since both maps (@ x idg2) and L’ are locally trivial fibrations with a vector space as a fiber, we

conclude that RP}®p = 0. O

5.6 Rewriting the condition of orthogonality to C

Let F satisfy the conditions of Proposition 5.1 (assuming (98). Let H € Cs, where Cg is defined in
section 5.1.2. Proposition 5.1 now reduces to proving that RHom(F, H) = 0.

Let us investigate RHom(F, H) using the representation (118) of F.. We have:
(118) (120) _1
RHom(F, H) "2 RHom(Rq(Zyw * F), H)[-1] "2’ RHom(Rq L~ (®F); H)[1]
= RHompysxr(®r; RL.q'H)[-1]. (124)

Singular support estimate shows that
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Proposition 5.8 We have:
S.S.RL.¢'H C Q,

where

Oy = U {(a,z1,y1,t,R.(d(x1 + ay1) £ dt) + R.da)} (125)

“U and “7

and where a € R, (z1,11) € S, t € R.

PROOF Because g is a projection on a direct factor, by [KS, Prop.3.3.2(ii)] we have S.S.¢'H = S.S.q"'H

which in turn can be, using [KS, Prop.5.4.13], estimated by (in the notation of that proposition)
'q'(qz " (S.S.(H))); thus
S.S.q¢H C {a,z,u,ada +vdu : (= +tv}.

By [KS, Prop.5.4.4],

S.S.RL.q¢'H C L.('"L' "{a, z,u,ada + Cdz + vdu : ¢ = +v}).

We have
T*(Ro x S: x R2_, 1) <2 RqxS:xR2_, o X(g.xs.xz) T*(Ra X S: X Ry)
(a, z,u,ada + (dz + &dz + ndy) (a, z,u,ada + (dz + Tdt)
v = (5777) tzf(avu)
dx + ady +yda <« dt.
Thus

S.S.RL.¢'H C L.({a,z,u,ada+ (dz+7dt : (= +7(1,a)}) =
= {a,z,t,ada+ (dz+7dt : (==x7(1l,a)}
which is equivalent to (125). O

Thus, Proposition 5.1 follows from the following one:

Claim 5.9 Let ®p,’H € D(RX S x R) satisfy: RP,,®r =0 (where P} are as in (121)); S.SH C Q,

where Oy is as in (125). Then we have:

RHom(®p;H) = 0.

5.7 Subdivision into 3 cases

We are going to subdivide the space R x S x R with coordinates (a, z,u) into 3 parts according to the

sign of a.
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5.7.1 Subdivision of R xS x R
Uy :=(0,00) xSXRCRxSXR
U_ :=(-00,0) x Sx RCR xS x R;
Uy=0xSxRCRxSxR.

Denote
ji:UiHRXSXR

the corresponding open embeddings and by
i0: Uy —>RXxSXR

the corresponding closed embedding.

5.7.2 Subdivision of &y

Set
by = j;lCI)F S D(U:t);

Dy =iy ®r € D(Up).

We have a distinguished triangle

@y DD — B — gDy

Let

P = Pljy; P i=PLjs PY = Plig

be the restrictions of P from (121) onto Uy, U_, and Uy. Base change theorem implies that

U
P:l:;r(p+ = 0,
U-
P.ro_ =0
PYrd = 0.
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5.7.3 Subdivision of H
Let H4 € D(Ui);
Hy = ]ilH

Let Hy € D(U());
Ho == iyH.

Let us estimate the microsupports of these objects. Let
Qu, = QN T*Uy C T"Uy,
where we assume the embeddings T*Uy C T*(R x S x R) induced by ji.

It is immediate that SS(H+) C Qp,.

Let

Qp = U {(.Il,yl,t,R.(dﬂ?l:l:dt)} CT*(S X R),
“+” and “”

where, same as in (125), (z1,y1) are coordinates on S, and ¢ on R.

Corollary [KS] 6.4.4(ii) implies that
SS(Ho) C Qo.
5.7.4 Subdivision of Claim (5.9)
By virtue of the distinguished triangle in (126), Claim (5.9) gets split into showing the following

vanishings:

RHomRXSXR(j+!(I>+; H) = RHOIHU+ ((I)+; H+) =0;
RHompysxr(j—1®—;H) = RHomy_(P_;H_) =0;

RHomprxsxr(io®+;H) = RHomy,(®o; Ho) = 0.
Our task now reduces to showing the following 3 statements:
Claim 5.10 Let &, Hy € D(U;). Suppose RP:Z+®+ =0 and SS(H4) C Qu, . Then
RHom(®4,Hy) = 0.
Claim 5.11 Let ®_,H_ € D(U_). Suppose RPY & =0 and SS(H_) C Qu_. Then

RHom(®_,H_) =0.
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Claim 5.12 Let ®g,Hy € D(Uy). Suppose RPiU{)(PO =0 and SS(Hoy) C Qu,. Then

RHom(®g, Ho) = 0.

5.7.5 Furhter reduction
Let { be one of the symbols: +,—, or 0. Let Iy := (0,00); I := (—00,0); Iy := {0}. Let
Q/<>ZU<>><SXR—>[<>XRXR

be given by
Qu(a, (z,y),t) = (a,z + ay,t)

(in the case ¢ = 0 we assume a = 0). Denote by V¢, C R x R x R the image of Q). Depending on
S, V¢ can be of one of the following types:

1) For some linear function fg : I — R,
Vo ={(a,v,t)|a € Io;v > f(a); }.
In this case, set Uy, := I, x (0,00) X R; set
Q1:Uy — Uy,
Qi(a, (z,y),t) := (a,z + ay — f(a),1).
2) For some linear function f¢, : Iy — R,
Vo =A{(a,v,t)]|a € Io;v < f(a)}.
In this case, set Uy, 1= I x (—00,0) x R; set
Q1:Uy — Uy
Q1(a, (z,9),t) := (a,x + ay — f(a),1).

3)
VQ:IQXRXR.

In this case, set Uy, 1= I x (—00,00) X R; set Q1 : Uy, — Uy,

Q1i(a, (z,y),t) := (a,z + ay, t).
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It is easy to see that in each of the cases the map ()1 is surjective; furthermore it is a smooth fibration
with its typical fiber diffeomorphic to R. We also see that the 1-forms from y, vanish on fibers of
()1, which implies that the natural map

Heo — QY RQuH

is an isomorphism.

Set
£<> = RQHHQ S D(UQ)

Define conic closed subsets Q. C T*U< as follows:

Qu, = U {(a,v,t,R.(dv £ dt) + R.da},
“4” and

where (a,v,t) € Uy C I+ x R x R. Define a conic closed subset Qy, C T*Ujy:

Qu. = |J  {0,v,t,R(dv+adt)}.
“+” and “-”

It is easy to see that
SS(Ley) C Quy-

5.7.6

We have
RHom(®e; He) = RHom(®e; Q1 L) = RHomy,, (RQuPy; Lo).

Set G := RQ1 Py . Let Pfo : Uy — RxR be the restrictions of the following maps RxRx R — RxR:
(a,v,t) — (a,v £1). (127)

It now follows that
RPL®Ge = 0.

So, we can rewrite Claims 5.10—5.12 as follows.
Claim 5.13 Let Gy, Lo € D(Uy) satisfy:
RPYO Gy = 0; (128)
+ GO =Y

SS(Ley) € Qu,. Then RHom(Ge; L) = 0.
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5.8 The case Uy = I, X (—00,00) X R

This case follows from Theorem 4.1 below. Below, we are going to consider the case Uy
(0,00) x R. The case Uy = Iy x (—00,0) x R is fairly similar.

5.9 Proof of Claim 5.13 for Uy = [, x (0,00) x R

As above, our major tool is development of a certain representation of G.

5.9.1 Representation of G

Let Vi C I, x R x (0,00) x R be given by

Vi ={(a,u,v,t)| [t| <v}.

Let V := I, x R x (0,00) x (0,00). We have an identification J : V' — V1,

S +& & -6
u7

J(a,u,&1,82) = (a, 2 72 )

Let I; : Vi — I x (0,00) x R be given by
Ii(a,u,v,t) = (a,v,u+t).

Let I=1,J:
1(a,0,61,6) = (0, 52 0y 9282

so that & =v+t; & =v —t.

Let g1,q2 : V — Iy Xx Ry X Ry,

Qi<a7ua€17§2) = (CL,U,&L‘), i =1,2.

(129)

(130)

(131)

(132)

Let us summarize our notation in the following diagram (a wavy line indicates that a sheaf is defined

over the given space):

(a,u,v,t)t (a,v,u+1t)
m m
X xR x (Rsp x R) > Vi ={(a,u,v,t) : |t| < v} b Io X Ryg X R ~~ @

T" /

H’V\NV:IQXRXR>OXR>D - IQXRXR>0.
w w
((I, u, 517 52) i (a> u, gl)
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Claim 5.14 Suppose that an object G € D(I x (0,00) x R) satisfies (128) both with the sign “+”

and with the sign “-”. There exists an object H € D(V') such that
1) both RquH ~ 0 and RgaH ~ 0;
(2)RLH ~ G.

Remark. Observe that (128) reads as follows: RPL,G = 0, where

Pl:Iyx(0,00) xR—=RxR : Pi(a,v,t) = (a,v+£t), (133)
same as in (127).
Proof of this Claim will occupy the next subsection
5.10 Proof of Claim 5.14
5.10.1 Functors r; and r, and their properties
For FF € D(I¢ x R x (0,00) x (0,00)) we have natural maps (coming from the adjunction)

F — qiRquF; F — ¢yRgyF. (134)

Let 71(F'),r2(F) be the cones of these maps so that we have natural maps (in the conventions of [KS,

Ch.1.4])

ri(F) — F[1] (135)

ro(F) — F[1]. (136)
We therefore have a composition map

T‘1T2F — F[2] (137)

Lemma 5.15 We have Rqyirire = Rqarire = 0.
PRrROOF First of all we observe that
quﬂ“l ~ 0, quﬂ”g ~ 0. (138)

Indeed, the question boils down to showing that Rqp applied to (134) yields a quasi-isomorphism
RquF = Rqug RquF.

There is a natural transformation of endofunctors on D (I, x R x (0,00)): € : Rqyigi — Id (since Ry

is left adjoint to q'l) Since ¢; is a projection along (0, 00), it is well known that ¢ is an isomorphism
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of functors. By [MacLane, Ch.IV.1, Th.1(ii)], there is a diagram

RqnF — Rqyq} Rqu F

ey

Rqn F

in which the vertical arrow is induced by &, which implies that the vertical arrow is an isomorphism,

hence, so is the horizontal arrow. This finishes proof of (138).
Secondly, we have a natural quasi-isomorphism
Tir2 ~ Tory. (139)

Indeed, let us represent ¢, g2 as convolution with kernels. Let A, B, C be smooth manifolds. We have
the convolution bifunctor o : D(A x B) x D(B x C) — D(A x C) defined by

F oG = Rraci(thypF @ m50G). (140)
Let A=R, By = By = (0,00), C = pt so that F is asheafon Ax B} X Ba, q1 : AixB1xBy — AxBjxC
is the projection along Bs.
We have Rq /' = F o Zp,xc-
Set VG = ¢ 1G1] = G o Zox,[1]-
Let us construct an isomorphism (natural in F' and G)

RHom(RquF;G) 5 RHom(F;¢¥G).

Fix one of the two maps I : A\Zp, — Zp,x B,[1] such that the induced map RPA\Zp, — RPZp,xB,[1]
is an isomorphism, where P : By X By — Bs is the projection along the second factor. We have an
induced map

a:F S FoAZp, L FolZp,up(l] = ¢ RquF

It follows that this map induces an isomorphism
RquF — Rquqf RquF. (141)
The induced map
RHom(Rqu F;G) — RHom(q?qugF; qloG) =% RHom(F} qloG) (142)

is an isomorphism for all F,G. Indeed, the right arrow is an isomorphism because of (141). The
left arrow is an isomorphism because we have an isomorphism of functors q? G = GXZ[1] and the

statement now follows from the Kuenneth formula.
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Thus we have constructed an adjunction between the functors q? and Rgqy in the sense of [MacLane,
Ch.IV.1l]. In case G = RquF, the map (142) sends idpg,, r to qll(idRq“F) oo = «, therefore « is
the universal arrow associated to the adjunction (142) in the sense of [MacLane, Ch.IV.1, p.81]; by
the uniqueness of an adjoint functor, see [MacLane, Cor.1, Ch.IV.1, p.85] and its proof, this means
that a coincides with the “standard” adjunction map (coming from [KS, Ch.3.1]) up to some natural

autoequivalence of the functor q’quly. This means that we have a canonical isomorphism of functors

qlO & q!1 so that we won’t make difference between qlO and q!1 We have
Qi RquF = F o (Zp,xc 0 Zoxp,)[1] = F o Zp, s, [1]. (143)
The above consideration shows that r1F = Conea ~ F o L;, where £ := Cone(I : A\Zp, —

ZB2><32[1])'
Analogously, roF' ~ F o L9, where Lo := Cone(I : A\Zp, — Zp,xB,[1])-

Therefore,
rirelF ~ F o[£ X Lo] ~ ror1 F,

as we wanted.

We now have: Rgqrire = 0 because of (138) and

Rgoyryrs (139) Rqgoirory (138) 0. (144)

This accomplishes proof of Lemma. O

5.10.2 Construction of the object H and proof of the Claim 5.14 1)

We set ® = I'G and H := rire(®). Lemma 5.15 says that RgyH ~ 0 and RgoH ~ 0, which proves
part 1) of the Claim 5.14.

5.10.3 Reduction of part 2) of the Claim 5.14

Let us deduce part 2) of the Claim 5.14 from the following statement.

We have a map
L - H = 7’17’2(1) — (13[2},

where the right arrow is defined in (137). Let us apply the functor RIj to ¢ so as to get a map

RLH — RL®[2] (145)
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Claim 5.16 The map (145) is an isomorhpism.

This Claim implies part 2) of the Claim 5.14. Indeed, we can rewrite (145) as follows.
RLH — RL®[2] = RIT'G[2] = G[2],

where the rightmost arrow is an isomorphism because I is a smooth fibration with fibers diffeomorphic
to R

We now pass to proving Claim 5.16.

5.10.4 Subdivision into 3 cases

The map (145) factors as

RLrra(®) ) RLyro(@)1] 2 RIp0[2].

AsT'G = @ and by [KS, Prop.1.4.4.(TR3)], the cone of the right arrow is isomorphic to RI;qy RgaT'G[2].
Analogously, the cone of the left arrow is RI!q!qulgm(I)[l] which, by definition of r9, is the cone of the

natural arrow

RLqiRquI'G — RLiqi Rqi Rgy RgaT'G.
Thus, isomorphicity of (145) is implied by the following three vanishing statements:
1) RLighbRgaI'G ~ 0
2)RLy¢} RquT'G ~ 0;
3) RLig; Rqugy RgaI'G ~ 0.
5.10.5 Proof of the 1-st and the 2-nd vanishing
Let V3 := I x R x (0,00)*. Let 7y, mo : Vi be given by

7T1(CL, v, 617 527 éia Eé) - (CL, v, 517 52)

and

W2(a7U7§1a€27£17£é) - (G,Q},fi,{é)

Let Lo, C V5 be a closed subset of the form:

L2 = {(G,U,€1,§2,§i,§é)|§2 = 55}7
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Lemma 5.17 For any F € D(V) we have

¢yRqo1F = Rro|(Zp, @ mo ' F).

PROOF Similar to proof of (143). O

Let Xo := I x ((0,00) x R) x ((0,00) x R). Let 7, w5 : Xo — I, x (0,00) x R be the projections
along the 3rd and the 2nd factors respectively. Define closed subsets Ly C Xa:

Ly ={(a,(s1,t1), (s2,t2)) € I, x ((0,00) x R) x ((0,00) x R) : s1 £t = s2 £ 12}
Lemma 5.18 For any F' € D(I+ x (0,00) x R),
(PY)"'RPLF = Raf{(Z;_ @ m 'F),
where the map P! was defined in (133).

PRrROOF. The proof is analogous to the proof of lemma 5.17. O

We now have
Ry RgnT'G[-2] ~ RLig; ' Rga 171G

~ Rmy\(Zr, ® (m5) 7' G), (146)
where 7, = Im; : Vo — I % (0,00) x R, as easily follows from Lemma 5.17.

Let us define the following map
Jo: Iy x R x ((0,00) x R) x ((0,00) x R) — I, x ((0,00) x R) x ((0,00) x R) = X»

as follows:

Jo(a,v, (s1,t1), (s2,t2)) = (a, s1,v + t1, S2,v + t2).
Let us also define a map (which is a closed embedding)

Ky : Vo — Iy x R x ((0,00) x R) x ((0,00) x R)
as follows:

§1+& & —& fi+§§_fi—§§)
2 2 7 2 7 2 '

KQ(aavaélaf%gi?gé) = (CL?U?
It follows that ) = 71X Jo Ko; 7 = 73 Ja Ko
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We can now rewrite (146) as follows:

R,y RgnT'G[-2] ~ RLig; ' Rga 171G
~ Rj (RI2RK2Zr,) ® (13)'G), (147)
Let
Ly C Iy x R x ((0,00) x R) x ((0,00) x R)
be a closed subset consisting of all points (a,v, s1,t1, S2,t2) with s1 —t; = s9 — to.

It is easy to see that Ky(Ls) C L is an open embedding. Indeed, Ks(L2) consists of all points

(a,’U,Sl,tl,SQ,tg) with s —t1 = s9 —tg, 81 > |t1’, So > ’tg‘.
Therefore, we have a map RK9Zy, — Z L, which induces a map
R\ (RJ2RKyZ1,) ® (15) 7' G) — Ry (RJaZyy) @ (75) 7' G). (148)
The cone of this arrow equals
Rriy (M@"(m3') ' G),

where
M ~ RJyZy,

and N = L,\K(L2). Let us now show by a pointwise computation that M ~ 0. Indeed, let a :=
(a,01,71,09,72) € Xa) be a point. Let us consider H*(M,) = H2(J, ‘o; 7).
If 01 — 11 # 09 — 7o, then J;la =0. If o1 —71 = 09 — T2 = h, then J;la gets identified with the set of

all v € R satisfying: either o1 < |1 —v| or o9 < |19 — v|. Let us denote this set by Y, C R. It follows

that Y, consists of all points v satisfying: h+v < 0 or h4+ v > 20, where ¢ is the maximum of ¢; and
o2. In other words, Y, is a disjoint union of two closed rays so that H?(Y,,Z) = 0. This shows that
M ~ 0.

The map (148) is therefore a quasiisomorphism. In view of (146), the first vanishing will be shown
once we prove that

R} (RJ2Zyy) @ (w3 )—1G) ~ 0. (149)
But RJyZy;, = Z1 [—1], and hence the Lh.s. equals (PL)~'RP!,G[-1] which is zero by (128).
The second vanishing is shown analogously.

Proof of the third vanishing Define the following subset

L C Iy xRx((0,00) xR)x((0,00) xR)) :
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L ={(a,v,s1,t1,s2,t2)|(a,v,s1,t1), (a,v, s2,t2) € V};
Similar to the proof of the 1-st vanishing, one shows that
! ! ! X Xy -1
RY,q; Rg11g5 Rg I’ G[—3] ~ Rmyi (RJanZ1) @ (15 ) G),

where
Jo 1 Iy x R x ((0,00) x R) x ((0,00) x R)) — X>

and
T,y s Iy x R x ((0,00) x R) x ((0,00) x R)) — Iy x (0,00) x R

are the same as in the proof of the 1-st vanishing.

Observe that
Jo(L) = {(a, (s1,t1), (52, t2))| [t1 — t2| < 51+ s2}.

the projecion L — Jo(L) is a smooth fibration whose fibers are diffeomorphic to R!; we now see that

RJoZy, ~ ZJQ(L)[_l] < D(XQ)

We therefore need to show that
Ry (Zgy 1) @ (73 ) 7' G) ~ 0

The complement to Jo(L) in X5 consists of two components
Xo\Jao(L) = My UM,

where
M+ = {{(l’, (Sl’tl)’ (527t2))| 1 —ty > 81+ 52}

and
M_ = {{(w, (Sl,tl), (Sg,tg))’ tl — tQ § —S1 — 82}

We thus have a distinguished triangle
— Rﬂ_]_!(ZJQ(L) ® 7r2_1F) — Rm(Zx, ® 7r2_1G) — Rmy(Zy, ® 7r2_1G) @ Ry (Zy_ ® 7T2_1G) —
which comes from a short exact sequence

0_>ZJ2(L) — ZLx, —>ZM+ @& Zy — 0.

The second term of this triangle is quasi-isomorphic to
7 'Rr G,
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where 7 : I, X (0,00) x R — I is the projection. It follows that RmG ~ 0 because 7 passes through
Pl (as well as P?) from (128).

We thus need to show that R\ (Zy, ® (m5)71G) ~ 0.

Introduce the following subsets N1 C I x ((0,00) x R) x R:

Ny = {(a, (s1,t1),y)| t1 > s1 + y}
and

N_ = {(aa (s1,t1),y)| t1 < —s1 — y}

Let q1 : I x ((0,00) x R) x R — (0,00) x R and g2 : I, x ((0,00) x R) x R — R be projections. We
then have
Rrfy (Zn, © (m3') 7' G) ~ Rqu(Zn, ® ¢3 ' RPLG) ~ 0

because RPL,G = 0 by (128).

This completes the proof of the 3rd vanishing as well as the proof of Claim 5.14

5.11 Finishing proof of Claim 5.13

Let I, x Rso x R, the target of the map I; from (131), have coordinates (a,v,n).

Let G, H,I be as in Claim 5.14 and let H' be a sheaf on I, X Ry X R microsupported on the set

U (a,v,n,R.d(v£n)+ R.da). (150)
“+77 and “_77

We then have
RHom(G, H'") ~ RHom(RLH, H') ~ RHom(H,T'H').

By [KS, Prop.5.4.5(i)], it follows from (150) that

S.S.(I!H’) C {(a,u,&1,&,bda + wdu + 11déy + 12d€ @ 11 =0 or 7o = 0}. (151)

Set A'=H, B =TH'.

Let also ¢1,q2 : I, xR % (0,00) x (0,00) — I, xR x (0, 00) be projections as in (132): ¢;(a,u,&1,&2) =
(aauagi)'
We then have Rg A’ =0, i = 1,2, by Claim 5.14,1), and we have the estimate (151) for B’.
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Let us identify diffeomorphically R — (0, 00). Under this identification, we have two sheaves A, B on
Y xR x R, where Y = I, x R, such that

1) RppiA = RpyA ~ 0, where p1,p2 : Y X R x R — R are projections;

2) B is microsupported on the set of points (y, u1, ug,w + vidu; + vedus), where w € T7Y ui,ug € Ry
v; =0 or vg = 0 (or both).

By Theorem 4.1, RHom(A, B) = 0, which finishes the proof of Claim 5.13, as well as Proposition 5.1.

6 Proof of Theorem 3.5

In section 3.6 -3.13, we have constructed objects ®X, ®Te T as well as maps igx : Zxyxx|—2] —
O igra @ Zxgxra[—2] — @7, and dgr-a : Zxgxr_,[—2] — ®*. In order to finish the proof of

Theorem 3.5, it now remains to prove:
1) Each of the objects ®& T« ®T-« belongs to C, to be done in Sec 6.1.
2) Cones of the maps igx ,igra,ipr—a are in -C, to be done in Sec 6.2

We only consider the case of ®X (and the map igx ), because the arguments for the remaning cases

are very similar.

Proof of 2) is based on the orthogonality criterion of the previous section (Proposition 5.1).

6.1 Proof of ¥ € C.

Consider open subsets Xy C X, where Y is the union of two neighboring open strips Int P, Int P, and

their common boundary ray £. It is clear that 3, form an open covering of X.

Let us consider the restriction estimate ® |z, xc. It suffices to show that
SS(®% |5, xc) € Qx NT*(Z, x C)

for each element ¥, of the open covering. Let us fix the notation: let ¥y, = IntP; U IntP, LI £; let
P! :=IntP; U/, i = 1,2, be the closure of P; in ;. Set for brevity

F = 3%|s, c.
Finally, we introduce the following sheaf on ¥, x C:

K+ ._
AE[ = Z{ZGEg : stzeK}-
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Let us now suppose for definiteness that ¢ goes to the left. As follows from the construction of ®¥ in

Sec 3.8.4,3.8.5, we have identifications (i = 1,2):
Flpixe = (A5, # 51 © A5, % 5-) | pruce
as well as a gluing map (43):

FQ}(PQ : (Age‘f‘ xS, @ Age_ * S_)|exc — (Agj‘ * S, B Age_ * S_)|exc

When restricted onto Agj * Sy |exc, this map becomes the identity. This readily implies that we have

an embedding
Agj * Sy — F,

whose restriction onto each P/ is just the identical embedding onto the direct summand. We can

construct a surjection F' — Ag; x S_ in a similar way. All together, we get a short exact sequence

0> AfY Sy = F— A5~ xS —0,

The marginal terms of this sequence do clearly have their singular support inside Qx N7T*(3; x C),
cf.(7), hence so does the middle term F. This finishes the proof.

6.2 Proof of orthogonality

In this subsection, we prove that the cone of the map igx is in *C. We will exhibit an increasing
exhaustive filtration F of ®¥ such that the map i factors through FO®X. Our statement then
reduces to showing that Cone(Fy — F°®X), as well as all successive quotients of Fit1oK /Fipk

i > 0, belong to *C.

6.2.1 Regular sequences

Notation 6.1 Let A\, \,_1--- A1 be a nonempty sequence of bounday a-rays.

Call this sequence regular if for each k > 1 the rays \; and A;y1 are different and belong to the closure

of a (unique) a-strip Py, fig.6. We also assume that Py is the initial strip (i.e. xg € FPp.

Note that, in general, a ray can occur in a regular sequence several times.
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Figure 6: A regular sequence — Notation 6.1.

6.2.2 Admissible rays

We will freely use the notation from Sec. 3.8, such as £, W, AKX,

Let w € W@ be of the form ¢,,0,—1---¢1{L or R} and let { € L* be a boundary a-ray. We call

¢ )\, w-admissible, if there exists a k such that £ = A\; and and /,,4,,_1---¢1 is a subsequence of

AeAk—1--- A1 (i.e. there is an increasing sequence k1 < ... < Ky, such that {1 = A, ..., Iy = Ag,,)-

Remark 6.2 Let w = l,l—1 -+ (L or R). If £,, = ¢, then this condition is equivalent to £, €y, —1 - - - {1
being a subsequence of \; it £,,, # ¢, then the condition is equivalent to ¢¢,,0,,_1 - -- {1 being a subse-

quence of A.

6.2.3 Subset P, ,

Let P be an a-strip. We define an open subset P, ,, C P as follows.
1) if every boundary ray of P is not A, w-admissible, then we set P ,, := 0.

2) otherwise (there are A\, w-admissible boundary rays of P) we define Py ,, as the union of IntP with

all A, w-admissible boundary rays of P.

6.2.4 Subsheaves Agfm

Let 5 := jiw : Py x € — P x C be the open embedding.

As in Sec.2.11, let Agi = ZL{(z,5): 2€P, stz€K}-

)

Accordingly, we can define subsheaves
AR =0 ART CAFT € D(P x C).

Observe that Ag f » = 0if P has no A\, w-admissible boundary rays.
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6.2.5 Subsheaves @g’A C <I>{§

We have an identification

<I>K|p: EB Sw*Ag_@ EB Sw*A{ﬁ.

« «
wGWright weW

For each regular sequence A (where A stands for Ay, A,—1 ... A1), let us construct a sub-sheaf A C pK

as follows. Set

KX K— K
o= P SurAf . P SwxARl, (152)
wWEWS 1 wEW,,

We have an obvious embedding
o - ok,
6.2.6 Sheaves @g’)‘ match on the intersections

Let P and P’ be two intersecting a-strips; let £ = P N P’. We then have two sub-sheaves of @f ,

¢xc and <I>§,’>‘| ¢xC- Let us check that these two subsheaves do in fact coincide:

namely @g’)‘

Claim 6.3

K KA
S5 exe = P exc

PROOF Let w € W. Consider the following sheaf: Aji:;w = Ag f\cw] ¢xc- By definition, Aji:;w = 0 unless
¢ is A\, w-admissible, in which case Aji;,w = AB=E|,.

Let W(£,\) C W% be the subset consisting of all w, where ¢ is A, w-admissible. Let W (¢, \) =
W (L, Niet L S(£, Mright, Where W (€, ANiere = W (€, ) N Wig: WL A)signe = W(L,A) NWE .

It now follows that <I>§>‘|4X(c, as a subsheaf of ®%|,c = @wewgft Sw * AfJ“ @ @wewﬁgm S * Af_a

coincides with the following its direct summand:

O Me =20\ = P SerAFa P SexAl
wEW(f,)\)left wew(&)\)right

Analogously, we have an equality
®p exe = B(L )

of subsheaves of

@ Sw * Ag(Jr D @ S * Afi = q)lpg/|€><(C-

[ «
weWR. weWright
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It now suffices to check that the sub-sheaf ®(¢, \) is preserved by the gluing map Fgﬁ:/ from Sec 3.8.5.

By definition of Fgﬁl, it suffices to check: let w € W (¢, \) and suppose fw € W (meaning that the

leftmost ray of the word w goes in the opposite direction to ¢); then fw € W (¢, \). Indeed, w €

W(4, ), bw € W is equivalent to fw being a sub-sequence of A, which is the same as fw € W (¢, \).
O

This Claim implies that there is a unique sub-sheaf ®** c X such that <I>I,§’)‘ = KA pyc for all

a-strips P.

6.2.7 Definition of a filtration on &
Notation 6.4 Choose and fix an infinite regular sequence
c A1 A2 (153)

such that

—every ray occurs in this sequence infinitely many times;

—the ray \; is adjacent to the a-strip Py containing xg.

Denote by A the subsequence A, A1 ... A2\,
Set FK .= AT Let us check
Claim 6.5 We have F"®K ¢ Frtlpk,

PRrOOF. It suffices to check that F"®X|p,c C F"1®K|p, ¢ for every strip P (as sub-sheaves of
®K). Tt suffices to check that P(A™, w) ¢ P(AM™+Y) w) for all w, which follows from: if a ray ¢ is
A w-admissible, then £ is A"V w-admissible. This follows from the definition of A, w-admissibility.

OdJ
Claim 6.6 Subsheaves F"®X form an exhaustive filtration of ®¥.

PROOF. It suffices to check that |J F"®¥ |pyc = @fg . This is implied by: for every w € W and every
boundary ray ¢ of P, there exists an n > 0 such that ¢ € Py ,,, equivalently: £ is A™ w-admissible.
Let us prove this statement. By the construction of A, every finite sequence of rays, is a subsequence
of A for n large enough (because every ray occurs in the sequence {Ai}52, infinitely many times).
Let w = £y, - - - ¢1(L or R), then the sequence €4, --- {1 (if £ # £,,) or £, - - - £1 is a subsequence of (M)

for some n, meaning that ¢ is A\, w-admisssible. O
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6.2.8 Computing F1®K

In this subsection, P, denotes the strip adjacent to A; and different from Fy. We assume that \; goes

to the right and that Py is above P, (all other cases are treated in a similar way).

Let us give an explicit description of F1®X . First of all, a ray ¢ is A1), w-admissible iff £ = A\; and w
is one of the following L, R, A1 L. Therefore, P\q) ,, # () iff: P contains \q, that is P = Py or P = P4,
and w is one of L, R, A L. In each of this cases Pyu),, = IntP U A;.

Thus, F1®¥ is supported on ¥ := IntPy N Ay NIntP.. Let P} = IntPyU\;; P! = IntP, U \;. We have
F'o%|p c = A, @ By

F'o%|pr ¢ = 4o @ By,

where A, = Sg * Ag,_; Ag = Sg * Ag,_; B, =5 % A§,+ D S>\1L * Aflﬁ,_; By =5, % A§,+ & S)qL * Ag,_

* 0 * * 0 0
The gluing map ng(P* maps Ap|x, xc into Ay|x, xc and Bo|x, xc into By, xc, therefore, the sheaves
A, and Ag get glued into a sheaf A on ¥, and B, and By into a sheaf B so that F'®X = A@® B. One
also sees that A = Sp * Agf. Let j : IntPy — X be the open embedding.

6.2.9 The map iy factorizes through F'®X

Keeping the assumptions of the previous subsection, let us now construct the factorization of the map
v Lxoxk|[—2] — oK through F®E. The cases when \; goes to the left of P, is above Py are treated

in a similar way.

Let j : IntPy x C — X x C be the open embedding. By definition, iy factors as
Zooxic[=2] = Ji(SL* Alfp © Spx Ay ) — @F, (154)

where the first arrow is induced by the following maps in D(Int Py x C):

. — K+ .
lL - ZXOXK[_Q] - Z{(z,s)\zelntPo,s—&—zExO—f—K} = S * AIntpO’

. _ K—
LR : ZXQXK[_2] - Z{(z,s)|z61ntP0,s—Z€—x0+K} = SR * AIntpo’

which are induced by the closed codimension 2 embeddings of the corresponding sets.

The right arrow in (154) factors through F'®X as follows. Let as decompose j = j1jo, where jg :
IntPy x C - X xCand j; : ¥ x C — X x C are the open embeddings. We have natural maps

ia: Jo(SL *A{fl:rpo) — A;ip: jo(Sr *A{flt_PO — B. Whence a map
ia@ip: jor(SL* Ayip, © Sr* Ayep) = A® B = F'oK|s,c.
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The right arrow in (154) is then obtained by applying ji1 to ig @ ip. For future references, let us

consider Cone(Zy,xx[—2] — F1®X), which is supported on ¥ x C. We now see that
Cone(Zx,xx[—2] — F'o) |5 c
is isomorphic to the Cone of the following composition map in D(2 x C):
Lo x ik [=2] = jor(SL * Afy{p © Sk * Afyyp) = A® B, (155)

where the right arrow is i 4 @ ip, and the left arrow is induced by ¢z, P tg.

6.2.10 Computing successive quotients of the filtration

Let us compute the quotients G" := F"®X/F"=1®K pn > 2. Our computation will result in
decompositions (158), (159)

For that purpose, we choose an « strip P and compute the restriction G := F”@K/F””(I)K]p.

Set
P(n,w) := Ppn \Ppn-1,, C P.

P(n,w) is a locally closed subset of P so that we can define the following sheaves on P x C:
K+ _
AP(n,w) — Z{(z,8)|Z€P(n7w);sj:zeK}.

We have an identification

n K K-
Gp= D SuxAfl,® B SurAR; .

« «@
wEW g, wWEW one

Let us now describe the sets P(n,w). Below, for a w € W, we set trim(w) to be the word w with its

rigthmost letter (L or R) removed.

Step 1 Consider all the situations when IntP C P(n,w)

This occurs iff IntP is part of Py@m),, but not Pyn-1) ,,. This is equivalent to the following:
Condition I: n is the minimal number satisfying:

(1) Ay is a boundary ray of P;

(2) trim(w) is a subsequence of A\(™).

Let us reformulate these conditions. Introduce the following notation. For a word w set M (w) to be
the minimal number such that trim(w) is a subsequence of XM (). For a word w , w # {R},{L},

we also write w = [w’, where [ is the leftmost ray of w.
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Let us split our consideration into two cases:

A) I = A, (meaning that trim(w) is non-empty);

B)trim(w) is empty or [ # A,,.

Case A). The combination Condition I4+Case A) is equivalent to the following combination:
A) (ie. I = \y,), and

Al) M(w) =n, and

A2) )\, is a boundary ray of P.

It follows that given a boundary ray r of P different from \,, such an r is not A", w-admissible: the

admissibility would mean that the word rw is a subsequence of A(™) (see remark 6.2)); since r # A,

(n=1) "which implies M (w) < n, contradiction.

rw is also a subsequence of A
Thus, in this case we have P(n,w) = IntP U \,.
Case B)

Let us give an equivalent reformulation of the combination.

Lemma 6.7 Condition I and case B). It is equivalent to the following combination:
B) and

B1) A\, is a boundary strip of P, and

B2) M (\w) =n, and

B3) If trim(w) is non-empty, then | is not a boundary ray of P, and, finally,

B4) M (rw) > n for any boundary ray r of P.

PROOF. Let us first derive B1)-B4) from Condition I and B):
B1) is just the condition (1);

B2): (2) and B) imply M (A\w) < n. If M(A\,w) < n, then n is not the minimal number satisfying
(1) and (2);

Violation of B3) implies that n — 1 satisfies (1) and (2) — contradiction.
Violaton of B4) implies that M (rw) < n; since the number M (rw) satisfies (1) and (2), we have a

contradiction.

Let us now derive Condition I from B) and B1)-B4).
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B1,B2 imply that n satisfies (1) and (2). Suppose n is not minimal, i.e there exists p < n such that
Ap is a boundary ray of P and M (w) < p. B3 implies that A, is different from the leftmost ray of w.
Therefore, M (A,w) < p, which is prohibited by B4. O

Let us now introduce a one more condition Bb5.

Let P,_1 be (a unique) a-strip which is adjacent to both A, and A,_1. Let P, be the other a-strip

adjacent to A,.
The condition B5 is as follows:
B5)P = P..

Let us prove that
Lemma 6.8 Combination Condition I+ B is equivalent to the combination B, B2, B5.

PROOF. Let us first prove that B,B1-B4 imply B5. Since A, is a boundary ray of P, the only
alternative to B5 is P = P,_;. Then A,_; is a boundary ray of P and M(\,—jw) < n — 1 which
contradicts to B4.

Let us prove that B, B2, B5 imply B1, B3, B4.

B1: By B5 P, = P, and )\, is a boundary ray of P;

B3,B4: B2 implies that for all p € [M(w);n — 1], A\, # A,. This implies that P, is not adjacent to
any of \, with p € [M(w);n — 1] Indeed, suppose P, is adjacent to such a \,. Consider the graph I'

whose vertices are strips and and whose edges are rays. We have two non-intersecting paths between
P,_1 and P.: one of them is \,, we also have a path between P,_; and P, in the connected graph

composed of the edges A\,—1An—2,- -, Ap, which contradicts to I' being a tree.
The just proven statement implies B3 and
B4’) M (rw) > n for every boundary ray of P = P, which differs from A",

Finally, B2) and B4’) imply B4), which finishes the proof. O

Finally, we conclude from B4’, that in the situation Condition 1+B we have:

P(n,w) =IntP U \,.

Step 2 Let us now examine the case (call it case C) when P(n,w) is a non-empty union of boundary
rays of P. Since Pyon-1) 4y C Pyn) 4 this is equivalent to Pyn-1) ,, being a proper (in particular,

non-empty) subset of Pyn) - As follows from definitions, this is equivalent to:
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i’) there is a A1) y-admissible ray of P;
ii’) There exists a boundary ray r of P such that r is A w-admissible, but not A(»~1) w-admissible.
By Remark 6.2, the condition i’) is equivalent to:

i”) there exists a boundary ray r of P such that either r is the leftmost ray of w and M(w) <n — 1,

or r is not the leftmost ray of w and M (rw) <n — 1.
In any case, i’) implies that M(w) < n — 1.
Also by Remark 6.2, the condition ii’) is equivalent to the following one
ii”) There exists a boundary ray r of P such that either
a) r is not the leftmost ray of w and M (rw) = n;
or
b) r is the leftmost ray of w and M(w) = n.
The case b) contradicts to i’), which implies M (w) < n — 1.
The condition a) implies 7 = \,, and hence ), is one and the only ray in Py -
We thus can reformulate:
The case C occurs iff
i’) holds and
ii-a) A, is a boundary ray of P;
ii-3) Ay, is not the leftmost ray of w;
ii-y) M(Aw) = n.
In the case C we have P(n,w) = \".
From ii-y we conclude that
Ap # Ay forall p e [M(w);n —1]. (156)

The condition i’ is equivalent to

dp € [M(w),n—1] : X, is adjacent to <. (157)

Let us show that P = P,,_1:

Indeed, by ii-a, the only alternative is P = P,. In this case, analogously to the proof of B5=B4, the
property (156) implies that P, is not adjacent to any of A\, with p € [M (w); n—1], and that contradicts
(157).
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Thus, we have the following condition which is equivalent to i’ and ii’ (the proof of the converse is

trivial):
Cl) P = P,_1; A\, is not the leftmost ray of w and M (A\,w) = n.

In this case P(n,w) = A,.

Let us summarize our findings. Introduce the following notation. Let W ¢ be the set of all words

w in Wi, such that the leftmost ray of w is not A, and M(A,w) = n. Let W right D€ the similar

thing.

We then have the following three cases when the set P(n,w) is non-empty:

— Conditions A, A1, A2 is satisfied. Equivalently, the following conditions are the case:
al) P=P,_j or P=P,;

a2) w = A\yu, where u € Wz,left it A\, € Lyight, and u € Wiright if Ay € Liett-

In this situation P(n,w) = IntP U \,,.

— B,B2,B5 are satisfied. Equivalently: P = P, ; w € Wi et if A\n € Lyignt, and w € W right if
An € Liegr. Then P(n,w) = Int P, U \,,.
— C1 is satisfied. Equivalently:

bl) P = Pnfl;
b2) w € Wileft if A\, € Lyignt, and w € Wf{’right if Ay, € Liett-

In this situation, we have P(n,w) = A,.

6.2.11 Description of G,

In particular, we see that the sheaf G,, = F"®K 23 "=1K is supported on the union Int P,_1N\,NInt P,.
Let P, := IntP, U \,. We will now describe the restriction of G,, onto P..

Suppose that A\, € Lier;. We then have

Golpxc = @ SuxAf @SywxAfHe @ SwrAR"

WEWR oht wEWR 1 og
(0%
For w € Wn’right, we denote
P, ._ K— K+,
Bw* = Sw * APL S S)\nw * APL )
«
for w € Wn’left, we set

/
Al = Sy x AR
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so that we can rewrite

6= P Bre P AL

e’ «a
wewn,right wewn,left

In the case A\, € L;ight, change all signs and all orientations: we have

G- @ Ble @ 4~

e fer
wewn,left wewn,right

where for w € W efe» We denote
P! K K-
B, = Sy * APZF & Sy, w * AP; ;

(0%
for w € eright, we set

/ —
A= Sy % AR

(2) Let P/ _ be the union of the interior of P,_; and \,.

We then have in the case A\, € Liefi:

P P
Gulpy_xe= D BSe DoAST

e e
wewn,right wewn,left

(e}
where for w € Wn,right we set

P, K— K
Byt =S, % A)\n D Sh,w * AP,tl;

o
for w € Wn,left we set

Py K+
At = Sy ¢ AT

If Ay € Lyignt, then one has to change all the directions and all the signs:

P/ Pl
gn‘Pé_lx(C = @ Bwnil ©® @ Awn717

o a
wewn,lcft wewn,right

(e}
where for w € anleft we set

Py K K—
Bwn = Sw * A>\n+ D S)\nw * AP/—l;

(e}
for w € eright we set

P -
Ayl = Sy x AL
n
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Analyzing the gluing maps, we see that

P! P
Ay Ianxe = A" x, xC

as sub-sheaves of G|, xc and similarly for B,,. Therefore, we have well defined sub-sheaves A,,, By,

of G,: Ay is defined by the conditions:
Aw|pixe = AL

P
Aw|Pr’hl><(C = A",
and similarly for B,,.

Let us stress that By|mtp, ,ux,umtp, 1S not isomorphic to the direct sum of Sy, * Aﬁjp B

K_
and Sy, * AIntPn,luAnuIntP*

We have in the case A\, € Liesi:

Gn = @ By, @ @ Aw§

o a
wewn,right wewn,lcft

if A, € Liet, then we have:

gn - @ Bw S¥ @ Aw-

wWEWS weEWS

n,left n,right

6.2.12 Reduction of the orthogonality property

1 U UInt Py

(158)

(159)

As was explained in Sec 6.2.9, the map map igx factors as Zg,—y; sexy[—2] — FloK — oK,

It therefore suffices to prove that A,,, By, belong to LC* where ¥ = IntP,_1 U\, UInt P, and that and
Cone(Zy,—x,,ser}[—2] — F1oK) ¢ L¢X. As was explained in Sec 6.2.8, the sheaf F'®X is supported

on ¥ :=IntPy N A N f P,, so that it suffices to show that
COHG(Z{ZZXO’S€K}[—2] — Fl(I)K)’z/X(C S J‘CE/

We do it in the rest of the section.

6.2.13 Conventions

Suppose that the ray ), is directed to the right so that A, = ¢(\,) + Rxq.'®; the case of the opposite

direction is similar.
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a part of =

Figure 7

Assume the situation is as on figure 7, namely, we assume that P,_1 is above A\, and P, is below \,.

The argument for the opposite situation is similar.

Define
¢(n) e +ye @ ¥ : x,y € Rand 2 > 0};

U:=A{
Vi={¢M\) +ze® +ye ™ e X : 2,y cRand z <0}

6.2.14 Orthogonality of A,

(67

Because of the assumptions above, we have w € Wright and

Kf
Ay, = Sy * AP; ,
where

Aﬁi— = L{(z,5):2€Pls—2€K}-

We have a short exact sequence:

0 — Sw* Al p — Aw — Suw* Al p — 0, (160)

where AIU(i i= Z(s,2)|2cU;s+2ck} and similarly for A‘[/(rjth*"

(Note that in the case A, € Lier we need to consider a sequence analogous to (160) with AK~ instead
of AK+)

The problem is thus reduced to proving that

Sw* Ajnp, SwxAfop € € (161)
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Now let us use the following consideration: if j : U x C — ¥ x C is an open inclusion and if F € +CY,
then jiF' € +C* bacause RHom(jiF; G) = RHom(F; G|yxc). In application to the situation at hand,

this allows us to reduce (161) to proving
S Ayl € -7 (162)

and

Sy * Ay |p, € +CP (163)
which we are going to do using Proposition 5.1.
PROOF OF (162). Denote F':= Sy x Ay p/[u. We have F' = Zg, where S = {(z,5) : 2 € UNP,s -z €
¢(w) + K}.
Next, U = {é(\,) + 2’ + ye~"|x > 0;y € I}, where [ is a generalized open interval containing 0, so
that U is a generalized strip and we can apply Proposition 5.1.
We have U N P = {¢(\,) + 2" + ye ™|z > 0;y > 0;y € I}.
Let us now check that F' satisfies all the assumptions of Prop. 5.1, which will show that F € +¢CY.
Namely, we need to show: a) the map Z,_ * F' — Zyoy * F' = F, induced by the embedding 0 € r,, is
an isomorphism,
b) RP F = 0;
¢c) RP_,F =0.
Proof of a) is easy: the word w contains at least one letter, hence S, is a convolution of > 1 sheaves of

the type Ziscayky, @ € C. But the map 3 : Zy, * Ziscat-k} = 7 * LiscatK}, induced by the inclusion

0 € r,, is an isomorphism.

Proof of b) It suffices to check that (RPyF); = 0 for every point t € C. We have (R*P,F), =
Hg(P;ltﬂS; Z). Denote W, := P;ltﬂS. The space W; consists of all points (z, s), where z € UN P,;
s+z¢€ K; s—z =1t Since s = z +t, we can exclude s: the space W, gets identified with a
closed subset W/ C U consisting of all points z € U N P, such that 2z +t € é(w) + K. Let us write
e(w) —t —2¢(\,) = 2(z0e™ +yoe ™). We then see that W/ consists of all points é(\,,) + xe’® 4+ ye =,
where z > 0;y > 0;y € I;x > zo;y > yo. It is now easy to see that for all zg,y9, we have
H:(W,Z) = 0.

Proof of ¢) Similar to above, we need to show that H?(Vi;Z) = 0, where V; = P~'t N S, for all
teC. Ift ¢ ¢(w)+ K, V; = 0. Otherwise, V; gets identified with U N P, i.e. the set of all points
(z,y) :x > 0;y > 0;y € I. The statement now follows.
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Figure 8: Proof of (162), part b).

PROOF OF (163). Set Gy := Sy * Ay, p. We have
VNP = {¢(\n) + xe™ +ye |z < 0;y € T;y > 0}.

In particular, V' N P, C IntP,. Similar to above, it suffices to show that G := G1|mtp, xc € Cnt P
Since Int P, is a generalized strip, we can apply Proposition 5.1. Let us check the assumptions of this

Proposition.

~

We have G = Zp, where T' C IntP, x C consists of all points (2, s), where z = (\,,) + ze!® + ye™'%;
r<0;y<0;yel;s—zecé(w)+ K.
a) We see that the natural map Z,, * G — Zy * G = G is clearly an isomorphism.

b)RP;1G|; = 0 for all t. This is equivalent to Hs(W/,Z) = 0, where W} = P;'¢NT. Similar to above,
the set W/ gets identified with the set of all (z,y), where < 0; y < 0; y € I; x > x0;y > yo for some

numbers xg, Yo, the statement follows.

¢) We need to chech that H?(V/,Z) = 0, where V; = P~'NT. We sece that V/ = () for all t ¢ &(w)+ K.
Otherwise, V/ gets identified with 7.

6.2.15 Orthogonality of B,

Let U,V be the same subsets of ¥ as above. We see that ¥\U =V = V; U Vs, where V; C IntP;,
Vo C IntPp—.
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For any locally closed subset C' C ¥ we set B¢ := By ® Zoxc, € D(X x Cg). We then have a
distinguished triangle

2 By, ® By, — By — By 5.

Similarly to section 6.2.14, it suffices to prove that

By, == Byluxc € tCY; (164)
1 »Int Py
BV1|13*X(C e totnths (165)
1 pIntP, 1
BV2|]ODHX(C etc , (166)

It is clear that U, Vj,and V5 are generalized strips so that we can apply Prop. 5.1.

Proof of (164) Let Py := U N P,—1; P2 := U N P, so that P;,Py C U are closed subsets and
PiNPy =),

As above, we have

U ={e(\n) +ze"™ +ye |z > 0;y € I},

where I C R is a generalized open interval containing 0. The subset P; is given by y > 0, and Ps by
y < 0.

We have identifications
By = Bylp,xc = Suwx AL T @ Sy0 x AR

By = By|p,xc = Suw * Ap," ® Sy, * Ap, .

Whence induced identifications

Bila,xc = Suw * AY T @ Sy % AL (167)
Baauxc = Sw # AL T @ Sy x AL (168)

The gluing map
Bilx, xc — Ba|x,xc

Pnflp*

oK and equals

is induced by I'
I'=Id+n € End(Sy « AL @ S0 * AL ),
where the only non-zero component of n is
NSy x AR Sy xSy, x AL T = S WAL

is defined by means of the map l/ﬁ from (46).
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Let i : P — U, kK = 1,2 and i : A\, — U be closed embeddings. Denote by ¢; : i1/B; —
i01( Sy * Afn T D Syw* Aﬁ(n ~) the natural isomorphism coming from the identification (167). Similarly,
we have a map tg : 191 B1 — ig1(Sy *Afj ® Sy, w *Aﬁi;), coming from (168). We can rewrite the above

consideration in terms of the following short exact sequence of sheaves of abelian groups

0 — By — inBy @ in By — ioi(Sw * AL T @ Sy, AL ) — 0. (169)

Where the left arrow is induced by the direct sum of the obvious restriction maps and the right arrow

is —I't; @ 1. Let us denote the components of this map
—Id : ig1Sy * Af\{j — 1Sy * Afj;
—v i Sy * Af\{j — 101\, w * Ai{n*;
—7r1 S, w * A{fl_ — Go1Sx,w * Af\(n_;
r; 1915y * A{.f: — 1015y * Af\(n*';

- . K . K
Ty - 22!S)mw * Ap2 - ZO!S)\”w * A>\n

Consider the complex B” composed of the 2 last terms of the sequence (169), which is quasi-isomorphic

to By;. This complex has a filtration by the following subcomplexes:

F1B" is as follows:

1015y * Afn_'_ = 101\, w * Afn_ — 0;
F2B" is as follows:

i1 Sy * Af\? @ i1 Sy * A§j — g1 (Sw * Af\(j @ Sx,w * Af\i;) — 0

We finally set F3B"” = B". The associated graded quotients are as follows: F?/F! equals Conerj [—1],

. . .. . K+
which is quasi-isomorphic to Sy, * AInth'

F3/F? equals

111N, w * A{fl‘ D 1215\, w * Agz_
We will need a one more exact sequence. We have subsheaves (direct summands)
K- K—
S)\nw*Apl C By; S)\nw*AP2 C Bs.

Since the map I' induces identity on S}, *Af\(n ~, the two subsheaves glue into a subsheaf Sy ,, *AIU( T C

By;. It is clear that we have a short exact sequence:
0— S)mw % Agi — B{] — G915y, * Ag;r — 0. (170)
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Let us now check the conditions of Prop 5.1. The isomorphicity of the map Z,, * Bj, — By, can be
checked directly.

Let us now show that RP B}, = 0. Because of the exact sequence (170), it suffices to prove that
RP,\Sy, * Aﬁ T =0and RP{ Sy, * AIU( ~ = 0. This can be checked pointwise in a way similar to the

previous subsection.

Let us now check that RP_ By, = 0. It suffices to show that RP_,, when applied to all associated
graded quotients of the filtration F' on B”, produces zero. The latter can be done pointwise in a way

similar to the previous sections.

Proof of (165), (166) is very similar to the previous subsection.

6.2.16 Orthogonality of Cone(Z,_x, sci|—2] — F1®X)

The aim of this subsection is to prove that

Cone(Z,—x, sci[-2] — F'®K) e Lc*'. (171)

We will freely use the notation and the results from Sec 6.2.8,6.2.9. As was mentioned above,
Cone(Z,=xysex[—2] — F1®X) is supported on ¥ x C, where ¥ = IntPy U A; U IntP,. The re-
striction Cone(Z,—x, sei[~2] — F1®)|sxc is isomorphic to the Cone of the composition arrow in
(155). Denote the cone of the left arrow in (155) by I'y and the cone of the right arrow by A. Observe
that T'y = joI', where I' = Cone(cp, @ tg); I' € D(IntPy x C). The problem now reduces to showing
that I' € +C™ and A € +C*.

Denote Ay, := Cokeriy; Br := Cokeripg. Observe that Ay, is of the form A,, with w = L, and Bpg is of
the form B,, with w = R, where A,,, B, are as defined in Sec 6.2.11. It is also clear that A = A & Bpg.
As follows from the previous two subsections, Ay, Bp € +C*

show that T' € LCntro,

, hence, same is true for A. Let us now

By Prop.5.1, it suffices to check statements a),b),c) below:
a) ['*Z {sceioRo} — I is an isomorphism: it suffices to check that a similar map applied to each of
Zxox i [—2], SL * A{fl;rpo, and Sp * A{fm_ p, 1s an isomorphism, which is straightforward.

bj RP. ' =0. It is enough to check RP1G, = 0, k = 1,2, where

G1 = Sp* AI%O - Z{(Z,s):zelgovs—ze_X0+K}’

Ga = Cone(Zxyxx[—2] — SL * AT and where
Po

SL * A—E = Z o .
Po {(z,s):2€Pg, s+z€xo+K}

96



_t+z,
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Figure 9: Proof of (171), Step b-i)

b-i) RP;G1 = 0. Indeed, by the base change, let us pass to the fiber of Py over ¢t € C and calculate
RT(Zw,) where W7 = {(2,s) € C: z € f’o, s—z € —x9+ K z+ s = t}. Eliminating s makes
Wy={2€C:z¢ ]go, z € H’% — K}. For different values of ¢ this set is sketched on fig. 9.

Thus, W is either empty or homeomorphic to a closed half-plane, so the result follows.

b-ii) RP1G2 = 0. Indeed, by the base change, let us pass to the fiber of P, over t € C and calculate

RU(Zw,)[—2] — RUe(Zw,), where W3 = {(2,5) € C: 2 =x¢, s € K z+s =1}, Wo = {(2,5) € C:

z € Py, s+ 2z € X9+ K z+ s =t}. Eliminating s makes

ift—xoe K: Wj={xo} Wgz{ZG(C:zElgo}
otherwise: Wi =10 Wy =10

and the map RI'¢(Zy;)[—2] — RIc(Zw,) is the obvious quasi-isomorphism.
¢) RP_,I' = 0. This can be shown similarly to RPI" = 0.

7 Identification of &% and UX

We are going to construct an identification as in (54). Namely, we will construct a map
Ty : UK — oF
such that
io = lyoiy, (172)
where ig : F&¥ — ®K is the map (52) and iy : Fi* — UK is the map (59).

The goal of this section is to give an explicit desciption of Iye. This can be done as follows. Let P

be a closed a-strip. Let II be a closed (—a)-strip such that P N1II # (). We then have identifications
AT xS DA xS = (@¥ = oK
torlmnp)xc AT * S+ @ AT * S_|apyxc = (27 [pxc)|ainp)xc = @7 [(mnpyxc
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vontlmnpyxe t AT * S1 @ AT % S_|mapyxc = (Y xe) mnpyxe = ¥ |mnp)xc

meaning that the restriction I\I@\(Hm p)xc can be rendered as an automorphism Jrp of

AT« S, @ AR« S_|mnp)xc in the abelian category of sheaves on (Il N P) x C, so that we have:
Iya|mnpyxc = torlmnp)xcJurtgnlmnp)xc- (173)

We are now motivated for the next subsection.

7.1 Endomorphisms of A®* xS, & AR~ « S_| pamxc

We will do the study in a slightly more general context. Let Y be a locally closed connected subset of
C. For a c € C, set
AF = {(z,s))strxcc+K}CY xC.

Let W¥ be sets; set W := WTUW ™. Let ¢y : W — C be a function. Let w € W,. Set A, := A:(w).

For w € W_ we set Ay, := A;(w). Define the following sheaves on Y x C:

Sw = @ ZAw

weWw

Let ¢; : W; — C;, W; = WiJr Uw., ¢ = 1,2; c, : W; — C; and let us study a group
HomyX@(Swl;SWQ).
We have

Homy wc(Swy; Swy) = [[ Homyxc(Za,,; Sw,) (174)
w1 €W,

Let us focus on Homy xc(Za,,,; Sw,). We have an embedding Sw, — [] L4, which induces

wa €W
an embedding

v Homy xc(Za,, ; Sw,) — Homy xc(Za,,; H Za,,)
waEWo

= [I Homyxc(Za,,;Za,,). (175)
wo EWo
Let us now compute
HomYX(C(ZA 'ZAwQ) = HO(Aw2§ sz\Awl)'

wy )
We have a homeomorphism A,,, = Y x K so that A, is connected and H"(A.,; Ay, \ Ay, ) is zero unless

Ay, \ Ay, is empty, in which case it equals Z. In other words, we have an isomorphism €y, : Z —

Homy xc(Za,,;ZA,,) if Aw, C Ay, ; otherwise, Homy xc(Za,,,; ZA,,) = 0. Set ewyw, = Ewyw, (1)

w1y ? w1y
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Every element

Ve H HomeC(ZAw1§ZAw2)
w2 €W

E le w2 ewlwg )
w2

where the sum is taken over all wy such that A,, C Ay, and vy, are arbitrary integers.

can be uniquely written as

Claim 7.1 The element v lies in the image of (175) iff for every compact subset L C Ay, :

there are only finitely many we such that vy, =0 and Ay, N L # 0. (176)

PROOF We will use the following notation. For every w € Wj or w € Wy, let us denote by 1, €
I'(Y x C;Za,,) the canonical section, such that for every y € Y x C, the stalk (1,), generates the

group (Za,, )y, which is equal to Z if y € A,, and to zero otherwise.
We have
v(Luy) = > Nupunluy €TV xC; [] Za,,)

wo EWo woEW
Let us now suppose that v lies in the image of (175). This implies that the restriction v(1,,)|r €

L, @ Z Awg)' Since L is compact, we have an isomorphism
wo €EWo

P 1(Li24,,) = T(L; @ Za,,)
waEW2 waEWo

Given a section o € I'(L; @ Za,,), denote by oy, € I'(L;Z4,,) the corresponding component of
w2 €W
o. We have: oy, = 0 for almost all wy € Wa. We have v(1y, )w, = Nuwgw,; Lws|n- The element on the

RHS does not vanish iff 14,,, # 0 and L N Ay, # 0, which implies the statement.

Let us now assume that there only are finitely many wy € W such that ny.,.,, # 0 and LN Ay, # 0.
It suffices to show that
v(lw,) €TY xC; @ Za,,) CTY xC; ] Zay,)
wa€Wa w2 EWs
Let us choose an open covering of Y x C by precompact sets U, (i.e. the closure of each U, in Y x C must

be compact). It suffices to show that v(1y,) € I'(Us; @ Za,,) for each U,. Let L, be the closure

wo€Wo
of Uy; it then suffices to show that v(1y,) € ['(La; @ Za,,), In fact, v(1y,) € T(Le; [ Za,,),
wo EWo UJQEWQ/

where W consists of all wy satisfying ny,w, # 0, Aw, N L # 0, which is finite, whence the statement.
0.

As follows from the proof of the Claim, v belongs to the image of (175) iff the condition (176) is

satisfied for a family of compact sets L, whose interiors cover X x C.
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Proposition 7.2 Elements from Homxxc(Swy; Sw,) are in 1-to-1 correspondence with the sums

g Nwiwe Cwiws s

w1 €W , W2 €Wy ’AwQ CAwl
satisfying:

there exists a family of compact subsets L, C X x C such that the sets IntL, cover X x C, and: given
awy € Wq and any L, there are only finitely many we € Wy such that ny,w, # 0 and Ly N Ay, # 0.

7.1.1 Filtration on Homy xc(Swy; Sw,)

Let e € K. Let T, : Y x C — Y X C be the shift (z,s) — (z,s +¢). We have T.(A.) C A, for every
€ € K, whence an induced map

Te 1 ZA, = Tala, = Lr.(a,)-
These maps give rise to a map
Te & SW1 — ggSWl.
It is easy to see that T,1Sw, = SW{’ where W| = Wj and Cy; = Cw; + €, S0 that Proposition 7.2
applies to Tz Sw;, -

We say that f € FEHomxxc(Sw,;Sw,) if f factors as f = g7. for some g : T.Sw, — Sw,. Using

Proposition 7.2, one can check that such a g is unique, if exists.
We write f = f/ mod F© if f — f' € FEHom(Sw,, Sw,)-
We also write f = f/ if f = f' mod F* for some ¢ € IntK.

Let us prove that the filtration F' is complete in the following sense. Let f, € Hom(Sw,;Sw,) be a

sequence of homomorphisms. Let us call f, a Cauchy sequence if:

Ve e K AN(e) :Yn,m > N(¢) : fn = fmn mod F*.

We say that f,, converges to f if

Vee K AN(e) :Yn> N(e): f= f, mod F*.
Claim 7.3 FEvery Cauchy sequence f, converges to a unique limit f.

Let us first construct f. Decompose fr, = >, o ew (fr)wiws €wiw,- Let y € X xC and let n,m > N(e).
Since f, — fm passes through 7., we deduce that (fn)w,wy — (fm)wjw, # 0 only if Ay, C T A,,. For
every wi, wy there exists €,,4, such that this condition is violated, meaning that for n,m > N(ey,w,),

(fn)wlwz = (fm)w1w2 = fw1w2~
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The data fi,w, define a homomorphism f by virtue of Proposition 7.2. If f’ is another limit, it follows
that f — f/ = F*© for all ¢ which implies fu,w, = fiy 4, f0Or all wy,ws, that is f = f'. O

wiw2

k e Fe for some

In particular, let v € End(Aw), v = Id + n and assume that for some k& > 0, n
e € IntK ,then 7 is invertible, and we can set y~! = I'd — n +n? — n3 + ... (the sequence of partial

sums of this series is Cauchy).

We conclude with several Lemmas for the future use.

7.1.2 Lemma on composition

As above, let P be an a-strip and let II be a —a-strip. Let Y = II N P and supose Y is a bounded
subset of C, so that the closure of Y is a parallelogram; let us denote its vertices ABC D so that AC is
one of the two diagonals and AC € K. Tt then follows that the closure of PNII equals A+ KNC - K.
Denote ¢ := AC.

Lemma 7.4 Let W, = W, =0. And let f : Sw, — Sw, and g : Sw, — Sw,. Then gf =0 mod F*
and fg =0 mod F?.

PRrROOF.
Let fu,ws€wiwsys Jwow, Ewsw, PE components of f,g.

Let us consider the compositions fu,w,€w,wsGuwlw, Ewyw, In order for this composition to be non-zero,

there should be

w1
Aw, C A, C Ay
Or, for every z € PN1II and s € C we should have the following implications:
s—zecy,(w)+ K=s+z€ccw (w)+K=s5—2¢€cpy,(wy) + K.
Set ¢ := s — z — cy,. The first implication then reads as:
€K =¢+2z+cy,(wa) —cpy (w1) € K

or, equivalently, 24 + ¢y, (w2) — cw, (w1) € K. Similarly, the second implication can be rewritten as
—2C + cw, (w1) — cw, (wh) € K. Adding the two conditions yields —2¢ + cw, (w2) — cw, (wh) € K;
cw, — cw, (wh) € 2¢ + K. This implies that

fw1wgew1w2.gw’2wlew’2w1 : ZAM/2 - ZAw2
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passes through 1o, : Z4 , — 1574 ,, which implies the statement for fg. Proof for gf is similar. O.
w2 wa

Let us keep the assumption Wy = Wl+ , Wo = W, and consider now the case when X = IIN P is not

bounded. Then at least one of the following is true:
i) there is no A € C such that X C A + K;
ii) there is no C' € C such that X ¢ C — K.

Lemma 7.5 Let us keep the same notation as in the previous Lemma. In the case i) we have
Hom(Sw,; Sw,) = 0. In the case ii) we have Hom(Sw,; Sw,) = 0.

PROOF. In Case i), given w; € Wp and wy € W, it is impossible that A,,, C Ay, , And similarly for
the Case ii). O

7.1.3 Lemma on extension

We keep the same assumptions on Wy, W, namely,

Wy =W, We=W,.
Let Y be a locally closed non-empty connected subset of C. Let Y + K (resp. Y — K) be the
arithmetic sum (resp. difference) of ¥ and K. Let Yi, Y_ be connected locally closed subsets

satisfying Y CY, CY+K; Y CY_ CY — K. Let Z be an arbitrary connected locally closed subset

C containing Y.
Lemma 7.6 1) The restriction maps
Homy, (SWIJF? SW;) — Homy(SWf;SW;);
Homy._ (Sy—; Syy+) — Homy (Sy,—: Sy
are isomorphisms;

2) the restriction maps
Homz(SWfr;SW;) — Homy(SW;r; SW;);
HomZ(SW{; SW;) — Homy(S’W;;SWf)

are isomorphisms.

PRrOOF. 1) Follows from Proposition 7.2: the inclusion A,,, C A,,, w; € W; occurs on Yy x C iff it

occurs on Y x C, and similar for the inclusion A,,, C A,, on Y_ x C.
2) Follows from Proposition 7.2 in a similar way.

a
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7.1.4 Decomposition Lemma

Let now Y := £ := c + (0,00).'® be a ray which goes to the right. Let a € C. We have natural maps

+ . Sy . : : : :
Al ZA;f — ZA:26+Q, AL ZA(; — ZA2+C+G, coming from the inclusions of the corresponding sets.

Lemma 7.7 Let f : ZA:{ — Swy, g ZA; — Sw, be a map of sheaves. Then f and g can be uniquely
factored as f = f'A\}; g=g'\,.

PROOF. Let w € Wa. A simple analysis shows that Al C A, is equivalent to A”,, ra O Aw.

Proposition 7.2 now implies the factorization of f. The factorization of g can be proven similarly. O

7.2 Restriction ®X|y

As above, let II be a closed (—a)-strip.

The goal of this subsection is to construct an isomorphism

o (ABT %S, @ AR~ % S ) |nxe = 8 |nxc. (177)

Denote by

+ K+ K
Cbn tA * S:t’HX(C — @ |H><(C

the components.

7.2.1 Notation

Let us number all a-strips that intersect I as Py, Ps, ..., P, (there are only finitely many such stripes,
Sec 2.3.2) as shown on the picture 10 so that we number the strips from the left to the right. The

strips P} and P,, are necessarily half planes.

7.2.2 Prescription of qﬁﬁl(nmpl)x(c

We have an identification
" nnp, = (@8 [p)|mnpyxc = (A % Sy & AR % S )| (mnp,xc-
This identification gives rise to a map (embedding onto a direct summand):
ART %Sy — CI)K’(HOPl)X(C-
We assign ¢E‘(HQP1)X(C to be this map.

Remark The reason why we do not define gbﬁ\(nm P xC) In a similar way, is that there is no way to

extend it to the whole II.
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Figure 10

7.2.3 Extension to II

For a subset A C C,set A:=(IINA)xCcCIIxC.

Let us define QSJHF by constructing maps
i AT Sy — @,
which agree on the intersections:

P s
Jk+1|PmPk+1 =Jk |Pkak+1-

We have identifications
Lg : AEF « S, & AE~ « S_|& — ((I)K‘pkxc)’& = (I)|&

coming from the gluing construction of ®g.
We have
Py Pyt
| PPy = k1P © Dgre s

PePii1 .
where Ty “*' is as in (43).

We can now prescribe j,j in the following form: j]j =0 z,j where
i AR S p = (AT xSy @ AR xS p,

The agreement conditions (178) now read as:

-4 _ PkPk+1 -4
BestlPopes = Pore i lPinps

(178)

(179)

(180)

The assignment from the previous subsection means that zf is the identity embedding onto the direct

summand. Let us construct the remaining maps 75 inductively. Suppose 7; has been already defined.
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According to Claim (7.6), the map Fg’}(Pk“iﬂpkmpkH extends uniquely to Py,1 by Claim 7.6
(this is where the choice of + sign is crucial). We assign z',";_l to be this map. It is clear that thus

defined map i;_l satisfies (180) so that the maps jlj-i-l give rise to a well defined map qSJHr, as we wanted.

Let us denote by i} " : AK+*S+|& — AK+*S+|&; i AK+*S+|& — AK_*S,|&; the components

of the map zﬁ

7.3 Estimate

Denote by ¢ the diagonal vector of the parallellogram Py N1II such that e € IntK (there is a unique
such a diagonal vector). Let ey € Int K be a vector such that e € € + K for all k.

The following Claim can be now proved by a direct computation.

Claim 7.8 1) if‘ =1 mod FU for allk=1,...,n.
2) Let Ry C {1,2,...,n—1} consist of all k s.th. PN Pry1 goes to the right. We then have a transform

FPkPk+1 . AKH

K—
+— *Splpnpy, = AT *So|pnpys

where Ffﬁpk“ is the corresponding component of Fg’}(Pk“., which extends uniquely to Piyq U ..U P,.

F_Iik_Pk“ is the same as NJX, where £ = P, N Py from (47).

We then have:

im=— 3 e mod Fem. (181)
k'eRm; k' <k

7.3.1 Construction of ¢

The map ¢p; is constructed in a fairly similar way (the major difference is that we need to start the

construction from P, and then continue to the left until we reach P;.

Similar to above, we define ¢p; in terms of the restrictions to Pj:
Pulp =t oG,
where ¢, is the same as above, see (179), and
i AK- *S_|p, — AR %S, @ AK— % S_|p,-

We have the following analogue of Claim 7.8.
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Claim 7.9 Let eyy € Int K be as in Claim 7.8. We have 1) i, =1 mod F* for all k= 1,...,n.
2) Let L1 C {1,2,...,n — 1} consist of all k s.th. P, N Py_1 goes to the left. We then have transform

Py_1 Py K— K
F,+ : A *S—|Pkﬁpk_1 - A + * 8+‘Pkak—1

which extends uniquely to P,_1 U ...U P;. We then have:
PPy
i =— Z "% mod Fe1.
K €Ry; k'>k

7.3.2 The map ¢r1 is an isomorphism

Now that we have constructed the maps ¢r| P from (177), let us prove that they are isomorphisms.

We can write
¢H|izbk0inpk, (182)
where i1 p, is an endomorpism of A+ %S AE—%S_| P, Whose components zfi have been constructed

above. We will abbreviate irip, = i,. The problem reduces to showing invertibility of iy.

Let us use the matrix notation

A+ —+ K+
iy iy ABT xSy
I = € End @
4+ U K—
i i A *S_ P,

We have

4+ —+

iy iy _ I (183)
G o)\ o1 )]

k k k

as follows from Claims 7.8 and 7.9.

2
0 a7\ [ igToi” 0 _,
i~ 0 0 ot )

Lemma 7.4 implies that

Z'++ ,L'*Jr
It now follows that X := .i_ k) is invertible (Sec 7.1.1).
i i

We can multiply (183) by X! so as to get:
Xt =1d,

which implies that i, X ~! and, thereby, s, is invertible. Furthermore, we get:
1 =it
—1 k
o = ( . 1 ) (184)
U
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branch cut

Figure 11

7.4 The maps ¢r,, ¢, for a pair neighboring strips II; and II,

Consider now the neighboring strips II; and IIs and let £ = ITy N1l,. Let us find the relation between
@ﬁlu and @ﬁQ\g. Suppose £ goes to the right, fig. 11.

We have a canonical isomorphism
Hiy, + (@lmyxc)le = (Pl xc)le:
Using the isomorphisms ¢rq, , ¢, as in (177), we get an isomorphism

1 —1
Ay, = ¢y, lexc 0 Hiy, © émmy lexc

ARF 5 S AR % S_|ie = AB 5 S @ AR % S_|ic. (185)
Let Pp, P, ..., P, be all a-strips which intersect ¢, fig.11. We then have commutative diagrams

Ay,

AK'*‘*SJFEBAK_*S,‘mPk AK+>|<S+EBAK_4<,5',|mplc

AEF % S, @ AR« S—‘mPk

which implies that

Amm,linp, = (implenp,) " 0 im Py, -

These formulas determine A, y,. Let us compute:

iy P, © AL 11, lenp, = 1, P inp,

._+ ._+
L ip,p, i _ L igp,
4 o 111112 ‘[ﬂPk = 4 .
2P 1 i, Py 1
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Formula (183) yields
-1
_+ ._+
< 1 11, P, ) _ ( 1 —,p, >
e - o
"1, P, 1 Uy Py 1
N 1 —i " 1 igh
AH1H2|30P1€ = ( L I Py, ) % ( L 111 Py, ) =
I, P, 1 ', P, 1

— < 1 ‘mp, T ULp, )
- e L
‘P, T MLp, 1

o — — R -
because i,p, © i, p, =0 and in,p, © iy p, =0 by Lemma 7.4

Therefore,

(186)

LNPy,

Let us, cf. fig.11, number all the a-strips that meet II; or Ils:

11 11y 1T .
Pl PPN PPy, P
IIo 115 IIo
Pl P P PP, P,

Let us also set PlHl = P1H2 := P;. Lemma 7.8 yields,

/ /
11 11
- P, P, p1 pl.
Zlk___g Ill+1_E Irn«l»l”l7

1<k m<0

/ /
11 11
g PP, P,2pP. 2
ZH1P}g:_§:F s - E :Fm L
1<k m<0

where only those terms are included into the sums, for which the intersection ray of the corresponding

a-strips goes to the right. Hence,
! I1 I1 ! IT IT
i+— - = Pp?P 2 PntP,!
‘P, T Mapy = Z I e Z I A
m<0 m<0
Let ¢ := ITy NIy be of the form {é&(¢) + re™™ r > 0}.

It now follows that
PP

iﬁl_Pk - i;IFQ_Pk’mPk =-I> (187)

Thus:
i _ 1 *
H1H2|€ﬂPk = _Fponlpl 1

This means that the same is true for AH1H2’ ‘-
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Let us write x‘inlnz in the matrix form.

A++ A—+ K+ K+

Al Agh AKT 5 Sy ART %S,
141‘[11-[2 = : (&3] — (&)

it i~ AR AR

AH1H2 AH1H2 S- £ S- 4

Lemma 7.5 implies that AﬁjHQ = 0. Indeed, the corresponding map is defined on an unbounded set
IT; N1Iy; since the intersection ray goes to the right, we are under the conditions of the case i) of that

Lemma.

Let us summarize our findings.

Claim 7.10 Let 111,11y be neighboring strips and ¢ = 11} N1y goes to the right. Assume that 11 is
above Ily. Then

1) the map
AK+ * S+ AK+ * S+
A~H1H2 : [S5] — [
K- K-
AT xS ; A% S_ '

s of the form
-+
A _ ( AH1H2 0 ) .
I 11, — P ~ )
A, Amm,

~ ~ ~ 11y
2) AE?H{Z =1Id; Agq, = 1d ; AE;HZ = —Fljﬂ Pl; where Py is the leftmost a-strip that meets both

II; and Ily and Pgh 18 the rightmost a-strip that meets 111 but not Ils.

Similar result holds true in the case when the intersection ray II; N Ils goes to the left (proof is

omitted).

Claim 7.11 Let 111,115 be neighboring strips and £ = 11y N 1ly goes to the left. Assume that 11y is
below Ily. Then

1) the map
AK+ * S+ AI{Jr * 8+
Aﬂlﬂg : ® — b
A= xS A= %S
L 0
s of the form
Ao — ( A, A, ) .
I 11, — ~_ )
0 An,
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~ ~ ~ 251
2) AETHQ =1d; Alth_l'[z =1d; AﬁjHQ = —F]_DO+ P where Py is the rightmost «-strip that meets both Iy

nad Ily and POHl 18 the leftmost a-strip that meets I1; but not Il,.

7.4.1 Identifications

Let £ =111 N1y, £ € L™

In the notation of section 3.10.2, we can identify Sy = Sa-1(0); Bu : Sy = SA-1(w) for every w € w.
For a word w = £, --- 4L or w =¥y, --- (1 R, set |w| :=n (we set |L| = |R| = 0).

Let Cw = (—1)|w|Bw : gw — SA—l('w)'

Let us define identifications
B.,C.:5. — S (188)

where
Bilg, = Bw; Cilg, = Cu-

We can conclude from 2)s of Claims 7.10, 7.11 that
AH1H2 = Cilrgﬁ(rbca (189)

where Fg}(HQ is as in (57).

7.5 The isomorphism Igg : U5 — &K

Using the above developed results, we will construct a map Iye : U5 — ®X which satisfies (172)

(recall that such a map is unique). Equivalently, for each (—a)-strip II, let us specify maps
Iyom : VX ke — % |nxc
which agree on itersections: if II; N1Iy = £ # (), then we should have:
Iyo,1m, exc = Tva,m, |exc- (190)

Let us now reformulate condition (172).
Let Py be an « strip and ITy be a —a-strip such that xg € Py NIy ( these strips are unique).

Let

0 . K .
ig : Fo — @7 |(1mynPo)xC;

0 . K
iy : Fo — V7 (mmynpo)xC
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be the restrictions of ig, iy. Since FL is supported on (IIgNPg) x C, the condition (172) is equivalent

to:

I\P@|(H00P0)XCZ’% = /L% (19]‘)

We have identifications

i AR 4« §+ o AR« g—|H><(C — \IIK’HX(C

o : AR & Sy @ AR« S,‘ch — (I)K|H><(c.

Here i is defined similarly to (179) but for Sy, UK and (—a)-strips instead of Si, ®* and a-strips;
and ¢ry is as in (177).

One can now equivalently look for Iys 11 in the form:

Iyon = énUniy’, (192)

where
Up : AKT % §+ a A« SL|HX(C — AKT & Sy ® AE « S_|mxc

is to be calculated.

Since II satisfies both i) and ii) in Lemma 7.5, we have
Homnx(c(AKi xSy AKT « 5’;) =0.

Thus, we must have:
Un(ABEE % 81) c AR x5, (193)

Using (185) and (56), we rewrite the gluing condition (190) as follows:

Ut lexe = AU, lexc gz - (194)

Let us now rewrite the condition (191) (from now on all our maps are restricted onto (IIo N Py) x C,

unless otherwise specified). Let
1/:.7-"(5—>AK+*SL®AK7*SR

be the map given by the left arrow in (51). Let v : FE — A+ % Sp: v~ FIX — AK= % 51 be the

components of v.

We have the following obvious embeddings:

I AST %S - AT S, AR % S_: Ip: AN %« Sp - AKT« S, o AF~ x5,
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fL:AK+*SL—>AK+*§+@AK_*S,; fR:AK_*SRHAK*'*S;@AK_*S,.
The formula (182) can now be rewritten as

P, = LPoITI Py -

We, therefore, can split

Z% = LPO(IL @ Ig)v = (ZSHOZ'E%)PO(IL @ IR)v. (195)

Next, we have

iy = in, (Ir ® Ir)v.
Combining (192) and (195), we have
Tyo 11,1y = ¢ﬁ})UH0 (I, ® Ig)v;
so that the condition (191) is equivalent to the condition
Un,(IL ® I)v = ig p,(IL ® Ig)v as maps Fg* — AN xS, @ AR %S |myxc - (196)

Denote

inep, (I ® Ir)v =: Io.
Let us make this condition (196) more specific.

Lemma 7.12 Let J : FI — (AK* xS, @ AKX~ % S_)[2] be an arbitrary map in D((Ilp N Py) x C).
There exist unique maps
T AET x5, - AKT xS,

T A xSp - AR xS

such that
JT=J " oJ

PROOF We have identifications:
g : RHom@(ZK;i;OI(AK+ « S, AT xS NS

= RHome(Zics s, (AT % Sp @ AR7 % S0)[2]) = RHom(FL (AR 54 @ AR~ % S0)[2)),

where iy, : C — (Il N Fy) x C is the inclusion s — (xp, s). Consider two more identification

at © RHom(ARTxSp; ARt xS, ) 5 RHom(ig) AN xS i IAR T «Sy) = RHom(Zc; gy AN %5, );

» 'xq X0
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a” : RHom(A® ™« Sp; AR~ % Sp) = RHom(iy A"~ % Spyig ) AR~ xS_) = RHom(Z; g, AN~ %S5_);
and let « = a* @ a~. Then we have a chain of identifications
RHom(AR* « Sp; AKF % 8) @ RHom(AK™ %« Sp; A~ % 5)

a RHom@(ZK;z’;ol(AKJr xS, @ AKT % 5))

O RHom/(FE: (AS* % S, @ AK— % S_)[2]).
Let
v : RHom(AR VT« Sp; AR T+ S )@ RHom(AR ™% Sp; AN~ %S_) — RHom(FL; AR T xS, @ AR~ %S5_)[2])
be given by the pre-composition with v. One can check that v3 = a so that v is an isomorphism.

The statement now follows. O.

Let Ioi denote the maps obtained from Iy by means of lemma 7.12. Observe that the maps Ioi
uniquely extend from (IIp N Py) x C onto ITy x C. Denote the resulting extensions by the symbol
I+ AR+« SL/R|1'I0><(C — AKTt 4 Sy @ AR« S—‘HoX(C‘

Rewrite the condition (196) in the form:
Un, (I, ® Ip)v = (I§ & I )v.
It now follows that the condition (196) (and thus also (172)) will be satisfied iff
Uniy [ aK+4s;, = It Urto lak—ss, = 17 (197)

Indeed, the implicaton (197) = (196) is obvious, and (196) = (197) follows from (193).

7.5.1 Estimate
Let us prove the following estimates:

Claim 7.13
I"=1;; I =Ig. (198)

Let us bring the current notation into correspondence with that in Lemmas 7.8,7.9. Set II := I1j. Let
us denote all the a-strips intersecting Il by Py, P, ..., P, in the order from the left to the right, in
the same way as in Lemmas 7.8, 7.9. Suppose that Py = P, so that i;j,p, = 7 in the notation of
Lemmas 7.8,7.9.
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Let us now write iﬁtPO = i,;l = Id + ag, where ag is an endomorhipsm of AKT SJF @A~ % S_. Let

a:= ao(Iy ® Igr)v. Our statement now reads as at = 0; a- = 0.

0 —ip"
—1, 0

a=—(if "I, @i, ). (199)

According to (184), we have

so that

Let us now examine the map iz*I v. We have

. K K—
i I AR xS lmynpoxe — AR T % S_|mynpoxc = @ L A(K w)»

«@
wGWright

where, as in (36), (37), A(K,w) :={(z,9)|s —z € K + ¢(w)} C (IIp NPy) x C.

As above, let Wl’dght C Wiy consists of all w such that A(K,w) C A(K, L), where
AK,L)={(z,8)[s+2z—x0€ K} C (IIpNPy) x C.

Let Ey : Zak,1) — Za(k,w) be the corresponding map of sheaves. We then have

iTTIL = Z N B,

!
wEWright

where for each (z,s) € A(K, L) there are only finitely many w such that n,, # 0 and (z,s) € A(K,w).

Let A be a unique vertex of the parallelogram ITy N Py such that ITo " Py € A + K. The condition
A(K,w) C A(K,L) is then equivalent to 24 — x¢ + ¢(w) € K, or ¢(w) +x9 = —2(A — x0) + €w
where £, € K. Observe that xg — A € IntK because xg € IntIly N Py. It now follows that for each

w e W;ighta the map EwV+ :Fo — ZA(K,w) factors as

_— P
Fo o A % Sp=Za(r,R) = Li(2,5)[s—2+x0+2(Ax0)EK} — Lf(2,5)|5— 5+ %0+ 2(A—x0)—cw €K} = LA(K w)>
where all the arrows except the leftmost one are induced by the closed embeddings of the corresponding

closed sets. It is easy to check that the sum »_ n,F, gives rise to a well-defined map

J: Z{(z,s)|s—z+x0+2(A—x0)eK} - @ A(Kv 'LU)

«
wEWright

Let 6 := 2(A — xq). We have bZ{(; ¢)|s—24xo+2(A—xo)ek = L5:+Za(k,R)- Let Ts : Zaix,r) — Ts+Za(k,R)
be the map induced by the closed embedding of the corresponding closed sets. We then have a
factorization

Z;rifLI/ = Jrsv,
which implies that (i} ~Irv)* = Jrs = 0. Similarly, one can check that (i; *Izgr)~ = 0, which, by
virtue of (199), that a=10. O
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7.6 Inductive construction of the maps Ur.

We will now construct the maps Uty satisfying (194) and (197). Taking into account (193), it is possible

to construct Uty in terms of its components

UY AR xS, — AET %S, forallw e W it

U AE= %S, - AK= %S | forallwe W;ght.

7.6.1 Rewriting the gluing condition

Let us rewrite the conditions (194).

Case 1: £ goes to the left and w € Wi, (set & = + on both sides of (200)) or £ goes to the right and

w € Wiy, (set == — on both sides of (200)) Let us rewrite (194):

UY lexe = Amn, UY, lexc : A% % Sylp — AKF 5 Sy |pxc. (200)

Every map as on the RHS extends uniquely to IIy (Lemma 7.6)

so that we can equivalently rewrite
I1; 11
Uf_{vg = (F\I/}{ QUﬁvl‘Z)eXta (201)

where ext means the extension onto Ils.

Case 2:

€ goes to the left and w € Wi, (set == —) or £ goes to the right and w € Wigg (set £ = +):
(202)

Ut lexc = Tk * (UR, lexe © (2, UL |exe N,
where N : Ay « Sy — A * Sy is as in (42).

Recall that flﬁfm = 0 by Claims 7.10, 7.11, so that we can rewrite the RHS as (using notation from
Sec 3.8.5)
A5, U Loce + (AT, Ul lee + AR, 0(T, T U e NE°).

So that we have (by separating + and — components):

U, lexe = AU, [oxc (203)
Al Ut lexe + Al 0T, T UL [exe NE) = 0. (204)
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As above, (203) can be equivalently rewritten in the same way as (201).

Let us rewrite (204):

¢ i it
Uty lexe Ny = =9I, Th) Af At i, Ut lexce-

Given a map K : AR* xS, |, — AKF % S|, one can uniquely factor it as
K=KN},
where K’ : AKF % Sj, [, — AKT % S|y (Sec 7.1.3) which extends uniquely to a map

/ K K
Kext : ART % Slw|H2 — AN *S:F’H2

by Lemma 7.6. In view of this remark, we finally write

Ut = (— 0002, 1) AFS AETR U ) (205)

ext

Let us summarize. Gluing conditions (194) can be equivalently formulated as follows:

For every pair of neighboring strips II;, IIy, £ = IT; NIy, we have (201). In the case (202) we also have
(205).

Condition (201) implies that
Utt, le = UL, le- (206)

7.6.2 Constructing Uy
Let us proceed by the induction in the length of w. In the case Il =1l and w = L or w = R, Uy is
determined by (197).

Given an arbitrary strip 11, there is a unique sequence
o, Iy, ..., 11, =11 (207)

where all 1I; are different and II; N 11;11 # (0 (because the graph formed by the strips is a tree).
Formulas (201) (applied for all pairs II;, IT; 1) determine Ul%, Ulff for all II.

Suppose that Ujf for all words w of length < N. Let w = fw’ be a word of length N + 1 (so that the
length of w' is N). Let ¢ = II; N Tl. The formulas (205) determine Uy . Given an arbitrary strip IT

we can join it with II; by a path and define UJ{ using (201) in the same way as above.

116



7.6.3 Estimate

We are going to prove the following estimate. Let I be a strip. Consider a map C = C, U C_, cf.
(188). We will prove

Claim 7.14
U = CI,, = (-1)"I1,.

PROOF. Let us use induction in |w|. If w = L or w = R and II is arbitrary, the estimate follows
from (206). Suppose that the estimate is the case for all w with |w| < N. Let now |w'| = N + 1 and
w' =lw, lw| = N. Let £ =1I; N 1,.

Combining 205 and the inductive assumption, we have:

C Uty = <—19(H2,Hl)C’lflﬁ;FHlflﬁTHQCIwV)eXt (—ﬁ(ng,HI)C*UIHIHQCIQUV)Q

xt

Claims 7.10,7.11 1~ o~
= (—ﬁ(ng,nl)c 1AﬁTHZCIw|g> (—ﬁ(ng,nl)c 1AH1HQCIw\g>

ext ext

(189) -
= (719(H27H1)FH1H2|6)6X13

= (Nl}v)‘ext — Iéwa

and (206) allows us to extend this equality to other strips. O

7.6.4 Proof of Proposition (3.6)

Let us first find an expression for the maps Jip as in (173). We have

(192) - (182) , _
Iyonlnnpxe = énlunpxcUnlnnpxciy mnpxc = top|nnpxcinpUn|nnpxciyylinpxc.  (208)

Comparison with (173) yields:

Jup = inpUn|unpe-
We then have (for every w € W)
Jnply = inpLy(—1),
by Claim 7.14.

Let us write

inIw : ZA(K,w) — @ ZA(KﬂU’)
w'eWe
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as

' Z np
ZHP-[ = mww’eww/ Y

w' €W’
where the sum is taken over all w’ such that A(K,w') C A(K,w) and ey : Za(kw)y — La(k,w) 18
induced by this embedding. We are to show that m!P’, £ 0 implies that A(K,w) # A(K,w'). Assume,
on the contrary that A(K,w) = A(K,w') for w,w’ € W®. Since P NII # (), this is only possible when
w,w € Wi or w, w' € Wi, . Suppose w,w’ € Wi Lemma 7.8 then implies that either w' = w,
or é(w') — é(w) € IntK, i.e. w# w', as we wanted. The case w,w’ € Wi, is treated in the same way

by means of Lemma 7.9. O
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