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Abstract. We initiate a new line of investigation on branching problems for general-
ized Verma modules with respect to reductive symmetric pairs (g, g'). In general, Verma
modules may not contain any simple module when restricted to a reductive subalgebra.
In this article we give a necessary and sufficient condition on the triple (g,g’,p) such
that the restriction X|g always contains simple g’-modules for any g-module X lying
in the parabolic BGG category OP attached to a parabolic subalgebra p of g. Formu-
las are derived for the Gelfand—Kirillov dimension of any simple module occurring in a
simple generalized Verma module. We then prove that the restriction X| g is generi-
cally multiplicity-free for any p and any X € OP if and only if (g,g’) is isomorphic to
(An,An_1), (Bn,Dn), or (Dp+1, Bn). Explicit branching laws are also presented.
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1. Program

Branching problems in representation theory ask how irreducible modules de-
compose when restricted to subalgebras. In the context of the Bernstein—Gelfand-
Gelfand category O of a semisimple Lie algebra g, branching problems are seem-
ingly simple, however, it turns out that the restrictions behave wildly in general.
For instance, the restrictions X|g and X|g of a g-module X lying in O may be
completely different even when two reductive subalgebras g} and g are conjugate
to each other as the following observations indicate (see Examples [£.14] for
more details):

Observation 1.1. The restriction X|g,1 does NOT contain any simple g} -module,
whereas X|gfz decomposes into an algebraic direct sum of simple gh-modules.

Observation 1.2. The Gelfand—Kirillov dimension of any simple g} -module oc-
curring in X|g is larger than that of any simple gy-module in X|g,.

The understanding of such phenomena requires a precise formulation of branch-
ing problems. Among others we begin by asking what is a ‘well-posed’ framework
of branching problems for the restriction X |g where g’ is a (generalized) reductive
subalgebra of g and X lies in the category O:

Problem A. When does the restriction X|g contain a simple g’-module?
Further, we raise the following problems when X |g contains simple g'-modules.

Problem B. Find the ‘size’ of simple g’-modules occurring in X|g.
Problem C. Estimate multiplicities of simple g’-modules occurring in X|g.
Problem D. Find branching laws, in particular, for multiplicity-free cases.

Let us explain briefly our main results. We write ‘B for the full flag variety of
g, and &' for the set of conjugacy classes of g’ under the group G := Int(g) of
inner automorphisms. Then the ‘framework’ of the restriction X|ffor X € O and
h € &' is described by means of the quotient space G\ (B x ') under the diagonal
action of G. More generally, we formulate a proper framework to discuss Problems
A to D in Theorem 2l in the parabolic BGG category OP (see Subsection 2]
for an arbitrary parabolic subalgebra p of g. After discussing basic results in
this framework in the generality that g’ is an arbitrary reductive subalgebra in
g, we highlight the case where (g,g') is a symmetric pair to get finer results,
keeping differential geometric applications in mind. It includes the ‘group case’
(g1 ® 91, diag(g1)) as a special example, for which the branching laws describe the
decomposition of the tensor product of two representations (e.g. fusion rules). For
symmetric pairs (g,¢’), the cardinality of G-orbits on B x &' is finite, and we
give a complete answer to Problem A in the category OP in terms of the finite set
G\(B x &'). Namely, we prove in Theorem 1] that the restriction X|g contains
simple g’-modules for any X € OF if and only if (p, g’) lies in a closed G-orbit on
B x &

Turning to Problem B, we make use of the associated varieties (see e.g. [5, [15])
as a coarse measure of the ‘size’ of g'-modules. We see that the associated variety
Vg (Y) of a simple g’-module Y occurring in the restriction X|g is independent of
Y if X is a simple g-module. The formulas of Vg (Y") and its dimension (Gelfand-
Kirillov dimension) are derived in Theorem [12]



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 3

Concerning Problem C, it is notorious in the category of unitary representations
of real reductive groups that the multiplicities in the branching laws may be infinite
when restricted to symmetric pairs, see [6]. In contrast, we prove in Theorem
that multiplicities are always finite in the branching laws with respect to symmetric
pairs in the category O.

Particularly interesting branching laws are multiplicity-free cases where any
simple g'-module occurs in the restriction X|g at most once. We give two general
multiplicity-free theorems with respect to symmetric pairs (g, g') in the parabolic
category OP:

1) p special, (g,9’) general (Theorem [B.1),
2) p general, (g, g') special (Theorem [1.7)),

and then find branching laws corresponding to closed orbits in G\ (P x &').

This is the first article of our project on a systematic construction of equivariant
differential operators in parabolic geometry. In subsequent papers, Theorem [A.1]
(a solution to Theorem A) plays a foundational role in dealing with

e a construction of conformally equivariant differential operators in parabolic
geometry,
e a generalization of the Rankin—Cohen bracket operators.

Actual calculations are carried out by using algebraic branching formulas (Theorem
(2) together with an analytic machinery that we call the ‘F-method’ in [10].

In Section [5.1] we have studied parabolic subalgebras p with abelian nilpotent
radical. The case of parabolic subalgebras p with Heisenberg nilpotent radical
(e.g. Example A14)) may be thought of as a generalization of Section 51l Using
Theorems B.I0land 1] we can give a complete classification of the triples (g,p, g7)
and the closed orbits in GT\G/P (see the framework of Theorem 2.1 with dis-
crete decomposable and multiplicity-free branching laws. The calculation is more
involved, and will be reported in another paper.

Partial results of this article were presented at the conference in honor of Vin-
berg’s 70th birthday at Bielefeld in Germany in 2007 and a series of lectures at the
Winter School on Geometry and Physics in Cech Republic in 2010. The author
is grateful to the organizers, in particular, Professors Abels and Soucek, for their
warm hospitality.

Notation: N={0,1,2,---}, N} ={1,2,3,---}.

2. Branching problem of Verma modules

In general, Verma modules may not contain any simple g’-module when re-
stricted to a reductive subalgebra g’. In this section, we use the geometry of the
double coset space Ng(g')\G/P and clarify the problem in Theorem 2] which
will then serve as a foundational setting of branching problems for the category
OP in Theorem A1l

2.1. Generalized Verma modules

We begin with a quick review of the (parabolic) BGG category OP and fix some
notation.
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Let g be a semisimple Lie algebra over C, and j a Cartan subalgebra. We write
A = A(g,j) for the root system, g, (a € A) for the root space, and o for the
coroot. We fix a positive system AT, and define a Borel subalgebra b = j +n
with nilradical n := ®,ca+8o. The BGG category O is defined to be the full
subcategory of g-modules whose objects are finitely generated g-modules X such
that X are j-semisimple and locally n-finite [2].

Let p be a standard parabolic subalgebra, and p = [+ u its Levi decomposition
with j C [ We set AT(l) := AT N A(L,j), and define n_(l) := @aca+(Hf-a-
The parabolic BGG category OF is defined to be the full subcategory of @ whose
objects X are locally n_([)-finite. Then OP is closed under submodules, quotients,
and tensor products with finite dimensional representations.

The set of A for which Alj[(§ is dominant integral is denoted by

AT :={xej*: (\,a") e Nforall a € AT(l)}.
We write F for the finite dimensional simple [-module with highest weight A,

inflate F to a p-module via the projection p — p/u ~ [, and define the generalized
Verma module by

[N\)

ME(\) = MJ(Fy) = U(g) @u(p) Fx. (2.1

Then Mg()\) € OP, and any simple object in OP is the quotient of some Mg()\) We
say M g(/\) is of scalar type if F is one-dimensional, or equivalently, if (A, @) =0
for all aw € A(l).

Let p be half the sum of positive roots. If A € AT ([) satisfies

~—

(A +p,B8Y) €N, forall B e AT\ A(I), (2.2)

then Mg()\) is simple, see [3].
For p = b, we simply write M9(\) for Mg(/\) We note that O = O by
definition.

2.2. Framework of branching problems

Let g’ be a subalgebra of g, and p a parabolic subalgebra of g. We denote by &’
and P the set of conjugacy classes of g’ and p, respectively. Let P be the parabolic
subgroup of G = Int(g) with Lie algebra p, and define the normalizer of g’ as

Na(¢') :={g € G: Ad(9)g' = ¢'}.
Then we have natural bijections: G/P ~ B, G/Ng(g') ~ ®', and hence
G\(B x &') = Ng(¢')\B ~ &'/P ~ Na(a')\G/P. (2.3)

Here, we let G act diagonally on 8 x &’ in the left-hand side of (2.3]).

Let S be the set of complete representatives of the double coset N (g')\G/P,
and we write g, := Ad(s) g’ for s € S. Then the branching problem for oP
with respect to a subalgebra belonging to &’ is ‘classified” by the double coset
N¢(g')\G/P in the following sense:
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Theorem 2.1. For any X € OP and any h € &', there erists s € S such that
X|p~ X|g for some X € OP via a Lie algebra isomorphism between b and g..

Proof of Theorem[21. Given ) € &', we take s € S and ¢ € P such that
Ad((sq)~")g' =b.

Clearly, we have a Lie algebra isomorphism Ad(g~!) : g/, = b.
For X € OP, we define a new g-module structure on X by

Z-v:=(Ad(q)"'Z)-v for Z € g,v € X.
q

Since P normalizes p, this new module, to be denoted by )?, lies in OF. Then,
for any Lie subalgebra v of g, the restriction X|p is isomorphic to the restriction
X|ad(g)-1v via the Lie algebra isomorphism b ~ Ad(q)~'v. Applying this to
v := g, we get the following isomorphism:

X[ = Xl|ad@)-1aas)1g = X

(14
via the Lie algebra isomorphism Ad(g) : h = g.,. Theorem Z1lis thus proved. [

Remark 2.2. 1f (g,g') is a semisimple symmetric pair (see Subsection [A1]), then S
is a finite set (Matsuki [11]).

3. Discretely decomposable branching laws

In this section, we bring the concept of ‘discretely decomposable restrictions’ to
the branching problem for the BGG category OP, and prove that the restriction
X|g contains simple g'-modules for X € OP if p lies in a closed G'-orbit on
the generalized flag variety 3. In particular, it is the case if p is g'-compatible
(Definition B7). Under this assumption the character identities are derived for the
restriction X|g (Theorem [3.10).

3.1. Discretely decomposable modules O

Suppose that g is a reductive Lie algebra.

Definition 3.1. We say a g-module X is discretely decomposable if there is an in-
creasing filtration {X,, } of g-submodules of finite length such that X = [J,~_, X,,,.

Further, we say X is discretely decomposable in the category OP if all X,, can be
taken from OF.

Here are obvious examples:

Example 3.2. 1) Any g-module of finite length is discretely decomposable.
2) (completely reducible case). An algebraic direct sum of countably many simple
g-modules is discretely decomposable.
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Remark 3.3. The concept of discretely decomposable g-modules was originally in-
troduced in the context of (g, K)-modules in [7, Definition 1.1] as an algebraic
analogue of unitary representations whose irreducible decompositions have no ‘con-
tinuous spectrum’. Then the main issue of [6] [7] was to find a criterion for the
discrete decomposability of the restriction of (g, K)-modules. We note that dis-
crete decomposability in the generality of Definition [3.I] does not imply complete
reducibility.

Suppose ¢’ is a reductive subalgebra, and p’ its parabolic subalgebra.

Lemma 3.4. Let X be a simple g-module. Then the restriction X|g is discretely
decomposable in the category OF if and only if there exists a g'-module Y € OF
such that Homg (Y, X|g) # {0}. In this case, any subquotient occurring in the
g’'-module X|g lies in or’.

Proof. Suppose Homg (Y, X|g) # 0 for some Y € OF. Taking the subquotient
of Y if necessary, we may assume Y is a simple g’-module. Let ¢ : ¥ — X be
an injective g’-homomorphism. For m € N, we denote by Y, the image of the
following g'-homomorphism:

g®---gRY =X, (H® -@Hy,) Qv H - Hy(v).
N——
m

Then X = |J°_,Y,, because X is simple. Moreover Y, € OF because OF is
closed under quotients and tensor products with finite dimensional representations.
Hence, the restriction X|g is discretely decomposable in ov, Conversely, the
‘only if” part is obvious because OF is closed under submodules. Finally, any
subquotient of Y, lies in Op’, whence the last statement. Thus Lemma [3.4] is
proved. O

3.2. Discretely decomposable restrictions for OF

Let G = Int(g), P the parabolic subgroup of G with Lie algebra p as before, and
G' a reductive subgroup with Lie algebra g’. We ask when the restriction X|g of
X € OPis discretely decomposable in the sense of Definition B11

Proposition 3.5. If G'P is closed in G then the restriction X|g is discretely
decomposable for any simple g-module X in OP,

Proof. We set P' := G' N P. Suppose G'P is closed in G. Then G'/P’ is closed in
the generalized flag variety G/ P, and hence is compact. Therefore, the Lie algebra
p’:= ¢ Np of P' must be a parabolic subalgebra of ¢'.

Let X be a simple object in OP. Then X is obtained as the quotient of some gen-
eralized Verma module, that is, there exists A € AT ([) such that the composition
map

F\ = U(g) @y Fa » X
is non-trivial. Therefore, we get a non-zero g’-homomorphism

Since the g'-module U(g') @y (p) (Fi|p) lies in OF | the restriction X|g is discretely
decomposable in the category OF owing to Lemma B4l O
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The converse statement of Proposition will be proved in Theorem [£.1] under
the assumption that (g, g’) is a semisimple symmetric pair.

The assumption of Proposition B.5] fits well into the framework of Theorem 2.1l
To see this, we make the following (easy) observation:

Lemma 3.6. Retain the notation as in Subsection[Z.2. Then the following condi-
tions on the triple (g,9',p) are equivalent:

(i) The G'-orbit through p € P is closed.

(ii) G'P is closed in G.

Clearly these conditions are invariant under the conjugation of p by an element
of the group N¢(g'), and hence they are determined by the equivalence classes in

Na(g')\G/P ~ G\(P x &') (see (Z3)) containing (p,g') € P x &'.
3.3. g’-compatible parabolic subalgebra p
This subsection discusses a sufficient condition for the closedness of G'P in G.

A semisimple element H € g is said to be hyperbolic if the eigenvalues of ad(H)
are all real. For a hyperbolic element H, we define the subalgebras

uy =ur(H), [(=(H), andu_=u_(H)

as the sum of the eigenspaces with positive, zero, and negative eigenvalues, respec-
tively. Then
p(H) = U(H) +u, (H) (3.2)
is a Levi decomposition of a parabolic subalgebra of g.
Let g’ be a reductive subalgebra of g, and p a parabolic subalgebra of g.

Definition 3.7. We say p is g'-compatible if there exists a hyperbolic element H
in g’ such that p = p(H).

If p = [+ uy is g’-compatible, then p’ := p N g’ becomes a parabolic subalgebra
of g’ with Levi decomposition

pr=r+u = (ng)+ (upnNg).
Then, using the notation of SubsectionB.2], we see that G'/P' = G'/G'NP becomes

a generalized flag variety, and therefore is closed in G/P. Hence, we get the
following proposition from Proposition

Proposition 3.8. If p is g'-compatible, then G'P is closed in G and the restric-
tion X|g is discretely decomposable for any X € OP.

The converse statement holds when p is a Borel subalgebra (Corollary [£.2), but
does not always hold for a general parabolic subalgebra. Theorem A.I]below shows
that the following example gives a counterexample to the converse statement of
Proposition 3.8

Example 3.9. Let g = g1 ® g1, and ¢' := diag(g:) ={(Z,2) : Z € g1}. Then a
parabolic subalgebra p of g is g'-compatible if and only if p is of the form p1 & Py
for some parabolic subalgebra py of 9.

On the other hand, G'P is closed in G = Gy X Gy if and only if p is of the
form py ®py for some parabolic subalgebras py and po containing a common Borel
subalgebra.
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3.4. Character identities

In this subsection, we prove the character identities of the restriction of gener-
alized Verma modules to a reductive subalgebra g’ assuming that the parabolic
subalgebras p is g'-compatible.

Let p = [+ u, be a g’'-compatible parabolic subalgebra of g defined by a hyper-
bolic element H € g’. We take a Cartan subalgebra j' of g’ such that H € j’, and
extend it to a Cartan subalgebra j of g. Clearly, j C [ and j’ C I'.

We recall that F denotes the finite dimensional, simple module of [ with highest
weight A € AT ([). Likewise, let F} denote that of I for § € AT(l').

Given a vector space V we denote by S(V) = @-, S*(V) the symmetric tensor
algebra over V. We extend the adjoint action of I' on u_/u_nNg’ to S(u_/u_nNg’).
We set

m(d; \) := dim Hom{[ (Fy, Falr @ S(u_/u_nNg)). (3.3)
Theorem 3.10. Suppose that p = |+ uy is a g'-compatible parabolic subalgebra
of g, and A € AT ([).
1) m(6;\) < oo for all § € AT (I').
2) In the Grothendieck group of OV | we have the following isomorphism:

Mg =~ @[ m(8; A) M§ (6). (3.4)
sea+(l)

Proof. Let H € g’ be the hyperbolic element defining the parabolic subalgebra p.
We denote by g” the orthogonal complementary subspace of g’ in g with respect
to the Killing form. Since ad(H) preserves the decomposition g = g’ & g, the sum
u_ of negative eigenspaces of ad(H) decomposes as

u_=u ou =wu_ng)o u_ng"). (3.5)

This is a decomposition of ['-modules, and hence, we have an [-module isomor-
phism S(u”) ~ S(u_/u_nyg’).
1) Let a(> 0) be the minimum of the eigenvalues of —ad(H) on u”. Since H € [/,
we have

Homp (Fj, F ® S*(u")) =0
for all k such that k > L(A(H) — §(H)). In view of B3), we get m(d; A) < oo.
2) The formal character of the generalized Verma module M g(/\) is given by

ch(M§N) =ch(Fy) ] (1-e*)™" (3.6)

aeA(U_,))

Let us prove that its restriction to j’ equals the formal character of the right-
hand side of (34). For this, we observe that F\ ® S(u”) is a semisimple ['-
module, and therefore, it decomposes into the direct sum of simple ['-modules
Dsea+(ry m(0; \)Fy, where m(6,A) is defined in (B.3). Turning to their formal
characters, we get

ch(Ely ] a-ent= 3 m(dN) ch(F). (3.7)

aEA(W,)) seat(l
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Writing the multiset A(u_,j)|j as a disjoint union A(u”,j") II A(u’,j"), we get

from B.6) and (3.7)
ch(MPA)y =ch(F)ly  [[ -ent I @-en?

aEA(W j) aEA(U,))

:Zm((s;/\) ch(Fy) H (I—e)t
[

a€A(W_,))

= Zm((s; A) ch(Mg((s))-
é

Hence (34) holds in the Grothendieck group of OF', O

3.5. Multiplicity-free restriction

Retain the setting of the previous subsection. In particular, we suppose that
p = [+ ug is a g’-compatible parabolic subalgebra of g. We will see in this
subsection that the character identity in Theorem [B.I0leads us to multiplicity-free
branching laws for generalized Verma modules when the ['-module S(u_/u_nNyg’)
is multiplicity-free.

Definition 3.11. We say that a g-module V is a multiplicity-free space if the
induced g-module on the symmetric algebra S(V') is a multiplicity-free represen-
tation.

Multiplicity-free spaces for reductive Lie algebras were classified by V. Kac
in the irreducible case, and by Benson—Ratcliff and Leahy independently in the
reducible case (see [I]).

The following Corollary is an immediate consequence of Theorem [3.10]

Corollary 3.12. Assume that u_/u_Ng' is an '-multiplicity-free space. We de-
note by D the support of simple I'-modules occurring in S(u_/u_Ng'), namely,
Su_/u_Nng') =~ @scp F5- Then any generalized Verma module Mg()\) of scalar
type decomposes into a multiplicity-free sum of generalized Verma modules for g
in the Grothendieck group of OV as follows:

Mg = P MF Ay +9). (3.8)
éeD

Remark 3.13. For a ‘generic’ A, the formula (B.8) becomes a multiplicity-free direct
sum of simple g’-modules. For instance, there is no extension among the modules
Mg(/\h’r +9) (0 € D) if they have distinct 3(g')-infinitesimal characters (e.g.
Theorems [5.5] and B7) or if M g()\) has an invariant Hermitian inner product
with respect to a certain real form of g’ (e.g. Theorem B.)). See Section [l for
details.

4. Branching problems for symmetric pairs

The decomposition of the tensor product of two representations is an example
of branching laws with respect to a special case of symmetric pairs, namely, the
pair g; @ g1 } diag(gy). In this section, we discuss Problems A to D for semisimple
symmetric pairs.
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4.1. Criterion for discretely decomposable restriction

Let 7 be an involutive automorphism of a semisimple Lie algebra g, and we denote
the fixed point subalgebra by

g ={Ze€g:7Z =7}

The pair (g,g7) is called a semisimple symmetric pair. Typical examples are the
pairs (g1 © g1, diag(g1)) (g1: semisimple Lie algebra), (sly, 50,), and (sly14,s(al, +
al,))-

qWe lift 7 to an automorphism of the group G = Int(g) of inner automorphisms,
and set G™ :={g € G : 7g = g}. Then G7 is a reductive subgroup of G with Lie
algebra g”.

Let p be a parabolic subalgebra of g, and X a g-module lying in OP. Problem
A asks when the restriction X|g- contains simple g”-modules. We give its neces-
sary and sufficient condition by the geometry of the generalized flag variety G/P
associated to the parabolic subalgebra p:

Theorem 4.1. Let g be a complex semisimple Lie algebra, T an involutive auto-
morphism of g, and p a parabolic subalgebra. Then the following three conditions
on the triple (g,97,p) are equivalent:

(i) For any simple g-module X in OP, the restriction X|gr contains at least
one simple g" -module.
(ii) For any simple g-module X in OF, the restriction X|gr is discretely de-
composable as a g"-module in the sense of Definition [3 1l
(iii) GTP is closed in G.
If one of (hence all of) the above three conditions is fulfilled then p™ := p N g”
is a parabolic subalgebra of g™, and any irreducible subquotient occurring in the
restriction X|g- belongs to the category or".

In Proposition @7, the geometric condition (iii) in Theorem [A1] will be refor-
malised as an algebraic condition.

Strategy of Proof of Theorem .1k We have already seen the equivalence (i)
<= (ii) in LemmaB.4land the implication (iii) = (ii) in PropositionB.5lin a more
general setting, i.e. without assuming that (g, g’) is a symmetric pair. The non-
trivial part is the implication (ii) = (iii), which will be proved in Subsection E4]
after we establish some structural results on closed G™-orbit in G/P (Subsection
£2).

We end this subsection with two very special cases of Theorem FIl namely, for
p = b (Borel) and for the pair (g & g, diag g):

Corollary 4.2. Let O be the BGG category associated to a Borel subalgebra b,
and T an involutive automorphism of g. Then the following four conditions on
(1,b) are equivalent:
(i) Any simple g-module in O contains at least one simple g”-module when re-
stricted to g7 .

(ii) Any simple g-module in O is discretely decomposable as a g™ -module in the
sense of Definition 31l



RESTRICTIONS OF VERMA MODULES TO SYMMETRIC PAIRS 11

(iii) G™B is closed in G

(iv) 76 =b.
Proof. We shall see in Lemma 6] that G™ B is closed in G if and only if 76 = b.
Hence, Corollary follows from Theorem [£1] O

Example 4.3. Let (g,9') = (sl4(C),s(gl,(C) @ gl,(C))). Then there are 21 orbits
of the subgroup S(GL(2,C) x GL(2,C)) on the full flag variety B of SL(4,C), and
6 (= 41/212!) closed orbits among them. In the following diagram, vertices stand
for 21 orbits on B, and edges generate their closure relations.

0 g O O g 0 closed
<
~/ 1 N\~
\‘/
. open
Figure 4.1

Correspondingly, for a fived Borel subalgebra b of g there are 6 injective homomor-
phisms tj : ¢ = g (1 < j < 6) such that any simple g-module in O is discretely
decomposable when restricted to 1;(g') and that 1;(g') is not conjugate to each other
by an element of the Borel subgroup.

Corollary 4.4. Let py, po be two parabolic subalgebras of a complex semisimple
Lie algebra g. Then the following three conditions on (p1,p2) are equivalent:

(i) For any simple g-module X1 in OPr and X, in OP2, the tensor product rep-
resentation X1 ® Xo contains at least one simple g-module.
(ii) For any simple g-module X1 in OPr and X, in OP2, the tensor product rep-
resentation X1 ® Xo is discretely decomposable as a g-module.
(iii) p1 Np2 is a parabolic subalgebra.

Proof. Let P, and P» be the parabolic subgroups of G = Int(g) with Lie algebras
p1 and ps, respectively. Then the diagonal G-orbit on (G x G)/(P, x P;) through
the origin is given as G/(P, NP»), which is closed if and only if p; Np, is a parabolic
algebra of g. Hence, Corollary is deduced from Theorem 11 O

4.2. Criterion for closed G™-orbit on G/P

As a preparation for the proof of Theorem 1] we establish some structural results
for closed G™-orbits on the generalized flag variety G /P in this subsection. We note
that the closedness condition for G™-orbits on G/ P is much more complicated than
that for the full flag variety G/B (cf. Lemmad.6l below). The author is grateful to
T. Matsuki for helpful discussions, in particular, for the proof of Proposition H.7]

Let g be a complex semisimple Lie algebra, G = Int(g), and 7 an involutive
automorphism of g as before. We begin with:
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Lemma 4.5.

1) Let 0 be a Cartan involution of g commuting with 7. For any parabolic
subalgebra p, there exist h € G™ and a Cartan subalgebra j such that Tj =
0i =j and j C Ad(h)p. In particular, any parabolic subalgebra contains a
T-stable Cartan subalgebra.

2) A parabolic subalgebra is T-stable if and only if it is g"-compatible (see

Definition[3.7).

Proof. 1) This assertion holds for any Borel subalgebra of g ([I1, Theorem 1]).
Hence, it holds also for any parabolic subalgebra.

2) Suppose p is a T-stable parabolic subalgebra. Take a 7-stable Cartan subalgebra
j contained in p. Then there exists H € j such that

p= @ Ja-

aEA(gJ)
a(H)>0

Since 7p = p, a(H) > 0 if and only if a(rH) > 0, which is then equivalent to
a(H + 7H) > 0. Therefore, the parabolic subalgebra p equals p(H + 7H) with
the notation ([B.2)), and thus it is g"-compatible. Conversely, any g"-compatible
parabolic subalgebra is obviously 7-stable. O

We then deduce a simple characterization of closed G7-orbits on the full flag
variety G/B from [I1], Proposition 2] combined with Lemma E.5] 2):

Lemma 4.6. The following three conditions on T and a Borel subalgebra b are
equivalent:
(i) G™B is closed in G.
(ii) 76 =b.
(iii) b is g"-compatible.
Unfortunately, such a simple statement does not hold for a general parabolic
subalgebra p. In fact, the condition 7p = p is stronger than the closedness of G™ P

(see Example B9]). In order to give the right characterization for the closedness of
G P, we let pr. : g = g” be the projection defined by

1
pr.(Z) = E(Z +717). (4.1)
For a subspace V in g, we define the £1 eigenspaces of 7 by
VE == {v eV :1v = tv}. (4.2)

Note that pr (V) = V7 if V is 7-stable.

Proposition 4.7. Suppose p is a parabolic subalgebra with nilradical u, and 7 is
an involutive automorphism of g. Then, the following three conditions on the
triple (g,9",p) are equivalent:
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(i) G™P is closed in G.
(ii) pr,(u) is a nilpotent Lie algebra.
(iii) pr,(u) consists of nilpotent elements.

We note that the parabolic subalgebra p may not be 7-stable in Proposition
A7 The idea of the following proof goes back to [12], which is to use a 7-stable
Borel subalgebra contained in p when p itself is not 7-stable.

Proof. We take a Borel subalgebra b C p such that G™B is relatively closed in
GTP. This is possible because G"\G/B is a finite set.

(i) = (ii) Suppose GTP is closed in G. Then G™ B is also closed in G. Owing
to Lemma [4.6] b is 7-stable, and therefore, so is the nilradical n of b. Thus,
pr,(n) =n". Since u C n, we get pr, (1) C pr.(n) =n’.

For X,Y € g, a simple computation shows

2[pr, (X), pr. (V)] = pr,([X, Y]) + pr, ([X, 7Y]).

If X,)Y € u, then [X,Y] € u and [X,7Y] € [u,n] C u. Hence pr_(u) is a Lie
subalgebra. Since pr,(u) is contained in n”, we conclude that pr,(u) is a nilpotent
Lie algebra. Thus, (i) = (ii) is proved.

(ii) = (iii). Obvious.

(iii) = (i). Since the conditions (i) and (iii) remain the same if we replace p
by Ad(h)(p) for some h € G, we may and do assume that p contains a Cartan
subalgebra j such that 779 = 6j = j by Lemma Then fa = —a for any
a € A(g, i)

Suppose G7 P is not closed in G. By the Matsuki duality [L1], we see that G™% P
is not open in G. Therefore, there exists a € A(u,j) such that g_, ¢ g% + p.
Take a non-zero X _, € g_,. In view that

X o=X_o+70X_,)—70X_, € 9T9 + Ora;

we see gro ¢ p because otherwise X_, would be contained in g + p. Hence,
0_ro Cuand Ta # a.
Take a non-zero X, € g, and we set X := Xy + 70X, € ga + 970 C U.

Case 1. Suppose X # 0. Let YV := pr_(X). Clearly, Y =Y. Moreover, Y # 0
because Ta # . This means that pr_(u) contains a non-zero semisimple

element.

Case 2. Suppose X = 0. Let Y := X, +7X, = Xy, —0X,. Then Y # 0 and
Y = —Y. Again, this means that pr,_(u) contains a non-zero semisimple
element.

Thus we have proved the contraposition, “not (i) = not (iii)”. Hence the proof
of Proposition has been completed. O

The nilradical of the Lie algebra p™ is given explicitly as follows:

Proposition 4.8. Under the equivalent conditions (i)-(iii) in Proposition [{.7, p™
is a parabolic subalgebra of " having the following Levi decomposition:

p" =1+ pr, (u).
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Proof of Proposition [[.8 We take a Borel subalgebra b C p such that G™B is
closed, and a 7-stable Cartan subalgebra j contained in b as in the proof of Propo-
sition .71

Given a j-stable subspace V = ®aeA
of j-weights. (Here we note that the multlphclty of the zero weight in V' may be
larger than one.) We divide A(V) into the disjoint union

) 8o in g, we denote by A(V') the multiset

AV)=AV)IOAWV)g I AV ),

subject to the condition (I) Ta = « and 7|g, = id, (II) 7a = o and 7|g, = —id,
and (ITT) 7a # a. Accordingly, we have a direct sum as vector spaces:

P s P (Gt

a€A(V)r a,Ta€A(V)r
= D .o D @toa)
a€A(V)1 a€A(V)m

In particular, we get

P e P (9at9a)

a€A(P)1 a, Ta€A (P
@ go © @ (ga + E-ra @ Ga © @ (ga + groz)T
aEA([)I Dz,TC!EA([)III aEA(u)I o TC!EA(u)HI
=" ®pr, (u).

Here we have used 7u C p in the second equality. Thus Proposition [£.8]is proved.
O

4.3. Application of associated varieties to restrictions

In this subsection, we apply associated varieties of g-models to the study of branch-
ing problems.

Suppose X is a finitely generated g-module. We take a finite dimensional sub-
space Xo which generates X as a g-module. Let U(g) = Up>oUr(g) be a natural
filtration of the enveloping algebra of g. Then, X := Ug(g)Xo (k € N) gives a
filtration { Xy} satisfying

o0
X=JXe, U)X, =Xy (i,j>0).

Then, gr X := @, , Xx/Xk—1 is a finitely generated module of the commutative
algebra grU(g) ~ S(g). The associated variety of the g-module X is a closed
subset Vg(X) of g* defined by

Vg(X) := Suppgg)(gr X).

Then Vg(X) is independent of the choice of the generating subspace X,. We recall
the following basic properties:
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Lemma 4.9 ([5, Chapter 17]). 1) If 0 — X; — X — X5 — 0 is an
exact sequence of g-modules, we have Vg(X) = Vg(X1) U Vg(X2).
2) For any finite dimensional p-module F, Vg(U(g) @y (p) F) = pt.

Let g' be a reductive subalgebra in g, and prg , g : g* — g'" the restriction map.
We set p’ := g’ Np and p'* := {A € (¢/)* : A|p = 0}.

Lemma 4.10. Let X be a simple g-module lying in OF, and g' o reductive subal-
gebra in g.
1) IfY is a simple g'-module such that Homg (Y, X|g) # {0} then

prgg(Ve(X)) C Vg(¥) C ()" (4.3)

2) If Y; are simple g'-modules such that Homg(Y;, X|g) # {0} (i = 1,2), then
Vg (Y1) = Vg(Y2).

Proof. 1) Since OP is closed under tensor products with finite dimensional rep-
resentations, the proof for the first inclusion in (@3] parallels to the proof of [7]
Theorem 3.1] by using the double filtration of X.

For the second inclusion in ([@3]), we use the notation of the proof of Proposition
B.5land let Y be the image of (3.I)). Then it follows from Lemma[@d.9that Vg (Y) C
Vg(U(g'") @u(p) (Falp)) = p'*.

2) The proof is the same as that of [7, Theorem 3.7] in the category of (g, K)-
modules. O

Remark 4.11. An analogous result to Lemma[.1012) was shown in [4] in the special
case where X is the oscillator representation of g = sp(n,R) in the context of
compact dual pair correspondence by case-by-case computations. In this case,
prg,g(Vg(X)) coincides with the associated variety Vg (Y). It is plausible that
prg,g(Vg(X)) = Vg(Y) in the generality of the setting in Lemma .10l We shall
discuss this assertion in Theorem below for symmetric pairs (g,g7).

4.4. Proof of Theorem [4.1]

The equivalence of Theorem [£.J] has been already proved in Section 1] except for
the implication (ii) = (iii). We are ready to complete the proof.

Proof of Theorem[{1], (i) = (#i). By the Killing form, we identify g* with g.
Then the projection prg ,q : g* — (g7)* is given as the map pr, : g = g” (see
@I)). Further, p~ = {\ € g* : A|p = 0} is isomorphic to the nilpotent radical u
of the parabolic subalgebra p.

We take a generalized Verma module X := Mg()\) with generic parameter
A€ AT(I) (cf. 22)). Then it follows from Lemma 9 that Vg(X) = u. Therefore,
if the restriction X |g- is discretely decomposable, then pr, (u) consists of nilpotent
elements by Lemma [£.J0l In turn, G" P is closed in G owing to Proposition 4.7
Thus, the proof of Theorem [4.1]is completed. O

4.5. Associated varieties of irreducible summands

We retain the previous notation: p is a parabolic subalgebra of a complex semisim-
ple Lie algebra g, and 7 an involutive automorphism of g. In this subsection, we
give an explicit formula for the associated variety Vg-(Y') and the Gelfand-Kirillov
dimension DIM(Y) of irreducible summands Y.
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Theorem 4.12. Suppose (g,87,p) satisfies one of (hence, all of) the equivalent
conditions in Theorem[{.1} Let X = Mg()\) be a simple generalized Verma module,
and Y a simple g'-module such that Homg (Y, X |g) # {0}. Then,

Vg-(Y) =pr,(u) and DIM(Y) =dimg"/p".

Proof of Theorem[{.13 The nilradical of the parabolic subalgebra p” is given by
pr, (1) in Proposition[d.8 Hence, via the isomorphism g* ~ g, the inclusive relation
H3) is written as

pr, (Vg(X)) C Vg (¥) C pr, (u). (4.4)

Since Vg(X) = u, the three terms in (#4) must be the same, and therefore
Vg-(Y) = pr, (u).

The Gelfand—Kirillov dimension DIM(Y") is given by the dimension of the as-
sociated variety Vg-(Y'), and thus we have DIM(Y) = dim pr_(u), which equals
dimp™ — dim " = dim g" — dim p” by Proposition 4.8 O

Remark 4.13. There are finitely many G7-orbits on the generalized flag variety
G/P by [11]. Among them, suppose G"y;P (j = 1,2,---,k) are closed in G.
Correspondingly we realize g” as a subalgebra of g by

yigm =g, Ze Ad(yy) H(2).

Then (g, ¢;(g")) form symmetric pairs defined by the involutions 7; := Ad(y;l) oT0
Ad(y;) € Aut(g). Theorem ET] implies that the restrictions X|,;(gr) are discretely
decomposable for any X € OP and for any j (j = 1,...,k). Obviously, the Lie
algebras ¢;(g7) are isomorphic to each other, but dim(p N ¢;(g™)) may differ. Ac-
cordingly, the Gelfand—Kirillov dimension of simple summands in the restrictions
X|,;(gr) depends on j. See Examples £.14 and below.

Example 4.14 (Apyq—1 4 Ap—1 X Ag—1). Letp,q > 2, g = sl 4(C), p its parabolic
subalgebra whose nilradical is the Heisenberg Lie algebra of dimension 2(p+q) — 3,
and g' = s(gl,(C) © gl,(C)). Then, there are four injective homomorphisms
v+ g =g (1< j<4) such that each ¢ induces closed G'-orbits on G /P and that
tj(g') is not conjugate to each other by an element of P, the parabolic subgroup
with Lie algebra p.

The following diagram for p = q = 2 shows how the 21 orbits of G' on the full
flag variety B ~ G /B (see Figure [J.1) are sent to G'\G/P under the quotient
map

G'\G/B - G'\G/P

induced from the inclusion B C P. In particular, there are 4 closed G'-orbits on
G/P among 10 orbits.
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Figure 4.2

For general p,q > 2, the number of closed G'-orbits on G| P remains to be four.
Let 7; € Aut(g) (j = 1,2,3,4) be defined as in Remark [{.13 It turns out that
p is Tj-compatible for all j. Further, by applying Theorem [{.13, we see that the
Gelfand—Kirillov dimension is given by

p+q—2 (1=2,3)
DIM(Y) ={2p—3 (G =
2 — 3 (j=4

for any simple g'-module Y and for any simple generalized Verma module X =
Mg(/\) such that Homg (Y, X|,;(g)) # 0. By using Corollary[3.12, we can find the
branching laws of the restriction Mg()\)h,-(g') for generic A. They are multiplicity-
free for any j =1,2,3,4.

Example 4.15 (C,, | A,). Let g be the complex symplectic Lie algebra sp,,(C)
of rank n, p the Siegel parabolic subalgebra, and g’ = gl,(C). Then there are
(n + 1) injective homomorphisms tvj : g¢' = g (0 < j < n) such that 1;(g') is not
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conjugate to each other under the Siegel parabolic subgroup each v; induces closed
GL,(C)-orbits on Sp(n,C)/P and that

DIM(Y) = j(n — j)

for any simple g'-module if Y occurs in the restriction X|, (g where X is any
simple generalized Verma module Mg()\)

Sketch of the proof. We take ¢; so that gr ~ sp(n,R) and gr N ¢;(g") ~u(j,n —j)
where the specific real form gr will be explained in Subsection 5.1l O

4.6. Finite multiplicity theorem

The multiplicities in branching laws behave much mildly in the BGG category O
than those in the context of unitary representations (see Example .18 below).
Here is a finite multiplicity theorem in the category O.

Theorem 4.16 (finite multiplicity theorem). Let T be an involutive automor-
phism of a complex semisimple Lie algebra g, and b a T-stable Borel subalgebra of
g. Then

dim Homg-(Y, X|gr) < 00 (4.5)

for any simple g-module X in the category O = O° and any simple g"-module Y .

Proof of Theorem[{.16] Let Y be any simple g"-module. We apply Theorem [3.10]
to the g"-compatible Borel subalgebra b, and conclude that the multiplicities of Y’
occurring as subquotients of the restriction of any Verma module M g(/\) are finite.

Since any simple g-module X € O is obtained as the subquotient of some Verma
module, [@3) follows. O

Remark 4.17. We recall that Theorem [B.I0] counts the multiplicities in the sub-
quotients. Therefore, the multiplicities of ¥ occurring in the restriction X|g- as
subquotients are also finite.

Theorem should be compared with the fact that the multiplicities are
often infinite in the branching laws of the restriction of an irreducible unitary
representation with respect to a semisimple symmetric pair (see [g]):

Example 4.18. Consider a semisimple symmetric pair
(G,G") = (S0O(5,0C),S0(3,2)).

Then there exists an irreducible unitary representation ™ of G and two irreducible
unitary representations Y1 and Yy of the subgroup G' satisfying the following three
conditions:

(1) 0 < dimHomg (Y1, 7|gr) < o0.

(2) dim HOIHGf (Y2,7T|Gr) = 0.

(3) DIM(Y;) = 3, DIM(Y>) = 4.
Here, Homg: (-, -) denotes the space of continuous G'-intertwining operators, and
DIM(Y) stands for the Gelfand-Kirillov dimension of the underlying (g', K')-
module of the unitary representation Y of G'.
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5. Multiplicity-free branching laws

In this section we prove two multiplicity-free theorems for the restriction of
generalized Verma modules with respect to symmetric pairs (g, g'):
e p is special and (g, g’) is general (Theorem [G.T]),

e p is general and (g,g’) is special (Theorem [54)).

Correspondingly, explicit branching laws are also derived (Theorems 5.2 5.5 5.6]
and B7).

5.1. Parabolic subalgebra with abelian nilradical

We begin with multiplicity-free branching laws of the restriction M g()\)|gr with
respect to symmetric pairs (g, g7) in the case where p is a certain maximal parabolic
subalgebra.

An abstract feature of the results here boils down to the following:

Theorem 5.1. Suppose p = [+uy is a parabolic subalgebra such that the nilradical
uy is abelian. Then for any involutive automorphism T such that p = p, the
generalized Verma module Mg(/\) of scalar type is decomposed into a multiplicity-
free direct sum of simple g”-modules if A\ € AT(l) is sufficiently negative, i.e.
(A, a) €0 for all @ € A(uy).

Theorem 5.1l is deduced from an explicit formula of the irreducible decomposi-
tion. To give its description, we write g = u_ + [+ u; for the Gelfand-Naimark
decomposition, and take a Cartan subalgebra j of [ such that [™ contains j” as
a maximal abelian subspace (see (£2]) for notation). Let A(uZ",j”) be the set
of weights of u~" with respect to j”. The roots o and f are said to be strongly
orthogonal if neither o + 3 nor a — f is a root. We take a maximal set of strongly
orthogonal roots {v1,--- ,vg} in A(uZ",j7) inductively as follows: v; is the highest
root among the elements in A(uZ",j7) that are strongly orthogonal to vy, -+ ,v;_1
(1 <j <k—1). The cardinality k coincides with the split rank of the semisimple
symmetric space Gr/G}.

Then we have

Theorem 5.2. Suppose that p and 7 are as in Theorem 5. Then, for any
sufficiently negative X\, the generalized Verma module Mg()\) decomposes into a
multiplicity-free direct sum of generalized Verma modules of ¢”:

[
M§Nlg~ P MFEAi-+ D av). (5.1)
ay>-->a;>0 j=1
ai, - ,a1€EN

Proof of Theorem [5.2. Suppose that p is a parabolic subalgebra such that its
nilradical u; is abelian. Then p is automatically a maximal parabolic subalge-
bra. Further, it follows from [I3] that there exists a real form gg of g such that
Gr/(GrNP) is a Hermitian symmetric space of non-compact type, where G is the
connected real form of G = Int(g) with Lie algebra gg. The group Ky := Gg N P

is a maximal compact subgroup of Gg, and the complexification of its Lie algebra
gives a Levi part, denoted by [, of p.
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Let 6 be the involution of g defined by
0|[=id, 9|u7+u+=—id.

Then, 6 stabilizes gr and p, and the restriction f|g. is a Cartan involution of
the real semisimple Lie algebra ggr. Since § commutes with 7, 76 defines another
involution of g. We use the same symbol to denote its lift to the group G. Then
Kﬂgo = Gﬂgg N P is a maximal compact subgroup of Gﬂgg, and has a complexified
Lie algebra [T, Further, GZ?/(GL? N P) = GE?/KZ% becomes also a Hermitian
symmetric space whose holomorphic tangent space at the origin is identified with
u_". It then follows from W. Schmid [I4] that the symmetric algebra S(u”")
decomposes into the multiplicity-free sum of simple ["-modules as

SuZ") ~ P F;,

6eD

where ¢ is the highest weight of Fj and
k
D := {Zajuj tap > >a >0, ap,...,a; € N}
j=1

Applying Corollary[B.12] we see that the identity (5.1) holds in the Grothendieck
group of g"-modules. Finally, let us show that the restriction M g(/\) |g- decomposes
as a direct sum of g"-modules as given in (5)) if A is sufficiently negative.

For this, let é’TR be the universal covering group of G, and @ that of Kr. Then
the generalized Verma module Mg()\) is isomorphic to the underlying (g, Kr)-

module of a highest weight representation of G which is unitarizable if (\, a) < 0
for any a € A(uy). Hence, the identity (1) in the Grothendieck group holds as
g”-modules. O

Remark 5.3. As we have seen in the above proof, Theorems 5.1l and are equiv-
alent to the theorems on branching laws of unitary highest weight representations
of a real semisimple Lie group Ggr. In the latter formulation, the corresponding
results were previously proved in [8) Theorem B] by a geometric method based
on reproducing kernels and ‘visible actions’ on complex manifolds [9]. See also [8],
Theorem 8.3] for explicit formulas.

5.2. Multiplicity-free pairs

Next, we consider multiplicity-free branching laws of the restriction Mg()\) in
the case where p = b (Borel subalgebra). In general, the ‘smaller’ the parabolic
subalgebra p is, the ‘larger’ the generalized Verma module M g(/\) becomes. Hence,
we expect that the multiplicity-free property of the restriction M g(/\)| g- in the
extreme case p = b should give the strongest constraints on the pair (g, 7). In this
subsection, we determine for which symmetric pair (g, g™) the restriction M g(/\)|gr
is still multiplicity-free.

Before stating a theorem, we recall from Corollary €2l that any simple g-module
in O contains at least one simple g"-module if and only if G™ B is closed in G, or
equivalently, b is T-stable.
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Theorem 5.4. Let g be a complex simple Lie algebra, and (g,9™) a complex sym-
metric pair. Then the following three conditions are equivalent:

(i) (g,97) is isomorphic to (slp+1(C), gl,,(C)) or (50,+1(C),50,(C)).
(ii) For any T-stable Borel subalgebra b, the restriction Mg()\)|gr is multiplicity-
free as g" -modules for any generic .
(iii) The restriction Mg(/\)|gr is multiplicity-free as g™ -modules for some A and
some T-stable Borel subalgebra b.

Proof of Theorem[5.4 (i) = (ii). We shall give an explicit branching law of the
restriction Mg(/\) with respect to the symmetric (g,g”) which is isomorphic to
(slh4+1(C), g1,,(C)) or (50,41(C),50,(C)) in Subsections

(ii) = (ili). Obvious.

(iii) = (i). We take a 7-stable Levi decomposition b = j+n. Then, it follows
from Theorem BI0that M g()\)| g- is multiplicity-free only if S(n~7) is multiplicity-
free as a j"-module. In turn, this happens only if the weights of n=" are linearly
independent over Q, which leads us to the following inequality

dimn™" < dimj",

or equivalently,
dim g — dim g” < rank g + rankg”. (5.2)

In view of the classification of complex symmetric pairs (g,g”) with g simple,
the inequality (5.2) holds only if (g,g") is isomorphic to (sl,4+1(C),gl,,(C)) or
(50p41(C),50,(C)). O

In Subsections B3H5.5l we shall fix a Borel subalgebra b of g and consider B-
conjugacy classes of involutions 7 instead of considering G7-conjugacy classes of
Borel subalgebras by fixing 7. With this convention, we shall use the abbreviation
MY\ for MEON).

5.3. Branching laws for gl | gl,

Let g := gl,,,1(C) and g’ := g[,(C) ® gl,,(C). We observe that there are (n + 1)
closed GL,,(C)-orbits on the full flag variety of GL,,+1(C). Correspondingly, there
are essentially n + 1 different settings for discretely decomposable restrictions of
the Verma module M 9()\) to g’ by Theorems 2.1] and E.11

In order to fix notation, let b = j + n; be the standard Borel subalgebra of
consisting of upper triangular matrices in g, and j the Cartan subalgebra consisting
of diagonal matrices. For 1 <1 < n+1, we realize g’ as a subalgebra of g by letting
11(g') be the centralizer of the matrix unit Ey. For k = (k1, -+ ,ki,- -, kpt1) € N?,
we set

indlk::kl+"'+kl_1—kl+1—"'—kn+1.

In what follows, X denotes the outer tensor product representation of the direct
product of Lie algebras.
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Theorem 5.5 (A, | Ap—1). Suppose \; — \j & Z for any distinct i,j in the set

{1,--- ,T, -+ ,n+ 1}. Then the restriction of the Verma module of g decomposes
into a multiplicity-free direct sum of simple Verma modules of ¢'.

MO ()], (ghagl)

~ @ CA,+ind,k®M9L‘(>\1—k1,"' JA -1 — ki1, Mg+, o Ak FRng)-
keNn
(5.3)

Proof. We fix I (1 <1<mn+1) once and for all. Let 7 = 7; be the involution of g
such that g™ = ¢;(g’). With our choice of j, we have j” =j ~ C**! and the set of
characters of j” is identified with C**!. We apply Corollary BI2lto the j"-module
n_":

-1 n+1
n:T - @g—ei—i-el 2 @ g—eH—ej-
i=1 i=l+1
Extending this to the symmetric algebra S(nZ"), we have j”-isomorphism:
ST = @ (ki, ., —kiy,indi By ki, o k)
keN™

Therefore, the identity (B3] holds in the Grothendieck group by Corollary 3121
Since A; — Aj € Z for any i, j, the Verma modules appearing in the right-hand

side of (B3) have distinct infinitesimal characters. Therefore, there is no extension

among these representations. Hence (5.3)) is a direct sum decomposition. O

5.4. Branching laws for so(2n + 1) | s0(2n)

Let g = §02,41(C), g' = 505,(C) and G’ be the connected subgroup of G = Int(g)
with Lie algebra g’. Then there are two closed G'-orbits on the full flag variety
G/ B, which are conjugate to each other by an element of the normalizer Ng(g').
Thus it follows from Theorem 2ZT]that there is essentially the unique triple (g, g’, b)
satisfying the equivalent conditions of Theorem E.1]

To fix notation, we may and do assume that g'Nb contains a Cartan subalgebra
j of g and that

At(g,j) ={e;tej:1<i<j<n}U{e:1<i<n},
At(gi) ={e;te;:1<i<j<n}

Theorem 5.6 (B, | D,). Suppose \; = \j ¢ Z for any 1 < i< j < n.

M+ (N)|sg, = @) M5 (A - k). (5.4)
keN™
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Proof of Theorem[5.8. Let T be the involution of g such that g’ = g”. Applying
Corollary B.12] to the j-module:

SO=T) = S(Pa-e) = €D (“hr oo, =),

kEN™

we get (0.4) in the Grothendieck group. The assumption A\; £ \; ¢ Z assures
that every summand in (54) is simple. Further, there is no extension among
M*S%n (X — k) because they have a distinct 3(g')-infinitesimal characters. O

5.5. Branching laws for s0(2n + 2) | s0(2n + 1)

Let g = 509,,42(C) and g’ = 502,41 (C). Then there exists a unique closed G'-orbit
on the full flag variety G/B. To fix notation, we suppose that our Borel subalgebra
b =j + n is defined by the positive system

A*(g,i) ={eite;:1<i<j<n+1},

and that j :==jNg’ is given by {H €j : epq1(H) = 0}. Then b’ := bnNg' is a Borel
subalgebra of g’ given by a positive system

AT(g,i)={eitej:1<i<j<n}U{e;:1<i<n}

Theorem 5.7 (Dy41 | By). Suppose \; = X\j € Z for any1 <i < j<n. We set
A= (A1, ,An). Then

M4z (A Api1)|s0,40 = @D M3+ (A= k). (5.5)
keNn

Proof. Let 7 be the defining involution of g’ = §02,,41(C). Then
n:T = @(g*8i+8n+1 + g*@i*6n+1)7T7
i=1
and hence we have an isomorphism
ST = @ (—k, - —kn)
keEN™

as j’-modules. Therefore, (B3] follows from Corollary 312 O
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