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Abstract

In this article, we show in the ADFE case that the fusion product
of Kirillov-Reshetikhin modules for a current algebra, whose character
is expressed in terms of fermionic forms, can be constructed from one-
dimensional modules by using Joseph functors. As a consequence, we
obtain some identity between fermionic forms and Demazure operators.
Since the same identity is also known to hold for one-dimensional sums of
nonexceptional type, we can show from these results the X = M conjec-
ture for type A,(f and D§L1>.

1 Introduction

Let g be an affine Kac-Moody Lie algebra with index set I, and U,(g) the
corresponding quantum affine algebra without the degree operator. In [13, 12],
it was conjectured that a certain subfamily of finite-dimensional U (g)-modules
known as Kirillov-Reshetikhin (KR for short) modules W has crystal bases
B™* called KR crystals. Here the index r corresponds to a node of Iy = I\ {0}
where 0 is the node specified in [16], and ¢ is a positive integer. This conjecture
has been confirmed in many cases, in particular when g is nonexceptional [26].

Let B = B™* ®..-® B"™" be a tensor product of KR crystals. In [13, 12],
the authors defined the one-dimensional sum

XB,pq)= >,  ¢"Pezlgq,
beB
€;6=0 (i€ly)
wt(b)=p

where p is a dominant integral weight of the simple Lie subalgebra gg C g whose
Dynkin nodes are I, D is a certain Z-function on B called the energy function,
and ¢; are Kashiwara operators. Then they conjectured that X (B, u, ¢) has an
explicit expression M (v, p, q) called the fermionic form, where v is the sequence
of elements of Iy X Z~ corresponding to B. This conjecture is called the X = M
conjecture, which was confirmed in many instances [18, 28, 29], but a proof in
full generality has not been available except for the type g = ASP in [18]. It
should be mentioned that this conjecture was recently settled for nonexceptional
g under the large rank hypothesis by combining the results in [18], [21] and [25],
and for general g if {1 =--- ={, =1 [23].

Recently, an identity was proved in [24] which connects one-dimensional
sums of nonexceptional type with Demazure operators. Let us recall the result
briefly. For simplicity, we assume g is of type A%l ) or D,S” here. Denote by P



the weight lattice of g and by D; for ¢ € I the Demazure operator on the group
ring Z[P] defined by
f—e % s(f)

1—e

Di(f) =

)

where the simple reflection s; acts on Z[P] by s;(e*) = e%M). Let W be the Weyl
group of g, W the extended affine Weyl group, and ¥ the subgroup of the group
of Dynkin automorphisms such that W = W x X (for the precise definition,
see Section 3). Then for each 7 € ¥ and w € W with a reduced expression
W= 8;, - Siy, Dwr is defined by D, = D;, --- D;, o7 (this definition does not
depend on the choice of the expression). Let now B = B"™»% ®---® B™% be a
tensor product of KR crystals such that ¢; < --- < £, PJ the set of dominant
integral weights of go, and Vg, (1) the irreducible go-module with highest weight
p € Py, Then the following identity was proved in [24], where C is some

constant and we set ¢ = e 9

¢ et Y T X (B, ) ch Vo, (1) (1)
REPS
=Diyyie ) (e(e,,_ep,l)Ao - Di, (ela=t0)ho . Dy, (€220)) )

Here ¢ is the null root, Ag is the fundamental weight of g associated with the
node 0, w; are the fundamental weights of go, wp is the longest element of the
Weyl group of gg, and two(wrj) € W are the translations.

The goal of this article is to show the identity (1.1) with the one-dimensional
sums replaced by the corresponding fermionic forms. Namely, we will prove the
following result as a corollary of Theorem 1.2 stated below (Corollary 7.3):

Corollary 1.1. Assume that g is of nontwisted type and go is of ADE type.
Letv = ((7’1,51), ce (rp,ﬁp)) be a sequence of elements of Iy X Z~q such that
6 <--- < {,. Then we have

quZpAO Z M(Valhq)Ch Vgo (/J)

pEPS

— (p—tp—1)Ao .. (L2—£1)Ao | iAo ..
= tho(mp> (e Dy € Dt ooy (e7))

wO(WTg) (

with some constant C, where we set ¢ = e~°.

Then as an immediate consequence of (1.1) and this corollary, the X = M
conjecture for A and DSV is settled (Theorem 7.5).

Our strategy of the proof of Corollary 1.1 is to show the isomorphism between
two modules whose characters are equal to the left hand side and the right
hand side respectively. Let us describe what these modules are. The module
corresponding to the left hand side is the fusion product of Kirillov-Reshetikhin
(KR) modules for the current algebra go ® C[t]. KR modules for go @ C[t],
which we denote by KR™ (r € Iy, £ € Zw¢) in this article, were defined in
[2, 4] in terms of generators and relations. They can also be obtained from W™
(KR modules for Uj(g)) by specialization and restriction, which is why they
are so named. The fusion product is a refinement of the usual tensor product
defined in [7], which constructs a cyclic graded (go ® C[t])-module from some



such modules. It was proved by Di Francesco and Kedem in [5] that the fusion
product of KR modules has the required (graded) character. Namely, they
proved the following character formula for the fusion product of KR modules:

for a sequence v = ((ry,41),...,(rp,€p)) of elements of Iy x Z, we have
ch KR™®f s« KR = > M(v, 1, q)ch Vg, (), (1.2)
nEPS

where * denotes the fusion product.

To present the module corresponding to the right hand side, we recall the
definition of Joseph functors introduced by Joseph [14]. Let h be a Cartan
subalgebra of g, b a Borel subalgebra of g containing h, and p; for ¢ € I the
parabolic subalgebra associated with the set {i} containing b. We denote by
b-Mod (resp. p;-Mod) the category of finite-dimensional h-semisimple left b-
modules (resp. p;-modules). Then the functor D;: b-Mod — p;-Mod is defined
as the left adjoint functor of the restriction functor p;-Mod — b-Mod. For
w € W with a reduced expression w = s;, ---S;,, the Joseph functor D, is
defined by

Dy =7D;, - D;, : b-Mod — b-Mod,

which does not depend on the choice of the expression. We also define D,,,
for w € W and 7 € ¥ by Dy, = Dy o (771)*, where (771)* denotes the pull-
back functor associated with the Lie algebra automorphism 7! of b. Then the
b-module corresponding to the right hand side of Corollary 1.1 is constructed
using these functors as follows:

tho(wrp) (C(‘gp*epfl)AU ® T ® DtWO(WTQ) ((C(Z27Z1)AO ® ,thO(WT‘l)CglAO) o ) ’

From the results of [14] and [19], we can easily see that chD,,M = D,,ch M
holds for w € W if a b-module M has a Demazure flag (see Definition 2.2). It is
checked from this fact that the above module in fact has the required character.

Now, what we have to prove is the following isomorphism, which is our main
theorem in this article (Theorem 6.1):

Theorem 1.2. Assume that g is of nontwisted type and go is of type ADE.
Let KR ... KR be a sequence of KR modules such that {; < --- < ly.
Then there exists an isomorphism of b-modules

Cepnoros ® (KRTP’ZP %% KR™% « KR™ ,21)

= tho(WTp) (C(ep_zpfl)/\ﬂ Q- tho(Wrz) (C(EZ’—ZI)AO ® tho(wm)(CZle) o )

with some constant C, where the left hand side is naturally regarded as a b-
module.

As explained above, Corollary 1.1 follows as a direct consequence of this
theorem. It should be remarked that this theorem for g = Agl) was already
proved by Feigin and Loktev in [7]. In the case £; = --- = {,, this was proved
by Fourier and Littelmann in [9].

The plan of this article is as follows. In Section 2, we review the results on

Demazure modules and Joseph functors. In Section 3, we prepare some notation



and elementary lemmas concerning a nontwisted affine Lie algebra. In Section
4, we recall the definition of KR modules for a current algebra. For the later
convenience, we define them as p;,-modules in this article, where pz, denotes the
parabolic subalgebra associated with Iy. In Section 5, we recall the definition
of fusion products. Then we state our main theorem in Section 6, and explain
in Section 7 how the X = M conjecture for type AS) and DSP is deduced from
this theorem. The last two sections are devoted to prove the main theorem. In
Section 8, we introduce the b-fusion product, which is some modified version
of the fusion product constructing a b-module from some b-modules. Then in
Section 9, we give the proof of the main theorem using b-fusion products.

Acknowledgments: The author would like to express his gratitude to R.
Kodera, S. Naito and Y. Saito for a lot of helpful discussions and comments.

2 Demazure modules and Joseph functors

Let g be a complex symmetrizable Kac-Moody Lie algebra with index set I and
Chevalley generators {e;, f; | ¢ € I'}, b C g its Borel subalgebra, and § C b its
Cartan subalgebra. Let «; € b* (i € I) be the simple roots, ) € § (i € I) the
simple coroots, and W the Weyl group of g with simple reflections s; (i € I).
Denote by

P={\ebh*|{\o))€Zforiecl}and
Pt={NeP|(\«a])€Zsoforiecl}

the weight lattice and the set of dominant integral weights respectively. For a
h-module M, we denote by M) for A € h* the weight space

My ={veM]|hv=(Ah)for h € h}.

We call a vector v of M a weight vector if v € M) for some A € h*.

Denote by V() the irreducible highest weight g-module with highest weight
A € Pt. For w € W, let 1y be a nonzero vector of the one-dimensional weight
space V(A)wx.

Definition 2.1. For A € P™ and w € W, the b-submodule
Viw(N) = U(b)uwn € V(N)
is called the Demazure module associated with \ and w.

For a subset J C I, we denote by p; the parabolic subalgebra associated with
J, which is the Lie subalgebra of g generated by b and {f; | i € J}. Note that
pp = b. If J = {i}, we denote p; by p;. In this article, we denote by p ;-Mod the
category of finite-dimensional h-semisimple left p;-modules. If (wA, o) < 0,
then the Demazure module V,,(\) is preserved by the action of f;. Hence V()
belongs to py-Mod if (wA, ) < 0 holds for all ¢ € J.

Definition 2.2. Let M € b-Mod. A filtration 0 = My C My C --- C My =
M is called a Demazure flag of M if every successive quotient M;/M;_q is
isomorphic to some Demazure module.



For every i € I, it is known that the restriction functor p;,-Mod — b-Mod
has the left adjoint functor D;: b-Mod — p;-Mod [14, 19]. We often regard D;
as a functor from b-Mod to b-Mod in the obvious way.

Proposition 2.3 ([19, Remark 8.1.18]). Let w € W, and w = s;, -+ S;, be
its arbitrary reduced expression. Then the functor Dy, = D;, -+ Dj, : b-Mod —
b-Mod does not depend on the choice of the expression.

Definition 2.4. The functor D,,: b-Mod — b-Mod is called the Joseph functor
associated with w € W.

Note that for every ¢ € I and M € b-Mod, the canonical b-module homo-
morphism M — D;M is defined as the image of the identity under the bijec-
tion Hom y,-mod (D; M, D; M) = Hom p-mod (M, D; M). The following lemma was
proved in [14, Subsection 2.7 and Lemma 2.8 (iv)] for finite-dimensional g, and
the proof goes without any change for general g:

Lemma 2.5. Leti € 1.

(i) For every M € p;-Mod, the canonical b-module homomorphism M — D; M
is an isomorphism. In particular, we have DN = D;N for every N € b-Mod.
(ii) Assume that 0 — M; — My — Ms — 0 is an ezxact sequence of objects
of b-Mod and M3 is isomorphic to some b-submodule of a finite-dimensional
p;-module. Then the sequence 0 — D; My — D; My — D; M3 — 0 is ezact.

For A\ € h*, we denote by C, the one-dimensional b-module spanned by a
weight vector with weight A on which e; (i € I) acts trivially. Note that we
have Vig(\) = C, for A € P*. Now we recall the following theorem:

Theorem 2.6 ([19, Proposition 8.1.17 and Corollary 8.1.26]). For every A\ € P™
and w € W, we have
DwCyr =V (N)

as b-modules.

Corollary 2.7. Assume that M € b-Mod has a Demazure flag. Then D, M
has a Demazure flag for every w € W.

Proof. 1t is enough to show the assertion for w =s;. Let 0 = My C M; C--- C
M, = M be a Demazure flag of M. We show the assertion by the induction on
k. For a Demazure module V,,()), we have from Lemma 2.5 (i) and Theorem
2.6 that

Vs,w(A) i £(s;w) = £(w) + 1,

Vw(A) i L(s;w) = L(w) — 1, (2.1)

DiVi(N) = {
where ¢ denotes the length function. Hence the assertion for £ = 1 follows.
Assume k > 1 and write My /M_1 = V,, (Ag). Recall that V,, (A\x) is defined
as a b-submodule of V(A;). Hence this module is also a b-submodule of the
p;-module U(p;)Va, (Ax) € V(Ag), which is finite-dimensional since V()) is
integrable. Hence the sequence 0 — D;My_1 — D;M — D;V,, (A\r) — 0 is
exact by Lemma 2.5 (ii), and then the assertion follows from the induction
hypothesis. O



Let Z[P] denote the group ring of P with basis e* (A € P), and define for
i € I a linear operator D; on Z[P] by

f—e % si(f)

1 —e

Di(f) =

where s; acts on Z[P] by s;(e?) = esi™) . We call D; the Demazure operator
associated with ¢. The following lemma is proved by elementary calculations

such as s;(fg) = s:(f)si(9).

Lemma 2.8 ([8, Lemma 2]). Assume that f € Z[P] is s;-invariant. Then we
have

Di(fg) = fDi(g) for every g € Z[P).

In particular, we have D? = D;.

For a finite-dimensional semisimple h-module M such that {\ € b* | M) #
0} C P, we denote the character of M by

ch M =" dimM, -e* € Z[P).
AEP

For every reduced expression w = s;, ---s;, of w € W, the operator D,, =
D;, -+ D;, on Z[P] is independent of the choice of the expression [19, Corollary
8.2.10], and it is known that the character of a Demazure module is expressed
as follows:

Theorem 2.9 ([19, Theorem 8.2.9]). For every Demazure module Vi, (\), we
have
ch Vi, (A) = Dy (e?).

Corollary 2.10. Assume that M € b-Mod has a Demazure flag. Then for
every w € W, we have

chDyM = D, ch M.

Proof. By Corollary 2.7, it is enough to show the assertion for w = s;. Let
0=My C My C--- C M =M be a Demazure flag of M. We show the
assertion by the induction on k. Assume k& = 1, and write M = V, (). If
L(s;w) = £(w) + 1, we have

chD;Viy(A) = ch Vi,0(A) = Dy, () = Dich Vi, (N) (2.2)

by Theorem 2.6 and Theorem 2.9. If ¢(s;w) = ¢(w) — 1, we have chD;V,,(A) =
chV,,(A\) by (2.1), and

Dich Vi, (\) = D2ch Vi, (\) = Dich Vi, (\) = ch Vi, (A)

by (2.2) and Lemma 2.8. Hence the assertion for k = 1 follows. Assume k > 1
and write My, /Mj_1 = Vi, (Ax). Then as proved in the proof of Corollary 2.7,
the sequence 0 — D;My,_1 — D;M — D;V,, (Ar) — 0 is exact. Hence the
assertion follows from the induction hypothesis. O

The following theorem is obtained by taking the classical limit of [15, The-
orem 5.22]:



Theorem 2.11. Assume that g is symmetric (i.e. the Cartan matriz of g is
symmetric). Then for every \,u € PT and w € W, the b-module Cy ® V,, (1)
has a Demazure flag.

Remark 2.12. In [15, Theorem 5.22], a given Kac-Moody Lie algebra is as-
sumed to be simply laced. This assumption, however, is used only in [15, Lemma
3.14] to apply a positivity result of Lusztig, and we can check that the proof
of this positivity result in [22, §22.1.7] goes without any change for every sym-
metric Kac-Moody Lie algebra. Hence [15, Theorem 5.22] holds for symmetric
Kac-Moody Lie algebras, and so does the above theorem.

From the theorem, we have the following corollary since the functor C) ® —
is exact:

Corollary 2.13. Assume that g is symmetric. If M € b-Mod has a Demazure
flag, then Cy @ M for A € Pt has a Demazure flag.

3 Nontwisted affine Lie algebra

From this section, we assume that g is a nontwisted affine Lie algebra with
I =1{0,1,...,n} unless stated otherwise. Let I" be the Dynkin diagram of g,
A = (a;j)i jer the Cartan matrix of g, A C h* the root system of g, and AT C A
the set of positive roots corresponding to b. In this article, we use the Kac’s
labeling of nodes of T" in [16, Section 4.8]. Let (ag,...,a,) (resp. (ay,...,aY))
be the unique sequence of relatively prime positive integers satisfying

Zaijaj =0 foralliel (resp.Za;/aij =0 foralljel).
jE€I i€l

Let d € b be the degree operator, which is any element satisfying (a;, d) = dp; for
ie€l, K=73,.;a/a/ €b the canonical central element, and § = 3, a;a; €
h* the null root. For each i € I, let A; € P be the fundamental weight, which
satisfies

<AZ,(){>/> = 5@' for j e I and <A1,d> =0.

Note that we have

P=> ZA;+C5 and Pt =) 7ZyoA; +Cs.
el i€l

Let (, ) be the W-invariant symmetric bilinear form on h* defined by
(i, o) = ala; ay, (ei,Ag) =dg; fori,jel and (Ag,Ag) = 0.

We denote by nt (resp. n™) the Lie subalgebra of g generated by {e; | i € I}
(vesp. {fi | i € I}), and by g, for a € A the root space of g.

Let I = I\ {0}, and go C g be the simple Lie subalgebra generated by
{ei, fi | © € Iy} with Cartan subalgebra by C h and Weyl group Wy C W. Let
Ay C A be the root system of go, A7 = Ay N AT the set of positive roots,
Py C b the weight lattice of go, P, C Py the set of dominant integral weights,
Qo C Py the root lattice of gy, and Qg = Zielo Z>pco;. Denote by w; € by and
w, € by (i € Ip) the fundamental weights and the fundamental coweights of go



respectively. For the notational convenience, we set wy = 0 and wy = 0. We
often regard b as a subspace of h* by setting (b5, K) = (b3, d) = 0. Then we
have h* = h ® CAp @ Cd. We denote by 0 = Zielo a;a; the highest root of g,
and by wg the longest element of Wj. Let ni{ (resp. ng ) be the Lie subalgebra
of go generated by {e; | i € Io} (resp. {fi | i € Ip}), and by = bhy ® nJ. Set
€a; = €; and e_,, = fi for i € I, and for each o € A \{c | i € Iy} fix nonzero
vectors €44 € gtq, @Y € hgo so that

[ease_o] =Y, [aY,era] = F2e4q.
Recall that there exists a unique Lie algebra isomorphism
9> g0®C[t, 17| ®CK & Cd
satisfying
e e @1, firm fi®1(i€]y), egre_g®t, forsep@t L, d d.
The Lie algebra structure of go @ C[t,t!] & CK @ Cd is defined by
[x@t"+a1 K 4+ bid,y @ t" 4+ as K + bad]
= [z,y] @ """ + nb1y @ " — mbox @ t™ + My —p (7, y) K.

In the sequel, we always identify these two Lie algebras via the above isomor-
phism. It should be noted that we have

pr, =80 ®C[t] ® CK @ Cd.

Set g’ = [g, 9],
p,=p;Ng for JCI, and bH' =Hhng'.

Note that we have p; = p; & Cd and ' = ho®CK. Let cl: b* — (h')* = h*/Cé
denote the canonical projection, and set P.; = cl(P). Since W fixes 6, W acts
on h*/Cé and P,. For £ € Z, we denote by P4 the subset {\ € Py | (\, K) = ¢}
of Pcl-

As [16, (6.5.2)], we define for A € Py an endomorphism ¢y of §* by

() = p+ (u, K)X — ((u7A)+%(A,A)<M,K>)5- (3.1)

The map A — ¢ defines an injective group homomorphism from Py to the group
of linear automorphisms of h* orthogonal with respect to ( , ). Let ¢; = a;/a}

for ¢ € I, and define the sublattices M and M of Py by

M= Z Zw(&), M: @Zciwi.
weWy i€lp

Let T(M) and T'(M) be the subgroups of GL(h*) defined by
T(M)={tx | Ae M}, T(M)={ts| e M}

It is known that W = Wy x T(M) [16, Proposition 6.5]. Define the subgroup
W of GL(b*) by
W =Wy x T(M),



which is called the extended affine Weyl group. The action of 1% preserves A,
and w € Wy and A € M satisfy

wtkwfl =tw(n)-

By Aut (T') we denote the group of automorphisms of the Dynkin diagram T,
that is, the group of permutations 7 of I satisfying a;; = a,(;)-(;) for all ¢, j € I.
Let by = > ;c;Ra; + RAg € h*, C = {X € by | (\,a;) > 0 forall i € I}
be the fundamental chamber, and ¥ C W the subgroup consisting of elements
preserving C. Then we have .

W =W x 3.

Since 7 € X preserves the set of simple roots, 7 induces a permutation of I
(also denoted by 7) by 7(a;) = a,(;), which belongs to Aut (T') since ( , ) is

T-invariant. By abuse of notation, we denote by ¥ both the subgroups of W
and Aut (T).

Lemma 3.1. Let 7 be an arbitrary element of X, and T the unique element of
Wo such that T € T-T(M). Then we have

T(A+ad) =7(\) + (a+ (A,w¥_1(0)>)5 for A€ Py and a € C.

Proof. As t,(o;) = a; mod Z4 for every i € I and pu € M, we have (o) =
T(a;) mod Z§. This forces 7(a;) = T(ay) + 67(y,00 for i € Iy since T preserves
{ag,...,a,} and T € Wy. Now the assertion follows since

T(A+ ad) = Z()\, @ )1(a;) + ad
i€ly
= Z<>\7w¢v>f(ai) + (a4 (X, w¥—1(0)>)5
i€ly

=7\ + (a+ (A @) a))d.
O

We define an action of ¥ on g by letting 7 € 3 act as a Lie algebra auto-
morphism defined by

7(ei) = er(), T(a)) = a;/(i), 7(fi) = fr@y and 7(d) = d+w¥(o).

This action obviously preserves b and b’. For a module M, we denote by 7*M
the pull-back of M with respect to 7. The image of v € M under the canonical
linear isomorphism M — 7*M is denoted by 7*v. Note that this isomorphism
maps the weight space My onto (7*M) -1(y).

We prepare some notation here. Let w € W be an arbitrary element, and
take unique elements w’ € W and 7 € X so that w = w’7. Then define a functor
D, : b-Mod — b-Mod by

Dw = Dw’ © (Tﬁl)*7

and a linear operator D,,: Z[P] — Z[P] by

Dw:Dw/OT,



where 7 acts on Z[P] by 7(e*) = e™™. We set
Viw(A) = Vi (7(A))  for A € PT.
Then we have the following lemma:

Lemma 3.2. (i) Let 7 € ¥, A € Pt and w € W. Then we have
(771) Vi (A) = Vo (D).

(ii) Assume M € b-Mod has a Demazure flag. Then for every w € W, DM
has a Demazure flag and we have

chDyM = D,ch M.
Proof. Since (7’*1)*V(A) is an integrable highest weight g-module with high-
est weight 7(A), we have (T_l)*V(A) =~ V(7(A)). Moreover, we see that
(T_l)*Vw<A) is the b-submodule of (T_1>*V<A) generated by the weight space

with weight 7w(A). Hence the assertion (i) follows. Then, since the functor
(7'*1)* is exact, the first assertion of (ii) follows from (i) and Corollary 2.7.

Since we have ch (T_l)*M = 7ch M, the second one follows from Corollary
2.10. O

Let Z[P.] denote the group algebra of P with basis e* (A € P.), and by cl
we also denote the projection from Z[P] to Z[Py] defined by e* — !N For
each w € W, a linear operator D,, on Z[P,)] is defined by

cloD, =Dyocl

Lemma 3.3 ([8]). Let f € Z[PY], and assume f is Wo-invariant. Then we
have o o
D(fg) = fDw(g) for every g € Z[Pa] and w € W.

Proof. Since f € Z[PY], we have so(f) = sg(f) = f, where sy denotes the
reflection associated with 6. Hence f is s;-invariant for all ¢ € I, and then the
assertion is easily proved from Lemma 2.8. O

We need the following elementary lemmas later:

Lemma 3.4. Let M € b-Mod. For every w € W and C € C , we have
Dw(Ces ® M) = Ces @ DyyM.

Proof. Tt is enough to show the assertions for w = 7 € ¥ and w = s;. The first
case is obvious, and the second one follows since we have

Hom p-n0d(Cos @ M, M') = Hom g-poa (M, Cocs ® M)
& Hom p,-Mod (DM, C_cs ® M") = Hom p,-mod(Cos @ D; M, M)

for every M’ € p;-Mod. O

10



Lemma 3.5. Let M; be an object of b-Mod which is generated by a weight
vector v, My an object of b-Mod, and ® a homomorphism of b’-modules from
My to My which maps vi to a weight vector vs.

(i) For some C € C, ® induces a homomorphism of b-modules from Cos @ M
to Mg.

(ii) Assume further that My extends to an object of p;-Mod for some i € I.
Then there exists a homomorphism ® of pi-modules from D; M; to Ms satisfying
d=do t, where v: My — D; M is the canonical homomorphism of b-modules.

Proof. Let A1, A2 € h* be the respective weights of v1, v, and C' = (Ag — A1, d).
It is easily seen that the induced map ®': Cos® My — My preserves the weights,
and hence it is a homomorphism of b-modules. The assertion (i) is proved. Then
under the assumption of (ii), there exists a homomorphism @ : D;(Ces @ My) —
My of p;-modules such that &' = d’ o1 since D; is left adjoint to the restriction
functor p;-Mod — b-Mod. Since D;(Ces ® M7) = Cos @ D; M7 holds by Lemma
3.4, required ® is obtained by restricting ®' to pl. O

4 Kirillov-Reshetikhin modules

Following [4], we define the following pj,-modules:

Definition 4.1. For r € Iy and £ € Z~, let KR"™ be the pr,-module generated
by a nonzero vector v, , with relations

(nd @ C[t])vre =0, (ho @ tC[t]) v, e =0, hv,. o = (fw,, h)v,, for h € b,
= (fr@t)ve =0 and five =0 forie I\ {r}.

We call KR™ the Kirillov-Reshetikhin module (KR module for short) for py,
associated with r and /.

Remark 4.2. (i) Kirillov-Reshetikhin modules were originally defined in [4] as
(g0 ® C[t])-modules. Since we would like to consider K R™* as a b-module later,
we adopt the above definition in this article. It is obvious that the restriction
of KR™ to go ® CJ[t] coincides with the original one.

(i) As the name indicates, K R™ has strong connections with the Kirillov-
Reshetikhin module W for the quantum affine algebra U} (g) [2, 4, 5]. We
return to this topic in Section 7.

It is easily seen that the go-submodule U(go)v,¢ € K R"™! is isomorphic to
the irreducible module with highest weight ¢zo,.. For each w € Wy \ {id}, take
and fix a nonzero vector v, of this go-submodule whose weight is w(¢w,.), and

set vir‘jle = Urg.

Lemma 4.3. (i) Let w € Wy. For o € QF and k € Z, we have

N
KRZw(wT)+w(a)

) Cvy ifa=0and k=0,
TR {0} otherwise.

(ii) As a b-module, K R™* is generated by v:f‘l?.
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Proof. The assertion (i) for w = id follows by definition. Since K R™* is finite-
dimensional [3, Theorem 1.2.2], its weight set and dimensions of weight spaces
are Woy-invariant. From this, (i) for general w is proved. Then (i) for w = wy
implies (ii). O

The following theorem, which easily follows from [9, Theorem 4], connects
KR modules with Demazure modules.

Theorem 4.4. Let r be an arbitrary element of Iy and £ a positive integer
satisfying ¢, 10 € Z. Then there exists an isomorphism

Cizion, ® KR = Vi er g (o (¢; " A)

! . w;
of p7,-modules which maps U—1gp, @V, tO U, oty (e T D)

Remark 4.5. If gy is of ADE type, then ¢, = 1 holds for all r € Iy. Hence the
above isomorphism follows for all KR modules in this case.

5 Fusion product

The fusion product was defined in [7] as a construction of a graded cyclic (go ®
C[t])-module. Here we slightly reformulate it as a construction of a pj,-module.
Note that U(p7,) has a natural grading defined by

Up,)* = {X € Up,) | [d, X] = kX},
from which we define a natural filtration on U (p’IO) by
pIO @ U pIo
q<k

Let M be a cyclic p7 -module With a generator v, and denote by F¥(M) for
k € Z>_1 the subspace U(p7,)="v of M. (Note that F, '(M) = 0.) Then the
associated pr,-module grp (M ) is defined by

ng @Fk /Fk 1(M)a
k>0
where d acts on F¥(M)/Fk=*(M) as multiplication by k.
Now we recall the definition of fusion products. Let M, ..., MP be a se-
quence of objects of py,-Mod such that each M7 is generated by a weight vector
v;, and cy,...,c, pairwise distinct complex numbers. Note that each M7 is

Z-graded by the action of d. For each 1 < j < p, define p'IO—module ng by the
pullback 7 M J, where ¢, is an automorphism of p'IO defined by
@t s @ (t+o)f forx gy, K K.

For w € M7, we denote by w’ its image under the canonical map M7 — M} J . As
shown in [7, Proposition 1.4], M} ®---® M} Pisa cychc p,-module generated
by v} ® --- ® v;,, and we define a pIO-module M1 -x MP by

C1,V1 Cp,’Up
1 e f— 1l x... p
M, oy %% ME = ngv/1®___®% (M, ®--® Mcp).
When the parameters or generators are clear from the context, we write simply

as ML s x MP ML %--.x MP or M %-..x MP.
1 Cp V1 VUp

12



Definition 5.1 ([7]). The p;,-module M x---xMP is called the fusion product.
Lemma 5.2. (i) As (go © CK)-modules,

MYs-oo s MP2 M @--- @ MP.
(ii) Let wn, ..., w, be weight vectors of My, ..., M, respectively, and assume that

U(go)(w1 ® -+ @wp) = U(go)(v1 ® -+ @ vp).

Then we haUe
1 * P o~z 1 K p
Mwl*"' Mw —M,Ul*"' M’L)p'

(iii) For any c € C, we have

M} s.oox MP

ci1+c cptc

%Mgl*«u*pr.

(iv) ML, (the fusion product of a single module M') is isomorphic to M as

C1,V1
a p7, -module.

Proof. The assertions (i) and (ii) easily follow from the definition. As the auto-
morphism . preserves the subspace U (p'IO)Sk , we have

ee(Upr,) =) (v @ - ®@up) = U(p7,) S (0] @ -+ @ vp).

Since the left hand side is equal to the filtration of M7 . ® -+ ® M ., (iii)
is proved. When ¢; = 0, (iv) obviously follows. Then the assertion follows in
general by (iii). O

6 Statement of the main theorem

Now we state the main theorem of this article. This is a generalization of [7,
Theorem 2.5] where the case go = sls is proved, and [9, Theorem 4 and Corollary
5] where the case {1 = --- = £, is proved.

Theorem 6.1. Assume that go is of ADE type. Let KR™ ", ... . KR™"% be a
sequence of KR modules such that £y < --- < £y, and set v; = vy, o, € KRriti
for1 < j <p. Then for arbitrary pairwise distinct complex numbers c1,...,cp,
there exists an isomorphism of b-modules

Ceonorcs ® (KRZ;”% sk KR KRZ?&) (6.1)

C2,V2
= tho(wm) (C(ép_zpfl)AO Q- ® Dt“’O(wrz) (C(fg—fl)Ao ® ,tho(wm)(celj\o) o )
with some constant C.

We postpone the proof of this theorem to the latter part of this article. We
see from Corollary 2.13 and Lemma 3.2 (ii) that the right hand side of (6.1) has
a Demazure flag. Hence we can prove inductively using Lemma 3.2 (ii) that the
following equation holds:

13



Corollary 6.2. Under the notation and the assumptions of Theorem 6.1, we
have

elrBotCo oy KR & ...« KR x KR™O

- (p—Lp—1)No , . (b2—£1)Ao CYICA I
= tho(wm,) (e Dy (e Di oy (e%)) :

Remark 6.3. The right hand side of (6.1) also appeared in [20]. In the article,
it was proved that this module, which was called a generalized Demazure module,
is isomorphic to the space of global sections of a certain line bundle on a Bott-
Samelson variety.

7 X = M conjecture

In this section, we give an important application of Theorem 6.1, the proof of
the X = M conjecture for type A%l) and D%l). Here, we assume that g is a
general (possibly twisted) affine Lie algebra.

For asequence v = ((r1,41),..., (rp, £,)) of elements of IyXZq and 1 € Py,
denote by M (v, u,q) € Z[q~"] the associated fermionic form (see [12, 13] for
definition, in which the fermionic form is denoted by M (W, pu,q) with W =
X, <i<p Wi+t3). The most important result concerning fermionic forms in this
article is the following theorem proved by Di Francesco and Kedem using the
result of [1]:

Theorem 7.1 ([5]). Assume that g is of nontwisted type. For a sequence
v=((ri,01),...,(rp,ty)) of elements of Iy x Z~o and pairwise distinct complex
numbers ci, ..., cp, we have

ch KRpf s KR « KRIVY = > M(v, 1, q)ch Vg, (1),

+
nePry

where we set ¢ = e~ and denote by Vao (1) the irreducible go-module with highest
weight (.

Remark 7.2. In [5], the above theorem was proved under the assumption that
the dimension of each K R"#% is equal to that of the corresponding KR-module
Wit for the quantum affine algebra Ué(g). This assumption was proved to
hold for nonexceptional types in [2, 4], and we can see from the pentagon of
identities in [17, Subsection 1.2] that this holds in general.

From Corollary 6.2 and Theorem 7.1, we have the following corollary:

Corollary 7.3. Assume that g is of nontwisted type and go is of ADE type.
Letv = ((7’1,41), e (rp,ép)) be a sequence of elements of Iy X Z~q such that
6y <--- <4y, Then we have

¢Cetrito Z M(v, p, q)ch Vg, (1)

MEPJ'

=D, (e(fp*fp—l)/\o .- Dy ellz—t)ho . p, ( )(6411\0)) )
wo (wry

wO(WT‘Q ) (

wo (@rpy)

with some constant C, where we set ¢ = e~ °.
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Next we recall the definition of one-dimensional sums. Assume that g is of
nonexceptional type, and denote by B™‘ the Kirillov-Reshetikhin crystal (KR
crystal for short) associated with r € Iy and £ € Z~(. Note that the existence
of KR crystals was proven in [26], and their explicit structure was given in [10]
for nonexceptional types. It is known that B™¢ is perfect if and only if ¢ € ¢,Z
[11]. Let B = B™»% @ --. ® B™" be a tensor product of KR crystals, and
D = Dg: B — Z the energy function defined on B. For the definitions of
these objects, see [12, 13]. The one-dimensional sum X (B, u,q) € Z[q,q '] for
p € Pt is defined by

XB,pq)= > "V,
beB
€;b=0 (i€lp)
wt(b)=p

where ¢€; are Kashiwara operators. In [24, Corollary 7.3], the following proposi-
tion was proved:

Proposition 7.4. Assume that g is of nonexceptional type. Let B = B o' @
---@ BTven s be a tensor product of perfect KR crystals such that {1 < -+ < £,.
Then we have

qC efp/\o Z X(B7 M, Q) ch ‘/90 (,LL) = Dtcrp wo (@rp) (6(£p_€p71)A0 Y

MEPJ'
lo—L1)A VAT
DtCTQwO(WTQ) (e( 2=h)ho 'Dtcrlw()(w”)(e ! 0)) o )

with some constant C', where we set ¢ = e 9.

Now we show the following theorem from the above results, which is the
X = M conjecture presented in [12, 13]. This result for DV is new. This has

already been proved for AS) in [18], but our approach is quite different from
theirs:

Theorem 7.5. Assume that g is of nontwisted, nonexceptional type and gg is of
ADE type (i.e. g = AL or DSP). Letv = ((r1,01),...,(rp, ) be a sequence
of elements of Iy X Zi, and B = B"»* @ ... ® B™*1, Then for every p € PS‘,
we have

¢ PV X(B, pq) = M(v, p,q),

where u(B) denotes the unique element of B whose weight is 3, <, {jw;.

Proof. Recall that energy functions and one-dimensional sums are invariant
under reordering of the given sequence by [27, Proposition 2.15], and so are
fermionic forms by definition. Hence we may assume ¢; < --- < £,. Then as
¢ = 1 holds for all r € Iy, we have from Corollary 7.3 and Proposition 7.4 that

¢ > X (B q)ch Vi () = > M(v, p, q)ch Ve, (1) (7.1)

REPS REPS
with some constant C”, which implies

¢“" X (B, p,q) = M(v, 1, q)
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for every p since the characters of irreducible go-modules are linearly indepen-
dent. It remains to show C” = —D(u(B)). Let A = > 1<j<p tjmj. Since

Z X (B, i, q)ch Vg, (1 ZqD(b)eWt(b
IJIEPJ— beB

holds by definition, the coefficient of e* in the left hand side of (7.1) is equal

to qc//*‘D(“(B)). On the other hand, we easily see from Theorem 7.1 that the
coefficient of e* in the right hand side is 1. Hence we have ¢ +P®(B) = 1,
which implies C” = —D(u(B)). The theorem is proved. O

8 b-fusion product

We devote the rest of this article to prove Theorem 6.1. In this section, we
introduce a construction of a b-module, which we call the b-fusion product,
defined by modifying the definition of the fusion product in Section 5. This
construction is essentially used in the proof of the theorem. Here we only assume
that g is a nontwisted affine Lie algebra (that is, go is allowed to be of type
BCFQG) since the definition of b-fusion products makes sense in this setting.

Let M',..., MP be a sequence of objects of pr,-Mod such that each M7 is
generated (as a pr,-module) by a weight vector v;, and N an object of b-Mod
which is generated (as a b-module) by a weight vector u. Note that M7 and N
are Z-graded by the action of d. For pairwise distinct nonzero complex numbers
C1,...,Cp, define a p}o—module Mcl1 ®---®MP asin Section 5.

Lemma 8.1. N@ M} @---® ME is generated by the vector u @ VIR Qu,
as a b’'-module.

Proof. The proof is similar to that of [6, Proposition 2.8]. Let
"=1b"N(go ®C[t]) = by ® go @ C[t].

Since N and M7 are finite-dimensional and Z-graded, there exists a sufficiently
large positive integer L such that go ® t*C[t] acts trivially on them. It suffices
to show that the Lie algebra homomorphism

b —b"/(g0® (")) & P a0 @ Clt]/((t —c;)") (8.1)

1<j<p

is surjective, where (f) denotes the ideal of C[t] generated by f € C[t]. In fact
since go @ ((t — ¢;)*) (resp. go ® (t*)) annihilates ng (resp. N), this implies

U ) (uev,®- - ) = U(b”/go ® (tL))u ® U(go & ClH)/((t - cl)L))U;(@

@ U (g0 @ ClH/((t - e)) )}
=N® M} ® - @MP

and hence the lemma follows. Since t&, (t — c1)L, ..., (t — ¢,)F are relatively
prime, the Lie algebra homomorphism
go ® (¢ @g()@(c ((t—e)")
1<j<p
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is surjective. From this, we easily see the surjectivity of the homomorphism
(8.1)
O

Define the subspace U(b')<F C U (V) for k € Z similarly as U(p; )=*. By
considering the filtration

Frgugmau(NOM, @@ ML) =U(0) > (u@v, @ 0v)  (82)

of No M. @---®@MP , we define [Nu * M}

... P ;
o ¥ * Mcp)vp} . as the associated

b-module

[Nu*Ml %ok MP L:grﬁ

C1,VU1 Cp,’Up u®v/1®-»-®v;)

(NoM, @ - @MP),

which we call the b-fusion product. We sometimes omit the parameters or the
generators when they are clear from the context. It should be noted that in the
definition of the b-fusion product, only the leftmost module is allowed to be a
b-module, and the others are assumed to be pj,-modules. By definition, it is
easily seen for every ¢ € C that

Corg @ [N# M s MP] 22 [(Cpap @ N) sk M* s MP] . (8.3)

In some special cases, an original fusion product is connected to a certain
b-fusion product by the following lemma:

Lemma 8.2. Assume that each generator v; of M7 is annihilated by ng . Then
we have the following isomorphisms of b-modules:
(i)
My # M2 - x MP = [Ml*Mfz*---*Mf] , and
P P b

(i)

Cp

]\4011 *-..*pr = [Ctriv*Mcll **MP} ,
b
where Cipy denotes the trivial module.

Proof. From the assumption, M is generated by v; as a b-module. Hence the
right hand side of the isomorphism (i) makes sense. The isomorphisms easily
follow from the definition since we have

Upy ) @ vy @ @) =UM)SF W @ vy @ - @)
by the assumption and the Poincaré-Birkhoff-Witt theorem. O

Remark 8.3. The isomorphism (ii) of the above lemma does not hold in gen-
eral. For example, let M! be a finite-dimensional irreducible go-module with a
highest weight vector vy, which is considered as a p;,-module via the evaluation
map pr, — go: ¢ ®@ t* — do gz, K,d — 0. Then by Lemma 5.2 (iv), the fusion
product Mcll)v1 is isomorphic to M'. However, we easily see that the degree 0
space of [Ctriv * M, cll,vl] p 1S one-dimensional, and hence they are not isomorphic
unless M is trivial. On the other hand, [Cyyy * M']  is isomorphic to M if a
lowest weight vector of M! is chosen as a generator. As seen from this example,
the b-fusion product is sensitive to the choice of generators.
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Lemma 8.4. Let ¢ € I. The b-module [N s« MU s Mp]b extends to a p;-
module if N extends to a p;-module and either of the following conditions is
satisfied:

(1) ¢ € Iy and all v; and u are annihilated by f;, or

(ii) i = 0, K acts trivially on M*, ..., MP, and each v; (resp. u) is annihilated
by eg ® C[t] (resp. eg @ t71).

Proof. The case (i) is easily proved since N @ M} ® ---® MP is a pj-module
and we have

U)Fuov@--auv,)=Up) (uov @ ©u,) (84)

for each k. Let us prove the case (ii). Since K acts trivially, a p{-module
structure is defined on each M. gj by letting fo act by

(@t M =— Z(—cj)’kfl((eg @t Yw)" for w e M.
k>0

Note that the above sum is finite since M7 € py,-Mod. Hence N(X)Mcl1 Q- QML
extends to a pj-module. Moreover the equality (8.4) also holds in this case from
the assumption. Hence the assertion also follows in this case. O

Take arbitrary vectors w; € MI (1<j<p)andz € N. Let k be the unique
integer such that

2@ @ @u, € Flig.gu (NOM}, ®-- @Mcpp)\ﬁf@j}.@% (NoM,} @---@M?),

and denote by z % wy - -+ % w, the vector of [N # M- % Mp]b which is the
image of z ® w] ® --- ® wj, under the projection

FFN® - @MP) > FF(N@ @ MP)/FF (N@- @ MP).

Note that u* vy * - - - x v, is a generator of [N * MUk Mp] »- Lhe following
lemma, which obviously follows by definition, is important for the later argu-
ments.

Lemma 8.5. Let X € U(b')*. Then X annihilates u* vy * - - - v, if and only
if there exists some Y € U(b')SF=1 satisfying

(X -Y)u®v,®---®uv,) =0.

9 Proof of the main theorem

Now, we begin the proof of Theorem 6.1. Assume that g is a nontwisted affine
Lie algebra and gg is of type ADE. For a given sequence of KR modules
KR% . KR™' weset M7 = KR"% and V= U0 € Mifor1<j<p
for short, and write v}’ =v;” , € M J for w € Wy (defined in Section 4).

We shall show the theorem by the induction on p. The assertion of the
theorem for p = 1 follows from Lemma 5.2 (iv), Theorem 2.6, Theorem 4.4, and
Lemma 3.5 (i). Assume p > 1. By Lemma 5.2 (iii), we may (and do) assume
¢p = 0, which implies ¢1,...,cp—1 are nonzero. First we show the following
lemma:
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Lemma 9.1. We have the following isomorphisms of b’'-modules:

Con s (M, M2 o)

Up

= Vi, lpho)u

1 1
wo(emny) « ML, *"‘*Mvi“‘)h’ (9.1)

turg () (£ 0)
and
Dtmo(WTp (C(Z 7@;, 1)A0® ,thO(WT‘ 1> (C(ZP*17€P*2)A0 ® e ® ,tho(‘wr1>C€1A0)>

~ p—1 1
% Dy |Cooto * Ml %% M| . (92)
"o

Proof. Since
U(go)(v;)uo SR ®’U;IL_UO) = U(go)(vp R ® vl)
holds, we have from Lemma 5.2 (ii) that

1
Mg, o« MP x Mg, = MY g0 ¥ MP o, ook MY g,

w
Cp—1,VUp—1 C1,V1 Cp— 1’U C1,V;

whose right hand side is isomorphic to [M Poo % MPuih s M 1w0} by Lemma
Up Up—1 U1 1p
8.2 (i). Hence we have using (8.3) and Theorem 4.4 that

Cryno ® (M, x40, ) 2 [(Cry, @ M)

= |:‘/tw0 (w@rp) (‘gpAO)'Uf

1
* MPo -x M
Uy, Ay @V ;)UO wo “?O:| b

-1
s« MPo s Mg | .
Vp1 vy

twg (wry,) CpA0) b

The isomorphism (9.1) is proved. Let us prove (9.2). By the induction hypoth-
esis, there exists an isomorphism

Dy ((C(fp—lffp%)/&o Q- tho(wn)cfﬂ\o)

N(Cep 1A0®<Mp 1 .*M51)7

’Upl

wo (@r, 1)

whose right hand side is isomorphic to

p—1 1 p—1 1
Cr, ino ® (MPag' 500 M) 2 Cp, 0, ® [(Cmv * MPS) x e Mv,lwo} b
p—1 p—1

by Lemma 5.2 (ii) and Lemma 8.2 (ii). Hence we have using (8.3) that
(left hand side of (9.2))
= D*w (wry) (Cepl\o ® [Ctriv * Mpf:ol Kok leo] )
ol@ry Up71 v b

~ D,

p_l DY 1
[(Cep/\o * Mv;i01 K-k Mvwo:l .

wo (wrp)
The isomorphism (9.2) is proved. O

By Lemmas 9.1 and 3.5 (i), in order to prove the theorem it suffices to show
the following isomorphism of b’-modules:

p 1 ... 1
Voo Cotduny o apny * MO 5% M|
~ p—1 _ . 1
= Dty | Ctoto ¥ Myug 5o Mﬁo} K (9.3)
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Let w € W and 7 € ¥ be unique elements satisfying wr = by (w,,)s and
w = s, -+ 8;; areduced expression. For 0 < g <k, let w? = s; ---8;,7 € W,

and w? be the unique element of Wy satisfying w? € w? - T(M) (note that
w"* = id). We also write 7 for w°. Then since

o~ i~
Wuro(wrp) (Lpho) = tho(wrp)CZPAO = DwCePAT((J)

holds, we see that the isomorphism (9.3) is deduced by the induction on ¢ from
the following two propositions, and hence Theorem 6.1 is established:

Proposition 9.2. We have

p—1
C@pAT(o) * M Fwg

Cp—1,V,_1

wooow MY m}
b

C1,Vq

o (F1y* p—1 1
> (771 {(Cgp,\o W MP uo xe e MY o]
as b'-modules.
Proposition 9.3. For each 1 < g < k, we have
p—1 1
[qu (epAO)qu(epAo) * Mvmqwo ek lemfmo} .
p—1
~ 7. p—1 - 1
= D;, [V (6o )u 10, * MIC e -

as b’ -modules.

To show Proposition 9.2, we need to prepare several lemmas. The following
one is proved similarly as [16, Lemma 3.8]:

Lemma 9.4. Let M be a finite-dimensional p’IO -module. Then for every w €
Wo, there exists a linear automorphism n,, of M satisfying

Ad(ny)(h @ t°) =w(h) @t for h € ho,s € Z>o, Ad(nw)(K) =K,
Ad(nw)(ea @ 1°) = aw()ey) @ t° for a € Ng,s € Z>g, and
nw(MA) = Mw(/\) fOT A E f)*/(C(S,
where a, () are some nonzero complex numbers which do not depend on M.

By applying Ad(ny,) given in Lemma 9.4 to the defining relations of K R™*
in Definition 4.1, the following lemma is proved:

Lemma 9.5. The annihilating ideal of v} € KR™ in U(p}o) is generated by
“5®C[t]a b0®t(C[t], h — <w0(€w7’)7h> (h € h/)a
et ep@t, and e (i€ Iy\{F}),
where T is the node of Iy such that wo(a,.) = —a.

Lemma 9.6. For ¢ € C, the annihilating ideal of v\’ € KRI' in U(b') is
generated by

ng @tC[t], o @ (t—)C[t], h— (wo(lwr),h) (h D),
et e @ (t—c), and e (i€ I\ {F}).
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Proof. Let I be the subspace of U(b’) spanned by the above vectors. From
Lemma 9.5, we see that the annihilating ideal of ”:2/ in U(p’IO) is equal to

U(pllo) (I +ny). We have to prove that
U (p,) (I +n5) NU(') C UL

Since U (p},) = U(b") @ U (p},)ng holds by the Poincaré-Birkhoff-Witt theorem,
it suffices to show that

U(p,) I S UGN @ U(p),)ng .

Then since we have U(p} ) = U(b")U(ny ) and U(ny ) is generated by {f; | i €
Iy}, it is enough to prove that f;] C I & U(p}g)na holds for i € Iy, which is
proved by elementary calculations. O

Lemma 9.7. There exists a nonzero complexr number b satisfying the following
statement: for every KR module KR™" and c € C, there exists a homomorphism

KR} — 7" KRy

/ . wo/ %, Two!
of b’'-modules which maps Vg to TMUL,

Proof. Since K R%* is generated by v;”’;}/ as a b’-module, it suffices to show
for suitable b € C* that if X € U(b’) annihilates vi’f‘é’ € KR then 7(X)
annihilates ’uzfé’“/ € KRZ"CZ. Since the b’-weights of v:fjg/ € KR and T*vff;‘)/ €
T KR)* coincide, we may assume X € U(nt). Let ig = 771(0) € I; and
Yio: U(b') — U(p},) be an algebra homomorphism defined by

Yig(x@1°) = 2@t @) for x€gq (o € Ay),
Yi,(h®t°) =h®t* for heby, ¢;(K)=K.

Using Lemma 9.6, we easily check that ¢;,(X) also annihilates v, v € KRI.
Let 7 = 7+ be the linear automorphism of K R7* given in Lemma 9.4. Then
since 77(11;'?2/) € (C*vz}f’“/ holds by Lemma 4.3, Ad(n) o¢;,(X) annihilates vz}f’“/ €
KR, which is equivalent to that ¢.o Ad(n) o1, (X) annihilates vffé’“ € KR™*
(pc is defined in Section 5). It is easy to see from Lemma 3.1 that there exists
some b; € C* for each 7 € I such that

Ad(n) o Yiy(er-1(5)) = biei.
Define a linear automorphism H on K R™* by
H(u) = r[b;O"Aiv> u ifue KRY' (\e P),
il

where A}’ € h are the fundamental coweights of g. Ad(H) o ¢, o Ad(n) o 9;,(X)
annihilates v since it is a weight vector. Set b= [],, b7". It is easily checked

that

iel

e_g®t+bce_g ifi=0,

Ad(H) o p. 0 Ad(n) o Yi,(er—1(:)) = { |
€ otherwise,
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which implies

Ad(H) o @, 0 Ad(n) 0 1hiy = ppc 0T on U(n™).

Hence we see that @y o 7(X) annihilates vffg’o, which is equivalent to that 7(X)
annihilates UTZ’O/ e K RZ’f. The assertion is proved. O

Now, we give the proof of Proposition 9.2:

Proof of Proposition 9.2. Note that the right hand side of Theorem 6.1 does

not depend on the parameters ci, ..., c,. Hence from the induction hypothesis
on p and the proof of (9.2), we see that the b-module [(CgpAO * Mffll Jwo Kok
p—1,Vp 1

. vwo} also does not depend on the parameters, and in particular we have
1,V b

p—1
[CZPAO*MC v

p—1,Yp_1

o Kook M wohg {(CZPAO*M”’l wo Kook M .

~ w
€1, b=lep—1,0,0, b=ter,vy |y’

where b is the complex number given in Lemma 9.7. Hence the proposition is
equivalent to the following isomorphism of b’-modules:

*

p—1 1
[CEPAT(O) * M Two Tk M ?WO:| b

Cp—1,Vp,_7 C1,Vq

0

o (21 p—1 1

> () [(CZPAO * belcp_l,vg“fl koo k belcl,v}” .

Let us prove this. Let u; € Cy a, and uy € CZPAT(O) be nonzero vectors. Since

dimensions of two modules are equal, it suffices to show there exists a surjective

homomorphism of b’-modules from the right hand side to the left hand side
Two Two

mapping (771)* (uy x vy * % 01) to ug x vy % -k v] 0, which is equivalent

to show that if X € U(b’) annihilates uy v, *---*xv]", then 7(X) annihilates
ug*v?,”f s+ -xv] . We may assume X € U(b)3 for some y € Qg and s € Zx,
where we set
V') = {Z € UW)* | [, 2] = (1, 0)Z for b € o}
By Lemma 8.5, there exists Y € U(b')<*~! such that
(X -YV)(wm @@ @) =0, (94)

and we may assume Y € U(b’)%sfl. We see from Lemma 9.7 that there exists
a homomorphism of b’-modules

(CEPAO & Ml?*_llcp R ® ]\417171C1 — (Cép/\f(o) QMPl®...® M611>

1 Cp—1

which maps u; ® v;j’fl/ ® - @01 to 7% (u2 ® v;ﬂjgl ® UTU’O/). From this
and (9.4), we have
Two' Two'
TX =Y)(uwe®@v,") @ - @v")=0.

Moreover, we have 7(X) € U(b’):(tj;’wi“) and 7(Y) € U(b’)?g(‘:;mwi“)_l

Lemma 3.1, where we set ig = 77 1(0). Hence by Lemma 8.5, 7(X) annihilates

from
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7"w0

ug x vy % kv, The assertion is proved. O

It remains to prove Proposition 9.3:

Proof of Proposition 9.3. We abbreviate u? = wya(s,0y), Vq = Vi (€pAo) and
vd = v
J J

proposition holds for ¢’ < q. Then we see that {(Vq,l)uqq *Mf}’;ll *e - .*qu_l}
p—1 1 b

wd wo

Fix 1 < ¢ < k, and assume when ¢ > 1 that the assertion of the

has a Demazure flag from the induction hypothesis on p, Corollary 2.13, Lemma
3.2 (ii), and Proposition 9.2.

Recall that, by the definition of Demazure modules, there exists a canonical
embedding V,_; — V,. Let 277! denote the image of u9~! under this embed-

ding. It should be noted that 29~ " xv!~ Theees?l e [(Vq)uq *Mf{l k- *Miq}
p—1 11b
is not a generator.

Claim 1. There exists a homomorphism of b’-modules

P | (Vgo1)ya— *Mp;ll*-~-*M1q,1L—> {(V)uq*Mp ! **qu}
viT] v}

Vp—1 11p
-1 1 -1
Whlchmapsuql*v R T ' to 2471 « ap kv

It suffices to show that, if X € U(b ) anmhllates ul™ ol “1#---x0?7! then

X also annihilates 297" * v~ Dk 0?7 ! We may assume that X e U(v')” for

<s—1

some s € Z>(. Then there exists some Y € U(b’) satisfying

X -V el @ o )=0
by Lemma 8.5. Obviously,

(X -Y) el ® -0 )=0 (9.5)

also holds. Let N be the unique integer such that

29 1®vgj @ Qo /¢U( ')SN_l(uq@)vg /@ @) and
zq_1®vgj/® Qv - cU(b)= (uq®vp [ @ eul),

and Zy € U(b')N and Z<n_1 € U(b')SV =1 be vectors such that

(Zn + Zen-1) (! @vl_' @ @ul’) = 207! ®vgj/ ®-- @il
Then we have from (9.5) that
XZy(ui@vl ' ® - @ul')
=X @l @ 0ol - XZay i (u @vl ) @ o)

Up_y
= (Y(ZN+Z§N—1)_XZ§N—1)(U(I®'UZ_1/® - il)
Since

XZn € UW )™ and Y(Zy + Z<n_1) — XZ<n_1 € U(L)SFNL,
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XZn(u?+v)_;%---xvf) =0 holds by Lemma 8.5. On the other hand, we have
by definition that

1 —

Tyl xooxpl) = 24 a -1
Zn(ud s vl ) x--xvf) =297 xul” .

1 q
1E k)

Hence
Xz s

holds, and Claim 1 is proved.

q—1 q—1y _
ay ke ko] )=0

Set ¢ = i,. By Lemma 8.4, the b-module |:(‘/q)uq £ MPT! ek Miq}
p—1 11b
extends to a p;-module. Then by Lemma 3.5 (ii), there exists a homomorphism

of pi-modules

(f: Dz [(‘/:1,1),“(;71 * Mp

p 1

-*Mjil,l} —>[(V)uq*Mp ! *ng]

b Up—1 1]p

which makes the following diagram commutative:

(Vemtua e M| =2 (Vo ex M)

e

Di |:(Vq71)uq—1 Koeee Mlq_l]
v b
where the vertical map is the canonical one.

Claim 2. The homomorphism d is surjective.
It suffices to show the image of ® contains the generator u x vg_q k0,

whose h’-weight X is equal to

A= cl(wq (LpAo) + Z wlwo (€, )) € P,.

1<j<p-1
Note that the image of ® contains 2P~ ! x % Kook vgfl, whose b’-weight u is
p=d(w A+ Y T () = ().
1<j<p—-1

As the image is a pj-module, its weight set contains s;(u) = X. Since |(Vg)ya *

- Miq] is isomorphic to V,; ® --- @ M as a (go & CK)-module, it is easily
1
checked that the weight space with weight A is one-dimensional. Hence the
image contains the generator, and Claim 2 is proved.

Now, the following claim completes the proof of the proposition:

Claim 3. The dimensions of the both sides of ® are equal.

The dimension of the right hand side is equal to

dimVy x  J[ dimM7. (9.6)

1<j<p-1
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Let us calculate the dimension of the left hand side. As stated at the beginning
of this proof, [V,_qxMP~1x.. -*Ml] . has a Demazure flag. Hence by Corollary

2.10, the character of the left hand side of d is equal to

Dich [Vyoy s MP™Vseon MY
b

For a bh’-semisimple module M whose §’-weight set is contained in P, denote

by ch M € Z[Py] the b’-character of M. Since each M7 is a finite-dimensional

(g0 ® CK)-module on which K acts trivially, ch M7 belongs to Z[PY] and is

Wo-invariant. Hence we have from Lemma 3.3 that

clo D, ch {V}I,l*Mp*l*.u*Mlh :EE[Vq,l*MH*...*Ml b
:Ez (ChV;Il X H ChMJ> = H EM] Xﬁia%,1
1<5<p—1 1<5<p—1
= J] &M xcoDichV, ;.

1<j<p-1

Since D;chV,_1 = chV, by Theorem 2.9, we see that the dimension of the
left hand side is equal to (9.6). Hence Claim 3 is proved, and the proof of the
proposition is complete. O

As stated above, Theorem 6.1 is now established from Propositions 9.2 and
9.3.

Remark 9.8. In Theorem 6.1, it is assumed that go is of ADE type. The
author, however, expects the theorem to be true for general types if all given
KR modules satisfy the assumption of Theorem 4.4. In fact, all the proof of
the theorem can also be applied in this case, except for the Joseph’s theorem
(Theorem 2.11) which is needed in the final step of the proof. Hence to prove
the theorem for non-simply laced type by our approach, it is needed to prove the
Joseph’s theorem for this type. Since Proposition 7.4 has already been proved
for nonexceptional type, this would also imply the X = M conjecture for perfect
KR crystals of type B,Sl) and C,gl).
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