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SPLIT NOTES (ON NON-COMMUTATIVE MIRROR SYMMETRY)

SERGEY GALKIN

Abstract. This text has non-empty intersection with my talk Non-commutative mirror symmetry on July 13,

2011 at Homological Mirror Symmetry and Category Theory workshop in Split. I’ll discuss some consequences of
positivity and convexity.

1. Laurent polynomials and random walks

Let N be a lattice with dual M = Hom(M,Z).Let u be coordinates on affine space M ⊗Z A1 and x = eu be
coordinates on the torus T = Hom(N,Gm) = M ⊗Z Gm. Note that map exp is an isomorphism between domains
where all u are real and all x are real positive, further we denote this domain by V .

Consider a Laurent polynomial W with complex coefficients

(1.1) W =
∑
l∈N

alx
l =

∑
l∈N

ale
un

Denote A =
∑
|al|. Note that all coefficients al are real and non-negative ⇐⇒ A = W (1). In this case we can

consider restriction of W to V as a function of real positive argument x and A as its particular value. Furthermore in
case A = 1 one may interpret Laurent polynomial W as a random walk in the lattice M : coefficient al is probability
to go in direction m and each next step is independent of the past. In case A 6= 1 function W is simply a rescale
of the probabilistic one.

Assume additionally that the origin 0 ∈ N lies in the interior of Newton polytope of W (so random walker has
some chance to come back to the origin).

Remark 1.2. I consider properties of positivity and convexity (and their corollaries discussed below) as an
Archimedean counterpart to p-crystal properties.

Definition 1.3. We say that point x0 ∈ (C∗)n is a usual critical point of W if dW |x=x0 = 0. We say that c ∈ C is
a usual critical value of W if c = W (x0) for some usual critical point x0.

Lemma 1.4. Function W has a unique critical point on V and it is the global minimum.

Proof. Since 0 is contained in the interior of the Newton polytope for every direction |u| → ∞ one of the monomials
of W also goes to +∞. Since all coefficients are positive W goes to +∞ as well. This implies W has at least one
minimum on V .

Note that W is a convex function in coordinates ui: each monomial eum is convex, so sum of monomials with
positive coefficients is also convex. Since convex functions has at most one critical point we are done. �

Let Wmin be the minimum of W on real positive part i.e. the value of W at the unique critical point with real
positive coordinates.

Proposition 1.5. For W0 > Wmin the fibers W−1(W0) ⊂ V are diffeomorphic to (n−1)-dimensional sphere Sn−1.

Proof. Once we know the lemma above apply the standard argument from Morse theory. �
We point that uniqueness of real positive critical point will also follow from the arguments below, where we give

an estimate of the respective critical value Wmin.
Consider n-cycle Γ = {|x| = 1} and a holomorphic volume form ω = 1

(2πi)n

∏ dxi
xi

= 1
(2πi)n

∏
dti on n-dimensional

complex torus (C∗)n.
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Definition 1.6. For Laurent polynomial W denote by Tr(W ) its constant term
∫

Γ
W . Let Traces(W ) be the set

of natural numbers k such that Tr(W k) 6= 0 (k = 0 is included), and index r(W ) be the greatest common divisor

of all elements in Traces(W ). Define G-function and Ĝ-function as (exponential) generating function for Tr(W k):

ĜW (t) =
∑
k>0

Tr(W k)tk =

∫
Γ

ω

1− tW
(1.7)

GW =
∑
k>0

Tr(W k)
tk

k!
=

∫
Γ

etWω(1.8)

The formula for ĜW (t) holds for t < 1
W (1) .

Number Tr(W k) can be interpreted as probability to be back at the origin after k independent steps, so functions

ĜW and GW are generating functions for these probabilities.

Proposition 1.9. For positive W1,W2 we have Tr(W1 ·W2) > Tr(W1) · Tr(W2).

Corollary 1.10. The set Traces(W ) is an additive monoid: if a, b ∈ Traces(W ) then (a+ b) ∈ Traces(W ). This
implies that there is some number n0 such that for all n > n0 number r(W )n belongs to Traces(W ).

Denote by R = RW radius of convergence of ĜW , and define invariant T = TW = T (W ) = 1
R .

Lemma 1.11. Power series GW (t) exponentially converge everywhere on complex line and power series ĜW (t)
have positive radius of convergence R and T 6

∑
|al|.

Proof. In case all coefficients al are real non-negative one can use “ probability is bounded by 1” argument: since W is
a Laurent polynomial with real positive coefficients, W k is also a Laurent polynomial with real positive coefficients,
so W k equals to sum of positive monomials which are positive evaluated at any positive point, and Tr(W k) is one

particular term, so it is bounded by the sum which is Ak. This implies T = limk→∞ Tr(W k)
1
k 6 limk→∞(Ak)

1
k = A.

Case where some coefficients have non-zero argument can be absolutely bounded by the positive case. Exponential
convergence of GW immideately follows from convergence of ĜW . �

Lemma 1.12. If ĜW =
∑
n>0 gnt

n then ĜWk =
∑
n>0 gknt

n.

Clearly ĜW is Laplace transform of GW .

Lemma 1.13 (Dutch trick). Function ĜW is a period for the family 1 − tW = 0 of hypersurfaces in the torus
(C∗)n.

Definition 1.14. Define spectrum of W as the set of inverses of critical points of ĜW .

Lemma 1.15. Spectrum of Laurent polynomial W in the sense of definition 1.14 contains all usual critical values
of W in the sense of definition 1.3.

Proof. �
Lemma 1.13 implies that T is the maximal absolute value of all critical values of W (in a broad sense - including

values at critical points outside the torus (C∗)n).

By Cauchy-Hadamard formula T = limk→∞ Tr(W k)
1
k .

Proposition 1.16. There is an upper bound T 6W (α) for any real positive α.

Proof. Lemma 1.11 implies T 6 A = W (1). On the other hand for any real positive α Laurent polynomial W ′(x) =

W (αx) has the same Ĝ-function (since Jacobian of the coordinate change equals one). However W ′(1) = W (α). So
same argument as above shows that T 6W (α) for any real positive n-tuple α. �

Proposition above shows the inequality

(1.17) T 6Wmin

On the other hand T equals to maximal absolute value of all complex critical values of W . In particular this
implies there are no other critical points of W on Rn except for the global minimum.

Remark 1.18. The arguments above can be upgraded to answer positively the question of Ostrover and Tyomkin
[17]: quantum cohomology algebra of any toric Fano manifold has a field as direct summand, see [8] and [10].

2



This implies that positive Laurent polynomials have a unique ”canonical” real positive coordinates – namely
coordinates where the unique real positive critical point is (1, 1, . . . , 1). Indeed this fixes a “translational” symmetry
of the torus (ti → ti+bi or xi → xi×ai), however there is still some “rotational” symmetry possible (which preserves
the set of coefficients of W ), and in fact these symmetries can be further exploited (see below).

Definition 1.19. In case a critical point of positive Laurent polynomial W is ti = 0 we say that W is a balanced
Laurent polynomial and ti are balanced coordinated.

Definition 1.20. For Laurent polynomial W =
∑
anx

m define its Obro vector as Obro(W ) =
∑
m∈M an · m.

Probabilistic interpretation of Obro vector is the average drift of random walker per one step. And the third
interpretation: Obro vector is proportional to the centre of mass of a system of point particles positioned at the
lattice points m with respective masses an.

Proposition 1.21. Positive Laurent polynomial W is balanced ⇐⇒ its Obro vector vanishes Obro(W ) = 0 ∈M
⇐⇒ T (W ) = W (1).

Proof. Note that Obro vector equals to de Rham differential of W evaluated at x = 1 under natural isomorphism
T ∗(1,...,1)Gm(R) 'M ⊗ R : Obro(W ) = dW |x=1. �

This immediately implies that

Proposition 1.22. All balanced (maybe non-positive) Laurent polynomials form a subalgebra in algebra of all
Laurent polynomials.

Proof. Indeed the map W → dW |x=1 is linear and product of balanced polynomials is balanced by Leibniz rule. In
fact balanced polynomials satisfying W (1) = 0 form an ideal in the ring of balanced polynomials and this ideal is
the square of the ideal of Laurent polynomials vanishing at 1. �

Corollary 1.23. Map W → T (W ) restricted to balanced positive Laurent polynomials coincides with homomorphism
of rings W → W (1). So if W1 and W2 are balanced Laurent polynomials and α1, α2 are positive numbers then
T (α1W1 + α2W2) = α1T (W1) + α2T (W2) and T (W1W2) = T (W1) · T (W2).

Definition 1.24. Define index r(W ) as the greatest common divisor of natural numbers n such that Tr(W k) 6= 0
(index of constant function is defined to be ∞).

Remark 1.25. Index r(W ) can be also characterized as the greatest number r such that ĜW (e
2πi
r t) = ĜW (t). or in

other words ĜW (t) = ĜW r (tr). From wandering drunkard’s point of view this means that is return to the origin is
possible only in number of steps divisible by r.

Lemma 1.26. Indices of W and its powers are related as follows: r(W k) = r(W )
gcd(k,r(W )) . In particular r(W r(W )) = 1.

Theorem 1.27. Complex number T ′ such that |T ′| = TW is an element of spectrum of W ⇐⇒ T ′r = T r i.e.

T ′ = T · e
2πip
r(W ) for some integer p.

Proof. Since the spectrum is invariant of ĜX the the inclusion statement follows from definition of index. Let us
prove that other points on the circle of radius T do not lie in the spectrum. Lemmas 1.26 and ?? applied to W and
W r(W ) reduces the problem to the case r(W ) = 1.
�
To be continued...

2. Invariant T of Fano varieties and mirror symmetry

For Fano manifold X denote by JX its Givental’s J-function (ev1)∗
z

z−ψ1
restricted to anticanonical direction

t = tc1(X) and z = 1. Consider GX =
∫

[X]
JX ∪ [pt] and its Fourier-Laplace transform ĜX .

Definition 2.1 (See [9, 13]). Define spectra Spectra(X) 1 as the collection of inverses of all critical points of

the function ĜX . Equivalently spectra of Fano manifold is the collection of roots of its quantum characteristic
polynomial (characteristic polynomial of the operator of quantum multiplication by c1(X)).

Definition 2.2. Define T (X) as inverse of radius convergence of ĜX . Equivalently, T (X) is maximal absolute
value of elements in the spectrum of X.

1Anticanonical spectrum in notations of [13].
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Definition 2.3 (See [4] for detailed discussion). We say that Laurent polynonial W is a mirror image of Fano

manifold X if GW = GX (or, equivalently, ĜW = ĜX).

Example 2.4. Let X be a toric Fano manifold and vi — primitive generators on the rays of its fan. Then Laurent
polynomial W =

∑
xvi is a mirror image of X by results of Givental [12]. Further we call this function W as the

standard mirror image for toric Fano manifold X.

Question 2.5. We are going to address the following questions:

(1) What are the possible values of number T (X) for Fano varieties X.
(2) In particular, what are the bounds?
(3) How they depend on dimension?
(4) What are the values of T (X) for toric Fano varieties and how they differ from generic?

Theorem 2.6. For toric Fano manifold X there is an upper bound

T (X) 6 dimX + ρ(X) 6 3 dimX.

Proof. Consider the standard mirror image W from example 2.4. We have T (X) = T (W ), by 1.16 T (W ) 6W (1),
finally W (1) equals to number of vertices in the fan of toric manifold and this number equals dimX + ρ(X).

Inequality ρ(X) 6 2 dimX is proven in [3], and we’ll reproduce much simpler proof of Obro from [16]. Consider
special facet F — any facet whose cone contains Obro vector, and let fF be a linear function on M that equals 1
on F . Note that

∑
v∈V ertices(X) fF (v) = fF (Obro(X)) > 0. Any vertex v of X falls in one of three categories by

sign of fF (v). If fF (v) > 0 then v is one of d vertices of facet F , so fF (v) = 1 and
∑
v:fF (v)>0 fF (v) = d. Number

of v with fF (v) < 0 is bounded by d since fF (Obro(X)) > 0. Number of vertices v with fF (v) = 0 is also bounded
by d due to combinatorial reasons. Altogether number of vertices is bounded by d+ d+ d = 3d. �

Below we list value of TX for del Pezzo surfaces. Here p(t) is the minimal polynomial for algebraic integer TW .
X P1 P2 P1 × P1 S8 S7 S6 S5 S4 S3 S2 S1

|TX | 2 3 4 4 5 6 9 12 21 52 372

X P3 Q B1 B2 B3 B4 B5 V2 V4 V6 V8 V10 V12 V14 V16 V18 V22

|T | 4 5 42 16 11 8 7 1608 232 96 56 39 29 23 20 17 13

3. Reconstructions

Definition 3.1. Auroux manifold Y is a complement in a Fano manifold F to its smooth anti-canonical hypersurface
A ∈ | −KF |: Y ' F −A.

Lemma 3.2. If Y is Auroux manifold then H0(Y,O∗Y ) = C.

Proof. Any function f ∈ H0(Y,O∗Y ) can be considered as a rational function on F . Since functions f and 1
f are

regular on Y their divisors of poles should be supported at A. However divisor of poles of 1
f is divisor of zeroes

of f , so since A is irreducible function f doesn’t have any poles or zeroes, so its a regular function on projective
variety F that is a constant. �

Theorem 3.3. The respective Fano manifold F and its anti-canonical Calabi–Yau section A can be uniquely
reconstructed from Auroux manifold Y .

Proof. Given Y consider its model, that is a smooth projective M ⊃ Y , such that D = M\Y is a divisor with simple
normal crossings. There is at least one such M , that aditionally has a property that divisor D is irreducible, namely
we can take (M,D) to be equal to (F,A). So irreducible divisor D gives a divisorial evaluation vD : C(Y )∗ → Z
on the field of rational functions on Y . We claim that for any model (M,D) with irreducible D the respective
divisorial evaluation vD is exactly the same as the evaluation vA in the model (F,A). Indeed, since A is a smooth
Calabi–Yau manifold it is not uniruled, hence it has no Mori fiberations to a variety of smaller dimension, thus
in any model M at least one of the irreducible components of the complementary divisor D is birational to A
(consider an direct image of strict preimage in any Hironaka house). Finally, given Y and evaluation v, consider a
filtered ring R = Γ(Y,OY ), with filtration by order of pole at A: F kv R = {a ∈ R, v(a) > −k}. Then the associated
graded ring equals to GrFvAR =

∑
n>0H

0(F, nA), and the variety F can be recovered as the projective spectre
F = Proj GrFvAR. �
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Definition 3.4. Quasi-projective variety U is called semi-projective, if the natural map X → Spec Γ(X,OX) is
projective. If aditionally, Spec Γ(X,OX) ' A1 and canonical line bundle is trivial ωU = OU , then we call U onaf
manifold. Equivalently, onaf manifold is a smooth quasi-projective variety U with trivial canonical bundle, equipped
with a projective map π : U → A1 with connected fibers.

4. Three incarnations and three levels

All this story has 3 incarnations: C (for commutative or classical), Q (for quantized) and NC (non-commutative
[15]).

4.1. Potentials. All potentials are elements of the group rings of different kinds of groups.
C-potentials (of the usual commutative theory) are just usual Laurent polynomials. We may consider Laurent

polynomial as an element of a group ring of a free abelian group.
Q-potentials (or quantized Laurent polynomials) are elements of the quantum torus i.e. group ring of Heisenberg

group. Sometimes it is more convenient to work with a double central extension of Heisenberg group. Let q be the
generator of the center of Heisenberg group.

Finally, NC-potentials are the noncommutative Laurent polynomials e.g. elements of a group ring of a free
group.

4.2. G-functions. One defines [1, 15] the trace of a potential W =
∑
cgx

g as its constant term Tr(W ) = c1 (where
1 is the identity element in the respective group).

In quantized setup one can also define the central trace as the sum of all central monomials Tr(
∑
cgx

g) =∑
n∈Z cqnq

n.
The name trace is partially motivated by the fact it vanishes on commutators i.e. Tr(ab) = Tr(ba).
G-functions are defined as various generating functions for traces of powers of W , and can also be thought as

generalized characteristic polynomials. As well these generating series count the probabilities to come in n steps to
the origin for random walker on a respective group.

4.3. Coordinate change formulae. Assume we have some coordinate transformation (automorphism of (skew-
)field of fractions of group ring of group G). Additionally assume a Laurent phenomenon: some potential W is
mapped into another potential W ′.

Under which conditions the G-functions are preserved i.e. traces of powers of W remain the same.
The commutative case is served by a coordinate change formula in integral: the Jacobian of the transformation

is identity ⇐⇒ the holomorphic volume form ω on torus is mapped into itself.
It is a delightful gift of quantization that in Q case any coordinate change that preserves q is fine.
I don’t know under what conditions (if any) G-functions are preserved in NC setting.

5. What is not yet covered in this surveyq Expand Laurent phenomenon [11, 5, 7],q quantized and non-commutative random walks [6],q Futaki–Mabuchi polynomial, degenerations, stabilities and Kähler–Einstein metrics,q . . .
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