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Abstract. We prove that a Weyl module for the current Lie algebra
associated with a simple Lie algebra of type ADE is rigid, that is, it
has a unique Loewy series. Further we use this result to prove that the
grading on a Weyl module defined by the degree of currents coincides
with another grading which comes from the degree of the homology
group of the quiver variety. As a corollary we obtain a formula for the
Poincaré polynomials of quiver varieties of type ADE in terms of the
energy functions defined on the crystals for tensor products of level-
zero fundamental representations of the corresponding quantum affine
algebras.

1. Introduction

The purpose of this article is to study the graded structures of Weyl
modules for the current Lie algebra associated with a simple Lie algebra of
type ADE and its applications.

Weyl modules are defined for a current Lie algebra, a loop Lie algebra, or
more generally, a generalized current Lie algebra and play an important role
in the study of finite-dimensional modules over these Lie algebras. They
were originally introduced by Chari and Pressley in [CP] for a loop Lie
algebra with an application in their mind to the representation theory of the
corresponding quantum loop algebra. This notion was extended by Feigin
and Loktev in [FeL] to the case of a generalized current Lie algebra (the
current Lie algebra on an affine variety, they called), including an untwisted
multivariable current (or loop) Lie algebra. Applications of Weyl modules
have been made by Chari and Moura in [CM] to the block decomposition
of the category of finite-dimensional modules over a loop Lie algebra, and
by the first author in [Ko] to a problem analogous to [CM] for a generalized
current Lie algebra, for instance.

When we focus on the current Lie algebra associated with a simple Lie
algebra g, the Weyl module W (λ) for a dominant integral weight λ ∈ P+ of
g admits one remarkable property; it has a graded module structure. This
grading helps us to investigate a detailed structure of the Weyl module.
Moreover it has gradually turned out that the gradings of Weyl modules
are connected with some interesting objects. One connection we emphasize
here is that with the one-dimensional sums associated with certain crystals,
where such a connection has been found in a series of recent works as [CL] by
Chari and Loktev, [FoL] by Fourier and Littelmann, and [Nao] by the second
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author. As another one, from results of Ardonne and Kedem in [AK] and Di
Francesco and Kedem in [DFK], we deduce that the gradings are also related
to the fermionic forms. This observation solves the X = M conjecture for
particular cases (See [Nao, Section 9] for a detailed explanation). These
results suggest that the graded structure of a Weyl module itself is interesting
and worth studying.

In this article we study in more detail Weyl modules for the current Lie
algebra associated with a simple Lie algebra g of type ADE. For the case
of type ADE, the Weyl module W (λ) is isomorphic to two other important
modules.

• The Weyl module W (λ) is isomorphic to a Demazure module for
the affine Lie algebra ĝ ([CL], [FoL]).

• The Weyl module W (λ) is isomorphic to the standard module M(λ)
defined as the homology group of the Lagrangian quiver variety L(λ)
(Proposition 4.4).

Thus it is expected that Weyl modules for type ADE have more specific
properties than those for other types and that the identification with the
other modules above is useful for understanding of them. This expectation
will turn out to be true.

Our first main result is to determine the Loewy structure of a Weyl mod-
ule. Recall that a Loewy series of a module of finite length is by definition
a semisimple filtration which has the smallest length. It is a fundamental
problem to study the Loewy structure of a module, especially to determine
two standard Loewy series: the radical series and the socle series. We say
that a module is rigid if its radical series and socle series coincide, which im-
plies that its Loewy series is unique. Because of this property, rigid modules
are fairly easy to understand. We prove that Weyl modules for type ADE
are rigid as an application of the identification with the Demazure modules
together with the graded structures.

Theorem 1.1 (Proposition 3.5, Proposition 3.9 and Theorem 3.10). For the
Weyl module W (λ), the grading filtration, the radical series and the socle
series coincide. In particular, W (λ) is rigid.

We remark that a Weyl module for type BCFG is not rigid in general
(See Example 3.12). Thus rigidity is a specific phenomenon only for type
ADE.

As well as the Weyl module W (λ), the standard module M(λ) has a
graded structure which comes from the degree of the homology group of
the quiver variety. The second main result is to prove that their gradings
coincide.

Theorem 1.2 (Theorem 6.1). Under the isomorphism M(λ) ∼= W (λ), the
gradings on the both sides coincide.

It should be noticed that Theorem 1.2 seems to be known but has not
been in the literature. See Remark 6.2 for a more precise explanation. In
this article, we give a proof of this fact by the representation theory, using
rigidity of the Weyl module stated in Theorem 1.1.
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Let us mention two corollaries of Theorem 1.2. We see by Theorem 1.2
that the graded characters of M(λ) and W (λ) are equal. The former is noth-
ing but the generating function of the Poincaré polynomials of the quiver
varieties, which follows immediately from the definition of the standard mod-
ule and the grading on it. The latter is expressed by the second author in
[Nao] in terms of the degree function D defined on the crystal B(λ)cl of
Lakshmibai-Seshadri paths of shape λ modulo imaginary roots, which are
studied by Naito and Sagaki in [NS1] and [NS2], or equivalently by using the
normalized one-dimensional sums X(λ, µ, t) for dominant integral weights
λ, µ ∈ P+. As a consequence we obtain the following formula, where L(α, λ)
denotes the Lagrangian quiver variety associated with λ ∈ P+ and α ∈ Q+,
and dα stands for the twice of the dimension of L(α, λ).

Corollary 1.3 (Corollary 6.10). We have

∑
α∈Q+

dα∑
k=0

dimHk(L(α, λ))tdα−keλ−α =
∑

b∈B(λ)cl

t−2D(b)ewt b

=
∑

µ∈P+

X(λ, µ, t−2) chV (µ).

In particular, we have

dα∑
k=0

dimHk(L(α, λ))tdα−k =
∑

b∈B(λ)cl
wt b=λ−α

t−2D(b).

We note that some formulas for the Poincaré polynomials of quiver vari-
eties have been established ([H], [M], [Nak5] for instance). However those in
terms of crystals have not been in the literature as far as the authors know.

We also obtain the equality between the Kazhdan-Lusztig type polynomial
Zλµ(t) for the quiver variety and the one-dimensional sum.

Corollary 1.4 (Corollary 6.11). We have

Zλµ(t) = X(λ, µ, t−2).

The article is organized as follows. In Section 2 we recall basic facts on
Loewy series of modules. We also provide a key lemma to the proof of rigidity
of Weyl modules. In Section 3 we give the definition of Weyl modules and
prove that they are rigid. In addition we determine the socle and the Loewy
length of a Weyl module. The most part of Section 4 and 5 is a summary of
known results. After recalling properties of quiver varieties in the first half
of Section 4, we define standard modules in the latter half. In Section 5 we
introduce a grading on a standard module and interpret it in terms of sheaves
on a quiver variety. In Section 6 we prove that the gradings on a Weyl module
and a standard module coincide and deduce its corollaries. This section also
contains discussions on some related subjects such as Lusztig’s fermionic
conjecture, the X = M conjecture and Nakajima’s result on quiver varieties
of type A.
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2. Loewy series and the grading filtrations

2.1. Loewy series of modules. We recall basic notion such as radical,
socle and Loewy series of modules and their properties in this subsection.

Let A be a ring and M an A-module of finite length. A filtration of
A-modules on M is said to be semisimple if its each successive quotient is
semisimple. The radical of M , which is denoted by radM , is the smallest
submodule of M such that the quotient is semisimple. We put rad0 M = M
and for k ≥ 1, define radk M inductively by radk M = rad(radk−1 M). This
defines a semisimple filtration on M called the radical series. The socle
of M , which is denoted by soc M , is the largest semisimple submodule of
M . We put soc0 M = 0 and for k ≥ 1, define sock M inductively so that
soc(M/ sock−1 M) = sock M/ sock−1 M . This defines a semisimple filtration
on M called the socle series. It is easy to show that for any semisimple
filtration

0 = F lM ⊆ F l−1M ⊆ · · · ⊆ F 1M ⊆ F 0M = M

on M ,
radk M ⊆ F kM ⊆ socl−k M

holds for each k. This immediately implies that the lengths of the radical
series and the socle series are equal and that the length of any semisimple
filtration on M is greater than or equal to it. A Loewy series of an A-module
M of finite length is defined to be a semisimple filtration on M which has
this smallest length. The radical series and the socle series are Loewy series
by the definition. The length of each Loewy series of M is called the Loewy
length of M .

Definition 2.1. Let A be a ring and M an A-module of finite length. We
say that M is rigid if its radical series and socle series coincide.

The following is obvious from the above argument.

Proposition 2.2. Let A be a ring and M an A-module of finite length. If
M is rigid then M has a unique Loewy series.

2.2. Filtrations on graded modules. In this article, by grading we al-
ways mean a Z-grading and by a positively graded ring or module we mean
that it is graded by nonnegative integers.

Let A be a graded ring. If A is positively graded then a graded A-module
M is endowed with the filtration defined by F kM =

⊕
s≥k Ms. We call it the

grading filtration. Moreover assume that A is a positively graded C-algebra
such that any finite-dimensional A0-module is semisimple, and that M is
a finite-dimensional graded A-module. Then in this situation, the grading
filtration on M is semisimple.
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We slightly modify a proposition in [BGS, Proposition 2.4.1] for our set-
ting and state it as follows. The proof goes without any change.

Lemma 2.3. Let A be a positively graded C-algebra and suppose that any
finite-dimensional A0-module is semisimple and that A is generated by A1

as an A0-algebra. Then for a finite-dimensional graded A-module M the
following hold.

(i) If M/ radM is simple then the radical series of M coincides with
the grading filtration.

(ii) If soc M is simple then the socle series of M coincides with the
grading filtration.

3. Loewy series of Weyl modules

3.1. Weyl modules for a current Lie algebra. Let a be an arbitrary Lie
algebra over C. The loop Lie algebra associated with a is the tensor product
a ⊗ C[z, z−1] equipped with the Lie algebra structure by [x ⊗ f, y ⊗ g] =
[x, y] ⊗ fg for x, y ∈ a and f, g ∈ C[z, z−1]. We denote by a[z, z−1] this Lie
algebra. The current Lie algebra is the Lie subalgebra a ⊗ C[z] of a[z, z−1]
and denoted by a[z]. We denote by za[z] the Lie subalgebra a ⊗ zC[z]. We
regard a as a Lie subalgebra of a[z] by identifying it with a ⊗ 1.

Let g be a simple Lie algebra over C. In this subsection, we impose no
assumption on g while we will assume that g is of type ADE from the next
subsection. We fix a Cartan subalgebra h of g and a Borel subalgebra b
containing h. The nilpotent radical of b is denoted by n. Let I be the
index set of simple roots. The simple roots are denoted by αi (i ∈ I) and
the fundamental weights by ϖi (i ∈ I). We choose Chevalley generators
ei, hi, fi (i ∈ I) of g.

Let P be the weight lattice and P+ the set of all dominant integral weights.
Let Q be the root lattice and Q+ its subset consisting of all elements ex-
pressed as sums of simple roots with nonnegative coefficients. For λ, µ ∈ P
we say that λ ≥ µ if λ − µ ∈ Q+.

The Weyl group of g is denoted by W and its longest element by w0.
Let ( , ) be the W -invariant nondegenerate symmetric bilinear form on P
normalized by (α, α) = 2 for a long root α.

The universal enveloping algebra U(g[z]) of the current Lie algebra g[z]
is graded by the degree of z. It is obvious that U(g[z])0 = U(g). Note
that U(g[z]) satisfies the assumptions in Lemma 2.3, namely it is a posi-
tively graded C-algebra such that any finite-dimensional U(g[z])0-module is
semisimple and U(g[z]) is generated by U(g[z])1 as a U(g[z])0-algebra.

For λ ∈ P+, let V (λ) be the finite-dimensional simple U(g)-module with
highest weight λ. We define the U(g[z])-module structure on V (λ) through
the projection from U(g[z]) to U(g[z])0 = U(g) and denote it by the same
symbol V (λ). It is simple as a U(g[z])-module.

Now we give the definition of Weyl modules for the current Lie algebra
g[z] following a formulation by Chari and Loktev in [CL].

Definition 3.1. Let λ be an element of P+. The Weyl module W (λ) is
the U(g[z])-module generated by a nonzero element vλ with the following
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defining relations:
n[z]vλ = 0,

zh[z]vλ = 0,

hvλ = ⟨h, λ⟩vλ

for h ∈ h,
f
⟨hi,λ⟩+1
i vλ = 0

for i ∈ I.

Proposition 3.2 below is proved by a standard argument and Proposi-
tion 3.3 is immediate from the definition.

Proposition 3.2. The Weyl module W (λ) has a unique simple quotient
V (λ).

Proposition 3.3. The Weyl module W (λ) is a graded U(g[z])-module.

We set a grading on W (λ) so that the degree of vλ is zero. Then it is
positively graded and we have W (λ)0 ∼= V (λ) as U(g)-modules.

As stated in [CL, 1.2.2 Theorem], the following fundamental result is
proved in a way similar to [CP, Theorem 1 (ii)] for the case of a loop Lie
algebra (See also [FeL, Theorem 1] for a more general setting).

Theorem 3.4. The Weyl module W (λ) is finite-dimensional.

We have an immediate consequence of Proposition 3.2, Proposition 3.3
and Theorem 3.4 together with Lemma 2.3 (i).

Proposition 3.5. The radical series of W (λ) coincides with the grading
filtration.

3.2. Weyl modules and Demazure modules. Assume that g is of type
ADE in this subsection. We review a relation between Weyl modules and
Demazure modules when g is of type ADE.

Let ĝ be the untwisted affine Lie algebra associated with g, namely ĝ =
g[z, z−1] ⊕ Cc ⊕ Cd as a C-vector space, where c is the canonical central
element and d is the degree operator. The Cartan subalgebra ĥ and the
Borel subalgebra b̂ are given by ĥ = h⊕Cc⊕Cd and b̂ = b⊕zg[z]⊕Cc⊕Cd.

Let Î = I ⊔{0} be the index set of simple roots of ĝ. Let P̂ be the weight
lattice and P̂+ the set of all dominant integral weights. The fundamental
weights are denoted by Λi (i ∈ Î) and the generator of the imaginary roots
by δ. We regard P as a subset of P̂ by ϖi = Λi − ⟨c,Λi⟩Λ0 for i ∈ I. Then
any Λ ∈ P̂ is uniquely expressed as Λ = λ + lΛ0 + mδ for some λ ∈ P and
integers l, m. The integer l, which is equal to ⟨c,Λ⟩, is called the level of Λ.

The Weyl group of ĝ is denoted by Ŵ . The bilinear form on P is ex-
tended to the Ŵ -invariant nondegenerate symmetric bilinear form ( , ) on P̂

satisfying (αi, Λj) = δij for i, j ∈ Î and (Λ0, Λ0) = 0. The translation tα by
α ∈ Q on P̂ is defined by tα(Λ) = Λ+ ⟨c,Λ⟩α−{(Λ, α)+(1/2)(α, α)⟨c,Λ⟩}δ
for Λ ∈ P̂ . Since tα ∈ Ŵ for any α ∈ Q, the root lattice Q of g is regarded as
a subgroup of Ŵ . Then Ŵ is isomorphic to the semidirect product W n Q.

Let L(Λ) be the integrable simple U(ĝ)-module with highest weight Λ ∈
P̂+. For each w ∈ Ŵ the extremal weight space L(Λ)wΛ is one-dimensional.
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Definition 3.6. Let Λ be an element of P̂+ and w an element of Ŵ . The
Demazure module Lw(Λ) is the U(b̂)-submodule of L(Λ) generated by the
extremal weight space L(Λ)wΛ.

In the sequel we consider the Demazure modules which have the U(g[z])-
module structures. For λ ∈ P+ we can take w ∈ Ŵ and Λ ∈ P̂+ so that
wΛ = w0λ + Λ0. The choice of Λ is unique. In this situation, it is known
that the Demazure module Lw(Λ) is U(g[z])-stable (See [Nao, a sentence
below Remark 3.5] for example). This Lw(Λ) is positively graded by the
eigenvalues for the action of the degree operator d. Note that the restriction
of w0wΛ = λ + Λ0 to h is equal to λ.

The following theorem, which asserts that a Weyl module is isomorphic to
a Demazure module, was proved by Chari and Loktev in [CL, 1.5.1 Corollary]
for type A and by Fourier and Littelmann in [FoL, Theorem 7] for type ADE.

Theorem 3.7. Let λ be an element of P+. Take w ∈ Ŵ and Λ ∈ P̂+ so
that wΛ = w0λ + Λ0. Then there exists an isomorphism W (λ) ∼= Lw(Λ) of
graded U(g[z])-modules which sends vλ to an extremal weight vector uw0wΛ

of weight w0wΛ.

3.3. Rigidity. In this subsection we prove that Weyl modules are rigid for
the current Lie algebra associated with a simple Lie algebra g of type ADE.
Since we proved in Subsection 3.1 that the radical series of a Weyl module
coincides with the grading filtration, it suffices to show that the socle series
also coincides with it. In addition we determine the socle and the Loewy
length of a Weyl module. We assume that g is of type ADE unless otherwise
specified in this subsection.

Proposition 3.8. The socle of W (λ) is simple.

Proof. By Theorem 3.7, W (λ) is isomorphic to the Demazure module
Lw(Λ) for some w ∈ Ŵ and Λ ∈ P̂+. Since any nonzero U(g[z])-submodule
of Lw(Λ) contains the highest weight space L(Λ)Λ, the assertion follows. �

The desired property of the socle series follows from the above proposition,
Proposition 3.3 and Theorem 3.4 together with Lemma 2.3 (ii).

Proposition 3.9. The socle series of W (λ) coincides with the grading fil-
tration.

By Proposition 3.5 and Proposition 3.9 we obtain the following, which is
the first main theorem of this article.

Theorem 3.10. The Weyl module W (λ) is rigid.

Remark 3.11. If g is not of type ADE, namely is of type BCFG, then
the socle series of the Weyl module W (λ) does not coincide with the grad-
ing filtration in general, while the radical series always coincides with it as
proved in Proposition 3.5. Thus it possibly has the nonsimple socle and is
not rigid. An example is given in the following.

Example 3.12. Let g be of type C2. The index set I = {1, 2} is numbered
so that α1 is a short root and α2 is long. Let λ = 2ϖ1 + ϖ2 and µ = 2ϖ2.
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Take w, w′ ∈ Ŵ and Λ, Λ′ ∈ P̂+ so that wΛ = w0λ+Λ0 and w′Λ′ = w0µ+Λ0.
By [Nao, Theorem 9.3], we see that there exists an exact sequence

0 → Lw′(Λ′) → W (λ) → Lw(Λ) → 0

of g[z]-modules. The following figure expresses the grading on W (λ).

degree Lw(Λ) Lw′(Λ′)
0 V (2ϖ1 + ϖ2)
1 V (2ϖ1) ⊕ V (ϖ2) V (2ϖ2)
2 V (ϖ2) V (2ϖ1)
3 V (0)

Take notice of the composition factors V (0) in degree 3 and V (ϖ2) in degree
2. It is known that no nontrivial extension between V (0) and V (ϖ2) exists
(See [Ko, Proposition 3.1 and Remark 3.5] for example. The highest root θ
is given by 2ϖ1 here). Therefore the socle of W (λ) contains V (0) ⊕ V (ϖ2)
hence is not simple (In this case it is easy to check that the socle coincides
with V (0) ⊕ V (ϖ2) exactly). We also see that W (λ) is not rigid.

In this example, the Weyl module W (λ) is not isomorphic to any De-
mazure module but has a filtration such that its each successive quotient
is isomorphic to a Demazure module. This phenomenon is common for a
general simple Lie algebra as proved by the second author in [Nao].

At the end of this section we determine the socle and the Loewy length
of W (λ).

Lemma 3.13. Let λ be an element of P+.
(i) There exists a unique minimal element λmin in {µ ∈ P+ | µ ≤ λ}.
(ii) The element λmin is equal to ϖi for some i ∈ I such that ⟨c,Λi⟩ = 1

or is equal to 0.
(iii) Take w ∈ Ŵ and Λ ∈ P̂+ so that wΛ = w0λ + Λ0. Then Λ is equal

to λmin + Λ0 + (1/2){(λ, λ) − (λmin, λmin)}δ.

Proof. The assertions of (i) and (ii) are well known and are proved by
standard arguments.

We prove (iii). Put ξ = λ − λmin ∈ Q+. We calculate t−ξw0wΛ =
t−ξ(λ + Λ0) by a formula in [Kac, (6.5.3)] as

t−ξw0wΛ = t−ξ(λ + Λ0)

= λ + Λ0 − ξ + (1/2){(λ + Λ0, λ + Λ0) − (λmin, λmin)}δ
= λmin + Λ0 + (1/2){(λ, λ) − (λmin, λmin)}δ,

where the third equality holds since we have (λ, Λ0) = (Λ0, Λ0) = 0. By
(ii), λmin + Λ0 is equal to some fundamental weight Λi and hence t−ξw0wΛ
belongs to P̂+. Since Λ ∈ P̂+, this implies that t−ξw0wΛ = Λ. The assertion
is proved. �

We use the symbol λmin for the unique minimal element in the sequel.

Proposition 3.14. Let λ be an element of P+.
(i) The socle of W (λ) is isomorphic to V (λmin).
(ii) The Loewy length of W (λ) is equal to (1/2){(λ, λ)−(λmin, λmin)}+1.
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Proof. Take w ∈ Ŵ and Λ ∈ P̂+ so that wΛ = w0λ + Λ0. Then we have
W (λ) ∼= Lw(Λ) by Theorem 3.7.

We prove (i). Recall that the socle of W (λ) is simple by Proposition 3.8.
Under the isomorphism W (λ) ∼= Lw(Λ), the socle of W (λ) is isomorphic to
the U(g[z])-submodule generated by the highest weight space L(Λ)Λ. It is
isomorphic to V (Λ|h) = V (λmin).

We prove (ii). The grading filtration on W (λ) gives its Loewy series by
Proposition 3.5. Hence the Loewy length is equal to max{k | W (λ)k ̸=
0}+1. By Lemma 3.13 (iii), max{k | W (λ)k ̸= 0} is equal to (1/2){(λ, λ)−
(λmin, λmin)}. �
Remark 3.15. The integer (λ, λ) − (λmin, λmin) appearing in the Loewy
length of W (λ) will be interpreted as the dimension of the nonsingular
quiver variety M(λ − λmin, λ) and also of the affine quiver variety M0(λ)
in Section 6.

4. Quiver varieties and standard modules

In the remaining of this article we assume that g is of type ADE. Any
algebraic variety, sometimes variety for short, is assumed to be over C and
not necessarily to be irreducible or connected in the sequel. The dimension
of an algebraic variety always means the complex dimension.

4.1. Quiver varieties. Quiver varieties were introduced by Nakajima in
[Nak2] attached to graphs with some additional data in terms of hyper-
Kähler quotients. Later in [Nak3] they were reformulated by the geometric
invariant theory. We denote by M(α, λ) and M0(α, λ) the quiver varieties
associated with λ ∈ P+ and α ∈ Q+, where they correspond to M(v,w)
and M0(v,w) defined in [Nak3, Section 3] respectively, by identifying α =∑

i∈I viαi ∈ Q+ with v = (vi)i∈I ∈ (Z≥0)I and λ =
∑

i∈I wiϖi ∈ P+ with
w = (wi)i∈I ∈ (Z≥0)I . Remark that we consider the quiver varieties only
for the Dynkin diagram of the simple Lie algebra g of type ADE.

Let us gather basic properties of quiver varieties. See [Nak2], [Nak3] and
[Nak4] for proofs. Note that some of the properties stated below hold only
for the case of type ADE, not for an arbitrary graph.

• For λ ∈ P+ and α ∈ Q+, M(α, λ) is a possibly empty nonsingular
quasi-projective variety and M0(α, λ) is an affine variety.

• There exists a projective morphism π : M(α, λ) → M0(α, λ).
• The variety M(α, λ) has a symplectic structure.

The variety M0(α, λ) has a distinguished point denoted by 0. We define
the closed subvariety L(α, λ) of M(α, λ) as the fiber π−1(0) of the point 0
under the morphism π.

• The variety L(α, λ) is a Lagrangian subvariety of M(α, λ). In par-
ticular, dimL(α, λ) = (1/2) dimM(α, λ).

• The variety L(α, λ) is homotopic to M(α, λ).
• The variety M(α, λ) is nonempty if and only if so is L(α, λ), and

it is equivalent to that the weight space of V (λ) of weight λ − α is
nonzero.

• If M(α, λ) is nonempty then the dimension of M(α, λ) is equal to
(λ, λ) − (λ − α, λ − α).
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• For α, β ∈ Q+ with α ≤ β, we have a closed embedding M0(α, λ) ↪→
M0(β, λ) which sends 0 to 0. Moreover this embedding is an identity
for sufficiently large α, β.

We put dα = dim M(α, λ) for α ∈ Q+, here λ ∈ P+ is fixed and omitted
in the notation. We put

M(λ) =
⊔

α∈Q+

M(α, λ),

L(λ) =
⊔

α∈Q+

L(α, λ)

and
M0(λ) =

∪
α∈Q+

M0(α, λ).

Note that the symbol M0(∞,w) was used in [Nak4] instead of M0(λ). The
composite M(α, λ) → M0(α, λ) ↪→ M0(λ) of the morphisms is also simply
denoted by π. We have a stratification M0(λ) =

⊔
α∈Q+

M
reg
0 (α, λ), where

each stratum M
reg
0 (α, λ) satisfies the following.

• For λ ∈ P+ and α ∈ Q+, M
reg
0 (α, λ) is a possibly empty open subset

of M0(α, λ). It is a nonsingular locally closed subvariety of M0(λ).
• For λ ∈ P+ and α ∈ Q+, M

reg
0 (α, λ) is nonempty if and only if

λ − α ∈ P+.
• The morphism π induces an isomorphism between π−1(Mreg

0 (α, λ))
and M

reg
0 (α, λ). If M

reg
0 (α, λ) is nonempty then π−1(Mreg

0 (α, λ)) is
a dense subset of M(α, λ).

Lemma 4.1. When λ ∈ P+ is fixed and α ∈ Q+ varies, the dimension of
M(α, λ) takes the maximum if and only if λ−α is W -conjugate to λmin. In
particular, the maximum is equal to (λ, λ) − (λmin, λmin).

Proof. It is enough to consider the value (λ, λ)− (λ−α, λ−α) for various
α ∈ Q+ such that λ − α ∈ P+ since the bilinear form ( , ) is W -invariant.
We easily see for µ, ν ∈ P+ that if µ < ν then (µ, µ) < (ν, ν). Thus by
Lemma 3.13 (i), max{dα | α ∈ Q+, λ − α ∈ P+} is given precisely when
λ − α is equal to λmin. This completes the proof. �

Lemma 4.2. The dimension of M0(λ) is equal to dimM(λ − λmin, λ) =
(λ, λ) − (λmin, λmin).

Proof. Since we have the stratification M0(λ) =
⊔

α∈Q+
M

reg
0 (α, λ), the

dimension of M0(λ) is equal to max{dimM
reg
0 (α, λ) | α ∈ Q+}. For λ ∈

P+ and α ∈ Q+ such that M
reg
0 (α, λ) is nonempty, which is equivalent to

λ − α ∈ P+, we have

dimM
reg
0 (α, λ) = dimπ−1(Mreg

0 (α, λ))

= dimM(α, λ).

By Lemma 4.1, the maximum of the above is given when λ − α is equal to
λmin. This completes the proof. �
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4.2. Standard modules. In this subsection we recall the construction of
standard modules for the current Lie algebra g[z] via the quiver varieties,
deduced from [V] by Varagnolo. For an algebraic variety X we denote by
H•(X) the Borel-Moore homology group of X with complex coefficients. We
simply call it the homology group of X in the sequel.

For λ ∈ P+ and α, β ∈ Q+, we define the variety Z(α, β; λ) as the fiber
product

Z(α, β; λ) = M(α, λ) ×M0(λ) M(β, λ)
and Z(λ) similarly as

Z(λ) = M(λ) ×M0(λ) M(λ).

Obviously we have Z(λ) =
⊔

α,β∈Q+
Z(α, β; λ). By the general theory of the

convolution product (See [CG, 2.7]), the homology group H•(Z(λ)) has a
C-algebra structure via convolution and H•(L(λ)) is its module.

For each λ ∈ P+, Varagnolo constructed in [V, Section 4 Theorem] an
algebra morphism from the Yangian associated with g to the equivariant
homology group of Z(λ) with respect to a group action, which is an analogy
of a result of Nakajima in [Nak4] for quantum loop algebras and the equi-
variant K-homology groups. This makes the equivariant homology group of
L(λ) a module over the Yangian. By forgetting the group action, we deduce
the following.

Theorem 4.3. For each λ ∈ P+, there exists a morphism from U(g[z])
to the homology group H•(Z(λ)) of C-algebras. In particular, H•(L(λ)) is
endowed with a U(g[z])-module structure.

We denote by M(λ) the U(g[z])-module H•(L(λ)) and call it the standard
module. We see that the subspace H•(L(α, λ)) corresponds to the h-weight
space of M(λ) of weight λ − α from the explicit definition of the morphism
stated in Theorem 4.3.

Although the following seems to be known, we give a proof for complete-
ness.

Proposition 4.4. We have an isomorphism M(λ) ∼= W (λ) of U(g[z])-
modules.

Proof. By an argument similar to that in [Nak4, Proposition 13.3.1], we can
show that M(λ) is generated by the one-dimensional subspace H•(L(0, λ))
and that a generator taken from this space satisfies the defining relations of
W (λ). Therefore there exists a surjective morphism from W (λ) to M(λ).
Thus it suffices to show that their dimensions are equal. The dimension of
M(λ) is equal to the dimension of H•(L(λ)) by the definition and it is known
by [Nak4, Theorem 14.1.2] to be equal to the product of the dimensions of
the fundamental representations of the corresponding quantum loop algebra.
Then by [FoL, Corollary 2], it is equal to the dimension of W (λ). This
completes the proof. �

5. Cohomological gradings

The most part of this section is taken from [CG], in which a general theory
applicable to our setting is developed. See [CG] for details.
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5.1. Gradings on the convolution algebra and the standard module.
We introduce graded structures into the convolution algebra and its standard
module given in Section 4. Put A = H•(Z(λ)) and M = H•(L(λ)). A
formula in [CG, (2.7.9)] for the change of the degree of the homology groups
by the convolution is as follows:

Hk(Z(α, β; λ)) × Hl(Z(β, γ; λ)) → Hk+l−2dβ
(Z(α, γ; λ)),

Hk(Z(α, β; λ)) × Hl(L(β, λ)) → Hk+l−2dβ
(L(α, λ)).

Put
H[k](Z(λ)) =

⊕
α,β∈Q+

Hdα+dβ−k(Z(α, β; λ))

and
H[k](L(λ)) =

⊕
α∈Q+

Hdα−k(L(α, λ))

for each k. It is easy to see by the above formula that A is a graded C-
algebra by A =

⊕
k H[k](Z(λ)) and that M is a graded A-module by M =⊕

k H[k](L(λ)) [CG, Lemma 8.9.5 and Proposition 8.9.9 (a)].

5.2. Sheaf theoretic analysis of the convolution algebra. For an al-
gebraic variety X we denote by Db(X) the bounded derived category of
constructible complexes of sheaves on X. The constant sheaf CX on X is
regarded as an object of Db(X) concentrated in the degree-zero term.

We abbreviate π∗ : Db(M(α, λ)) → Db(M0(λ)) for the right derived func-
tor of the proper pushforward of π : M(α, λ) → M0(λ). We denote by
Ext•(F ,G) the Ext group for objects F ,G of Db(M0(λ)).

Put Lα = π∗CM(α,λ)[dα] for α ∈ Q+ and L =
⊕

α∈Q+
Lα, which are

objects of Db(M0(λ)). The Ext group Ext•(L, L) has a graded C-algebra
structure by the Yoneda product. Each k and α, β ∈ Q+, we have an
isomorphism Hdα+dβ−k(Z(α, β; λ)) ∼= Extk(Lα, Lβ) of C-vector spaces [CG,
Lemma 8.6.1]. Hence H[k](Z(λ)) and Extk(L, L) are isomorphic. In fact,
this isomorphism induces that of graded C-algebras [CG, Theorem 8.6.7].

Proposition 5.1. There exists an isomorphism H•(Z(λ)) ∼= Ext•(L, L) of
graded C-algebras.

Let i0 : {0} → M0(λ) be the inclusion. We denote by i!0 : Db(M0(λ)) →
Db({0}) the right adjoint of the right derived functor of the proper pushfor-
ward of i0. The cohomology group H•(i!0L) is a graded Ext•(L, L)-module.
We have an isomorphism Hdα−k(L(α, λ)) ∼= Hk(i!0Lα) of C-vector spaces
[CG, Lemma 8.5.4] and this induces an isomorphism H•(L(λ)) ∼= H•(i!0L)
which is compatible with their graded module structures [CG, Proposi-
tion 8.6.16]. A precise statement is the following.

Proposition 5.2. For each k, there exists an isomorphism H[k](L(λ)) ∼=
Hk(i!0L) of C-vector spaces such that the following diagram commutes:

H[k](Z(λ)) × H[l](L(λ)) //

∼=
��

H[k+l](L(λ))

∼=
��

Extk(L, L) × H l(i!0L) // Hk+l(i!0L).
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By the fact that π : M(α, λ) → M0(λ) is semismall, proved by Nakajima
in [Nak3, Corollary 10.11], L is a perverse sheaf on M0(λ). Then by a
property of perverse sheaves, we have Extk(L, L) = 0 for k < 0. Namely
A = H•(Z(λ)) ∼= Ext•(L, L) is positively graded. By the decomposition
theorem together with semismallness of π, the complex L decomposes into
a direct sum of simple perverse sheaves on M0(λ) [CG, Theorem 8.4.8 and
Proposition 8.9.3]. It was proved by Nakajima in [Nak4, Proposition 15.3.2,
see also Theorem 14.3.2 (1)] that L decomposes as

L ∼=
⊕

µ∈P+
µ≤λ

Vµ ⊗ IC(Mreg
0 (λ − µ, λ), CMreg

0 (λ−µ,λ)),

where IC(Mreg
0 (λ−µ, λ), CMreg

0 (λ−µ,λ)) is the intersection cohomology com-
plex associated with the constant sheaf on the stratum M

reg
0 (λ − µ, λ) and

Vµ is a finite-dimensional C-vector space counting its multiplicity. The de-
composition implies that A0 = Ext0(L, L) ∼=

⊕
µ End(Vµ)⊕mµ and hence A0

is a finite-dimensional semisimple C-algebra. Here mµ denotes the number
of the irreducible components of M

reg
0 (λ−µ, λ) (In fact we see that mµ = 1

for every µ since M(λ − µ, λ) is known to be connected. However con-
nectedness of quiver varieties is not used for our aim. See Corollary 6.3 and
Remark 6.4). Each Vµ is regarded as a simple A-module through the projec-
tion A → A0. Then the simple A-module Vµ is regarded as a U(g[z])-module
through the morphism U(g[z]) → A = H•(Z(λ)) in Theorem 4.3. It is sim-
ple as a U(g[z])-module and is isomorphic to V (µ) by [Nak4, Theorem 14.3.2
(3)].

The following two objects, the t-analog of the character and the Kazhdan-
Lusztig type polynomial, were introduced by Nakajima in [Nak5].

Definition 5.3. We define the t-analog χt(M(λ)) of the character of the
standard module M(λ) by

χt(M(λ)) =
∑

α∈Q+

dα∑
k=0

dimHk(L(α, λ))tdα−keλ−α.

Definition 5.4. We define the polynomial Zλµ(t) by

Zλµ(t) =
∑

k

dimHk(i!0IC(Mreg
0 (λ − µ, λ), CMreg

0 (λ−µ,λ)))t
k

and call it the Kazhdan-Lusztig type polynomial for the stratum M
reg
0 (λ −

µ, λ) of the quiver variety.

The standard module M(λ) has a graded module structure as M(λ) =
M = H•(i!0L) over the positively graded C-algebra A = Ext•(L, L). The
associated grading filtration is semisimple since A0 = Ext0(L, L) is semisim-
ple. By applying the functor H•(i!0(−)) to L, we see that each coefficient
dimHk(i!0IC(Mreg

0 (λ− µ, λ), CMreg
0 (λ−µ,λ))) of Zλµ(t) gives the composition

multiplicity of V (µ) in Hk(i!0L).
It is known by [Nak4, Theorem 7.3.5] that H[2k+1](L(λ)) vanishes for every

k. We redefine the grading on M(λ) by M(λ)k = H[2k](L(λ)), removing the
superfluous odd terms. Although vanishing of H[2k+1](Z(λ)) has not been
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proved so far, this does not affect the module structure of M(λ), for every
odd term H[2k+1](Z(λ)) acts by zero on M(λ) as H[2k+1](L(λ)) = 0. Under
this new grading, the length of the grading filtration on M(λ) is given as
follows.

Proposition 5.5. The length of the grading filtration on the standard mod-
ule M(λ) is equal to (1/2) dim M0(λ) + 1 = (1/2) dim M(λ− λmin, λ) + 1 =
(1/2){(λ, λ) − (λmin, λmin)} + 1.

Proof. By the definition of the grading, we see that the length of the grading
filtration is equal to (1/2)max{dα | α ∈ Q+} + 1. We have max{dα | α ∈
Q+} = dλ−λmin

= (λ, λ) − (λmin, λmin) by Lemma 4.1 and this is equal to
(1/2) dim M0(λ) by Lemma 4.2. �

6. Coincidence of the gradings and its applications

6.1. Coincidence of the gradings. The following is the second main the-
orem of this article.

Theorem 6.1. Under the isomorphism M(λ) ∼= W (λ), the gradings on the
both sides coincide. The associated grading filtration gives a unique Loewy
series. The Loewy length is equal to (1/2) dimM0(λ)+1 = (1/2) dimM(λ−
λmin, λ) + 1 = (1/2){(λ, λ) − (λmin, λmin)} + 1.

Proof. We prove that the two gradings coincide. Recall that W (λ) is rigid
by Theorem 3.10 and hence its Loewy series is unique. Since the grading
filtration on M(λ) is semisimple, it suffices to check that its length coincides
with the Loewy length of W (λ). This follows from Proposition 3.14 (ii) and
Proposition 5.5. The all remaining assertions are now proved. �

Remark 6.2. In fact coincidence of the gradings in Theorem 6.1 can be
deduced also from the fact that the morphism U(g[z]) → H•(Z(λ)) in The-
orem 4.3 is that of graded C-algebras, which is proved by checking directly
that the images of the homogeneous generators of U(g[z]) have the appro-
priate degree. Although this was not stated in [V] explicitly, it seems to be
known to specialists. The authors were informed of it by Hiraku Nakajima.

Corollary 6.3. The quiver variety M(α, λ) of type ADE and its Lagrangian
subvariety L(α, λ) are connected if they are nonempty.

Proof. Let α be an element of Q+ such that L(α, λ) is nonempty. Since
L(α, λ) is homotopic to M(α, λ), it suffices to show that dim H0(L(α, λ)) =
1. Recall that W (λ) ∼= Lw(Λ) where w0wΛ = λ + Λ0. By Theorem 6.1, we
see that H0(L(α, λ)) corresponds to the ĥ-weight space of Lw(Λ) of weight
(λ−α)+Λ0+(dα/2)δ under the isomorphism M(λ) ∼= W (λ) ∼= Lw(Λ). This
weight is equal to t−α(λ+Λ0) = t−αw0wΛ, an extremal weight of L(Λ), and
hence its weight space is one-dimensional. This completes the proof. �

Remark 6.4. Connectedness of quiver varieties for arbitrary graphs has
been already proved by Crawley-Boevey in [CB]. Here we deduce this fact
for the quiver varieties of type ADE as a corollary of our result.
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6.2. The gradings on Weyl modules and crystals. The grading on the
standard module M(λ) comes from the degree of the homology group of the
quiver variety as explained in Section 5. The grading on the Weyl module
W (λ) is related to the energy function defined on a certain crystal, which
was proved by the second author in [Nao]. In this subsection, we review this
subject. Together with the fact that the both gradings coincide as proved
in Theorem 6.1, we obtain nontrivial relations between quiver varieties and
crystals, Corollary 6.10 and Corollary 6.11.

Let M be a finite-dimensional graded U(g[z])-module. We denote by Mµ

the h-weight space of M of weight µ ∈ P . Since the action of h is degree
zero, we have M =

⊕
k∈Z

⊕
µ∈P (Mk ∩ Mµ). The graded character gcht M

of M is defined by

gcht M =
∑
k∈Z

∑
µ∈P

dim(Mk ∩ Mµ)tkeµ.

This is a refinement of the usual h-character of M as gch1 M = chM .
The graded composition multiplicity of the simple module V (µ) in M is the
polynomial defined by ∑

k∈Z
[Mk : V (µ)]tk,

where [Mk : V (µ)] denotes the composition multiplicity of V (µ) in Mk.
We remark that the t-analog χt(M(λ)) of the character and the Kazhdan-
Lusztig type polynomial Zλµ(t) introduced in Section 5 are nothing but the
graded character of M(λ) and the graded composition multiplicity of V (µ)
in M(λ) respectively, where the grading is original one. Hence we have

χt(M(λ)) = gcht2 W (λ)

and
Zλµ(t) =

∑
k≥0

[W (λ)k : V (µ)]t2k

by coincidence of the gradings in Theorem 6.1.
Let us turn to crystals. We refer to the seminal paper by Kashiwara [Kas1]

and a standard text book [HK] for the basic theory of crystals and to [Kas2]
for the level-zero fundamental representations of the quantum affine algebra
U ′

q(ĝ) and their crystal bases. In the sequel we treat only P̂cl-crystals, where
P̂cl = P̂ /Zδ is the weight lattice of U ′

q(ĝ). Note that P can be regarded as a
subset of P̂cl. Then for a P̂cl-crystal with level-zero weight, the weight map
wt takes its values in P .

The definition of one-dimensional sums was given by Hatayama, Kuniba,
Okado, Takagi and Yamada in [HKOTY] and by Hatayama, Kuniba, Okado,
Takagi and Tsuboi in [HKOTT] motivated by the study of solvable lattice
models. Here we need them only for tensor products of the crystal bases of
level-zero fundamental representations, while they are defined for a wider
class of crystals in general. Our treatment follows an approach by Naito and
Sagaki in [NS2]. We denote by Bi the crystal base of the level-zero funda-
mental representation of the quantum affine algebra U ′

q(ĝ) associated with
the fundamental weight ϖi for i ∈ I. For a given sequence i = (i1, . . . , il) of
elements of I we put Bi = Bi1 ⊗ · · · ⊗ Bil . Let Di be the energy function
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defined on the crystal Bi and Dext
i the extra constant, which is a certain

integer, as in [NS2, Subsection 4.1]. We denote by B(λ)cl the crystal con-
sisting of all Lakshmibai-Seshadri paths of shape λ ∈ P+ modulo δ, which
was proved by Naito and Sagaki in [NS1, Corollary 4.4] to be isomorphic to
Bi for every i satisfying

∑l
k=1 ϖik = λ. Let D be the degree function on

B(λ)cl defined in [NS2, Subsection 3.1]. The following theorem was proved
in [NS2, Thorem 4.1.1].

Theorem 6.5. Under the isomorphism Bi
∼= B(λ)cl, the function Di−Dext

i
on Bi corresponds to the degree function D on B(λ)cl.

Following [HKOTY], [HKOTT] and [NS2] we introduce a polynomial
called the one-dimensional sum and its variant.

Definition 6.6. Let i be a sequence of elements of I. We define the one-
dimensional sum X(Bi, µ, t) associated with the crystal Bi and µ ∈ P+ by

X(Bi, µ, t) =
∑
b∈Bi

ẽib=0 (i∈I)
wt b=µ

tDi(b).

For λ, µ ∈ P+, we define the polynomial X(λ, µ, t) by

X(λ, µ, t) =
∑

b∈B(λ)cl
ẽib=0 (i∈I)

wt b=µ

tD(b).

Remark 6.7. Let λ and µ be elements of P+ and take a sequence i =
(i1, . . . , il) of elements of I so that

∑l
k=1 ϖik = λ. Then we have

X(λ, µ, t) = t−Dext
i X(Bi, µ, t)

by Theorem 6.5.

Remark 6.8. In general, X(λ, µ, t) is a polynomial in t−1 with its coeffi-
cients in nonnegative integers since the degree function takes its values in
Z≤0 by its definition.

The following theorem was proved by the second author in [Nao, Theo-
rem 9.2 and Corollary 9.6], generalizing a result in [CL] which concerns the
case of type A.

Theorem 6.9. Let λ be an element of P+.
(i) We have

gcht W (λ) =
∑

b∈B(λ)cl

t−D(b)ewt b

=
∑

µ∈P+

X(λ, µ, t−1) chV (µ).

(ii) For µ ∈ P+, we have∑
k≥0

[W (λ)k : V (µ)]tk = X(λ, µ, t−1).
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We obtain the following corollary of Theorem 6.1 and Theorem 6.9, a
formula for the Poincaré polynomials of quiver varieties, as an equality for
the graded character.

Corollary 6.10. We have∑
α∈Q+

dα∑
k=0

dimHk(L(α, λ))tdα−keλ−α =
∑

b∈B(λ)cl

t−2D(b)ewt b

=
∑

µ∈P+

X(λ, µ, t−2) chV (µ).

In particular, we have
dα∑

k=0

dimHk(L(α, λ))tdα−k =
∑

b∈B(λ)cl
wt b=λ−α

t−2D(b).

We also obtain an equality for the graded composition multiplicity. Recall
that Zλµ(t) denotes the Kazhdan-Lusztig type polynomial for the stratum
M

reg
0 (λ − µ, λ) of the quiver variety.

Corollary 6.11. We have

Zλµ(t) = X(λ, µ, t−2).

6.3. Lusztig’s fermionic conjecture and the X = M conjecture.
Lusztig conjectured in [L] that the Poincaré polynomials of quiver varieties
are described in terms of the fermionic forms also introduced in [HKOTY]
and [HKOTT]. The so-called X = M conjecture asserts that the one-
dimensional sum and the fermionic form coincide up to some constant power.
We discuss these subjects in this subsection.

For a sequence m = (m(i)
k )i∈I,k∈Z>0 of nonnegative integers with finitely

many nonzero terms and λ ∈ P+, we define the integer p
(i)
k (m, λ) for i ∈ I

and k ∈ Z>0 by

p
(i)
k (m, λ) = ⟨hi, λ⟩ −

∑
j∈I

(αi, αj)
∑
l≥1

min{k, l}m(j)
l

and the integer c(m, λ) by

c(m, λ) =
1
2

∑
i,j∈I

(αi, αj)
∑
k,l≥1

min{k, l}m(i)
k m

(j)
l −

∑
i∈I

∑
k≥1

⟨hi, λ⟩m(i)
k .

For λ, µ ∈ P+ we define the subset S(λ, µ) of Z(I×Z>0)
≥0 by

S(λ, µ) =
{
m

∣∣∣∣ ∑
i∈I

∑
k≥1

km
(i)
k αi = λ − µ

}
.

With the notation as above, we define the fermionic form M(λ, µ, t) associ-
ated with λ, µ ∈ P+ by

M(λ, µ, t) =
∑

m∈S(λ,µ)

tc(m,λ)
∏

i∈I,k≥1

[
p
(i)
k (m, λ) + m

(i)
k

m
(i)
k

]
t

,
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where the Gaussian binomial coefficients are defined in a usual manner with
t-integers as [n]t = (tn − 1)/(t − 1) and we set[

m

n

]
t

= 0

for m < n. Then M(λ, µ, t) turns out to be a polynomial in t−1 with
its coefficients in nonnegative integers. Lusztig’s fermionic conjecture [L,
Conjecture A] is the following:∑

α∈Q+

dα∑
k=0

dimHk(L(α, λ))tdα−keλ−α =
∑

µ∈P+

M(λ, µ, t−2) chV (µ).

As pointed out in [Nao, Section 9], results of Ardonne and Kedem in [AK]
and Di Francesco and Kedem in [DFK], together with [FoL], imply that
the graded composition multiplicity of the simple module V (µ) in the Weyl
module W (λ) coincides with the fermionic form M(λ, µ, t−1). Then by The-
orem 6.1, we conclude that Lusztig’s conjecture is true.

Mozgovoy proved in [M] a variant of the above formula. It implies with
an easy argument the following:∑

α∈Q+

dα∑
k=0

dimHk(L(α, λ))tdα−keλ−α =
∑

µ∈P+

N(λ, µ, t−2) chV (µ),

where the polynomial N(λ, µ, t) is defined in a way similar to M(λ, µ, t)
with the different binomial coefficients. It was conjectured in [HKOTY] and
[HKOTT] that M(λ, µ, t) = N(λ, µ, t). The above formulas imply that the
conjecture is also true.

Also as explained in [Nao, Section 9], the equality X(λ, µ, t) = M(λ, µ, t)
holds by combining the results mentioned above and Theorem 6.9. Indeed
both X(λ, µ, t−1) and M(λ, µ, t−1) coincide with the graded composition
multiplicity of V (µ) in W (λ). Thus the X = M conjecture for the case
of tensor products of level-zero fundamental representations has been now
solved.

So far we have achieved the equalities:

Zλµ(t) = X(λ, µ, t−2) = M(λ, µ, t−2) = N(λ, µ, t−2).

Remark 6.12. One-dimensional sums and fermionic forms are both defined
for tensor products of Kirillov-Reshetikhin modules for quantum affine alge-
bras and it was conjectured in [HKOTY] and [HKOTT] that they coincide
up to some constant power. In a general setting, this conjecture is still open.
The authors do not know whether quiver varieties are related to them for
general Kirillov-Reshetikhin modules or not.

6.4. Type A. In this subsection, we pick up two previous works for type
A, [Nak1] by Nakajima and [CL] by Chari and Loktev. Let g be the simple
Lie algebra of type An. The index set I is identified with {1, . . . , n} with a
usual numbering as ⟨hi, αj⟩ = 2δi,j − δi,j−1 − δi,j+1.

Nakajima calculated in [Nak1] the Poincaré polynomials of quiver varieties
of type A in terms of tableaux. We identify the set P+ of all dominant
integral weights with the set of all partitions of length less than or equal to
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n as usual. Let T (α, λ) be the set of all row-increasing tableaux of shape
tλ and weight λ − α. Nakajima defined a certain function l on T (α, λ) and
proved the following [Nak1, Theorem 5.15]:

dα∑
k=0

dimHk(L(α, λ))tk =
∑

T∈T (α,λ)

t2l(T ).

By comparing this formula with ours in Corollary 6.10, we see that there
exists an abstract bijection between the set {b ∈ B(λ)cl | wt b = λ − α}
and T (α, λ) such that the degree function D corresponds to the function
−(1/2)dα + l. We should give an explicit description of the bijection. It is
known that B(λ)cl is identified with the set of all column-increasing tableaux
of shape λ. By transposing the tableaux, we obtain a bijection. However
this naive one does not satisfy the property mentioned above. Thus we need
further study to understand a relation between his result and ours.

Chari and Loktev gave in [CL] a quite explicit description of the graded
characters of Weyl modules for type A. In our viewpoint, it gives an explicit
formula for the Poincaré polynomials of quiver varieties of type A. Put
αi,j =

∑j
s=i αs for i, j ∈ I with i ≤ j. These elements form the positive

roots of the root system of type An. For α ∈ Q+ we define the subset S(α)
of Zn(n+1)/2

≥0 by

S(α) =
{

(li,j)1≤i≤j≤n

∣∣∣∣ ∑
1≤i≤j≤n

li,jαi,j = α

}
.

A formula in [CL, 2.1.4 Proposition] yields the following:
dα∑

k=0

dimHk(L(α, λ))tdα−k

=
∑

(li,j)∈S(α)

∏
1≤i≤j≤n

[
⟨hi, λ⟩ +

∑n
s=j+1 li+1,s −

∑n
s=j+1 li,s

li,j

]
t2

.
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