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2 TOSHIYUKI KOBAYASHI1. ProgramBranhing problems in representation theory ask how irreduible modules de-ompose when restrited to subalgebras. In the ontext of the Bernstein{Gelfand{Gelfand ategory O of a semisimple Lie algebra g, branhing problems are seem-ingly simple, however, it turns out that the restritions behave wildly in general.For instane, the restritions X jg01 and X jg02 of a g-module X lying in O may beompletely di�erent even when two redutive subalgebras g01 and g02 are onjugateto eah other as the following observations indiate (see Examples 4.14, 4.15 formore details):Observation 1.1. The restrition X jg01 does NOT ontain any simple g01-module,whereas X jg02 deomposes into an algebrai diret sum of simple g02-modules.Observation 1.2. The Gelfand{Kirillov dimension of any simple g01-module o-urring in X jg01 is larger than that of any simple g02-module in X jg02.The understanding of suh phenomena requires a preise formulation of branh-ing problems. Among others we begin by asking what is a `well-posed' frameworkof branhing problems for the restrition X jg0 where g0 is a (generalized) redutivesubalgebra of g and X lies in the ategory O:Problem A. When does the restrition X jg0 ontain a simple g0-module?Further, we raise the following problems when X jg0 ontains simple g0-modules.Problem B. Find the `size' of simple g0-modules ourring in X jg0.Problem C. Estimate multipliities of simple g0-modules ourring in X jg0.Problem D. Find branhing laws, in partiular, for multipliity-free ases.Let us explain briey our main results. We write B for the full ag variety ofg, and G0 for the set of onjugay lasses of g0 under the group G := Int(g) ofinner automorphisms. Then the `framework' of the restrition X jh for X 2 O andh 2 G0 is desribed by means of the quotient spae Gn(B�G0) under the diagonalation of G. More generally, we formulate a proper framework to disuss ProblemsA to D in Theorem 2.1 in the paraboli BGG ategory Op (see Subsetion 2.1)for an arbitrary paraboli subalgebra p of g. After disussing basi results inthis framework in the generality that g0 is an arbitrary redutive subalgebra ing, we highlight the ase where (g; g0) is a symmetri pair to get �ner results,keeping di�erential geometri appliations in mind. It inludes the `group ase'(g1� g1; diag(g1)) as a speial example, for whih the branhing laws desribe thedeomposition of the tensor produt of two representations (e.g. fusion rules). Forsymmetri pairs (g; g0), the ardinality of G-orbits on B � G0 is �nite, and wegive a omplete answer to Problem A in the ategory Op in terms of the �nite setGn(P�G0). Namely, we prove in Theorem 4.1 that the restrition X jg0 ontainssimple g0-modules for any X 2 Op if and only if (p; g0) lies in a losed G-orbit onP�G0.Turning to Problem B, we make use of the assoiated varieties (see e.g. [5, 15℄)as a oarse measure of the `size' of g0-modules. We see that the assoiated varietyVg0(Y ) of a simple g0-module Y ourring in the restrition X jg0 is independent ofY if X is a simple g-module. The formulas of Vg0(Y ) and its dimension (Gelfand{Kirillov dimension) are derived in Theorem 4.12.



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 3Conerning Problem C, it is notorious in the ategory of unitary representationsof real redutive groups that the multipliities in the branhing laws may be in�nitewhen restrited to symmetri pairs, see [6℄. In ontrast, we prove in Theorem 4.16that multipliities are always �nite in the branhing laws with respet to symmetripairs in the ategory O.Partiularly interesting branhing laws are multipliity-free ases where anysimple g0-module ours in the restrition X jg0 at most one. We give two generalmultipliity-free theorems with respet to symmetri pairs (g; g0) in the paraboliategory Op:1) p speial, (g; g0) general (Theorem 5.1),2) p general, (g; g0) speial (Theorem 5.4),and then �nd branhing laws orresponding to losed orbits in Gn(P�G0).This is the �rst artile of our projet on a systemati onstrution of equivariantdi�erential operators in paraboli geometry. In subsequent papers, Theorem 4.1(a solution to Theorem A) plays a foundational role in dealing with� a onstrution of onformally equivariant di�erential operators in paraboligeometry,� a generalization of the Rankin{Cohen braket operators.Atual alulations are arried out by using algebrai branhing formulas (Theorem5.2) together with an analyti mahinery that we all the `F -method' in [10℄.In Setion 5.1 we have studied paraboli subalgebras p with abelian nilpotentradial. The ase of paraboli subalgebras p with Heisenberg nilpotent radial(e.g. Example 4.14) may be thought of as a generalization of Setion 5.1. UsingTheorems 3.10 and 4.1, we an give a omplete lassi�ation of the triples (g; p; g� )and the losed orbits in G�nG=P (see the framework of Theorem 2.1) with dis-rete deomposable and multipliity-free branhing laws. The alulation is moreinvolved, and will be reported in another paper.Partial results of this artile were presented at the onferene in honor of Vin-berg's 70th birthday at Bielefeld in Germany in 2007 and a series of letures at theWinter Shool on Geometry and Physis in Ceh Republi in 2010. The authoris grateful to the organizers, in partiular, Professors Abels and Sou�ek, for theirwarm hospitality.Notation: N = f0; 1; 2; � � � g, N+ = f1; 2; 3; � � � g.2. Branhing problem of Verma modulesIn general, Verma modules may not ontain any simple g0-module when re-strited to a redutive subalgebra g0. In this setion, we use the geometry of thedouble oset spae NG(g0)nG=P and larify the problem in Theorem 2.1, whihwill then serve as a foundational setting of branhing problems for the ategoryOp in Theorem 4.1.2.1. Generalized Verma modulesWe begin with a quik review of the (paraboli) BGG ategory Op and �x somenotation.



4 TOSHIYUKI KOBAYASHILet g be a semisimple Lie algebra over C , and j a Cartan subalgebra. We write� � �(g; j) for the root system, g� (� 2 �) for the root spae, and �_ for theoroot. We �x a positive system �+, and de�ne a Borel subalgebra b = j + nwith nilradial n := ��2�+g�. The BGG ategory O is de�ned to be the fullsubategory of g-modules whose objets are �nitely generated g-modules X suhthat X are j-semisimple and loally n-�nite [2℄.Let p be a standard paraboli subalgebra, and p = l+ u its Levi deompositionwith j � l. We set �+(l) := �+ \ �(l; j), and de�ne n�(l) := ��2�+(l)g��.The paraboli BGG ategory Op is de�ned to be the full subategory of O whoseobjets X are loally n�(l)-�nite. Then Op is losed under submodules, quotients,and tensor produts with �nite dimensional representations.The set of � for whih �jj\[l;l℄ is dominant integral is denoted by�+(l) := f� 2 j� : h�; �_i 2 N for all � 2 �+(l)g:We write F� for the �nite dimensional simple l-module with highest weight �,inate F� to a p-module via the projetion p! p=u ' l, and de�ne the generalizedVerma module by Mgp(�) �Mgp(F�) := U(g)
U(p) F�: (2.1)ThenMgp(�) 2 Op, and any simple objet in Op is the quotient of someMgp(�). Wesay Mgp(�) is of salar type if F� is one-dimensional, or equivalently, if h�; �_i = 0for all � 2 �(l).Let � be half the sum of positive roots. If � 2 �+(l) satis�esh�+ �; �_i 62 N+ for all � 2 �+ n�(l); (2.2)then Mgp(�) is simple, see [3℄.For p = b, we simply write Mg(�) for Mgb(�). We note that Ob = O byde�nition.2.2. Framework of branhing problemsLet g0 be a subalgebra of g, and p a paraboli subalgebra of g. We denote by G0and P the set of onjugay lasses of g0 and p, respetively. Let P be the parabolisubgroup of G = Int(g) with Lie algebra p, and de�ne the normalizer of g0 asNG(g0) := fg 2 G : Ad(g)g0 = g0g:Then we have natural bijetions: G=P ' P, G=NG(g0) ' G0, and heneGn(P�G0) ' NG(g0)nP ' G0=P ' NG(g0)nG=P: (2.3)Here, we let G at diagonally on P�G0 in the left-hand side of (2.3).Let S be the set of omplete representatives of the double oset NG(g0)nG=P ,and we write g0s := Ad(s)�1g0 for s 2 S. Then the branhing problem for Opwith respet to a subalgebra belonging to G0 is `lassi�ed' by the double osetNG(g0)nG=P in the following sense:



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 5Theorem 2.1. For any X 2 Op and any h 2 G0, there exists s 2 S suh thatX jh' eX jg0s for some eX 2 Op via a Lie algebra isomorphism between h and g0s.Proof of Theorem 2.1. Given h 2 G0, we take s 2 S and q 2 P suh thatAd((sq)�1)g0 = h:Clearly, we have a Lie algebra isomorphism Ad(q�1) : g0s �! h.For X 2 Op, we de�ne a new g-module struture on X byZ �q v := (Ad(q)�1Z) � v for Z 2 g; v 2 X:Sine P normalizes p, this new module, to be denoted by eX , lies in Op. Then,for any Lie subalgebra v of g, the restrition eXjv is isomorphi to the restritionX jAd(q)�1v via the Lie algebra isomorphism v ' Ad(q)�1v. Applying this tov := g0s, we get the following isomorphism:X jh= X jAd(q)�1 Ad(s)�1g0 ' eXjg0svia the Lie algebra isomorphism Ad(q) : h �! g0s. Theorem 2.1 is thus proved.Remark 2.2. If (g; g0) is a semisimple symmetri pair (see Subsetion 4.1), then Sis a �nite set (Matsuki [11℄).3. Disretely deomposable branhing lawsIn this setion, we bring the onept of `disretely deomposable restritions' tothe branhing problem for the BGG ategory Op, and prove that the restritionX jg0 ontains simple g0-modules for X 2 Op if p lies in a losed G0-orbit onthe generalized ag variety P. In partiular, it is the ase if p is g0-ompatible(De�nition 3.7). Under this assumption the harater identities are derived for therestrition X jg0 (Theorem 3.10).3.1. Disretely deomposable modules OSuppose that g is a redutive Lie algebra.De�nition 3.1. We say a g-module X is disretely deomposable if there is an in-reasing �ltration fXmg of g-submodules of �nite length suh that X = S1m=0Xm.Further, we say X is disretely deomposable in the ategory Op if all Xm an betaken from Op.Here are obvious examples:Example 3.2. 1) Any g-module of �nite length is disretely deomposable.2) (ompletely reduible ase). An algebrai diret sum of ountably many simpleg-modules is disretely deomposable.



6 TOSHIYUKI KOBAYASHIRemark 3.3. The onept of disretely deomposable g-modules was originally in-trodued in the ontext of (g;K)-modules in [7, De�nition 1.1℄ as an algebraianalogue of unitary representations whose irreduible deompositions have no `on-tinuous spetrum'. Then the main issue of [6, 7℄ was to �nd a riterion for thedisrete deomposability of the restrition of (g;K)-modules. We note that dis-rete deomposability in the generality of De�nition 3.1 does not imply ompletereduibility.Suppose g0 is a redutive subalgebra, and p0 its paraboli subalgebra.Lemma 3.4. Let X be a simple g-module. Then the restrition X jg0 is disretelydeomposable in the ategory Op0 if and only if there exists a g0-module Y 2 Op0suh that Homg0(Y;X jg0) 6= f0g: In this ase, any subquotient ourring in theg0-module X jg0 lies in Op0.Proof. Suppose Homg0(Y;X jg0) 6= 0 for some Y 2 Op0. Taking the subquotientof Y if neessary, we may assume Y is a simple g0-module. Let � : Y ! X bean injetive g0-homomorphism. For m 2 N, we denote by Ym the image of thefollowing g0-homomorphism:g
 � � � 
 g| {z }m 
Y ! X; (H1 
 � � � 
Hm)
 v 7! H1 � � �Hm �(v):Then X = S1m=0 Ym beause X is simple. Moreover Ym 2 Op0 beause Op0 islosed under quotients and tensor produts with �nite dimensional representations.Hene, the restrition X jg0 is disretely deomposable in Op0. Conversely, the`only if' part is obvious beause Op0 is losed under submodules. Finally, anysubquotient of Ym lies in Op0, whene the last statement. Thus Lemma 3.4 isproved.3.2. Disretely deomposable restritions for OpLet G = Int(g), P the paraboli subgroup of G with Lie algebra p as before, andG0 a redutive subgroup with Lie algebra g0. We ask when the restrition X jg0 ofX 2 Op is disretely deomposable in the sense of De�nition 3.1.Proposition 3.5. If G0P is losed in G then the restrition X jg0 is disretelydeomposable for any simple g-module X in Op.Proof. We set P 0 := G0 \ P . Suppose G0P is losed in G. Then G0=P 0 is losed inthe generalized ag variety G=P , and hene is ompat. Therefore, the Lie algebrap0 := g0 \ p of P 0 must be a paraboli subalgebra of g0.LetX be a simple objet in Op. Then X is obtained as the quotient of some gen-eralized Verma module, that is, there exists � 2 �+(l) suh that the ompositionmap F� ,! U(g)
U(p) F� � Xis non-trivial. Therefore, we get a non-zero g0-homomorphismU(g0)
U(p0) (F�jp0)! X: (3.1)Sine the g0-module U(g0)
U(p0)(F�jp0) lies in Op0, the restritionX jg0 is disretelydeomposable in the ategory Op0 owing to Lemma 3.4.



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 7The onverse statement of Proposition 3.5 will be proved in Theorem 4.1 underthe assumption that (g; g0) is a semisimple symmetri pair.The assumption of Proposition 3.5 �ts well into the framework of Theorem 2.1.To see this, we make the following (easy) observation:Lemma 3.6. Retain the notation as in Subsetion 2.2. Then the following ondi-tions on the triple (g; g0; p) are equivalent:(i) The G0-orbit through p 2 P is losed.(ii) G0P is losed in G.Clearly these onditions are invariant under the onjugation of p by an elementof the group NG(g0), and hene they are determined by the equivalene lasses inNG(g0)nG=P ' Gn(P�G0) (see (2.3)) ontaining (p; g0) 2 P�G0.3.3. g0-ompatible paraboli subalgebra pThis subsetion disusses a suÆient ondition for the losedness of G0P in G.A semisimple element H 2 g is said to be hyperboli if the eigenvalues of ad(H)are all real. For a hyperboli element H , we de�ne the subalgebrasu+ � u+(H); l � l(H); and u� � u�(H)as the sum of the eigenspaes with positive, zero, and negative eigenvalues, respe-tively. Then p(H) := l(H) + u+(H) (3.2)is a Levi deomposition of a paraboli subalgebra of g.Let g0 be a redutive subalgebra of g, and p a paraboli subalgebra of g.De�nition 3.7. We say p is g0-ompatible if there exists a hyperboli element Hin g0 suh that p = p(H).If p = l+ u+ is g0-ompatible, then p0 := p\ g0 beomes a paraboli subalgebraof g0 with Levi deompositionp0 = l0 + u0+ := (l \ g0) + (u+ \ g0):Then, using the notation of Subsetion 3.2, we see that G0=P 0 = G0=G0\P beomesa generalized ag variety, and therefore is losed in G=P . Hene, we get thefollowing proposition from Proposition 3.5:Proposition 3.8. If p is g0-ompatible, then G0P is losed in G and the restri-tion X jg0 is disretely deomposable for any X 2 Op.The onverse statement holds when p is a Borel subalgebra (Corollary 4.2), butdoes not always hold for a general paraboli subalgebra. Theorem 4.1 below showsthat the following example gives a ounterexample to the onverse statement ofProposition 3.8.Example 3.9. Let g = g1 � g1, and g0 := diag(g1) � f(Z;Z) : Z 2 g1g. Then aparaboli subalgebra p of g is g0-ompatible if and only if p is of the form p1 � p1for some paraboli subalgebra p1 of g1.On the other hand, G0P is losed in G = G1 � G1 if and only if p is of theform p1� p2 for some paraboli subalgebras p1 and p2 ontaining a ommon Borelsubalgebra.



8 TOSHIYUKI KOBAYASHI3.4. Charater identitiesIn this subsetion, we prove the harater identities of the restrition of gener-alized Verma modules to a redutive subalgebra g0 assuming that the parabolisubalgebras p is g0-ompatible.Let p = l+ u+ be a g0-ompatible paraboli subalgebra of g de�ned by a hyper-boli element H 2 g0. We take a Cartan subalgebra j0 of g0 suh that H 2 j0, andextend it to a Cartan subalgebra j of g. Clearly, j � l and j0 � l0.We reall that F� denotes the �nite dimensional, simple module of l with highestweight � 2 �+(l). Likewise, let F 0Æ denote that of l0 for Æ 2 �+(l0).Given a vetor spae V we denote by S(V ) =L1k=0 Sk(V ) the symmetri tensoralgebra over V . We extend the adjoint ation of l0 on u�=u�\g0 to S(u�=u�\g0).We set m(Æ;�) := dimHoml0(F 0Æ ; F�jl0 
 S(u�=u� \ g0)): (3.3)Theorem 3.10. Suppose that p = l + u+ is a g0-ompatible paraboli subalgebraof g, and � 2 �+(l).1) m(Æ;�) <1 for all Æ 2 �+(l0).2) In the Grothendiek group of Op0, we have the following isomorphism:Mgp(�)jg0 ' MÆ2�+(l0)m(Æ;�)Mg0p0 (Æ): (3.4)Proof. Let H 2 g0 be the hyperboli element de�ning the paraboli subalgebra p.We denote by g00 the orthogonal omplementary subspae of g0 in g with respetto the Killing form. Sine ad(H) preserves the deomposition g = g0�g00, the sumu� of negative eigenspaes of ad(H) deomposes asu� = u0� � u00� := (u� \ g0)� (u� \ g00): (3.5)This is a deomposition of l0-modules, and hene, we have an l0-module isomor-phism S(u00�) ' S(u�=u� \ g0).1) Let a(> 0) be the minimum of the eigenvalues of � ad(H) on u00�. Sine H 2 l0,we have Homl0(F 0Æ ; F� 
 Sk(u00�)) = 0for all k suh that k > 1a(�(H) � Æ(H)). In view of (3.3), we get m(Æ;�) <1.2) The formal harater of the generalized Verma module Mgp(�) is given byh(Mgp(�)) = h(F�) Y�2�(u�;j)(1� e�)�1: (3.6)Let us prove that its restrition to j0 equals the formal harater of the right-hand side of (3.4). For this, we observe that F� 
 S(u00�) is a semisimple l0-module, and therefore, it deomposes into the diret sum of simple l0-modulesLÆ2�+(l0)m(Æ;�)F 0Æ ; where m(Æ; �) is de�ned in (3.3). Turning to their formalharaters, we geth(F�)jj0 Y�2�(u00�;j0)(1� e�)�1 = XÆ2�+(l0)m(Æ;�) h(F 0Æ): (3.7)



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 9Writing the multiset �(u�; j)jj0 as a disjoint union �(u00�; j0) q �(u0�; j0); we getfrom (3.6) and (3.7)h(Mgp(�))jj0 =h(F�)jj0 Y�2�(u00�;j0)(1� e�)�1 Y�2�(u0�;j0)(1� e�)�1=XÆ m(Æ;�) h(F 0Æ) Y�2�(u0�;j0)(1� e�)�1=XÆ m(Æ;�) h(Mg0p0 (Æ)):Hene (3.4) holds in the Grothendiek group of Op0.3.5. Multipliity-free restritionRetain the setting of the previous subsetion. In partiular, we suppose thatp = l + u+ is a g0-ompatible paraboli subalgebra of g. We will see in thissubsetion that the harater identity in Theorem 3.10 leads us to multipliity-freebranhing laws for generalized Verma modules when the l0-module S(u�=u� \ g0)is multipliity-free.De�nition 3.11. We say that a g-module V is a multipliity-free spae if theindued g-module on the symmetri algebra S(V ) is a multipliity-free represen-tation.Multipliity-free spaes for redutive Lie algebras were lassi�ed by V. Kain the irreduible ase, and by Benson{Ratli� and Leahy independently in thereduible ase (see [1℄).The following Corollary is an immediate onsequene of Theorem 3.10:Corollary 3.12. Assume that u�=u� \ g0 is an l0-multipliity-free spae. We de-note by D the support of simple l0-modules ourring in S(u�=u� \ g0), namely,S(u�=u� \ g0) 'LÆ2D F 0Æ. Then any generalized Verma module Mgp(�) of salartype deomposes into a multipliity-free sum of generalized Verma modules for g0in the Grothendiek group of Op0 as follows:Mgp(�)jg0 'MÆ2DMg0p0 (�jj0 + Æ): (3.8)Remark 3.13. For a `generi' �, the formula (3.8) beomes a multipliity-free diretsum of simple g0-modules. For instane, there is no extension among the modulesMg0p0 (�jj0 + Æ) (Æ 2 D) if they have distint Z(g0)-in�nitesimal haraters (e.g.Theorems 5.5, 5.6 and 5.7) or if Mgp(�) has an invariant Hermitian inner produtwith respet to a ertain real form of g0 (e.g. Theorem 5.1). See Setion 5 fordetails. 4. Branhing problems for symmetri pairsThe deomposition of the tensor produt of two representations is an exampleof branhing laws with respet to a speial ase of symmetri pairs, namely, thepair g1�g1 # diag(g1). In this setion, we disuss Problems A to D for semisimplesymmetri pairs.



10 TOSHIYUKI KOBAYASHI4.1. Criterion for disretely deomposable restritionLet � be an involutive automorphism of a semisimple Lie algebra g, and we denotethe �xed point subalgebra byg� := fZ 2 g : �Z = Zg:The pair (g; g� ) is alled a semisimple symmetri pair. Typial examples are thepairs (g1�g1; diag(g1)) (g1: semisimple Lie algebra), (sln; son), and (slp+q ; s(glp+glq)).We lift � to an automorphism of the group G = Int(g) of inner automorphisms,and set G� := fg 2 G : �g = gg. Then G� is a redutive subgroup of G with Liealgebra g� .Let p be a paraboli subalgebra of g, and X a g-module lying in Op. ProblemA asks when the restrition X jg� ontains simple g� -modules. We give its nees-sary and suÆient ondition by the geometry of the generalized ag variety G=Passoiated to the paraboli subalgebra p:Theorem 4.1. Let g be a omplex semisimple Lie algebra, � an involutive auto-morphism of g, and p a paraboli subalgebra. Then the following three onditionson the triple (g; g� ; p) are equivalent:(i) For any simple g-module X in Op, the restrition X jg� ontains at leastone simple g� -module.(ii) For any simple g-module X in Op, the restrition X jg� is disretely de-omposable as a g� -module in the sense of De�nition 3.1.(iii) G�P is losed in G.If one of (hene all of) the above three onditions is ful�lled then p� := p \ g�is a paraboli subalgebra of g� , and any irreduible subquotient ourring in therestrition X jg� belongs to the ategory Op�.In Proposition 4.7, the geometri ondition (iii) in Theorem 4.1 will be refor-malised as an algebrai ondition.Strategy of Proof of Theorem 4.1: We have already seen the equivalene (i)() (ii) in Lemma 3.4 and the impliation (iii) =) (ii) in Proposition 3.5 in a moregeneral setting, i.e. without assuming that (g; g0) is a symmetri pair. The non-trivial part is the impliation (ii) =) (iii), whih will be proved in Subsetion 4.4after we establish some strutural results on losed G� -orbit in G=P (Subsetion4.2).We end this subsetion with two very speial ases of Theorem 4.1, namely, forp = b (Borel) and for the pair (g� g; diag g):Corollary 4.2. Let O be the BGG ategory assoiated to a Borel subalgebra b,and � an involutive automorphism of g. Then the following four onditions on(�; b) are equivalent:(i) Any simple g-module in O ontains at least one simple g� -module when re-strited to g� .(ii) Any simple g-module in O is disretely deomposable as a g� -module in thesense of De�nition 3.1.



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 11(iii) G�B is losed in G(iv) �b = b.Proof. We shall see in Lemma 4.6 that G�B is losed in G if and only if �b = b.Hene, Corollary follows from Theorem 4.1.Example 4.3. Let (g; g0) = (sl4(C ); s(gl2(C ) � gl2(C ))). Then there are 21 orbitsof the subgroup S(GL(2; C )�GL(2; C )) on the full ag variety B of SL(4; C ), and6 (= 4!=2!2!) losed orbits among them. In the following diagram, verties standfor 21 orbits on B, and edges generate their losure relations.� � � � � �� � � � � �� � � � �� � ��
losed
openFigure 4.1Correspondingly, for a �xed Borel subalgebra b of g there are 6 injetive homomor-phisms �j : g0 ! g (1 � j � 6) suh that any simple g-module in O is disretelydeomposable when restrited to �j(g0) and that �j(g0) is not onjugate to eah otherby an element of the Borel subgroup.Corollary 4.4. Let p1, p2 be two paraboli subalgebras of a omplex semisimpleLie algebra g. Then the following three onditions on (p1; p2) are equivalent:(i) For any simple g-module X1 in Op1 and X2 in Op2, the tensor produt rep-resentation X1 
X2 ontains at least one simple g-module.(ii) For any simple g-module X1 in Op1 and X2 in Op2, the tensor produt rep-resentation X1 
X2 is disretely deomposable as a g-module.(iii) p1 \ p2 is a paraboli subalgebra.Proof. Let P1 and P2 be the paraboli subgroups of G = Int(g) with Lie algebrasp1 and p2, respetively. Then the diagonal G-orbit on (G�G)=(P1 �P2) throughthe origin is given as G=(P1\P2), whih is losed if and only if p1\p2 is a parabolialgebra of g. Hene, Corollary is dedued from Theorem 4.1.4.2. Criterion for losed G� -orbit on G=PAs a preparation for the proof of Theorem 4.1, we establish some strutural resultsfor losedG� -orbits on the generalized ag varietyG=P in this subsetion. We notethat the losedness ondition for G� -orbits on G=P is muh more ompliated thanthat for the full ag variety G=B (f. Lemma 4.6 below). The author is grateful toT. Matsuki for helpful disussions, in partiular, for the proof of Proposition 4.7.Let g be a omplex semisimple Lie algebra, G = Int(g), and � an involutiveautomorphism of g as before. We begin with:



12 TOSHIYUKI KOBAYASHILemma 4.5.1) Let � be a Cartan involution of g ommuting with � . For any parabolisubalgebra p, there exist h 2 G� and a Cartan subalgebra j suh that � j =�j = j and j � Ad(h)p. In partiular, any paraboli subalgebra ontains a�-stable Cartan subalgebra.2) A paraboli subalgebra is �-stable if and only if it is g� -ompatible (seeDe�nition 3.7).Proof. 1) This assertion holds for any Borel subalgebra of g ([11, Theorem 1℄).Hene, it holds also for any paraboli subalgebra.2) Suppose p is a � -stable paraboli subalgebra. Take a � -stable Cartan subalgebraj ontained in p. Then there exists H 2 j suh thatp = M�2�(g;j)�(H)�0 g�:Sine �p = p, �(H) � 0 if and only if �(�H) � 0, whih is then equivalent to�(H + �H) � 0. Therefore, the paraboli subalgebra p equals p(H + �H) withthe notation (3.2), and thus it is g� -ompatible. Conversely, any g� -ompatibleparaboli subalgebra is obviously � -stable.We then dedue a simple haraterization of losed G� -orbits on the full agvariety G=B from [11, Proposition 2℄ ombined with Lemma 4.5 2):Lemma 4.6. The following three onditions on � and a Borel subalgebra b areequivalent:(i) G�B is losed in G.(ii) �b = b.(iii) b is g� -ompatible.Unfortunately, suh a simple statement does not hold for a general parabolisubalgebra p. In fat, the ondition �p = p is stronger than the losedness of G�P(see Example 3.9). In order to give the right haraterization for the losedness ofG�P , we let pr� : g! g� be the projetion de�ned bypr� (Z) := 12(Z + �Z): (4.1)For a subspae V in g, we de�ne the �1 eigenspaes of � byV �� := fv 2 V : �v = �vg: (4.2)Note that pr� (V ) = V � if V is � -stable.Proposition 4.7. Suppose p is a paraboli subalgebra with nilradial u, and � isan involutive automorphism of g. Then, the following three onditions on thetriple (g; g� ; p) are equivalent:



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 13(i) G�P is losed in G.(ii) pr� (u) is a nilpotent Lie algebra.(iii) pr� (u) onsists of nilpotent elements.We note that the paraboli subalgebra p may not be � -stable in Proposition4.7. The idea of the following proof goes bak to [12℄, whih is to use a � -stableBorel subalgebra ontained in p when p itself is not � -stable.Proof. We take a Borel subalgebra b � p suh that G�B is relatively losed inG�P . This is possible beause G�nG=B is a �nite set.(i) =) (ii) Suppose G�P is losed in G. Then G�B is also losed in G. Owingto Lemma 4.6, b is � -stable, and therefore, so is the nilradial n of b. Thus,pr� (n) = n� . Sine u � n, we get pr� (u) � pr� (n) = n� .For X;Y 2 g, a simple omputation shows2[pr� (X); pr� (Y )℄ = pr� ([X;Y ℄) + pr� ([X; �Y ℄):If X;Y 2 u, then [X;Y ℄ 2 u and [X; �Y ℄ 2 [u; n℄ � u. Hene pr� (u) is a Liesubalgebra. Sine pr� (u) is ontained in n� , we onlude that pr� (u) is a nilpotentLie algebra. Thus, (i) =) (ii) is proved.(ii) =) (iii). Obvious.(iii) =) (i). Sine the onditions (i) and (iii) remain the same if we replae pby Ad(h)(p) for some h 2 G� , we may and do assume that p ontains a Cartansubalgebra j suh that � j = �j = j by Lemma 4.5. Then �� = �� for any� 2 �(g; j).Suppose G�P is not losed in G. By the Matsuki duality [11℄, we see that G��Pis not open in G. Therefore, there exists � 2 �(u; j) suh that g�� 6� g�� + p.Take a non-zero X�� 2 g��. In view thatX�� = (X�� + ��X��)� ��X�� 2 g�� + g��;we see g�� 6� p beause otherwise X�� would be ontained in g�� + p. Hene,g��� � u and �� 6= �.Take a non-zero X� 2 g� and we set X := X� + ��X� 2 g� + g��� � u.Case 1. Suppose X 6= 0. Let Y := pr� (X). Clearly, �Y = Y . Moreover, Y 6= 0beause �� 6= �. This means that pr� (u) ontains a non-zero semisimpleelement.Case 2. Suppose X = 0. Let Y := X� + �X� = X� � �X�. Then Y 6= 0 and�Y = �Y . Again, this means that pr� (u) ontains a non-zero semisimpleelement.Thus we have proved the ontraposition, \not (i) =) not (iii)". Hene the proofof Proposition has been ompleted.The nilradial of the Lie algebra p� is given expliitly as follows:Proposition 4.8. Under the equivalent onditions (i)-(iii) in Proposition 4.7, p�is a paraboli subalgebra of g� having the following Levi deomposition:p� = l� + pr� (u):



14 TOSHIYUKI KOBAYASHIProof of Proposition 4.8. We take a Borel subalgebra b � p suh that G�B islosed, and a � -stable Cartan subalgebra j ontained in b as in the proof of Propo-sition 4.7.Given a j-stable subspae V =L�2�(V ) g� in g, we denote by �(V ) the multisetof j-weights. (Here we note that the multipliity of the zero weight in V may belarger than one.) We divide �(V ) into the disjoint union�(V ) = �(V )I q�(V )II q�(V )III;subjet to the ondition (I) �� = � and � jg� = id, (II) �� = � and � jg� = � id,and (III) �� 6= �. Aordingly, we have a diret sum as vetor spaes:V � = M�2�(V )I g� � M�;��2�(V )III(g� + g��)� ;pr� (V ) = M�2�(V )I g� � M�2�(V )III(g� + g��)� :In partiular, we getp� = M�2�(p)Ig� � M�;��2�(p)III(g� + g��)�= M�2�(l)Ig� � M�;��2�(l)III(g� + g��)� � M�2�(u)Ig� � M�;��2�(u)III(g� + g��)�=l� � pr� (u):Here we have used �u � p in the seond equality. Thus Proposition 4.8 is proved.4.3. Appliation of assoiated varieties to restritionsIn this subsetion, we apply assoiated varieties of g-models to the study of branh-ing problems.Suppose X is a �nitely generated g-module. We take a �nite dimensional sub-spae X0 whih generates X as a g-module. Let U(g) = [k�0Uk(g) be a natural�ltration of the enveloping algebra of g. Then, Xk := Uk(g)X0 (k 2 N) gives a�ltration fXkgk satisfyingX = 1[k=0Xk; Ui(g)Xj = Xi+j (i; j � 0):Then, grX :=L1k=0Xk=Xk�1 is a �nitely generated module of the ommutativealgebra grU(g) ' S(g). The assoiated variety of the g-module X is a losedsubset Vg(X) of g� de�ned byVg(X) := SuppS(g)(grX):Then Vg(X) is independent of the hoie of the generating subspae X0. We reallthe following basi properties:



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 15Lemma 4.9 ([5, Chapter 17℄). 1) If 0 �! X1 �! X �! X2 �! 0 is anexat sequene of g-modules, we have Vg(X) = Vg(X1) [ Vg(X2).2) For any �nite dimensional p-module F , Vg(U(g)
U(p) F ) = p?.Let g0 be a redutive subalgebra in g, and prg!g0 : g� ! g0� the restrition map.We set p0 := g0 \ p and p0? := f� 2 (g0)� : �jp0 � 0g:Lemma 4.10. Let X be a simple g-module lying in Op, and g0 a redutive subal-gebra in g.1) If Y is a simple g0-module suh that Homg0(Y;X jg0) 6= f0g thenprg!g0(Vg(X)) � Vg0(Y ) � (p0)?: (4.3)2) If Yi are simple g0-modules suh that Homg0(Yi; X jg0) 6= f0g (i = 1; 2), thenVg0(Y1) = Vg0(Y2).Proof. 1) Sine Op is losed under tensor produts with �nite dimensional rep-resentations, the proof for the �rst inlusion in (4.3) parallels to the proof of [7,Theorem 3.1℄ by using the double �ltration of X .For the seond inlusion in (4.3), we use the notation of the proof of Proposition3.5 and let Y be the image of (3.1). Then it follows from Lemma 4.9 that Vg0(Y ) �Vg0(U(g0)
U(p0) (F�jp0)) = p0?:2) The proof is the same as that of [7, Theorem 3.7℄ in the ategory of (g;K)-modules.Remark 4.11. An analogous result to Lemma 4.10 2) was shown in [4℄ in the speialase where X is the osillator representation of g = sp(n;R) in the ontext ofompat dual pair orrespondene by ase-by-ase omputations. In this ase,prg!g0(Vg(X)) oinides with the assoiated variety Vg0(Y ). It is plausible thatprg!g0(Vg(X)) = Vg0(Y ) in the generality of the setting in Lemma 4.10. We shalldisuss this assertion in Theorem 4.12 below for symmetri pairs (g; g� ).4.4. Proof of Theorem 4.1The equivalene of Theorem 4.1 has been already proved in Setion 4.1 exept forthe impliation (ii) ) (iii). We are ready to omplete the proof.Proof of Theorem 4.1, (ii) ) (iii). By the Killing form, we identify g� with g.Then the projetion prg!g� : g� ! (g� )� is given as the map pr� : g ! g� (see(4.1)). Further, p? = f� 2 g� : �jp� 0g is isomorphi to the nilpotent radial uof the paraboli subalgebra p.We take a generalized Verma module X := Mgp(�) with generi parameter� 2 �+(l) (f. (2.2)). Then it follows from Lemma 4.9 that Vg(X) = u. Therefore,if the restrition X jg� is disretely deomposable, then pr� (u) onsists of nilpotentelements by Lemma 4.10. In turn, G�P is losed in G owing to Proposition 4.7.Thus, the proof of Theorem 4.1 is ompleted.4.5. Assoiated varieties of irreduible summandsWe retain the previous notation: p is a paraboli subalgebra of a omplex semisim-ple Lie algebra g, and � an involutive automorphism of g. In this subsetion, wegive an expliit formula for the assoiated variety Vg�(Y ) and the Gelfand{Kirillovdimension DIM(Y ) of irreduible summands Y .



16 TOSHIYUKI KOBAYASHITheorem 4.12. Suppose (g; g� ; p) satis�es one of (hene, all of) the equivalentonditions in Theorem 4.1. Let X =Mgp(�) be a simple generalized Verma module,and Y a simple g0-module suh that Homg0(Y;X jg0) 6= f0g: Then,Vg�(Y ) = pr� (u) and DIM(Y ) = dim g�=p� :Proof of Theorem 4.12. The nilradial of the paraboli subalgebra p� is given bypr� (u) in Proposition 4.8. Hene, via the isomorphism g� ' g, the inlusive relation(4.3) is written as pr� (Vg(X)) � Vg�(Y ) � pr� (u): (4.4)Sine Vg(X) = u, the three terms in (4.4) must be the same, and thereforeVg�(Y ) = pr� (u).The Gelfand{Kirillov dimension DIM(Y ) is given by the dimension of the as-soiated variety Vg�(Y ), and thus we have DIM(Y ) = dimpr� (u), whih equalsdim p� � dim l� = dim g� � dim p� by Proposition 4.8.Remark 4.13. There are �nitely many G� -orbits on the generalized ag varietyG=P by [11℄. Among them, suppose G�yjP (j = 1; 2; � � � ; k) are losed in G.Correspondingly we realize g� as a subalgebra of g by�j : g� ,! g; Z 7! Ad(yj)�1(Z):Then (g; �j(g� )) form symmetri pairs de�ned by the involutions �j := Ad(y�1j )Æ� ÆAd(yj) 2 Aut(g): Theorem 4.1 implies that the restritions X j�j(g�) are disretelydeomposable for any X 2 Op and for any j (j = 1; : : : ; k). Obviously, the Liealgebras �j(g� ) are isomorphi to eah other, but dim(p \ �j(g� )) may di�er. A-ordingly, the Gelfand{Kirillov dimension of simple summands in the restritionsX j�j(g�) depends on j. See Examples 4.14 and 4.15 below.Example 4.14 (Ap+q�1 # Ap�1 �Aq�1). Let p; q � 2, g = slp+q(C ), p its parabolisubalgebra whose nilradial is the Heisenberg Lie algebra of dimension 2(p+q)�3,and g0 = s(glp(C ) � glq(C )). Then, there are four injetive homomorphisms�j : g0 ! g (1 � j � 4) suh that eah �j indues losed G0-orbits on G=P and that�j(g0) is not onjugate to eah other by an element of P , the paraboli subgroupwith Lie algebra p.The following diagram for p = q = 2 shows how the 21 orbits of G0 on the fullag variety B ' G=B (see Figure 4.1) are sent to G0nG=P under the quotientmap G0nG=B ! G0nG=Pindued from the inlusion B � P . In partiular, there are 4 losed G0-orbits onG=P among 10 orbits.
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� � � � � �� � � � � �� � � � �� � ��G0nG=B#� � � ��1 �2 �3 �4

� � � ���G0nG=PFigure 4.2For general p; q � 2, the number of losed G0-orbits on G=P remains to be four.Let �j 2 Aut(g) (j = 1; 2; 3; 4) be de�ned as in Remark 4.13. It turns out thatp is �j-ompatible for all j. Further, by applying Theorem 4.12, we see that theGelfand{Kirillov dimension is given byDIM(Y ) =8><>:p+ q � 2 (j = 2; 3)2p� 3 (j = 1)2q � 3 (j = 4)for any simple g0-module Y and for any simple generalized Verma module X =Mgp(�) suh that Homg0(Y;X j�j(g0)) 6= 0. By using Corollary 3.12, we an �nd thebranhing laws of the restrition Mgp(�)j�j (g0) for generi �. They are multipliity-free for any j = 1; 2; 3; 4.Example 4.15 (Cn # An). Let g be the omplex sympleti Lie algebra spn(C )of rank n, p the Siegel paraboli subalgebra, and g0 = gln(C ). Then there are(n + 1) injetive homomorphisms �j : g0 ! g (0 � j � n) suh that �j(g0) is not



18 TOSHIYUKI KOBAYASHIonjugate to eah other under the Siegel paraboli subgroup eah �j indues losedGLn(C )-orbits on Sp(n; C )=P and thatDIM(Y ) = j(n� j)for any simple g0-module if Y ours in the restrition X j�j(g0) where X is anysimple generalized Verma module Mgp(�).Sketh of the proof. We take �j so that gR ' sp(n;R) and gR\ �j(g0) ' u(j; n� j)where the spei� real form gR will be explained in Subsetion 5.1.4.6. Finite multipliity theoremThe multipliities in branhing laws behave muh mildly in the BGG ategory Othan those in the ontext of unitary representations (see Example 4.18 below).Here is a �nite multipliity theorem in the ategory O.Theorem 4.16 (�nite multipliity theorem). Let � be an involutive automor-phism of a omplex semisimple Lie algebra g, and b a �-stable Borel subalgebra ofg. Then dimHomg�(Y;X jg�) <1 (4.5)for any simple g-module X in the ategory O � Ob and any simple g� -module Y .Proof of Theorem 4.16. Let Y be any simple g� -module. We apply Theorem 3.10to the g� -ompatible Borel subalgebra b, and onlude that the multipliities of Yourring as subquotients of the restrition of any Verma moduleMgb(�) are �nite.Sine any simple g-module X 2 O is obtained as the subquotient of some Vermamodule, (4.5) follows.Remark 4.17. We reall that Theorem 3.10 ounts the multipliities in the sub-quotients. Therefore, the multipliities of Y ourring in the restrition X jg� assubquotients are also �nite.Theorem 4.16 should be ompared with the fat that the multipliities areoften in�nite in the branhing laws of the restrition of an irreduible unitaryrepresentation with respet to a semisimple symmetri pair (see [8℄):Example 4.18. Consider a semisimple symmetri pair(G;G0) = (SO(5; C ); SO(3; 2)):Then there exists an irreduible unitary representation � of G and two irreduibleunitary representations Y1 and Y2 of the subgroup G0 satisfying the following threeonditions:(1) 0 < dimHomG0(Y1; �jG0) <1.(2) dimHomG0(Y2; �jG0) =1.(3) DIM(Y1) = 3, DIM(Y2) = 4.Here, HomG0(�; �) denotes the spae of ontinuous G0-intertwining operators, andDIM(Y ) stands for the Gelfand{Kirillov dimension of the underlying (g0;K 0)-module of the unitary representation Y of G0.



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 195. Multipliity-free branhing lawsIn this setion we prove two multipliity-free theorems for the restrition ofgeneralized Verma modules with respet to symmetri pairs (g; g0):� p is speial and (g; g0) is general (Theorem 5.1),� p is general and (g; g0) is speial (Theorem 5.4).Correspondingly, expliit branhing laws are also derived (Theorems 5.2, 5.5, 5.6,and 5.7).5.1. Paraboli subalgebra with abelian nilradialWe begin with multipliity-free branhing laws of the restrition Mgp(�)jg� withrespet to symmetri pairs (g; g� ) in the ase where p is a ertain maximal parabolisubalgebra.An abstrat feature of the results here boils down to the following:Theorem 5.1. Suppose p = l+u+ is a paraboli subalgebra suh that the nilradialu+ is abelian. Then for any involutive automorphism � suh that �p = p, thegeneralized Verma module Mgp(�) of salar type is deomposed into a multipliity-free diret sum of simple g� -modules if � 2 �+(l) is suÆiently negative, i.e.h�; �i � 0 for all � 2 �(u+).Theorem 5.1 is dedued from an expliit formula of the irreduible deomposi-tion. To give its desription, we write g = u� + l + u+ for the Gelfand{Naimarkdeomposition, and take a Cartan subalgebra j of l suh that l� ontains j� asa maximal abelian subspae (see (4.2) for notation). Let �(u��� ; j� ) be the setof weights of u��� with respet to j� . The roots � and � are said to be stronglyorthogonal if neither �+ � nor �� � is a root. We take a maximal set of stronglyorthogonal roots f�1; � � � ; �kg in �(u��� ; j� ) indutively as follows: �j is the highestroot among the elements in �(u��� ; j� ) that are strongly orthogonal to �1; � � � ; �j�1(1 � j � k � 1). The ardinality k oinides with the split rank of the semisimplesymmetri spae GR=G�R.Then we haveTheorem 5.2. Suppose that p and � are as in Theorem 5.1. Then, for anysuÆiently negative �, the generalized Verma module Mgp(�) deomposes into amultipliity-free diret sum of generalized Verma modules of g� :Mgp(�)jg� ' Ma1�����al�0a1;��� ;al2N Mg�p� (�jj� + lXj=1 aj�j): (5.1)Proof of Theorem 5.2. Suppose that p is a paraboli subalgebra suh that itsnilradial u+ is abelian. Then p is automatially a maximal paraboli subalge-bra. Further, it follows from [13℄ that there exists a real form gR of g suh thatGR=(GR\P ) is a Hermitian symmetri spae of non-ompat type, where GR is theonneted real form of G = Int(g) with Lie algebra gR. The group KR := GR \ Pis a maximal ompat subgroup of GR, and the omplexi�ation of its Lie algebragives a Levi part, denoted by l, of p.



20 TOSHIYUKI KOBAYASHILet � be the involution of g de�ned by�jl= id; �ju�+u+ = � id :Then, � stabilizes gR and p, and the restrition �jgR is a Cartan involution ofthe real semisimple Lie algebra gR. Sine � ommutes with � , �� de�nes anotherinvolution of g. We use the same symbol to denote its lift to the group G. ThenK��R = G��R \ P is a maximal ompat subgroup of G��R , and has a omplexi�edLie algebra l� . Further, G��R =(G��R \ P ) = G��R =K��R beomes also a Hermitiansymmetri spae whose holomorphi tangent spae at the origin is identi�ed withu��� . It then follows from W. Shmid [14℄ that the symmetri algebra S(u��� )deomposes into the multipliity-free sum of simple l� -modules asS(u��� ) 'MÆ2D F 0Æ;where Æ is the highest weight of F 0Æ andD := f kXj=1 aj�j : a1 � � � � � ak � 0; a1; : : : ; ak 2 Ng:Applying Corollary 3.12, we see that the identity (5.1) holds in the Grothendiekgroup of g� -modules. Finally, let us show that the restritionMgp(�)jg� deomposesas a diret sum of g� -modules as given in (5.1) if � is suÆiently negative.For this, let fGR be the universal overing group of GR, and fKR that ofKR. Thenthe generalized Verma module Mgp(�) is isomorphi to the underlying (g; fKR)-module of a highest weight representation of fGR whih is unitarizable if h�; �i � 0for any � 2 �(u+). Hene, the identity (5.1) in the Grothendiek group holds asg� -modules.Remark 5.3. As we have seen in the above proof, Theorems 5.1 and 5.2 are equiv-alent to the theorems on branhing laws of unitary highest weight representationsof a real semisimple Lie group fGR. In the latter formulation, the orrespondingresults were previously proved in [8, Theorem B℄ by a geometri method basedon reproduing kernels and `visible ations' on omplex manifolds [9℄. See also [8,Theorem 8.3℄ for expliit formulas.5.2. Multipliity-free pairsNext, we onsider multipliity-free branhing laws of the restrition Mgp(�) inthe ase where p = b (Borel subalgebra). In general, the `smaller' the parabolisubalgebra p is, the `larger' the generalized Verma moduleMgp(�) beomes. Hene,we expet that the multipliity-free property of the restrition Mgb(�)jg� in theextreme ase p = b should give the strongest onstraints on the pair (g; g� ). In thissubsetion, we determine for whih symmetri pair (g; g� ) the restritionMgb(�)jg�is still multipliity-free.Before stating a theorem, we reall from Corollary 4.2 that any simple g-modulein O ontains at least one simple g� -module if and only if G�B is losed in G, orequivalently, b is � -stable.



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 21Theorem 5.4. Let g be a omplex simple Lie algebra, and (g; g� ) a omplex sym-metri pair. Then the following three onditions are equivalent:(i) (g; g� ) is isomorphi to (sln+1(C ); gln(C )) or (son+1(C ); son(C )):(ii) For any �-stable Borel subalgebra b, the restritionMgb(�)jg� is multipliity-free as g� -modules for any generi �.(iii) The restrition Mgb(�)jg� is multipliity-free as g� -modules for some � andsome �-stable Borel subalgebra b.Proof of Theorem 5.4. (i) =) (ii). We shall give an expliit branhing law of therestrition Mgb(�) with respet to the symmetri (g; g� ) whih is isomorphi to(sln+1(C ); gln(C )) or (son+1(C ); son(C )) in Subsetions 5.3{5.5.(ii) =) (iii). Obvious.(iii) =) (i). We take a � -stable Levi deomposition b = j+n. Then, it followsfrom Theorem 3.10 thatMgb(�)jg� is multipliity-free only if S(n�� ) is multipliity-free as a j� -module. In turn, this happens only if the weights of n�� are linearlyindependent over Q, whih leads us to the following inequalitydim n�� � dim j� ;or equivalently, dim g� dim g� � rank g+ rank g� : (5.2)In view of the lassi�ation of omplex symmetri pairs (g; g� ) with g simple,the inequality (5.2) holds only if (g; g� ) is isomorphi to (sln+1(C ); gln(C )) or(son+1(C ); son(C )).In Subsetions 5.3{5.5, we shall �x a Borel subalgebra b of g and onsider B-onjugay lasses of involutions � instead of onsidering G� -onjugay lasses ofBorel subalgebras by �xing � . With this onvention, we shall use the abbreviationMg(�) for Mgb(�).5.3. Branhing laws for gln+1 # glnLet g := gln+1(C ) and g0 := gl1(C ) � gln(C ). We observe that there are (n + 1)losed GLn(C )-orbits on the full ag variety of GLn+1(C ). Correspondingly, thereare essentially n + 1 di�erent settings for disretely deomposable restritions ofthe Verma module Mg(�) to g0 by Theorems 2.1 and 4.1.In order to �x notation, let b = j + n+ be the standard Borel subalgebra ofonsisting of upper triangular matries in g, and j the Cartan subalgebra onsistingof diagonal matries. For 1 � l � n+1, we realize g0 as a subalgebra of g by letting�l(g0) be the entralizer of the matrix unit Ell. For k = (k1; � � � ; bkl; � � � ; kn+1) 2 Nn ,we set indl k := k1 + � � �+ kl�1 � kl+1 � � � � � kn+1:In what follows, � denotes the outer tensor produt representation of the diretprodut of Lie algebras.



22 TOSHIYUKI KOBAYASHITheorem 5.5 (An # An�1). Suppose �i � �j =2 Z for any distint i; j in the setf1; � � � ;bl; � � � ; n+ 1g. Then the restrition of the Verma module of g deomposesinto a multipliity-free diret sum of simple Verma modules of g0.Mgln+1(�)j�l(gl1�gln)' Mk2Nn C �l+indl k�Mgln(�1�k1; � � � ; �l�1�kl�1; �l+1+kl+1; � � � ; �n+1+kn+1):(5.3)Proof. We �x l (1 � l � n+ 1) one and for all. Let � � �l be the involution of gsuh that g� = �l(g0). With our hoie of j, we have j� = j ' C n+1 , and the set ofharaters of j� is identi�ed with C n+1 . We apply Corollary 3.12 to the j� -modulen��� : n��� = l�1Mi=1 g�ei+el � n+1Mi=l+1 g�el+ej :Extending this to the symmetri algebra S(n��� ), we have j� -isomorphism:S(n��� ) ' Mk2Nn(�k1; : : : ;�kl�1; indl k; kl+1; � � � ; kn+1):Therefore, the identity (5.3) holds in the Grothendiek group by Corollary 3.12.Sine �i � �j 62 Z for any i; j, the Verma modules appearing in the right-handside of (5.3) have distint in�nitesimal haraters. Therefore, there is no extensionamong these representations. Hene (5.3) is a diret sum deomposition.5.4. Branhing laws for so(2n+ 1) # so(2n)Let g = so2n+1(C ), g0 = so2n(C ) and G0 be the onneted subgroup of G = Int(g)with Lie algebra g0. Then there are two losed G0-orbits on the full ag varietyG=B, whih are onjugate to eah other by an element of the normalizer NG(g0).Thus it follows from Theorem 2.1 that there is essentially the unique triple (g; g0; b)satisfying the equivalent onditions of Theorem 4.1.To �x notation, we may and do assume that g0\b ontains a Cartan subalgebraj of g and that�+(g; j) =fei � ej : 1 � i < j � ng [ fei : 1 � i � ng;�+(g0; j) =fei � ej : 1 � i < j � ng:Theorem 5.6 (Bn # Dn). Suppose �i � �j =2 Z for any 1 � i < j � n.Mso2n+1(�)jso2n = Mk2NnMso2n(� � k): (5.4)



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 23Proof of Theorem 5.6. Let � be the involution of g suh that g0 = g� . ApplyingCorollary 3.12 to the j-module:S(n��� ) = S( nMi=1 g�ei) ' Mk2Nn(�k1; � � � ;�kn);we get (5.4) in the Grothendiek group. The assumption �i � �j 62 Z assuresthat every summand in (5.4) is simple. Further, there is no extension amongMso2n(�� k) beause they have a distint Z(g0)-in�nitesimal haraters.5.5. Branhing laws for so(2n+ 2) # so(2n+ 1)Let g = so2n+2(C ) and g0 = so2n+1(C ). Then there exists a unique losed G0-orbiton the full ag variety G=B. To �x notation, we suppose that our Borel subalgebrab = j+ n is de�ned by the positive system�+(g; j) = fei � ej : 1 � i < j � n+ 1g;and that j0 := j\ g0 is given by fH 2 j : en+1(H) = 0g: Then b0 := b\ g0 is a Borelsubalgebra of g0 given by a positive system�+(g0; j0) = fei � ej : 1 � i < j � ng [ fei : 1 � i � ng:Theorem 5.7 (Dn+1 # Bn). Suppose �i � �j 62 Z for any 1 � i < j � n. We set� := (�1; � � � ; �n). ThenMso2n+2(�; �n+1)jso2n+1 ' Mk2NnMso2n+1(�� k): (5.5)Proof. Let � be the de�ning involution of g0 = so2n+1(C ). Thenn��� = nMi=1 (g�ei+en+1 + g�ei�en+1)�� ;and hene we have an isomorphismS(n��� ) ' Mk2Nn(�k1; � � � ;�kn)as j0-modules. Therefore, (5.5) follows from Corollary 3.12.Referenes[1℄ C. Benson and G. Ratli�, A lassi�ation of multipliity free ations, J. Algebra,181 (1996), 152{186.[2℄ I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, A ertain ategory of g-modules,Funkional. Anal. i Prilozen, 10 (1976), 1{8.
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