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Abstract

In this article, we show in the ADE case that the fusion product
of Kirillov-Reshetikhin modules for a current algebra, whose character
is expressed in terms of fermionic forms, can be constructed from one-
dimensional modules by using Joseph functors. As a consequence, we
obtain some identity between fermionic forms and Demazure operators.
Since the same identity is also known to hold for one-dimensional sums of
nonexceptional type, we can show from these results the X = M conjec-
ture for type A

(1)
n and D

(1)
n .

1 Introduction

Let g be an affine Kac-Moody Lie algebra with index set I, and U ′
q(g) the

corresponding quantum affine algebra without the degree operator. In [13, 12],
it was conjectured that a certain subfamily of finite-dimensional U ′

q(g)-modules
known as Kirillov-Reshetikhin (KR for short) modules W r,` has crystal bases
Br,` called KR crystals. Here the index r corresponds to a node of I0 = I \ {0}
where 0 is the node specified in [16], and ` is a positive integer. This conjecture
has been confirmed in many cases, in particular when g is nonexceptional [26].

Let B = Brp,`p ⊗· · ·⊗Br1,`1 be a tensor product of KR crystals. In [13, 12],
the authors defined the one-dimensional sum

X(B,µ, q) =
∑
b∈B

eeib=0 (i∈I0)
wt(b)=µ

qD(b) ∈ Z[q, q−1],

where µ is a dominant integral weight of the simple Lie subalgebra g0 ⊆ g whose
Dynkin nodes are I0, D is a certain Z-function on B called the energy function,
and ẽi are Kashiwara operators. Then they conjectured that X(B,µ, q) has an
explicit expression M(ν, µ, q) called the fermionic form, where ν is the sequence
of elements of I0×Z>0 corresponding to B. This conjecture is called the X = M
conjecture, which was confirmed in many instances [18, 28, 29], but a proof in
full generality has not been available except for the type g = A

(1)
n in [18]. It

should be mentioned that this conjecture was recently settled for nonexceptional
g under the large rank hypothesis by combining the results in [18], [21] and [25],
and for general g if `1 = · · · = `p = 1 [23].

Recently, an identity was proved in [24] which connects one-dimensional
sums of nonexceptional type with Demazure operators. Let us recall the result
briefly. For simplicity, we assume g is of type A

(1)
n or D

(1)
n here. Denote by P
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the weight lattice of g and by Di for i ∈ I the Demazure operator on the group
ring Z[P ] defined by

Di(f) =
f − e−αi · si(f)

1 − e−αi
,

where the simple reflection si acts on Z[P ] by si(eλ) = esi(λ). Let W be the Weyl
group of g, W̃ the extended affine Weyl group, and Σ the subgroup of the group
of Dynkin automorphisms such that W̃ ∼= W o Σ (for the precise definition,
see Section 3). Then for each τ ∈ Σ and w ∈ W with a reduced expression
w = sik

· · · si1 , Dwτ is defined by Dwτ = Dik
· · ·Di1 ◦ τ (this definition does not

depend on the choice of the expression). Let now B = Brp,`p ⊗ · · ·⊗Br1,`1 be a
tensor product of KR crystals such that `1 ≤ · · · ≤ `p, P+

0 the set of dominant
integral weights of g0, and Vg0(µ) the irreducible g0-module with highest weight
µ ∈ P+

0 . Then the following identity was proved in [24], where C is some
constant and we set q = e−δ:

qCe`pΛ0
∑

µ∈P+
0

X(B,µ, q) chVg0(µ) (1.1)

= Dtw0($rp )

(
e(`p−`p−1)Λ0 · · ·Dtw0($r2 )

(
e(`2−`1)Λ0 · Dtw0($r1 )(e

`1Λ0)
)
· · ·

)
.

Here δ is the null root, Λ0 is the fundamental weight of g associated with the
node 0, $i are the fundamental weights of g0, w0 is the longest element of the
Weyl group of g0, and tw0($rj

) ∈ W̃ are the translations.
The goal of this article is to show the identity (1.1) with the one-dimensional

sums replaced by the corresponding fermionic forms. Namely, we will prove the
following result as a corollary of Theorem 1.2 stated below (Corollary 7.3):

Corollary 1.1. Assume that g is of nontwisted type and g0 is of ADE type.
Let ν =

(
(r1, `1), . . . , (rp, `p)

)
be a sequence of elements of I0 × Z>0 such that

`1 ≤ · · · ≤ `p. Then we have

qCe`pΛ0
∑

µ∈P+
0

M(ν, µ, q)chVg0(µ)

= Dtw0($rp )

(
e(`p−`p−1)Λ0 · · ·Dtw0($r2 )

(
e(`2−`1)Λ0 · Dtw0($r1 )(e

`1Λ0)
)
· · ·

)
with some constant C, where we set q = e−δ.

Then as an immediate consequence of (1.1) and this corollary, the X = M

conjecture for A
(1)
n and D

(1)
n is settled (Theorem 7.5).

Our strategy of the proof of Corollary 1.1 is to show the isomorphism between
two modules whose characters are equal to the left hand side and the right
hand side respectively. Let us describe what these modules are. The module
corresponding to the left hand side is the fusion product of Kirillov-Reshetikhin
(KR) modules for the current algebra g0 ⊗ C[t]. KR modules for g0 ⊗ C[t],
which we denote by KRr,` (r ∈ I0, ` ∈ Z>0) in this article, were defined in
[2, 4] in terms of generators and relations. They can also be obtained from W r,`

(KR modules for U ′
q(g)) by specialization and restriction, which is why they

are so named. The fusion product is a refinement of the usual tensor product
defined in [7], which constructs a cyclic graded (g0 ⊗ C[t])-module from some
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such modules. It was proved by Di Francesco and Kedem in [5] that the fusion
product of KR modules has the required (graded) character. Namely, they
proved the following character formula for the fusion product of KR modules:
for a sequence ν =

(
(r1, `1), . . . , (rp, `p)

)
of elements of I0 × Z>0, we have

chKRrp,`p ∗ · · · ∗ KRr1,`1 =
∑

µ∈P+
0

M(ν, µ, q)ch Vg0(µ), (1.2)

where ∗ denotes the fusion product.
To present the module corresponding to the right hand side, we recall the

definition of Joseph functors introduced by Joseph [14]. Let h be a Cartan
subalgebra of g, b a Borel subalgebra of g containing h, and pi for i ∈ I the
parabolic subalgebra associated with the set {i} containing b. We denote by
b-Mod (resp. pi-Mod) the category of finite-dimensional h-semisimple left b-
modules (resp. pi-modules). Then the functor Di : b-Mod → pi-Mod is defined
as the left adjoint functor of the restriction functor pi-Mod → b-Mod. For
w ∈ W with a reduced expression w = sik

· · · si1 , the Joseph functor Dw is
defined by

Dw = Dik
· · · Di1 : b-Mod → b-Mod,

which does not depend on the choice of the expression. We also define Dwτ

for w ∈ W and τ ∈ Σ by Dwτ = Dw ◦ (τ−1)∗, where (τ−1)∗ denotes the pull-
back functor associated with the Lie algebra automorphism τ−1 of b. Then the
b-module corresponding to the right hand side of Corollary 1.1 is constructed
using these functors as follows:

Dtw0($rp )

(
C(`p−`p−1)Λ0 ⊗ · · · ⊗ Dtw0($r2 )

(
C(`2−`1)Λ0 ⊗Dtw0($r1 )C`1Λ0

)
· · ·

)
.

From the results of [14] and [19], we can easily see that chDwM = Dw chM

holds for w ∈ W̃ if a b-module M has a Demazure flag (see Definition 2.2). It is
checked from this fact that the above module in fact has the required character.

Now, what we have to prove is the following isomorphism, which is our main
theorem in this article (Theorem 6.1):

Theorem 1.2. Assume that g is of nontwisted type and g0 is of type ADE.
Let KRr1,`1 , . . . ,KRrp,`p be a sequence of KR modules such that `1 ≤ · · · ≤ `p.
Then there exists an isomorphism of b-modules

C`pΛ0+Cδ ⊗
(
KRrp,`p ∗ · · · ∗ KRr2,`2 ∗ KRr1,`1

)
∼= Dtw0($rp )

(
C(`p−`p−1)Λ0 ⊗ · · · ⊗ Dtw0($r2 )

(
C(`2−`1)Λ0 ⊗Dtw0($r1 )C`1Λ0

)
· · ·

)
with some constant C, where the left hand side is naturally regarded as a b-
module.

As explained above, Corollary 1.1 follows as a direct consequence of this
theorem. It should be remarked that this theorem for g = A

(1)
1 was already

proved by Feigin and Loktev in [7]. In the case `1 = · · · = `p, this was proved
by Fourier and Littelmann in [9].

The plan of this article is as follows. In Section 2, we review the results on
Demazure modules and Joseph functors. In Section 3, we prepare some notation
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and elementary lemmas concerning a nontwisted affine Lie algebra. In Section
4, we recall the definition of KR modules for a current algebra. For the later
convenience, we define them as pI0-modules in this article, where pI0 denotes the
parabolic subalgebra associated with I0. In Section 5, we recall the definition
of fusion products. Then we state our main theorem in Section 6, and explain
in Section 7 how the X = M conjecture for type A

(1)
n and D

(1)
n is deduced from

this theorem. The last two sections are devoted to prove the main theorem. In
Section 8, we introduce the b-fusion product, which is some modified version
of the fusion product constructing a b-module from some b-modules. Then in
Section 9, we give the proof of the main theorem using b-fusion products.

Acknowledgments: The author would like to express his gratitude to R.
Kodera, S. Naito and Y. Saito for a lot of helpful discussions and comments.

2 Demazure modules and Joseph functors

Let g be a complex symmetrizable Kac-Moody Lie algebra with index set I and
Chevalley generators {ei, fi | i ∈ I}, b ⊆ g its Borel subalgebra, and h ⊆ b its
Cartan subalgebra. Let αi ∈ h∗ (i ∈ I) be the simple roots, α∨

i ∈ h (i ∈ I) the
simple coroots, and W the Weyl group of g with simple reflections si (i ∈ I).
Denote by

P = {λ ∈ h∗ | 〈λ, α∨
i 〉 ∈ Z for i ∈ I} and

P+ = {λ ∈ P | 〈λ, α∨
i 〉 ∈ Z≥0 for i ∈ I}

the weight lattice and the set of dominant integral weights respectively. For a
h-module M , we denote by Mλ for λ ∈ h∗ the weight space

Mλ = {v ∈ M | hv = 〈λ, h〉v for h ∈ h}.

We call a vector v of M a weight vector if v ∈ Mλ for some λ ∈ h∗.
Denote by V (λ) the irreducible highest weight g-module with highest weight

λ ∈ P+. For w ∈ W , let uwλ be a nonzero vector of the one-dimensional weight
space V (λ)wλ.

Definition 2.1. For λ ∈ P+ and w ∈ W , the b-submodule

Vw(λ) = U(b)uwλ ⊆ V (λ)

is called the Demazure module associated with λ and w.

For a subset J ⊆ I, we denote by pJ the parabolic subalgebra associated with
J , which is the Lie subalgebra of g generated by b and {fi | i ∈ J}. Note that
p∅ = b. If J = {i}, we denote pJ by pi. In this article, we denote by pJ -Mod the
category of finite-dimensional h-semisimple left pJ -modules. If 〈wλ, α∨

i 〉 ≤ 0,
then the Demazure module Vw(λ) is preserved by the action of fi. Hence Vw(λ)
belongs to pJ -Mod if 〈wλ, α∨

i 〉 ≤ 0 holds for all i ∈ J .

Definition 2.2. Let M ∈ b-Mod. A filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mk =
M is called a Demazure flag of M if every successive quotient Mi/Mi−1 is
isomorphic to some Demazure module.
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For every i ∈ I, it is known that the restriction functor pi-Mod → b-Mod
has the left adjoint functor Di : b-Mod → pi-Mod [14, 19]. We often regard Di

as a functor from b-Mod to b-Mod in the obvious way.

Proposition 2.3 ([19, Remark 8.1.18]). Let w ∈ W , and w = sik
· · · si1 be

its arbitrary reduced expression. Then the functor Dw = Dik
· · · Di1 : b-Mod →

b-Mod does not depend on the choice of the expression.

Definition 2.4. The functor Dw : b-Mod → b-Mod is called the Joseph functor
associated with w ∈ W .

Note that for every i ∈ I and M ∈ b-Mod, the canonical b-module homo-
morphism M → DiM is defined as the image of the identity under the bijec-
tion Hom pi-Mod(DiM,DiM) ∼→ Hom b-Mod(M,DiM). The following lemma was
proved in [14, Subsection 2.7 and Lemma 2.8 (iv)] for finite-dimensional g, and
the proof goes without any change for general g:

Lemma 2.5. Let i ∈ I.
(i) For every M ∈ pi-Mod, the canonical b-module homomorphism M → DiM
is an isomorphism. In particular, we have D2

i N ∼= DiN for every N ∈ b-Mod.
(ii) Assume that 0 → M1 → M2 → M3 → 0 is an exact sequence of objects
of b-Mod and M3 is isomorphic to some b-submodule of a finite-dimensional
pi-module. Then the sequence 0 → DiM1 → DiM2 → DiM3 → 0 is exact.

For λ ∈ h∗, we denote by Cλ the one-dimensional b-module spanned by a
weight vector with weight λ on which ei (i ∈ I) acts trivially. Note that we
have Vid(λ) = Cλ for λ ∈ P+. Now we recall the following theorem:

Theorem 2.6 ([19, Proposition 8.1.17 and Corollary 8.1.26]). For every λ ∈ P+

and w ∈ W , we have
DwCλ

∼= Vw(λ)

as b-modules.

Corollary 2.7. Assume that M ∈ b-Mod has a Demazure flag. Then DwM
has a Demazure flag for every w ∈ W .

Proof. It is enough to show the assertion for w = si. Let 0 = M0 ⊆ M1 ⊆ · · · ⊆
Mk = M be a Demazure flag of M . We show the assertion by the induction on
k. For a Demazure module Vw(λ), we have from Lemma 2.5 (i) and Theorem
2.6 that

DiVw(λ) ∼=

{
Vsiw(λ) if `(siw) = `(w) + 1,

Vw(λ) if `(siw) = `(w) − 1,
(2.1)

where ` denotes the length function. Hence the assertion for k = 1 follows.
Assume k > 1 and write Mk/Mk−1

∼= Vwk
(λk). Recall that Vwk

(λk) is defined
as a b-submodule of V (λk). Hence this module is also a b-submodule of the
pi-module U(pi)Vwk

(λk) ⊆ V (λk), which is finite-dimensional since V (λk) is
integrable. Hence the sequence 0 → DiMk−1 → DiM → DiVwk

(λk) → 0 is
exact by Lemma 2.5 (ii), and then the assertion follows from the induction
hypothesis.
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Let Z[P ] denote the group ring of P with basis eλ (λ ∈ P ), and define for
i ∈ I a linear operator Di on Z[P ] by

Di(f) =
f − e−αi · si(f)

1 − e−αi
,

where si acts on Z[P ] by si(eλ) = esi(λ). We call Di the Demazure operator
associated with i. The following lemma is proved by elementary calculations
such as si(fg) = si(f)si(g).

Lemma 2.8 ([8, Lemma 2]). Assume that f ∈ Z[P ] is si-invariant. Then we
have

Di(fg) = fDi(g) for every g ∈ Z[P ].

In particular, we have D2
i = Di.

For a finite-dimensional semisimple h-module M such that {λ ∈ h∗ | Mλ 6=
0} ⊆ P , we denote the character of M by

chM =
∑
λ∈P

dim Mλ · eλ ∈ Z[P ].

For every reduced expression w = sik
· · · si1 of w ∈ W , the operator Dw =

Dik
· · ·Di1 on Z[P ] is independent of the choice of the expression [19, Corollary

8.2.10], and it is known that the character of a Demazure module is expressed
as follows:

Theorem 2.9 ([19, Theorem 8.2.9]). For every Demazure module Vw(λ), we
have

chVw(λ) = Dw(eλ).

Corollary 2.10. Assume that M ∈ b-Mod has a Demazure flag. Then for
every w ∈ W , we have

chDwM = DwchM.

Proof. By Corollary 2.7, it is enough to show the assertion for w = si. Let
0 = M0 ⊆ M1 ⊆ · · · ⊆ Mk = M be a Demazure flag of M . We show the
assertion by the induction on k. Assume k = 1, and write M ∼= Vw(λ). If
`(siw) = `(w) + 1, we have

chDiVw(λ) = ch Vsiw(λ) = Dsiw(eλ) = DichVw(λ) (2.2)

by Theorem 2.6 and Theorem 2.9. If `(siw) = `(w) − 1, we have chDiVw(λ) =
chVw(λ) by (2.1), and

DichVw(λ) = D2
i chVsiw(λ) = DichVsiw(λ) = ch Vw(λ)

by (2.2) and Lemma 2.8. Hence the assertion for k = 1 follows. Assume k > 1
and write Mk/Mk−1

∼= Vwk
(λk). Then as proved in the proof of Corollary 2.7,

the sequence 0 → DiMk−1 → DiM → DiVwk
(λk) → 0 is exact. Hence the

assertion follows from the induction hypothesis.

The following theorem is obtained by taking the classical limit of [15, The-
orem 5.22]:
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Theorem 2.11. Assume that g is symmetric (i.e. the Cartan matrix of g is
symmetric). Then for every λ, µ ∈ P+ and w ∈ W , the b-module Cλ ⊗ Vw(µ)
has a Demazure flag.

Remark 2.12. In [15, Theorem 5.22], a given Kac-Moody Lie algebra is as-
sumed to be simply laced. This assumption, however, is used only in [15, Lemma
3.14] to apply a positivity result of Lusztig, and we can check that the proof
of this positivity result in [22, §22.1.7] goes without any change for every sym-
metric Kac-Moody Lie algebra. Hence [15, Theorem 5.22] holds for symmetric
Kac-Moody Lie algebras, and so does the above theorem.

From the theorem, we have the following corollary since the functor Cλ ⊗−
is exact:

Corollary 2.13. Assume that g is symmetric. If M ∈ b-Mod has a Demazure
flag, then Cλ ⊗ M for λ ∈ P+ has a Demazure flag.

3 Nontwisted affine Lie algebra

From this section, we assume that g is a nontwisted affine Lie algebra with
I = {0, 1, . . . , n} unless stated otherwise. Let Γ be the Dynkin diagram of g,
A = (aij)i,j∈I the Cartan matrix of g, ∆ ⊆ h∗ the root system of g, and ∆+ ⊆ ∆
the set of positive roots corresponding to b. In this article, we use the Kac’s
labeling of nodes of Γ in [16, Section 4.8]. Let (a0, . . . , an) (resp. (a∨

0 , . . . , a∨
n))

be the unique sequence of relatively prime positive integers satisfying∑
j∈I

aijaj = 0 for all i ∈ I (resp.
∑
i∈I

a∨
i aij = 0 for all j ∈ I).

Let d ∈ h be the degree operator, which is any element satisfying 〈αi, d〉 = δ0i for
i ∈ I, K =

∑
i∈I a∨

i α∨
i ∈ h the canonical central element, and δ =

∑
i∈I aiαi ∈

h∗ the null root. For each i ∈ I, let Λi ∈ P+ be the fundamental weight, which
satisfies

〈Λi, α
∨
j 〉 = δij for j ∈ I and 〈Λi, d〉 = 0.

Note that we have

P =
∑
i∈I

ZΛi + Cδ and P+ =
∑
i∈I

Z≥0Λi + Cδ.

Let ( , ) be the W -invariant symmetric bilinear form on h∗ defined by

(αi, αj) = a∨
i a−1

i aij , (αi, Λ0) = δ0i for i, j ∈ I and (Λ0, Λ0) = 0.

We denote by n+ (resp. n−) the Lie subalgebra of g generated by {ei | i ∈ I}
(resp. {fi | i ∈ I}), and by gα for α ∈ ∆ the root space of g.

Let I0 = I \ {0}, and g0 ⊆ g be the simple Lie subalgebra generated by
{ei, fi | i ∈ I0} with Cartan subalgebra h0 ⊆ h and Weyl group W0 ⊆ W . Let
∆0 ⊆ ∆ be the root system of g0, ∆+

0 = ∆0 ∩ ∆+ the set of positive roots,
P0 ⊆ h∗

0 the weight lattice of g0, P+
0 ⊆ P0 the set of dominant integral weights,

Q0 ⊆ P0 the root lattice of g0, and Q+
0 =

∑
i∈I0

Z≥0αi. Denote by $i ∈ h∗
0 and

$∨
i ∈ h0 (i ∈ I0) the fundamental weights and the fundamental coweights of g0
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respectively. For the notational convenience, we set $0 = 0 and $∨
0 = 0. We

often regard h∗
0 as a subspace of h∗ by setting 〈h∗

0,K〉 = 〈h∗
0, d〉 = 0. Then we

have h∗ = h∗
0 ⊕CΛ0 ⊕Cδ. We denote by θ =

∑
i∈I0

aiαi the highest root of g0,
and by w0 the longest element of W0. Let n+

0 (resp. n−
0 ) be the Lie subalgebra

of g0 generated by {ei | i ∈ I0} (resp. {fi | i ∈ I0}), and b0 = h0 ⊕ n+
0 . Set

eαi = ei and e−αi = fi for i ∈ I0, and for each α ∈ ∆+
0 \{αi | i ∈ I0} fix nonzero

vectors e±α ∈ g±α, α∨ ∈ h0 so that

[eα, e−α] = α∨, [α∨, e±α] = ±2e±α.

Recall that there exists a unique Lie algebra isomorphism

g
∼→ g0 ⊗ C[t, t−1] ⊕ CK ⊕ Cd

satisfying

ei 7→ ei ⊗ 1, fi 7→ fi ⊗ 1 (i ∈ I0), e0 7→ e−θ ⊗ t, f0 7→ eθ ⊗ t−1, d 7→ d.

The Lie algebra structure of g0 ⊗ C[t, t−1] ⊕ CK ⊕ Cd is defined by

[x ⊗ tm+a1K + b1d, y ⊗ tn + a2K + b2d]

= [x, y] ⊗ tm+n + nb1y ⊗ tn − mb2x ⊗ tm + mδm,−n(x, y)K.

In the sequel, we always identify these two Lie algebras via the above isomor-
phism. It should be noted that we have

pI0 = g0 ⊗ C[t] ⊕ CK ⊕ Cd.

Set g′ = [g, g],

p′J = pJ ∩ g′ for J ⊆ I, and h′ = h ∩ g′.

Note that we have pJ = p′J ⊕Cd and h′ = h0 ⊕CK. Let cl : h∗ → (h′)∗ = h∗/Cδ
denote the canonical projection, and set Pcl = cl(P ). Since W fixes δ, W acts
on h∗/Cδ and Pcl. For ` ∈ Z, we denote by P `

cl the subset {λ ∈ Pcl | 〈λ,K〉 = `}
of Pcl.

As [16, (6.5.2)], we define for λ ∈ P0 an endomorphism tλ of h∗ by

tλ(µ) = µ + 〈µ,K〉λ −
(
(µ, λ) +

1
2
(λ, λ)〈µ, K〉

)
δ. (3.1)

The map λ 7→ tλ defines an injective group homomorphism from P0 to the group
of linear automorphisms of h∗ orthogonal with respect to ( , ). Let ci = ai/a∨

i

for i ∈ I0, and define the sublattices M and M̃ of P0 by

M =
∑

w∈W0

Zw(θ), M̃ =
⊕
i∈I0

Zci$i.

Let T (M) and T (M̃) be the subgroups of GL(h∗) defined by

T (M) = {tλ | λ ∈ M}, T (M̃) = {tλ | λ ∈ M̃}.

It is known that W ∼= W0 n T (M) [16, Proposition 6.5]. Define the subgroup
W̃ of GL(h∗) by

W̃ = W0 n T (M̃),
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which is called the extended affine Weyl group. The action of W̃ preserves ∆,
and w ∈ W0 and λ ∈ M̃ satisfy

wtλw−1 = tw(λ).

By Aut (Γ) we denote the group of automorphisms of the Dynkin diagram Γ,
that is, the group of permutations τ of I satisfying aij = aτ(i)τ(j) for all i, j ∈ I.
Let h∗

R =
∑

i∈I Rαi + RΛ0 ⊆ h∗, C = {λ ∈ h∗
R | (λ, αi) ≥ 0 for all i ∈ I}

be the fundamental chamber, and Σ ⊆ W̃ the subgroup consisting of elements
preserving C. Then we have

W̃ ∼= W o Σ.

Since τ ∈ Σ preserves the set of simple roots, τ induces a permutation of I
(also denoted by τ) by τ(αi) = ατ(i), which belongs to Aut (Γ) since ( , ) is
τ -invariant. By abuse of notation, we denote by Σ both the subgroups of W̃
and Aut (Γ).

Lemma 3.1. Let τ be an arbitrary element of Σ, and τ̄ the unique element of
W0 such that τ ∈ τ̄ · T (M̃). Then we have

τ(λ + aδ) = τ̄(λ) +
(
a + 〈λ,$∨

τ−1(0)〉
)
δ for λ ∈ P0 and a ∈ C.

Proof. As tµ(αi) ≡ αi mod Zδ for every i ∈ I and µ ∈ M̃ , we have τ(αi) ≡
τ̄(αi) mod Zδ. This forces τ(αi) = τ̄(αi) + δτ(i),0δ for i ∈ I0 since τ preserves
{α0, . . . , αn} and τ̄ ∈ W0. Now the assertion follows since

τ(λ + aδ) =
∑
i∈I0

〈λ,$∨
i 〉τ(αi) + aδ

=
∑
i∈I0

〈λ,$∨
i 〉τ̄(αi) +

(
a + 〈λ,$∨

τ−1(0)〉
)
δ

= τ̄(λ) +
(
a + 〈λ, $∨

τ−1(0)〉
)
δ.

We define an action of Σ on g by letting τ ∈ Σ act as a Lie algebra auto-
morphism defined by

τ(ei) = eτ(i), τ(α∨
i ) = α∨

τ(i), τ(fi) = fτ(i) and τ(d) = d + $∨
τ(0).

This action obviously preserves b and b′. For a module M , we denote by τ∗M
the pull-back of M with respect to τ . The image of v ∈ M under the canonical
linear isomorphism M → τ∗M is denoted by τ∗v. Note that this isomorphism
maps the weight space Mλ onto (τ∗M)τ−1(λ).

We prepare some notation here. Let w ∈ W̃ be an arbitrary element, and
take unique elements w′ ∈ W and τ ∈ Σ so that w = w′τ . Then define a functor
Dw : b-Mod → b-Mod by

Dw = Dw′ ◦
(
τ−1

)∗
,

and a linear operator Dw : Z[P ] → Z[P ] by

Dw = Dw′ ◦ τ,

9



where τ acts on Z[P ] by τ(eλ) = eτ(λ). We set

Vw(Λ) = Vw′
(
τ(Λ)

)
for Λ ∈ P+.

Then we have the following lemma:

Lemma 3.2. (i) Let τ ∈ Σ, Λ ∈ P+ and w ∈ W . Then we have(
τ−1

)∗
Vw(Λ) ∼= Vτw(Λ).

(ii) Assume M ∈ b-Mod has a Demazure flag. Then for every w ∈ W̃ , DwM
has a Demazure flag and we have

chDwM = DwchM.

Proof. Since
(
τ−1

)∗
V (Λ) is an integrable highest weight g-module with high-

est weight τ(Λ), we have
(
τ−1

)∗
V (Λ) ∼= V

(
τ(Λ)

)
. Moreover, we see that(

τ−1
)∗

Vw(Λ) is the b-submodule of
(
τ−1

)∗
V (Λ) generated by the weight space

with weight τw(Λ). Hence the assertion (i) follows. Then, since the functor(
τ−1

)∗ is exact, the first assertion of (ii) follows from (i) and Corollary 2.7.
Since we have ch

(
τ−1

)∗
M = τ chM , the second one follows from Corollary

2.10.

Let Z[Pcl] denote the group algebra of Pcl with basis eλ (λ ∈ Pcl), and by cl
we also denote the projection from Z[P ] to Z[Pcl] defined by eλ 7→ ecl(λ). For
each w ∈ W , a linear operator Dw on Z[Pcl] is defined by

cl ◦ Dw = Dw ◦ cl.

Lemma 3.3 ([8]). Let f ∈ Z[P 0
cl], and assume f is W0-invariant. Then we

have
Dw(fg) = fDw(g) for every g ∈ Z[Pcl] and w ∈ W.

Proof. Since f ∈ Z[P 0
cl], we have s0(f) = sθ(f) = f , where sθ denotes the

reflection associated with θ. Hence f is si-invariant for all i ∈ I, and then the
assertion is easily proved from Lemma 2.8.

We need the following elementary lemmas later:

Lemma 3.4. Let M ∈ b-Mod. For every w ∈ W̃ and C ∈ C , we have

Dw(CCδ ⊗ M) ∼= CCδ ⊗DwM.

Proof. It is enough to show the assertions for w = τ ∈ Σ and w = si. The first
case is obvious, and the second one follows since we have

Hom b-Mod(CCδ ⊗ M,M ′) ∼= Hom b-Mod(M, C−Cδ ⊗ M ′)
∼= Hom pi-Mod(DiM, C−Cδ ⊗ M ′) ∼= Hom pi-Mod(CCδ ⊗DiM,M ′)

for every M ′ ∈ pi-Mod.
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Lemma 3.5. Let M1 be an object of b-Mod which is generated by a weight
vector v1, M2 an object of b-Mod, and Φ a homomorphism of b′-modules from
M1 to M2 which maps v1 to a weight vector v2.
(i) For some C ∈ C, Φ induces a homomorphism of b-modules from CCδ ⊗ M1

to M2.
(ii) Assume further that M2 extends to an object of pi-Mod for some i ∈ I.
Then there exists a homomorphism Φ̃ of p′i-modules from DiM1 to M2 satisfying
Φ = Φ̃ ◦ ι, where ι : M1 → DiM1 is the canonical homomorphism of b-modules.

Proof. Let λ1, λ2 ∈ h∗ be the respective weights of v1, v2, and C = 〈λ2 − λ1, d〉.
It is easily seen that the induced map Φ′ : CCδ⊗M1 → M2 preserves the weights,
and hence it is a homomorphism of b-modules. The assertion (i) is proved. Then
under the assumption of (ii), there exists a homomorphism Φ̃′ : Di(CCδ⊗M1) →
M2 of pi-modules such that Φ′ = Φ̃′ ◦ ι since Di is left adjoint to the restriction
functor pi-Mod → b-Mod. Since Di(CCδ ⊗M1) ∼= CCδ ⊗DiM1 holds by Lemma
3.4, required Φ̃ is obtained by restricting Φ̃′ to p′i.

4 Kirillov-Reshetikhin modules

Following [4], we define the following pI0-modules:

Definition 4.1. For r ∈ I0 and ` ∈ Z>0, let KRr,` be the pI0 -module generated
by a nonzero vector vr,` with relations

(n+
0 ⊗ C[t])vr,` = 0, (h0 ⊗ tC[t])vr,` = 0, hvr,` = 〈`$r, h〉vr,` for h ∈ h,

f `+1
r vr,` = (fr ⊗ t)vr,` = 0 and fivr,` = 0 for i ∈ I0 \ {r}.

We call KRr,` the Kirillov-Reshetikhin module (KR module for short) for pI0

associated with r and `.

Remark 4.2. (i) Kirillov-Reshetikhin modules were originally defined in [4] as
(g0 ⊗C[t])-modules. Since we would like to consider KRr,` as a b-module later,
we adopt the above definition in this article. It is obvious that the restriction
of KRr,` to g0 ⊗ C[t] coincides with the original one.
(ii) As the name indicates, KRr,` has strong connections with the Kirillov-
Reshetikhin module W r,` for the quantum affine algebra U ′

q(g) [2, 4, 5]. We
return to this topic in Section 7.

It is easily seen that the g0-submodule U(g0)vr,` ⊆ KRr,` is isomorphic to
the irreducible module with highest weight `$r. For each w ∈ W0 \ {id}, take
and fix a nonzero vector vw

r,` of this g0-submodule whose weight is w(`$r), and
set vid

r,` = vr,`.

Lemma 4.3. (i) Let w ∈ W0. For α ∈ Q+
0 and k ∈ Z, we have

KRr,`
`w($r)+w(α)+kδ =

{
Cvw

r,` if α = 0 and k = 0,

{0} otherwise.

(ii) As a b-module, KRr,` is generated by vw0
r,` .
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Proof. The assertion (i) for w = id follows by definition. Since KRr,` is finite-
dimensional [3, Theorem 1.2.2], its weight set and dimensions of weight spaces
are W0-invariant. From this, (i) for general w is proved. Then (i) for w = w0

implies (ii).

The following theorem, which easily follows from [9, Theorem 4], connects
KR modules with Demazure modules.

Theorem 4.4. Let r be an arbitrary element of I0 and ` a positive integer
satisfying c−1

r ` ∈ Z. Then there exists an isomorphism

Cc−1
r `Λ0

⊗ KRr,` ∼→ Vtcrw0($r)(c
−1
r `Λ0)

of p′I0
-modules which maps uc−1

r `Λ0
⊗ vw0

r,` to utcrw0($r)(c
−1
r `Λ0)

.

Remark 4.5. If g0 is of ADE type, then cr = 1 holds for all r ∈ I0. Hence the
above isomorphism follows for all KR modules in this case.

5 Fusion product

The fusion product was defined in [7] as a construction of a graded cyclic (g0 ⊗
C[t])-module. Here we slightly reformulate it as a construction of a pI0 -module.
Note that U(p′I0

) has a natural grading defined by

U(p′I0
)k = {X ∈ U(p′I0

) | [d,X] = kX},

from which we define a natural filtration on U(p′I0
) by

U(p′I0
)≤k =

⊕
q≤k

U(p′I0
)q.

Let M be a cyclic p′I0
-module with a generator v, and denote by F k

v (M) for
k ∈ Z≥−1 the subspace U(p′I0

)≤kv of M . (Note that F−1
v (M) = 0.) Then the

associated pI0 -module grFv
(M) is defined by

grFv
(M) =

⊕
k≥0

F k
v (M)/F k−1

v (M),

where d acts on F k
v (M)/F k−1

v (M) as multiplication by k.
Now we recall the definition of fusion products. Let M1, . . . ,Mp be a se-

quence of objects of pI0 -Mod such that each M j is generated by a weight vector
vj , and c1, . . . , cp pairwise distinct complex numbers. Note that each M j is
Z-graded by the action of d. For each 1 ≤ j ≤ p, define p′I0

-module M j
cj

by the
pullback ϕ∗

cj
M j , where ϕc is an automorphism of p′I0

defined by

x ⊗ tk 7→ x ⊗ (t + c)k for x ∈ g0, K 7→ K.

For w ∈ M j , we denote by w′ its image under the canonical map M j → M j
cj

. As
shown in [7, Proposition 1.4], M1

c1
⊗ · · · ⊗ Mp

cp
is a cyclic p′I0

-module generated
by v′

1 ⊗ · · · ⊗ v′
p, and we define a pI0-module M1

c1,v1
∗ · · · ∗ Mp

cp,vp
by

M1
c1,v1

∗ · · · ∗ Mp
cp,vp

= grFv′
1⊗···⊗v′

p

(M1
c1

⊗ · · · ⊗ Mp
cp

).

When the parameters or generators are clear from the context, we write simply
as M1

c1
∗ · · · ∗ Mp

cp
, M1

v1
∗ · · · ∗ Mp

vp
or M1 ∗ · · · ∗ Mp.
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Definition 5.1 ([7]). The pI0-module M1 ∗· · ·∗Mp is called the fusion product.

Lemma 5.2. (i) As (g0 ⊕ CK)-modules,

M1 ∗ · · · ∗ Mp ∼= M1 ⊗ · · · ⊗ Mp.

(ii) Let w1, . . . , wp be weight vectors of M1, . . . ,Mp respectively, and assume that

U(g0)(w1 ⊗ · · · ⊗ wp) = U(g0)(v1 ⊗ · · · ⊗ vp).

Then we have
M1

w1
∗ · · · ∗ Mp

wp
∼= M1

v1
∗ · · · ∗ Mp

vp
.

(iii) For any c ∈ C, we have

M1
c1+c ∗ · · · ∗ Mp

cp+c
∼= M1

c1
∗ · · · ∗ Mp

cp
.

(iv) M1
c1,v1

(the fusion product of a single module M1) is isomorphic to M1 as
a p′I0

-module.

Proof. The assertions (i) and (ii) easily follow from the definition. As the auto-
morphism ϕc preserves the subspace U(p′I0

)≤k, we have

ϕc

(
U(p′I0

)≤k
)
(v′

1 ⊗ · · · ⊗ v′p) = U(p′I0
)≤k(v′

1 ⊗ · · · ⊗ v′p).

Since the left hand side is equal to the filtration of M1
c1+c ⊗ · · · ⊗ Mp

cp+c, (iii)
is proved. When c1 = 0, (iv) obviously follows. Then the assertion follows in
general by (iii).

6 Statement of the main theorem

Now we state the main theorem of this article. This is a generalization of [7,
Theorem 2.5] where the case g0 = sl2 is proved, and [9, Theorem 4 and Corollary
5] where the case `1 = · · · = `p is proved.

Theorem 6.1. Assume that g0 is of ADE type. Let KRr1,`1 , . . . ,KRrp,`p be a
sequence of KR modules such that `1 ≤ · · · ≤ `p, and set vj = vrj ,`j ∈ KRrj ,`j

for 1 ≤ j ≤ p. Then for arbitrary pairwise distinct complex numbers c1, . . . , cp,
there exists an isomorphism of b-modules

C`pΛ0+Cδ ⊗
(
KRrp,`p

cp,vp
∗ · · · ∗ KRr2,`2

c2,v2
∗ KRr1,`1

c1,v1

)
(6.1)

∼= Dtw0($rp )

(
C(`p−`p−1)Λ0 ⊗ · · · ⊗ Dtw0($r2 )

(
C(`2−`1)Λ0 ⊗Dtw0($r1 )C`1Λ0

)
· · ·

)
with some constant C.

We postpone the proof of this theorem to the latter part of this article. We
see from Corollary 2.13 and Lemma 3.2 (ii) that the right hand side of (6.1) has
a Demazure flag. Hence we can prove inductively using Lemma 3.2 (ii) that the
following equation holds:
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Corollary 6.2. Under the notation and the assumptions of Theorem 6.1, we
have

e`pΛ0+CδchKRrp,`p ∗ · · · ∗ KRr2,`2 ∗ KRr1,`1

= Dtw0($rp )

(
e(`p−`p−1)Λ0 · · ·Dtw0($r2 )

(
e(`2−`1)Λ0 · Dtw0($r1 )(e

`1Λ0)
)
· · ·

)
.

Remark 6.3. The right hand side of (6.1) also appeared in [20]. In the article,
it was proved that this module, which was called a generalized Demazure module,
is isomorphic to the space of global sections of a certain line bundle on a Bott-
Samelson variety.

7 X = M conjecture

In this section, we give an important application of Theorem 6.1, the proof of
the X = M conjecture for type A

(1)
n and D

(1)
n . Here, we assume that g is a

general (possibly twisted) affine Lie algebra.
For a sequence ν =

(
(r1, `1), . . . , (rp, `p)

)
of elements of I0×Z>0 and µ ∈ P+

0 ,
denote by M(ν, µ, q) ∈ Z[q−1] the associated fermionic form (see [12, 13] for
definition, in which the fermionic form is denoted by M(W,µ, q) with W =⊗

1≤j≤p W rj ,`j ). The most important result concerning fermionic forms in this
article is the following theorem proved by Di Francesco and Kedem using the
result of [1]:

Theorem 7.1 ([5]). Assume that g is of nontwisted type. For a sequence
ν =

(
(r1, `1), . . . , (rp, `p)

)
of elements of I0×Z>0 and pairwise distinct complex

numbers c1, . . . , cp, we have

chKRrp,`p
cp

∗ · · · ∗ KRr2,`2
c2

∗ KRr1,`1
c1

=
∑

µ∈P+
0

M(ν, µ, q)ch Vg0(µ),

where we set q = e−δ and denote by Vg0(µ) the irreducible g0-module with highest
weight µ.

Remark 7.2. In [5], the above theorem was proved under the assumption that
the dimension of each KRrj ,`j is equal to that of the corresponding KR-module
W rj ,`j for the quantum affine algebra U ′

q(g). This assumption was proved to
hold for nonexceptional types in [2, 4], and we can see from the pentagon of
identities in [17, Subsection 1.2] that this holds in general.

From Corollary 6.2 and Theorem 7.1, we have the following corollary:

Corollary 7.3. Assume that g is of nontwisted type and g0 is of ADE type.
Let ν =

(
(r1, `1), . . . , (rp, `p)

)
be a sequence of elements of I0 × Z>0 such that

`1 ≤ · · · ≤ `p. Then we have

qCe`pΛ0
∑

µ∈P+
0

M(ν, µ, q)chVg0(µ)

= Dtw0($rp )

(
e(`p−`p−1)Λ0 · · ·Dtw0($r2 )

(
e(`2−`1)Λ0 · Dtw0($r1 )(e

`1Λ0)
)
· · ·

)
with some constant C, where we set q = e−δ.
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Next we recall the definition of one-dimensional sums. Assume that g is of
nonexceptional type, and denote by Br,` the Kirillov-Reshetikhin crystal (KR
crystal for short) associated with r ∈ I0 and ` ∈ Z>0. Note that the existence
of KR crystals was proven in [26], and their explicit structure was given in [10]
for nonexceptional types. It is known that Br,` is perfect if and only if ` ∈ crZ
[11]. Let B = Brp,`p ⊗ · · · ⊗ Br1,`1 be a tensor product of KR crystals, and
D = DB : B → Z the energy function defined on B. For the definitions of
these objects, see [12, 13]. The one-dimensional sum X(B,µ, q) ∈ Z[q, q−1] for
µ ∈ P+

0 is defined by

X(B,µ, q) =
∑
b∈B

eeib=0 (i∈I0)
wt(b)=µ

qD(b),

where ẽi are Kashiwara operators. In [24, Corollary 7.3], the following proposi-
tion was proved:

Proposition 7.4. Assume that g is of nonexceptional type. Let B = Brp,crp`p⊗
· · ·⊗Br1,cr1`1 be a tensor product of perfect KR crystals such that `1 ≤ · · · ≤ `p.
Then we have

qC′
e`pΛ0

∑
µ∈P+

0

X(B,µ, q) chVg0(µ) = Dtcrp w0($rp )

(
e(`p−`p−1)Λ0 · · ·

· · ·Dtcr2w0($r2 )

(
e(`2−`1)Λ0 · Dtcr1w0($r1 )(e

`1Λ0)
)
· · ·

)
with some constant C ′, where we set q = e−δ.

Now we show the following theorem from the above results, which is the
X = M conjecture presented in [12, 13]. This result for D

(1)
n is new. This has

already been proved for A
(1)
n in [18], but our approach is quite different from

theirs:

Theorem 7.5. Assume that g is of nontwisted, nonexceptional type and g0 is of
ADE type (i.e. g = A

(1)
n or D

(1)
n ). Let ν =

(
(r1, `1), . . . , (rp, `p)

)
be a sequence

of elements of I0 ×Z>0, and B = Brp,`p ⊗ · · ·⊗Br1,`1 . Then for every µ ∈ P+
0 ,

we have
q−D(u(B))X(B,µ, q) = M(ν, µ, q),

where u(B) denotes the unique element of B whose weight is
∑

1≤j≤p `j$j.

Proof. Recall that energy functions and one-dimensional sums are invariant
under reordering of the given sequence by [27, Proposition 2.15], and so are
fermionic forms by definition. Hence we may assume `1 ≤ · · · ≤ `p. Then as
cr = 1 holds for all r ∈ I0, we have from Corollary 7.3 and Proposition 7.4 that

qC′′ ∑
µ∈P+

0

X(B,µ, q)chVg0(µ) =
∑

µ∈P+
0

M(ν, µ, q)chVg0(µ) (7.1)

with some constant C ′′, which implies

qC′′
X(B,µ, q) = M(ν, µ, q)
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for every µ since the characters of irreducible g0-modules are linearly indepen-
dent. It remains to show C ′′ = −D

(
u(B)

)
. Let λ =

∑
1≤j≤p `j$j . Since∑

µ∈P+
0

X(B,µ, q)chVg0(µ) =
∑
b∈B

qD(b)ewt(b)

holds by definition, the coefficient of eλ in the left hand side of (7.1) is equal
to qC′′+D(u(B)). On the other hand, we easily see from Theorem 7.1 that the
coefficient of eλ in the right hand side is 1. Hence we have qC′′+D(u(B)) = 1,
which implies C ′′ = −D

(
u(B)

)
. The theorem is proved.

8 b-fusion product

We devote the rest of this article to prove Theorem 6.1. In this section, we
introduce a construction of a b-module, which we call the b-fusion product,
defined by modifying the definition of the fusion product in Section 5. This
construction is essentially used in the proof of the theorem. Here we only assume
that g is a nontwisted affine Lie algebra (that is, g0 is allowed to be of type
BCFG) since the definition of b-fusion products makes sense in this setting.

Let M1, . . . ,Mp be a sequence of objects of pI0 -Mod such that each M j is
generated (as a pI0 -module) by a weight vector vj , and N an object of b-Mod
which is generated (as a b-module) by a weight vector u. Note that M j and N
are Z-graded by the action of d. For pairwise distinct nonzero complex numbers
c1, . . . , cp, define a p′I0

-module M1
c1

⊗ · · · ⊗ Mp
cp

as in Section 5.

Lemma 8.1. N ⊗M1
c1

⊗ · · · ⊗ Mp
cp

is generated by the vector u⊗ v′
1 ⊗ · · · ⊗ v′

p

as a b′-module.

Proof. The proof is similar to that of [6, Proposition 2.8]. Let

b′′ = b′ ∩
(
g0 ⊗ C[t]

)
= b0 ⊕ g0 ⊗ C[t].

Since N and M j are finite-dimensional and Z-graded, there exists a sufficiently
large positive integer L such that g0 ⊗ tLC[t] acts trivially on them. It suffices
to show that the Lie algebra homomorphism

b′′ → b′′/
(
g0 ⊗ (tL)

)
⊕

⊕
1≤j≤p

g0 ⊗ C[t]/
(
(t − cj)L

)
(8.1)

is surjective, where (f) denotes the ideal of C[t] generated by f ∈ C[t]. In fact
since g0 ⊗

(
(t − cj)L

)
(resp. g0 ⊗

(
tL

)
) annihilates M j

cj
(resp. N), this implies

U(b′′)(u ⊗ v′
1 ⊗ · · · ⊗ v′p) = U

(
b′′/g0 ⊗

(
tL

))
u ⊗ U

(
g0 ⊗ C[t]/

(
(t − c1)L

))
v′
1⊗

· · · ⊗ U
(
g0 ⊗ C[t]/

(
(t − cp)L

))
v′p

= N ⊗ M1
c1

⊗ · · ·⊗Mp
cp

,

and hence the lemma follows. Since tL, (t − c1)L, . . . , (t − cp)L are relatively
prime, the Lie algebra homomorphism

g0 ⊗
(
tL

)
→

⊕
1≤j≤p

g0 ⊗ C[t]/
(
(t − cj)L

)

16



is surjective. From this, we easily see the surjectivity of the homomorphism
(8.1)

Define the subspace U(b′)≤k ⊆ U(b′) for k ∈ Z similarly as U(p′I0
)≤k. By

considering the filtration

F̃ k
u⊗v′

1⊗···⊗v′
p
(N ⊗ M1

c1
⊗ · · · ⊗ Mp

cp
) = U(b′)≤k(u ⊗ v′

1 ⊗ · · · ⊗ v′
p) (8.2)

of N ⊗M1
c1
⊗· · ·⊗Mp

cp
, we define

[
Nu ∗ M1

c1,v1
∗ · · · ∗ Mp

cp,vp

]
b

as the associated
b-module[

Nu ∗ M1
c1,v1

∗ · · · ∗ Mp
cp,vp

]
b

= gr
eFu⊗v′

1⊗···⊗v′
p

(N ⊗ M1
c1

⊗ · · · ⊗ Mp
cp

),

which we call the b-fusion product. We sometimes omit the parameters or the
generators when they are clear from the context. It should be noted that in the
definition of the b-fusion product, only the leftmost module is allowed to be a
b-module, and the others are assumed to be pI0-modules. By definition, it is
easily seen for every ` ∈ C that

C`Λ0 ⊗
[
N ∗ M1 ∗ · · · ∗ Mp

]
b
∼=

[
(C`Λ0 ⊗ N) ∗ M1 ∗ · · · ∗ Mp

]
b
. (8.3)

In some special cases, an original fusion product is connected to a certain
b-fusion product by the following lemma:

Lemma 8.2. Assume that each generator vj of M j is annihilated by n−
0 . Then

we have the following isomorphisms of b-modules:
(i)

M1
0 ∗ M2

c2
∗ · · · ∗ Mp

cp
∼=

[
M1 ∗ M2

c2
∗ · · · ∗ Mp

cp

]
b
, and

(ii)
M1

c1
∗ · · · ∗ Mp

cp
∼=

[
Ctriv ∗ M1

c1
∗ · · · ∗ Mp

cp

]
b
,

where Ctriv denotes the trivial module.

Proof. From the assumption, M1 is generated by v1 as a b-module. Hence the
right hand side of the isomorphism (i) makes sense. The isomorphisms easily
follow from the definition since we have

U(p′I0
)≤k(v′1 ⊗ v′

2 ⊗ · · · ⊗ v′p) = U(b′)≤k(v′
1 ⊗ v′

2 ⊗ · · · ⊗ v′
p)

by the assumption and the Poincaré-Birkhoff-Witt theorem.

Remark 8.3. The isomorphism (ii) of the above lemma does not hold in gen-
eral. For example, let M1 be a finite-dimensional irreducible g0-module with a
highest weight vector v1, which is considered as a pI0 -module via the evaluation
map pI0 → g0 : x ⊗ tk 7→ δ0,kx, K, d 7→ 0. Then by Lemma 5.2 (iv), the fusion
product M1

c1,v1
is isomorphic to M1. However, we easily see that the degree 0

space of
[
Ctriv ∗ M1

c1,v1

]
b

is one-dimensional, and hence they are not isomorphic
unless M1 is trivial. On the other hand,

[
Ctriv ∗ M1

]
b

is isomorphic to M1 if a
lowest weight vector of M1 is chosen as a generator. As seen from this example,
the b-fusion product is sensitive to the choice of generators.

17



Lemma 8.4. Let i ∈ I. The b-module
[
N ∗ M1 ∗ · · · ∗ Mp

]
b

extends to a pi-
module if N extends to a pi-module and either of the following conditions is
satisfied:
(i) i ∈ I0 and all vj and u are annihilated by fi, or
(ii) i = 0, K acts trivially on M1, . . . ,Mp, and each vj (resp. u) is annihilated
by eθ ⊗ C[t] (resp. eθ ⊗ t−1).

Proof. The case (i) is easily proved since N ⊗ M1
c1

⊗ · · · ⊗ Mp
cp

is a p′i-module
and we have

U(b′)≤k(u ⊗ v′1 ⊗ · · · ⊗ v′
p) = U(p′i)

≤k(u ⊗ v′
1 ⊗ · · · ⊗ v′

p) (8.4)

for each k. Let us prove the case (ii). Since K acts trivially, a p′0-module
structure is defined on each M j

cj
by letting f0 act by(

eθ ⊗ t−1
)
w′ = −

∑
k≥0

(−cj)−k−1
(
(eθ ⊗ tk)w

)′ for w ∈ M j .

Note that the above sum is finite since M j ∈ pI0 -Mod. Hence N⊗M1
c1
⊗· · ·⊗Mp

cp

extends to a p′0-module. Moreover the equality (8.4) also holds in this case from
the assumption. Hence the assertion also follows in this case.

Take arbitrary vectors wj ∈ M j (1 ≤ j ≤ p) and z ∈ N . Let k be the unique
integer such that

z⊗w′
1⊗· · ·⊗w′

p ∈ F̃ k
u⊗···⊗v′

p
(N⊗M1

c1
⊗· · ·⊗Mp

cp
)\F̃ k−1

u⊗···⊗v′
p
(N⊗M1

c1
⊗· · ·⊗Mp

cp
),

and denote by z ∗ w1 ∗ · · · ∗ wp the vector of
[
N ∗ M1 ∗ · · · ∗ Mp

]
b

which is the
image of z ⊗ w′

1 ⊗ · · · ⊗ w′
p under the projection

F̃ k(N ⊗ · · · ⊗ Mp
cp

) ³ F̃ k(N ⊗ · · · ⊗ Mp
cp

)/F̃ k−1(N ⊗ · · · ⊗ Mp
cp

).

Note that u ∗ v1 ∗ · · · ∗ vp is a generator of
[
N ∗ M1 ∗ · · · ∗ Mp

]
b
. The following

lemma, which obviously follows by definition, is important for the later argu-
ments.

Lemma 8.5. Let X ∈ U(b′)k. Then X annihilates u ∗ v1 ∗ · · · ∗ vp if and only
if there exists some Y ∈ U(b′)≤k−1 satisfying

(X − Y )(u ⊗ v′1 ⊗ · · · ⊗ v′
p) = 0.

9 Proof of the main theorem

Now, we begin the proof of Theorem 6.1. Assume that g is a nontwisted affine
Lie algebra and g0 is of type ADE. For a given sequence of KR modules
KRr1,`1 , . . . ,KRrp,`p , we set M j = KRrj ,`j and vj = vrj ,`j ∈ M j for 1 ≤ j ≤ p
for short, and write vw

j = vw
rj ,`j

∈ M j for w ∈ W0 (defined in Section 4).
We shall show the theorem by the induction on p. The assertion of the

theorem for p = 1 follows from Lemma 5.2 (iv), Theorem 2.6, Theorem 4.4, and
Lemma 3.5 (i). Assume p > 1. By Lemma 5.2 (iii), we may (and do) assume
cp = 0, which implies c1, . . . , cp−1 are nonzero. First we show the following
lemma:
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Lemma 9.1. We have the following isomorphisms of b′-modules:

C`pΛ0 ⊗
(
Mp

vp
∗ Mp−1

vp−1
∗ · · · ∗ M1

v1

)
∼=

[
Vtw0($rp )(`pΛ0)utw0($rp )(`pΛ0) ∗ Mp−1

v
w0
p−1

∗ · · · ∗ M1
v

w0
1

]
b
, (9.1)

and

Dtw0($rp )

(
C(`p−`p−1)Λ0⊗Dtw0($rp−1 )

(
C(`p−1−`p−2)Λ0 ⊗ · · · ⊗ Dtw0($r1 )C`1Λ0

))
∼= Dtw0($rp )

[
C`pΛ0 ∗ Mp−1

v
w0
p−1

∗ · · · ∗ M1
v

w0
1

]
b
. (9.2)

Proof. Since

U(g0)(vw0
p ⊗ · · · ⊗ vw0

1 ) = U(g0)(vp ⊗ · · · ⊗ v1)

holds, we have from Lemma 5.2 (ii) that

Mp
0,vp

∗ Mp−1
cp−1,vp−1

∗ · · · ∗ M1
c1,v1

∼= Mp

0,v
w0
p

∗ Mp−1

cp−1,v
w0
p−1

∗ · · · ∗ M1
c1,v

w0
1

,

whose right hand side is isomorphic to
[
Mp

v
w0
p

∗ Mp−1

v
w0
p−1

∗ · · · ∗ M1
v

w0
1

]
b

by Lemma

8.2 (i). Hence we have using (8.3) and Theorem 4.4 that

C`pΛ0 ⊗
(
Mp

vp
∗ · · · ∗M1

v1

)
∼=

[(
C`pΛ0 ⊗ Mp

)
u`pΛ0⊗v

w0
p

∗ Mp−1

v
w0
p−1

∗ · · · ∗ M1
v

w0
1

]
b

∼=
[
Vtw0($rp )(`pΛ0)utw0($rp )(`pΛ0) ∗ Mp−1

v
w0
p−1

∗ · · · ∗ M1
v

w0
1

]
b
.

The isomorphism (9.1) is proved. Let us prove (9.2). By the induction hypoth-
esis, there exists an isomorphism

Dtw0($rp−1 )

(
C(`p−1−`p−2)Λ0 ⊗ · · · ⊗ Dtw0($r1 )C`1Λ0

)
∼= C`p−1Λ0 ⊗

(
Mp−1

vp−1
∗ · · · ∗ M1

v1

)
,

whose right hand side is isomorphic to

C`p−1Λ0 ⊗
(
Mp−1

v
w0
p−1

∗ · · · ∗ M1
v

w0
1

) ∼= C`p−1Λ0 ⊗
[
Ctriv ∗ Mp−1

v
w0
p−1

∗ · · · ∗ M1
v

w0
1

]
b

by Lemma 5.2 (ii) and Lemma 8.2 (ii). Hence we have using (8.3) that(
left hand side of (9.2)

)
∼= Dtw0($rp )

(
C`pΛ0 ⊗

[
Ctriv ∗ Mp−1

v
w0
p−1

∗ · · · ∗ M1
v

w0
1

]
b

)
∼= Dtw0($rp )

[
C`pΛ0 ∗ Mp−1

v
w0
p−1

∗ · · · ∗ M1
v

w0
1

]
b
.

The isomorphism (9.2) is proved.

By Lemmas 9.1 and 3.5 (i), in order to prove the theorem it suffices to show
the following isomorphism of b′-modules:[

Vtw0($rp )(`pΛ0)utw0($rp )(`pΛ0) ∗ Mp−1

v
w0
p−1

∗ · · · ∗ M1
v

w0
1

]
b

∼= Dtw0($rp )

[
C`pΛ0 ∗ Mp−1

v
w0
p−1

∗ · · · ∗ M1
v

w0
1

]
b
. (9.3)
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Let w ∈ W and τ ∈ Σ be unique elements satisfying wτ = tw0($rp ), and

w = sik
· · · si1 a reduced expression. For 0 ≤ q ≤ k, let wq = siq · · · si1τ ∈ W̃ ,

and wq be the unique element of W0 satisfying wq ∈ wq · T (M̃) (note that
wk = id). We also write τ for w0. Then since

Vtw0($rp )(`pΛ0) ∼= Dtw0($rp )C`pΛ0
∼= DwC`pΛτ(0)

holds, we see that the isomorphism (9.3) is deduced by the induction on q from
the following two propositions, and hence Theorem 6.1 is established:

Proposition 9.2. We have[
C`pΛτ(0) ∗ Mp−1

cp−1,v
τw0
p−1

∗ · · · ∗ M1

c1,v
τw0
1

]
b

∼= (τ−1)∗
[
C`pΛ0 ∗ Mp−1

cp−1,v
w0
p−1

∗ · · · ∗ M1
c1,v

w0
1

]
b

as b′-modules.

Proposition 9.3. For each 1 ≤ q ≤ k, we have[
Vwq (`pΛ0)uwq(`pΛ0) ∗ Mp−1

v
wqw0
p−1

∗ · · · ∗ M1

v
wqw0
1

]
b

∼= Diq

[
Vwq−1(`pΛ0)uwq−1(`pΛ0)

∗ Mp−1

v
wq−1w0
p−1

∗ · · · ∗ M1

v
wq−1w0
1

]
b

as b′-modules.

To show Proposition 9.2, we need to prepare several lemmas. The following
one is proved similarly as [16, Lemma 3.8]:

Lemma 9.4. Let M be a finite-dimensional p′I0
-module. Then for every w ∈

W0, there exists a linear automorphism ηw of M satisfying

Ad(ηw)(h ⊗ ts) =w(h) ⊗ ts for h ∈ h0, s ∈ Z≥0, Ad(ηw)(K) = K,

Ad(ηw)(eα ⊗ ts) = aw(α)ew(α) ⊗ ts for α ∈ ∆0, s ∈ Z≥0, and
ηw(Mλ) = Mw(λ) for λ ∈ h∗/Cδ,

where aw(α) are some nonzero complex numbers which do not depend on M .

By applying Ad(ηw0) given in Lemma 9.4 to the defining relations of KRr,`

in Definition 4.1, the following lemma is proved:

Lemma 9.5. The annihilating ideal of vw0
r,` ∈ KRr,` in U

(
p′I0

)
is generated by

n−
0 ⊗C[t], h0 ⊗ tC[t], h − 〈w0(`$r), h〉 (h ∈ h′),

e`+1
r̄ , er̄ ⊗ t, and ei (i ∈ I0 \ {r̄}),

where r̄ is the node of I0 such that w0(αr) = −αr̄.

Lemma 9.6. For c ∈ C, the annihilating ideal of vw0
r,`

′ ∈ KRr,`
c in U(b′) is

generated by

n−
0 ⊗ tC[t], h0 ⊗ (t − c)C[t], h − 〈w0(`$r), h〉 (h ∈ h′),

e`+1
r̄ , er̄ ⊗ (t − c), and ei (i ∈ I0 \ {r̄}).
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Proof. Let I be the subspace of U(b′) spanned by the above vectors. From
Lemma 9.5, we see that the annihilating ideal of vw0

r,`
′ in U

(
p′I0

)
is equal to

U
(
p′I0

)(
I + n−

0

)
. We have to prove that

U
(
p′I0

)(
I + n−

0

)
∩ U(b′) ⊆ U(b′)I.

Since U
(
p′I0

)
= U(b′)⊕U

(
p′I0

)
n−
0 holds by the Poincaré-Birkhoff-Witt theorem,

it suffices to show that

U(p′I0
)I ⊆ U(b′)I ⊕ U

(
p′I0

)
n−
0 .

Then since we have U(p′I0
) = U(b′)U(n−

0 ) and U(n−
0 ) is generated by {fi | i ∈

I0}, it is enough to prove that fiI ⊆ I ⊕ U
(
p′I0

)
n−
0 holds for i ∈ I0, which is

proved by elementary calculations.

Lemma 9.7. There exists a nonzero complex number b satisfying the following
statement: for every KR module KRr,` and c ∈ C, there exists a homomorphism

KRr,`
c → τ∗KRr,`

bc

of b′-modules which maps vw0
r,`

′ to τ∗vτw0
r,`

′
.

Proof. Since KRr,`
c is generated by vw0

r,`
′ as a b′-module, it suffices to show

for suitable b ∈ C∗ that if X ∈ U(b′) annihilates vw0
r,`

′ ∈ KRr,`
c , then τ(X)

annihilates vτw0
r,`

′ ∈ KRr,`
bc . Since the h′-weights of vw0

r,`
′ ∈ KRr,`

c and τ∗vτw0
r,`

′ ∈
τ∗KRr,`

bc coincide, we may assume X ∈ U(n+). Let i0 = τ−1(0) ∈ I, and
ψi0 : U(b′) → U

(
p′I0

)
be an algebra homomorphism defined by

ψi0(x ⊗ ts) = x ⊗ ts+〈α,$∨
i0

〉 for x ∈ gα (α ∈ ∆0),
ψi0(h ⊗ ts) = h ⊗ ts for h ∈ h0, ψi0(K) = K.

Using Lemma 9.6, we easily check that ψi0(X) also annihilates vw0
r,`

′ ∈ KRr,`
c .

Let η = ητ be the linear automorphism of KRr,`
c given in Lemma 9.4. Then

since η(vw0
r,`

′) ∈ C∗vτw0
r,`

′
holds by Lemma 4.3, Ad(η)◦ψi0(X) annihilates vτw0

r,`

′ ∈
KRr,`

c , which is equivalent to that ϕc ◦Ad(η)◦ψi0(X) annihilates vτw0
r,` ∈ KRr,`

(ϕc is defined in Section 5). It is easy to see from Lemma 3.1 that there exists
some bi ∈ C∗ for each i ∈ I such that

Ad(η) ◦ ψi0(eτ−1(i)) = biei.

Define a linear automorphism H on KRr,` by

H(u) =
∏
i∈I

b
−〈λ,Λ∨

i 〉
i · u if u ∈ KRr,`

λ (λ ∈ P ),

where Λ∨
i ∈ h are the fundamental coweights of g. Ad(H) ◦ϕc ◦Ad(η) ◦ψi0(X)

annihilates vτw0
r,` since it is a weight vector. Set b =

∏
i∈I bai

i . It is easily checked
that

Ad(H) ◦ ϕc ◦ Ad(η) ◦ ψi0(eτ−1(i)) =

{
e−θ ⊗ t + bce−θ if i = 0,

ei otherwise,
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which implies

Ad(H) ◦ ϕc ◦ Ad(η) ◦ ψi0 = ϕbc ◦ τ on U(n+).

Hence we see that ϕbc ◦ τ(X) annihilates vτw0
r,` , which is equivalent to that τ(X)

annihilates vτw0
r,`

′ ∈ KRr,`
bc . The assertion is proved.

Now, we give the proof of Proposition 9.2:

Proof of Proposition 9.2. Note that the right hand side of Theorem 6.1 does
not depend on the parameters c1, . . . , cp. Hence from the induction hypothesis

on p and the proof of (9.2), we see that the b-module
[
C`pΛ0 ∗Mp−1

cp−1,v
w0
p−1

∗ · · · ∗

M1
c1,v

w0
1

]
b

also does not depend on the parameters, and in particular we have[
C`pΛ0 ∗Mp−1

cp−1,v
w0
p−1

∗· · ·∗M1
c1,v

w0
1

]
b

∼=
[
C`pΛ0 ∗Mp−1

b−1cp−1,v
w0
p−1

∗· · ·∗M1
b−1c1,v

w0
1

]
b
,

where b is the complex number given in Lemma 9.7. Hence the proposition is
equivalent to the following isomorphism of b′-modules:[

C`pΛτ(0) ∗ Mp−1

cp−1,v
τw0
p−1

∗ · · · ∗ M1

c1,v
τw0
1

]
b

∼= (τ−1)∗
[
C`pΛ0 ∗ Mp−1

b−1cp−1,v
w0
p−1

∗ · · · ∗ M1
b−1c1,v

w0
1

]
b
.

Let us prove this. Let u1 ∈ C`pΛ0 and u2 ∈ C`pΛτ(0) be nonzero vectors. Since
dimensions of two modules are equal, it suffices to show there exists a surjective
homomorphism of b′-modules from the right hand side to the left hand side
mapping (τ−1)∗(u1 ∗vw0

p−1 ∗ · · · ∗vw0
1 ) to u2 ∗vτw0

p−1 ∗ · · · ∗vτw0
1 , which is equivalent

to show that if X ∈ U(b′) annihilates u1 ∗vw0
p−1 ∗ · · · ∗vw0

1 , then τ(X) annihilates
u2 ∗vτw0

p−1 ∗ · · · ∗vτw0
1 . We may assume X ∈ U(b′)s

γ for some γ ∈ Q0 and s ∈ Z≥0,
where we set

U(b′)s
γ = {Z ∈ U(b′)s | [h, Z] = 〈γ, h〉Z for h ∈ h0} .

By Lemma 8.5, there exists Y ∈ U(b′)≤s−1 such that

(X − Y )(u1 ⊗ vw0
p−1

′ ⊗ · · · ⊗ vw0
1

′) = 0, (9.4)

and we may assume Y ∈ U(b′)≤s−1
γ . We see from Lemma 9.7 that there exists

a homomorphism of b′-modules

C`pΛ0 ⊗ Mp−1
b−1cp−1

⊗ · · · ⊗ M1
b−1c1

→ τ∗
(
C`pΛτ(0) ⊗ Mp−1

cp−1
⊗ · · · ⊗ M1

c1

)
which maps u1 ⊗ vw0

p−1
′ ⊗ · · · ⊗ vw0

1
′ to τ∗(u2 ⊗ vτw0

p−1

′ ⊗ · · · ⊗ vτw0
1

′)
. From this

and (9.4), we have

τ(X − Y )(u2 ⊗ vτw0
p−1

′ ⊗ · · · ⊗ vτw0
1

′
) = 0.

Moreover, we have τ(X) ∈ U(b′)
s+〈γ,$∨

i0
〉

τ(γ) and τ(Y ) ∈ U(b′)
≤s+〈γ,$∨

i0
〉−1

τ(γ) from
Lemma 3.1, where we set i0 = τ−1(0). Hence by Lemma 8.5, τ(X) annihilates
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u2 ∗ vτw0
p−1 ∗ · · · ∗ vτw0

1 . The assertion is proved.

It remains to prove Proposition 9.3:

Proof of Proposition 9.3. We abbreviate uq = uwq(`pΛ0), Vq = Vwq (`pΛ0) and
vq

j = vwqw0
j . Fix 1 ≤ q ≤ k, and assume when q > 1 that the assertion of the

proposition holds for q′ < q. Then we see that
[
(Vq−1)uq−1 ∗Mp−1

vq−1
p−1

∗· · ·∗M1
vq−1
1

]
b

has a Demazure flag from the induction hypothesis on p, Corollary 2.13, Lemma
3.2 (ii), and Proposition 9.2.

Recall that, by the definition of Demazure modules, there exists a canonical
embedding Vq−1 ↪→ Vq. Let zq−1 denote the image of uq−1 under this embed-

ding. It should be noted that zq−1∗vq−1
p−1∗· · ·∗vq−1

1 ∈
[
(Vq)uq ∗Mp−1

vq
p−1

∗· · ·∗M1
vq
1

]
b

is not a generator.

Claim 1. There exists a homomorphism of b′-modules

Φ:
[
(Vq−1)uq−1 ∗ Mp−1

vq−1
p−1

∗ · · · ∗ M1
vq−1
1

]
b
→

[
(Vq)uq ∗ Mp−1

vq
p−1

∗ · · · ∗ M1
vq
1

]
b

which maps uq−1 ∗ vq−1
p−1 ∗ · · · ∗ vq−1

1 to zq−1 ∗ vq−1
p−1 ∗ · · · ∗ vq−1

1 .

It suffices to show that, if X ∈ U(b′) annihilates uq−1 ∗vq−1
p−1 ∗ · · · ∗vq−1

1 , then
X also annihilates zq−1 ∗ vq−1

p−1 ∗ · · · ∗ vq−1
1 . We may assume that X ∈ U(b′)s for

some s ∈ Z≥0. Then there exists some Y ∈ U(b′)≤s−1 satisfying

(X − Y )(uq−1 ⊗ vq−1
p−1

′
⊗ · · · ⊗ vq−1

1

′
) = 0

by Lemma 8.5. Obviously,

(X − Y )(zq−1 ⊗ vq−1
p−1

′
⊗ · · · ⊗ vq−1

1

′
) = 0 (9.5)

also holds. Let N be the unique integer such that

zq−1 ⊗ vq−1
p−1

′
⊗ · · · ⊗ vq−1

1

′
/∈ U(b′)≤N−1(uq ⊗ vq

p−1
′ ⊗ · · · ⊗ vq

1
′) and

zq−1 ⊗ vq−1
p−1

′
⊗ · · · ⊗ vq−1

1

′
∈ U(b′)≤N (uq ⊗ vq

p−1
′ ⊗ · · · ⊗ vq

1
′),

and ZN ∈ U(b′)N and Z≤N−1 ∈ U(b′)≤N−1 be vectors such that

(ZN + Z≤N−1)(uq ⊗ vq
p−1

′ ⊗ · · · ⊗ vq
1
′) = zq−1 ⊗ vq−1

p−1

′
⊗ · · · ⊗ vq−1

1

′
.

Then we have from (9.5) that

XZN (uq ⊗ vq
p−1

′ ⊗ · · · ⊗ vq
1
′)

= X(zq−1 ⊗ vq−1
p−1

′
⊗ · · · ⊗ vq−1

1

′
) − XZ≤N−1(uq ⊗ vq

p−1
′ ⊗ · · · ⊗ vq

1
′)

=
(
Y (ZN + Z≤N−1) − XZ≤N−1

)
(uq ⊗ vq

p−1
′ ⊗ · · · ⊗ vq

1
′).

Since

XZN ∈ U(b′)s+N and Y (ZN + Z≤N−1) − XZ≤N−1 ∈ U(b′)≤s+N−1,
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XZN (uq ∗ vq
p−1 ∗ · · · ∗ vq

1) = 0 holds by Lemma 8.5. On the other hand, we have
by definition that

ZN (uq ∗ vq
p−1 ∗ · · · ∗ vq

1) = zq−1 ∗ vq−1
p−1 ∗ · · · ∗ vq−1

1 .

Hence
X(zq−1 ∗ vq−1

p−1 ∗ · · · ∗ vq−1
1 ) = 0

holds, and Claim 1 is proved.

Set i = iq. By Lemma 8.4, the b-module
[
(Vq)uq ∗ Mp−1

vq
p−1

∗ · · · ∗ M1
vq
1

]
b

extends to a pi-module. Then by Lemma 3.5 (ii), there exists a homomorphism
of p′i-modules

Φ̃ : Di

[
(Vq−1)uq−1 ∗ Mp−1

vq−1
p−1

∗ · · · ∗ M1
vq−1
1

]
b
→

[
(Vq)uq ∗ Mp−1

vq
p−1

∗ · · · ∗ M1
vq
1

]
b

which makes the following diagram commutative:[
(Vq−1)uq−1 ∗ · · · ∗ M1

vq−1
1

]
b

Φ //

��

[
(Vq)uq ∗ · · · ∗ M1

vq
1

]
b

Di

[
(Vq−1)uq−1 ∗ · · · ∗ M1

vq−1
1

]
b

eΦ

55jjjjjjjjjjjjjjj

,

where the vertical map is the canonical one.

Claim 2. The homomorphism Φ̃ is surjective.

It suffices to show the image of Φ̃ contains the generator uq ∗ vq
p−1 ∗ · · · ∗ vq

1,
whose h′-weight λ is equal to

λ = cl
(
wq(`pΛ0) +

∑
1≤j≤p−1

wqw0(`j$rj )
)
∈ Pcl.

Note that the image of Φ̃ contains zp−1 ∗ vq−1
p−1 ∗ · · · ∗ vq−1

1 , whose h′-weight µ is

µ = cl
(
wq−1(`pΛ0) +

∑
1≤j≤p−1

wq−1w0(`j$rj )
)

= si(λ).

As the image is a p′i-module, its weight set contains si(µ) = λ. Since
[
(Vq)uq ∗

· · · ∗ M1
vq
1

]
b

is isomorphic to Vq ⊗ · · · ⊗ M1 as a (g0 ⊕ CK)-module, it is easily
checked that the weight space with weight λ is one-dimensional. Hence the
image contains the generator, and Claim 2 is proved.

Now, the following claim completes the proof of the proposition:

Claim 3. The dimensions of the both sides of Φ̃ are equal.

The dimension of the right hand side is equal to

dimVq ×
∏

1≤j≤p−1

dimM j . (9.6)
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Let us calculate the dimension of the left hand side. As stated at the beginning
of this proof,

[
Vq−1∗Mp−1∗· · ·∗M1

]
b

has a Demazure flag. Hence by Corollary

2.10, the character of the left hand side of Φ̃ is equal to

Di ch
[
Vq−1 ∗ Mp−1 ∗ · · · ∗ M1

]
b
.

For a h′-semisimple module M whose h′-weight set is contained in Pcl, denote
by chM ∈ Z[Pcl] the h′-character of M . Since each M j is a finite-dimensional
(g0 ⊕ CK)-module on which K acts trivially, chM j belongs to Z[P 0

cl] and is
W0-invariant. Hence we have from Lemma 3.3 that

cl ◦ Di ch
[
Vq−1 ∗ Mp−1 ∗ · · · ∗ M1

]
b

= Di ch
[
Vq−1 ∗ Mp−1 ∗ · · · ∗ M1

]
b

= Di

(
chVq−1 ×

∏
1≤j≤p−1

chM j

)
=

∏
1≤j≤p−1

chM j × Di chVq−1

=
∏

1≤j≤p−1

chM j × cl ◦ Di chVq−1.

Since Di chVq−1 = ch Vq by Theorem 2.9, we see that the dimension of the
left hand side is equal to (9.6). Hence Claim 3 is proved, and the proof of the
proposition is complete.

As stated above, Theorem 6.1 is now established from Propositions 9.2 and
9.3.

Remark 9.8. In Theorem 6.1, it is assumed that g0 is of ADE type. The
author, however, expects the theorem to be true for general types if all given
KR modules satisfy the assumption of Theorem 4.4. In fact, all the proof of
the theorem can also be applied in this case, except for the Joseph’s theorem
(Theorem 2.11) which is needed in the final step of the proof. Hence to prove
the theorem for non-simply laced type by our approach, it is needed to prove the
Joseph’s theorem for this type. Since Proposition 7.4 has already been proved
for nonexceptional type, this would also imply the X = M conjecture for perfect
KR crystals of type B

(1)
n and C

(1)
n .
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MA, 2002.

[20] V. Lakshmibai, P. Littelmann, and P. Magyar. Standard monomial theory
for Bott-Samelson varieties. Compositio Math., 130(3):293–318, 2002.

[21] C. Lecouvey, M. Okado, and M. Shimozono. Affine crystals, one di-
mensional sums and parabolic Lusztig q-analogues. Math. Z., DOI:
10.1007/s00209-011-0892-9.

[22] G. Lusztig. Introduction to quantum groups, volume 110 of Progress in
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