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Abstract

We study the braided monoidal structure that the fusion product
induces on the abelian category Wp-mod, the category of representa-
tions of the triplet W -algebra Wp. The Wp-algebras are a family of
vertex operator algebras that form the simplest known examples of
symmetry algebras of logarithmic conformal field theories. We for-
malise the methods for computing fusion products that are widely
used in the physics literature and illustrate a systematic approach
to calculating fusion products in non-semi-simple representation cate-
gories. We combine these methods with the general theory of braided
monoidal categories to prove thatWp-mod is a rigid braided monoidal
category and that therefore the fusion product is bi-exact. The rigid-
ity of Wp-mod allows us to provide explicit formulae for the fusion
product on the set of all simple and all projective Wp-modules.
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1 Introduction

The theory of vertex operator algebras is an algebraic approach to describ-
ing the chiral symmetry algebras of conformal field theories, at least when
the number of irreducible representations of the symmetry algebra is finite
[1, 2, 3, 4]. Over the last few years a class of conformal field theories, called
logarithmic conformal field theories, has been the subject of a lot of re-
search. Logarithmic conformal field theories appear in the description of
critical points of a number of interesting physical systems. Examples are
polymers, spin chains, percolation and sand-pile models [5, 6, 7, 8, 9, 10].
Logarithmic conformal field theories generalise the conformal field theories
most commonly considered, by allowing the singularities encountered in cor-
relation functions, when two field insertion approach each other, to be loga-
rithmic divergencies rather than just poles [11]. Two necessary consequences
of the logarithmic divergencies are that L0 the generator of scale transfor-
mations is no longer diagonalisable and that the representation theory of the
symmetry algebra is non-semi-simple. The non-semi-simplicity in particular
has made it quite challenging to find rigorous mathematical classifications of
the representations of symmetry algebras associated to logarithmic conformal
field theories.

Arguably the two best understood families of vertex operator algebras as-
sociated to logarithmic conformal field theories are the Wp- and the Wp+,p−-
series, where p ≥ 2 and p± ≥ 2, with p+, p− coprime respectively. The
Wp-series is by now quite well understood [12, 13, 14, 15, 16, 17, 18, 19, 20].
In particular the representation category Wp-mod was completely classified
in [21] as a C-linear abelian category. On the other hand, the representa-
tion theory of Wp+,p−-series is not so well understood yet. There are well
supported conjectures for lists of all irreducible and all projective represen-
tations, but there is still a lot of work to be done [16, 22, 23, 24, 25, 26].

The purpose of this paper is to analyse the monoidal structure induced on
Wp-mod, the representation category of theWp triplet algebra, by the fusion
product of Wp-representations, by making heavy use of all that is known of
Wp-mod as an abelian category. The main results can be summarised as
follows:

• Section 2.3 in which a systematic description is given on how to define
and compute fusion products in a non-semi-simple setting.

• Theorem 39 which states that Wp-mod has the structure of a rigid
braided monoidal category.

• Theorem 43 which gives explicit formulae for the fusion products of all
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simple and all projective Wp-modules.

The formulae in theorem 43 were first conjectured in [17].
As a final comment we would like to note that the Wp-series is closely

related to quantum groups at roots of unity [15, 16]. Indeed it was shown in
[21] that the representation categories of Wp and its corresponding quantum
group are equivalent as abelian categories. It was shown in [27] that the
standard quantum group tensor product cannot coincide with the Wp fusion
product, because it is not braided.

The paper is organised as follows. In section 2 we introduce our notation
for vertex operator algebras, give a short definition of monoidal categories and
explain how to define and compute the fusion product in the representation
category V -mod of an arbitrary c2-cofinite vertex operator algebra V . In
section 3 we introduce theWp triplet algebra and its representation category
Wp-mod. Sections 2 and 3 are introductory and serve to familiarise the reader
with fusion products, theWp-algebra, representations of theWp-algebra and
to introduce our notation.

Section 4 contains a detailed analysis of two simple Wp-modules which
we call X−1 and X+

2 . We calculate their fusion products with all simple Wp-
modules and prove that they are rigid objects inWp-mod. This section relies
heavily on the notions discussed in sections 2.2 and 2.3. In section 5 we prove
this paper’s two main theorems 39 and 43 by exploiting the rigidity of X−1
and X+

2 to compute the fusion product of X−1 and X+
2 with all projective

modules. This allows to prove the rigidity of Wp-mod and to compute the
fusion product on the set of all simple and all projective modules as well as
the induced product on the Grothendieck group K(Wp).
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2 The definition of fusion tensor products

2.1 Vertex operator algebras and current algebras

In this section we will briefly summarise our definitions and notation for
vertex operator algebras. For a more detailed discussion see [28, 29].

Definition 1. A tuple (V,Ω, T, Y ) – consisting of a vector space V , two
distinguished non-trivial elements Ω, T and a map Y – is called a vertex
operator algebra (VOA for short), if it satisfies the following conditions.

1. The vectors pace V , is a complex non-negative integer graded vector
space

V =
∞⊕
n=0

V [n] , (2.1)

such that V [0] = CΩ, dimV [h] <∞ ∀h ≥ 0 and T ∈ V [2].

2. The map Y is a C-linear map

Y : V → EndC[[z, z−1]] (2.2)

A 7→ Y (A; z) = A(z) =
∑
n∈Z

Anz
−n−h ,

for A ∈ V [hA], such that

Y (A; z)Ω− A ∈ V [[z]]z (2.3)

and

Y (Ω; z) = idV . (2.4)

3. If we set

Y (T ; z) =
∑
n∈Z

Lnz
−n−2 , (2.5)

then the modes Ln satisfy the commutation relations of the Virasoro
algebra with fixed central charge c = cV

[Lm, Ln] = (m− n)Lm+n +
cV
12

(m3 −m)δm+n,0 . (2.6)
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4. The zero mode of the Virasoro algebra L0 acts semi-simply on V and

V [h] = {A ∈ V |L0A = hA} . (2.7)

5. For any element A ∈ V we have

d

dz
Y (A; z) = Y (L−1A; z) . (2.8)

6. For any elements A,B ∈ V , Y (A; z) and Y (B; z) are local with respect
to each other1 and satisfy the operator product expansion

Y (A; z)Y (B;w) =
∑
n∈Z

Y (AnB;w)(z − w)−n−h , (2.9)

where we have assumed that A ∈ V [h] is a homogeneous element.

When there is no chance of confusion we will refer to a VOA just by its
graded vector space V .

Remark 2. By the above definition it follows that for A ∈ V [h] the Virasoro
generators L0 and L−1 satisfy

[L−1, An] = −(n+ h− 1)An−1 (2.10)

[L0, An] = −nAn .

Next we introduce a finiteness condition due to Zhu [3].

Definition 3. A VOA V is said to be c2-cofinite if

dimC V/c2(V ) <∞ , (2.11)

where c2(V ) the subspace of V defined by

c2(V ) = span{AnB| A ∈ V [h], B ∈ V, n ≤ −(h+ 1)} . (2.12)

In this paper will will only be considering c2-cofinite VOAs. Among many
other helpful properties c2-cofiniteness guarantees that the V has only a finite
number of irreducible representations.

The algebra of the modes of a VOA V can be understood by using the
concepts of current the Lie algebra g(V ) and the current algebra U(V ) of V .

1Locality is essentially equivalent to the the vertex operators Y (A; z) and Y (B;w)
commuting. For a more precise definition we refer to [29].
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The representation theory of a VOA V can be defined by left U(V )-modules
with some extra properties, which we will explain in sequel.

Let V be a VOA. Consider the spaces V (1) =
⊕

h≥0 V [h]⊗C[[ξ, ξ−1]](dξ)1−h

and V (0) =
⊕

h≥0 V [h] ⊗ C[[ξ, ξ−1]](dξ)−h as well as the C-linear map ∇ :

V (0) → V (1) defined by

∇(v ⊗ f(ξ)(dξ)−h) = L−1v ⊗ f(ξ)(dξ)−h + v ⊗ df(ξ)

dξ
(dξ)1−h. (2.13)

Definition 4. Define

g(V ) = V (1)/∇V (0) . (2.14)

Then g(V ) has the structure of a Lie algebra given by

[v ⊗ f(dξ)1−h1 , w ⊗ g(dξ)1−h2 ] = (2.15)

h1+h2−1∑
m=0

1

m!
vm−h1+1w ⊗

dmf

dξm
g(dξ)m+2−h1−h2 .

For each element A ∈ V [h] we denote

An = [A⊗ ξn+h−1(dξ)1−h] ∈ g(V ) . (2.16)

and

Ln = [T ⊗ ξn−1(dξ)1−n] ∈ g(V ) . (2.17)

Then {Ln} generate the Virasoro Lie algebra as a subalgebra in g(V ) and
the Lie algebra g(V ) has a Z-graded Lie algebra structure by

g(V )[d] = {g ∈ g(V ) | [L0, g] = dg} . (2.18)

By definition An are the elements in g(V )[−n].
We now define the current algebra U(V ) of V . We first consider the uni-

versal enveloping algebra U(g(V )) of g(V ). Then U(g(V )) has the structure
of a Z-graded algebra by decomposition into L0 eigenspaces

U(g(V ))[d] = {P ∈ U(g(V )) | [L0, P ] = dP} . (2.19)

Consider the degreewise completion of U(g(V ))

U(g(V )) =
∑
d∈Z

U(g(V ))[d] (2.20)
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and consider the degreewise closed two sided ideal

I =
∑
d∈Z

I[d] (2.21)

of U(g(V )) generated by the Borcherds relations which arise from the oper-
ator product expansion

Y (A; z)Y (B;w) =
∑
n∈Z

Y (AnB;w)(z − w)−n−h . (2.22)

Definition 5. The current algebra U(V ) of V is the topological Z-graded
algebra

U(V ) =
∑
d

U(V )[d] =
∑
d

U(g(V ))[d]/I[d] . (2.23)

The following proposition is very important in this paper, because it
allows us to switch back and forth between calculations in the current Lie
algebra and the current algebra.

Proposition 6. The canonical Z-graded Lie algebra map

g(V ) =
∑
d

g(V )[d]→ U(V ) =
∑
d

U(V )[d] (2.24)

has a dense image.

We define filtrations of U(V )

Fk(U) =
⊕
d≥k

U(V )[d] , (2.25)

Fk(U) =
⊕
d≤k

U(V )[d] ,

satisfying

· · · Fk−1(U) ⊃ Fk(U) ⊃ Fk+1(U) · · · , (2.26)

· · · Fk−1(U) ⊂ Fk(U) ⊂ Fk+1(U) · · · .

The category V -mod of representations of the VOA V is defined using
left U(V )-modules.

Definition 7. A representation M of the VOA V , also called a V -module, is
a left U(V )-module containing a finite dimensional F0(U) invariant subspace
M0 such that U(V ) ·M0 = M . We denote the abelian category of V -modules
by V -mod.
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For any V -module M we can define the C-linear map

Y M : V → EndC(M)[[z, z−1]] (2.27)

A 7→ Y M(A; z) =
∑
n∈Z

ρM(An)z−n−h ,

where ρM is a representation of the current Lie algebra g(V ) on M and we
have assumed that A ∈ V [h]. Then we have the following formulae

Y M(Ω; z) = idM (2.28)

d

dz
Y M(A; z) = Y M(L−1A; z)

and for all A ∈ V [h] and B ∈ V , the operators Y M(A; z) and Y M(B;w) are
local with respect to each other and satisfy the operator product expansion

Y M(A; z)Y M(B;w) =
∑
n∈Z

Y M(AnB;w)(z − w)−n−h . (2.29)

Proposition 8. 1. The number of isomorphism classes of simple V -modules
is finite.

2. For any V -module M all Jordan-Hölder series

M = M0 ⊃M1 ⊃ · · · ⊃Mn = {0} , (2.30)

such that Mi/Mi+1 are simple V -modules, are finite.

3. Each V -module M decomposes into a direct sum of finite dimensional
generalised L0-eigenspaces M [h]

M =
⊕
h∈H

M [h] , (2.31)

M [h] = {u ∈M, (L0 − h)nu = 0, for some n ≥ 1} ,

where H is the set of all weights, a discrete subset of C generated from
the finite set H0 of highest weights by adding all non-negative integers.

4. V -mod admits a contravariant endofunctor called the contragredient or
contragredient dual.

Definition 9. The current algebra U(V ) admits the algebra anti-automorphism

σ : U(V )[d]→ U(V )[−d] , (2.32)

which for A ∈ V [h] is defined by σ(An) = (−1)hA−n.
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Definition 10. For any V -module M the contragredient V -module M∗ is
defined by

M∗ =
∑
h∈H

HomC(M [h],C) (2.33)

as a vector space. While the action of the current algebra is given by

〈Pϕ, u〉 = 〈ϕ, σ(P )u〉 , (2.34)

for ϕ ∈ M∗, u ∈ M,P ∈ U(V ). The contragredient of the contragredient is
again the original module M = (M∗)∗.

To better analyse V -mod we define finite dimensional C-algebrasAk(V ), k =
0, 1, . . . in the following way. Consider the degreewise closed right U(V )-ideal

Ik = Fk+1(U) · U(V ) ⊂ U(V ) (2.35)

and consider the two sided F0(U) ideal

Ik = Ik ∩ F0(U) . (2.36)

Taking the quotient of F0(U) by Ik we define a series of C-algebras

Ak(V ) =
F0(U)

Ik
. (2.37)

Proposition 11. For k = 0, 1, 2, . . . the C-algebras Ak(V ) are all finite di-
mensional.

We denote by Ak(V )-mod, the abelian category of finite dimensional left
Ak(V )-modules. We define the covariant functor

Ak : V -mod→ Ak(V )-mod (2.38)

M → Ak(M) =
M

Ik(M)
.

Proposition 12. 1. A V -module M is the zero module if and only if
Ak(M) is the zero module.

2. If M is a simple V -module, then Ak(M) is simple and the set of iso-
morphism classes of simple V -modules are in one to one correspondence
with the isomorphism classes of simple Ak(V )-modules.
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The k = 0 case is most important to our work at hand, we will refer to
A0(V ) as the zero mode algebra of the VOA V .

To define the notion of the fusion tensor product on V -mod, we prepare
some additional concepts and definitions. As a first step we define left and
right completions of the current algebra U(V ). For each k ∈ Z define

Fk(UL) =
∏
d≤k

U(V )[d] Fk(UR) =
∏
d≥k

U(V )[d] (2.39)

UL =
⋃
k

Fk(UL) UR =
⋃
k

Fk(UR) .

Then UL and UR are topological C-algebras with topologies defined by the
filtrations Fk(UL) and Fk(UR) and the canonical inclusions

U(V )→ UL (2.40)

U(V )→ UR

have dense images.
For any object M of V -mod, we define its closure by

M = lim←−
k

M/Fk(U)(M) . (2.41)

Then there is a continuous action of UR on M . Note that M already has
the structure of a UL-module. By the properties of projective limits M is
equipped with a complete Hausdorff linear topology. Then the action of the
current algebra U(V ) is uniquely extended to an action of UR on M . The two
spaces M and M share the same generalised L0-eigenspaces M [h] = M [h]

M [h] = {m ∈M | (L0 − h)nm = 0, for some n ≥ 1} (2.42)

M [h] = {m ∈M | (L0 − h)nm = 0, for some n ≥ 1} ,

but unlike M , M also contains infinite sums of generalised L0-eigenvectors

M =
∏
h∈H

M [h] . (2.43)

The image of the canonical inclusion M →M is dense.
For any V -module M there is a canonical surjective linear map

Ak+1(M)→ Ak(M) (2.44)
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and the projective limit

lim←−
k

Ak(M) (2.45)

has a unique continuous UR action. Indeed

M = lim←−
k

Ak(M) (2.46)

as a continuous UR-module. Also we have the canonical homomorphisms

gL(V )→ UL (2.47)

gR(V )→ UR ,

which both have dense images.
For each k ∈ Z we define

gk(V ) =
∑
d≥k

g(V )[d] . (2.48)

Then the canonical map

gk(V )→ Fk(U)→ Fk(UR) (2.49)

has dense image. So we have the C-linear isomorphism

M

gk+1(V )(M)
→ M

Ik(M)
= Ak(M) . (2.50)

Therefore we have

M = lim←−
k

M

gk+1(V )(M)
(2.51)

For later use we define for each V -module M the quotient

M

c1(M)
=

M

span{A−nm |m ∈M, A ∈ V [h], n ≥ h > 0}
. (2.52)

Then M/c1(M) is a finite dimensional complex vector space and there exists
a canonical surjective linear map

M

c1(M)
→ A0(M) . (2.53)

Also for later use we introduce the following notation.
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Definition 13. Let M be a V -module, then we define L0-graded subspaces
M0 and M s, such that

M = M0 ⊕ g1(V ) ·M , (2.54)

M = M s ⊕ c1(M) ,

respectively called the zero mode and the special subspace, such that the
canonical maps

M0 → A0(M) , (2.55)

M s → M

c1(M)
,

are C-linear isomorphisms.

Remark 14. The subspaces M0 and M s are not uniquely defined. We will
fix specific choices of subspaces in a later section.

2.2 General properties of braided monoidal categories

In this section we introduce the concepts of monoidal categories, their rigid-
ness and some general properties. We mainly follow the appendices of the
seminal papers due to Kazhdan and Lusztig [30, Appendix A] as well as the
standard reference for monoidal categories [31]. We will only be considering
monoidal categories that are also C-linear and abelian and we assume that
the reader is familiar with basic notions of abelian categories such as exact
sequences, projective modules, injective modules, etc.

Definition 15. A monoidal category is a tuple (C,⊗,1, α, λ, ρ) – just (C,⊗,1)
for short – where C is a category, ⊗ : C × C → C is the tensor product bi-
functor, 1 ∈ C is the tensor unit, αL,M,N : L ⊗ (M ⊗ N)

∼→ (L ⊗M) ⊗ N
is the associator, λM : 1 ⊗ M → M is the left unit isomorphism, and
ρM : M ⊗ 1 → M is the right unit isomorphism. These data are subject
to conditions, in particular α satisfies the pentagon axiom and λ, ρ, α obey
the triangle axiom.

Definition 16. We say that an object M is weakly rigid if the contravariant
functor

FM(−) = Hom(−⊗M,1) (2.56)
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is representable, i.e. for all objects N there exits an object M∨ called the
tensor dual2 such that

Hom(N ⊗M, 1) ∼= Hom(N,M∨) . (2.57)

Therefore if M is weakly rigid there exits a morphism

eM : M∨ ⊗M → 1 (2.58)

that is isomorphic to idM∨ ∈ Hom(M∨,M∨) by the equivalence (2.57). A
monoidal category is called weakly rigid if all its object are weakly rigid.

Definition 17. An object M is said to be rigid of it is weakly rigid and there
exits a morphism

iM : 1→M ⊗M∨ , (2.59)

such that

idM = ρM ◦ (idM ⊗ eM) ◦ α−1M,M∨,M ◦ (iM ⊗ idM) ◦ λ−1M (2.60)

idM∨ = λM∨ ◦ (eM ⊗ idM∨) ◦ αM,M∨,M ◦ (idM∨ ⊗ iM) ◦ ρ−1M∨ .

Definition 18. A braiding b on a monoidal category (C,⊗,1) is a natural
transformation between the functors ⊗ and ⊗ ◦ P , where P : C × C → C × C
is the permutation (M,N)→ (N,M). For M,N in C, b defines a morphism
bM,N ∈ Hom(M ⊗N,N ⊗M) satisfying

1. All bM,N are isomorphisms,

2. For any L,M,N in C we have

bL⊗M,N = α−1N,L,M ◦ (bL,N ◦ idM) ◦ αL,N,M ◦ (idL ⊗ bM,N)⊗ α−1L,M,N

(2.61)

bL,M⊗N = αM,N,L ◦ (idM ⊗ bL,N) ◦ α−1M,L,N ◦ (bL,M ◦ idN)⊗ αL,M,N ,

3. For all M in C

bM,1 = b1,M = idM . (2.62)

A monoidal category (C,⊗,1) satisfies a number of nice properties

2Strictly speaking M∨ is called the right dual. There is a similar notion of a left dual.
However if the tensor category is braided then these notions are related. We will therefore
only be considering right duals.
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Proposition 19. Let (C,⊗,1) be a monoidal category, then

1. For any rigid object M in C the functors

M ⊗−, −⊗M : C → C (2.63)

are exact.

2. For a rigid object M with dual M∨ and arbitrary objects N,L we have
the isomorphism

Hom(N,M⊗̇L) ∼= Hom(M∨ ⊗N,L) (2.64)

3. Let M in C be rigid with dual M∨. Then for any projective object P
M∨⊗P is projective. For any injective object I, and M⊗I is injective
in C if M∨ is also rigid.

4. Assume that

(a) The abelian category C has enough projective and injective objects.

(b) All projective objects are injective and all injective objects are pro-
jective.

(c) All projective objects are rigid.

Then if

0 −→ L −→M −→ N −→ 0 (2.65)

is an exact sequence in C such that two of L,M,N are rigid, then the
third object is also rigid.

5. If M,N in C are rigid objects, then M ⊗ N is also rigid and its dual
(M ⊗N)∨ is given by

(M ⊗N)∨ = N∨ ⊗M∨ . (2.66)

2.3 Fusion tensor products and their properties

Fusion plays a central role in analysing conformal field theories and is indeed
the central theme of this paper. Fusion describes the short distance expansion
of two fields on the level of the representations. The fusion product M⊗̇N
of two V -modules M and N is the smallest V -module in which all the fields
appearing in the short distance expansions – of fields transforming in M with
fields transforming in N – transform.
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There is a wealth of literature on fusion tensor products in both math-
ematics and physics. In the case of rational conformal field theory the rep-
resentation category is semi-simple and the theory of fusion tensor products
is well established [32, 33]. If the conformal field theory is logarithmic, the
representation category is not semi-simple. Fortunately there are compu-
tational methods in physics one can fall back on for defining fusion tensor
products without assuming semi-simplicity [34, 35]. For VOAs arising from
affine Lie algebras, there exists a mathematically rigorous definition of fusion
tensor products due to Kazhdan and Lusztig [30] that does not rely on semi-
simplicity. In this paper we will state our definition of fusion in the spirit
of [30, 32, 33, 34, 35] in the case of c2-cofinite VOAs in a mathematically
rigorous way, but postpone the proof of its properties to [36]. We will be
generalising the notions developed in [28].

We fix a c2-cofinite VOA V and prepare some notation.

Definition 20. We define the current Lie algebra on the Riemann sphere
with punctures at 0, 1,∞ by

gP(V ) =

⊕∞
n=0 V [n]⊗ C[z, z−1, (z − 1)−1]dz1−h

∇(
⊕∞

n=0 V [n]⊗ C[z, z−1, (z − 1)−1]dz−h)
, (2.67)

where ∇ is defined as in (2.13)

∇(A⊗ f(z)dz−h) = L−1A⊗ f(z)dz−h + A⊗ df(z)

dz
dz1−h . (2.68)

Then gP(V ) has the structure of a Lie algebra given by

[A⊗ f(z)dz1−hA , B ⊗ g(z)dz1−hA ] = (2.69)
∞∑
m=0

1

m!
Am−hA+1B ⊗

dmf(z)

dzm
g(z)dzm+2−hA−hB ,

for A ∈ V [hA] and B ∈ V [hB].

For f(z) ∈ C[z, z−1, (z − 1)−1] we denote the Laurent expansions at 0,
1 and infinity by f0(ξ0) ∈ C((ξ0)), f1(ξ1) ∈ C((ξ1)) and f∞(ξ∞) ∈ C((ξ−1∞ ))
respectively. For example for

f(z) =
1

z − 1
(2.70)
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the expansions and radii of convergence are given by

f0(ξ0) = −
∑
n≥0

ξn0 ξ0 = z 1 > |z| > 0 (2.71)

f1(ξ1) = ξ−11 ξ1 = z − 1 1 > |z − 1| > 0

f∞(ξ∞) =
∑
n≥0

ξ−(n+1)
∞ ξ∞ = z |z| > 1 .

Then we can define Lie algebra homomorphisms

jLa : gP(V )→ gL a = 0, 1 (2.72)

jR∞ : gP(V )→ gR ,

where gL and gR are the left and right completions of g(V ) defined in (2.47),
by

jLa ([A⊗ f(z)dz1−h]) = [A⊗ fa(ξa)dξ1−ha ] (2.73)

jR∞([A⊗ f(z)dz1−h]) = [A⊗ f∞(ξ∞)dξ1−h∞ ] .

The Lie algebra maps jLa and jR∞ have dense images.
The analogue of gk(V ) for the current Lie algebra on the Riemann sphere

is given by

gPk(V ) = span{[A⊗ f(z)dz1−h] ∈ gP(V )| ord∞(f(z)) ≤ h− 1− k} , (2.74)

where ord∞(f(z)) is the order of the pole of f(z) at infinity. The image of
the map

gPk(V )
jR∞→ gRk → Fk(UR) (2.75)

is dense and therefore the cannonical map

gP(V )

gPk(V )
→ gR

gRk
(2.76)

is an isomorphism, hence

lim←−
k

gP(V )

gPk(V )
→ lim←−

k

gR

gRk
= gR . (2.77)

Now consider the map

j1,0 = jL1 ⊗ 1 + 1⊗ jL0 : gP(V )→ gL ⊗ 1 + 1⊗ gL (2.78)

Then for any two V -modules M,N , the vector space M ⊗N is a left gP(V )-
module by j1,0.

Then we have the following. For each k = 0, 1, 2, . . .
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1. dimCM ⊗N/gPk(V )(M ⊗N) <∞

2. The Lie algebra gR = lim←−k g
P(V )/gPk(V ) acts continuously on the pro-

jective limit

M⊗̇N = lim←−
k

M ⊗N
gPk(V )(M ⊗N)

(2.79)

by jR∞ : gP(V )→ gR.

Furthermore by gR → UR the right completion UR of the current algebra
acts continuously on this space.

Define for each h ∈ C,

M⊗̇N [h] = {m ∈M⊗̇N | ∃n ≥ 1 s.t. (L0 − h)nm = 0} . (2.80)

Then the fusion product of M and N is given by

M⊗̇N =
⊕
h∈C

M⊗̇N [h] . (2.81)

Proposition 21. 1. The space M⊗̇N is a V -module.

2. For each k ≥ 0 we have the C-linear isomorphisms

Ak(M⊗̇N) =
M⊗̇N

Ik(M⊗̇N)
∼=

M ⊗N
gPk+1(M ⊗N)

. (2.82)

Most notably we have the A0(V )-module isomorphism

A0(M⊗̇N) ∼=
M ⊗N

gP1(M ⊗N)
. (2.83)

The proof of the following Theorem will be postponed to [36] a paper
dedicated solely to giving a precise formulation of the fusion tensor product
for c2-cofinite VOAs on Riemann surfaces of arbitrary genus.

Theorem 22. 1. The triplet (V−mod, ⊗̇, V ) is a braided monoidal cate-
gory with unit object V = 1.

2. For any V -module M , the contravariant functor from V -mod to C-Vec
the category of complex vector spaces

FM : V−mod→ C−Vec (2.84)

N 7→ FM(N) = HomV−mod(N⊗̇M,V ∗) ,

where V ∗ is the contragredient of V , is represented by M∗ the contra-
gredient of M , i.e.

FM(N) ∼= HomV−mod(N,M∗) . (2.85)
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The construction of the associators

αL,M,N : L⊗̇(M⊗̇N)
∼=→ (L⊗̇M)⊗̇N (2.86)

and the braiding

bM,N : M⊗̇N
∼=→ N⊗̇M (2.87)

is highly non-trivial. To construct them one must determine a set of differ-
ential equations – called the KZ-equations – that characterise the N -point
conformal blocks of the conformal field theory associated to V -mod. Some of
the calculations required to prove theorem 22 have already appeared in [28].
The full proof will be given in [36].

Unfortunately the definition of M⊗̇N is rather difficult to work with,
because even though the image of canonical map

M ⊗N →M⊗̇N (2.88)

is dense, it generally does not lie in M⊗̇N .
However for each k ≥ 0 we can make use of the isomorphism

Ak(M⊗̇N) ∼=
M ⊗N

gPk+1(V )(M ⊗N)
. (2.89)

By analysing these quotients, we can study M⊗̇N level for level. For any
given element m ⊗ n ∈ M ⊗ N , we will denote the class it represents in
Ak(M⊗̇N) by [m⊗ n].

As we shall see in the sequel, for the purposes of this paper it will be
sufficient to make statements about A0(M⊗̇N) and in one case A1(M⊗̇N).
As a vector space gP1(V ) is spanned by elements of the form

[v ⊗ z−n+h−1dz1−h], v ∈ V [h] (2.90)

for n ≥ 0 and

[v ⊗ (z − 1)−m+h−1dz1−h], v ∈ V [h] (2.91)

for m ≥ h. From the expansions defined above it therefore follows that in
A0(M⊗̇N) for 1 ≤ n ≤ h− 1 we have the relations

j1,0([v ⊗ z−n+h−1dz1−h]) = (2.92)

h−1−n∑
k=0

(
h− 1− n

k

)
vk−(h−1) ⊗ 1 + 1⊗ v−n = 0 ,

18



and for m ≥ h

j1,0([v ⊗ z−m+h−1dz1−h]) = (2.93)∑
k≥0

(
m− h+ k

m− h

)
(−1)kvk−(h−1) ⊗ 1 + 1⊗ v−m = 0 ,

j1,0([v ⊗ (z − 1)−m+h−1dz1−h]) =

v−m ⊗ 1 +
∑
k≥0

(
m− h+ k

m− h

)
(−1)h−1−m1⊗ vk−(h−1) = 0 .

The action of the zero modes is given by

j1,0(v0) = j1,0([v ⊗ zh−1dz1−h]) (2.94)

=
h−1∑
k=0

(
h− 1

k

)
vk−(h−1) ⊗ 1 + 1⊗ v0 .

For the generators of the Virasoro algebra this means

L−1 ⊗ 1 ' −1⊗ L−1 (2.95)

L−n ⊗ 1 '
∞∑
j=0

(
n− 2 + j

n− 2

)
(−1)n1⊗ Lj−1

1⊗ L−n ' −
∞∑
j=0

(
n− 2 + j

n− 2

)
(−1)jLj−1 ⊗ 1 ,

for n ≥ 2 and

j1,0(L0) = L−1 ⊗ 1 + L0 ⊗ 1 + 1⊗ L0 . (2.96)

To aid us in computing A0(M⊗̇N), we make use of the special and zero
mode subspaces in definition 13 to state the following proposition due to
Nahm [34].

Proposition 23. Let M and N be V -modules. Then the canonical C-linear
map

M s ⊗N0 → A0(M⊗̇N)→ 0 . (2.97)

is a surjective.

Proof. Let m⊗ n ∈ M ⊗N , A ∈ V [hA], B ∈ V [hB], k ≥ hA and ` > 0. We
introduce two kinds manipulations by using the formulae in (2.93)
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1. Moving modes to the right

[A−km⊗ n] = −
∑
j≥0

(
k − hA + j

k − hA

)
[m⊗ Aj−(hA−1)n] . (2.98)

Note that A−k is replaced by modes with a mode number that is greater
than −k, i.e. the grading is lowered.

2. Moving modes to the left

[m⊗B−`n] = −
∑
j≥0

(
hB − 1− `

j

)
[Bj−(hB−1)m⊗ n] . (2.99)

Note that B−` is replaced by modes with a mode number that is greater
than or equal to −`, i.e. the grading is lowered or stays the same.

Since the image of the canonical map gk(V ) → F1(V ) is dense and
F1(V )(M) = I0(M), any element n in N is represented by n = x ·n0 for some
x ∈ g1(V ) and n0 ∈ N0. Then by using formula (2.99), the class [m ⊗ n]
can be represented by m′ ⊗ n0 for some m′ ∈ M . Consider m ∈ c1(M) and
n0 ∈ N0, we can assume that m is homogeneous such that m ∈ c1(M)[h] for
some h. By definition we can assume that m has the form

m = A−km0 (2.100)

for some m0 ∈M s and A ∈ V [hA], k ≥ hA. Then by using formula (2.98)

[m⊗ n0] = −
∑
j≥0

(
k − hA + j

k − hA

)
[m0 ⊗ Aj−(hA−1)n0] . (2.101)

For each summand we use again the fact that the class [m0⊗Aj−(hA−1)n0] can
be represented by an element m′0 ⊗ n′0 ∈ M ⊗N0. If we decompose m′0 into
homogeneous summands, then the weights of the individual summands will
all be less then the original weight h of m. Because the weights are bounded
from below, a finite number of applications of the formulae (2.98) and (2.99)
will yield a representative in M s ⊗N0 for any class [m⊗ n].

Before we end this section on the fusion product we consider the relation
between the fusion product ⊗̇V of a VOA V and the fusion product ⊗̇V ′ of
a subVOA V ′ ⊂ V .

Proposition 24. Let V ′ be a c2-cofinite subVOA of the VOA V . Let M and
N be V -modules, then they are also V ′-modules and there exits a surjective
V ′-module map

M⊗̇V ′N →M⊗̇VN . (2.102)
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Proof. Since

gk(V
′) ⊂ gk(V ) (2.103)

there is a canonical surjection of Ak(V
′)-modules

Ak(M⊗̇V ′N) =
M ⊗N
gPk+1(V

′)
→ M ⊗N

gPk+1(V )
= Ak(M⊗̇VN) . (2.104)

Note that for sufficiently large k, a given generalised L0-eigenspace is stable,
i.e.

Ak(M⊗̇VN)[h] = Ak+1(M⊗̇VN)[h] = (M⊗̇VN)[h], k >> 0 . (2.105)

Therefore the surjection (2.104) implies a surjection

M⊗̇V ′N [h]→M⊗̇VN [h] (2.106)

between generalised L0-eigenspaces. This can be repeated for all values of h
and therefore there exists a surjective V ′-module map

M⊗̇V ′N →M⊗̇VN . (2.107)

Proposition 25. Let M be a V -module, then the covariant functors M⊗̇−
and −⊗̇M are right exact.

Proof. We prove the proposition for M⊗̇−. The proof for −⊗̇M follows
analogously.

Let A,B,C ∈ V -mod satisfy the exact sequence

0→ A→ B → C → 0 . (2.108)

Then the sequence

M⊗̇A→M⊗̇B →M⊗̇C → 0 . (2.109)

is exact if the restriction to the generalised L0-eigenspaces

M⊗̇A[h]→M⊗̇B[h]→M⊗̇C[h]→ 0 (2.110)

is exact. Because for sufficiently large k the generalised L0-eigenspaces for
fixed generalised eigenvalue h are stable under taking Ak quotients, we con-
sider the sequence

M ⊗ A
gPk(V )(M ⊗ A)

[h]→ M ⊗B
gPk(V )(M ⊗B)

[h]→ M ⊗ C
gPk(V )(M ⊗ C)

[h]→ 0 , (2.111)

which is clearly exact.
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2.4 Algebra morphisms between products of modules

We have defined the fusion tensor product in V -mod. Now we introduce the
concept of vertex operators in a conformal field theory on P associated to
V -mod, by extending the notions in [32].

For a V -module M we have defined the topological completion

M =
∏
h∈H

M [h] . (2.112)

For any two V -modules M,N we denote by Homc
C(M,N), the space of con-

tinuous C-linear maps from M to N . Then we have a C-linear isomorphism

HomU(V )(M,N) ∼= HomUR(M,N). (2.113)

Now for the V -modules L,M,N consider the complex vector spaces

HomU(V )(M⊗̇N,L) ∼= HomUR(M⊗̇N,L) . (2.114)

We know that

M⊗̇N = lim←−
k

M ⊗N
gPk+1(M ⊗N)

. (2.115)

So there exists a injective C-linear map

HomU(V )(M⊗̇N,L)→ Homc
C(M⊗̇N,L)→ HomC(M ⊗N,L) . (2.116)

The following proposition characterises the image of this map.

Proposition 26. For ψ ∈ HomC(M ⊗ N,L) the necessary and sufficient
condition for ψ to lie in the image of the map from HomU()(M⊗̇N,L) is that
for all f(z) ∈ C[z, z−1, (z − 1)−1], A ∈ V [h], m ∈M and n ∈ N

jR∞([A⊗ f(z)dz1−h])(ψ(m)n) , (2.117)

where we denote

ψ : m⊗ n 7→ ψ(m)n . (2.118)

Now consider the complex algebras C[z, z−1, y, y−1, (z − y)−1] and R =
C[y, y−1]. An element f(z, y) ∈ C[z, z−1, y, y−1, (z − y)−1] can be thought of
as a rational function on P× P. We consider three domains.

1. U0 = {(z, y) ∈ P× P||y| > |z| > 0},
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2. Uy = {(z, y) ∈ P× P||y| > |z − y| > 0},

3. U∞ = {(z, y) ∈ P× P||z| > |y| > 0},

and define local coordinates ξa, y on Ua, a = 0, y,∞ by defining ξ0 = z,
ξy = z − y and ξ∞ = z. Then we can define the algebra homomorphisms

jLa : C[z, z−1, y, y−1, (z − y)−1]→ R((ξa)) , a = 0, y , (2.119)

and

jR∞ : C[z, z−1, y, y−1, (z − y)−1]→ R((ξ−1∞ )) (2.120)

by expanding f(z) on the open sets Ua by the local coordinates (ξa, y). We
denote jLa (f) = fa(ξa; y) for a = 0, y and jR∞(f) = f∞(ξ∞; y). Then we can
define the current Lie algebra gPR(V ) over R by

gPR(V ) =

⊕∞
n=0 V [n]⊗ C[z, z−1, y, y−1, (z − y)−1]dz1−h

∇(
⊕∞

n=0 V [n]⊗ C[z, z−1, y, y−1, (z − y)−1]dz−h)
, (2.121)

where ∇ is defined as in (2.13)

∇(A⊗ f(z, y)dz−h) = L−1A⊗ f(z, y)dz−h + A⊗ df(z, y)

dz
dz1−h . (2.122)

Then gPR(V ) has the structure of a Lie Algebra given by

[A⊗ f(z, y)dz1−hA , B ⊗ g(z, y)dz1−hA ] = (2.123)
∞∑
m=0

1

m!
Am−hA+1B ⊗

dmf(z, y)

dzm
g(z, y)dzm+2−hA−hB ,

Therefore we can define Lie algebra homomorphisms over R

jLa : gPR(V )→ R⊗ gL , a = 0, y , (2.124)

jR∞ : gPR(V )→ R⊗ gR ,

in the same way as in (2.73).

Definition 27. For V -modules L,M,N a HomC(M⊗N,L)-valued holomor-
phic function ψ(y) on C∗ – which may be multi-valued – is called a vertex
operator of type

(
M
L,N

)
if it satisfies the following two conditions.

1. For f(z) ∈ C[z, z−1, y, y−1, (z − y)−1], A ∈ V [h], m ∈ M and n ∈ N
we have

jR∞([A⊗ f(z, y)dz1−h])(ψ(m; y)n) = (2.125)

ψ(jLy ([A⊗ f(z, y)dz1−h]m; y))n+ ψ(m; y)jL0 ([A⊗ f(z, y)dz1−h])n .
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2. For m ∈M and n ∈ N

d

dy
ψ(m; y)n = ψ(L−1m; y)n . (2.126)

We denote by IML,N the complex vector space of vertex operators of type(
M
L,N

)
. By taking y = 1 we can define linear maps

IML,N → HomC(M ⊗N,L) (2.127)

ψ(−; y) 7→ ψ(−; 1) .

Then we have the following theorem.

Theorem 28. The image of the map ψ(−; y) 7→ ψ(−; 1) is contained in the
image of the injection

HomU(V )(M⊗̇N,L)→ HomC(M ⊗N,L) , (2.128)

and the two images are equal.

By the above vertex operator one can define N -point conformal blocks
and prove the validity of the associativity and braiding constraints. As we
have mentioned before, this will be postponed to [36].

We will revisit these concepts for one special case when proving the rigid-
ity of the Wp-module X+

2 . We also make note of a slight abuse of notation
we will be using. When considering an element ψ ∈ HomU(V )(M⊗̇N,L) and
m ∈M , n ∈ N we will identify m⊗ n with ψ(m)n, when there is no chance
of confusion.

3 The abelian category Wp-mod

In this section we briefly review the structure of Wp-mod as an abelian cat-
egory following [21].

3.1 General properties of Wp-mod

For p ≥ 2 the VOAWp is generated by the identity 1, the energy momentum
tensor T (z) and three weight 2p − 1 primary fields W ε(z), where ε = ±, 0
labels sl2-charges. The central charge of the theory is given by

cp = 1− 6
(p− 1)2

p
. (3.1)
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It has been shown in [18] that Wp is c2-cofinite.
As an abelian categoryWp-mod decomposes into a C-linear sum of abelian

subcategories

Wp-mod =

p⊕
s=0

Cs , (3.2)

where for 1 ≤ s ≤ p the Cs are full abelian subcategories of Wp-mod. For
s 6= s′ and M ∈ Cs, M ′ ∈ Cs′the spaces ExtiWp

(M,M ′) = 0 for any i ∈ Z, in

particular HomWp(M,M ′) = Ext0Wp
(M,M ′) = 0. The two subcategories C0

and Cp are semi-simple and contain one simple object each

X+
p ∈ obj(Cp) X−p ∈ obj(C0) (3.3)

which are projective in Cp and C0 respectively as well as in Wp-mod. We
will therefore occasionally also denote these modules by P ε

p = Xε
p . For 1 ≤

s ≤ p− 1 the subcategories Cs are not semi-simple. They contain two simple
objects each

X+
s , X

−
p−s ∈ obj(Cs) . (3.4)

We denote the projective covers of X+
s and X−p−s by P+

s and P−p−s respectively.
They are characterised by the socle series3 of length 3

X+
s = S0(P

+
s ) ⊂ S1(P

+
s ) ⊆ S2(P

+
s ) = P+

s (3.5)

X−p−s = S0(P
−
p−s) ⊂ S1(P

−
p−s) ⊆ S2(P

−
p−s) = P−p−s ,

such that

S1(P
+
s )/S0(P

+
s ) = 2X−p−s S2(P

+
s )/S1(P

+
s ) = X+

s (3.6)

S1(P
−
p−s)/S0(P

−
p−s) = 2X+

s S2(P
−
p−s)/S1(P

−
p−s) = X−p−s .

Both P+
s and P−p−s have two occurrences of X+

s and X−p−s as subquotients
therefore they have identical characters.

The simple and the projective modules ofWp-mod are all self-contragredient,
i.e. Xε

s
∗ = Xε

s and P ε
s
∗ = P ε

s for 1 ≤ s ≤ p, ε = ±. In particular the vacuum
representation, X+

1 which is the tensor unit, is self contragredient. Therefore
by proposition 19 (Wp−mod, ⊗̇, X+

1 ) is weakly rigid and for eachWp-module
M its weakly rigid dual M∨ coincides with its contragredient M∗.

For 1 ≤ s ≤ p−1 the subcategories Cs also contain 6 families of indecom-
posable modules characterised by socle series of length 2. For d ≥ 1 these
are summarised in the table below.

3 A socle series of a module M is a filtration of submodules S1(M) ⊆ · · ·Sn(M) = M
such that S1(M) is the maximal semi-simple submodule of M and Si(M)/Si−1(M) is the
maximal semi-simple submodule of Si+1/Si−1(M).
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G+
s,d G−p−s,d H+

s,d H−p−s,d I+s,d(λ) I−p−s,d(λ)

S1/S0 (d+ 1)X+
s (d+ 1)X−p−s dX+

s dX−p−s dX+
s dX−p−s

S2/S1 dX−p−s dX+
s (d+ 1)X−p−s (d+ 1)X+

s dX−p−s dX+
s

Note that I+s,d(λ) and I−p−s,d(λ) are not uniquely characterised by their socle
series alone. To each of the two series there corresponds a continuous family
of inequivalent indecomposable modules parametrised by λ ∈ P.

The simple modules X±s can be decomposed into direct sums of simple
Virasoro modules

X+
s =

∞⊕
m=1

(2m− 1)Lh2m−1,s (3.7)

X−s =
∞⊕
m=1

2mLh2m,s ,

where Lhr,s is the highest weight irreducible Virasoro module of weight

hr,s =
1

4p

(
(rp− s)2 − (p− 1)2

)
, (3.8)

therefore the weights of X+
s and X−s , which we will denote by h+s and h−s ,

are h1,s and h2,s respectively.
The dimension of the highest weight spaces X+

s [h+s ] is 1 and the dimension
of the highest weight spacesX−s [h−s ] is 2. We fix non-zero vectors us ∈ X+

s [h+s ]
and we fix a basis v+s , v

−
s of X−s [h−s ] which satisfies the following conditions

W+
0 v

+
s = 0, W−

0 v
−
s = 0 . (3.9)

Then v+s and v−s are universally determined up to constants.
We have the following results.

1. The Virasoro submodules U(L)us are isomorphic to the irreducible Vi-
rasoro modules Lh1,s and the Virasoro submodules U(L)vµs are isomor-
phic to the irreducible Virasoro modules Lh2,s .

2. The action of the first few modes of the W -fields on the highest weight
vector us of X+

s , 1 ≤ s ≤ p is given by

W ε
−kus = 0 ε = 0,±, k < 2p− s . (3.10)

3. The action of the first few modes of the W -fields on the highest weight
vectors vµs of X−s , 1 ≤ s ≤ p, µ = ± is then given by

W ε
−kv

µ
s


= 0 ε = µ
∈ U(L)vµs ε = 0
∈ U(L)v−µs ε = −µ

ε = ±, 0 k < 3p− s . (3.11)
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After defining Wp-mod, we now turn to A0(Wp)-mod – the category of
zero mode quotients of Wp-modules. We define elements of A0(Wp)-mod, in
the following way

X
ε

s = A0(X
ε
s ) , 1 ≤ s ≤ p, ε = ± . (3.12)

Then the X
ε

s are simple objects in A0(Wp)-mod and any simple object of
A0(Wp)-mod is isomorphic to one of the objects X

ε

s.
Just like Wp-mod, A0(Wp)-mod also decomposes into a C-linear direct

sum of abelian subcategories

A0(Wp)-mod =

p⊕
s=1,ε=±

C εs . (3.13)

The subcategories C +

p and C −s , 1 ≤ s ≤ p are semi-simple and each contain
one simple module

X
+

p ∈ obj(C +

p ) X
−
s ∈ obj(C −s ) . (3.14)

For 1 ≤ s ≤ p− 1 the subcategories C +

s are not semi-simple. In addition to
one simple module

X
ε

s ,∈ obj(C εs ) , (3.15)

they also contain and one reducible but indecomposable module X̃ +
s that is

the projective cover of X
+

s and satisfies the exact sequence

0 −→ X
+

s −→ X̃ +
s −→ X

+

s −→ 0 . (3.16)

The image of the indecomposable Wp-modules in A0(Wp)-mod is

A0(X±s ) = X
±
s A0(I+s,d(λ)) = dX

+

s A0(G−s,d) = (d+ 1)X
−
s ⊕ dX

+

p−s

A0(G+
s,d) = (d+ 1)X

+

s A0(P+
s ) = X̃+

s A0(H−s,d) = dX
−
s ⊕ (d+ 1)X

+

p−s

A0(H+
s,d) = dX

+

s A0(P−s ) = X
−
s ⊕ 2X

+

p−s A0(I−s,d(λ)) = dX
−
s ⊕ dX

+

p−s .

As one can see from the above table the indecomposable structure of A0(Wp)
is much simpler than that ofWp-mod as only the images of P+

s are non-semi-
simple.

The detailed Wp-module structure of X−1 and X+
2 is crucial to calcula-

tions. We have the following results.

Proposition 29. As complex vector spaces the A0 quotients of simple Wp

modules satisfy
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1. For 1 ≤ s ≤ p, dimA0(X
+
s ) = 1 and the space is spanned by the

equivalence class represented by us and therefore has conformal weight
h+s .

2. For 1 ≤ s ≤ p, we fix the zero mode subspace (X+
s )0 to be spanned by

the highest weight vector us.

3. For 1 ≤ s ≤ p, dimA0(X
−
s ) = 2 and the space is spanned by the

equivalence classes represented by the two highest weight vectors vεs, ε =
± and therefore has conformal weight h−s .

4. For 1 ≤ s ≤ p, we fix the zero mode subspace (X−s )0 to be spanned by
the two highest weight vectors vεs, ε = ±.

Proposition 30. The the two copies of Lh2,1 in the simple module X−1 each
contain a null vector at level 2

(L2
−1 − pL−2)v

µ
1 = 0 µ = ± (3.17)

and a well defined choice for the special subspace (X−1 )s is given by

(X−1 )s =
1⊕
j=0

⊕
µ=±

CLj−1v
µ
1 . (3.18)

Proposition 31. The Virasoro submodule Lh1,2 of the simple module X+
2

contains a null vector at level 2

(L2
−1 − 1

p
L−2)u2 = 0 (3.19)

and a well defined choice for the special subspace (X+
2 )s is given by

(X+
2 )s =

1⊕
j=0

CLj−1u2 ⊕
⊕
ε=0,±

CW ε
−2p+2u2 . (3.20)

3.2 The free field realisation of Wp

One can explicitly constructWp as a subVOA of a free field VOA VL on a lat-
tice by the method of screening operators. The free field VOA is constructed
by means of the Heisenberg algebra

a = C1⊕
⊕
n∈Z

Can (3.21)
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as well as an operator â, satisfying the commutation relations

[am, â] = δm,0 [am, an] = mδm,−n . (3.22)

The Heisenberg algebra acts on Fock spaces Fλ generated by a state |λ〉, λ ∈
C

am|λ〉 = λδm,0|λ〉 m ≥ 0 . (3.23)

For the free field VOA VL we restrict the charges λ of Fλ to a rescaled A1

root lattice L and its dual L∨

L = Zα+ L∨ = Z
α−
2
, (3.24)

where α+ =
√

2p and α− = −
√

2
p
. The theory contains a single free bosonic

field

ϕ(z) = â+ a0 log z +
∑
n6=0

an
−n

z−n (3.25)

that satisfies the OPE

ϕ(z)ϕ(w) ∼ log(z − w) . (3.26)

The energy momentum tensor is given by

T (z) =
1

2
: (∂ϕ(z))2 : +

α+ + α−
2

∂ϕ(z) , (3.27)

where : : indicates normal ordering, i.e. arranging the Heisenberg operators
in ascending order from left to right according to their index with â on the
very left. Calculating the OPE of T with itself, one reproduces the the central
charge

cp = 1− 6
(p− 1)2

p
(3.28)

of Wp. The primary fields are given by

Vµ(z) =: eµϕ(z) : , (3.29)

where µ ∈ L∨ and the weight of Vµ(z) is

hµ =
1

2
µ(µ− (α+ + α−)) . (3.30)
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The OPE of two primary fields is given by

Vµ(z)Vν(w) = (z − w)µ·ν : Vµ(z)Vν(w) : . (3.31)

The VOA VL contains the fields 1, T (z) and Vµ(z) for µ ∈ L but not
Vν(z) for ν ∈ L∨ \ L. The representation category VL-mod is semi-simple
with 2p simple modules V[λ], [λ] ∈ L∨/L. For later calculations it will prove
useful to parametrise the the classes [λ] ∈ L∨/L by

[r, s] =: [αr,s] =

[
1− r

2
α+ +

1− s
2

α−

]
r, s ∈ Z , (3.32)

where

[r + 1, s+ p] = [r, s] . (3.33)

The VL modules decompose into infinite sums of Fock spaces

V[αr,s] =
⊕
n∈Z

Fαr+2n,s . (3.34)

The VL-theory contains two weight 1 primary fields that can be used as
screening operators

Q+(z) = Vα+(z) Q−(z) = Vα−(z) . (3.35)

The Wp VOA is realised by screening with Q−(z)

Wp = ker

(∮
dz Q−(z) : V[1,1] → V[1,−1]

)
. (3.36)

As Wp-modules the simple VL-modules V[1,p] and V[2,p] are isomorphic
to X+

p and X−p respectively. The remaining 2p − 2 simple VL modules are
reducible as Wp modules and form Felder complexes

· · · V[α1,s] V[α2,p−s] V[α1,s] · · · .
Q

(s)
− Q

(p−s)
− (3.37)

where Q
(a)
− is the zero mode of a rather complicated a-fold product of Q−(z)

whose details need not concern us here. The simple Wp modules X±s for
1 ≤ s ≤ p− 1 are equivalent to the kernels and images of Q(a)

X+
s = ker

(
Q

(s)
− : V[1,s] → V[2,p−s]

)
= im

(
Q

(p−s)
− : V[2,p−s] → V [1, s]

)
(3.38)

X−p−s = ker
(
Q

(p−s)
− : V[2,p−s] → V[1,s]

)
= im

(
Q

(s)
− : V[1,s] → V [2, p− s]

)
.
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Proposition 32. The screening operator maps Q(a) induce surjective Wp-
module maps

V[1,s] → X−p−s V[2,s] → X+
p−s (3.39)

|α−1,s〉 7→ v+p−s |α0,s〉 7→ up−s ,

for 1 ≤ s ≤ p− 1 as well as injective Wp-module maps

X+
s → V[1,s] X−s → V[2,s] (3.40)

us 7→ |α1,s〉 v−s 7→ |α2,s〉 ,

for 1 ≤ s ≤ p.

3.3 The VL fusion product

We recall some well known facts about the VL-mod fusion product that will
be relevant to our calculations below. The tuple (VL−mod, ⊗̇VL ,V[1,1]) defines
a braided monoidal category, i.e. there is a well defined fusion product of
VL-modules

V[s1,r1] ⊗VL V[s2,r2] = V[s1+s2−1,r1+r2−1] . (3.41)

The free field VOA VL contains another subVOA (Fα1,1 , |0〉, T, Y ) other
than Wp called the Heisenberg VOA.4 The current algebra U(Fα1,1) is given
by the universal enveloping algebra U(a) of the Heisenberg algebra, while the
simple objects of Fα1,1 are given by Fαr,s

Proposition 33. For (r1, s1), (r2, s2) ∈ Z2 the fusion product in Fα1,1-mod
is given by

Fαr1,s1 ⊗̇Fα1,1Fαr2,s2
∼=→ Fαr1+r2−1,s1+s2−1 (3.42)

|αr1,s1〉 ⊗ |αr2,s2〉 7→ |αr1+r2−1,s1+s2−1〉

and the following diagram commutes

Fαr1,s1 ⊗̇Fα1,1Fαr2,s2

V[r1, s1]⊗̇VLV[r2,s2]

Fαr1+r2−1,s1+s2−1

V[r1+r2−1,s1+s2−1]

(3.43)

where the vertical arrows are injective Fα1,1-module maps and the horizontal
arrows are a Fα1,1 and a VL-isomorphism respectively.

4This is the only appearance of a non-c2-cofintie VOA in this paper.
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4 Computing some fusion products in Wp-

mod

We now apply the apply the methods explained above to analyse the monoidal
structure of Wp-mod.

4.1 The fusion rules and rigidity of X−1

In this section we analyse the fusion products of X−1 with simple modules
and prove the rigidity of X−1 .

Theorem 34. The fusion product of X−1 with itself is

X−1 ⊗̇X−1 = X+
1 . (4.1)

Also X−1 is rigid and its dual is just X−1 itself.

Sketch of the proof. We prove the the theorem in three steps.

1. We prove that there exists a surjection of A0(WP ) modules

A0(X
+
1 )→ A0(X

−
1 ⊗̇X−1 ) . (4.2)

2. We prove that dimA1(X
−
1 ⊗̇X−1 )[1] = 0.

3. We prove the existence of a non-trivial Wp-module map

X−1 ⊗̇X−1 → V[2,p−1] . (4.3)

Step 1 implies that X−1 ⊗̇X−1 is a (possibly trivial) highest weight module
generated by a state of conformal weight 0. Since h−p−1 = 1 step 2 excludes
the possibility of X−p−1 being a submodule of X−1 ⊗̇X−1 . Step 3 implies that
X−1 ⊗̇X−1 is non-trivial and since the only non-trivial submodule of V[2,p−1],
generated by a state of conformal weight 0 is X+

1 , it follows that X−1 ⊗̇X−1 =
X+

1 .
The rigidity of X−1 follows by choosing

idX+
1

= eX−1 : X−1 ⊗̇X−1 → X+
1 (4.4)

idX+
1

= iX−1 : X+
1 → X−1 ⊗̇X−1

and the fact that therefore all the maps appearing in definition 17 are iso-
morphisms.
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Proof of step 1. As in proposition 30 we choose

X−1
s

=
1⊕
j=0

⊕
ε=±

CLj−1vε1 (4.5)

and as in proposition 29 we choose

X−1
0

=
⊕
ε=±

Cvε1 . (4.6)

Using the formulae (2.95) as well as the null vector in proposition 30 we
can compute the action of L0 on the classes represented by the elements of
(X−1 )s ⊗ (X−1 )0.

[vε11 ⊗ vε21 ] 7→ 2h−1 [vε11 ⊗ vε21 ] + [L−1v
ε1
1 ⊗ vε21 ] (4.7)

[L−1v
ε1
1 ⊗ vε21 ] 7→ (2h−1 + 1)[vε11 ⊗ vε21 ] + [L2

−1v
ε1
1 ⊗ vε21 ]

= ph−1 [vε11 ⊗ vε21 ] + (2h−1 + 1− p)[L−1vε1 ⊗ vε21 ] .

Thus for each pair ε1, ε2 we can represent L0 by

L0
∼=
(

2h−1 ph−1
1 2h−1 + 1− p

)
(4.8)

on the basis Lj−1v
ε1
1 ⊗vε21 , j = 0, 1. The eigenvalues of this matrix are h+1 = 0

and 2p− 1.
Next we will determine a lower bound on the dimension of the kernel of

the surjection

(X−1 )s ⊗ (X−1 )0 → A0(X
−
1 ⊗̇X−1 ) . (4.9)

Because A0(Wp)-mod does not contain any module with eigenvalue 2p − 1
eigenvectors, the eigenvectors

vε11 ⊗ vε21 + 2
3p−2L−1v

ε1
1 ⊗ vε21 , (4.10)

corresponding to the eigenvalue 2p−1, must lie in the kernel of the surjection
(4.9).

From formula (3.11) illustrating the action of W -field modes on X−1 we
know

L−1v
ε
1 = Cε ·W ε

−1v
−ε
1 ε = ± (4.11)
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for some constant C. This implies that L−1v
ε
1 ⊗ vε1, ε = ± lies in the kernel

of (4.9), because

[L−1v
ε
1 ⊗ vε1] = Cε · [W ε

−1v
−ε
1 ⊗ vε1] (4.12)

= Cε ·
2p−3∑
j=0

(
2p− 3

j

)
(−1)j[v−ε1 ⊗W ε

j−(2p−2)v
ε
1] = 0 .

Finally

[L−1v
ε
1 ⊗ v−ε1 ] = Cε · [W ε

−1v
−ε
1 ⊗ v−ε1 ] (4.13)

= Cε ·
2p−3∑
j=0

(
2p− 3

j

)
(−1)j[v−ε1 ⊗W ε

j−(2p−2)v
−ε
1 ]

= Aε[L−1v
−ε
1 ⊗ vε1] +Bε[v

−ε
1 ⊗ vε1] ,

for some constants Aε and Bε, since by the action of the W -modes (3.11)
W ε
j−(2p−2)v

−ε
1 ∈ Lεh2,1 . This implies that some non-trivial linear combination

of [L−1v
+
1 ⊗ v−1 ] and [L−1v

−
1 ⊗ v+1 ] lies in the kernel of (4.9). Therefore the

kernel of (4.9) is at least 7 dimensional and A0(X
−
1 ⊗̇X−1 ) is at most one

dimensional. If A0(X
−
1 ⊗̇X−1 ) is indeed non-trivial, then the eigenvalue of L0

is 0.

Proof of step 2. We know that the image of the action of the W -field modes
W µ
−k on the highest weight vectors vε1 lies in the Virasoro submodules gen-

erated by v+1 and v−1 for k < 3p − 1. Therefore a spanning set of rep-
resentatives for A1(X

−
1 ⊗̇X−1 ) can be chosen from Virasoro descendants of

vε11 ⊗ vε21 , ε1 = ±, ε2 = ±. Also since the relations (2.95) for Virasoro modes
still hold for n ≥ 2, we can restrict the spanning set of representatives for
A1(X

−
1 ⊗̇X−1 ) to L−1-descendants of vε11 ⊗ vε21 . Finally because of the null

vector (3.17) at level 2 of X−1 we have the following surjection of complex
vector spaces

1⊕
i=0
j=0

⊕
ε1=±
ε2=±

C[Li−1v
ε1
1 ⊗ L

j
−1v

ε2
1 ]→ A1(X

−
1 ⊗̇X−1 ) . (4.14)

Because the image of the canonical Lie algebra homomorphism

g(Wp)→ U(Wp) (4.15)

is dense, we know that the image of L2
−1 lies in g2(Wp)(X

−
1 ⊗̇X−1 ) and that

L2
−1 therefore acts trivially on A1(X

−
1 ⊗̇X−1 ) even if L−1 does not. This
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implies the relation

(j1,0([T ⊗ 1 · dz−1]))2[vε11 ⊗ vε21 ] (4.16)

= [L−1v
ε1
1 ⊗ vε21 ] + 2[L−1v

ε1
1 ⊗ L−1vε21 ] + [vε11 ⊗ L−1vε21 ] = 0

We therefore take [vε11 ⊗ vε21 ], [L−1v
ε1
1 ⊗ vε21 ] and [vε11 ⊗L−1vε21 ] as a spanning

set for A1(X
−1
1 ⊗̇X−11 ) and compute the action of L0

[vε11 ⊗ vε21 ] 7→
(

3

2
p− 1

)
[vε11 ⊗ vε21 ] + [L−1v

ε1
1 ⊗ vε21 ] (4.17)

[L−1v
ε1
1 ⊗ vε21 ] 7→

(
3

2
p− 1

)
p

2
[vε11 ⊗ vε21 ] +

3

2
p[L−1v

ε1
1 ⊗ vε21 ] + p[vε11 ⊗ L−1vε21 ]

[vε11 ⊗ L−1vε21 ] 7→ −
(

3

2
p− 1

)
p

2
[vε11 ⊗ vε21 ] +

p

2
[L−1v

ε1
1 ⊗ vε21 ] + p[vε11 ⊗ L−1vε21 ] .

As a matrix L0 is represented by (
3
2
p− 1

) (
3
2
p− 1

)
p
2
−
(
3
2
p− 1

)
p
2

1 3
2
p p

2

0 p p

 (4.18)

on the basis vε11 ⊗ vε21 , L−1vε11 ⊗ vε21 and vε11 ⊗ L−1vε21 and the eigenvalues of
this matrix are 0, 2p− 1 and 2p, none of which are h−p−1 = 1.

Proof of step 3. According to proposition 32 there exists an injective Wp-
module map

X−1 → V[2,1] (4.19)

v−1 7→ |α2,1〉 .

By this map and proposition 24 there exits a non-trivial Wp-module map

X−1 ⊗̇WpX
−
1 → V[2,1]⊗̇VLV[2,1] (4.20)

v−1 ⊗ v−1 7→ |α2,1〉 ⊗ |α2,1〉 .

By proposition 33 there exits a VL-module isomorphism

V[2,1]⊗̇VLV[2,1] → V[3,1] ∼= V[1,1] (4.21)

|α2,1〉 ⊗ |α2,1〉 7→ |α3,1〉 .

By concatenating these two maps we have constructed a non-trivial Wp-
module map

X−1 ⊗̇WpX
−
1 → V[1,1] . (4.22)
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Theorem 35. The fusion rules of X−1 with simple modules is given by

X−1 ⊗̇Xε
s = X−εs 1 ≤ s ≤ p, ε = ± . (4.23)

Sketch of proof. We prove the theorem in two steps

1. Let M be a simple module, then X−1 ⊗̇M is also simple.

2. We prove the existence of a non-trivial Wp-module map

X−1 ⊗̇X+
s → V[2,s] . (4.24)

The simplicity of X−1 ⊗̇X+
s implied by step 1 and the non-triviality of the

map in step 2 implies that X−1 ⊗̇X+
s is a simple submodule of V[2,s]. Therefore

X−1 ⊗̇X+
s = X−s . The theorem then follows by X−1 ⊗̇X−1 = X+

1 .

Proof of step 1. Proof by contradiction. Assume X−1 ⊗̇M is not simple, then
there exists an exact sequence

0→ A→ X−1 ⊗̇M → B → 0 , (4.25)

for some non-trivialWp modules A and B. Because X−1 is rigid, the sequence

0→ X−1 ⊗̇A→M → X−1 ⊗̇B → 0 , (4.26)

must also be exact which is in contradiction to M being simple.

Proof of step 2. According to proposition 32 there exist injectiveWp-module
maps

X−1 → V[2,1] (4.27)

v−1 7→ |α2,1〉

and for 1 ≤ s ≤ p

X+
s → V[1,s] (4.28)

us 7→ |α1,s〉

By the above injective Wp-module maps and proposition 24 there exits a
non-trivial Wp-module map

X−1 ⊗̇WpX
+
s → V[2,1]⊗̇VLV[1,s] (4.29)

v−1 ⊗ us 7→ |α2,1〉 ⊗ |α1,s〉 .
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By proposition 33 there exits a VL-module isomorphism

V[2,1]⊗̇VLV[1,s] → V[2,s] (4.30)

|α2,1〉 ⊗ |α1,s〉 7→ |α2,s〉 .

By concatenating these two maps we have constructed a non-trivial Wp-
module map

X−1 ⊗̇WpX
+
s → V[2,s] . (4.31)

4.2 The fusion rules and rigidity of X+
2

In this section we analyse the fusion products of X+
2 with simple modules

and prove the rigidity of X+
2 .

Theorem 36. The Wp module X+
2 is rigid and he fusion rules of X+

2 with
simple modules is given by

X+
2 ⊗̇Xε

s =


Xε

2 s = 1
Xε
s−1 ⊕Xε

s+1 2 ≤ s ≤ p− 1
P ε
p−1 s = p

. (4.32)

Sketch of proof. We prove the theorem in a number of steps

1. We prove the existence of surjections of A0 modules

s = 1 A0(X
−
2 )

1 < s < p A0(X
−
s−1)⊕A0(X

−
s+1)

s = p A0(P
−
p−1)

→ A0(X
+
2 ⊗̇X−s )→ 0 .

2. We prove the existence of non-trivial Wp-module maps

X+
2 ⊗̇X−s → V[2,s+1] , (4.33)

for 1 ≤ s ≤ p− 1.

3. We prove the existence of non-trivial Wp-module maps

X+
2 ⊗̇V[1,p−s] → X−s−1 , (4.34)

for 2 ≤ s ≤ p− 1.
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4. We prove the existence of a surjective Wp-module map

X+
2 ⊗̇X−p → X−p−1 . (4.35)

5. We use the formalism outlined in section 2.4 to prove the rigidity of
X+

2 .

Steps 1 through 3 prove

X+
2 ⊗̇X−s =

{
X−2 s = 1

X−s−1 ⊕X−s+1 1 < s < p
. (4.36)

Step 5 implies that X+
2 ⊗̇X−p is injective, since the product of a rigid and a

projective module is again projective. The only projective module compatible
with steps 1 and 4 is P−p−1, therefore

X+
2 ⊗̇X−p = P−p−1 . (4.37)

Finally the fusion products of the theorem follow by multiplying with X−1
and the associativity of the fusion product.

Proof of step 1. We choose the special subspace of X+
2 to be given by

(X+
2 )s =

1⊕
j=0

CLj−1u2 ⊕
⊕
ε=0,±

CW ε
−2p+2u2 , (4.38)

as in proposition 31 and we chose the zero mode subspace of X−s to be given
by

(X−s )0 =
⊕
ε=±

Cvεs , (4.39)

as in proposition 29. By proposition 23 there is a canonical surjection

(X+
2 )s ⊗ (X−1 )0 → A0(X

+
2 ⊗̇X−s ) . (4.40)

We first show that the spanning set

span{[Lj−1u2 ⊗ vεs], [W µ
−2p+2u2 ⊗ vεs], j = 0, 1, ε = ±, µ = ±, 0} (4.41)

is redundant. Consider

[W µ
−2p+2u2 ⊗ vεs] = −[u2 ⊗W µ

−2p+2v
ε
s] . (4.42)
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Because the highest weight of the Virasoro representations Lh4,s in the de-
composition (3.7) of X−s into Virasoro representation is 3p − 1 higher than
the highest weight of U(L)vεs, W

µ
−2p+2v

ε
s must lie in U(L)vεs. Therefore

[W µ
−2p+2u2 ⊗ vεs] depends linearly on [Lj−1u2 ⊗ vδs ], j = 0, 1, δ = ±.
We therefore have a 4 dimensional spanning set forA0(X

+
2 ⊗̇X−s ) on which

we can compute the action of L0.

[u2 ⊗ v±s ] 7→ (h+2 + h+s )[u2 ⊗ v±s ] + [L−1u2 ⊗ v±s ] (4.43)

[L−1u2 ⊗ v±s ] 7→ h+s
p

[u2 ⊗ v±s ] + (h+2 + h+s + 1− 1

p
)[L−1u2 ⊗ v±s ] .

We can therefore represent L0 by the matrix(
h+2 + h−s

h−s
p

1 h+2 + h−s + 1− 1
p

)
on the basis Lj−1u2 ⊗ vεs, j = 0, 1, ε = ±. For 2 ≤ s ≤ p− 1 the eigenvalues
of this matrix are h−s−1 and h−s+1 and for s = p the eigenvalues of the above
matrix are h−p−1 and h+1 .

Proof of step 2. According to proposition 32 there exist injectiveWp-module
maps

X+
2 → V[2,s] (4.44)

u2 7→ |α1,s〉 .

and for 1 ≤ s < p

X−s → V[2,s] (4.45)

v−s 7→ |α2,s〉 .

By these maps and proposition 24 there exits a non-trivial Wp-module map

X+
2 ⊗̇WpX

−
s → V[1,2]⊗̇VLV[2,s] (4.46)

u2 ⊗ v−s 7→ |α1,2〉 ⊗ |α2,s〉 .

By proposition 33 there exits a VL-module isomorphism

V[1,2]⊗̇VLV[2,s] → V[2,s+1] (4.47)

|α1,2〉 ⊗ |α2,s〉 7→ |α2,s+1〉 .

By concatenating these two maps we have constructed a non-trivial Wp-
module map

X+
2 ⊗̇WpX

−
s → V[2,s+1] . (4.48)
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Proof of step 3. Before we begin with the proof we note that the proof of
step one implies the existence of a surjective Wp-module map

X−s−1 ⊕X−s+1 → X+
2 ⊗̇X−s (4.49)

for 1 < s < p, i.e. the results for A0(X
+
2 ⊗̇X−s ) allow for no modules larger

than X−s−1 or X−s+1. Therefore because X−1 is rigid and the functor X−1 ⊗̇− is
exact, there exits a surjective Wp-module map

X+
s−1 ⊕X+

s+1 → X+
2 ⊗̇X+

s . (4.50)

According to proposition 32 there exists an injective Wp-module map

X+
2 → V[2,s] (4.51)

u2 7→ |α1,s〉 .

By this map and proposition 24 there exits a non-trivial Wp-module map

X+
2 ⊗̇WpV[1,p−s] → V[1,2]⊗̇VLV[1,p−(s−1)] (4.52)

u2 ⊗ |α−1,p−s〉 7→ |α1,2〉 ⊗ |α−1,p−s〉 .

By proposition 33 there exits a VL-module isomorphism

V[1,2]⊗̇VLV[1,p−s] → V[1,p−(s−1)] (4.53)

|α1,2〉 ⊗ |α−1,p−s〉 7→ |α−1,p−(s−1)〉 .

By concatenating these two maps we have constructed a non-trivial Wp-
module map

ϕ : X+
2 ⊗̇WpV[1,p−s] → V[1,p−(s−1)] . (4.54)

Also according to proposition 32 there exists a surjective Wp-module map

π : V[1,p−(s−1)] → X−s−1 (4.55)

|α−1,p−(s−1)〉 7→ v+s−1 .

The composition π ◦ ϕ is therefore a non-trivial Wp-module map

π ◦ ϕ : X+
2 ⊗̇V[1,p−s] → X−s−1 . (4.56)

By the surjection (4.50) X2⊗̇X+
p−s must lie in the kernel of π ◦ ϕ. Therefore

there exists a non-trivial Wp-module map

X+
2 ⊗̇X−s → X−s−1 . (4.57)
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Proof of step 4. According to proposition 32 there exists an injective Wp-
module map

X+
2 → V[1,2] (4.58)

u2 7→ |α1,2〉

and a Wp-module isomorphism X−p → V[2,p]. By the above maps and propo-
sition 24 there exits a non-trivial Wp-module map

X+
2 ⊗̇WpV[2,p] → V[1,2]⊗̇VLV[2,p] (4.59)

u2 ⊗ |α0,p〉 7→ |α1,2〉 ⊗ |α0,p〉 .

By proposition 33 there exits a VL-module isomorphism

V[1,2]⊗̇VLV[2,p] → V[2,p+1] = V[1,1] (4.60)

|α1,2〉 ⊗ |α0,p〉 7→ |α0,p+1〉 = |α−1,1〉 .

By concatenating these two maps we have constructed a non-trivial Wp-
module map

X+
2 ⊗̇WpX

−
p → V[1,1] . (4.61)

Also according to proposition 32 there exists a surjective Wp-module map

V[1,1] → X−p−1 (4.62)

|α−1,1〉 7→ v+p−1 .

Therefore there exists a non-trivial Wp-module map

X+
2 ⊗̇WpX

−
p → X−p−1 . (4.63)

Proof of step 5. In order to prove the rigidity of X+
2 , we need to consider

three fold products of X+
2 , which at this stage we can only compute for

p ≥ 4. We will therefore explain in detail how the proof of rigidity can be
reduced to analysing formal solutions of hypergeometric equations for p ≥ 4.
The advantage of this analysis is that it does not require us to explicitly
know the three fold fusion product of X+

2 and we can therefore also apply it
to p = 2, 3 once we have discussed p ≥ 4.

Until explicitly stated otherwise we will therefore assume that p ≥ 4.
Then we have proven that

X+
2 ⊗̇(X+

2 ⊗̇X+
2 ) ∼= (X+

2 ⊗̇X+
2 )⊗̇X+

2 = 2 ·X+
2 ⊕X+

4 . (4.64)
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The rigidity of X+
2 and self duality X+

2
∨

= X+
2 requires the existence of

Wp-module maps i : X+
1 → X+

2 ⊗̇X+
2 and e : X+

2 ⊗̇X+
2 → X+

1 , such that

X+
2
∼= X+

2 ⊗̇X+
1

X+
2
∼= X+

1 ⊗̇X+
2

X+
2 ⊗̇(X+

2 ⊗̇X+
2 )

(X+
2 ⊗̇X+

2 )⊗̇X+
2

f

e⊗̇id

id⊗̇i

αX+
2 ,X

+
2 ,X

+
2

(4.65)

and

X+
2
∼= X+

1 ⊗̇X+
2

X+
2
∼= X+

2 ⊗̇X+
1

(X+
2 ⊗̇X+

2 )⊗̇X+
2

X+
2 ⊗̇(X+

2 ⊗̇X+
2 )

g

id⊗̇e

i⊗̇id

α−1
X+

2 ,X
+
2 ,X

+
2

(4.66)

commute, where f = µ · idX+
2
, g = ν · idX+

2
for two non zero constants µ and

ν. We show that µ 6= 0, the case of ν is similar so we omit the proof.
We fix highest weight vectors us of X+

s for s = 1, 2, 3, such that X+
s [h+s ] =

Cus and u1 = Ω as in previous calculations. By the fusion products we have
computed so far we know that the spaces of vertex operators(

X+
2

X+
2 , X

+
s

)
,

(
X+

2

X+
s , X

+
2

)
,

(
X+
s

X+
2 , X

+
2

)
, (4.67)

are all one dimensional for s = 1, 3. We therefore fix non-trivial vertex
operators

Ψ2
2 s ∈

(
X+

2

X+
2 , X

+
s

)
, Ψ2

s 2 ∈
(

X+
2

X+
s , X

+
2

)
, Ψs

2 2 ∈
(

X+
s

X+
2 , X

+
2

)
. (4.68)

These vertex operators can be formally expanded as

Ψa
b c( ; z) =

∑
n∈Z

Ψa
b c;n( )z−n−(h

+
a +h

+
b −h

+
c ) , (4.69)

for appropriate choices of a, b and c, where

Ψa
b c;n ∈

⊕
k,`≥0

HomC(X+
a [h+a + k]⊗X+

b [h+b + `], X+
c [h+c + k + `− n]) . (4.70)
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This allows us to define four power series

Φ(1)
s (z4, z3, z2, z1) = 〈Ω| Ψ2

1 2(u2; z4) Ψ2
2 s(u2; z3) Ψ2

s 2(u2; z2) Ψ2
2 1(u2; z1)Ω〉

(4.71)

Φ(2)
s (z4, z3, z2, z1) = 〈Ω| Ψ2

1 2(u2; z4) Ψs
2 2( Ψ2

s 2(u2; z2 − z3)u2; z3) Ψ2
2 1(u2; z1)Ω〉 ,

for s = 1, 3. The power series Φ
(1)
s and Φ

(2)
s converge absolutely on the

domains

U (1) = {(z4, z3, z2, z1) ∈ (C∗)4 | |z4| > |z3| > |z2| > |z1| > 0} , (4.72)

U (2) = {(z4, z3, z2, z1) ∈ (C∗)4 | |z4| > |z3| > |z1| > 0, |z3| > |z2 − z3| > 0} ,

respectively and satisfy the partial differential equations

1. for n = −1, 0, 1

4∑
a=1

zna

(
za

∂

∂za
+ (n+ 1)h+2

)
Φ = 0 , (4.73)

2. for a = 1, 2, 3, 4 ∂2

∂z2a
− 1

p

4∑
b=1
b6=a

(
h+2

(zb − za)2
− 1

zb − za
∂

∂zb

)Φ = 0 . (4.74)

The solution space of these two sets of differential equations is two di-
mensional and the solutions define multivalued holomorphic functions on
(P)4 \ diagonals. Therefore Φ

(1)
s and Φ

(2)
s define bases of the solution space

of the above differential equations on the two domains U (1) and U (2) and it
is possible to analytically continue Φ

(1)
s to U (2) and vice versa. For a given

path γ from U (1) to U (2), Φ
(1)
s can be written as a linear combination of Φ

(2)
1

and Φ
(2)
3 . This defines a connection matrix(

Φ
(1)
1

Φ
(1)
3

)
=

(
a b
c d

)(
Φ

(2)
1

Φ
(2)
3

)
. (4.75)

Going along the path γ in the opposite direction one can express Φ2
s as a

linear combination of Φ
(1)
1 and Φ

(1)
3 with the inverse of the connection matrix

above (
Φ

(2)
1

Φ
(2)
3

)
=

(
a b
c d

)−1(
Φ

(1)
1

Φ
(1)
3

)
. (4.76)
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The constant µ, in f = µ·idX+
2

of diagram (4.65), being non-zero is equivalent

to Φ
(1)
1 having non-vanishing contributions from Φ

(2)
1 , i.e. a being non-zero.

Similarly ν is non-vanishing if Φ
(2)
1 has non-trivial contributions from Φ

(1)
1 ,

which is the case when d is non-zero.
The first set of differential equations (4.73) guarantees the covariance of

Φ
(a)
s with respect to Möbius transformations. Since Möbius transformations

act transitively on triples of pair wise distinct elements of P, we can fix three
of the arguments of Φ

(a)
s to uniquely determine

Φ(a)
s =

∏
1≤i<j≤4

(zi − zj)
2p−3
6p x

1
3 (1− x)

1
3H(a)

s (x) (4.77)

up to a function H
(a)
s (x) of the Möbius invariant cross ratio

x =
z4 − z3
z4 − z2

z1 − z2
z1 − z3

. (4.78)

See [33] for a wealth of examples regarding such computations. The functions

H
(1)
s (x) and H

(2)
s (x) are absolutely convergent on 1 > |x| > 0 and 1 >

|1− x| > 0 respectively. The second set of differential equations (4.74) arise
from the fact that the vertex operators above vanish upon inserting the null
vector

(L2
−1 − 1

p
L−2)u2 . (4.79)

The prefactors of H
(a)
s (x) in equation (4.77) have been chosen such that

the differential equation for H
(a)
s (x) induce by (4.73) is particularly simple.

Namely the well known hypergeometric equations

x(1− x)
d2

dx2
H(a)
s (x) + 2

p
(1− 2x)

d

dx
H(a)
s (x)− 3−p

p2
H(a)
s (x) = 0 . (4.80)

For a detailed list of solutions and all formulae we will be using see [37]. For

Φ
(1)
s which converges on U (1), H

(1)
s (x) is a power series in x, while for Φ

(2)
s

which converges on U (2), H
(2)
s (x) is a power series in 1− x

H
(1)
1 (x) = F2 1 (1

p
, 3−p

p
; 2
p
;x) , (4.81)

H
(1)
3 (x) = x

p−2
p F2 1 (p−1

p
, 1
p
; 2p−2

p
;x) ,

H
(2)
1 (x) = F2 1 (1

p
, 3−p

p
; 2
p
; 1− x) ,

H
(2)
3 (x) = (1− x)

p−2
p F2 1 (1

p
, p−1

p
; 2p−2

p
; 1− x) .
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To prove that Φ
(1)
1 has non-vanishing contributions from Φ

(2)
1 we continue

H
(1)
1 (x) along the path from 0 to 1 on the real line. The well known connection

formula for hypergeometric functions then yields

H
(1)
1 (x) =

1

2 cos π
p

H
(2)
1 (x) +

3− p
2− p

Γ(2
p
)2

Γ(1
p
)Γ(3

p
)
H

(2)
3 (x) , (4.82)

H
(2)
1 (x) =

1

2 cos π
p

H
(1)
1 (x) +

3− p
2− p

Γ(2
p
)2

Γ(1
p
)Γ(3

p
)
H

(1)
3 (x) .

And thus the rigidity of X+
2 for p ≥ 4 follows.

For p = 2, 3 the analysis is exactly the same. Specifying the domains
and codomains of the vertex operators is just a bit trickier. The resulting
differential equations are analogous however. For p = 3 we have shown so
far that

X+
2 ⊗̇X+

2 ⊗̇X+
2 = X+

2 ⊕ (X+
2 ⊗̇X+

3 ) (4.83)

and that there exits a surjective W3-module map

X+
2 ⊗̇X+

3 → X+
2 . (4.84)

Therefore the right exactness of the fusion product implies the existence of
a surjective W3-module map

X+
2 ⊗̇(X+

2 ⊗̇X+
3 )→ X+

1 ⊕X+
3 . (4.85)

The analysis above can therefore be repeated for p = 3 without any mod-
ifications. We consider the differential equations (4.73) and (4.74), Which
can again be simplified to the hypergeometric equation (4.80). Analysing the
connection formulae for p = 3 yields

H
(1)
1 (x) = H

(2)
1 (x) , (4.86)

thus proving the rigidity of X+
2 for p = 3.

For p = 2 the space of solutions for the hypergeometric equation

x(1− x)
d2

dx2
H(a)
s (x) + (1− 2x)

d

dx
H(a)
s (x)− 1

2
H(a)
s (x) = 0 (4.87)

is slightly more complicated than in the previous examples, because the poles
encountered at x = 0 and x = 1 are logarithmic. This implies that vertex
operators involved also contain logarithms. We will omit the details however
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since they are not important for solving the above differential equation. The
solutions H

(a)
s are given by

H
(1)
1 (x) = F2 1 (1

2
, 1
2
; 1;x) , (4.88)

H
(1)
3 (x) = F2 1 (1

2
, 1
2
; 1;x) log(x) +G(x) ,

H
(2)
1 (x) = F2 1 (1

2
, 1
2
; 1; 1− x) ,

H
(2)
3 (x) = F2 1 (1

2
, 1
2
; 1; 1− x) log(1− x) +G(1− x) ,

where G(x) is a power series with vanishing constant term that converges for
1 > |x|. The connection formulae for p = 2 yield

H
(1)
1 =

log(4)

π
H

(2)
1 (x)− 1

π
H

(2)
3 (x) , (4.89)

thus proving the rigidity of X+
2 for p = 2.

5 The rigidity of (Wp-mod, ⊗̇)

In the previous sections we proved that X−1 and X+
2 are rigid self dual objects

in Wp-mod. In this section we will exploit this fact to compute the fusion
product of X−1 and X+

2 with the projective modules P ε
s , 1 ≤ s < p, ε = ±,

allowing us to prove the rigidity of Wp-mod and ultimately compute the
fusion product on the set of all simple and all projective modules.

5.1 Fusion products between X−1 and X+
2 and projec-

tive modules

At first we prepare some more notation. For any object in Wp-mod we
denote by [Z : Xε

s ] the multiplicity of Xε
s in quotients Mi+1(Z)/Mi(Z) of the

Jordan-Hölder series (2.30) of Z Then we have

[Z : Xε
s ] = dimC Hom(P ε

s , Z) . (5.1)

We have established that

X+
2 ⊗̇Xε

s =


Xε

2 , s = 1
Xε
s−1 ⊕Xε

s+1 , 2 ≤ s ≤ p− 1
P ε
p−1 , s = p

(5.2)

X−1 ⊗̇Xε
s = X−εs , 1 ≤ s ≤ p .
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and that X−1 and X+
2 are self dual rigid objects. From the Jordan-Hölder

series of the projective modules we also know that

[P ε
s : Xσ

t ] = 2δ(s,ε),(t,σ) + 2δ(s,ε),(p−t,−σ) , 1 ≤ s < p (5.3)

[P ε
p : Xσ

t ] = δ(p,ε),(t,σ) .

So we have the following proposition.

Proposition 37. The fusion rules of X+
2 and X−1 with projective modules

are given by

X+
2 ⊗̇P µ

s =


P µ
2 ⊕ 2 · P−µp , s = 1
P µ
s−1 ⊕ P

µ
s+1 , 1 < s < p− 1

P µ
p−2 ⊕ 2 · P µ

p , s = p− 1
(5.4)

X−1 ⊗̇P µ
s = P−µs , 1 ≤ s ≤ p .

Proof. Because X−1 and X+
2 are rigid, their product with P δ

t is projective.
The most general ansatz for such a product is therefore

X⊗̇P δ
t =

p⊕
m=1

⊕
µ=±

Nm,µ · P µ
m , (5.5)

where X is either X−1 or X+
2 and Nm,µ ∈ Z is the multiplicity of P µ

m in X⊗̇P δ
t .

We can determine Nm,µ by recalling that a rigid object X and two arbitrary
objects A and B satisfy the relation

Hom(A,X⊗̇B) ∼= Hom(X∗⊗̇A,B) . (5.6)

Setting A to P δ
t and C to Xµ

m and calculating the dimensions of the spaces
of Wp-module maps in the equation above, we are lead to

Nm,µ = dim Hom(P σ
t , X⊗̇Xµ

m) = [X⊗̇Xµ
m : Xσ

t ] . (5.7)

We can easily calculate the multiplicities [X⊗̇Xµ
m : Xσ

t ] for X = X−1 , X
+
2

by considering the fusion products 35 and 36

[X−1 ⊗̇Xµ
m : Xδ

t ] = δ(t,δ),(m,−µ) (5.8)

[X+
2 ⊗̇Xµ

m : Xδ
t ] =


δ(2,+),(m,µ) + 2δ(p,δ),(m,−µ) t = 1
δ(t−1,δ),(m,µ) + δ(t+1,δ),(m,µ) 2 ≤ t ≤ p− 2
δ(p−2,δ),(m,µ) + 2δ(p,δ),(m,µ) t = p− 1
δ(p−1,δ),(m,µ) t = p

.

The proposition then follows directly by plugging in the multiplicities.
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5.2 Proving rigidity

We apply point 4 of proposition 19 to Wp-mod. Since all simple and all
projective Wp-modules appear in the fusion products of X−1 and X+

2 the
following proposition follows.

Proposition 38. For 1 ≤ s ≤ p, ε = ± the simple modules Xε
s and the

projective modules P ε
s are self-dual rigid objects in Wp-mod.

In Wp-mod all indecomposable objects M except the simple objects and
the projective objects satisfy exact sequences

0 −→ L −→M −→ N −→ 0 (5.9)

such that L and M are direct sums of simple objects. So finally we obtain
the rigidity of Wp-mod by applying point 5 of proposition 19.

Theorem 39. The weakly rigid monoidal category (Wp, ⊗̇, X+
1 ) is rigid. For

any object M in Wp-mod the dual M∨ is given by the contragredient M∗, i.e.
M∨ = M∗.

5.3 The ring structure of P (Wp) and K(Wp)

We see in theorems 35 and 36, that the fusion products of X−1 and X+
2 with

simple modules are direct sums of simple and projective modules. Because
all simple modules appear as direct summands of products of X−1 and X+

2 ,
the product of any two simple modules must also be a product of simple and
projective modules. Therefore because all the simple modules are rigid, the
fusion product closes on the set of all simple and all projective modules. In
this section we will compute the fusion product on this set.

We introduce the free abelian group P (Wp) of rank 4p− 2 generated by
all projective and all simple modules

P (Wp) =

p⊕
s=1

⊕
ε=±

Z[Xε
s ]P ⊕

p−1⊕
s=1

⊕
ε=±

Z[P ε
s ]P (5.10)

and the rank 2p Grothendieck group5

K(Wp) =

p⊕
s=1

⊕
ε=±

Z[Xε
s ]K (5.11)

5The Grothendieck group K(C) can be defined for any ablian category C. It is given
by free abelian group generated by all objects of C modulo the subgroup generated by all
formal differences M−L−N where L,M,N satisfy an exact sequence 0 −→ L −→M −→
N −→ 0. If the number of simple objects in the abelian category C is finite, then K(C) is
just the finite rank free abelian group generated by all simple objects.
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By the rigidity of Wp-mod and and the closure of the fusion product on
simple and projective modules

1. P (Wp) and K(Wp) have the structure of commutative rings.

2. The canonical projection π : P (Wp) → K(Wp) is a ring homomor-
phism.

By the above arguments the two operators

X = X+
2 ⊗̇− Y = X−1 ⊗̇− , (5.12)

define Z-linear endomorphisms of P (Wp) and K(Wp). Because the fusion
product is commutative, the two operators X and Y must also commute.
Thus by the two operators X and Y the polynomial ring Z[X, Y ] acts on
P (Wp) and K(Wp), i.e. P (Wp) and K(Wp) are modules over Z[X, Y ] and
the canonical projection π is a Z[X, Y ]-module map.

Before we begin analysing the action of Z[X, Y ] on P (Wp) we recall some
elementary facts about Chebyshev polynomials that will prove helpful.

Definition 40. We define elements Un(X), n = 0, 1, . . . in Z[X] recursively

U0(x) = 1 , U1(x) = x , (5.13)

Un+1(x) = xUn(x)− Un−1(x) ,

Remark 41. 1. The coefficient of the leading order of Un(X) is 1, i.e.

Un(X) = Xn + · · · ∈ Z[X], m = 0, 1, 2, . . . (5.14)

so we have

Z[X] =
∞⊕
n=0

ZUn(X) . (5.15)

2. The initial conditions and recursion relations of the polynomials Un(X)
are those of the Chebyshev polynomials of the second kind, though with
a non-standard choice of normalisation.

We define the Z[X, Y ]-module maps

ψ : Z[X, Y ]→ P (Wp) (5.16)

f(X, Y ) 7→ f(X, Y ) · [X+
1 ]P

ϕ : Z[X, Y ]→ K(Wp)

f(X, Y ) 7→ f(X, Y ) · [X+
1 ]K
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Theorem 42. The maps ψ and ϕ are surjective homomorphisms of commu-
tative rings and the kernels are given by the ideals

kerψ =
〈
Y 2 − 1, U2p−1(X)− 2Y Up−1(X)

〉
(5.17)

kerϕ =
〈
Y 2 − 1, Up(X)− Up−2(X)− 2Y

〉
.

Proof. Consider the fusion products

X+
2 ⊗̇X+

1 = X+
2 (5.18)

X+
2 ⊗̇X+

s = X+
s−1 ⊕X+

s+1 ,

for 1 < s < p. Formally this looks exactly like the recursion relations and
initial conditions (5.13) if one were to substitute X+

2 with X and X+
s with

Us−1(X). We can therefore write the generators of P (Wp) and K(Wp) cor-
responding to the simple modules X+

s , 1 ≤ s ≤ p as

[X+
s ]P = Us−1(X)[X+

1 ]P , [X+
s ]K = Us−1(X)[X+

1 ]K . (5.19)

Since the remaining simple modules X−s can be written as X−1 ⊗̇X+
s their

corresponding generators in P (Wp) and K(Wp) can be written as

[X−s ]P = Y Us−1(X)[X+
1 ]P , [X−s ]K = Y Us−1(X)[X+

1 ]K . (5.20)

Thus as a module over Z[X, Y ], K(Wp) is generated by [X+
1 ]K and ϕ is

therefore a surjective Z[X, Y ]-homomorphism.
Next we consider the fusion products

X2⊗̇X+
p = P+

p−1 (5.21)

X+
2 ⊗̇P+

s = P+
s−1 ⊕ P+

s+1 ,

for 1 < s < p. These imply that the generators of P (Wp) corresponding to
the projective modules P+

s , 1 ≤ s < p can be written as

[P+
s ]P = (U2p−1−s(X) + Us−1(X))[X+

1 ]P . (5.22)

Since the remaining projective modules P−s can be written as X−1 ⊗̇P+
s their

corresponding generators in P (Wp) can be written as

[P−s ]P = Y (U2p−1−s(X) + Us−1(X))[X+
1 ]P . (5.23)

Thus as a module over Z[X, Y ], P (Wp) is generated by [X+
1 ]P and ψ is

therefore a surjective Z[X, Y ]-homomorphism.
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We verify that the two ideals

I =
〈
Y 2 − 1, U2p−1(X)− 2Y Up−1(X)

〉
(5.24)

J =
〈
Y 2 − 1, Up(X)− Up−2(X)− 2Y

〉
.

are indeed the kernels of ψ and ϕ by showing that I and J lie in the kernels
and that the ranks of Z(X, Y )/I and Z(X, Y )/J are equal to the ranks of
P (Wp) and K(Wp). From the fusion product X−1 ⊗̇X−1 = X+

1 it follows that

(Y 2 − 1)[X+
1 ]P = 0 (Y 2 − 1)[X+

1 ]K = 0 . (5.25)

The left and right hand sides of X+
2 ⊗̇X+

p = P+
p−1 are given by the left and

right hand sides of

XUp−1(X)[X+
1 ]K = 2(Up−1(X) + Y )[X+

1 ]K (5.26)

respectively in K(Wp). By the recursion relations for Chebyshev polynomials
it therefore follows that

(Up(X)− Up−2(X)− 2Y )[X+
1 ]K = 0 (5.27)

Lastly by the left and right hand sides of the product X+
2 ⊗̇P+

1 = P+
2 ⊕ 2X−p

are given by the left and right hand sides of

X(U2p−2(X) + U0(X))[X+
1 ]P = (U2p−3 + U1(X) + 2Y Up−1(X))[X+

1 ]P
(5.28)

respectively in P (Wp). By the recursion relations for Chebyshev polynomials
it therefore follows that

(U2p−1(X)− 2Y Up−1(X))[X+
1 ]P = 0 . (5.29)

We write Z[X, Y ]/I and Z[X, Y ]/J out as free abelian groups to compute
their rank

Z[X, Y ]

I
=

Z[X]⊕ Z[X]Y

〈U2p−1(X)− 2Y Up−1(X)〉
=

2p−2⊕
i=0

ZX i ⊕
2p−2⊕
i=0

ZX iY (5.30)

Z[X, Y ]

J
=

Z[X]⊕ Z[X]Y

〈Up(X)− Up−2(X)− 2Y 〉
=

p−1⊕
i=0

ZX i ⊕
p−1⊕
i=0

ZX iY

and see that the ranks are 4p− 2 and 2p respectively.
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Theorem 43. The fusion products for all simple and all projective Wp-
modules are given by

Xµ
s ⊗̇Xν

t =

min{s+t−1,2p−1−s−t}⊕
i=|s−t|+1;2

Xµν
i ⊕

m⊕
i=2p+1−s−t;2

P µν
i (5.31)

Xµ
s ⊗̇P ν

t =

min{s+t−1,2p−1−s−t}⊕
i=|s−t|+1;2

P µν
i ⊕

m⊕
i=2p+1−(s+t));2

2 · P µν
i ⊕

m⊕
i=p+1−(s−t));2

2 · P−µνi

P µ
s ⊗̇P ν

t = 2 ·X+
s ⊗̇P+

t ⊕ 2 ·X−p−s⊗̇P+
t ,

where “; 2” indicates that the summation variable is incremented in steps of
2 and

m =

{
p for p− i even
p− 1 for p− i odd

. (5.32)

The product on the Grothendieck group induced by the fusion product is given
by

[Xµ
s ]K · [Xν

t ]K =

min{s+t−1,2p+1−s−t}∑
i=|s−t|+1;2

[Xµν
i ]K +

m̃∑
i=2p+3−s−t;2

2([Xµν
i ]K + [X−µνp−i ]K) , (5.33)

where

m =

{
p− 2 for p− i even
p− 1 for p− i odd

. (5.34)

Proof. The above fusion rules can be computed directly in Z[X, Y ] by using
multiplication formula for Chebyshev polynomials

Uk(x)Uj(x) =

k+j∑
i=|k−j|;2

Ui(x) (5.35)

and subsequently projecting onto P (Wp) or K(Wp). Note that the “;2” in the
subscript of the sum indicates that the summation variable k is incremented
in steps of 2.
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