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2 TOSHIYUKI KOBAYASHI1. ProgramBran
hing problems in representation theory ask how irredu
ible modules de-
ompose when restri
ted to subalgebras. In the 
ontext of the Bernstein{Gelfand{Gelfand 
ategory O of a semisimple Lie algebra g, bran
hing problems are seem-ingly simple, however, it turns out that the restri
tions behave wildly in general.For instan
e, the restri
tions X jg01 and X jg02 of a g-module X lying in O may be
ompletely di�erent even when two redu
tive subalgebras g01 and g02 are 
onjugateto ea
h other as the following observations indi
ate (see Examples 4.14, 4.15 formore details):Observation 1.1. The restri
tion X jg01 does NOT 
ontain any simple g01-module,whereas X jg02 de
omposes into an algebrai
 dire
t sum of simple g02-modules.Observation 1.2. The Gelfand{Kirillov dimension of any simple g01-module o
-
urring in X jg01 is larger than that of any simple g02-module in X jg02.The understanding of su
h phenomena requires a pre
ise formulation of bran
h-ing problems. Among others we begin by asking what is a `well-posed' frameworkof bran
hing problems for the restri
tion X jg0 where g0 is a (generalized) redu
tivesubalgebra of g and X lies in the 
ategory O:Problem A. When does the restri
tion X jg0 
ontain a simple g0-module?Further, we raise the following problems when X jg0 
ontains simple g0-modules.Problem B. Find the `size' of simple g0-modules o

urring in X jg0.Problem C. Estimate multipli
ities of simple g0-modules o

urring in X jg0.Problem D. Find bran
hing laws, in parti
ular, for multipli
ity-free 
ases.Let us explain brie
y our main results. We write B for the full 
ag variety ofg, and G0 for the set of 
onjuga
y 
lasses of g0 under the group G := Int(g) ofinner automorphisms. Then the `framework' of the restri
tion X jh for X 2 O andh 2 G0 is des
ribed by means of the quotient spa
e Gn(B�G0) under the diagonala
tion of G. More generally, we formulate a proper framework to dis
uss ProblemsA to D in Theorem 2.1 in the paraboli
 BGG 
ategory Op (see Subse
tion 2.1)for an arbitrary paraboli
 subalgebra p of g. After dis
ussing basi
 results inthis framework in the generality that g0 is an arbitrary redu
tive subalgebra ing, we highlight the 
ase where (g; g0) is a symmetri
 pair to get �ner results,keeping di�erential geometri
 appli
ations in mind. It in
ludes the `group 
ase'(g1� g1; diag(g1)) as a spe
ial example, for whi
h the bran
hing laws des
ribe thede
omposition of the tensor produ
t of two representations (e.g. fusion rules). Forsymmetri
 pairs (g; g0), the 
ardinality of G-orbits on B � G0 is �nite, and wegive a 
omplete answer to Problem A in the 
ategory Op in terms of the �nite setGn(P�G0). Namely, we prove in Theorem 4.1 that the restri
tion X jg0 
ontainssimple g0-modules for any X 2 Op if and only if (p; g0) lies in a 
losed G-orbit onP�G0.Turning to Problem B, we make use of the asso
iated varieties (see e.g. [5, 15℄)as a 
oarse measure of the `size' of g0-modules. We see that the asso
iated varietyVg0(Y ) of a simple g0-module Y o

urring in the restri
tion X jg0 is independent ofY if X is a simple g-module. The formulas of Vg0(Y ) and its dimension (Gelfand{Kirillov dimension) are derived in Theorem 4.12.



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 3Con
erning Problem C, it is notorious in the 
ategory of unitary representationsof real redu
tive groups that the multipli
ities in the bran
hing laws may be in�nitewhen restri
ted to symmetri
 pairs, see [6℄. In 
ontrast, we prove in Theorem 4.16that multipli
ities are always �nite in the bran
hing laws with respe
t to symmetri
pairs in the 
ategory O.Parti
ularly interesting bran
hing laws are multipli
ity-free 
ases where anysimple g0-module o

urs in the restri
tion X jg0 at most on
e. We give two generalmultipli
ity-free theorems with respe
t to symmetri
 pairs (g; g0) in the paraboli

ategory Op:1) p spe
ial, (g; g0) general (Theorem 5.1),2) p general, (g; g0) spe
ial (Theorem 5.4),and then �nd bran
hing laws 
orresponding to 
losed orbits in Gn(P�G0).This is the �rst arti
le of our proje
t on a systemati
 
onstru
tion of equivariantdi�erential operators in paraboli
 geometry. In subsequent papers, Theorem 4.1(a solution to Theorem A) plays a foundational role in dealing with� a 
onstru
tion of 
onformally equivariant di�erential operators in paraboli
geometry,� a generalization of the Rankin{Cohen bra
ket operators.A
tual 
al
ulations are 
arried out by using algebrai
 bran
hing formulas (Theorem5.2) together with an analyti
 ma
hinery that we 
all the `F -method' in [10℄.In Se
tion 5.1 we have studied paraboli
 subalgebras p with abelian nilpotentradi
al. The 
ase of paraboli
 subalgebras p with Heisenberg nilpotent radi
al(e.g. Example 4.14) may be thought of as a generalization of Se
tion 5.1. UsingTheorems 3.10 and 4.1, we 
an give a 
omplete 
lassi�
ation of the triples (g; p; g� )and the 
losed orbits in G�nG=P (see the framework of Theorem 2.1) with dis-
rete de
omposable and multipli
ity-free bran
hing laws. The 
al
ulation is moreinvolved, and will be reported in another paper.Partial results of this arti
le were presented at the 
onferen
e in honor of Vin-berg's 70th birthday at Bielefeld in Germany in 2007 and a series of le
tures at theWinter S
hool on Geometry and Physi
s in Ce
h Republi
 in 2010. The authoris grateful to the organizers, in parti
ular, Professors Abels and Sou�
ek, for theirwarm hospitality.Notation: N = f0; 1; 2; � � � g, N+ = f1; 2; 3; � � � g.2. Bran
hing problem of Verma modulesIn general, Verma modules may not 
ontain any simple g0-module when re-stri
ted to a redu
tive subalgebra g0. In this se
tion, we use the geometry of thedouble 
oset spa
e NG(g0)nG=P and 
larify the problem in Theorem 2.1, whi
hwill then serve as a foundational setting of bran
hing problems for the 
ategoryOp in Theorem 4.1.2.1. Generalized Verma modulesWe begin with a qui
k review of the (paraboli
) BGG 
ategory Op and �x somenotation.



4 TOSHIYUKI KOBAYASHILet g be a semisimple Lie algebra over C , and j a Cartan subalgebra. We write� � �(g; j) for the root system, g� (� 2 �) for the root spa
e, and �_ for the
oroot. We �x a positive system �+, and de�ne a Borel subalgebra b = j + nwith nilradi
al n := ��2�+g�. The BGG 
ategory O is de�ned to be the fullsub
ategory of g-modules whose obje
ts are �nitely generated g-modules X su
hthat X are j-semisimple and lo
ally n-�nite [2℄.Let p be a standard paraboli
 subalgebra, and p = l+ u its Levi de
ompositionwith j � l. We set �+(l) := �+ \ �(l; j), and de�ne n�(l) := ��2�+(l)g��.The paraboli
 BGG 
ategory Op is de�ned to be the full sub
ategory of O whoseobje
ts X are lo
ally n�(l)-�nite. Then Op is 
losed under submodules, quotients,and tensor produ
ts with �nite dimensional representations.The set of � for whi
h �jj\[l;l℄ is dominant integral is denoted by�+(l) := f� 2 j� : h�; �_i 2 N for all � 2 �+(l)g:We write F� for the �nite dimensional simple l-module with highest weight �,in
ate F� to a p-module via the proje
tion p! p=u ' l, and de�ne the generalizedVerma module by Mgp(�) �Mgp(F�) := U(g)
U(p) F�: (2.1)ThenMgp(�) 2 Op, and any simple obje
t in Op is the quotient of someMgp(�). Wesay Mgp(�) is of s
alar type if F� is one-dimensional, or equivalently, if h�; �_i = 0for all � 2 �(l).Let � be half the sum of positive roots. If � 2 �+(l) satis�esh�+ �; �_i 62 N+ for all � 2 �+ n�(l); (2.2)then Mgp(�) is simple, see [3℄.For p = b, we simply write Mg(�) for Mgb(�). We note that Ob = O byde�nition.2.2. Framework of bran
hing problemsLet g0 be a subalgebra of g, and p a paraboli
 subalgebra of g. We denote by G0and P the set of 
onjuga
y 
lasses of g0 and p, respe
tively. Let P be the paraboli
subgroup of G = Int(g) with Lie algebra p, and de�ne the normalizer of g0 asNG(g0) := fg 2 G : Ad(g)g0 = g0g:Then we have natural bije
tions: G=P ' P, G=NG(g0) ' G0, and hen
eGn(P�G0) ' NG(g0)nP ' G0=P ' NG(g0)nG=P: (2.3)Here, we let G a
t diagonally on P�G0 in the left-hand side of (2.3).Let S be the set of 
omplete representatives of the double 
oset NG(g0)nG=P ,and we write g0s := Ad(s)�1g0 for s 2 S. Then the bran
hing problem for Opwith respe
t to a subalgebra belonging to G0 is `
lassi�ed' by the double 
osetNG(g0)nG=P in the following sense:



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 5Theorem 2.1. For any X 2 Op and any h 2 G0, there exists s 2 S su
h thatX jh' eX jg0s for some eX 2 Op via a Lie algebra isomorphism between h and g0s.Proof of Theorem 2.1. Given h 2 G0, we take s 2 S and q 2 P su
h thatAd((sq)�1)g0 = h:Clearly, we have a Lie algebra isomorphism Ad(q�1) : g0s �! h.For X 2 Op, we de�ne a new g-module stru
ture on X byZ �q v := (Ad(q)�1Z) � v for Z 2 g; v 2 X:Sin
e P normalizes p, this new module, to be denoted by eX , lies in Op. Then,for any Lie subalgebra v of g, the restri
tion eXjv is isomorphi
 to the restri
tionX jAd(q)�1v via the Lie algebra isomorphism v ' Ad(q)�1v. Applying this tov := g0s, we get the following isomorphism:X jh= X jAd(q)�1 Ad(s)�1g0 ' eXjg0svia the Lie algebra isomorphism Ad(q) : h �! g0s. Theorem 2.1 is thus proved.Remark 2.2. If (g; g0) is a semisimple symmetri
 pair (see Subse
tion 4.1), then Sis a �nite set (Matsuki [11℄).3. Dis
retely de
omposable bran
hing lawsIn this se
tion, we bring the 
on
ept of `dis
retely de
omposable restri
tions' tothe bran
hing problem for the BGG 
ategory Op, and prove that the restri
tionX jg0 
ontains simple g0-modules for X 2 Op if p lies in a 
losed G0-orbit onthe generalized 
ag variety P. In parti
ular, it is the 
ase if p is g0-
ompatible(De�nition 3.7). Under this assumption the 
hara
ter identities are derived for therestri
tion X jg0 (Theorem 3.10).3.1. Dis
retely de
omposable modules OSuppose that g is a redu
tive Lie algebra.De�nition 3.1. We say a g-module X is dis
retely de
omposable if there is an in-
reasing �ltration fXmg of g-submodules of �nite length su
h that X = S1m=0Xm.Further, we say X is dis
retely de
omposable in the 
ategory Op if all Xm 
an betaken from Op.Here are obvious examples:Example 3.2. 1) Any g-module of �nite length is dis
retely de
omposable.2) (
ompletely redu
ible 
ase). An algebrai
 dire
t sum of 
ountably many simpleg-modules is dis
retely de
omposable.



6 TOSHIYUKI KOBAYASHIRemark 3.3. The 
on
ept of dis
retely de
omposable g-modules was originally in-trodu
ed in the 
ontext of (g;K)-modules in [7, De�nition 1.1℄ as an algebrai
analogue of unitary representations whose irredu
ible de
ompositions have no `
on-tinuous spe
trum'. Then the main issue of [6, 7℄ was to �nd a 
riterion for thedis
rete de
omposability of the restri
tion of (g;K)-modules. We note that dis-
rete de
omposability in the generality of De�nition 3.1 does not imply 
ompleteredu
ibility.Suppose g0 is a redu
tive subalgebra, and p0 its paraboli
 subalgebra.Lemma 3.4. Let X be a simple g-module. Then the restri
tion X jg0 is dis
retelyde
omposable in the 
ategory Op0 if and only if there exists a g0-module Y 2 Op0su
h that Homg0(Y;X jg0) 6= f0g: In this 
ase, any subquotient o

urring in theg0-module X jg0 lies in Op0.Proof. Suppose Homg0(Y;X jg0) 6= 0 for some Y 2 Op0. Taking the subquotientof Y if ne
essary, we may assume Y is a simple g0-module. Let � : Y ! X bean inje
tive g0-homomorphism. For m 2 N, we denote by Ym the image of thefollowing g0-homomorphism:g
 � � � 
 g| {z }m 
Y ! X; (H1 
 � � � 
Hm)
 v 7! H1 � � �Hm �(v):Then X = S1m=0 Ym be
ause X is simple. Moreover Ym 2 Op0 be
ause Op0 is
losed under quotients and tensor produ
ts with �nite dimensional representations.Hen
e, the restri
tion X jg0 is dis
retely de
omposable in Op0. Conversely, the`only if' part is obvious be
ause Op0 is 
losed under submodules. Finally, anysubquotient of Ym lies in Op0, when
e the last statement. Thus Lemma 3.4 isproved.3.2. Dis
retely de
omposable restri
tions for OpLet G = Int(g), P the paraboli
 subgroup of G with Lie algebra p as before, andG0 a redu
tive subgroup with Lie algebra g0. We ask when the restri
tion X jg0 ofX 2 Op is dis
retely de
omposable in the sense of De�nition 3.1.Proposition 3.5. If G0P is 
losed in G then the restri
tion X jg0 is dis
retelyde
omposable for any simple g-module X in Op.Proof. We set P 0 := G0 \ P . Suppose G0P is 
losed in G. Then G0=P 0 is 
losed inthe generalized 
ag variety G=P , and hen
e is 
ompa
t. Therefore, the Lie algebrap0 := g0 \ p of P 0 must be a paraboli
 subalgebra of g0.LetX be a simple obje
t in Op. Then X is obtained as the quotient of some gen-eralized Verma module, that is, there exists � 2 �+(l) su
h that the 
ompositionmap F� ,! U(g)
U(p) F� � Xis non-trivial. Therefore, we get a non-zero g0-homomorphismU(g0)
U(p0) (F�jp0)! X: (3.1)Sin
e the g0-module U(g0)
U(p0)(F�jp0) lies in Op0, the restri
tionX jg0 is dis
retelyde
omposable in the 
ategory Op0 owing to Lemma 3.4.



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 7The 
onverse statement of Proposition 3.5 will be proved in Theorem 4.1 underthe assumption that (g; g0) is a semisimple symmetri
 pair.The assumption of Proposition 3.5 �ts well into the framework of Theorem 2.1.To see this, we make the following (easy) observation:Lemma 3.6. Retain the notation as in Subse
tion 2.2. Then the following 
ondi-tions on the triple (g; g0; p) are equivalent:(i) The G0-orbit through p 2 P is 
losed.(ii) G0P is 
losed in G.Clearly these 
onditions are invariant under the 
onjugation of p by an elementof the group NG(g0), and hen
e they are determined by the equivalen
e 
lasses inNG(g0)nG=P ' Gn(P�G0) (see (2.3)) 
ontaining (p; g0) 2 P�G0.3.3. g0-
ompatible paraboli
 subalgebra pThis subse
tion dis
usses a suÆ
ient 
ondition for the 
losedness of G0P in G.A semisimple element H 2 g is said to be hyperboli
 if the eigenvalues of ad(H)are all real. For a hyperboli
 element H , we de�ne the subalgebrasu+ � u+(H); l � l(H); and u� � u�(H)as the sum of the eigenspa
es with positive, zero, and negative eigenvalues, respe
-tively. Then p(H) := l(H) + u+(H) (3.2)is a Levi de
omposition of a paraboli
 subalgebra of g.Let g0 be a redu
tive subalgebra of g, and p a paraboli
 subalgebra of g.De�nition 3.7. We say p is g0-
ompatible if there exists a hyperboli
 element Hin g0 su
h that p = p(H).If p = l+ u+ is g0-
ompatible, then p0 := p\ g0 be
omes a paraboli
 subalgebraof g0 with Levi de
ompositionp0 = l0 + u0+ := (l \ g0) + (u+ \ g0):Then, using the notation of Subse
tion 3.2, we see that G0=P 0 = G0=G0\P be
omesa generalized 
ag variety, and therefore is 
losed in G=P . Hen
e, we get thefollowing proposition from Proposition 3.5:Proposition 3.8. If p is g0-
ompatible, then G0P is 
losed in G and the restri
-tion X jg0 is dis
retely de
omposable for any X 2 Op.The 
onverse statement holds when p is a Borel subalgebra (Corollary 4.2), butdoes not always hold for a general paraboli
 subalgebra. Theorem 4.1 below showsthat the following example gives a 
ounterexample to the 
onverse statement ofProposition 3.8.Example 3.9. Let g = g1 � g1, and g0 := diag(g1) � f(Z;Z) : Z 2 g1g. Then aparaboli
 subalgebra p of g is g0-
ompatible if and only if p is of the form p1 � p1for some paraboli
 subalgebra p1 of g1.On the other hand, G0P is 
losed in G = G1 � G1 if and only if p is of theform p1� p2 for some paraboli
 subalgebras p1 and p2 
ontaining a 
ommon Borelsubalgebra.



8 TOSHIYUKI KOBAYASHI3.4. Chara
ter identitiesIn this subse
tion, we prove the 
hara
ter identities of the restri
tion of gener-alized Verma modules to a redu
tive subalgebra g0 assuming that the paraboli
subalgebras p is g0-
ompatible.Let p = l+ u+ be a g0-
ompatible paraboli
 subalgebra of g de�ned by a hyper-boli
 element H 2 g0. We take a Cartan subalgebra j0 of g0 su
h that H 2 j0, andextend it to a Cartan subalgebra j of g. Clearly, j � l and j0 � l0.We re
all that F� denotes the �nite dimensional, simple module of l with highestweight � 2 �+(l). Likewise, let F 0Æ denote that of l0 for Æ 2 �+(l0).Given a ve
tor spa
e V we denote by S(V ) =L1k=0 Sk(V ) the symmetri
 tensoralgebra over V . We extend the adjoint a
tion of l0 on u�=u�\g0 to S(u�=u�\g0).We set m(Æ;�) := dimHoml0(F 0Æ ; F�jl0 
 S(u�=u� \ g0)): (3.3)Theorem 3.10. Suppose that p = l + u+ is a g0-
ompatible paraboli
 subalgebraof g, and � 2 �+(l).1) m(Æ;�) <1 for all Æ 2 �+(l0).2) In the Grothendie
k group of Op0, we have the following isomorphism:Mgp(�)jg0 ' MÆ2�+(l0)m(Æ;�)Mg0p0 (Æ): (3.4)Proof. Let H 2 g0 be the hyperboli
 element de�ning the paraboli
 subalgebra p.We denote by g00 the orthogonal 
omplementary subspa
e of g0 in g with respe
tto the Killing form. Sin
e ad(H) preserves the de
omposition g = g0�g00, the sumu� of negative eigenspa
es of ad(H) de
omposes asu� = u0� � u00� := (u� \ g0)� (u� \ g00): (3.5)This is a de
omposition of l0-modules, and hen
e, we have an l0-module isomor-phism S(u00�) ' S(u�=u� \ g0).1) Let a(> 0) be the minimum of the eigenvalues of � ad(H) on u00�. Sin
e H 2 l0,we have Homl0(F 0Æ ; F� 
 Sk(u00�)) = 0for all k su
h that k > 1a(�(H) � Æ(H)). In view of (3.3), we get m(Æ;�) <1.2) The formal 
hara
ter of the generalized Verma module Mgp(�) is given by
h(Mgp(�)) = 
h(F�) Y�2�(u�;j)(1� e�)�1: (3.6)Let us prove that its restri
tion to j0 equals the formal 
hara
ter of the right-hand side of (3.4). For this, we observe that F� 
 S(u00�) is a semisimple l0-module, and therefore, it de
omposes into the dire
t sum of simple l0-modulesLÆ2�+(l0)m(Æ;�)F 0Æ ; where m(Æ; �) is de�ned in (3.3). Turning to their formal
hara
ters, we get
h(F�)jj0 Y�2�(u00�;j0)(1� e�)�1 = XÆ2�+(l0)m(Æ;�) 
h(F 0Æ): (3.7)



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 9Writing the multiset �(u�; j)jj0 as a disjoint union �(u00�; j0) q �(u0�; j0); we getfrom (3.6) and (3.7)
h(Mgp(�))jj0 =
h(F�)jj0 Y�2�(u00�;j0)(1� e�)�1 Y�2�(u0�;j0)(1� e�)�1=XÆ m(Æ;�) 
h(F 0Æ) Y�2�(u0�;j0)(1� e�)�1=XÆ m(Æ;�) 
h(Mg0p0 (Æ)):Hen
e (3.4) holds in the Grothendie
k group of Op0.3.5. Multipli
ity-free restri
tionRetain the setting of the previous subse
tion. In parti
ular, we suppose thatp = l + u+ is a g0-
ompatible paraboli
 subalgebra of g. We will see in thissubse
tion that the 
hara
ter identity in Theorem 3.10 leads us to multipli
ity-freebran
hing laws for generalized Verma modules when the l0-module S(u�=u� \ g0)is multipli
ity-free.De�nition 3.11. We say that a g-module V is a multipli
ity-free spa
e if theindu
ed g-module on the symmetri
 algebra S(V ) is a multipli
ity-free represen-tation.Multipli
ity-free spa
es for redu
tive Lie algebras were 
lassi�ed by V. Ka
in the irredu
ible 
ase, and by Benson{Rat
li� and Leahy independently in theredu
ible 
ase (see [1℄).The following Corollary is an immediate 
onsequen
e of Theorem 3.10:Corollary 3.12. Assume that u�=u� \ g0 is an l0-multipli
ity-free spa
e. We de-note by D the support of simple l0-modules o

urring in S(u�=u� \ g0), namely,S(u�=u� \ g0) 'LÆ2D F 0Æ. Then any generalized Verma module Mgp(�) of s
alartype de
omposes into a multipli
ity-free sum of generalized Verma modules for g0in the Grothendie
k group of Op0 as follows:Mgp(�)jg0 'MÆ2DMg0p0 (�jj0 + Æ): (3.8)Remark 3.13. For a `generi
' �, the formula (3.8) be
omes a multipli
ity-free dire
tsum of simple g0-modules. For instan
e, there is no extension among the modulesMg0p0 (�jj0 + Æ) (Æ 2 D) if they have distin
t Z(g0)-in�nitesimal 
hara
ters (e.g.Theorems 5.5, 5.6 and 5.7) or if Mgp(�) has an invariant Hermitian inner produ
twith respe
t to a 
ertain real form of g0 (e.g. Theorem 5.1). See Se
tion 5 fordetails. 4. Bran
hing problems for symmetri
 pairsThe de
omposition of the tensor produ
t of two representations is an exampleof bran
hing laws with respe
t to a spe
ial 
ase of symmetri
 pairs, namely, thepair g1�g1 # diag(g1). In this se
tion, we dis
uss Problems A to D for semisimplesymmetri
 pairs.



10 TOSHIYUKI KOBAYASHI4.1. Criterion for dis
retely de
omposable restri
tionLet � be an involutive automorphism of a semisimple Lie algebra g, and we denotethe �xed point subalgebra byg� := fZ 2 g : �Z = Zg:The pair (g; g� ) is 
alled a semisimple symmetri
 pair. Typi
al examples are thepairs (g1�g1; diag(g1)) (g1: semisimple Lie algebra), (sln; son), and (slp+q ; s(glp+glq)).We lift � to an automorphism of the group G = Int(g) of inner automorphisms,and set G� := fg 2 G : �g = gg. Then G� is a redu
tive subgroup of G with Liealgebra g� .Let p be a paraboli
 subalgebra of g, and X a g-module lying in Op. ProblemA asks when the restri
tion X jg� 
ontains simple g� -modules. We give its ne
es-sary and suÆ
ient 
ondition by the geometry of the generalized 
ag variety G=Passo
iated to the paraboli
 subalgebra p:Theorem 4.1. Let g be a 
omplex semisimple Lie algebra, � an involutive auto-morphism of g, and p a paraboli
 subalgebra. Then the following three 
onditionson the triple (g; g� ; p) are equivalent:(i) For any simple g-module X in Op, the restri
tion X jg� 
ontains at leastone simple g� -module.(ii) For any simple g-module X in Op, the restri
tion X jg� is dis
retely de-
omposable as a g� -module in the sense of De�nition 3.1.(iii) G�P is 
losed in G.If one of (hen
e all of) the above three 
onditions is ful�lled then p� := p \ g�is a paraboli
 subalgebra of g� , and any irredu
ible subquotient o

urring in therestri
tion X jg� belongs to the 
ategory Op�.In Proposition 4.7, the geometri
 
ondition (iii) in Theorem 4.1 will be refor-malised as an algebrai
 
ondition.Strategy of Proof of Theorem 4.1: We have already seen the equivalen
e (i)() (ii) in Lemma 3.4 and the impli
ation (iii) =) (ii) in Proposition 3.5 in a moregeneral setting, i.e. without assuming that (g; g0) is a symmetri
 pair. The non-trivial part is the impli
ation (ii) =) (iii), whi
h will be proved in Subse
tion 4.4after we establish some stru
tural results on 
losed G� -orbit in G=P (Subse
tion4.2).We end this subse
tion with two very spe
ial 
ases of Theorem 4.1, namely, forp = b (Borel) and for the pair (g� g; diag g):Corollary 4.2. Let O be the BGG 
ategory asso
iated to a Borel subalgebra b,and � an involutive automorphism of g. Then the following four 
onditions on(�; b) are equivalent:(i) Any simple g-module in O 
ontains at least one simple g� -module when re-stri
ted to g� .(ii) Any simple g-module in O is dis
retely de
omposable as a g� -module in thesense of De�nition 3.1.



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 11(iii) G�B is 
losed in G(iv) �b = b.Proof. We shall see in Lemma 4.6 that G�B is 
losed in G if and only if �b = b.Hen
e, Corollary follows from Theorem 4.1.Example 4.3. Let (g; g0) = (sl4(C ); s(gl2(C ) � gl2(C ))). Then there are 21 orbitsof the subgroup S(GL(2; C )�GL(2; C )) on the full 
ag variety B of SL(4; C ), and6 (= 4!=2!2!) 
losed orbits among them. In the following diagram, verti
es standfor 21 orbits on B, and edges generate their 
losure relations.� � � � � �� � � � � �� � � � �� � ��

losed
openFigure 4.1Correspondingly, for a �xed Borel subalgebra b of g there are 6 inje
tive homomor-phisms �j : g0 ! g (1 � j � 6) su
h that any simple g-module in O is dis
retelyde
omposable when restri
ted to �j(g0) and that �j(g0) is not 
onjugate to ea
h otherby an element of the Borel subgroup.Corollary 4.4. Let p1, p2 be two paraboli
 subalgebras of a 
omplex semisimpleLie algebra g. Then the following three 
onditions on (p1; p2) are equivalent:(i) For any simple g-module X1 in Op1 and X2 in Op2, the tensor produ
t rep-resentation X1 
X2 
ontains at least one simple g-module.(ii) For any simple g-module X1 in Op1 and X2 in Op2, the tensor produ
t rep-resentation X1 
X2 is dis
retely de
omposable as a g-module.(iii) p1 \ p2 is a paraboli
 subalgebra.Proof. Let P1 and P2 be the paraboli
 subgroups of G = Int(g) with Lie algebrasp1 and p2, respe
tively. Then the diagonal G-orbit on (G�G)=(P1 �P2) throughthe origin is given as G=(P1\P2), whi
h is 
losed if and only if p1\p2 is a paraboli
algebra of g. Hen
e, Corollary is dedu
ed from Theorem 4.1.4.2. Criterion for 
losed G� -orbit on G=PAs a preparation for the proof of Theorem 4.1, we establish some stru
tural resultsfor 
losedG� -orbits on the generalized 
ag varietyG=P in this subse
tion. We notethat the 
losedness 
ondition for G� -orbits on G=P is mu
h more 
ompli
ated thanthat for the full 
ag variety G=B (
f. Lemma 4.6 below). The author is grateful toT. Matsuki for helpful dis
ussions, in parti
ular, for the proof of Proposition 4.7.Let g be a 
omplex semisimple Lie algebra, G = Int(g), and � an involutiveautomorphism of g as before. We begin with:



12 TOSHIYUKI KOBAYASHILemma 4.5.1) Let � be a Cartan involution of g 
ommuting with � . For any paraboli
subalgebra p, there exist h 2 G� and a Cartan subalgebra j su
h that � j =�j = j and j � Ad(h)p. In parti
ular, any paraboli
 subalgebra 
ontains a�-stable Cartan subalgebra.2) A paraboli
 subalgebra is �-stable if and only if it is g� -
ompatible (seeDe�nition 3.7).Proof. 1) This assertion holds for any Borel subalgebra of g ([11, Theorem 1℄).Hen
e, it holds also for any paraboli
 subalgebra.2) Suppose p is a � -stable paraboli
 subalgebra. Take a � -stable Cartan subalgebraj 
ontained in p. Then there exists H 2 j su
h thatp = M�2�(g;j)�(H)�0 g�:Sin
e �p = p, �(H) � 0 if and only if �(�H) � 0, whi
h is then equivalent to�(H + �H) � 0. Therefore, the paraboli
 subalgebra p equals p(H + �H) withthe notation (3.2), and thus it is g� -
ompatible. Conversely, any g� -
ompatibleparaboli
 subalgebra is obviously � -stable.We then dedu
e a simple 
hara
terization of 
losed G� -orbits on the full 
agvariety G=B from [11, Proposition 2℄ 
ombined with Lemma 4.5 2):Lemma 4.6. The following three 
onditions on � and a Borel subalgebra b areequivalent:(i) G�B is 
losed in G.(ii) �b = b.(iii) b is g� -
ompatible.Unfortunately, su
h a simple statement does not hold for a general paraboli
subalgebra p. In fa
t, the 
ondition �p = p is stronger than the 
losedness of G�P(see Example 3.9). In order to give the right 
hara
terization for the 
losedness ofG�P , we let pr� : g! g� be the proje
tion de�ned bypr� (Z) := 12(Z + �Z): (4.1)For a subspa
e V in g, we de�ne the �1 eigenspa
es of � byV �� := fv 2 V : �v = �vg: (4.2)Note that pr� (V ) = V � if V is � -stable.Proposition 4.7. Suppose p is a paraboli
 subalgebra with nilradi
al u, and � isan involutive automorphism of g. Then, the following three 
onditions on thetriple (g; g� ; p) are equivalent:
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losed in G.(ii) pr� (u) is a nilpotent Lie algebra.(iii) pr� (u) 
onsists of nilpotent elements.We note that the paraboli
 subalgebra p may not be � -stable in Proposition4.7. The idea of the following proof goes ba
k to [12℄, whi
h is to use a � -stableBorel subalgebra 
ontained in p when p itself is not � -stable.Proof. We take a Borel subalgebra b � p su
h that G�B is relatively 
losed inG�P . This is possible be
ause G�nG=B is a �nite set.(i) =) (ii) Suppose G�P is 
losed in G. Then G�B is also 
losed in G. Owingto Lemma 4.6, b is � -stable, and therefore, so is the nilradi
al n of b. Thus,pr� (n) = n� . Sin
e u � n, we get pr� (u) � pr� (n) = n� .For X;Y 2 g, a simple 
omputation shows2[pr� (X); pr� (Y )℄ = pr� ([X;Y ℄) + pr� ([X; �Y ℄):If X;Y 2 u, then [X;Y ℄ 2 u and [X; �Y ℄ 2 [u; n℄ � u. Hen
e pr� (u) is a Liesubalgebra. Sin
e pr� (u) is 
ontained in n� , we 
on
lude that pr� (u) is a nilpotentLie algebra. Thus, (i) =) (ii) is proved.(ii) =) (iii). Obvious.(iii) =) (i). Sin
e the 
onditions (i) and (iii) remain the same if we repla
e pby Ad(h)(p) for some h 2 G� , we may and do assume that p 
ontains a Cartansubalgebra j su
h that � j = �j = j by Lemma 4.5. Then �� = �� for any� 2 �(g; j).Suppose G�P is not 
losed in G. By the Matsuki duality [11℄, we see that G��Pis not open in G. Therefore, there exists � 2 �(u; j) su
h that g�� 6� g�� + p.Take a non-zero X�� 2 g��. In view thatX�� = (X�� + ��X��)� ��X�� 2 g�� + g��;we see g�� 6� p be
ause otherwise X�� would be 
ontained in g�� + p. Hen
e,g��� � u and �� 6= �.Take a non-zero X� 2 g� and we set X := X� + ��X� 2 g� + g��� � u.Case 1. Suppose X 6= 0. Let Y := pr� (X). Clearly, �Y = Y . Moreover, Y 6= 0be
ause �� 6= �. This means that pr� (u) 
ontains a non-zero semisimpleelement.Case 2. Suppose X = 0. Let Y := X� + �X� = X� � �X�. Then Y 6= 0 and�Y = �Y . Again, this means that pr� (u) 
ontains a non-zero semisimpleelement.Thus we have proved the 
ontraposition, \not (i) =) not (iii)". Hen
e the proofof Proposition has been 
ompleted.The nilradi
al of the Lie algebra p� is given expli
itly as follows:Proposition 4.8. Under the equivalent 
onditions (i)-(iii) in Proposition 4.7, p�is a paraboli
 subalgebra of g� having the following Levi de
omposition:p� = l� + pr� (u):



14 TOSHIYUKI KOBAYASHIProof of Proposition 4.8. We take a Borel subalgebra b � p su
h that G�B is
losed, and a � -stable Cartan subalgebra j 
ontained in b as in the proof of Propo-sition 4.7.Given a j-stable subspa
e V =L�2�(V ) g� in g, we denote by �(V ) the multisetof j-weights. (Here we note that the multipli
ity of the zero weight in V may belarger than one.) We divide �(V ) into the disjoint union�(V ) = �(V )I q�(V )II q�(V )III;subje
t to the 
ondition (I) �� = � and � jg� = id, (II) �� = � and � jg� = � id,and (III) �� 6= �. A

ordingly, we have a dire
t sum as ve
tor spa
es:V � = M�2�(V )I g� � M�;��2�(V )III(g� + g��)� ;pr� (V ) = M�2�(V )I g� � M�2�(V )III(g� + g��)� :In parti
ular, we getp� = M�2�(p)Ig� � M�;��2�(p)III(g� + g��)�= M�2�(l)Ig� � M�;��2�(l)III(g� + g��)� � M�2�(u)Ig� � M�;��2�(u)III(g� + g��)�=l� � pr� (u):Here we have used �u � p in the se
ond equality. Thus Proposition 4.8 is proved.4.3. Appli
ation of asso
iated varieties to restri
tionsIn this subse
tion, we apply asso
iated varieties of g-models to the study of bran
h-ing problems.Suppose X is a �nitely generated g-module. We take a �nite dimensional sub-spa
e X0 whi
h generates X as a g-module. Let U(g) = [k�0Uk(g) be a natural�ltration of the enveloping algebra of g. Then, Xk := Uk(g)X0 (k 2 N) gives a�ltration fXkgk satisfyingX = 1[k=0Xk; Ui(g)Xj = Xi+j (i; j � 0):Then, grX :=L1k=0Xk=Xk�1 is a �nitely generated module of the 
ommutativealgebra grU(g) ' S(g). The asso
iated variety of the g-module X is a 
losedsubset Vg(X) of g� de�ned byVg(X) := SuppS(g)(grX):Then Vg(X) is independent of the 
hoi
e of the generating subspa
e X0. We re
allthe following basi
 properties:



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 15Lemma 4.9 ([5, Chapter 17℄). 1) If 0 �! X1 �! X �! X2 �! 0 is anexa
t sequen
e of g-modules, we have Vg(X) = Vg(X1) [ Vg(X2).2) For any �nite dimensional p-module F , Vg(U(g)
U(p) F ) = p?.Let g0 be a redu
tive subalgebra in g, and prg!g0 : g� ! g0� the restri
tion map.We set p0 := g0 \ p and p0? := f� 2 (g0)� : �jp0 � 0g:Lemma 4.10. Let X be a simple g-module lying in Op, and g0 a redu
tive subal-gebra in g.1) If Y is a simple g0-module su
h that Homg0(Y;X jg0) 6= f0g thenprg!g0(Vg(X)) � Vg0(Y ) � (p0)?: (4.3)2) If Yi are simple g0-modules su
h that Homg0(Yi; X jg0) 6= f0g (i = 1; 2), thenVg0(Y1) = Vg0(Y2).Proof. 1) Sin
e Op is 
losed under tensor produ
ts with �nite dimensional rep-resentations, the proof for the �rst in
lusion in (4.3) parallels to the proof of [7,Theorem 3.1℄ by using the double �ltration of X .For the se
ond in
lusion in (4.3), we use the notation of the proof of Proposition3.5 and let Y be the image of (3.1). Then it follows from Lemma 4.9 that Vg0(Y ) �Vg0(U(g0)
U(p0) (F�jp0)) = p0?:2) The proof is the same as that of [7, Theorem 3.7℄ in the 
ategory of (g;K)-modules.Remark 4.11. An analogous result to Lemma 4.10 2) was shown in [4℄ in the spe
ial
ase where X is the os
illator representation of g = sp(n;R) in the 
ontext of
ompa
t dual pair 
orresponden
e by 
ase-by-
ase 
omputations. In this 
ase,prg!g0(Vg(X)) 
oin
ides with the asso
iated variety Vg0(Y ). It is plausible thatprg!g0(Vg(X)) = Vg0(Y ) in the generality of the setting in Lemma 4.10. We shalldis
uss this assertion in Theorem 4.12 below for symmetri
 pairs (g; g� ).4.4. Proof of Theorem 4.1The equivalen
e of Theorem 4.1 has been already proved in Se
tion 4.1 ex
ept forthe impli
ation (ii) ) (iii). We are ready to 
omplete the proof.Proof of Theorem 4.1, (ii) ) (iii). By the Killing form, we identify g� with g.Then the proje
tion prg!g� : g� ! (g� )� is given as the map pr� : g ! g� (see(4.1)). Further, p? = f� 2 g� : �jp� 0g is isomorphi
 to the nilpotent radi
al uof the paraboli
 subalgebra p.We take a generalized Verma module X := Mgp(�) with generi
 parameter� 2 �+(l) (
f. (2.2)). Then it follows from Lemma 4.9 that Vg(X) = u. Therefore,if the restri
tion X jg� is dis
retely de
omposable, then pr� (u) 
onsists of nilpotentelements by Lemma 4.10. In turn, G�P is 
losed in G owing to Proposition 4.7.Thus, the proof of Theorem 4.1 is 
ompleted.4.5. Asso
iated varieties of irredu
ible summandsWe retain the previous notation: p is a paraboli
 subalgebra of a 
omplex semisim-ple Lie algebra g, and � an involutive automorphism of g. In this subse
tion, wegive an expli
it formula for the asso
iated variety Vg�(Y ) and the Gelfand{Kirillovdimension DIM(Y ) of irredu
ible summands Y .



16 TOSHIYUKI KOBAYASHITheorem 4.12. Suppose (g; g� ; p) satis�es one of (hen
e, all of) the equivalent
onditions in Theorem 4.1. Let X =Mgp(�) be a simple generalized Verma module,and Y a simple g0-module su
h that Homg0(Y;X jg0) 6= f0g: Then,Vg�(Y ) = pr� (u) and DIM(Y ) = dim g�=p� :Proof of Theorem 4.12. The nilradi
al of the paraboli
 subalgebra p� is given bypr� (u) in Proposition 4.8. Hen
e, via the isomorphism g� ' g, the in
lusive relation(4.3) is written as pr� (Vg(X)) � Vg�(Y ) � pr� (u): (4.4)Sin
e Vg(X) = u, the three terms in (4.4) must be the same, and thereforeVg�(Y ) = pr� (u).The Gelfand{Kirillov dimension DIM(Y ) is given by the dimension of the as-so
iated variety Vg�(Y ), and thus we have DIM(Y ) = dimpr� (u), whi
h equalsdim p� � dim l� = dim g� � dim p� by Proposition 4.8.Remark 4.13. There are �nitely many G� -orbits on the generalized 
ag varietyG=P by [11℄. Among them, suppose G�yjP (j = 1; 2; � � � ; k) are 
losed in G.Correspondingly we realize g� as a subalgebra of g by�j : g� ,! g; Z 7! Ad(yj)�1(Z):Then (g; �j(g� )) form symmetri
 pairs de�ned by the involutions �j := Ad(y�1j )Æ� ÆAd(yj) 2 Aut(g): Theorem 4.1 implies that the restri
tions X j�j(g�) are dis
retelyde
omposable for any X 2 Op and for any j (j = 1; : : : ; k). Obviously, the Liealgebras �j(g� ) are isomorphi
 to ea
h other, but dim(p \ �j(g� )) may di�er. A
-
ordingly, the Gelfand{Kirillov dimension of simple summands in the restri
tionsX j�j(g�) depends on j. See Examples 4.14 and 4.15 below.Example 4.14 (Ap+q�1 # Ap�1 �Aq�1). Let p; q � 2, g = slp+q(C ), p its paraboli
subalgebra whose nilradi
al is the Heisenberg Lie algebra of dimension 2(p+q)�3,and g0 = s(glp(C ) � glq(C )). Then, there are four inje
tive homomorphisms�j : g0 ! g (1 � j � 4) su
h that ea
h �j indu
es 
losed G0-orbits on G=P and that�j(g0) is not 
onjugate to ea
h other by an element of P , the paraboli
 subgroupwith Lie algebra p.The following diagram for p = q = 2 shows how the 21 orbits of G0 on the full
ag variety B ' G=B (see Figure 4.1) are sent to G0nG=P under the quotientmap G0nG=B ! G0nG=Pindu
ed from the in
lusion B � P . In parti
ular, there are 4 
losed G0-orbits onG=P among 10 orbits.
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� � � � � �� � � � � �� � � � �� � ��G0nG=B#� � � ��1 �2 �3 �4

� � � ���G0nG=PFigure 4.2For general p; q � 2, the number of 
losed G0-orbits on G=P remains to be four.Let �j 2 Aut(g) (j = 1; 2; 3; 4) be de�ned as in Remark 4.13. It turns out thatp is �j-
ompatible for all j. Further, by applying Theorem 4.12, we see that theGelfand{Kirillov dimension is given byDIM(Y ) =8><>:p+ q � 2 (j = 2; 3)2p� 3 (j = 1)2q � 3 (j = 4)for any simple g0-module Y and for any simple generalized Verma module X =Mgp(�) su
h that Homg0(Y;X j�j(g0)) 6= 0. By using Corollary 3.12, we 
an �nd thebran
hing laws of the restri
tion Mgp(�)j�j (g0) for generi
 �. They are multipli
ity-free for any j = 1; 2; 3; 4.Example 4.15 (Cn # An). Let g be the 
omplex symple
ti
 Lie algebra spn(C )of rank n, p the Siegel paraboli
 subalgebra, and g0 = gln(C ). Then there are(n + 1) inje
tive homomorphisms �j : g0 ! g (0 � j � n) su
h that �j(g0) is not
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onjugate to ea
h other under the Siegel paraboli
 subgroup ea
h �j indu
es 
losedGLn(C )-orbits on Sp(n; C )=P and thatDIM(Y ) = j(n� j)for any simple g0-module if Y o

urs in the restri
tion X j�j(g0) where X is anysimple generalized Verma module Mgp(�).Sket
h of the proof. We take �j so that gR ' sp(n;R) and gR\ �j(g0) ' u(j; n� j)where the spe
i�
 real form gR will be explained in Subse
tion 5.1.4.6. Finite multipli
ity theoremThe multipli
ities in bran
hing laws behave mu
h mildly in the BGG 
ategory Othan those in the 
ontext of unitary representations (see Example 4.18 below).Here is a �nite multipli
ity theorem in the 
ategory O.Theorem 4.16 (�nite multipli
ity theorem). Let � be an involutive automor-phism of a 
omplex semisimple Lie algebra g, and b a �-stable Borel subalgebra ofg. Then dimHomg�(Y;X jg�) <1 (4.5)for any simple g-module X in the 
ategory O � Ob and any simple g� -module Y .Proof of Theorem 4.16. Let Y be any simple g� -module. We apply Theorem 3.10to the g� -
ompatible Borel subalgebra b, and 
on
lude that the multipli
ities of Yo

urring as subquotients of the restri
tion of any Verma moduleMgb(�) are �nite.Sin
e any simple g-module X 2 O is obtained as the subquotient of some Vermamodule, (4.5) follows.Remark 4.17. We re
all that Theorem 3.10 
ounts the multipli
ities in the sub-quotients. Therefore, the multipli
ities of Y o

urring in the restri
tion X jg� assubquotients are also �nite.Theorem 4.16 should be 
ompared with the fa
t that the multipli
ities areoften in�nite in the bran
hing laws of the restri
tion of an irredu
ible unitaryrepresentation with respe
t to a semisimple symmetri
 pair (see [8℄):Example 4.18. Consider a semisimple symmetri
 pair(G;G0) = (SO(5; C ); SO(3; 2)):Then there exists an irredu
ible unitary representation � of G and two irredu
ibleunitary representations Y1 and Y2 of the subgroup G0 satisfying the following three
onditions:(1) 0 < dimHomG0(Y1; �jG0) <1.(2) dimHomG0(Y2; �jG0) =1.(3) DIM(Y1) = 3, DIM(Y2) = 4.Here, HomG0(�; �) denotes the spa
e of 
ontinuous G0-intertwining operators, andDIM(Y ) stands for the Gelfand{Kirillov dimension of the underlying (g0;K 0)-module of the unitary representation Y of G0.
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ity-free bran
hing lawsIn this se
tion we prove two multipli
ity-free theorems for the restri
tion ofgeneralized Verma modules with respe
t to symmetri
 pairs (g; g0):� p is spe
ial and (g; g0) is general (Theorem 5.1),� p is general and (g; g0) is spe
ial (Theorem 5.4).Correspondingly, expli
it bran
hing laws are also derived (Theorems 5.2, 5.5, 5.6,and 5.7).5.1. Paraboli
 subalgebra with abelian nilradi
alWe begin with multipli
ity-free bran
hing laws of the restri
tion Mgp(�)jg� withrespe
t to symmetri
 pairs (g; g� ) in the 
ase where p is a 
ertain maximal paraboli
subalgebra.An abstra
t feature of the results here boils down to the following:Theorem 5.1. Suppose p = l+u+ is a paraboli
 subalgebra su
h that the nilradi
alu+ is abelian. Then for any involutive automorphism � su
h that �p = p, thegeneralized Verma module Mgp(�) of s
alar type is de
omposed into a multipli
ity-free dire
t sum of simple g� -modules if � 2 �+(l) is suÆ
iently negative, i.e.h�; �i � 0 for all � 2 �(u+).Theorem 5.1 is dedu
ed from an expli
it formula of the irredu
ible de
omposi-tion. To give its des
ription, we write g = u� + l + u+ for the Gelfand{Naimarkde
omposition, and take a Cartan subalgebra j of l su
h that l� 
ontains j� asa maximal abelian subspa
e (see (4.2) for notation). Let �(u��� ; j� ) be the setof weights of u��� with respe
t to j� . The roots � and � are said to be stronglyorthogonal if neither �+ � nor �� � is a root. We take a maximal set of stronglyorthogonal roots f�1; � � � ; �kg in �(u��� ; j� ) indu
tively as follows: �j is the highestroot among the elements in �(u��� ; j� ) that are strongly orthogonal to �1; � � � ; �j�1(1 � j � k � 1). The 
ardinality k 
oin
ides with the split rank of the semisimplesymmetri
 spa
e GR=G�R.Then we haveTheorem 5.2. Suppose that p and � are as in Theorem 5.1. Then, for anysuÆ
iently negative �, the generalized Verma module Mgp(�) de
omposes into amultipli
ity-free dire
t sum of generalized Verma modules of g� :Mgp(�)jg� ' Ma1�����al�0a1;��� ;al2N Mg�p� (�jj� + lXj=1 aj�j): (5.1)Proof of Theorem 5.2. Suppose that p is a paraboli
 subalgebra su
h that itsnilradi
al u+ is abelian. Then p is automati
ally a maximal paraboli
 subalge-bra. Further, it follows from [13℄ that there exists a real form gR of g su
h thatGR=(GR\P ) is a Hermitian symmetri
 spa
e of non-
ompa
t type, where GR is the
onne
ted real form of G = Int(g) with Lie algebra gR. The group KR := GR \ Pis a maximal 
ompa
t subgroup of GR, and the 
omplexi�
ation of its Lie algebragives a Levi part, denoted by l, of p.



20 TOSHIYUKI KOBAYASHILet � be the involution of g de�ned by�jl= id; �ju�+u+ = � id :Then, � stabilizes gR and p, and the restri
tion �jgR is a Cartan involution ofthe real semisimple Lie algebra gR. Sin
e � 
ommutes with � , �� de�nes anotherinvolution of g. We use the same symbol to denote its lift to the group G. ThenK��R = G��R \ P is a maximal 
ompa
t subgroup of G��R , and has a 
omplexi�edLie algebra l� . Further, G��R =(G��R \ P ) = G��R =K��R be
omes also a Hermitiansymmetri
 spa
e whose holomorphi
 tangent spa
e at the origin is identi�ed withu��� . It then follows from W. S
hmid [14℄ that the symmetri
 algebra S(u��� )de
omposes into the multipli
ity-free sum of simple l� -modules asS(u��� ) 'MÆ2D F 0Æ;where Æ is the highest weight of F 0Æ andD := f kXj=1 aj�j : a1 � � � � � ak � 0; a1; : : : ; ak 2 Ng:Applying Corollary 3.12, we see that the identity (5.1) holds in the Grothendie
kgroup of g� -modules. Finally, let us show that the restri
tionMgp(�)jg� de
omposesas a dire
t sum of g� -modules as given in (5.1) if � is suÆ
iently negative.For this, let fGR be the universal 
overing group of GR, and fKR that ofKR. Thenthe generalized Verma module Mgp(�) is isomorphi
 to the underlying (g; fKR)-module of a highest weight representation of fGR whi
h is unitarizable if h�; �i � 0for any � 2 �(u+). Hen
e, the identity (5.1) in the Grothendie
k group holds asg� -modules.Remark 5.3. As we have seen in the above proof, Theorems 5.1 and 5.2 are equiv-alent to the theorems on bran
hing laws of unitary highest weight representationsof a real semisimple Lie group fGR. In the latter formulation, the 
orrespondingresults were previously proved in [8, Theorem B℄ by a geometri
 method basedon reprodu
ing kernels and `visible a
tions' on 
omplex manifolds [9℄. See also [8,Theorem 8.3℄ for expli
it formulas.5.2. Multipli
ity-free pairsNext, we 
onsider multipli
ity-free bran
hing laws of the restri
tion Mgp(�) inthe 
ase where p = b (Borel subalgebra). In general, the `smaller' the paraboli
subalgebra p is, the `larger' the generalized Verma moduleMgp(�) be
omes. Hen
e,we expe
t that the multipli
ity-free property of the restri
tion Mgb(�)jg� in theextreme 
ase p = b should give the strongest 
onstraints on the pair (g; g� ). In thissubse
tion, we determine for whi
h symmetri
 pair (g; g� ) the restri
tionMgb(�)jg�is still multipli
ity-free.Before stating a theorem, we re
all from Corollary 4.2 that any simple g-modulein O 
ontains at least one simple g� -module if and only if G�B is 
losed in G, orequivalently, b is � -stable.



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 21Theorem 5.4. Let g be a 
omplex simple Lie algebra, and (g; g� ) a 
omplex sym-metri
 pair. Then the following three 
onditions are equivalent:(i) (g; g� ) is isomorphi
 to (sln+1(C ); gln(C )) or (son+1(C ); son(C )):(ii) For any �-stable Borel subalgebra b, the restri
tionMgb(�)jg� is multipli
ity-free as g� -modules for any generi
 �.(iii) The restri
tion Mgb(�)jg� is multipli
ity-free as g� -modules for some � andsome �-stable Borel subalgebra b.Proof of Theorem 5.4. (i) =) (ii). We shall give an expli
it bran
hing law of therestri
tion Mgb(�) with respe
t to the symmetri
 (g; g� ) whi
h is isomorphi
 to(sln+1(C ); gln(C )) or (son+1(C ); son(C )) in Subse
tions 5.3{5.5.(ii) =) (iii). Obvious.(iii) =) (i). We take a � -stable Levi de
omposition b = j+n. Then, it followsfrom Theorem 3.10 thatMgb(�)jg� is multipli
ity-free only if S(n�� ) is multipli
ity-free as a j� -module. In turn, this happens only if the weights of n�� are linearlyindependent over Q, whi
h leads us to the following inequalitydim n�� � dim j� ;or equivalently, dim g� dim g� � rank g+ rank g� : (5.2)In view of the 
lassi�
ation of 
omplex symmetri
 pairs (g; g� ) with g simple,the inequality (5.2) holds only if (g; g� ) is isomorphi
 to (sln+1(C ); gln(C )) or(son+1(C ); son(C )).In Subse
tions 5.3{5.5, we shall �x a Borel subalgebra b of g and 
onsider B-
onjuga
y 
lasses of involutions � instead of 
onsidering G� -
onjuga
y 
lasses ofBorel subalgebras by �xing � . With this 
onvention, we shall use the abbreviationMg(�) for Mgb(�).5.3. Bran
hing laws for gln+1 # glnLet g := gln+1(C ) and g0 := gl1(C ) � gln(C ). We observe that there are (n + 1)
losed GLn(C )-orbits on the full 
ag variety of GLn+1(C ). Correspondingly, thereare essentially n + 1 di�erent settings for dis
retely de
omposable restri
tions ofthe Verma module Mg(�) to g0 by Theorems 2.1 and 4.1.In order to �x notation, let b = j + n+ be the standard Borel subalgebra of
onsisting of upper triangular matri
es in g, and j the Cartan subalgebra 
onsistingof diagonal matri
es. For 1 � l � n+1, we realize g0 as a subalgebra of g by letting�l(g0) be the 
entralizer of the matrix unit Ell. For k = (k1; � � � ; bkl; � � � ; kn+1) 2 Nn ,we set indl k := k1 + � � �+ kl�1 � kl+1 � � � � � kn+1:In what follows, � denotes the outer tensor produ
t representation of the dire
tprodu
t of Lie algebras.



22 TOSHIYUKI KOBAYASHITheorem 5.5 (An # An�1). Suppose �i � �j =2 Z for any distin
t i; j in the setf1; � � � ;bl; � � � ; n+ 1g. Then the restri
tion of the Verma module of g de
omposesinto a multipli
ity-free dire
t sum of simple Verma modules of g0.Mgln+1(�)j�l(gl1�gln)' Mk2Nn C �l+indl k�Mgln(�1�k1; � � � ; �l�1�kl�1; �l+1+kl+1; � � � ; �n+1+kn+1):(5.3)Proof. We �x l (1 � l � n+ 1) on
e and for all. Let � � �l be the involution of gsu
h that g� = �l(g0). With our 
hoi
e of j, we have j� = j ' C n+1 , and the set of
hara
ters of j� is identi�ed with C n+1 . We apply Corollary 3.12 to the j� -modulen��� : n��� = l�1Mi=1 g�ei+el � n+1Mi=l+1 g�el+ej :Extending this to the symmetri
 algebra S(n��� ), we have j� -isomorphism:S(n��� ) ' Mk2Nn(�k1; : : : ;�kl�1; indl k; kl+1; � � � ; kn+1):Therefore, the identity (5.3) holds in the Grothendie
k group by Corollary 3.12.Sin
e �i � �j 62 Z for any i; j, the Verma modules appearing in the right-handside of (5.3) have distin
t in�nitesimal 
hara
ters. Therefore, there is no extensionamong these representations. Hen
e (5.3) is a dire
t sum de
omposition.5.4. Bran
hing laws for so(2n+ 1) # so(2n)Let g = so2n+1(C ), g0 = so2n(C ) and G0 be the 
onne
ted subgroup of G = Int(g)with Lie algebra g0. Then there are two 
losed G0-orbits on the full 
ag varietyG=B, whi
h are 
onjugate to ea
h other by an element of the normalizer NG(g0).Thus it follows from Theorem 2.1 that there is essentially the unique triple (g; g0; b)satisfying the equivalent 
onditions of Theorem 4.1.To �x notation, we may and do assume that g0\b 
ontains a Cartan subalgebraj of g and that�+(g; j) =fei � ej : 1 � i < j � ng [ fei : 1 � i � ng;�+(g0; j) =fei � ej : 1 � i < j � ng:Theorem 5.6 (Bn # Dn). Suppose �i � �j =2 Z for any 1 � i < j � n.Mso2n+1(�)jso2n = Mk2NnMso2n(� � k): (5.4)



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 23Proof of Theorem 5.6. Let � be the involution of g su
h that g0 = g� . ApplyingCorollary 3.12 to the j-module:S(n��� ) = S( nMi=1 g�ei) ' Mk2Nn(�k1; � � � ;�kn);we get (5.4) in the Grothendie
k group. The assumption �i � �j 62 Z assuresthat every summand in (5.4) is simple. Further, there is no extension amongMso2n(�� k) be
ause they have a distin
t Z(g0)-in�nitesimal 
hara
ters.5.5. Bran
hing laws for so(2n+ 2) # so(2n+ 1)Let g = so2n+2(C ) and g0 = so2n+1(C ). Then there exists a unique 
losed G0-orbiton the full 
ag variety G=B. To �x notation, we suppose that our Borel subalgebrab = j+ n is de�ned by the positive system�+(g; j) = fei � ej : 1 � i < j � n+ 1g;and that j0 := j\ g0 is given by fH 2 j : en+1(H) = 0g: Then b0 := b\ g0 is a Borelsubalgebra of g0 given by a positive system�+(g0; j0) = fei � ej : 1 � i < j � ng [ fei : 1 � i � ng:Theorem 5.7 (Dn+1 # Bn). Suppose �i � �j 62 Z for any 1 � i < j � n. We set� := (�1; � � � ; �n). ThenMso2n+2(�; �n+1)jso2n+1 ' Mk2NnMso2n+1(�� k): (5.5)Proof. Let � be the de�ning involution of g0 = so2n+1(C ). Thenn��� = nMi=1 (g�ei+en+1 + g�ei�en+1)�� ;and hen
e we have an isomorphismS(n��� ) ' Mk2Nn(�k1; � � � ;�kn)as j0-modules. Therefore, (5.5) follows from Corollary 3.12.Referen
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