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Abstract

We construct a two-parameter family of actions ωk,a of the Lie algebra sl(2,R) by
differential-difference operators on RN \ {0}. Here, k is a multiplicity-function for the
Dunkl operators, and a > 0 arises from the interpolation of the two sl(2,R) actions
on the Weil representation of Mp(N,R) and the minimal unitary representation of
O(N + 1, 2). We prove that this action ωk,a lifts to a unitary representation of the
universal covering of SL(2,R), and can even be extended to a holomorphic semigroup
Ωk,a. In the k ≡ 0 case, our semigroup generalizes the Hermite semigroup studied by R.
Howe (a = 2) and the Laguerre semigroup by the second author with G. Mano (a = 1).
One boundary value of our semigroup Ωk,a provides us with (k, a)-generalized Fourier
transforms Fk,a, which includes the Dunkl transform Dk (a = 2) and a new unitary
operator Hk (a = 1), namely a Dunkl–Hankel transform. We establish the inversion
formula, and a generalization of the Plancherel theorem, the Hecke identity, the Bochner
identity, and a Heisenberg uncertainty relation for Fk,a. We also find kernel functions
for Ωk,a and Fk,a for a = 1, 2 in terms of Bessel functions and the Dunkl intertwining
operator.
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1. Introduction

The classical Fourier transform is one of the most basic objects in analysis; it may be understood
as belonging to a one-parameter group of unitary operators on L2(RN ), and this group may even
be extended holomorphically to a semigroup (the Hermite semigroup) I(z) generated by the self-
adjoint operator ∆−‖x‖2. This is a holomorphic semigroup of bounded operators depending on a
complex variable z in the complex right half-plane, viz. I(z+w) = I(z)I(w). The structure of this
semigroup and its properties may be appreciated without any reference to representation theory,
whereas the link itself is rich as was revealed beautifully by R. Howe [How88] in connection with
the Schrödinger model of the Weil representation.

Our primary aim of this article is to give a foundation of the deformation theory of the classical
situation, by constructing a generalization Fk,a of the Fourier transform, and the holomorphic
semigroup Ik,a(z) with infinitesimal generator ‖x‖2−a∆k − ‖x‖a, acting on a concrete Hilbert
space deforming L2(RN ). Here ∆k is the Dunkl Laplacian (a differential-difference operator).
We analyze these operators Fk,a and Ik,a(z) in the context of integral operators as well as
representation theory.

The deformation parameters in our setting consist of a real parameter a coming from the
interpolation of the minimal unitary representations of two different reductive groups by keeping
smaller symmetries (see Diagram 1.4), and a parameter k coming from Dunkl’s theory of
differential-difference operators associated to a finite Coxeter group; also the dimension N and
the complex variable z may be considered as a parameter of the theory.

We point out, that already deformations with k = 0 are new and interpolate the minimal
representations of two reductive groups O0(N + 1, 2)∼ and Mp(N,R). Notice that these unitary
representations are generated by the ‘unitary inversion operator’ (= F0,a with a = 1, 2, up to
a scalar multiplication) together with an elementary action of the maximal parabolic subgroups
(see [KM07b] and [KM11, Introduction]).

This article establishes the foundation of these new operators. Our theorems on (k, a)-
generalized Fourier transforms Fk,a include:

– Plancherel and inversion formula (Theorems 5.1 and 5.3),
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– Bochner-type theorem (Theorem 5.21),

– Heisenberg’s uncertainty relation (Theorem 5.29),

– exchange of multiplication and differentiation (Theorem 5.6).

We think of the results and the methods here as opening potentially interesting studies such
as:

– characterization of ‘Schwartz space’ and Paley–Wiener type theorem,

– Strichartz estimates for Schrödinger and wave equations,

– Brownian motions in a Weyl chamber (cf. [GY06]),

– analogues of Clifford analysis for the Dirac operator (cf. [ØSS09]),

working with deformations of classical operators.

In the diagram below we have summarized some of the deformation properties by indicating
the limit behaviour of the holomorphic semigroup Ik,a(z); it is seen how various previous integral
transforms fit in our picture. In particular we obtain as special cases the Dunkl transform Dk

[Dun92] (a = 2, z = πi
2 and k arbitrary), the Hermite semigroup I(z) [Fol89, How88] (a = 2,

k ≡ 0 and z arbitrary), and the Laguerre semigroup [KM05, KM07a] (a = 1, k ≡ 0 and z
arbitrary). Our framework gives a new treatment even on the theory of the Dunkl transform.

The ‘boundary value’ of the holomorphic semigroup Ik,a(z) from Re z > 0 to the imag-
inary axis gives rise to a one-parameter subgroup of unitary operators. The underlying idea
may be interpreted as a descendent of Sato’s hyperfunction theory [Sat59] and also that of the
Gelfand–Gindikin program [GG77, HN00, Ols81, Sta86] for unitary representations of real re-
ductive groups. The specialization Ik,a(

πi
2 ) will be our (k, a)-generalized Fourier transform Fk,a

(up to a phase factor), which reduces to the Fourier transform (a = 2 and k ≡ 0), the Dunkl
transform Dk (a = 2 and k arbitrary), and the Hankel transform (a = 1 and k ≡ 0).

Yet another specialization is to take N = 1. This very special case contains (after some change
of variables) the results on the L2-model of the highest weight representations of the universal
covering group of SL(2,R), which was obtained by B. Kostant [Kos00] and R. Rao [Rao77] by
letting sl2 act as differential operators on the half-line (see Remark 3.32).

The secondary aim of this article is to contribute to the theory of special functions, in par-
ticular orthogonal polynomials; indeed we derive several new identities, for example, the (k, a)-
deformation of the classical Hecke identity (Corollary 5.20) where the Gaussian function and
harmonic polynomials in the classical setting are replaced respectively with exp(− 1

a‖x‖a) and
polynomials annihilated by the Dunkl Laplacian. Another example is the identity (4.41), which
expresses an infinite sum of products of Bessel functions and Gegenbauer functions as a single
Bessel function.

In the rest of the Introduction we describe a little more the contents of this article.

In Sections 1.1 and 1.2, without any reference to representation theory, we discuss our holo-
morphic semigroup Ik,a(z) and (k, a)-generalized Fourier transforms Fk,a as a two-parameter
deformation of the classical objects, i.e. the Hermite semigroup and the Euclidean Fourier trans-
form.

In Section 1.3, we introduce the basic machinery of the present article, namely, to construct
triples of differential-difference operators generating the Lie algebra of SL(2,R), and see how
they are integrated to unitary representations of the universal covering group.

One further aspect of our constructions is the link to minimal unitary representations. For
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S. Ben Säıd, T. Kobayashi and B. Ørsted

the specific two parameters (a, k) = (1, 0) and (2, 0), we are really working with representations
of much larger semisimple groups, and our deformation is interpolating the representation spaces
for the minimal representations of two different groups. We highlight these hidden symmetries
in Section 1.4.

Let us also note that there is in our theory a natural appearance of some symmetries of the
double degeneration of the double affine Hecke algebra (sometimes called the rational Cherednik
algebra), see Section 5.6. Here a = 2 and k arbitrary, and in particular, we recover the Dunkl
transform.

(k, a)-generalized Fourier transform Fk,a

a→2 a→1

xz→πi
2

(k, a)-generalized Laguerre semigroup Ik,a(z)

a→2

←−−
−−−
−−−
− −−−−−−−−−→

a→1

Ik,2(z) Ik,1(z)

z→πi
2

←−
−−
− −−−−→k→0 k→0

←−
−−
− −−−−→z→

πi
2

Dunkl transform Dk

[Dun89]
Hermite semigroup I(z)

[Fol89, How88]
Laguerre semigroup

[KM07a]
Hk

(see (5.1))

k→0

−−−−→ ←−
−−
−

z→πi
2

z→πi
2

−−−−→ ←−
−−
−

k→0

Fourier transform Hankel transform

..
..

..
.

⇐ ‘unitary inversion operator’ ⇒

..
..

..
.

the Weil representation of
the metaplectic group Mp(N,R)

the minimal representation of
the conformal group O(N + 1, 2)

Diagram 1. Special values of holomorphic semigroup Ik,a(z)

1.1 Holomorphic semigroup Ik,a(z) with two parameters k and a

Dunkl operators are differential-difference operators associated to a finite reflection group on
the Euclidean space. They were introduced by C. Dunkl [Dun89]. This subject was motivated
partly from harmonic analysis on the tangent space of the Riemannian symmetric spaces, and
resulted in a new theory of non-commutative harmonic analysis ‘without Lie groups’. The Dunkl
operators are also used as a tool for investigating an algebraic integrability property for the
Calogero–Moser quantum problem related to root systems [Hec91]. We refer to [Dun08] for the
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up-to-date survey on various applications of Dunkl operators.

Our holomorphic semigroup Ik,a(z) is built on Dunkl operators. To fix notation, let C be the
Coxeter group associated with a root system R in RN . For a C-invariant real function k ≡ (kα)
(multiplicity function) on R, we write ∆k for the Dunkl Laplacian on RN (see (2.10)).

We take a > 0 to be a deformation parameter, and introduce the following differential-
difference operator

∆k,a := ‖x‖2−a∆k − ‖x‖a. (1.1)

Here, ‖x‖ is the norm of the coordinate x ∈ RN , and ‖x‖a in the right-hand side of the formula
stands for the multiplication operator by ‖x‖a. Then, ∆k,a is a symmetric operator on the Hilbert
space L2(RN , ϑk,a(x)dx) consisting of square integrable functions on RN against the measure
ϑk,a(x)dx, where the density function ϑk,a(x) on RN is given by

ϑk,a(x) := ‖x‖a−2
∏

α∈R

|〈α, x〉|kα . (1.2)

Then ϑk,a(x) has a degree of homogeneity a− 2 + 2〈k〉, where 〈k〉 := 1
2

∑
α∈R kα is the index of

k = (kα) (see (2.3)).

The (k, a)-generalized Laguerre semigroup Ik,a(z) is defined to be the semigroup with in-
finitesimal generator 1

a∆k,a, that is,

Ik,a(z) := exp
(z
a
∆k,a

)
, (1.3)

for z ∈ C such that Re z > 0. (Later, we shall use the notation Ik,a(z) = Ωk,a(γz), in connection
with the Gelfand–Gindikin program.)

In the case a = 2 and k ≡ 0, the density ϑk,a(x) reduces to ϑ0,2(x) ≡ 1 and we recover the
classical setting where

∆0,2 =

N∑

j=1

∂2

∂x2
j

−
N∑

j=1

x2
j , the Hermite operator on L2(RN ),

I0,2(z) = the Hermite semigroup I(z) ([Fol89, How88]).

In this article, we shall deal with a positive a and a non-negative multiplicity function k for
simplicity, though some of our results still hold for “slightly-negative” multiplicity functions (see
Remark 2.3). We begin with:

Theorem A (see Corollary 3.22). Suppose a > 0 and a non-negative multiplicity function k
satisfy a+ 2〈k〉 +N − 2 > 0. Then,

1) ∆k,a extends to a self-adjoint operator on L2(RN , ϑk,a(x)dx).

2) There is no continuous spectrum of ∆k,a.

3) All the discrete spectra are negative.

We also find all the discrete spectra explicitly in Corollary 3.22.

Turning to the (k, a)-generalized Laguerre semigroup Ik,a(z) (see (1.3)), we shall prove:

Theorem B (see Theorem 3.39). Retain the assumptions of Theorem A.

1) Ik,a(z) is a holomorphic semigroup in the complex right-half plane {z ∈ C : Re z > 0} in the
sense that Ik,a(z) is a Hilbert–Schmidt operator on L2(RN , ϑk,a(x)dx) satisfying

Ik,a(z1) ◦Ik,a(z2) = Ik,a(z1 + z2), (Re z1,Re z2 > 0),
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and that the scalar product (Ik,a(z)f, g) is a holomorphic function of z for Re z > 0, for any
f, g ∈ L2(RN , ϑk,a(x)dx).

2) Ik,a(z) is a one-parameter group of unitary operators on the imaginary axis Re z = 0.

In Section 4.3, we shall introduce a real analytic function I (b, ν;w; cosϕ) in four variables
defined on {(b, ν, w, ϕ) ∈ R+ × R× C× R/2πZ : 1 + bν > 0}. The special values at b = 1, 2 are
given by

J (1, ν;w; t) = ewt, (1.4)

J (2, ν;w; t) = Γ(ν +
1

2
)Ĩν− 1

2

(w(1 + t)1/2

√
2

)
. (1.5)

Here, Ĩλ(z) = ( z
2 )−λIλ(z) is the (normalized) modified Bessel function of the first kind (simply,

I-Bessel function). We notice that these are positive-valued functions of t if w ∈ R.

We then define the following continuous function of t on the interval [−1, 1] with parameters
r, s > 0 and z ∈ {z ∈ C | Re z > 0} \ iπZ by

hk,a(r, s; z; t) =
exp

(
− 1

a (ra + sa) coth(z)
)

sinh(z)
2〈k〉+N+a−2

a

J

(
2

a
,
2〈k〉 +N − 2

2
;

2(rs)
a
2

a sinh(z)
; t

)
,

where 〈k〉 = 1
2

∑
α∈R kα (see (2.3)).

For a function h(t) of one variable, let (Ṽkh)(x, y) be a k-deformation of the function h(〈x, y〉)
on RN × RN . (This k-deformation is defined by using the Dunkl intertwining operator Vk, see
(2.6)).

In the polar coordinates x = rω and y = sη, we set

Λk,a(x, y; z) = Ṽk

(
hk,a(r, s; z; ·)

)
(ω, η).

For a > 0 and a non-negative multiplicity function k, we introduce the following normalization
constant

ck,a := (

∫

RN

exp

(
−1

a
‖x‖a

)
ϑk,a(x)dx)

−1. (1.6)

The constant ck,a can be expressed in terms of the gamma function owing to the work by Selberg,
Macdonald, Heckman, Opdam [Opd93], and others (see Etingof [Eti09] for a uniform proof).

Here is an integration formula of the holomorphic semigroup Ik,a(z).

Theorem C (see Theorem 4.23). Suppose a > 0 and k is a non-negative multiplicity function.
Suppose Re z > 0 and z /∈ iπZ. Then, Ik,a(z) = exp( z

a∆k,a) is given by

Ik,a(z)f(x) = ck,a

∫

RN

f(y)Λk,a(x, y; z)ϑk,a(y)dy. (1.7)

The formula (1.7) generalizes the k ≡ 0 case; see Kobayashi–Mano [KM07a] for (k, a) = (0, 1),
and the Mehler kernel formula in Folland [Fol89] or Howe [How88] for (k, a) = (0, 2).

1.2 (k, a)-generalized Fourier transforms Fk,a

As we mentioned in Theorem B 2), the ‘boundary value’ of the (k, a)-generalized Laguerre semi-
group Ik,a(z) on the imaginary axis gives a one-parameter family of unitary operators. The case

6



Laguerre semigroup and Dunkl operators

z = 0 gives the identity operator, namely, Ik,a(0) = id. The particularly interesting case is when
z = πi

2 , and we set

Fk,a := cIk,a

(πi
2

)
= c exp

(πi
2a

(‖x‖2−a∆k − ‖x‖a)
)

by multiplying the phase factor c = ei π
2
(
2〈k〉+N+a−2

a
) (see (5.2)). Then, the unitary operator Fk,a

for general a and k satisfies the following significant properties:

Theorem D (see Proposition 3.35 and Theorem 5.6). Suppose a > 0 and k is a non-negative
multiplicity function such that a+ 2〈k〉+N − 2 > 0.

1) Fk,a is a unitary operator on L2(RN , ϑk,a(x)dx).

2) Fk,a ◦ E = −(E +N + 2〈k〉+ a− 2) ◦Fk,a.

Here, E =
∑N

j=1 xj∂j.

3) Fk,a ◦ ‖x‖a = −‖x‖2−a∆k ◦Fk,a,
Fk,a ◦ (‖x‖2−a∆k) = −‖x‖a ◦Fk,a.

4) Fk,a is of finite order if and only if a ∈ Q. Its order is 2p if a is of the form a = p
q , where p

and q are positive integers that are relatively prime.

We call Fk,a a (k, a)-generalized Fourier transform on RN . We note that Fk,a reduces to the
Euclidean Fourier transform F if k ≡ 0 and a = 2; to the Hankel transform if k ≡ 0 and a = 1;
to the Dunkl transform Dk introduced by C. Dunkl himself in [Dun92] if k > 0 and a = 2.

For a = 2, our expressions of Fk,a amount to:

F = e
πiN

4 exp
πi

4
(∆− ‖x‖2) (Fourier transform),

Dk = e
πi(2〈k〉+N)

4 exp
πi

4
(∆k − ‖x‖2) (Dunkl transform).

For a = 1 and k ≡ 0, the unitary operator

F0,1 = e
πi(N−1)

2 exp
(πi

2
‖x‖(∆ − 1)

)

arises as the unitary inversion operator of the Schrödinger model of the minimal representation of
the conformal group O(N +1, 2) (see [KM05, KM07a]). Its Dunkl analogue, namely, the unitary
operator Fk,a for a = 1 and k > 0 seems also interesting, however, it has never appeared in the
literature, to the best of our knowledge. The integral representation of this unitary operator,

Hk := Fk,1 = ei
π
2
(2〈k〉+N−1)Ik,1

(πi
2

)
= ei

π
2
(2〈k〉+N−1) exp

(πi
2
‖x‖(∆k − 1)

)
,

is given in terms of the Dunkl intertwining operator and the Bessel function due to the closed
formula of I (b, ν;w; t) at b = 2 (see (1.5)).

On the other hand, our methods can be applied to general k and a in finding some basic
properties of the (k, a)-generalized Fourier transform Fk,a such as the inversion formula, the
Plancherel theorem, the Hecke identity (Corollary 5.20), the Bochner identity (Theorem 5.21),
and the following Heisenberg inequality (Theorem 5.29):

Theorem E (Heisenberg type inequality). Let ‖ ‖k denote by the norm on the Hilbert space
L2(RN , ϑk,a(x)dx). Then,

∥∥∥ ‖x‖
a
2 f(x)

∥∥∥
k

∥∥∥ ‖ξ‖
a
2 Fk,af(ξ)

∥∥∥
k

>
2〈k〉+N + a− 2

2
‖f(x)‖2k

7



S. Ben Säıd, T. Kobayashi and B. Ørsted

for any f ∈ L2(RN , ϑk,a(x)dx). The equality holds if and only if f is a scalar multiple of
exp(−c‖x‖a) for some c > 0.

This inequality was previously proved by Rösler [Rös99b] and Shimeno [Shi01] for the a = 2
case (i.e. the Dunkl transform Dk). In physics terms we may think of the function where the
equality holds in Theorem E as a ground state; indeed when a = c = 1, N = 3, and k ≡ 0 it is
exactly the wave function for the Hydrogen atom with the lowest energy.

1.3 sl2-triple of differential-difference operators

Over the last several decades, various works have been published that develop applications of
the representation theory of the special linear group SL(2,R). We mention particularly the
books of Lang [Lan85] and Howe–Tan [HT92], and the research papers of Vergne [Ver79] and
Howe [How80]. These and other contributions show how the symmetries of sl2 can offer new
perspectives on familiar topics from inside and outside representation theory (character formulas,
ergodic theory, Fourier analysis, the Laplace equation, etc.).

The basic tool for the present article is also the SL2 theory. We construct an sl2-triple of
differential-difference operators with two parameters k and a, and then apply representation

theory of ˜SL(2,R), the universal covering group of SL(2,R). The resulting representation is a
discretely decomposable unitary representation in the sense of [Kob98], which depends continu-
ously on parameters a and k.

To be more precise, we introduce the following differential-difference operators on RN \ {0}
by

E+
k,a :=

i

a
‖x‖a, E−

k,a :=
i

a
‖x‖2−a∆k, Hk,a :=

2

a

N∑

i=1

xi∂i +
N + 2〈k〉+ a− 2

a
.

With these operators, we have

a∆k,a = i (E+
k,a − E−

k,a).

The main point here is that our operator ∆k,a can be interpreted in the framework of the (infinite
dimensional) representation of the Lie algebra sl(2,R):

Lemma F (see Theorem 3.2). The differential-difference operators {Hk,a,E
+
k,a,E

−
k,a} form an

sl2-triple for any multiplicity-function k and any non-zero complex number a.

In other words, taking a basis of sl(2,R) as

e+ =

(
0 1
0 0

)
, e− =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
,

we get a Lie algebra representation ωk,a of g = sl(2,R) with continuous parameters k and a on
functions on RN by mapping

h 7→ Hk,a, e+ 7→ E+
k,a, e− 7→ E−

k,a.

The main result of Section 3 is to prove that the representation ωk,a of sl(2,R) lifts to the

universal covering group ˜SL(2,R):

Theorem G (see Theorem 3.30). If a > 0 and k is a non-negative multiplicity function such that

a+2〈k〉+N−2 > 0, then ωk,a lifts to a unitary representation of ˜SL(2,R) on L2(RN , ϑk,a(x)dx).
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Theorem G fits nicely into the framework of discretely decomposable unitary representa-
tions [Kob98, Kob00]. In fact, we see in Theorem 3.31 that the Hilbert space L2(RN , ϑk,a(x)dx)
decomposes discretely as a direct sum of unitary representations of the direct product group

C× ˜SL(2,R):

L2(RN , ϑk,a(x)dx) '
∞∑⊕

m=0

H m
k (RN )∣∣SN−1

⊗ π
(2m+ 2〈k〉+N − 2

a

)
, (1.8)

where H m
k (RN ) stands for the representation of the Coxeter group C on the eigenspace of the

Dunkl Laplacian (the space of spherical k-harmonics of degree m) and π(ν) is an irreducible

unitary lowest weight representation of ˜SL(2,R) of weight ν + 1 (see Fact 3.27). The unitary
isomorphism (1.8) is constructed explicitly by using Laguerre polynomials.

For general N > 2, the right-hand side of (1.8) is an infinite sum. For N = 1, (1.8) is reduced
to the sum of two terms (m = 0, 1).

The unitary representation of ˜SL(2,R) on L2(RN , ϑk,a(x)dx) extends furthermore to a holo-
morphic semigroup of a complex three dimensional semigroup (see Section 3.8). Basic properties
of the holomorphic semigroup Ik,a(z) defined in (1.3) and the unitary operator Fk,a can be read
from the ‘dictionary’ of sl(2,R) as follows:

i

(
0 1
−1 0

)
←→ 1

a
∆k,a

exp iz

(
0 1
−1 0

)
←→ Ik,a(z) = exp(

z

a
∆k,a)

w0 = exp
π

2

(
0 −1
1 0

)
←→ Fk,a (up to the phase factor)

Ad(w0)e
+ = e− ←→ Fk,a ◦ ‖x‖a = −‖x‖2−a∆kFk,a

Ad(w0)e
− = e+ ←→ Fk,a ◦ ‖x‖2−a∆k = −‖x‖aFk,a.

1.4 Hidden symmetries for a = 1 and 2

As we have seen in Section 1.1, one of the reasons that we find an explicit formula for the
holomorphic semigroup Ik,a(z) (and for the unitary operator Fk,a) (see Section 1.1) is that
there are large ‘hidden symmetries’ on the Hilbert space when a = 1 or 2.

We recall that our analysis is based on the fact that the Hilbert space L2(RN , ϑk,a(x)dx)

has a symmetry of the direct product group C× ˜SL(2,R) for all k and a. It turns out that this
symmetry becomes larger for special values of k and a. In this subsection, we discuss these hidden
symmetries.

First, in the case k ≡ 0, the Dunkl Laplacian ∆k becomes the Euclidean Laplacian ∆, and
consequently, not only the Coxeter group C but also the whole orthogonal group O(N) commutes

with ∆k ≡ ∆. Therefore, the Hilbert space L2(RN , ϑ0,a(x)dx) is acted on by O(N) × ˜SL(2,R).
Namely, it has a larger symmetry

C× ˜SL(2,R) ⊂ O(N)× ˜SL(2,R).

Next, we observe that the Lie algebra of the direct product group O(N)× ˜SL(2,R) may be

9
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seen as a subalgebra of two different reductive Lie algebras sp(N,R) and o(N + 1, 2):

o(N) ⊕ sl(2,R) ' o(N)⊕ o(1, 2) ⊂ o(N + 1, 2)

o(N) ⊕ sl(2,R) ' o(N)⊕ sp(1,R) ⊂ sp(N,R)

It turns out that they are the hidden symmetries of the Hilbert space L2(RN , ϑ0,a(x)dx) for
a = 1, 2, respectively. To be more precise, the conformal group O(N + 1, 2)0 (or its double
covering group if N is even) acts on L2(RN , ϑ0,1(x)dx) = L2(RN , ‖x‖−1dx) as an irreducible
unitary representation, while the metaplectic group Mp(N,R) (the double covering group of the
symplectic group Sp(N,R)) acts on L2(RN , ϑ0,2(x)dx) = L2(RN , dx) as a unitary representation.

In summary, we are dealing with the symmetries of the Hilbert space L2(RN , ϑk,a(x)dx)
described below:

O(N + 1, 2)

a → 1

−−
−−
→

C× ˜SL(2,R)
k→0−−−−→ O(N)× ˜SL(2,R)

(k, a: general)
−−−−→

Mp(N,R)

a → 2

Diagram 1.4. Hidden symmetries in L2(RN , ϑk,a(x)dx)

For a = 2, this unitary representation is nothing but the Weil representation, sometimes re-
ferred to as the Segal–Shale–Weil representation, the metaplectic representation, or the oscillator
representation, and its realization on L2(RN ) is called the Schrödinger model.

For a = 1, the unitary representation of the conformal group on L2(RN , ‖x‖−1dx) is irre-
ducible and has a similar nature to the Weil representation. The similarity is illustrated by the
fact that both of these unitary representations are ‘minimal representations’, i.e., their annihila-
tor of the infinitesimal representations are the Joseph ideal of the universal enveloping algebras,
and in particular, they attain the minimum of their Gelfand–Kirillov dimensions.

In this sense, our continuous parameter a > 0 interpolates two minimal representations
of different reductive groups by keeping smaller symmetries (i.e. the representations of O(N) ×

˜SL(2,R)). The (k, a)-generalized Fourier transform Fk,a plays a special role in the global formula
of the L2-model of minimal representations. In fact, the conformal group O(N+1, 2) is generated
by a maximal parabolic subgroup (essentially, the affine conformal group for the Minkowski space
RN,1) and the inversion element IN+1,2 = diag(1, . . . , 1,−1,−1). Likewise, the metaplectic group
Mp(N,R) is generated by the Siegel parabolic subgroup and the conformal inversion element.
Since the maximal parabolic subgroup acts on the L2-model on the minimal representation, we
can obtain the global formula of the whole group if we determine the action of the inversion
element. For the Weil representation, this crucial action is nothing but the Euclidean Fourier
transform (up to the phase factor), and it is the Hankel transform for the minimal representation
of the conformal group O(N +1, 2) (see [KM05], see also [KM07b] and [KM11, Introduction] for
some perspectives of this direction in a more general setting).

10



Laguerre semigroup and Dunkl operators

A part of the results here has been announced in [BKØ09] without proof.

Notation N = {0, 1, 2, . . . }, N+ = {1, 2, 3, . . . }, R+ = {x ∈ R | x > 0}, and R>0 = {t ∈ R :
t > 0}.

2. Preliminary results on Dunkl operators

2.1 Dunkl operators

Let 〈·, ·〉 be the standard Euclidean scalar product in RN . We shall use the same notation for its
bilinear extension to CN × CN . For x ∈ RN , denote by ‖x‖ = 〈x, x〉1/2.

For α ∈ RN \{0}, we write rα for the reflection with respect to the hyperplane 〈α〉⊥ orthogonal
to α defined by

rα(x) := x− 2
〈α, x〉
‖α‖2 α, x ∈ RN .

We say a finite set R in RN \ {0} is a (reduced) root system if:

(R1) rα(R) = R for all α ∈ R,

(R2) R ∩ Rα = {±α} for all α ∈ R.

In this article, we do not impose crystallographic conditions on the roots, and do not require
that R spans RN . However, we shall assume R is reduced, namely, (R2) is satisfied.

The subgroup C ⊂ O(N,R) generated by the reflections {rα | α ∈ R} is called the finite
Coxeter group associated with R. The Weyl groups such as the symmetric group SN for the
type AN−1 root system and the hyperoctahedral group for the type BN root system are typical
examples. In addition, H3,H4 (icosahedral groups) and I2(n) (symmetry group of the regular
n-gon) are also the Coxeter groups. We refer to [Hum90] for more details on the theory of Coxeter
groups.

Definition 2.1. A multiplicity function for C is a function k : R → C which is constant on
C-orbits.

Setting kα := k(α) for α ∈ R, we have khα = kα for all h ∈ C from definition. We say k
is non-negative if kα > 0 for all α ∈ R. The C-vector space of multiplicity functions on R is
denoted by K . The dimension of K is equal to the number of C-orbits in R.

For ξ ∈ CN and k ∈ K , Dunkl [Dun89] introduced a family of first order differential-difference
operators Tξ(k) (Dunkl’s operators) by

Tξ(k)f(x) := ∂ξf(x) +
∑

α∈R+

kα〈α, ξ〉
f(x)− f(rαx)

〈α, x〉 , f ∈ C1(RN ). (2.1)

Here ∂ξ denotes the directional derivative corresponding to ξ. Thanks to the C-invariance of the
multiplicity function, this definition is independent of the choice of the positive subsystem R+.
The operators Tξ(k) are homogeneous of degree −1. Moreover, the Dunkl operators satisfy the
following properties (see [Dun89]):

(D1) L(h) ◦ Tξ(k) ◦ L(h)−1 = Thξ(k) for all h ∈ C,

(D2) Tξ(k)Tη(k) = Tη(k)Tξ(k) for all ξ, η ∈ RN ,

11
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(D3) Tξ(k)[fg] = gTξ(k)f + fTξ(k)g if f and g are in C1(RN ) and at least one of them is
C-invariant.

Here, we denote by L(h) the left regular action of h ∈ C on the function space on RN :

(L(h)f)(x) := f(h−1 · x).
Remark 2.2. The Dunkl Laplacian arises as the radial part of the Laplacian on the tangent
space of a Riemannian symmetric spaces. Let g be a real semisimple Lie algebra with Cartan
decomposition g = k⊕p. We take a maximal abelian subspace a in p, and let Σ(g, a) be the set of
restricted roots, and mα the multiplicity of α ∈ Σ(g, a). We may consider Σ(g, a) to be a subset of
a by means of the Killing form of g. The Killing form endows p with a flat Riemannian symmetric
space structure, and we write ∆p for the (Euclidean) Laplacian on p. Put R := 2Σ(g, a) and
kα := 1

2

∑
β∈Σ+∩Rαmβ. We note that the root system R is not necessarily reduced. Then the

radial part of ∆p, denoted by Rad(∆p), (see [Hel84, Proposition 3.13]) is given by

Rad(∆p)f = ∆kf

for every C-invariant function f ∈ C∞(a), where ∆k is the Dunkl Laplacian which will be defined
in (2.10).

Remark 2.3. Some of our results still hold for “slightly-negative” multiplicity functions. For
instance, when kα = k for all α ∈ R, we may relax the assumption k > 0 by k > − 1

dmax

where dmax is the largest fundamental degree of the Coxeter group C (see [Eti09, Theorem
3.1]). However, for simplicity, we will restrict ourselves to non-negative multiplicity functions
k = (kα)α∈R .

Let ϑk be the weight function on RN defined by

ϑk(x) :=
∏

α∈R+

|〈α, x〉|2kα , x ∈ RN . (2.2)

It is C-invariant and homogeneous of degree 2〈k〉, where the index 〈k〉 of the multiplicity function
k is defined as

〈k〉 :=
∑

α∈R+

kα =
1

2

∑

α∈R

kα. (2.3)

Let dx be the Lebesgue measure on RN with respect to the inner product 〈 , 〉. Then the Dunkl
operators are skew-symmetric with respect to the measure ϑk(x)dx (see [Dun89]). In particular,
if f and g are differentiable and one of them has compact support, then

∫

RN

(Tξ(k)f)(x)g(x)ϑk(x)dx = −
∫

RN

f(x)(Tξ(k)g)(x)ϑk(x)dx. (2.4)

It is shown in [Dun91] that for any non-negative root multiplicity function k there is a
unique linear isomorphism Vk (Dunkl’s intertwining operator) on the space P(RN ) of polynomial
functions on RN such that:

(I1) Vk(Pm(RN )) = Pm(RN ) for all m ∈ N,

(I2) Vk |P0(RN ) = id,

(I3) Tξ(k)Vk = Vk∂ξ for all ξ ∈ RN .

Here, Pm(RN ) denotes the space of homogeneous polynomials of degree m. It is known that Vk

induces a homeomorphism of C(RN) and also that of C∞(RN ) (cf. [Tri02]). See also [DJO94] for
more results on Vk for C-valued multiplicity functions on R.

12
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For arbitrary finite reflection group C, and for any non-negative multiplicity function k, Rösler
[Rös99a] proved that there exists a unique positive Radon probability-measure µk

x on RN such
that

Vkf(x) =

∫

RN

f(ξ)dµk
x(ξ). (2.5)

The measure µk
x depends on x ∈ RN and its support is contained in the ball B(‖x‖) := {ξ ∈

RN | ‖ξ‖ 6 ‖x‖}. Moreover, for any Borel set S ⊂ RN , g ∈ C and r > 0, the following invariant
property holds:

µk
x(S) = µk

gx(gS) = µk
rx(rS).

In view of the Laplace type representation (2.5), Dunkl’s intertwining operator Vk can be ex-
tended to a larger class of spaces. For example, let B denote the closed unit ball in RN . Then
the support property of µk

x leads us to the following:

Lemma 2.4. For any R > 0, Vk induces a continuous endomorphism of C(B(R)).

Proof. Let f ∈ C(B(R)). We extend f to be a continuous function f̃ on RN . Then, Vkf̃ is given
by the integral

Vkf̃(x) =

∫

RN

f̃(ξ)dµk
x(ξ).

Suppose now x ∈ B(R). Then Suppµk
x ⊂ B(‖x‖) ⊂ B(R). Hence, (Vk f̃)|B(R) is determined by

the restriction f = f̃ |B(R). Thus, the correspondence f 7→ (Vkf̃)|B(R) is well-defined, and we get
an induced linear map Vk: C(B(R))→ C(B(R)), by using the same letter.

Next, suppose a sequence fj ∈ C(B(R)) converges uniformly to f ∈ C(B(R)) as j → ∞.

Then we can extend fj to a continuous function f̃j on RN such that f̃j converges to f̃ on every

compact set on RN . Hence Vkf̃j converges to Vkf̃ , and so does Vkfj to Vkf .

For a continuous function h(t) of one variable, we set

hy(·) := h(〈·, y〉) (y ∈ RN ),

and define

(Ṽkh)(x, y) := (Vkhy)(x) =

∫

RN

h(〈ξ, y〉)dµk
x(ξ). (2.6)

Then, (Ṽkh)(x, y) is a continuous function on (x, y) ∈ RN × RN .

We note that if k ≡ 0 then

(Ṽ0h)(x, y) = h(〈x, y〉).

If h(t) is defined only near the origin, we can still get a continuous function (Ṽkh)(x, y) as far
as |〈x, y〉| is sufficiently small. To be more precise, we prepare the following proposition for later
purpose. For simplicity, we write B for the unit ball B(1) in RN .

Proposition 2.5. Suppose h(t) is a continuous function on the closed interval [−1, 1]. Then,
(Ṽkh)(x, y) is a continuous function on B ×B. Further, Ṽkh satisfies

‖Ṽkh‖L∞(B×B) 6 ‖h‖L∞([−1,1]) (2.7)

(Ṽkh)(x, y) = (Ṽkh)(y, x). (2.8)
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Proof. We extend h to a continuous function h̃ on R. It follows from Lemma 2.4 that the values
(Ṽkh̃)(x, y) for (x, y) satisfying |〈x, y〉| 6 1 are determined by the restriction h = h̃|[−1,1]. Hence,

(Ṽkh)(x, y) := (Ṽkh̃)(x, y), (x, y) ∈ B ×B
is well-defined.

Since µk
x is a probability measure, we get an upper estimate (2.7) from the integral expression

(2.6).

By the Weierstrass theorem, we can find a sequence of polynomials hj(t) (j = 1, 2, . . . ) such

that hj(t) converges to h̃(t) uniformly on any compact set of R. Then, Ṽkhj converges to Ṽkh

uniformly on B × B. Thanks to [Dun91, Proposition 3.2], we have (Ṽkhj)(x, y) = (Ṽkhj)(y, x).
Taking the limit as j tends to infinity, we get the equation (2.8). Hence, Proposition 2.5 is
proved.

Aside from the development of the general theory of the Dunkl transform, we note that
explicit formulas for Vk have been known for only a few cases: C = ZN

2 , C = S3, and the equal
parameter case for the Weyl group of B2 (see [Dun08] for the recent survey by C. Dunkl).

2.2 The Dunkl Laplacian

Let {ξ1, . . . , ξN} be an orthonormal basis of (RN , 〈·, ·〉). For the j-th basis vector ξj , we will use
the abbreviation Tξj

(k) = Tj(k). The Dunkl–Laplace operator, or simply, the Dunkl Laplacian,
is defined as

∆k :=
N∑

j=1

Tj(k)
2. (2.9)

The definition of ∆k is independent of the choice of an orthonormal basis of RN . In fact, it is
proved in [Dun89] that ∆k is expressed as

∆kf(x) = ∆f(x) +
∑

α∈R+

kα

{
2〈∇f(x), α〉
〈α, x〉 − ‖α‖2 f(x)− f(rαx)

〈α, x〉2
}
, (2.10)

where ∇ denotes the usual gradient operator.

For k ≡ 0, the Dunkl–Laplace operator ∆k reduces to the Euclidean Laplacian ∆, which
commutes with the action of O(N). For general k, it follows from (D1) and (2.9) that ∆k

commutes with the action of the Coxeter group C, i.e.

L(h) ◦∆k ◦ L(h)−1 = ∆k, ∀h ∈ C. (2.11)

Definition 2.6. A k-harmonic polynomial of degree m (m ∈ N) is a homogeneous polynomial
p on RN of degree m such that ∆kp = 0.

Denote by H m
k (RN ) the space of k-harmonic polynomials of degree m. It is naturally a

representation space of the Coxeter group C.

Let dσ be the standard measure on SN−1, ϑk the density given in (2.2), and dk the normalizing
constant defined by

dk :=
(∫

SN−1

ϑk(ω)dσ(ω)
)−1

. (2.12)
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We write L2(SN−1, ϑk(ω)dσ(ω)) for the Hilbert space with the following inner product 〈 , 〉k
given by

〈f, g〉k := dk

∫

SN−1

f(ω)g(ω)ϑk(ω)dσ(ω).

For k ≡ 0, d−1
k is the volume of the unit sphere, namely,

d0 =
Γ(N

2 )

2π
N
2

. (2.13)

Thanks to Selberg, Mehta, Macdonald [Mac82], Heckman, Opdam [Opd93], and others, there is
a closed form of dk in terms of Gamma functions when k is a non-negative multiplicity function
(see also [Eti09]).

As in the classical spherical harmonics (i.e. the k ≡ 0 case), we have (see [Dun88, page 37]):

Fact 2.7.

1) H m
k (RN )|SN−1 (m = 0, 1, 2, . . . ) are orthogonal to each other with respect to 〈 , 〉k.

2) The Hilbert space L2(SN−1, ϑk(ω)dσ(ω)) decomposes as a direct Hilbert sum:

L2
(
SN−1, ϑk(ω)dσ(ω)

)
=
∑⊕

m∈N

H m
k (RN )|SN−1 . (2.14)

We pin down some basic formulae of ∆k. We write the Euler operator as

E :=

N∑

j=1

xj∂j . (2.15)

Lemma 2.8. 1) The Dunkl Laplacian ∆k is of degree −2, namely,

[E,∆k] = −2∆k (2.16)

2)

N∑

j=1

(
xjTj(k) + Tj(k)xj

)
= N + 2〈k〉 + 2E. (2.17)

3) Suppose ψ(r) is a C∞ function of one variable. Then we have

[∆k, ψ(‖x‖a)] = a2‖x‖2a−2ψ′′(‖x‖a) + a‖x‖a−2ψ′(‖x‖a)((N + 2〈k〉+ a− 2) + 2E). (2.18)

Proof. See [Hec91, Theorem 3.3] for 1) and 2).

3) Take an arbitrary C∞ function f on RN . We recall from the definition (2.1) and (D3) that

Tj(k)g = ∂jg, (2.19)

Tj(k)(fg) = (Tj(k)f)g + f(∂jg),

if g is a C-invariant function on RN . In particular,

Tj(k)ψ(‖x‖a) = axj‖x‖a−2ψ′(‖x‖a),
Tj(k)(f(x)ψ(‖x‖a)) = (Tj(k)f(x))ψ(‖x‖a) + axjf(x)‖x‖a−2ψ′(‖x‖a).
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Using (D3) again, we get

Tj(k)
2(f(x)ψ(‖x‖a)) = (Tj(k)

2f(x))ψ(‖x‖a)
+ a‖x‖a−2ψ′(‖x‖a)(xj(Tj(k)f(x)) + Tj(k)(xjf(x)))

+ af(x)xjTj(k)(‖x‖a−2ψ′(‖x‖a)).
Taking the summation over j, we arrive at

∆k(f(x)ψ(‖x‖a)) = (∆kf(x))ψ(‖x‖a) + a‖x‖a−2ψ′(‖x‖a)(2E +N + 2〈k〉)f(x)

+ af(x)E(‖x‖a−2ψ′(‖x‖a)).
Here, we have used the expression (2.9) of ∆k, (2.17), and (2.19). Now, (2.18) follows from the
following observation: in the polar coordinate x = rω, the Euler operator E amounts to r ∂

∂r , and

r d
dr (ra−2ψ′(ra)) = (a− 2)ra−2ψ′(ra) + ar2a−2ψ′′(ra).

To end this section, we consider a ‘(k, a)-deformation’ of the classical formula

e‖x‖
2 ◦∆ ◦ e−‖x‖2

= ∆ + 4‖x‖2 − 2N − 4E.

Lemma 2.9. For any ν ∈ C and a 6= 0, we have

e
ν
a
‖x‖a ◦ ‖x‖2−a∆k ◦ e−

ν
a
‖x‖a

= ‖x‖2−a∆k + ν2‖x‖a − ν((N + 2〈k〉+ a− 2) + 2E). (2.20)

Proof. The proof parallels to that of Lemma 2.8 3). By the property (D3) of the Dunkl operators,
we get

Tj(k)(e
λ‖x‖a

h(x)) = (Tj(k)e
λ‖x‖a

)h(x) + eλ‖x‖a

Tj(k)h(x).

Then, substituting the formula

Tj(k)e
λ‖x‖a

= ∂je
λ‖x‖a

= λaxj‖x‖a−2eλ‖x‖
a

,

we have

e−λ‖x‖a ◦ Tj(k) ◦ eλ‖x‖
a

h(x) = λaxj‖x‖a−2h(x) + Tj(k)h(x). (2.21)

Iterating (2.21) and using

Tj(k)‖x‖a−2 = (a− 2)xj‖x‖a−4,

we get

e−λ‖x‖a ◦ Tj(k)
2 ◦ eλ‖x‖a

= (λaxj‖x‖a−2 + Tj(k))
2

= λ2a2x2
j‖x‖2a−2 + λa‖x‖a−2(xjTj(k) + Tj(k)xj)

+ λa(a− 2)x2
j‖x‖a−4 + Tj(k)

2.

Summing them up over j, we have

e−λ‖x‖a ◦∆k ◦ eλ‖x‖
a

= ∆k + λ2a2‖x‖2a + λa‖x‖a−2(a− 2 +

N∑

j=1

(xjTj(k) + Tj(k)xj)) (2.22)

The substitution of (2.17) and λ = − ν
a to (2.22) shows Lemma.

3. The infinitesimal representation ωk,a of sl(2,R)

3.1 sl2 triple of differential-difference operators

In this subsection, we construct a family of Lie algebras which are isomorphic to sl(2,R) in
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the space of differential-difference operators on RN . This family is parametrized by a non-zero
complex number a and a multiplicity function k for the Coxeter group.

We take a basis for the Lie algebra sl(2,R) as

e+ :=

(
0 1
0 0

)
, e− :=

(
0 0
1 0

)
, h :=

(
1 0
0 −1

)
. (3.1)

The triple {e+, e−,h} satisfies the commutation relations

[e+, e−] = h, [h, e+] = 2e+, [h, e−] = −2e−. (3.2)

Definition 3.1. An sl2 triple is a triple of non-zero elements in a Lie algebra satisfying the same
relation with (3.2).

We recall from Section 2 that ∆k is the Dunkl Laplacian associated with a multiplicity
function k on the root system, and that 〈k〉 is the index defined in (2.3). For a non-zero complex
parameter a, we introduce the following differential-difference operators on RN :

E+
k,a :=

i

a
‖x‖a, E−

k,a :=
i

a
‖x‖2−a∆k, Hk,a :=

N + 2〈k〉 + a− 2

a
+

2

a

N∑

i=1

xi∂i. (3.3)

The point of the definition is:

Theorem 3.2. The operators E+
k,a, E−

k,a and Hk,a form an sl2 triple for any complex number
a 6= 0 and any multiplicity function k.

Proof of Theorem 3.2. The operator E+
k,a is homogeneous of degree a, and E−

k,a is of degree

(2− a)− 2 = −a by Lemma 2.8 1). Let E =
∑N

j=1 xj∂j be the Euler operator as in (2.15). Since

Hk,a is of the form 2
aE + constant, the identity [Hk,a,E

±
k,a] = ±2E±

k,a is now clear.

To see [E+
k,a,E

−
k,a] = Hk,a, we apply Lemma 2.8 3) to the function ψ(r) = r. Then we get

∆k ◦ ‖x‖a − ‖x‖a∆k = a(N + 2〈k〉+ a− 2)‖x‖a−2 + 2a‖x‖a−2E. (3.4)

Composing the multiplication operator ‖x‖2−a, we have

‖x‖2−a∆k ◦ ‖x‖a − ‖x‖2∆k = a(N + 2〈k〉+ a− 2) + 2aE.

In view of the definition (3.3), this means [E+
k,a,E

−
k,a] = Hk,a.

Hence, Theorem 3.2 is proved.

Remark 3.3. Theorem 3.2 for particular cases was previously known.

(1) For a = 2 and k ≡ 0, {E+
k,a,E

−
k,a,Hk,a} is the classical harmonic sl2 triple { i

2‖x‖2, i
2∆, N

2 +∑
i xi∂i}. This sl2 triple was used in the analysis of the Schrödinger model of the Weil

representation of the metaplectic group Mp(N,R) (see Howe [How88], Howe–Tan [HT92]).

(2) For a = 2 and k > 0, Theorem 3.2 was proved in Heckman [Hec91, Theorem 3.3].

(3) For a = 1 and k ≡ 0, {E+
k,a,E

−
k,a,Hk,a} is the sl2 triple introduced in Kobayashi and Mano

[KM05, KM07a] where the authors studied the L2-model of the minimal representation of
the double covering group of SO0(N + 1, 2). (To be more precise, the formulas in [KM07a]
are given for the sl2 triple for {2E+

k,a,
1
2E−

k,a,Hk,a} in our notation.)

(4) For k ≡ 0, the deformation parameter a was also considered in Mano [Man08].
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The differential-difference operators (3.3) stabilize C∞(RN \ {0}), the space of (complex
valued) smooth functions on RN \ {0}. Thus, for each non-zero complex number a and each
multiplicity function k on the root system, we can define an R-linear map

ωk,a : sl(2,R)→ End(C∞(RN \ {0})) (3.5)

by setting

ωk,a(h) = Hk,a, ωk,a(e
+) = E+

k,a, ωk,a(e
−) = E−

k,a. (3.6)

Then, Theorem 3.2 implies that ωk,a is a Lie algebra homomorphism.

We denote by U(sl(2,C)) the universal enveloping algebra of the complex Lie algebra sl(2,C) '
sl(2,R)⊗R C. Then, we can extend (3.5) to a C-algebra homomorphism (by the same symbol)

ωk,a : U(sl(2,C))→ End(C∞(RN \ {0})).

We use the letter L to denote by the left regular representation of the Coxeter group C on
C∞(RN \ {0}).
Lemma 3.4. The two actions L of the Coxeter group C and ωk,a of the Lie algebra sl(2,R)
commute.

Proof. Obviously, L(h) commutes with the multiplication operator E+
k,a = i

a‖x‖a. As we saw in

(2.11), L(h) commutes with the Dunkl Laplacian. Hence, it commutes also with E−
k,a. Finally,

the commutation relation [E+
k,a,E

−
k,a] = Hk,a implies L(h) ◦Hk,a = Hk,a ◦ L(h).

We consider the following unitary matrix

c :=
1√
2

(
−i −1
1 i

)
. (3.7)

We set

su(1, 1) := {X ∈ sl(2,C) : X∗

(
1 0
0 −1

)
+

(
1 0
0 −1

)
X = 0},

another real form of sl(2,C). Then, Ad(c) induces a Lie algebra isomorphism (the Cayley trans-
form)

Ad(c) : sl(2,R)
∼→ su(1, 1).

We set

k := Ad(c)h = i

(
0 −1
1 0

)
=

1

i
(e+ − e−), (3.8 a)

n+ := Ad(c)e+ =
1

2

(
i −1
−1 −i

)
=

1

2i
(−h +

1

i
e+ +

1

i
e−), (3.8 b)

n− := Ad(c)e− =
1

2

(
−i −1
−1 i

)
=

1

2i
(h +

1

i
e+ +

1

i
e−). (3.8 c)

Correspondingly to (3.8 a – c), the Cayley transform of the operators (3.6) amounts to:

H̃k,a := ωk,a(k) =
‖x‖a − ‖x‖2−a∆k

a
= −1

a
∆k,a, (3.9 a)

Ẽ+
k,a := ωk,a(n

+) = i
2E + (N + 2〈k〉+ a− 2)− ‖x‖2−a∆k − ‖x‖a

2a
, (3.9 b)

Ẽ−
k,a := ωk,a(n

−) = −i2E + (N + 2〈k〉 + a− 2) + ‖x‖2−a∆k + ‖x‖a
2a

. (3.9 c)
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Here, E =
∑N

i=1 xi∂i is the Euler operator.

Since Ad(c) gives a Lie algebra isomorphism, {Ẽ+
k,a, Ẽ

−
k,a, H̃k,a} also forms an sl2 triple of

differential-difference operators. Putting ν = ±1 in Lemma 2.9, we get another expression of the
triple {Ẽ+

k,a, Ẽ
−
k,a, H̃k,a} as follows:

Lemma 3.5. Let Ẽ+
k,a, Ẽ−

k,a, and H̃k,a be as in (3.9 a, b, c). Then, we have:

Ẽ+
k,a = ωk,a(n

+) = − i

2a
e

‖x‖a

a ◦ ‖x‖2−a∆k ◦ e−
‖x‖a

a , (3.10 a)

Ẽ−
k,a = ωk,a(n

−) = − i

2a
e−

‖x‖a

a ◦ ‖x‖2−a∆k ◦ e
‖x‖a

a , (3.10 b)

H̃k,a = ωk,a(k) = e−
‖x‖a

a ◦
(

Hk,a −
‖x‖2−a∆k

a

)
◦ e

‖x‖a

a (3.10 c)

=
1

a
e−

‖x‖a

a ◦
(
(N + 2〈k〉 + a− 2) + 2E − ‖x‖2−a∆k

)
◦ e

‖x‖a

a .

3.2 Differential-difference operators in the polar coordinate

In this subsection, we rewrite the differential-difference operators introduced in Section 3.1 by
means of the polar coordinate.

We set

λk,a,m :=
2m+ 2〈k〉 +N − 2

a
. (3.11)

We begin with the following lemma.

Lemma 3.6. Retain the notation of Section 2.2. For all ψ ∈ C∞(R+) and p ∈H m
k (RN ), we have

Hk,a

(
p(x)ψ(‖x‖a)

)
=
{

(λk,a,m + 1)ψ(‖x‖a) + 2‖x‖aψ′(‖x‖a)
}
p(x), (3.12)

∆k

(
p(x)ψ(‖x‖a)

)
=
{
a2(λk,a,m + 1)‖x‖a−2ψ′(‖x‖a) + a2‖x‖2a−2ψ′′(‖x‖a)

}
p(x). (3.13)

Proof. The first statement is straightforward because the Euler operator E is of the form r ∂
∂r

in the polar coordinates x = rω. To see the second statement, we apply (2.18) to p(x). Since
Ep = mp and ∆kp = 0, we get the desired formula (3.13).

We consider the following linear operator:

Ta : C∞(RN )⊗ C∞(R+)→ C∞(RN \ {0}), (p, ψ) 7→ p(x)ψ(‖x‖a) (3.14)

Lemma 3.7. Via the linear map Ta, the operators Hk,a, E+
k,a, and E−

k,a (see (3.3)) take the

following forms on H m
k (RN )⊗ C∞(R+):

Hk,a ◦ Ta = Ta ◦
(

id⊗
(
2r

d

dr
+ (λk,a,m + 1)

))
, (3.15 a)

E+
k,a ◦ Ta = Ta ◦

(
id⊗ i

a
r
)
, (3.15 b)

E−
k,a ◦ Ta = Ta ◦

(
id⊗ai

(
r
d2

dr2
+ (λk,a,m + 1)

d

dr

))
. (3.15 c)

Proof. Clear from Lemma 3.6 and the definition (3.3) of Hk,a, E+
k,a, and E−

k,a.
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The point of Lemma 3.7 is that the operators Hk,a, E+
k,a, and E−

k,a act only on the radial part

ψ when applied to those functions p(x)ψ(‖x‖a) for p ∈H m
k (RN ).

For a > 0, we define an endomorphism of C∞(R+) by

Ua : C∞(R+)
∼→ C∞(R+), g(t) 7→ (Uag)(r) := exp

(
−1

a
r
)
g
(2

a
r
)
.

Clearly, Ua is invertible. Composing with Ta (see (3.14)), we define the following linear operator
Sa by

Sa := Ta ◦ (id⊗Ua).

That is, Sa : C∞(RN )⊗ C∞(R+)→ C∞(RN \ {0}) is given by

Sa(p⊗ g)(x) := p(x) exp
(
−1

a
‖x‖a

)
g
(2

a
‖x‖a

)
. (3.16)

We set

Pt,λ := t
d2

dt2
+ (λk,a,m + 1− t) d

dt
. (3.17)

Here, λ stands for λk,a,m. Then Lemma 3.7 can be formulated as follows:

Lemma 3.8. Via the map Sa, the operators Hk,a, E+
k,a, and E−

k,a take the following forms on

H m
k (RN )⊗ C∞(R+):

Hk,a ◦ Sa = Sa ◦
(
id⊗

(
2t
d

dt
+ (λk,a,m + 1− t)

))
,

E+
k,a ◦ Sa = Sa ◦

(
id⊗ i

2
t
)
,

E−
k,a ◦ Sa = Sa ◦

(
id⊗i

(
2Pt,λ +

t

2
− λk,a,m − 1

))
.

Proof. Immediate from Lemma 3.7 and the following relations:

U−1
a ◦ d

dr
◦ Ua =

2

a

(
d

dt
− 1

2

)
,

U−1
a ◦ r ◦ Ua =

a

2
t.

Similarly, by using (3.8 a–c), the actions of H̃k,a, Ẽ+
k,a, and Ẽ−

k,a (see (3.9 a–c)) are given as
follows:

Lemma 3.9. Let Pt,λ be as in (3.17). Then, through the linear map Sa (see (3.16)), H̃k,a, Ẽ+
k,a,

and Ẽ−
k,a take the following forms on H m

k (RN )⊗ C∞(R+):

H̃k,a ◦ Sa = Sa ◦
(

id⊗
(
− 2Pt,λ + λk,a,m + 1

))
,

Ẽ+
k,a ◦ Sa = Sa ◦

(
id⊗

(
− i
(
Pt,λ − t

d

dt
+ t− λk,a,m − 1

)))
,

Ẽ−
k,a ◦ Sa = Sa ◦

(
id⊗

(
− i
(
Pt,λ + t

d

dt

)))
.

3.3 Laguerre polynomials revisited

In this subsection, after a brief summary on the (classical) Laguerre polynomials we give a ‘non-
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standard’ representation of them in terms of the one parameter group with infinitesimal generator
t d2

dt2
+ (λ+ 1) d

dt (see Proposition 3.11).

For a complex number λ ∈ C such that Re λ > −1, we write L
(λ)
` for the Laguerre polynomial

defined by

L
(λ)
` (t) :=

(λ+ 1)`

`!

∑̀

j=0

(−`)j

(λ+ 1)j

tj

j!
=
∑̀

j=0

(−1)jΓ(λ+ `+ 1)

(`− j)!Γ(λ + j + 1)

tj

j!
.

Here, (a)m := a(a+ 1) · · · (a+m− 1) is the Pochhammer symbol.

We list some standard properties of Laguerre polynomials that we shall use in this article.

Fact 3.10 (see [AAR99, §6.5]). Suppose Re λ > −1.

1) L
(λ)
` (t) is the unique polynomial of degree ` satisfying the Laguerre differential equation

(
t
d2

dt2
+ (λ+ 1− t) d

dt
+ `
)
f(t) = 0 (3.18)

and

f (`)(0) = (−1)`. (3.19)

2) (recurrence relation)

(`+ t
d

dt
− t+ λ+ 1)L

(λ)
` (t) = (`+ 1)L

(λ)
`+1(t), (3.20 a)

(`− t d
dt

)L
(λ)
` (t) = (`+ λ)L

(λ)
`−1(t). (3.20 b)

3) (orthogonality relation)
∫ ∞

0
L

(λ)
` (t)L(λ)

s (t)tλe−tdt = δ`s
Γ(λ+ `+ 1)

Γ(`+ 1)
. (3.21)

4) (generating function)

(1− r)−λ−1 exp
( rt

r − 1

)
=

∞∑

`=0

L
(λ)
` (t)r`, (|r| < 1). (3.22)

5) {L(λ)
` (t) : ` ∈ N} form an orthogonal basis in L2(R+, t

λe−tdt) if λ is real and λ > −1.

Finally, we give a new representation of the Laguerre polynomial.

Theorem 3.11. For any c 6= 0 and ` ∈ N,

exp
(
−c
(
t
d2

dt2
+ (λ+ 1)

d

dt

))
t` = (−c)``!L

(λ)
`

( t
c

)
. (3.23)

Since the differential operator

Bt := t
d2

dt2
+ (λ+ 1)

d

dt

is homogeneous of degree −1, namely, Bt = cBx if x = ct, it is sufficient to prove Theorem 3.11
in the case c = 1. We shall give two different proofs for this.

Proof 1. We set

A := t
d

dt
− `, B := t

d2

dt2
+ (λ+ 1)

d

dt
.
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It follows from [A,B] = −B that

ABn = BnA− nBn

for all n ∈ N by induction. Then, by the Taylor expansion e−B =
∑∞

n=0
(−1)n

n! Bn, we get

Ae−B = e−BA+Be−B .

Since At` = 0, we get (B−A)(e−Bt`) = 0, namely, e−Bt` solves the Laguerre differential equation
(3.18). On the other hand, e−Bt` is clearly a polynomial of t with top term t`. In view of (3.19),

we have e−Bt` = (−1)``!L
(λ)
` (t).

Proof 2. A direct computation shows

Bt` = `(λ+ `)t`−1.

Therefore, Bjt` = 0 for j > ` and

e−Bt` =
∑̀

j=0

(−1)j`(`− 1) · · · (`− j + 1)(λ + `)(λ+ `− 1) · · · (λ+ `− j + 1)

j!
t`−j

=
∑̀

k=0

(−1)`+k`!Γ(λ+ `+ 1)

(`− k)!Γ(λ+ k + 1)

tk

k!

= (−1)``!L
(λ)
` (t).

Hence, Theorem 3.11 has been proved.

3.4 Construction of an orthonormal basis in L2(RN , ϑk,a(x)dx)

We recall from (1.2) and (2.2) that the weight function ϑk,a on RN satisfies

ϑk,a(x) = ‖x‖a−2
∏

α∈R+

|〈α, x〉|2kα = ‖x‖a−2ϑk(x).

Therefore, in the polar coordinates x = rω (r > 0, ω ∈ SN−1), we have

ϑk,a(x)dx = r2〈k〉+N+a−3ϑk(ω)drdσ(ω), (3.24)

where dσ(ω) is the standard measure on the unit sphere. Accordingly, we have a unitary isomor-
phism:

L2(SN−1, ϑk(ω)dσ(ω)) ⊗̂ L2(R+, r
2〈k〉+N+a−3dr)

∼→ L2(RN , ϑk,a(x)dx), (3.25)

where ⊗̂ stands for the Hilbert completion of the tensor product space of two Hilbert spaces.

Combining (3.25) with Fact 2.7, we get a direct sum decomposition of the Hilbert space:
∑⊕

m∈N

(H m
k (RN )|SN−1)⊗ L2(R+, r

2〈k〉+N+a−3dr)
∼→ L2(RN , ϑk,a(x)dx). (3.26)

In this subsection, we demonstrate the irreducible decomposition theorem of the sl2 repre-
sentation on (a dense subspace of) L2(RN , ϑk,a(x)dx) by using (3.26) and finding an orthogonal
basis for L2(R+, r

2〈k〉+N+a−3dr).

For `,m ∈ N and p ∈H m
k (RN ), we introduce the following functions on RN :

Φ
(a)
` (p, ·) := Sa(p⊗ L(λk,a,m)

` ). (3.27)
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Here, Sa : C∞(RN )⊗ C∞(R+)→ C∞(RN \ {0}) is a linear operator defined in (3.16), λk,a,m =
1
a(2m+2〈k〉+N−2) (see (3.11)), and L

(λ)
` (t) is the Laguerre polynomial. Hence, for x = rω ∈ RN

(r > 0, ω ∈ SN−1), we have

Φ
(a)
` (p, x) = p(x)L

(λk,a,m)
`

(2

a
‖x‖a

)
exp
(
−1

a
‖x‖a

)
(3.28)

= p(ω)rmL
(λk,a,m)
`

(2

a
ra
)

exp
(
−1

a
ra
)
.

We define the following vector space of functions on RN by

Wk,a(R
N ) := C-span{Φ(a)

` (p, ·) | ` ∈ N,m ∈ N, p ∈H m
k (RN )}. (3.29)

Proposition 3.12. Suppose k is a non-negative multiplicity function on the root system R and
a > 0 such that

a+ 2〈k〉+N − 2 > 0. (3.30)

Let `, s,m, n ∈ N, p ∈H m
k (RN ) and q ∈H n

k (RN ).

1) Φ
(a)
` (p, x) ∈ C(RN) ∩ L2(RN , ϑk,a(x)dx).

2)
∫

RN

Φ
(a)
` (p, x)Φ

(a)
s (q, x)ϑk,a(x)dx = δm,nδ`,s

aλk,a,mΓ(λk,a,m + `+ 1)

21+λk,a,mΓ(`+ 1)

∫

SN−1

p(ω)q(ω)ϑk(ω)dσ(ω).

3) Wk,a(RN ) is a dense subspace of L2(RN , ϑk,a(x)dx).

Remark 3.13. The special values of our functions Φ
(a)
` (p, x) have been used in various settings

including:

a = 2 see [Dun08, §3],
k ≡ 0, N = 1 see [Kos00],

k ≡ 0, a = 1 see [KM07a, §3.2].
Remark 3.14. The condition (3.30) is automatically satisfied for a > 0 and a non-negative
multiplicity k if N > 2.

Proof. Our assumption (3.30) implies

λk,a,m > −1 for any m ∈ N,

and thus Φ
(a)
` (p, x) is continuous at x = 0. Therefore, it is a continuous function on x ∈ RN of

exponential decay. On the other hand, we see from (3.24) that the measure ϑk,a(x)dx is locally

integrable under our assumptions on a and k. Therefore, Φ
(a)
` (p, x) ∈ L2(RN , ϑk,a(x)dx). Hence

the first statement is proved.

To see the second and third statements, we rewrite the left-hand side of the integral as
(∫ ∞

0
L

(λk,a,m)
`

(2
a
ra
)
L

(λk,a,n)
s

(2
a
ra
)
exp
(
−2

a
ra
)
rm+n+2〈k〉+N+a−3dr

)( ∫

SN−1

p(ω)q(ω)ϑk(ω)dσ(ω)
)

in the polar coordinates x = rω. Since k-harmonic polynomials of different degrees are orthogonal
to each other (see Fact 2.7), the integration over SN−1 vanishes if m 6= n.

Suppose that m = n. By changing the variable t := 2
ar

a, we see that the first integration
amounts to

aλk,a,m

21+λk,a,m

∫ ∞

0
L

(λk,a,m)
` (t)L

(λk,a,m)
s (t) tλk,a,me−tdt. (3.31)
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By the orthogonality relation (3.21), we get

(3.31) = δ`s
aλk,a,mΓ(λk,a,m + `+ 1)

21+λk,a,mΓ(`+ 1)
.

Hence, the second statement is proved. The third statement follows from the completeness of the
Laguerre polynomials (see Fact 3.10 4)).

We pin down the following proposition which is already implicit in the proof of Proposition
3.12:

Proposition 3.15. We fix m ∈ N, a > 0, and a multiplicity function k satisfying

2m+ 2〈k〉 +N + a− 2 > 0.

We set

f
(a)
`,m(r) :=

( 2λk,a,m+1Γ(`+ 1)

aλk,a,mΓ(λk,a,m + `+ 1)

)1/2
rmL

(λk,a,m)
`

(2

a
ra
)

exp(−1

a
ra) for ` ∈ N. (3.32)

Then {f (a)
`,m(r) : ` ∈ N} forms an orthonormal basis in L2(R+, r

2〈k〉+N+a−3dr).

Remark 3.16. Let c0, c1, . . . be a sequence of positive real numbers. Fix a parameter α > 0.

Dunkl [Dun03] proves that the only possible orthogonal sets {L(α)
` (c`r) exp(− 1

2c`r)}∞`=0 for the
measure rα+µdr on R+, with µ > 0, are the two cases (1) µ = 0, c` = c0 for all `; (2) µ = 1,
c` = c0

α+1
α+2`+1 .

For each m ∈ N, we take an orthonormal basis {h(m)
j }j∈Jm of the space H m

k (RN )|SN−1 .
Proposition 3.12 immediately yields the following statement.

Corollary 3.17. Suppose that a > 0 and that the non-negative multiplicity function k satisfies
the inequality (3.30). For `,m ∈ N and j ∈ Jm, we set

Φ
(a)
`,m,j(x) := h

(m)
j

( x

‖x‖
)
f

(a)
`,m(‖x‖).

Then, the set
{

Φ
(a)
`,m,j | ` ∈ N,m ∈ N, j ∈ Jm

}
forms an orthonormal basis of L2

(
RN , ϑk,a(x)dx

)
.

Remark 3.18. A basis of H m
k (RN ) is constructed in [DX01, Corollary 5.1.13].

3.5 sl2 representation on L2(RN , ϑk,a(x)dx)

Now we are ready to exhibit the action of the sl2 triple {k,n+,n−} on the basis Φ
(a)
` (p, ·) (see (3.8

a–c) and (3.28) for the definitions). We recall from (3.9 a–c) that H̃k,a = ωk,a(k), Ẽ+
k,a = ωk,a(n

+),

and Ẽ−
k,a = ωk,a(n

−).

Theorem 3.19. Let Wk,a(RN ) be the dense subspace of L2(RN , ϑk,a(x)dx) defined in (3.29).
Then, Wk,a(RN ) is stable under the action of sl(2,C). More precisely, for each fixed p ∈
H m

k (RN ), the action ωk,a (see (3.9 a–c)) is given as follows:

ωk,a(k)Φ
(a)
` (p, x) = (2`+ λk,a,m + 1)Φ

(a)
` (p, x), (3.33 a)

ωk,a(n
+)Φ

(a)
` (p, x) = i(`+ 1)Φ

(a)
`+1(p, x), (3.33 b)

ωk,a(n
−)Φ

(a)
` (p, x) = i(`+ λk,a,m)Φ

(a)
`−1(p, x), (3.33 c)
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where Φ
(a)
` (p, x) is defined in (3.28) and λk,a,m = (2m + 2〈k〉 +N − 2)/a (see (3.11)). We have

used the convention Φ
(a)
−1 ≡ 0.

Theorem 3.19 may be visualized by the diagram below. We see that for each fixed k, a, and
p ∈H m

k (RN ), the operators ωk,a(n
+) and ωk,a(n

−) act as raising/lowering operators.

· · · ◦ %% ◦
`−1 n

+

%%
ee ◦

` n
+

%%

n
−

ee ◦
`+1

%%

n
−

ee ◦ee · · ·

Diagram 3.5.

Here, the dots represent ωk,a(k) eigenvectors Φ
(a)
` (p, x) arranged by increasing ωk,a(k) eigen-

values, from left to right.

Proof of Theorem 3.19. For simplicity, we use the notation Pt,λ = t d2

dt2
+ (λk,a,m + 1− t) d

dt as in

(3.17), where λ stands for λk,a,m. By the formula Φ
(a)
` (p, ·) = Sa(p ⊗ L(λ)

` ) (see (3.27)) and by
Lemma 3.9, it is sufficient to prove

(−2Pt,λ + (λ+ 1))L
(λ)
` = (2`+ λ+ 1)L

(λ)
` , (3.34 a)

(−i(Pt,λ − t
d

dt
+ t− λ− 1))L

(λ)
` = i(`+ 1)L

(λ)
`+1, (3.34 b)

− i(Pt,λ + t
d

dt
)L

(λ)
` = i(`+ λ)L

(λ)
`−1. (3.34 c)

Since the Laguerre polynomial L
(λ)
` (t) satisfies the Laguerre differential equation

Pt,λL
(λ)
` (t) = −`L(λ)

` (t)

(see (3.18)), the assertion (3.34 a) is now clear. The assertions (3.34 b) and (3.34 c) are reduced
to the recurrence relations (3.20 a) and (3.20 b), respectively.

Remark 3.20. An alternative proof of (3.33 a) will be given in Section 5.4 (see Remark 5.17).

By using the orthonormal basis {f (a)
`,m(r)} (see (3.32)), we normalize Φ

(a)
` (p, x) as

Φ̃
(a)
` (p, x) := f

(a)
`,m(r)p(ω) (3.35)

=
( 2λk,a,m+1Γ(`+ 1)

aλk,a,mΓ(λk,a,m + `+ 1)

) 1
2
Φ

(a)
` (p, x)

for x = rω (r > 0, ω ∈ SN−1). Then, Theorem 3.19 is reformulated as follows:

Theorem 3.21. For any p ∈H m
k (RN ), we have

ωk,a(k)Φ̃
(a)
` (p, x) = (2`+ λk,a,m + 1)Φ̃

(a)
` (p, x), (3.36 a)

ωk,a(n
+)Φ̃

(a)
` (p, x) = i

√
(`+ 1)(λk,a,m + `+ 1) Φ̃

(a)
`+1(p, x), (3.36 b)

ωk,a(n
−)Φ̃

(a)
` (p, x) = i

√
(λk,a,m + `)` Φ̃

(a)
`−1(p, x). (3.36 c)
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We recall that an operator T densely defined on a Hilbert space is called essentially self-
adjoint, if it is symmetric and its closure is a self-adjoint operator.

Corollary 3.22. Let a > 0 and k be a non-negative multiplicity function satisfying (3.30).

1) The differential-difference operator ∆k,a = ‖x‖2−a∆k − ‖x‖a is an essentially self-adjoint
operator on L2(RN , ϑk,a(x)dx).

2) There is no continuous spectrum of ∆k,a.

3) The set of discrete spectra of −∆k,a is given by

{2a`+ 2m+ 2〈k〉 +N − 2 + a : `,m ∈ N} (N > 2),

{2a`+ 2〈k〉 + a± 1 : ` ∈ N} (N = 1).

Proof. In light of the formula (3.9 a)

∆k,a = −aωk,a(k),

the eigenvalues of ∆k,a are read from Theorem 3.19. SinceWk,a(RN ) is dense in L2(RN , ϑk,a(x)dx)
(see Proposition 3.12), the remaining statement of Corollary 3.22 is straightforward from the
following fact.

Fact 3.23. Let T be a symmetric operator on a Hilbert space H with domain D(T ), and let
{fn}n be a complete orthogonal set in H . If each fn ∈ D(T ) and there exists µn ∈ R such that
Tfn = µnfn, for every n, then T is essentially self-adjoint.

Remark 3.24. We shall see in Theorem 3.30 that the action of sl(2,R) in Theorem 3.21 lifts

to a unitary representation of the universal covering group ˜SL(2,R) and that Corollary 3.22 1)
is a special case of the general theory of discretely decomposable (gC,K)-modules (see [Kob98,
Kob00]).

3.6 Discretely decomposable representations

Theorem 3.19 asserts thatWk,a(RN ) is an sl(2,C)-invariant, dense subspace in L2(RN , ϑk,a(x)dx).
For N > 1, this is a ‘huge’ representation in the sense that it contains an infinitely many
inequivalent irreducible representations of sl(2,C).

By a theorem of Harish-Chandra, Lepowsky and Rader, any irreducible, infinitesimally uni-
tary (gC,K)-module is the underlying (gC,K)-module of a (unique) irreducible unitary represen-
tation of G (see [KN95, Theorem 0.6]). This result was generalized to a discretely decomposable
(gC,K)-modules by the second-named author (see [Kob00, Theorem 2.7]).

In this section, we discuss the meaning of Theorem 3.19 from the point of view of discretely
decomposable representations.

We begin with a general setting. Let G be a semisimple Lie group, and K a maximal compact
subgroup of G (modulo the center of G). We write g for the Lie algebra of G, and gC for its
complexification. The following notion singles out an algebraic property of unitary representations
that split into irreducible representations without continuous spectra.

Definition 3.25. Let ($,X) be a (gC,K)-module.

(1) ([Kob98, Part I, §1]) We say $ is K-admissible if dimHomK(τ,$) <∞ for any τ ∈ K̂.
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(2) ([Kob98, Part III, Definition 1.1]) We say $ is a discretely decomposable if there exist a
sequence of (gC,K)-modules Xj such that

{0} = X0 ⊂ X1 ⊂ X2 ⊂ · · · , X =
∞⋃

j=0

Xj ,

Xj/Xj−1 is of finite length as a (gC,K)-module for j = 1, 2, . . . .

(3) We say $ is infinitesimally unitarizable if there exists a Hermitian inner product ( , ) on X
such that

($(Y )u, v) = −(u,$(Y )v) for any Y ∈ g, and any u, v ∈ X.

We collect some basic results on discretely decomposable (gC,K)-modules:

Fact 3.26 (see [Kob98, Kob00]). Let ($,X) be a (gC ,K)-module.

1) If $ is K-admissible, then $ is discretely decomposable as a (gC,K)-modules.

2) Suppose$ is discretely decomposable as a (gC,K)-module. If$ is infinitesimally unitarizable,
then $ is isomorphic to an algebraic direct sum of irreducible (gC,K)-modules.

3) Any discretely decomposable, infinitesimally unitary (gC,K)-module is the underlying (gC,K)-
module of a unitary representation of G. Furthermore, such a unitary representation is unique.

We shall apply this concept to the specific situation where g = sl(2,R) and G is the universal

covering group ˜SL(2,R) of SL(2,R).

We recall from (3.8 a) that

k = i

(
0 −1
1 0

)
= i (e− − e+) ∈ sl(2,C).

Let k := R(e− − e+) = iRk and K be the subgroup of G with Lie algebra k. Since G is taken to
be simply connected, the exponential map

R→ K, t 7→ Exp(itk)

is a diffeomorphism.

For z ∈ iR, we set

γz := Exp(−zk) = Exp

(
0 iz
−iz 0

)
∈ K. (3.37)

Since {k,n+,n−} forms an sl2 triple, we have

Ad(γz)n
+ = e−2zn+, Ad(γz)n

− = e2zn−.

Then it is easy to see that the subgroup

C(G) := {γnπi : n ∈ Z} ' Z (3.38)

coincides with the center of G.

Next, we give a parametrization of one-dimensional representations of K ' R as

K̂ ' C, χµ ↔ µ (3.39)

by the formula χµ(γz) = e−µz or equivalently, dχµ(k) = µ.

We shall call χµ simply as the K-type µ.
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Let ($,X) be a (gC,K)-module. A non-zero vector v ∈ X is a lowest weight vector of weight
µ ∈ C if v satisfies

$(n−)v = 0, and $(k)v = µv.

We say ($,V ) is a lowest weight module of weight µ if V is generated by such v. For each λ ∈ C,
there exists a unique irreducible lowest weight (gC,K)-module, to be denoted by πK(λ), of weight
λ+ 1.

With this normalization, we pin down the following well-known properties of the (gC,K)-
module πK(λ) for g = sl(2,R):

Fact 3.27.

1) For a real λ with λ > −1, there exists a unique unitary representation, denoted by π(λ), of

G = ˜SL(2,R) such that its underlying (gC,K)-module is isomorphic to πK(λ).

2) π(−1) is the trivial one-dimensional representation.

3) For λ > 0, π(λ) is a relative discrete series representation, namely, its matrix coefficients are
square integrable over G modulo its center C(G).

4) π(1
2 )⊕π(−1

2 ) is the Weil representation of Mp(1,R), the two fold covering group of SL(2,R).

5) γπi (see (3.37)) acts on π(λ) as scalar e−πi(λ+1).

6) π(λ) is well-defined as a unitary representation of Mp(1,R) if λ ∈ 1
2Z, of SL(2,R) if λ ∈ Z,

and of PSL(2,R) if λ ∈ 2Z + 1.

7) For λ 6= −1,−3,−5, . . . , πK(λ) is an infinite dimensional representation. For λ > −1, we
fix a G-invariant inner product on the representation space of π(λ). Then we can find an
orthonormal basis {v` : ` ∈ N} such that

πK(λ)(k)v` = (2`+ λ+ 1)v`,

πK(λ)(n+)v` = i
√

(`+ 1)(λ+ `+ 1) v`+1,

πK(λ)(n−)v` = i
√

(λ+ `)` v`−1.

Here, we set v−1 = {0}. In particular, πK(λ) has the K-type {λ + 1, λ + 3, λ + 5, . . . } with
respect to the parametrization (3.39).

8) For λ = −m (m = 1, 2, . . . ), πK(λ) is an m-dimensional irreducible representation of sl(2,C).

By using Fact 3.27, we can read from the formulas in Theorem 3.21 the following statement:

Theorem 3.28. Suppose a is a non-zero complex number and k is a non-negative root multiplicity
function satisfying the inequality (3.30), i.e. a+ 2〈k〉+N − 2 > 0.

1) (ωk,a,Wk,a(RN )) is a C× (gC,K)-module.

2) As a (gC,K)-module, ωk,a is K-admissible and hence discretely decomposable (see Definition
3.25).

3) (ωk,a,Wk,a(RN )) is decomposed into the direct sum of C× (gC,K)-modules as follows:

Wk,a(R
N ) '

∞⊕

m=0

H m
k (RN )∣∣SN−1

⊗ πK(λk,a,m). (3.40)

Here, λk,a,m = 2m+2〈k〉+N−2
a (see (3.11)). The Coxeter group C acts on the first factor, and the

Lie algebra sl(2,R) acts on the second factor of each summand in (3.40).
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Proof of Theorem 3.28. We fix a non-zero p ∈ H m
k (RN ). Then, it follows from Theorem 3.19

and Fact 3.27 that for sl(2,R) acts on the vector space

C-span{Φ(a)
` (p, ·) : ` ∈ N}

as an irreducible lowest weight module πK(λk,a,m). By (3.26), we get the isomorphism (3.40) as
(gC,K)-modules.

On the other hand, the Coxeter group C leaves H m
k (RN ) invariant. Furthermore, as we saw

in Lemma 3.4, the action of C and sl(2,R) commute with each other. Hence, the first and third
statements are proved.

It follows from the decomposition formula (3.40) that ωk,a is K-admissible because the K-
type of an individual πK(λ) is of the form {λ+ 1, λ+ 3, . . . } by Fact 3.27, λk,a,m increases as m
increases, and dimH m

k (RN ) <∞. Hence, the second statement is also proved.

For f, g ∈ L2
(
RN , ϑk,a(x)dx

)
, we write its inner product as

〈〈f, g〉〉k :=

∫

RN

f(x)g(x) ϑk,a(x)dx. (3.41)

Proposition 3.29. Suppose that a > 0 and that k is a non-negative multiplicity function such
that a+2〈k〉+N−2 > 0. Then, the representation ωk,a of sl(2,R) on Wk,a(RN ) is infinitesimally
unitary with respect to the inner product 〈〈 , 〉〉k, namely,

〈〈ωk,a(X)f, g〉〉k = −〈〈f, ωk,a(X)g〉〉k
for any X ∈ sl(2,R) and f, g ∈Wk,a(RN ).

Proof. As we saw in (2.4) that the Dunkl operators are skew-symmetric with respect to the
measure ϑk(x)dx. In view of the definitions of ∆k (see (2.9)) and E−

k,a = i
a‖x‖2−a∆k (see (3.3)),

we see that E−
k,a is a skew-symmetric operator with respect to the inner product 〈〈·, ·〉〉k . Likewise

for E+
k,a. Further, the commutation relation Hk,a = [E+

k,a,E
−
k,a] shows that Hk,a is also skew-

symmetric. Thus, for all X ∈ sl(2,R), ωk,a(X) is skew-symmetric.

3.7 The integrability of the representation ωk,a

Applying the general result on discretely decomposable representations (see Fact 3.26) to our
specific setting where G is the universal covering group of SL(2,R), we get the following two
theorems:

Theorem 3.30. Suppose a > 0 and k is a non-negative multiplicity function satisfying

a+ 2〈k〉+N − 2 > 0. (3.42)

Then the infinitesimal representation ωk,a of sl(2,R) lifts to a unique unitary representation, to
be denoted by Ωk,a, of G on the Hilbert space L2

(
RN , ϑk,a(x)dx

)
. In particular, we have

ωk,a(X) =
d

dt

∣∣∣
t=0

Ωk,a(Exp(tX)), X ∈ g,

on Wk,a(RN ), the dense subspace (3.29) of L2(RN , ϑk,a(x)dx). Here, we have written Exp for the
exponential map of the Lie algebra sl(2,R) into G.
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Theorem 3.31. Retain the assumption of Theorem 3.30. Then, as a representation of the direct
product group C×G, the unitary representation L2

(
RN , ϑk,a(x)dx

)
decomposes discretely as

L2
(
RN , ϑk,a(x)dx

)
=

∞∑⊕

m=0

(
H m

k (RN )|SN−1

)
⊗ π(λk,a,m). (3.43)

Here, we recall that C is the Coxeter group of the root system, G is the universal covering group of
SL(2,R), and λk,a,m = 2m+2〈k〉+N−2

a (see (3.11)). The decomposition (3.43) of the Hilbert space
L2(RN , ϑk,a(x)dx) is given by the formula (3.26) and π(λ) (λ > −1) is the irreducible unitary

representation of ˜SL(2,R) described in Fact 3.27. In particular, the summands are mutually
orthogonal with respect to the inner product (3.41) on L2

(
RN , ϑk,a(x)dx

)
.

Remark 3.32 (The N = 1 case). In [Kos00] Kostant exhibits a family of representations with
continuous parameter of sl(2,R) by second order differential operators on (0,∞). He uses Nelson’s
result [Nel59] to study the exponentiation of such representations. See also [Rao77].

In the N = 1 case, the decomposition in Theorem 3.28 (and hence in Theorem 3.31) is reduced
to a finite sum because H m

k (RN ) = 0 if m > 2 and N = 1. Indeed, there are two summands
according to even (m = 0) and odd (m = 1) functions. We observe that the difference operator
in (2.10) vanishes on even functions of one variable, so the Dunkl Laplacian ∆k collapses to the

differential operator d2

dx2 + 2k
x

d
dx . Thus, our generators (3.3) acting on even functions on (0,∞)

take the form

Hk,a =
2

a
x
d

dx
+

2k + a− 1

a
, E+

k,a =
i

a
xa, E−

k,a =
i

a
x2−a

( d2

dx2
+

2k

x

d

dx

)
.

We may compare these with the generators in Kostant’s paper [Kos00], where his generators
on (0,∞) are

iy, 2y
d

dy
+ 1, i

(
y
d2

dy2
+

d

dy
− r2

4y

)
,

which by the substitution y = 1
ax

a and ϕ(y) = xk− 1
2ϕ(x) become our operators {Hk,a,E

+
k,a,E

−
k,a}

with r = 2k−1
a . Note that our generators acting on odd functions do not appear in Kostant’s

picture.

Remark 3.33. The assumption a+ 2〈k〉+N − 2 > 0 implies

λk,a,m > −1 for any m ∈ N,

whence there exists an irreducible, infinite dimensional unitary representation π(λk,a,m) of G
such that its underlying (gC,K)-module is isomorphic to πK(λk,a,m) by Fact 3.27 (1).

By the explicit construction of the direct summand in Theorem 3.19, we have

Corollary 3.34. As a representation of ˜SL(2,R), minimalK-types of the irreducible summands
in (3.43) are given by

h(x) exp
(
−1

a
‖x‖a

)
, h ∈H m

k (RN ).

As we have seen that ωk,a lifts to the unitary representation Ωk,a of the universal covering

group G = ˜SL(2,R) for any k and a with certain positivity (3.42). On the other hand, if k and a
satisfies a certain rational condition (see below), then Ωk,a is well-defined for some finite covering
groups of PSL(2,R). This representation theoretic observation gives an explicit formula of the
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order of the (k, a)-generalized Fourier transform Fk,a (see Section 5). We pin down a precise
statement here.

Proposition 3.35. Retain the notation of Theorem 3.30, and recall the definition of the index
〈k〉 from (2.3). Then the unitary representation Ωk,a of the universal covering group G of SL(2,R)
is well-defined also as a representation of some finite covering group of PSL(2,R) if and only if
both a and 〈k〉 are rational numbers.

Proof. It follows from Fact 3.27 5) that the central element γnπi ∈ C(G) acts on π(λk,a,m) by
the scalar

e−πin(λk,a,m+1) = exp
(
−n
a
· 2πmi

)
exp
(
−N + 2〈k〉+ a− 2

a
nπi
)
.

This equals 1 for all m if and only if

n

a
∈ Z and

n(2〈k〉+N − 2 + a)

a
∈ 2Z.

It is easy to see that there exists a non-zero integer n satisfying these two conditions if and
only if both a and 〈k〉 are rational numbers. For such n, Ωk,a is well-defined for G/nZ. Hence,
Proposition 3.35 is proved.

We recall from (3.38) that we have identified the center C(G) of the simply-connected Lie

group G = ˜SL(2,R) with the integer group Z. Then, we have

PSL(2,R) ' G/Z, SL(2,R) ' G/2Z, Mp(1,R) ' G/4Z.

As a special case of Proposition 3.35 and its proof, we have:

Remark 3.36. Let Ωk,a be the unitary representation of the universal covering group G.

(1) Suppose a = 2.

(a) Ωk,2 descends to SL(2,R) if and only if 2〈k〉 +N is an even integer.
(b) Ωk,2 descends to Mp(1,R) if and only if 2〈k〉 +N is an integer.

This compares well with the Schrödinger model on L2(RN ) of the Weil representation Ω0,2

of the metaplectic group Mp(N,R) and its restriction to a subgroup locally isomorphic to
SL(2,R) (cf. [Wei64] and [HT92]).

(2) Suppose a = 1.

(a) Ωk,1 descends to PSL(2,R) if and only if 2〈k〉 +N is an odd integer.
(b) Ωk,1 descends to SL(2,R) if and only if 2〈k〉 is an integer.
(c) Ωk,1 descends to Mp(1,R) if and only if 4〈k〉 is an integer.

The case k ≡ 0 corresponds to the Schrödinger model on L2(RN , dx
‖x‖) of the minimal rep-

resentation Ω0,1 of the conformal group and its restriction to a subgroup locally isomorphic
to SL(2,R) (cf. [KØ03]).

Remark 3.37. C. Dunkl reminded us of that the parity condition of 2〈k〉 + N appeared also
in a different context, i.e., in [DJO94, Lemma 5.1], where the authors investigated a sufficient
condition on k for the existence and uniqueness of expanding a homogenous polynomial in terms
of k-harmonics.
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3.8 Connection with the Gelfand–Gindikin program

We consider the following closed cone in g = sl(2,R) defined by

W :=

{(
a b
c −a

)
: a2 + bc 6 0, b > c

}
.

Then, W is SL(2,R)-invariant and is expressed as

W = iAd(SL(2,R))R>0k.

We write expC : gC → SL(2,C) for the exponential map. Its restriction to iW is an injective
map, and we define the following subset Γ(W ) of SL(2,C) by

Γ(W ) := SL(2,R) expC(iW ).

SinceW is SL(2,R)-invariant, Γ(W ) becomes a semigroup, sometimes referred to as the Olshanski
semigroup.

Denote by Γ̃(W ) the universal covering semigroup of Γ(W ), and write

Exp : g + iW → Γ̃(W )

for the lifting of expC |g+iW : g + iW → Γ(W ). Then Γ̃(W ) = ˜SL(2,R) Exp(iW ) and the polar
map

˜SL(2,R) ×W → Γ̃(W ), (g,X) 7→ gExp(iX)

is a homeomorphism.

Since W is an Ad(SL(2,R))-invariant cone, Γ(W ) is invariant under the action of SL(2,R)
from the left and right. Thus, the semigroup Γ(W ) is written also as

Γ(W ) = SL(2,R) expC(−R>0k)SL(2,R).

Its interior is given by

Γ(W 0) = SL(2,R) exp(−R+k)SL(2,R).

See [HN93, Theorem 7.25]. Accordingly, we have

Γ̃(W ) = ˜SL(2,R) expC(−R>0k) ˜SL(2,R).

By Theorem 3.19, Ωk,a is a discretely decomposable unitary representation of ˜SL(2,R) on
L2(RN , ϑk,a(x)dx). It has a lowest weight (2〈k〉 + N + a − 2)/a. It then follows from [HN00,

Theorem B] that Ωk,a extends to a representation of the Olshanski semigroup Γ̃(W ), denoted by
the same symbol Ωk,a, such that:

(P1) Ωk,a : Γ̃(W )→ B(L2) is strongly continuous semigroup homomorphism.

(P2) For all f ∈ L2(RN , ϑk,a(x)dx), the map γ 7→ 〈〈Ωk,a(γ)f, f〉〉k is holomorphic in the interior

of Γ̃(W ).

(P3) Ωk,a(γ)
∗ = Ωk,a(γ

]), where γ] = Exp(iX)g−1 for γ = gExp(iX).

Here, we have denoted by B(L2) the space of bounded operators on L2(RN , ϑk,a(x)dx).

Remark 3.38. The Gelfand–Gindikin program [GG77] seeks for the understanding of a ‘family
of irreducible representations’ by using complex geometric methods. This program has been
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particularly developed for lowest weight representations by Olshanski [Ols81] and Stanton [Sta86],
Hilgert, Neeb [HN93], and some others. The study of our holomorphic semigroup Ωk,a by using

the Olshanski semigroup Γ̃(W ) may be regarded as a descendant of this program.

Henceforth we will use the notation C+ := {z ∈ C | Re(z) > 0} and C++ := {z ∈ C | Re(z) >
0}.

For z ∈ C+, we extend the one-parameter subgroup γz (z ∈ iR) (see (3.37)) holomorphically
as

γz := Exp(−zk) = Exp(iz

(
0 1
−1 0

)
) ∈ Γ̃(W ). (3.44)

Then, the operators Ωk,a(γz) have the following property:

Ωk,a(γz1)Ωk,a(γz2) = Ωk,a(γz1+z2), ∀z1, z2 ∈ C+,

Ωk,a(γz)
∗ = Ω(γz̄), z ∈ C+,

Ωk,a(γ0) = id .

Following the formulation of [KM07a, Proposition 3.6.1] (the case k ≡ 0, a = 1), we summarize

basic properties of the holomorphic representation Ωk,a of the semigroup Γ̃(W ).

Theorem 3.39. Suppose a > 0 and k is a non-negative multiplicity function on the root system
satisfying (3.30), i.e. a+ 2〈k〉 +N − 2 > 0.

1) The map

Γ̃(W )× L2
(
RN , ϑk,a(x)dx

)
−→ L2

(
RN , ϑk,a(x)dx

)
, (γ, f) 7→ Ωk,a(γ)f

is continuous.

2) For any p ∈ H
(m)

k (RN ) and ` ∈ N, Φ
(a)
` (p, ·) (see (3.28)) is an eigenfunction of the operator

Ωk,a(γz) = exp(ωk,a(−zk)):

Ωk,a(γz)Φ
(a)
` (p, x) = e−z(λk,a,m+1+2`)Φ

(a)
` (p, x),

where λk,a,m = 1
a (2m+ 2〈k〉+N − 2) (see (3.11)).

3) The operator norm ‖Ωk,a(γz)‖op is exp(− 1
a(2〈k〉 +N + a− 2)Re z).

4) If Re(z) > 0, then Ωk,a(γz) is a Hilbert–Schmidt operator.

5) If Re(z) = 0, then Ωk,a(γz) is a unitary operator.

6) The representation Ωk,a is faithful on Γ̃(W ) if at least one of a or 〈k〉 is irrational, and on

Γ̃(W )/D for some discrete abelian kernel D if both a and 〈k〉 are rational.

Proof. The second statement follows from (3.33 a). The fifth statement is a special case of The-
orem 3.30. The proof of the other statements is parallel to that of [KM07a, Proposition 3.6.1],
and we omit it.

4. The integral representation of the holomorphic semigroup Ωk,a(γz)

We have seen in Theorem 3.39 that Ωk,a(γz) is a Hilbert–Schmidt operator for Re z > 0 and is
a unitary operator for Re z = 0. By the Schwartz kernel theorem, the operator Ωk,a(γz) can be
expressed by means of a distribution kernel Λk,a(x, y; z). If we adopt Gelfand’s notation on a
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generalized functions, we may write the operator Ωk,a(γz) on L2(RN , ϑk,a(x)dx) as an ‘integral
transform’ against the measure ϑk,a(x)dx:

Ωk,a(γz)f(x) = ck,a

∫

RN

Λk,a(x, y; z)f(y)ϑk,a(y)dy. (4.1)

Here, we have normalized the kernel Λk,a(x, y; z) by the constant ck,a that will be defined in
(4.47). In light of the unitary isomorphism

L2(RN , ϑk,a(x)dx)
∼→ L2(RN , dx), f(x) 7→ f(x)ϑk,a(x)

1
2 .

We see that Λk,a(x, y; z)ϑk,a(x)
1
2ϑk,a(y)

1
2 is a tempered distribution of (x, y) ∈ RN × RN .

The goal of this section is to find the kernel Λk,a(x, y; z). The main result of this section is
Theorem 4.23.

4.1 Integral representation for the radial part of Ωk,a(γz)

By Lemma 3.7, the sl2-action ωk,a on C∞(RN \ {0}) (see (3.5) for definition) can be described
in a simple form on each k-spherical component H m

k (RN ), namely, it can be expressed as the
action only on the radial direction. Accordingly, we can define the ‘radial part’ of the holomorphic

semigroup Ω
(m)
k,a (γz) (see (4.4) below for definition) on L2(R+, r

2〈k〉+N+a−3dr). The main result

of this subsection is the integral formula for Ω
(m)
k,a (γz), which will be given in Theorems 4.4 and

4.5.

4.1.1 Radial part of holomorphic semigroup
Recall that H m

k (RN ) is the space of k-harmonic polynomials of degree m ∈ N. Let

α
(m)
k,a : H m

k (RN )|SN−1 ⊗ L2(R+, r
2〈k〉+N+a−3dr) −→ L2

(
RN , ϑk,a(x)dx

)

be a linear map defined by

α
(m)
k,a (p⊗ f)(x) = p

( x

‖x‖
)
f(‖x‖) for p ∈H m

k (RN )|SN−1 and f ∈ L2(R+, r
2〈k〉+N+a−3dr).

Summing up α
(m)
k,a , we get a direct sum decomposition of the Hilbert space:

L2
(
RN , ϑk,a(x)dx

)
=
∑⊕

m∈N

H m
k (RN )|SN−1 ⊗ L2

(
R+, r

2〈k〉+N+a−3dr
)
. (4.2)

It follows from Theorem 3.31 that the unitary representation Ωk,a of ˜SL(2,R) on the Hilbert

space L2(RN , ϑk,a(x)dx) induces a family of unitary operators, to be denoted by Ω
(m)
k,a (γz) (z ∈

iR,m ∈ N), on L2(R+, r
2〈k〉+N+a−3dr) such that

α
(m)
k,a

(
p⊗ Ω

(m)
k,a (γz)(f)

)
= Ωk,a(γz)

(
α

(m)
k,a (p⊗ f)

)
. (4.3)

As is Theorem 3.39 for Ωk,a(γz), the unitary operator Ω
(m)
k,a (γz) extends to a holomorphic

semigroup of Hilbert–Schmidt operators on L2(R+, r
2〈k〉+N+a−3dr) for Re(z) > 0. Further, there

exists a unique kernel Λ
(m)
k,a (r, s; z) for each z and m ∈ N such that

Ω
(m)
k,a (γz)f(r) =

∫ ∞

0
f(s)Λ

(m)
k,a (r, s; z)s2〈k〉+N+a−3ds, (4.4)
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holds for any f ∈ L2(R+, r
2〈k〉+N+a−3dr).

According to the direct sum (4.2), the semigroup Ωk,a(γz) is decomposed as follows:

Ωk,a(γz) =
∑⊕

m∈N

id|H m
k

(RN ) ⊗ Ω
(m)
k,a (γz). (4.5)

Comparing the integral expressions (4.1) and (4.4) of Ωk,a(γz) and Ω
(m)
k,a (γz) respectively, we

see that the kernels Λk,a(x, y; z) and Λ
(m)
k,a (r, s; z) satisfy the following identities:

ck,a

∫

RN

Λk,a(x, y; z)p
( y

‖y‖
)
f(‖y‖)ϑk,a(y)dy = p

( x

‖x‖
)∫ ∞

0
f(s)Λ

(m)
k,a (r, s; z)s2〈k〉+N+a−3ds

(4.6)

for any p ∈H
(m)

k (RN ) and f ∈ L2(R+, r
2〈k〉+N+a−3dr).

In light of the following formula for the measures

ϑk,a(y)dy = ϑk(η)s
2〈k〉+N+a−3dσ(η)ds

with respect to polar coordinates y = sη, we see that (4.6) is equivalent to

ck,a

∫

SN−1

Λk,a(rω, sη; z)p(η)ϑk(η)dσ(η) = p(ω)Λ
(m)
k,a (r, s; z). (4.7)

Therefore, the distribution Λk,a is determined by the set of functions Λ
(m)
k,a (m ∈ N) as follows:

Proposition 4.1. Fix z ∈ C with Re z > 0. Then, the distribution Λk,a(x, y; z) on RN × RN is
characterized by the condition (4.7) for any p ∈H m

k (RN ) and any m ∈ N.

The relation between Λk,a and Λ
(m)
k,a (m ∈ N) will be discussed again in Theorem 4.20 by

means of the ‘Poisson kernel’.

4.1.2 The case Re(z) > 0

Suppose Re(z) > 0. Then, Ω
(m)
k,a (γz) is a Hilbert–Schmidt operator on L2(R+, r

2〈k〉+N+a−3dr),

and consequently, the kernel Λ
(m)
k,a (·, · ; z) is square integrable function with respect to the measure

(rs)2〈k〉+N+a−3dr ds.

We shall find a closed formula for Λ
(m)
k,a (r, s; z). Let us fix m ∈ N (as well as k and a) once

and for all. We have given in Proposition 3.15 an explicit orthonormal basis {f (a)
`,m(r) : ` ∈ N} of

L2(R+, r
2〈k〉+N+a−3dr). On the other hand, it follows from Theorem 3.39 (2) that Φ̃

(a)
` (p, x) =

f
(a)
`,m(r)p(ω) (see (3.35)) is an eigenfunction of the Hilbert–Schmidt operator Ωk,a(γz):

Ωk,a(γz)Φ̃
(a)
` (p, x) = e−z(2`+λk,a,m+1)Φ̃

(a)
` (p, x).

Using the identity (4.3), we deduce that

Ω
(m)
k,a (γz)f

(a)
`,m(r) = e−z(2`+λk,a,m+1)f

(a)
`,m(r), (4.8)

where the constant λk,a,m is defined in (3.11). Hence, the kernel Λ
(m)
k,a (r, s; z) in (4.4) is given by

the following series expansion:

Λ
(m)
k,a (r, s; z) =

∞∑

`=0

f
(a)
`,m(r)f

(a)
`,m(s)e−z(λk,a,m+1+2`).
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In view of the definition (3.32) of f
(a)
`,m(r), Λ

(m)
k,a (r, s; z) amounts to

e−z(λk,a,m+1)(rs)me−
1
a
(ra+sa)

aλk,a,m2−(λk,a,m+1)

∞∑

`=0

Γ(`+ 1)

Γ(λk,a,m + `+ 1)
e−2`zL

(λk,a,m)
`

(2

a
ra
)
L

(λk,a,m)
`

(2

a
sa
)
.

In order to compute this series expansion, we recall some basic identities of Bessel functions.
Let Iλ be the I-Bessel function defined by

Iλ(w) := e−
π
2
λiJλ(e

π
2
iw).

It is also convenient to introduce the normalized I-Bessel function by

Ĩλ(w) :=
(w

2

)−λ
Iλ(w) =

∞∑

`=0

w2`

22``!Γ(λ+ `+ 1)
(4.9)

=
1√

π Γ(λ+ 1
2 )

∫ 1

−1
ewt(1− t2)λ− 1

2 dt. (4.10)

We note that Ĩλ(w) is an entire function of w ∈ C satisfying

Ĩλ(0) =
1√

π Γ(λ+ 1
2)
.

Now, we can use the following Hille–Hardy identity [AAR99, (6.2.25)]
∞∑

κ=0

Γ(κ+ 1)

Γ(λ+ κ+ 1)
L(λ)

κ (u)L(λ)
κ (v)wκ =

1

1− w exp
(
− (u+ v)w

1− w
)
(uvw)−

λ
2 Iλ

(2
√
uvw

1− w
)

=
1

(1− w)λ+1
exp

(
−(u+ v)w

1− w

)
Ĩλ

(
2
√
uvw

1− w

)
.

Here the left-hand side converges for |w| < 1. Hence, we get a closed formula for Λ
(m)
k,a (r, s; z):

Λ
(m)
k,a (r, s; z) =

(rs)−〈k〉−N
2

+1

sinh(z)
e−

1
a
(ra+sa) coth(z)Iλk,a,m

(
2

a

(rs)
a
2

sinh(z)

)
(4.11)

=
(rs)m

aλk,a,m(sinh(z))λk,a,m+1
e−

1
a
(ra+sa) coth(z)Ĩλk,a,m

(
2

a

(rs)
a
2

sinh(z)

)
.

Next, let us give an upper estimate of the kernel function Λ
(m)
k,a (r, s; z). For this, we recall

from [KM07a, §4.2] the following elementary lemma.

Lemma 4.2. For z = x+ iy, we set

α(z) :=
sinh(2x)

cosh(2x) − cos(2y)
,

β(z) :=
cos(y)

cosh(x)
.

Then, we have

1)

Re coth(z) = α(z), (4.12)

Re
1

sinh(z)
= α(z)β(z). (4.13)
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2) If z ∈ C+ \ iπZ, then we have cosh(2x)− cos(2y) > 0, and

α(z) > 0 and |β(z)| < 1.

3) If Re z > 0, then α(z) > 0.

We set

C(k, a,m; z) :=
1

aλk,a,mΓ(λk,a,m + 1) |sinh(z)|λk,a,m+1
. (4.14)

With these notations, we have:

Lemma 4.3. For z ∈ C+ \ iπZ, the kernel function Λ
(m)
k,a (r, s; z) has the following upper estimate:

|Λ(m)
k,a (r, s; z)| 6 C(k, a,m; z)(rs)m exp

(
−1

a
(ra + sa)α(z)(1 − |β(z)|)

)
. (4.15)

Proof. By the following upper estimate of the I-Bessel function (see [KM07a, Lemma 8.5.1])

|Ĩν(w)| 6 Γ(ν + 1)−1e|Re(w)| for ν > −1

2
and w ∈ C (4.16)

that we get

|Λ(m)
k,a (r, s; z)| 6 C(k, a,m; z)(rs)m exp

(
−1

a
(ra + sa)

(
Re coth(z)−

∣∣∣Re
1

sinh(z)

∣∣∣
))
. (4.17)

Here, we have used ra + sa > 2(rs)
a
2 . Then, the substitution of (4.12) and (4.13) shows Lemma.

We are ready to complete the proof of the following:

Theorem 4.4. Let γz = Exp
(
iz

(
0 1
−1 0

))
be an element of Γ̃(W ) (see (3.44)), and Λ

(m)
k,a (r, s; z)

the function defined by (4.11). Assume m ∈ N and a > 0 satisfy

2m+ 2〈k〉+N + a− 2 > 0. (4.18)

Then, for z ∈ C++, the Hilbert–Schmidt operator Ω
(m)
k,a (γz) on L2(R+, r

2〈k〉+N+a−3dr) is given
by

Ω
(m)
k,a (γz)f(r) =

∫ ∞

0
Λ

(m)
k,a (r, s; z)f(s)s2〈k〉+N+a−3ds. (4.19)

The integral in (4.19) converges absolutely for f ∈ L2(R+, s
2〈k〉+N+a−3ds).

Proof. We have already proved the formula (4.11) for Λ
(m)
k,a (r, s; z). The convergence of the in-

tegral (4.19) is deduced from the Cauchy–Schwarz inequality because Λ
(m)
k,a (r, · ; z) belongs to

L2(R+, s
2〈k〉+N+a−3ds) for all z ∈ C++ if (4.18) is fulfilled.

4.1.3 The case Re(z) = 0

The operator Ω
(m)
k,a (γz) is unitary if Re(z) = 0. In this subsection, we discuss its distribution

kernel.

We note that the substitution of z = iµ into (4.11) makes sense as far as µ /∈ πZ, and we get
the following formula

Λ
(m)
k,a (r, s; iµ) = exp

(
−πi

2
(λk,a,m + 1)

) (rs)−〈k〉−N
2

+1

sinµ
exp
( i
a
(ra + sa) cot(µ)

)
Jλk,a,m

(
2

a

(rs)
a
2

sinµ

)
.

(4.20)
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Here, we have used the relation Iλ

(
z
i

)
= e−

iλπ
2 Jλ(z).

In this subsection, we shall prove:

Theorem 4.5. Retain the notation and the assumption (4.18) as in Theorem 4.4. For µ ∈ R\πZ,

the unitary operator Ω
(m)
k,a (γiµ) on L2(R+, r

2〈k〉+N+a−3dr) is given by

Ω
(m)
k,a (γiµ)f(r) =

∫ ∞

0
f(s)Λ

(m)
k,a (r, s; iµ)s2〈k〉+N+a−3ds. (4.21)

The integral in the right-hand side (4.21) converges absolutely for all f in the dense subspace,

in L2(R+, r
2〈k〉+N+a−3dr), spanned by the functions

{
f

(a)
`,m

}
`∈N

(see (3.32) for definition).

Proof. Let ε > 0 and µ ∈ R \ πZ. By Theorem 4.4 we have

Ω
(m)
k,a (γε+iµ)f(r) =

∫ ∞

0
f(s)Λ

(m)
k,a (r, s; ε + iµ)s2〈k〉+N+a−3ds. (4.22)

As ε→ 0 the left-hand side converges to Ω
(m)
k,a (γiµ) by Theorem 3.39 (1).

On the other hand, the addition formula

csch(ε+ iµ) =
csch(ε)csch(iµ)

coth(ε) + coth(iµ)

gives

|csch(ε+ iµ)| < |csch(iµ)|. (4.23)

Hence, it follows from Lemma 4.3 that we have

|Λ(m)
k,a (r, s; ε+ iµ)| 6 C(k, a,m; iµ)(rs)m

6 C
(rs)m

| sin(µ)|λk,a,m+1
,

for some constant C. In view of (3.32), we get

∣∣Λ(m)
k,a (r, s; ε+ iµ)f

(a)
`,m(s)

∣∣ 6 C ′ r
m exp(− 1

as
a)

| sin(µ)|λk,a,m+1
s2m

∣∣∣L(λk,a,m)
`

(2

a
sa
)∣∣∣.

Now, we can use the dominated convergence theorem to deduce that the right-hand side of (4.22)
goes to ∫ ∞

0
f(s)Λ

(m)
k,a (r, s; iµ)s2〈k〉+N+a−3ds

as ε→ 0. Hence, Theorem has been proved.

As a corollary of Theorem 4.5, we obtain representation theoretic proofs of the following two
classical integral formulas of Bessel functions:

Corollary 4.6.

1) (Weber’s second exponential integral, [GR80, 6.615]).
∫ ∞

0
e−δT Jν(2α

√
T )Jν(2β

√
T )dT =

1

δ
e−

1
δ
(α2+β2)Iν

(2αβ

δ

)
,

where | arg(δ)| < π
2 and ν > 0.

2) (See [GR80, 7.421.4]).
∫ ∞

0
e−δTL

(ν)
` (αT )Jν(β

√
T )T

ν
2 dT =

(δ − α)`βν

2νδν+`+1
e−

β2

4δ L
(ν)
`

( αβ2

4δ(α − δ)
)
, (4.24)
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for Re(δ) > 0 and Re(ν) > 0.

Proof (Sketch). (1) The semigroup law Ω
(m)
k,a (γz1)Ω

(m)
k,a (γz2) = Ω

(m)
k,a (γz1+z2) yields

∫ ∞

0
Λ

(m)
k,a (r, s; z1)Λ

(m)
k,a (s, r′; z2)s

2〈k〉+N+a−3ds = Λ
(m)
k,a (r, r′; z1 + z2). (4.25)

Using the expression (4.20) of Λ
(m)
k,a , we get the identity (1).

(2) The identity (4.8) (in terms of group theory, this comes from the K-type formula (3.34 a))
can be restated as∫ ∞

0
Λ

(m)
k,a (r, s; z)f

(a)
`,m(s)s2〈k〉+N+a−3ds = e−z(2`+λk,a,m+1)f

(a)
`,m(r),

in terms of the integral kernels by Theorem 4.4. After some simplifications and by putting
constants together, we get the identity (4.24).

Remark 4.7. 1) The operator π(λk,a,m)(γz) acts on the irreducible representation π(λk,a,m) of

˜SL(2,R) as a scalar multiplication if z ∈ iπZ i.e. if γz belongs to the center (see Fact 3.27).

Correspondingly, the kernel function Λ
(m)
k,a (r, s; ε+iµ) approaches to a scalar multiple of Dirac’s

delta function as ε goes to 0 if µ ∈ πZ.

2) Of particular interest is another case where µ ∈ π(Z + 1
2). For simplicity, let µ = π

2 . Then,
the formula (4.20) collapses to

Λ
(m)
k,a

(
r, s;

πi

2

)
= exp

(
−πi

2
(λk,a,m + 1)

)
(rs)−〈k〉−N

2
+1Jλk,a,m

(2

a
(rs)

a
2

)
.

For a = 1, 2, we have

Λ
(m)
k,1 (r, s;

πi

2
) = e−i π

2
(2m+2〈k〉+N−1)(rs)−〈k〉−N

2
+1J2m+2〈k〉+N−2(2

√
rs) (a = 1),

Λ
(m)
k,2 (r, s;

πi

2
) = e−i π

2
(m+〈k〉+ N

2
)(rs)−〈k〉−N

2
+1Jm+〈k〉+ N

2
−1(rs) (a = 2).

We shall discuss the unitary operator Ω(γ πi
2
) = limε→0 Ω(γ ε+πi

2
) in full detail, which we call

the (k, a)-generalized Fourier transform Fk,a (up to a phase factor) in Section 5.

4.2 Gegenbauer transform

In this section, we summarize some basic properties of the Gegenbauer polynomials and the
corresponding integral transforms.

4.2.1 The Gegenbauer polynomial
The Gegenbauer polynomial Cν

m(t) of degree m is defined by the generating function

(1− 2rt+ r2)−ν =

∞∑

m=0

Cν
m(t)rm. (4.26)

To be more explicit, it is given as

Cν
m(t) =

(
− 1

2

)m (2ν)m

m!(ν + 1
2)m

(1− t2)−ν+ 1
2
dm

dtm
(1− t2)m+ν− 1

2 . (4.27)

If we put t = cos θ, and expand

(1− 2r cos θ + r2)−ν = ((1− reiθ)(1− re−iθ))−ν
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by the binomial theorem, then we have

Cν
m(cos θ) =

m∑

k=0

(ν)k(ν)m−k

k!(m− k)! cos(m− 2k)θ. (4.28)

Then, the following fact is readily seen.

Fact 4.8. 1) Cν
m(t) is a polynomial of t of degree m, and is also a polynomial in parameter ν.

2) C0
m(t) ≡ 0 for any m > 1.

3) Cν
0 (t) ≡ 1, Cν

1 (t) = 2νt.

4) Cν
m(1) =

Γ(m+ 2ν)

m!Γ(2ν)
.

In this subsection, we prove:

Lemma 4.9. Fix ν ∈ R. Then there exists a constant B(ν) > 0 such that

sup
−16t61

∣∣∣∣
1

ν
Cν

m(t)

∣∣∣∣ 6 B(ν)m2ν−1 for any m ∈ N+. (4.29)

Remark 4.10. 1) For ν > 0, it is known that the upper bound of |C ν
m(t)| is attained at t = 1,

namely,

sup
−16t61

|Cν
m(t)| = Cν

m(1) =
Γ(m+ 2ν)

m!Γ(2ν)
.

This can be verified easily by (4.28), or alternatively, by the following integral expression for
ν > 0:

Cν
m(t) =

Γ(ν + 1
2)Γ(m+ 2ν)√

πm!Γ(ν)Γ(2ν)

∫ π

0
(t+

√
t2 − 1 cos θ)m sin2ν−1 θ dθ. (4.30)

2) For ν = 0, the left-hand side of (4.29) is interpreted as the L∞-norm of limν→0
1
νC

ν
m(t),

which is a polynomial of t by Fact 4.8 2).

3) Our proof below works also for all ν ∈ C.

Before proving Lemma 4.9, we prepare the following estimate:

Claim 4.11. Let λ ∈ R. Then there exists a constant A(λ) > 0 such that
∣∣∣∣
Γ(λ+ k)

Γ(λ)k!

∣∣∣∣ 6 A(λ)kλ−1 for any k ∈ N.

Proof. We recall Stirling’s asymptotic formula of the Gamma function:

Γ(x) ∼ Γ0(x) as x→∞,
where Γ0(x) :=

√
2πxx−1e−x. In light of the following ratio:

Γ0(k + λ)

Γ0(k + 1)
= kλ−1

(
1 + λ

k

1 + 1
k

)k+ 1
2 (

1 +
λ

k

)λ−1

e1−λ,

we get

lim
k→∞

Γ(λ+ k)

k!kλ−1
= 1.

Thus, Claim follows.
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Proof of Lemma 4.9. By (4.28), we have

sup
−16t61

|Cν
m(t)| 6

m∑

k=0

∣∣∣∣
Γ(ν + k)

k!Γ(ν)

Γ(m− k + ν)

(m− k)!Γ(ν)

∣∣∣∣ .

We note that there is no pole in the Gamma factors in the right-hand side. We now use Claim
4.11, and get

6

m∑

k=0

A(ν)2kν−1(m− k)ν−1

6 A(ν)2(m+ 1)
(m

2

)2ν−2
.

Hence, (4.29) is proved for ν 6= 0.

For ν = 0, we use (4.28), and get

lim
ν→0

1

ν
Cν

m(cos θ) =
1

m
(cos(n− 2m)θ + cosnθ). (4.31)

Hence, the inequality (4.29) also holds for ν = 0. Thus, we have proved Lemma 4.9.

4.2.2 The Gegenbauer transform
We summarize L2-properties of Gegenbauer polynomials in a way that we shall use later.

Fact 4.12 (see [AAR99], [DB07, Chapter 15]). Suppose ν > − 1
2 .

1) {Cν
m(t) : m ∈ N} is an orthogonal basis in the Hilbert space Hν := L2((−1, 1), (1− t2)ν− 1

2 dt).

2)

∫ 1

−1
Cν

m(t)2(1− t2)ν− 1
2dt =

πΓ(2ν +m)

22ν−1Γ(m+ 1)(m+ ν)Γ(ν)2
.

3) We set a normalized constant bν,m by

bν,m :=
22ν−1Γ(m+ 1)Γ(ν)Γ(ν + 1)

πΓ(m+ 2ν)
. (4.32)

Then, the Gegenbauer transform defined by

Cν,m(h) := bν,m

∫ 1

−1
h(t)Cν

m(t)(1 − t2)ν− 1
2 dt, for h ∈Hν (4.33)

has the following inversion formula.

h =
1

ν

∞∑

m=0

(m+ ν)Cν,m(h)Cν
m(t). (4.34)

The orthonality relation in Fact 4.12 can be restated in terms of the Gegenbauer transform
as follows:

Cν,m(Cν
n) =





ν

m+ ν
(n = m),

0 (n 6= m).
(4.35)

The Gegenbauer transform Cν,m arises also in a Dunkl analogue of the classical Funk–Hecke
formula for spherical harmonics as follows.
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Fact 4.13 (see [Xu00, Theorem 2.1]). Let h be a continuous function on [−1, 1] and p ∈
H m

k (RN ). Then, we have

dk

∫

SN−1

(Ṽkh)(ω, η)p(η)ϑk(η)dσ(η) = C〈k〉+ N−2
2

,m(h)p(ω), ω ∈ SN−1. (4.36)

Here, dk is the constant defined in (2.12), and Ṽkh is defined in (2.6) by using the Dunkl in-
tertwining operator Vk. For k ≡ 0, (Ṽkh)(η, ω) = h(〈η, ω〉) and ϑk(η) ≡ 1, so that the identity
(4.36) collapses to the original Funk–Hecke formula.

4.2.3 Explicit formulas of Gegenbauer transforms
In this subsection, we present two explicit formulas of Gegenbauer transforms Cν,m (see (4.33)).
These results will be used in describing the kernel distributions Λk,a(x, y; z) for a = 1, 2 (see
Theorem 4.24).

Lemma 4.14.

1) Cν,m

(
Ĩν− 1

2

(
α(1 + t)

1
2

))
= 22ν−mπ−

1
2α2mΓ(ν + 1)Ĩ2m+2ν(

√
2α) = α2mΓ(2ν+1)

2mΓ(ν+ 1
2
)
Ĩ2m+2ν(

√
2α).

2) Cν,m(eαt) = 2−mαmΓ(ν + 1)Ĩν+m(α).

This lemma is an immediate consequence of the following integral formulas and the duplica-
tion formula of the Gamma function:

Γ(2ν) = 22ν−1π−
1
2 Γ(ν)Γ

(
ν +

1

2

)
. (4.37)

Lemma 4.15. For α, ν ∈ C such that Re(ν) > 0, the following two integral formulas hold:

1)

∫ 1

−1
Ĩν− 1

2

(
α(1 + t)

1
2
)
Cν

m(t)(1− t2)ν− 1
2dt =

2
√
πΓ(m+ 2ν)

Γ(m+ 1)Γ
(
ν
)
( α√

2

)2m
Ĩ2m+2ν

(√
2α
)
. (4.38)

2)
∫ 1

−1
eαtCν

m(t)(1 − t2)ν− 1
2 dt =

2−2ν−m+1πΓ(2ν +m)

Γ(m+ 1)Γ(ν)
αmĨν+m(α). (4.39)

Proof of Lemma 4.15. (1) This identity was proved in [KM07a, Lemma 8.5.2].

(2) The integral formula (4.39) is well known (see for instance [Vil68, page 570]). However,
for the convenience of the readers, we give a simple proof. Using (4.27), we have

∫ 1

−1
eαtCν

m(t)(1 − t2)ν− 1
2 dt =

Γ(ν + 1
2)

Γ(2ν)

Γ(m+ 2ν)

2mm!Γ(m+ ν + 1
2 )

∫ 1

−1

dm

dtm
(eαt)(1 − t2)m+ν− 1

2 dt

=
Γ(ν + 1

2)

Γ(2ν)

Γ(m+ 2ν)

2mm!Γ(m+ ν + 1
2 )
αm

∫ 1

−1
eαt(1− t2)m+ν− 1

2 dt.

Now, (4.39) follows from the integral representation (4.10) of Ĩν(w).

Remark 4.16 (expansion formulas). Applying the inversion formula of the Gegenbauer transform
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(see Fact 4.12), we get the following expansion formulas from Lemma 4.14:

ewt = Γ(ν)

∞∑

m=0

(ν +m)
(w

2

)m
Ĩν+m(w)Cν

m(t), Re(ν) > 0 (4.40)

Ĩν−1/2

(w(1 + t)1/2

√
2

)
=

22νΓ(ν)√
π

∞∑

m=0

(ν +m)
(w

2

)2m
Ĩ2m+2ν(w)Cν

m(t), Re(ν) > 0 (4.41)

or equivalently,

w2ν J̃ν−1/2

(w(1 + t)1/2

√
2

)
=

24νΓ(ν)√
π

∞∑

m=0

(−1)m(ν +m)J2ν+2m(w)Cν
m(t).

The first formula (4.40) is Gegenbauer’s expansion (see for instance [WG89, 7.13(14)]), whereas
the second expansion formula (4.41) was proved in Kobayashi–Mano [KM07a, Proposition 5.7.1].

4.3 Integral representation for Ωk,a(γz)

In this section, we find the integral kernel Λk,a(x, y; z) of the operator Ωk,a(γz) for z ∈ C+ \ iπZ.
The main result is Theorem 4.23.

4.3.1 The function I (b, ν;w; t)
In this subsection, we introduce a function I (b, ν;w; t) of four variables, and study its basic
properties.

Let Ĩλ(w) = (w
2 )−λIλ(w) be the normalized I-Bessel function (see (4.9)), and Cν

m(t) the
Gegenbauer polynomial. Consider the following infinite sum:

I (b, ν;w; t) =
Γ(bν + 1)

ν

∞∑

m=0

(m+ ν)
(w

2

)bm
Ĩb(m+ν)(w)Cν

m(t). (4.42)

We note that ν = 0 is not a singularity in the summand because C 0
m(t) ≡ 0 for m > 1 (see Fact

4.8 2); see also (4.31)). In this subsection, we prove:

Lemma 4.17. 1) The summation (4.42) converges absolutely and uniformly on any compact
subset of

U := {(b, ν, w, t) ∈ R+ × R× C× [−1, 1] : 1 + bν > 0}. (4.43)

In particular, I (b, ν;w; t) is a continuous function on U .

2) (Special value at w = 0)

I (b, ν; 0; t) ≡ 1. (4.44)

3) (Gegenbauer transform) For ν > − 1
2 ,

Cν,m(I (b, ν;w; ·)) = Γ(1 + bν)
(w

2

)bm
Ĩb(m+ν)(w), for m ∈ N.

Proof. 1) It is sufficient to show that for a sufficiently large m0 the summation over m (> m0)
converges absolutely and uniformly on any compact set of U . We recall from (4.16) and (4.29)
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that

|Ĩλ(w)| 6 e|Re w|

Γ(λ+ 1)
,

∣∣∣∣
1

ν
Cν

m(t)

∣∣∣∣ 6 B(ν)m2ν−1 for any m > 1.

Then,

1

ν

∞∑

m=m0

∣∣∣∣∣(m+ ν)
(w

2

)bm
Ĩb(m+ν)(w)Cν

m(t)

∣∣∣∣∣ 6

∞∑

m=m0

∣∣∣∣∣
(m+ ν)B(ν)wbme|Re w|m2ν−1

2bmΓ(bm+ bν + 1)

∣∣∣∣∣

= B(ν)e|Re w|
∞∑

m=m0

(1 + ν
m )m2ν

Γ(bm+ bν + 1)

(∣∣∣w
2

∣∣∣
b
)m

.

Since b > 0, Γ(bm + bν + 1) grows faster than any other term in each summand as m goes to
infinity, and consequently, the last sum converges. Furthermore, the convergence is uniform on
any compact set of parameters (b, ν, w). Hence, we have proved the first assertion.

2) Since b > 0, the summand in (4.42) vanishes at w = 0 for any m > 0, and therefore

I (b, ν; 0; t) =
Γ(bν + 1)

ν
· ν · Ĩbν(0) · Cν

0 (t)

= 1.

Thus, the second assertion is proved.

3) This is an immediate consequence of Fact 4.12 on the Gegenbauer transform Cν,m.

Example 4.18. The special values at b = 1, 2 are given by

I (1, ν;w; t) = ewt, (4.45)

I (2, ν;w; t) = Γ
(
ν +

1

2

)
Ĩν− 1

2

(
w(1 + t)

1
2√

2

)
. (4.46)

Proof of Example 4.18. First, let us prove the identity (4.45). By Lemma 4.17 3), we have

Cν,m(I (b, ν;w; ·)) = Γ(1 + bν)
(w

2

)bm
Ĩb(m+ν)(w), for all m ∈ N.

By Lemma 4.14 2), we have

Cν,m(ewt) = Γ(1 + ν)
(w

2

)m
Ĩν+m(w).

This shows that

Cν,m(left-hand side) = Cν,m(right-hand side) for all m ∈ N

with regard to the identity (4.45). Since the Gegenbauer polynomials form a complete orthogonal

basis in the Hilbert space L2((−1, 1), (1 − t2)ν− 1
2 dt) (see Fact 4.12), we have proved (4.45).

The proof for the identity (4.46) goes similarly by using Lemma 4.14 1). Thus, Example 4.18
has been shown.

4.3.2 The normalization constant
For a > 0 and a multiplicity function k on the root system R, we introduce the following
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normalization constant

ck,a :=
( ∫

RN

exp
(
−1

a
‖x‖a

)
ϑk,a(x)dx

)−1
(4.47)

where ϑk,a is the density defined in (1.2). Using the polar coordinates, we have

c−1
k,a =

∫ ∞

0

∫

SN−1

exp
(
−1

a
ra
)
r2〈k〉+N+a−3ϑk(ω)dσ(ω)dr

= d−1
k

∫ ∞

0
e−t(at)

N+2〈k〉−2
a dt.

Here, d−1
k is the k-deformation of the volume of the unit sphere (see (2.12)). For a non-negative

multiplicity function k, the integral converges if 2〈k〉 +N + a− 2 > 0, and we get

ck,a = a−(
2〈k〉+N−2

a
)Γ(

2〈k〉+N + a− 2

a
)−1dk. (4.48)

For k ≡ 0, we have d−1
0 = 2π

N
2

Γ( N
2

)
(see (2.13)), and in particular,

c0,1 =
Γ(N

2 )

2π
N
2 Γ(N − 1)

=
1

(4π)
N−1

2 Γ(N−1
2 )

, c0,2 =
1

(2π)
N
2

.

4.3.3 Definition of hk,a(r, s; z; t) and Λk,a(x, y; z)
We now introduce the following continuous function of t on the interval [−1, 1] with parameters
r, s > 0, and z ∈ C+ \ iπZ:

hk,a(r, s; z; t) :=
exp
(
− 1

a(ra + sa) coth(z)
)

sinh(z)
2〈k〉+N+a−2

a

I

(
2

a
,
2〈k〉+N − 2

2
;

2(rs)
a
2

a sinh(z)
; t

)
. (4.49)

We observe that, for µ ∈ R \ πZ, the substitution z = iµ into (4.49) yields:

hk,a(r, s; iµ; t) =
exp( i

a (ra + sa) cot(µ))

e
2〈k〉+N+a−2

2a
πi sin(µ)

2〈k〉+N+a−2
a

I

(
2

a
,
2〈k〉+N − 2

2
;

2(rs)
a
2

ai sin(µ)
; t

)
. (4.50)

We recall from (4.3) that Λ
(m)
k,a (r, s; z) is the integral kernel of the operator Ω

(m)
k,a (γz) on the

Hilbert space L2(R+, r
2〈k〉+N+a−3dr). Up to a constant factor (independent of m), the Gegen-

bauer transform of hk,a coincides with Λ
(m)
k,a (r, s; z):

Lemma 4.19. Suppose 2〈k〉 +N > 1. Then, for every m ∈ N, we have

C〈k〉+ N
2
−1,m(hk,a(r, s; z; ·)) =

dk

ck,a
Λ

(m)
k,a (r, s; z) (4.51)

= a
2〈k〉+N−2

a Γ

(
2〈k〉+N + a− 2

a

)
Λ

(m)
k,a (r, s; z).

Proof. We observe

1 + bν =
2〈k〉+ a+N − 2

a
and λk,a,m =

2

a
(m+ ν)

if b = 2
a and ν = 2〈k〉+N−2

2 . Then, Lemma 4.19 follows from Lemma 4.17 3) and the definition

(4.11) of Λ
(m)
k,a (r, s; z).
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We are ready to define the following function on RN × RN × (C+ \ iπZ) by

Λk,a(rω, sη; z) := (Ṽkhk,a(r, s; z; ·))(ω, η), (4.52)

where Ṽk is introduced in (2.6) by using the Dunkl intertwining operator Vk and hk,a(r, s; z; t) is
defined in (4.49).

4.3.4 Expansion formula

For a > 0, we will derive a series representation for the kernel Λk,a in terms of Λ
(m)
k,a and the

Poisson kernel of the space H m
k (RN ).

In light of the definitions of I (b, ν;w; t) (see (4.42)) and Λ
(m)
k,a (r, s; z) (see (4.11)), we may

rewrite (4.49) as

hk,a(r, s; z; t) = a(
2〈k〉+N−2

a
)Γ

(
2〈k〉+N + a− 2

a

)∑

m∈N

Λ
(m)
k,a (r, s; z)

( 〈k〉+m+ N−2
2

〈k〉+ N−2
2

)
C

〈k〉+ N−2
2

m (t).

(4.53)
The above expansion formula (4.53) is the series expansion by Gegenbauer polynomials (Fact
4.12) corresponding to Lemma 4.19.

Now, applying the operator Ṽk to (4.53), we get

Theorem 4.20. For a > 0 and z ∈ C+ \ iπZ, we have

Λk,a(x, y; z) = a( 2〈k〉+N−2
a

)Γ

(
2〈k〉+N + a− 2

a

)∑

m∈N

Λ
(m)
k,a (r, s; z)Pk,m(ω, η)

where x = rω, y = sη, and

Pk,m(ω, η) :=
(〈k〉+m+ N−2

2

〈k〉+ N−2
2

)(
ṼkC

〈k〉+ N−2
2

m

)
(ω, η). (4.54)

In Theorem 4.20, the function Pk,m(ω, η) on SN−1×SN−1 is the Poisson kernel, or the reproduc-
ing kernel, of the space of spherical k-harmonic polynomials of degree m, which is characterized
by the following proposition.

Proposition 4.21. Pk,m(ω, η) is the kernel function of the projection from the Hilbert space
L2(SN−1, ϑk(η)dη) to H m

k (RN ), namely, for any p ∈H n
k (RN ),

dk

∫

SN−1

Pk,m(ω, η)p(η)ϑk(η)dσ(η) =

{
p(ω) (n = m),

0 (n 6= m).

Example 4.22. For N = 1, SN−1 consists of two points (±1), and H m
k (RN ) = 0 if m > 2. In

this case, it is easy to see

dk =
1

2
,

Pk,m(ω, η) =

{
1 (m = 0),

sgn(ωη) (m = 1).

Proof of Proposition 4.21. By the Funk–Hecke formula in the Dunkl setting (see Fact 4.13), we
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have

dk

∫

SN−1

(
ṼkC

〈k〉+ N−2
2

m

)
(ω, η)p(η)ϑk(η)dσ(η) = C〈k〉+ N−2

2
,n

(
C

〈k〉+ N−2
2

m

)
p(ω)

=





〈k〉+ N−2
2

m+〈k〉+ N−2
2

p(ω) (n = m),

0 (n 6= m).

Here, we have used Fact 4.12 and (4.35) for the last equality. Hence, Proposition 4.21 follows.

4.3.5 Integral representation of Ωk,a(γz)
We are ready to prove the main result of this section. Recall from Theorem 3.39 that Ωk,a(γz)
is a holomorphic semigroup consisting of Hilbert–Schmidt operators on L2(RN , ϑk,a(x)dx) for
Re z > 0, and is a one-parameter subgroup of unitary operators for z ∈ iR. Here is an integral
representation of Ωk,a(γz):

Theorem 4.23. Suppose a > 0 and k is a non-negative multiplicity function on the root system
R satisfying

2〈k〉+N > max(1, 2− a). (4.55)

1) Suppose Re z > 0. Then, the Hilbert–Schmidt operator Ωk,a(γz) on L2
(
RN , ϑk,a(x)dx

)
is

given by

Ωk,a(γz)f(x) = ck,a

∫

RN

f(y)Λk,a(x, y; z)ϑk,a(y)dy, (4.56)

where ck,a is the constant defined in (4.47) and the kernel function Λk,a(x, y; z) is defined in
(4.52).

2) Suppose z = iµ (µ ∈ R \ πZ). Then, the unitary operator Ωk,a(γiµ) on L2
(
RN , ϑk,a(x)dx) is

given by

Ωk,a(γiµ)f(x) = ck,a

∫

RN

f(y)Λk,a(x, y; iµ)ϑk,a(y)dy. (4.57)

Proof. Thanks to Proposition 4.1, it suffices to show the following identity:

ck,a

∫

SN−1

Λk,a(rω, sη; z)p(η)ϑk(η)dσ(η) = Λ
(m)
k,a (r, s; z)p(ω),

for all p ∈H m
k (RN ) and m ∈ N. This follows from Theorem 4.20, Proposition 4.21, and (4.48).

Hence, Theorem 4.23 is proved.

4.4 The a = 1, 2 case

As we have seen in Theorem 4.23, the kernel function Λk,a(x, y; z) for the holomorphic semigroup
Ωk,a(γz) is given as

Λk,a(rω, sη; z) = (Ṽkhk,a(r, s; z; ·))(ω, η).
See (2.6) for the definition of Ṽk. In this section, we give a closed formula of hk,a(r, s; z; t) for
a = 1, 2, and discuss the convergence of the integral (4.56) in Theorem 4.23.

4.4.1 Explicit formula for hk,a(r, s; z; t) (a = 1, 2)
When a = 1, 2, the series expansion in (4.53) can be expressed in terms of elementary functions
as follow.

47
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Theorem 4.24. Let 〈k〉 be defined in (2.3), and Ĩν the normalized I-Bessel function (see (4.9)).
Then, for z ∈ C+ \ iπZ, we have:

hk,a(r, s; z; t) =
exp(− 1

a(ra + sa) coth(z))

sinh(z)
2〈k〉+N+a−2

a

×





Γ
(
〈k〉+ N − 1

2

)
Ĩ〈k〉+ N−3

2

(√2(rs)
1
2

sinh z
(1 + t)

1
2

)
(a = 1),

exp
( rst

sinh z

)
(a = 2).

(4.58)

Proof. In view of the definition (4.49) of hk,a(r, s; z; t), Theorem 4.24 follows from formulas (4.45)
and (4.46) for I (a, ν;w; t) in Example 4.18.

4.4.2 Absolute convergence of integral representation
By using Theorem 4.24, we shall give an upper bound for Λk,a(x, y; z). We begin with the fol-
lowing:

Lemma 4.25. For b = 1, 2

|I (b, ν;w; t)| 6 e|Re w| (4.59)

for any t ∈ [−1, 1], ν > 0 and w ∈ C.

Proof. We have seen in (4.45) and (4.46) the explicit formulas of I (b, ν;w; t) for b = 1, 2. Then
(4.59) is obvious for b = 1, and follows from the upper estimate (4.16) of the I-Bessel function
for b = 2.

Proposition 4.26. Suppose b is a positive number, for which the inequality (4.59) holds. Let
a := 2

b . Then the function Λk,a(x, y; z) (see (4.52)) satisfies the following inequalities:

1) For Re z > 0, there exist positive constants A,B depending on z such that

|Λk,a(x, y; z)| 6 A exp (−B(‖x‖a + ‖y‖a)) , for any x, y ∈ RN . (4.60)

2) For z = iµ+ ε (µ ∈ R \ πZ, ε > 0),

|Λk,a(x, y; iµ+ ε)| 6 1

| sin(µ)|
N+2〈k〉+a−2

a

. (4.61)

Remark 4.27. By Lemma 4.25, the assumption of Proposition 4.26 is fulfilled for b = 1, 2. We
do not know if (4.59) holds for b other than 1 and 2.

Proof. Suppose the inequality (4.59) of I (b, ν;w; t) holds. Then, by the definition of hk,a(r, s; z; t)
in (4.49), the inequality (4.59) brings us to the following estimate:

|hk,a(r, s; z; t)| 6
1

| sinh(z)|
2〈k〉+N+a−2

a

exp
(
−1

a
(ra + sa)α(z)

)
exp
(2

a
(rs)

a
2α(z)β(z)

)
.

Here, we have used the functions α(z) and β(z) defined in Lemma 4.2. Since ra + sa > 2(rs)
a
2 ,

we have obtained:

|hk,a(r, s; z; t)| 6
1

| sinh(z)|
N+2〈k〉+a−2

a

exp
(
−1

a
(ra + sa)α(z)(1 − |β(z)|)

)
.

We recall that Λk,a(x, y; z) is defined by applying the operator Ṽk to hk,a(r, s; z; ·) (see (4.52)).
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Then, it follows from Proposition 2.5 that

|Λk,a(x, y; z)| 6 ‖hk,a(r, s; z; ·)‖L∞ 6
1

| sinh(z)|
N+2〈k〉+a−2

a

exp
(
−1

a
(‖x‖a + ‖y‖a)α(z)(1− |β(z)|)

)
.

Suppose now that Re z > 0. Then, α(z) > 0 and |β(z)| < 1 by Lemma 4.2. Hence, we have
proved (4.60).

On the other hand, suppose z = iµ + ε (µ ∈ R \ πZ, ε > 0). Then α(z) > 0, |β(z)| < 1 by
Lemma 4.2, and as we have seen in (4.23)

| sinh z| > | sinµ|.
Hence, we have shown (4.61).

Now we are ready to prove:

Corollary 4.28. Suppose we are in the setting of Theorem 4.23. Let a = 1, 2.

1) For Re z > 0, the right-hand side of (4.56) converges absolutely for any f ∈ L2
(
RN , ϑk,a(x)dx

)
.

2) For z = iµ ∈ i(R \ πZ), the right-hand side of (4.57) converges absolutely for all f ∈
(L1 ∩ L2)(RN , ϑk,a(x)dx).

Proof. 1) It follows from Proposition 4.26 1) that

Λk,a(x, y; z) ∈ L2(RN × RN , ϑk,a(x)ϑk,a(y)dx dy)

for Re z > 0. Therefore, Corollary is clear from the Cauchy–Schwartz inequality.

2) We shall substitute z by ε+ iµ in (4.56) and let ε goes to 0.

For the left-hand side of (4.56), we use Theorem 3.39 1), and get

lim
ε→0

Ωk,a(γε+iµ) = Ωk,a(γiµ).

For the right-hand side of (4.56), thanks to Proposition 4.26 2), we see

lim
ε↓0

∫

RN

Λk,a(x, y; iµ+ ε)f(y)ϑk,a(y)dy =

∫

RN

Λk,a(x, y; iµ)f(y)ϑk,a(y)dy

for f ∈ L1(RN , ϑk,a(y)dy) by the Lebesgue dominated convergence theorem. Hence, we have
shown that

(Ωk,a(γiµ)f)(x) =

∫

RN

Λk,a(x, y; iµ)f(y)ϑk,a(y)dy,

and the right-hand side converges for any f ∈ (L1 ∩ L2)(RN , ϑk,a(y)dy). Hence, Corollary 4.28
has been proved.

4.5 The rank one case

For the one dimensional case, the only choice of the non-trivial reduced root system R is R =
{±1} in R up to scaling, corresponding to the Coxeter group C = {id, σ} ∼= Z/2Z on R, where
σ(x) = −x. Here 〈k〉 = k. In this section we give a closed form of Λk,a(x, y; z) for N = 1.

First of all, for N = 1 and a > 0, we note that we do not need Lemma 4.19, for which the
assumption was 2〈k〉+N > 1. Hence, instead of (4.55), we simply need the following assumption:

a > 0 and 2k > 1− a. (4.62)
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The goal of this section is to find a closed formula of the kernel function Λk,a(x, y; z) (see (4.52))
for all a > 0 and for an arbitrary multiplicity function subject to (4.62).

Proposition 4.29. Let N = 1, a > 0, k > 0 and 2k > 1− a. For z ∈ C+ \ iπZ, the holomorphic
semigroup Ωk,a(γz) on L2(R, |x|2k+a−2dx) is given by

Ωk,a(γz)f(x) = 2−1a−( 2k−1
a

)Γ
(2k + a− 1

a

)−1
∫

R

f(y)Λk,a(x, y; z)|y|2k+a−2dy,

where

Λk,a(x, y; z)

= Γ
(2k + a− 1

a

)e− 1
a
(|x|a+|y|a) coth(z)

sinh(z)
2k+a−1

a

(
Ĩ 2k−1

a

(2

a

|xy| a2
sinh(z)

)
+

1

a
2
a

xy

sinh(z)
2
a

Ĩ 2k+1
a

(2

a

|xy| a2
sinh(z)

))
.

(4.63)

Here Ĩν(w) denotes the normalized Bessel function (4.9).

Proof. By Theorem 4.20, the kernel Λk,a(x, y; z) can be recovered from a family of functions

{Λ(m)
k,a (r, s; z) : m ∈ N}. In the rank one case, S0 consists of two points, and correspondingly,

Theorem 4.20 collapses to the following:

Λk,a(x, y; z)

=
c−1
k,a

2

(
Λ

(0)
k,a(|x|, |y|; z) + Λ

(1)
k,a(|x|, |y|; z) sgn(xy)

)

=
c−1
k,a

2

e−
1
a
(|x|a+|y|a) coth(z)

sinh(z)
|xy|−k+(1/2)

(
Iλk,a,0

(2

a

|xy| a2
sinh(z)

)
+ Iλk,a,1

(2

a

|xy| a2
sinh(z)

)
sgn(xy)

)

=
c−1
k,a

2

e−
1
a
(|x|a+|y|a) coth(z)

sinh(z)

( 1

(a sinh(z))λk,a,0
Ĩλk,a,0

(2

a

|xy| a2
sinh(z)

)
+

xy

(a sinh(z))λk,a,1
Ĩλk,a,1

(2

a

|xy| a2
sinh(z)

))
,

where

λk,a,0 =
2k − 1

a
, λk,a,1 =

2k + 1

a
, c−1

k,a = 2a( 2k−1
a

)Γ
(2k + a− 1

a

)
.

Here, we have used Example 4.22 for the first equality, and the formula (4.20) of Λ
(m)
k,a for the

second equality. This finishes the proof of Proposition 4.29.

5. The (k, a)-generalized Fourier transforms Fk,a

The object of our study in this section is the (k, a)-generalized Fourier transform given by

Fk,a = e
πi
2

( 2〈k〉+N+a−2
a

) exp
(πi

2a

(
‖x‖2−a∆k − ‖x‖a

))
.

This is a unitary operator on the Hilbert space L2(RN , ϑk,a(x)dx).

As we mentioned in Introduction, the unitary operator Fk,a includes some known transforms
as special cases:
• the Euclidean Fourier transform [How88] (a = 2, k ≡ 0),
• the Hankel transform [KM07a] (a = 1, k ≡ 0),
• the Dunkl transform Dk (a = 2, k > 0).

In this section, we develop the theory of the (k, a)-generalized Fourier transform Fk,a for general a
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and k by using the aforementioned idea of sl2-triple. The point of our approach is that we interpret
Fk,a not as an isolated operator but as a special value of the unitary representation Ωk,a of the

simply connected, simple Lie group ˜SL(2,R) at γ πi
2

(see (3.37)), or as the boundary value of the

holomorphic semigroup. Then, we see that many properties of the Euclidean Fourier transforms
can be extended to the (k, a)-generalized Fourier transform Fk,a by using the representation

theory of ˜SL(2,R). Our theorems for Fk,a include the inversion formula, and a generalization of
the Plancherel formula, the Hecke formula, the Bochner formula, and the Heisenberg inequality
for the uncertainty principle.

As in Diagram 1.4 of Introduction, the Hilbert space L2(RN , ϑk,a(x)dx) admits symmetries

of C× ˜SL(2,R) for general (k, a), and even higher symmetries than C× ˜SL(2,R) for particular
values of (k, a). In fact, if k ≡ 0, then the Hilbert space L2(RN , ϑk,a(x)dx) is a representation
space of the Schrödinger model of the Weil representation (see [Fol89] and references therein) of
the metaplectic group Mp(N,R) for a = 2, and the L2-model of the minimal representation (see
[KØ03]) of the conformal group O(N + 1, 2) for a = 1. The special value a = 2 has a particular
meaning also for general k in the sense that Fk,2 is equal to the Dunkl transform Dk. How about
the a = 1 case for general k? The unitary operator

Hk := Fk,1 (5.1)

may be regarded as the Dunkl analogue of the Hankel-type transform F0,1 (see Diagram 1 in
Introduction). As we have seen in Section 4.4, this unitary operator Hk can be written by means
of the Dunkl intertwining operator Vk and the classical Bessel functions (see Section 5.3).

5.1 Fk,a as an inversion unitary element

The (k, a)-generalized Fourier transform Fk,a on L2
(
RN , ϑk,a(x)dx

)
is defined as

Fk,a := ei
π
2
( 2〈k〉+N+a−2

a
)Ωk,a(γi π

2
). (5.2)

Here, we recall from (3.37) that

γπi
2

= Exp
( π

2i
k
)

= Exp
(π

2

(
0 −1
1 0

))

is an element of the simply connected Lie group ˜SL(2,R), and from Theorem 3.30 that Ωk,a is

a unitary representation of ˜SL(2,R) on the Hilbert space L2(RN , ϑk,a(x)dx).

In this subsection, we discuss basic properties of Fk,a for general k and a, which are derived
from the fact that γ πi

2
is a representative of the non-trivial (therefore, the longest) element of

the Weyl group for sl2.

Theorem 5.1. Let a > 0 and k be a non-negative multiplicity function on the root system R
satisfying the inequality a+ 2〈k〉 +N > 2 (see (3.30)).

1) (Plancherel formula) The (k, a)-generalized Fourier transform Fk,a : L2(RN , ϑk,a(x)dx) →
L2(RN , ϑk,a(x)dx) is a unitary operator. That is, Fk,a is a bijective linear operator satisfying

‖Fk,a(f)‖k = ‖f‖k for any f ∈ L2(RN , ϑk,a(x)dx).
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2) We recall from (3.28) that Φ
(a)
` (p, ·) is a function on RN defined as

Φ
(a)
` (p, x) = p(x)L

(λk,a,m)
`

(2

a
‖x‖a

)
exp
(
−1

a
‖x‖a

)
, x ∈ RN ,

for `,m ∈ N and p ∈H m
k (RN ). Then, Φ

(a)
` (p, ·) is an eigenfunction of Fk,a:

Fk,a(Φ
(a)
` (p, ·)) = e−iπ(`+ m

a
)Φ

(a)
` (p, ·). (5.3)

Proof. Since the phase factor in (5.2) is modulus one, the first statement is an immediate con-

sequence of the fact that Ωk,a is a unitary representation of ˜SL(2,R) (see Theorem 3.30).

To see the second statement, we recall from Proposition 3.12 1) and Theorem 3.19 that

Φ
(a)
` (p, ·) is an eigenfunction of ωk,a(k). Then, the integration of (3.33 a) leads us to the identity

(5.3).

Corollary 5.2. The (k, a)-generalized Fourier transform Fk,a is of finite order if and only if
a ∈ Q. If a is of the form a = q

q′ , where q and q′ are positive integers, then

(Fk,a)
2q = id .

Proof. We recall from Proposition 3.12 3) that

Wk,a(R
N ) = C-span{Φ(a)

` (p, ·) | ` ∈ N,m ∈ N, p ∈H m
k (RN )}

is a dense subspace in L2(RN , ϑk,a(x)dx). Hence, it follows from (5.3) that the unitary operator

Fk,a is of finite order if and only if a ∈ Q. If a = q
q′ , then (Fk,a)

2q acts on Φ
(a)
` (p, ·) as a scalar

multiplication by
(
e−iπ(`+ m

a
)
)2q

= 1

for any m ∈ N and any p ∈H m
k (RN ). Thus, we have proved (Fk,a)

2q = id.

Corollary 5.2 implies particularly that Hk := Fk,1 (see (5.1)) is of order two, and the Dunkl
transform Dk = Fk,2 is of order four. We pin down these particular cases as follows:

Theorem 5.3 inversion formula. Let k be a non-negative multiplicity function on the root system
R.

1) Let r be any positive integer. Suppose 2〈k〉+N > 2− 1
r . Then, Fk, 1

r
is an involutive unitary

operator on L2(RN , ϑk, 1
r
(x)dx). Namely, the inversion formula is given by

(Fk, 1
r
)−1 = Fk, 1

r
. (5.4)

2) Let r be any non-negative integer. Suppose

2〈k〉 +N > 2− 2

2r + 1
.

Then, Fk, 2
2r+1

is a unitary operator of order four on L2(RN , ϑk, 2
2r+1

(x)dx). The inversion

formula is given as

(F−1
k, 2

2r+1

f)(x) = (Fk, 2
2r+1

f)(−x). (5.5)

Proof. The first statement has been already proved. In the second statement, we remark that
the inversion formula (5.5) is stronger than the fact that (Fk,a)

4 = id for a = 2
2r+1 . To see (5.5),
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we use (5.3) to get

(Fk,a)
2Φ

(a)
` (p, ·) = exp(−m(2r + 1)πi)Φ

(a)
` (p, ·)

= (−1)mΦ
(a)
` (p, ·)

if a = 2
2r+1 . Since p(−x) = (−1)mp(x) for p ∈H m

k (RN ), we have shown that (5.5) holds for any

f ∈Wk,a(RN ). Since Wk,a(RN ) is dense in L2(RN , ϑk,a(x)dx), we have proved (5.5).

Remark 5.4. Theorem 5.3 2) for r = 0 (i.e. Fk,2 = Dk, the Dunkl transform) was proved in
Dunkl [Dun91], and followed by de Jeu [Jeu93] where the author proved the inversion formula for
C+-valued root multiplicity functions k. Our approach based on the SL2 representation theory
gives a new proof of the inversion formula and the Plancherel formula for Fk,a even for a = 2.

Remark 5.5. We recall from Theorem 3.31 that L2(RN , ϑk,a(x)dx) decomposes into a discrete

direct sum of irreducible unitary representations of G = ˜SL(2,R). Hence, the square (Fk,a)
2

acts as a scalar multiple on each summand of (3.43) by Schur’s lemma because γπi is a central

element of G (see (3.38)) and (Fk,a)
2 = eiπ(

2〈k〉+N+a−2
a

)Ωk,a(γπi) by (5.2). Since γπi acts on the
irreducible representation π(λk,a,m) as a scalar e−πi(λk,a,m+1) by Fact 3.27 (5), F 2

k,a acts on it as
the scalar

eiπ( 2〈k〉+N+a−2
a

)e−πi(λk,a,m+1) = e−
2mπi

a .

This gives us an alternative proof of Corollary 5.2.

Next, we discuss intertwining properties of the (k, a)-generalized Fourier transform Fk,a with

differential operators. Let E =
∑N

j=1 xj∂j be the Euler operator on RN as before.

Theorem 5.6. The unitary operator Fk,a satisfies the following intertwining relations on a dense
subspace of L2(RN , ϑk,a(x)dx):

1) Fk,a ◦ E = −(E +N + 2〈k〉+ a− 2) ◦Fk,a.

2) Fk,a ◦ ‖x‖a = −‖x‖2−a∆k ◦Fk,a.

3) Fk,a ◦ ‖x‖2−a∆k = −‖x‖a ◦Fk,a.

These identities hold in the usual sense, and also in the distribution sense in the space of distri-
bution vectors of the unitary representation of G on L2(RN , ϑk,a(x)dx).

If we use ξ (instead of x) for the coordinates of the target space of Fk,a, we may write
Theorem 5.6 2) and 3) as

Fk,a(‖ · ‖af)(ξ) = −‖ξ‖2−a∆kFk,a(f)(ξ), (5.6 a)

Fk,a(‖ · ‖2−a∆kf)(ξ) = −‖ξ‖aFk,a(f)(ξ). (5.6 b)

Proof of Theorem 5.6. We observe that γ πi
2

is a representative of the longest Weyl group element,

and satisfies the following relations in sl2:

Ad(γπi
2
)h = −h, Ad(γ πi

2
)e+ = −e−, Ad(γπi

2
)e− = −e+,

(see (3.1) for the definition of e+, e−, and h). In turn, we apply the identity

Ωk,a(g)ωk,a(X)Ωk,a(g)
−1 = ωk,a(Ad(g)X), (g ∈ G, X ∈ g),
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to E+
k,a = ωk,a(e

+), E−
k,a = ωk,a(e

−), and Hk,a = ωk,a(h) (see (3.6)). Then we have

Fk,a ◦Hk,a = −Hk,a ◦Fk,a, (5.7)

Fk,a ◦ E+
k,a = −E−

k,a ◦Fk,a,

Fk,a ◦ E−
k,a = −E+

k,a ◦Fk,a,

because Fk,a is a constant multiple of Ωk,a

(
γπi

2

)
(see (5.2)). Now, Theorem 5.6 is read from the

explicit formulas of E+
k,a, E−

k,a, and Hk,a (see (3.3)).

5.2 Density of (k, a)-generalized Fourier transform Fk,a

By the Schwartz kernel theorem, the unitary operator Fk,a can be expressed by means of a
distribution kernel. By using the normalizing constant ck,a (see (4.47)), we write the unitary
operator Fk,a on L2(RN , ϑk,a(x)dx) as an integral transform:

Fk,af(ξ) = ck,a

∫

RN

Bk,a(ξ, x)f(x)ϑk,a(x)dx. (5.8)

Comparing this with the integral expression of Ωk,a(γz) in Theorem 4.23, we see that the distri-
bution kernel Bk,a(ξ, x) in (5.8) is given by

Bk,a(x, y) = eiπ(
2〈k〉+N+a−2

2a
)Λk,a

(
x, y; i

π

2

)
(5.9)

because Fk,a = eiπ( 2〈k〉+N+a−2
2a

)Ωk,a(γi π
2
) (see (5.2)).

Now, Theorem 5.6 is reformulated as the differential equations that are satisfied by the
distribution kernel Bk,a(x, ξ) as follows:

Theorem 5.7. The distribution Bk,a(·, ·) solves the following differential-difference equation on
RN × RN

ExBk,a(ξ, x) = EξBk,a(ξ, x), (5.10 a)

‖ξ‖2−a∆ξ
kBk,a(ξ, x) = −‖x‖aBk,a(ξ, x), (5.10 b)

‖x‖2−a∆x
kBk,a(ξ, x) = −‖ξ‖aBk,a(ξ, x). (5.10 c)

Here, the superscript in Ex, ∆x
k, etc indicates the relevant variable.

Remark 5.8. For a = 2, Theorem 5.7 was previously known as the differential equation of the
Dunkl kernel (cf. [Dun89]).

Proof of Theorem 5.7. First we use the identity (5.7) as operators on RN for any a > 0 and k.
It is convenient to write

Hk,a =
1

a
(`+ 2E),

where E is the Euler operator and ` := N+2〈k〉+a−2. Then, by (5.8), the identity (5.7) implies
∫

RN

(
(`+ 2Ex)f(x)

)
Bk,a(ξ, x)ϑk,a(x)dx = −

∫

RN

f(x)(`+ 2Eξ)Bk,a(ξ, x)ϑk,a(x)dx (5.11)

for any test function f(x) (i.e. f(x)ϑk,a(x)
1
2 ∈ S (RN )).

Now we recall that the density ϑk,a(x) (see (1.2) for definition) is homogeneous of degree
a− 2 + 2〈k〉 (= `−N), we have

Exϑk,a(x) = (`−N)ϑk,a(x). (5.12)

54



Laguerre semigroup and Dunkl operators

On the other hand, it follows from
∑N

j=1 xj
∂

∂xj
−∑N

j=1
∂

∂xj
xj = −N as operators, we have

∫

RN

(Exf)(x)g(x)dx = −
∫

RN

f(x)(N +Ex)g(x)dx. (5.13)

Combining (5.12) and (5.13), we have

the left-hand side of (5.11) = −
∫

RN

f(x)(`Bk,a(ξ, x) + 2ExBk,a(ξ, x))ϑk,a(x)dx.

Hence, the identity (5.11) implies that the distribution kernel Bk,a(ξ, x) satisfies the differential
equation

ExBk,a(ξ, x) = EξBk,a(ξ, x). (5.14)

Next, the identity (5.6 a) implies
∫

RN

Bk,a(ξ, x)‖x‖af(x)ϑk,a(x)dx = −‖ξ‖2−a∆ξ
k

∫

RN

Bk,a(ξ, x)f(x)ϑk,a(x)dx

for any test function f . Hence the second differential equation (5.10 b) follows.

Finally, by the identity (5.6 b), we have
∫

RN

Bk,a(ξ, x)
(
‖x‖2−a∆x

kf(x)
)
ϑk,a(x)dx = −‖ξ‖a

∫

RN

Bk,a(ξ, x)f(x)dx.

Since ‖x‖2−a∆x
k is a symmetric operator on L2(RN , ϑk,a(x)dx), the left-hand side is equal to

∫

RN

‖x‖2−a
(
∆x

kBk,a(ξ, x)
)
f(x)ϑk,a(x)dx.

Hence the third differential equation (5.10 c) is proved.

We continue basic properties on the kernel Bk,a(ξ, x) of the (k, a) generalized Fourier trans-
form.

Theorem 5.9.

1) Bk,a(λx, ξ) = Bk,a(x, λξ) for λ > 0.

2) Bk,a(hx, hξ) = Bk,a(x, ξ) for h ∈ C.

3) Bk,a(ξ, x) = Bk,a(x, ξ).

4) Bk,a(0, x) = 1.

Proof. 1) This statement follows from the differential equation (5.10 a) given in Theorem 5.7.

2) Since Fk,a commutes with the action of the Coxeter group C, the second statement follows
from the fact that ϑk,a(x)dx is a C-invariant measure.

3) Putting µ = π
2 in (4.50), we get

hk,a

(
r, s;

πi

2
; t
)

= e−
2〈k〉+N+a−2

2a
πiI

(
2

a
,
2〈k〉+N − 2

2
;
2(rs)

a
2

ai
; t

)
. (5.15)

In particular, we have

hk,a

(
r, s;

πi

2
; t
)

= hk,a

(
s, r;

πi

2
; t
)
.

In view of (4.52) and Proposition 2.5, we conclude that

Λk,a

(
x, y;

πi

2

)
= Λk,a

(
y, x;

πi

2

)
.
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Hence, the third statement has been proved.

4) By Lemma 4.17, hk,a(r, 0;
πi
2 ; t) = e−

2〈k〉+N+a−2
2a

πi. Since the Dunkl intertwining operator
Vk satisfies Vk(1) = 1 (1 is the constant function on RN ) (see (I2) in Section 2), it follows from

(4.52) that Λk,a(x, y;
πi
2 ) = e−

2〈k〉+N+a−2
2a

πi. Finally use (5.9).

5.3 Generalized Fourier transform Fk,a for special values at a = 1 and 2

In this subsection we discuss closed formulas of the kernel Bk,a(x, y) of the (k, a)-generalized
Fourier transform Fk,a (see (5.8)) in the case a = 1, 2. The (k, a)-generalized Fourier transform
Fk,a reduces to the Dunkl operator Dk if a = 2, and gives rise to a new unitary operator Hk,
the Dunkl analogue of the Hankel transform if a = 1.

We renormalize the Bessel function Jν of the first kind as

J̃ν(w) :=
(w

2

)−ν
Jν(w) =

∞∑

`=0

(−1)`w2`

22``!Γ(ν + `+ 1)
. (5.16)

Then, from the definition (4.9) of Ĩν(z) we have

J̃ν(w) = Ĩν(−iw) = Ĩν(iw).

By substituting z = πi
2 into (4.58), we get the following formula:

hk,a(r, s;
πi

2
; t) =

{
Γ
(
〈k〉+ N−1

2

)
e−

πi
2

(2〈k〉+N−1)J̃〈k〉+ N−3
2

(
√

2(rs)
1
2 (1 + t)

1
2 ) (a = 1),

e−
πi
2

(〈k〉+ N
2

)e−irst (a = 2).

Together with (5.9) and (4.52), we have:

Proposition 5.10. In the polar coordinates x = rω and y = sη, the kernel Bk,a(x, y) is given
by

Bk,a(rω, sη) =

{
Γ
(
〈k〉+ N−1

2

)(
Ṽk

(
J̃〈k〉+ N−3

2

(√
2rs(1 + ·)

)))
(ω, η) (a = 1),

(
Ṽk

(
e−irs·

))
(ω, η) (a = 2).

(5.17)

As one can see form (5.17), the kernel Bk,2(x, y) coincides with the Dunkl kernel at (x,−iy)
(cf. [Dun92]).

Theorem 5.11. Let k be a non-negative root multiplicity function, a = 1 or 2, and x, y ∈ RN .
Then |Bk,a(x, y)| 6 1.

Proof. Theorem 5.11 follows from the special case, i.e. µ = π
2 , of Proposition 4.26 2) because

|Bk,a(x, y)| = |Λk,a(x, y; i
π
2 )| by (5.9).

Remark 5.12. For a = 2 it was shown that |Bk,2(x, y)| is uniformly bounded for x, y ∈ RN first
by de Jeu[Jeu93] and then by Rösler [Rös99a] by 1.

We note that Theorem 5.11 implies the absolute convergence of the integral defining Fk,a,
for a = 1, 2, on (L1 ∩ L2)

(
RN , ϑk,a(x)dx

)
, as we proved in Corollary 4.28.

5.4 Generalized Fourier transform Fk,a in the rank-one case

This section examines Fk,a and its kernel Bk,a(x, y) in the rank-one case.
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Suppose N = 1, a > 0, k > 0, and 2k > 1 − a. Then, by the explicit formula of the kernel
Λk,a (see Proposition 4.29), followed by the formula (5.9), we get

Bk,a(x, y) = ei π
2
( 2k+a−1

a
)Λk,a(x, y; i

π

2
)

= Γ
(2k + a− 1

a

)(
J̃ 2k−1

a

(2

a
|xy| a2

)
+

xy

(ai)
2
a

J̃ 2k+1
a

(2

a
|xy| a2

))
, (5.18)

where J̃ν(w) = Ĩν(−iw) is the normalized Bessel function given in (5.16); here the branch of i
2
a is

chosen so that 1
2
a = 1. Thus, for a > 0, k ∈ R+ such that 2k > 1−a, and f ∈ L2(R, |x|2k+a−2dx),

the integral transform Fk,a takes the form

Fk,af(y) = 2−1a−( 2k−1
a

)

∫

R

f(x)
(
J̃ 2k−1

a

(2

a
|xy| a2

)
+

xy

(ai)
2
a

J̃ 2k+1
a

(2

a
|xy| a2

))
|x|2k+a−2dx.

Remark 5.13. If we set

Beven
k,a (x, y) :=

1

2

[
Bk,a(x, y) +Bk,a(x,−y)

]

= Γ
(2k + a− 1

a

)
J̃ 2k−1

a

(2

a
|xy| a2

)
.

Then, the transform Fk,a(f) of an even function f on the real line specializes to a Hankel type
transform on R+.

Let us find the formula (5.18) by an alternative approach. First, for general dimension RN ,
by composing (5.9), (4.52), and (5.15), we have

Bk,a(x, y) =

(
ṼkI

(2

a
,
2〈k〉 +N − 2

2
;
2(rs)

a
2

ai
; ·
))

(〈ω, η〉)

in the polar coordinates x = rω, y = sη. Furthermore, in the N = 1 case, a closed integral
formula of the Dunkl intertwining operator Vk is known:

(Vkf)(x) =
Γ(k + 1

2)

Γ(k)Γ( 1
2 )

∫ 1

−1
f(tx)(1 + t)(1− t2)k−1dt, (5.19)

see [Dun91, Theorem 5.1]. Hence, we might expect that the formula (5.18) for the kernel Bk,a(x, y)
could be recovered directly by using the integral formula (5.19) of Vk. In fact this is the case. To
see this, we shall carry out a compution of the following integral:

Bk,a(x, y) =
Γ(k + 1

2)

Γ(k)Γ( 1
2 )

∫ 1

−1
I
(2

a
,
2k − 1

2
,
2(rs)

a
2

ai
; t〈ω, η〉

)
(1 + t)(1− t2)k−1dt (5.20)

for x = rω, y = sη (r, s > 0, ω, η = ±1).

We notice that the summation (4.42) for I (b, ν;w; t) is taken over m = 0 and 1 if N = 1.
Hence we have

I
(2

a
,
2k − 1

2
;
2(rs)

a
2

ai
; t〈ω, η〉

)
= Γ

(2k + a− 1

a

)(
J̃ 2k−1

a

(2|xy| a2
a

)
+

(2k + 1)txy

(ai)
2
a

J̃ 2k+1
a

(2|xy| a2
a

))
.

On the other hand, by using the integral expression of the Beta function and the duplication
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formula (4.37) of the Gamma function, we have

Γ(k + 1
2)

Γ(k)Γ( 1
2 )

∫ 1

0
tm(1 + t)(1 − t2)k−1dt =





1 (m = 0),
1

2k + 1
(m = 1).

Substituting these formulas into the right-hand side of (5.20) we have completed an alternative
proof of (5.18).

5.5 Master Formula and its applications

5.5.1 Master Formula
We state the following two reproducing properties of the kernel Bk,a of basic importance.

Theorem 5.14 (Master Formula). Suppose a > 0 and k is a non-negative multiplicity function
satisfying 2〈k〉+N > max(1, 2 − a).

1) For x, y ∈ RN , we have

ck,a

∫

RN

exp
( i
a
‖u‖a

)
Bk,a(x, u)Bk,a(u, y)ϑk,a(u)du

= eiπ( 2〈k〉+N+a−2
a

) exp
(
− i
a
(‖x‖a + ‖y‖a)

)
Bk,a(x, y). (5.21)

2) Let p be a homogeneous polynomial on RN of degree m. Then we have

ck,a

∫

RN

exp
(
−1

a
‖u‖a

)(
exp
(
− 1

2a
‖ · ‖2−a∆k

)
p
)
(u)Bk,a(x, u)ϑk,a(u)du

= e−
imπ

a exp
(
−1

a
‖x‖a

)(
exp
(
− 1

2a
‖ · ‖2−a∆k

)
p
)
(x). (5.22)

Remark 5.15. For a = 2, the reproducing properties (5.21) and (5.22) were previously proved in
Dunkl [Dun92, Theorem 3.2 and Proposition 2.1]. In that case, theses properties played a crucial
role in studying Dunkl analogues of Hermite polynomials (see [RV98, Section 3]), the properties
of the heat kernel associated with the heat equation for the Dunkl operators (see [RV98, Section
4]), and in the construction of generalized Fock spaces (see [BØ06, Section 3]).

5.5.2 Proof of Theorem 5.14
We begin with the proof of (5.21). From the semigroup law

Ωk,a(γz1)Ωk,a(γz2) = Ωk,a(γz1+z2), for γz1 , γz2 ∈ Γ̃(W ),

the integral representation of Ωk,a(γz) (see Theorem 4.23) yields

ck,a

∫

RN

Λk,a(x, u; i
π

4
)Λk,a(u, y; i

π

4
)ϑk,a(u)du = Λk,a(x, y; i

π

2
). (5.23)

We set

µ := 2〈k〉 +N + a− 2.

In view of (4.49), a simple computation shows

hk,a(r, s;
πi
4 ; t)

hk,a(2
1
a r, s; πi

2 ; t)
= 2

µ
2a exp

( i
a
(ra + sa)

)
.
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Applying Ṽk, and using (4.52), we get

Λk,a

(
x, u;

πi

4

)
= 2

µ
2a exp

( i
a

(
‖x‖a + ‖u‖a

))
Λk,a

(
2

1
ax, u;

πi

2

)

=
(
2e−πi

) µ
2a exp

( i
a

(
‖x‖a + ‖u‖a

))
Bk,a

(
2

1
ax, u

)
. (5.24)

In the second equality, we have used (5.9). By substituting (5.24) and (5.9) into (5.23), we get

ck,a

∫

RN

exp
(2i

a
‖u‖a

)
Bk,a(2

1
ax, u)Bk,a(2

1
au, y)ϑk,a(u)du = 2−

µ
a eiπ

µ
a exp

(
− i
a
(‖x‖a+‖y‖a)

)
Bk,a(x, y).

Since Bk,a(2
1
ax, u) = Bk,a(x, 2

1
au) (see Theorem 5.9 1)) and ϑk,a(u)du is homogeneous degree

N + 2〈k〉 + a− 2 = µ, the left-hand side equals

2−
µ
a ck,a

∫

RN

exp
( i
a
‖u‖a

)
Bk,a(x, u)Bk,a(u, y)ϑk,a(u)du.

Hence, (5.21) is proved.

The remaining part of this subsection is devoted to the proof of the second statement of
Theorem 5.14.

We recall from (3.3) and (3.6) that

E+
k,a = ωk,a

(
0 1
0 0

)
=
i

a
‖x‖a,

E−
k,a = ωk,a

(
0 0
1 0

)
=
i

a
‖x‖2−a∆k

are infinitesimal generators of the unitary representation Ωk,a of ˜SL(2,R) on L2(RN , ϑk,a(x)dx).

We set

c0 := Exp i

(
0 1
0 0

)
Exp

i

2

(
0 0
1 0

)
, (5.25)

and introduce the operator

Bk,a := exp(iE+
k,a) exp

( i
2

E−
k,a

)
= exp

(
−1

a
‖x‖a

)
exp
(
− 1

2a
‖x‖2−a∆k

)
. (5.26)

Then, the following identity in sl2,

Ad(c0)h =

(
1
2 i
i
2 1

)(
1 0

0 −1

)(
1
2 i
i
2 1

)−1

= −i
(

0 1

−1 0

)
= k, (5.27)

leads us to the identity of operators:

Bk,a ◦ ωk,a(h) = ωk,a(k) ◦Bk,a. (5.28)

Since Hk,a = ωk,a(h) acts on homogeneous functions as scalar (see (3.3)), we know a priori that
homogeneous functions applied by Bk,a are eigenfunctions of ωk,a(k). Here is an explicit formula:

Proposition 5.16. For `,m ∈ N and p ∈H m
k (RN ),

Bk,a

(
p(x)‖x‖a`

)
=
(
−a

2

)`
`!Φ

(a)
` (p, x).

Proof. We recall from Lemma 3.7 that the linear map

Ta : C∞(RN )⊗ C∞(R+)→ C∞(RN \ {0}), (p, ψ) 7→ p(x)ψ(‖x‖a)

59



S. Ben Säıd, T. Kobayashi and B. Ørsted

satisfies the following identity on H m
k (RN )⊗ C∞(R+):

exp
( i

2
E−

k,a

)
◦ Ta = Ta ◦

(
id⊗ exp

(
−a

2

(
r
d2

dr2
+ (λk,a,m + 1)

d

dr

)))
. (5.29)

Applying (5.29) to p⊗ r`, and using Theorem 3.11, we get

exp
( i

2
E−

k,a

)
◦ Ta(p⊗ r`)(x) = Ta(p⊗

(
−a

2

)`
`!L

(λk,a,m)
`

(2

a
r
)
)(x)

=
(
−a

2

)`
`!p(x)L

(λk,a,m)
`

(2

a
‖x‖a

)
.

Hence,

Bk,a(p(x)‖x‖a`) = exp(iE+
k,a) exp

( i
2

E−
k,a

)
Ta(p⊗ r`)

=
(
−a

2

)`
`!p(x) exp

(
−1

a
‖x‖a

)
L

(λk,a,m)
`

(2

a
‖x‖a

)

=
(
−a

2

)`
`!Φ

(a)
` (p, x).

Thus, Proposition 5.16 has been proved.

Remark 5.17. Let p ∈ H m
k (RN ). By (3.3), ωk,a(h) acts on p(x)‖x‖a` by the multiplication of

the scalar λk,a,m + 1 + 2`. Hence, ωk,a(k) acts on Φ
(a)
` (p, x) as the same scalar λk,a,m + 1 + 2`.

This gives an alternative proof of the formula (3.33 a) in Theorem 3.19.

We now introduce the vector space

Pa(R
N ) := C-span{p(x)‖x‖a` : p ∈H m

k (RN ) for some m ∈ N, ` ∈ N}. (5.30)

For a = 2, P2(RN ) coincides with the space P(RN ) of polynomials on RN owing to the following
algebraic direct sum decomposition (see [BØ06, Theorem 5.3]):

P(RN ) '
∞⊕

m=0

[m
2

]⊕

`=0

‖x‖2`H m−2`
k (RN ).

We introduce an endomorphism of Pa(RN ), to be denoted by (e−i π
a )∗, as

(
e−i π

a

)∗(
p(x)‖x‖a`

)
:= e−i(`+ m

a
)πp(x)‖x‖a`, for p ∈H m

k (RN ) and ` ∈ N. (5.31)

Remark 5.18. The notation (e−i π
a )∗ stands for the ‘pull-back of functions’ on the complex vector

space CN given by (
e−i π

a

)∗
f(z) = f

(
e−i π

a z
)
.

However, taking branches of multi-valued functions into account, we should note that
(
e−i π

a

)∗
6=

id for a = 1
2 .

The next proposition is needed for later use.

Proposition 5.19. For a > 0, the following diagram commutes

Pa(RN )
Bk,a−−−−→ L2(RN , ϑk,a(x)dx)

(e−i π
a )∗

y
yFk,a

Pa(RN )
Bk,a−−−−→ L2(RN , ϑk,a(x)dx)
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Proof. The identity (5.28) in sl2 lifts to the identity

Bk,a ◦ Ωk,a(Exp th) = Ωk,a(Exp tk) ◦Bk,a,

and in particular

Bk,a ◦ Ωk,a(Exp
π

2i
h) = Ωk,a(Exp

π

2i
k) ◦Bk,a,

on Pa(RN ) where the both-hand sides make sense. In terms of the (k, a)-generalized Fourier
transform Fk,a (see (5.2)), we get

Bk,a ◦ exp
(πi

2

2〈k〉 +N + a− 2

a

)
Ωk,a

(
Exp

π

2i
h
)

= Fk,a ◦Bk,a.

On the other hand, we recall from (3.6) that

ωk,a(h) =
2

a

N∑

j=1

xj∂j +
N + 2〈k〉+ a− 2

a
,

and therefore its lift to the group representation is given by

(Ωk,a(Exp th)f)(x) = exp
(N + 2〈k〉 + a− 2

a
t
)
f(e

2t
a x). (5.32)

Substituting t = π
2i , we get Bk,a◦

(
e−i π

a

)∗
= Fk,a◦Bk,a. This completes the proof of Proposition

5.19

When k ≡ 0 and a = 2, B0,2 coincides with the inverse of the Segal–Bargmann transform
restricted to P(RN ) = P0,2(RN ) (cf. [Fol89, p. 40]). We may think of Bk,a as a (k, a)-generalized
Segal–Bargmann transform. We are ready to prove the second statement of Theorem 5.14.

Proof of Theorem 5.14 2). In view of Proposition 5.19, we have Fk,a◦Bk,a(p) = Bk,a◦(e−i π
a )∗(p).

Since (e−i π
a )∗p(x) = e−

imπ
a p(x) for a homogeneous polynomial of degree m, we get

Fk,a ◦Bk,a(p) = e−
imπ

a Bk,a(p).

Hence, the reproducing property (5.22) is proved.

5.5.3 Application of Master Formula
As an immediate consequence of Master Formula (see Theorem 5.14), we have:

Corollary 5.20 (Hecke type identity). If in addition to the assumption in Theorem 5.14 2),
the polynomial p is k-harmonic of degree m, then (5.22) reads

Fk,a(e
−

‖ · ‖a

a p)(ξ) = e−i π
a

me−
1
a
‖ξ‖a

p(ξ). (5.33)

Corollary 5.20 may be regarded as a Hecke type identity for the (k, a)-generalized Fourier
transform Fk,a. An alternative way to prove this identity would be to substitute 0 for ` in (5.3).

The identity (5.33) is a particular case of Theorem 5.21 below. For this, we will denote by
Ha,ν the classical Hankel transform of one variable defined by

Ha,ν(ψ)(s) :=

∫ ∞

0
ψ(r)J̃ν

(2

a
(rs)

a
2

)
ra(ν+1)−1dr, (5.34)

for a function ψ defined on R+. Here, J̃ν is the normalized Bessel function J̃ν(w) =
(

w
2

)−ν
Jν(w)

(see (4.9)). Then the (k, a)-generalized Fourier transform Fk,a satisfies the following identity:
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Theorem 5.21 (Bochner type identity). If f ∈ (L1 ∩ L2)(RN , ϑk,a(x)dx) is of the form f(x) =
p(x)ψ(‖x‖) for some p ∈H m

k (RN ) and a one-variable function ψ on R+, then

Fk,a(f)(ξ) = a−(
2m+2〈k〉+N−2

a
)e−i π

a
mp(ξ) H

a,
2m+2〈k〉+N−2

a

(ψ)(‖ξ‖).

In particular, if f is radial, then Fk,a(f) is also radial.

Remark 5.22. The original Bochner identity for the Euclidean Fourier transform corresponds
to the case a = 2 and k ≡ 0. For a = 2 and k > 0, Theorem 5.21 corresponds to the Bochner
identity for the Dunkl transform which was proved in [Ben07]. For a = 1 and k ≡ 0 it is the
Bochner identity for the Hankel-type transform on RN (see [KM07a]).

Proof of Theorem 5.21. It follows from (4.20) that

Λ
(m)
k,a

(
r, s;

πi

2

)
= exp

(
−πi

2
(λk,a,m + 1)

)
(rs)−〈k〉−N

2
+1Jλk,a,m

(2

a
(rs)

a
2

)

= a−λk,a,m(rs)m exp
(
−πi

2
(λk,a,m + 1)

)
J̃λk,a,m

(2

a
(rs)

a
2

)
. (5.35)

We set ψm(r) := rmψ(r). Since p is homogeneous of degree m, we have

p

(
x

‖x‖

)
ψm(‖x‖) = p(x)ψ(‖x‖).

From the definition of the unitary operator Ω
(m)
k,a (γz) (see (4.3)), we get

Ωk,a(γz)f(x) = p(x)‖x‖−mΩ
(m)
k,a (γz)ψm(‖x‖)

= p(x)‖x‖−m

∫ ∞

0
Λ

(m)
k,a (‖x‖, s; z)ψm(s)s2〈k〉+N+a−3ds.

Substituting (5.35) into the above formula with z = πi
2 , we get

Ωk,a(γπi
2
)f(x) = a−λk,a,m exp

(
−πi

2
(λk,a,m + 1)

)
p(x)

∫ ∞

0
J̃λk,a,m

(
2

a
(‖x‖s) a

2

)
ψ(s)s2m+2〈k〉+N+a−3ds

= a−λk,a,m exp
(
−πi

2
(λk,a,m + 1)

)
p(x)Ha,λk,a,m

(ψ)(‖x‖).

Now, Theorem 5.21 follows from (5.2).

5.6 DAHA and SL2-action

In this subsection we discuss some link between the representation Ωk,a of ˜SL(2,R) in the a = 2
case and the (degenerate) rational DAHA (double affine Hecke algebra). To be more precise, we

shall see that our representation Ωk,2 of ˜SL(2,R) induces the representation of SL(2,C) on the
algebra generated by Dunkl’s operators, multiplication operators, and the Coxeter group (see
(5.42) below). This induced action on the operators coincides essentially with a special case of
the SL(2,Z)-action discovered by Cherednik [Che95] and that of the SL(2,C)-action by Etingof
and Ginzburg [EG02]. Note that our approach (but not the result) is new in that we use our
action on functions to derive the action on the operators in the Hecke algebra. The authors are
grateful to E. Opdam for bringing their attention to this link.

We begin with an observation that if Ω is a representation of a group G on a vector space W
then we can define an automorphism of the associative algebra End(W ) by

A 7→ Ω(g)AΩ(g)−1, g ∈ G. (5.36)
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We shall consider this induced action for G = ˜SL(2,R), Ω = Ωk,2 (see Theorem 3.30), W =
the vector space consisting of appropriate functions on RN .

Remark 5.23. We do not specify the class of functions here. Instead, we shall use the formula
(5.36) to define algebraically the G-action on a certain subspace of End(W ). The point here
is that the G-action on such a subspace will be well-defined even when the group G may not
preserve W .

We begin with a basic fact on Dunkl operators on RN . For ξ ∈ RN , we define the multiplication
operator Mξ by

Mξf(x) := 〈ξ, x〉f(x).

Choose an orthonormal basis ξ1, . . . , ξN in RN . As in Section 2.2, we will use the abbreviation
Ti(k) for Dunkl operators Tξi

(k), and Mj for Mξj
. Then we have the following commutation

relations:

[Ti(k),Mj ] = δij + 2
∑

α∈R+

kα
〈α, ξi〉〈α, ξj〉
‖α‖2 rα, for any 1 6 i, j 6 N. (5.37)

Since the formula (5.37) is symmetric with respect to i and j, we have:

[Ti(k),Mj ] = [Tj(k),Mi] for any 1 6 i, j 6 N. (5.38)

Furthermore, we have the following formulas:

Lemma 5.24. Let ξ ∈ RN and s ∈ C.

1) [∆k,Mξ ] = 2Tξ(k).

2) es∆kMξe
−s∆k = Mξ + 2sTξ(k).

The first statement is due to Dunkl [Dun89, Proposition 2.2], but we give its proof below for the
reader’s convenience.

Proof. 1) It is sufficient to prove the formula for ξ = ξj (j = 1, . . . , N).

By using (5.37), we have

[T 2
i (k),Mξj

] = Ti(k)[Ti(k),Mj ] + [Ti(k),Mj ]Ti(k)

= 2δijTi(k) + 2
∑

α∈R+

kα
〈α, ξi〉〈α, ξj〉
‖α‖2 (Ti(k)rα + rαTi(k)).

Summing them up over i, and using the following relations:

N∑

i=1

〈α, ξi〉Ti(k) = Tα(k),

Tα(k)rα + rαTα(k) = 0, (see (D1) in Section 2.1),

we get

[∆k,Mξj
] = 2Tj(k).

2) The second statement is straightforward from the first statement.

Let us consider the induced action of G on End(W ) (see Remark 5.23).

Proposition 5.25. We fix a non-zero ξ ∈ RN .
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1) The induced action of Ωk,2 by (5.36) preserves the two dimensional subspace

C2
ξ := CMξ + CTξ(k).

2) The resulting representation of ˜SL(2,R) on C2
ξ descends to SL(2,R), and extends holomor-

phically to SL(2,C).

3) Via the basis {Mξ , Tξ(k)}, the representation of SL(2,C) on C2
ξ is given by

ϕ : SL(2,C)→ GLC(C2
ξ),

(
A B
C D

)
7→
(
A −iB
iC D

)
. (5.39)

Proof. 1) Since ˜SL(2,R) is generated by Exp(te+) and Exp(te−) (t ∈ R), it is sufficient to prove
that the subspace CMξ + CTξ(k) is stable by the induced action of these generators. In light of
the formula (3.3), we have

Ωk,2(Exp te+) = Exp(tE+
k,2) = exp

(
it

2
‖x‖2

)
.

Obviously, this action commutes with the multiplication operator Mξ. On the other hand, ap-
plying (2.21) with a = 2 and λ = − it

2 , we get

exp

(
it

2
‖x‖2

)
◦ Tξ(k) ◦ exp

(
− it

2
‖x‖2

)
= Tξ(k)− itMξ.

Hence, Exp(tE+
k,2) preserves the two-dimensional subspace CMξ + CTξ(k), and its action is

given by the following matrix form

Exp(te+) 7→
(

1 −it
0 1

)
(5.40)

with respect to the basis {Mξ , Tξ(k)}.
Next, we consider the action

Ωk,2(Exp(te−)) = Exp(tE−
k,2) = exp

(
it

2
∆k

)
.

Obviously, it commutes with Dunkl’s operator Tξ(k). On the other hand, applying Lemma 5.24
2) with s = it

2 , we get

exp

(
it

2
∆k

)
◦Mξ ◦ exp

(
− it

2
∆k

)
= Mξ + itTξ(k).

Hence, Exp(tE−
k,2) also preserves the subspace CMξ + CTξ(k), and its action is given as

Exp(te−) 7→
(

1 0
it 1

)
. (5.41)

Thus, we have proved the first statement.

2) The center of ˜SL(2,R) consists of the elements Exp(inπk) (n ∈ Z) (see (3.38)). Let us
compute the action of Exp(tk) on C2

ξ = CMξ + CTξ(k). For this, we recall from (5.27) that

Exp(tk) = c0 Exp(th)c−1
0 for t ∈ C.

In view of the formulas (5.40) and (5.41), the element c0 = Exp i

(
0 1
0 0

)
Exp i

2

(
0 0
1 0

)
(see
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(5.25)) acts on C2
ξ as

c0 7→
(

1 i

0 1

)(
1 0
i
2 1

)
=

(
1
2 1
i
2 1

)
.

It follows readily from the formula

(Ωk,2(Exp(th))f) (x) = exp

(
N + 2〈k〉

2
t

)
f(etx)

(see (5.32)) that the action on Exp(th) on C2
ξ is given by

Exp(th) 7→
(
et 0
0 e−t

)
.

Therefore, Exp(tk) acts on C2
ξ by the formula:

Exp(tk) 7→
(

1
2 i
i
2 1

)(
et 0

0 e−t

)(
1
2 i
i
2 1

)−1

=

(
cosh(t) −i sinh(t)

i sinh(t) cosh(t)

)
.

In particular, if t = inπ, then Exp(inπk) acts as (−1)n id on C2
ξ . Thus, the action of ˜SL(2,R)

descends to ˜SL(2,R)/2Z ' SL(2,R). Then, clearly, this two-dimensional representation extends
holomorphically to SL(2,C). Hence, the second statement is proved.

3) Since a representation of SL(2,C) is uniquely determined by the generators Exp(te+) and
Exp(te−) (t ∈ C), the third statement follows from (5.40) and (5.41).

Let HH be the algebra generated by

{Mξ , Tξ : ξ ∈ RN} ∪ C, (5.42)

where C is the Coxeter group. Its defining relations are given by the commutativity of the Dunkl
operators Tξ(k) (see (D2) in Section 2), the commutativity of the multiplication operators Mξ,
the commutation relations (5.37), and the following C-equivariance:

h ◦ Tξ(k) ◦ h−1 = Thξ(k), h ◦Mξ ◦ h−1 = Mhξ, for any h ∈ C, ξ ∈ RN ,

see [CM02, EG02].

We recall from Proposition 5.25 3) that the matrix representation of the SL(2,C)-action on
C2

ξ = CMξ + CTξ(k) does not depend on ξ ∈ RN \ {0}. Then, a simple computation relied on
(5.38) yields

[g · Ti(k), g · Tj(k)] = 0 = g · [Ti(k), Tj(k)],

[g ·Mi, g ·Mj ] = 0 = g · [Mi,Mj ],

for any 1 6 i, j 6 N and for any g ∈ SL(2,C). Likewise, we get from (5.37)

[g · Ti(k), g ·Mj ] = [Ti(k),Mj ].

Furthermore, the representation Ωk,a of ˜SL(2,R) commutes with the action of the Coxeter
group C. Therefore, the action of SL(2,C) on C2

ξ (ξ ∈ RN \ {0}) and the trivial action on the
Coxeter group C extends to an automorphism of HH because all the defining relations of HH are
preserved by SL(2,C).

Hence, we have proved:
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Theorem 5.26. The representation Ωk,2 of ˜SL(2,R) induces the above action of SL(2,C) on
the algebra HH as automorphisms.

Remark 5.27. The SL(2,C)-action on the algebra HH is essentially the same with the one given
in [EG02, Corollary 5.3].

Remark 5.28. As we saw in the proof of Proposition 5.25, the center

(
−1 0
0 −1

)
of SL(2,C)

acts on C2
ξ as − id. Therefore, PSL(2,C) acts on HH as projective automorphisms.

In order to compare the SL(2,Z)-action on HH defined by Cherednik [Che95] we consider
the following automorphism of SL(2,C):

ι : SL(2,C)→ SL(2,C),

(
A B
C D

)
7→
(
A −iB
iC D

)
, (5.43)

and twist the SL(2,C)-action on HH (see Theorem 5.26) by ι. This means that the new action
takes the form

ϕ ◦ ι : SL(2,C)→ GLC(C2
ξ),

(
A B
C D

)
7→
(
A −B
−C D

)
, (5.44)

on the generators C2
ξ = CMξ + CTξ(k) (see (5.39)).

We write τ1 and τ2 for the automorphisms of HH corresponding to the generators

(
1 1
0 1

)

and

(
1 0
1 1

)
of SL(2,Z). Then, by (5.44), τ1 and τ2 are given by

τ1 : Mξ 7→Mξ, Tξ 7→ Tξ −Mξ, h 7→ h,

τ2 : Tξ 7→ Tξ, Mξ 7→Mξ − Tξ, h 7→ h,

which coincide with the one given in [Che95].

Of particular importance in Cherednik [Che95] is the automorphism

σ := τ1τ
−1
2 τ1 = τ−1

2 τ1τ
−1
2 ,

which corresponds to the action of

(
0 1
−1 0

)
. The automorphism σ is characterized by

σ(Tξ) = −Mξ, σ(Mξ) = Tξ and σ(h) = h for all h ∈ C.

From our view point, these automorphisms on HH can be obtained as the conjugations of the
action on the function space (see (5.36)). In view of the formulas (see (5.43)):

ι

(
1 1
0 1

)
=

(
1 −i
0 1

)
,

ι

(
1 0
1 1

)
=

(
1 0
i 1

)
,

ι

(
0 1
−1 0

)
=

(
0 −i
−i 0

)
= Exp

(
πi

2
h

)
γπi

2
,
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we may interpret that τ1, τ2, and σ are given by the conjugations of

Ωk,2(Exp(−ie+)) = exp
(1

2
‖x‖2

)
,

Ωk,2(Exp(ie−)) = exp
(
−1

2
∆k

)
,

F re
k,2 := e

1
2
‖x‖2 ◦ exp

(1

2
∆k

)
◦ e 1

2
‖x‖2

= exp
(1

2
∆k

)
◦ e 1

2
‖x‖2 ◦ exp

(1

2
∆k

)
(5.45)

= Ωk,2

(
Exp

πi

2
h
)
Ωk,2(γπi

2
),

respectively. Recalling the formulas:

(Ωk,2

(
Exp

πi

2
h
)
f)(x) = exp

(
iπ(N + 2〈k〉)

4

)
f(ix),

(Ωk,2(γπi
2
)f)(x) = exp

(
− iπ(N + 2〈k〉)

4

)
(Fk,2f)(x),

we have

F re
k,2f(x) = Fk,2f(ix).

Hence, σ may be interpreted as an algebraic version of the Dunkl transform. We notice that the
formula (5.45) fits well into Master Formula (5.22) for a = 2, which we may rewrite as

ck,2

∫

RN

e−
1
2
‖u‖2(

exp
(
−1

2
∆k

)
p
)
(u)Bk,2(ix, u)

∏

α∈R

|〈α, u〉|kαdu = e
1
2
‖x‖2

p(x).

5.7 The uncertainty inequality for the transform Fk,a

The Heisenberg uncertainty principle may be formulated by means of the so-called Heisenberg
inequality for the Euclidean Fourier transform on R. Loosely, the more a function is concentrated,
the more its Fourier transform is spread. We refer the reader to an excellent survey [FS97] for
various mathematical aspects of the Heisenberg uncertainty principle. In this section we extend
the Heisenberg inequality to the (k, a)-generalized Fourier transform Fk,a on RN .

Let ‖ · ‖k be the L2-norm with respect to the measure ϑk,a(x)dx on RN (see (1.2)). The goal
of this subsection is to prove the following multiplicative inequality:

Theorem 5.29 (Heisenberg type inequality). For all f ∈ L2(RN , ϑk,a(x)dx) the (k, a)-generalized
Fourier transform Fk,a satisfies

∥∥‖ · ‖ a
2 f
∥∥

k

∥∥‖ · ‖ a
2 Fk,a(f)

∥∥
k

>

(2〈k〉 +N + a− 2

2

)
‖f‖2k. (5.46)

The equality holds if and only if the function f is of the form f(x) = λ exp(−c‖x‖a) for some
λ ∈ C and c ∈ R+.

Remark 5.30. The inequality (5.46) for k ≡ 0 and a = 2 is the original Heisenberg inequality
for the Euclidean Fourier transform. The inequality for k > 0 and a = 2 is the Heisenberg
type inequality for the Dunkl transform, which was proved first by Rösler [Rös99b] and then by
Shimeno [Shi01]. In physics terms we can think of the function f(x) = λ exp(−c‖x‖a) where the
equality holds in the above theorem as a ground state; indeed when a = c = 1, N = 3, and
k ≡ 0, it is exactly the wave function for the Hydrogen atom with the lowest energy.
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In order to prove Theorem 5.29 we begin with the following additive inequality:

Lemma 5.31. (1) For all f ∈ L2
(
RN , ϑk,a(x)dx

)

∥∥‖ · ‖ a
2 f
∥∥2

k
+
∥∥‖ · ‖ a

2 Fk,a(f)
∥∥2

k
> (2〈k〉+N + a− 2)‖f‖2k. (5.47)

(2) The equality holds in (5.47) if and only if f(x) is a scalar multiple of exp(− 1
a‖x‖a).

Proof. By Theorem 5.6(3) and Theorem 5.1(1), we get
∥∥∥‖ · ‖

a
2 Fk,af

∥∥∥
2

k
= 〈〈‖x‖aFk,af,Fk,af〉〉k
= −〈〈Fk,a(‖x‖2−a∆kf),Fk,af〉〉k
= −〈〈‖x‖2−a∆kf, f〉〉k.

Hence, the left-hand side of (5.47) equals

〈〈(‖x‖a − ‖x‖2−a∆k)f, f〉〉k = 〈〈−∆k,af, f〉〉k. (5.48)

It then follows from Corollary 3.22 that the self-adjoint operator −∆k,a has only discrete spectra,
of which the minimum is 2〈k〉 +N − 2 + a. Therefore, we have proved

(5.48) > (2〈k〉 +N − 2 + a)‖f‖2k.
Thus, the inequality (5.47) has been proved. Further, the equality holds if and only if f is an
eigenfunction of −∆k,a corresponding to the minimum eigenvalue 2〈k〉+N − 2 + a, namely, f is

a scalar multiple of exp(− 1
a‖x‖a) (i.e. by putting ` = m = 0 in the formula (3.28) of Φ

(a)
` (p, x)).

Hence, Lemma 5.31 has been proved.

Proof of Theorem 5.29. Now, for c > 0, we set fc(x) := f(cx). Using the fact that the density
ϑk,a is homogeneous of degree 2〈k〉+ a− 2, we get

∥∥‖ · ‖ a
2 fc

∥∥2

k
= c−2〈k〉−N−2a+2

∥∥‖ · ‖ a
2 f
∥∥2

k
,

and

‖fc‖2k = c−2〈k〉−N−a+2‖f‖2k.
Furthermore, we lift the formula in Theorem 5.9(1) to the formula

(Fk,afc)(x) = c−(N+2〈k〉+a−2)(Fk,af)
(x
c

)
,

from which we get ∥∥‖ · ‖ a
2 Fk,a(fc)

∥∥2

k
= c−2〈k〉−N+2

∥∥‖ · ‖ a
2 Fk,a(f)

∥∥2

k
.

Thus, if we substitute fc for f in Lemma 5.31, we obtain

c−a
∥∥‖ · ‖ a

2 f
∥∥2

k
+ ca

∥∥‖ · ‖ a
2 Fk,a(f)

∥∥2

k
> (2〈k〉 +N + a− 2)‖f‖2k.

Obviously the minimum value of the left-hand side (as a function of c ∈ R+) is

2
∥∥‖ · ‖ a

2 f
∥∥

k

∥∥‖ · ‖ a
2 Fk,a(f)

∥∥
k
.

Hence, Theorem 5.29 has been proved.
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Ẽ+
k,a, 19

Ẽ−
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Ĩλ(w), 36

Ik,a(z), 5

J̃ν(w), 57

〈k〉, 12

k, 18

L
(λ)
` (t), 21

n+, 18

n−, 18

Pk,m(ω, η), 47

R, 5, 11

Tξ(k), 11

Vk, 12

Wk,a(RN ), 23

72



Laguerre semigroup and Dunkl operators
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