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Abstract

In this paper, we study a tensor product of perfect Kirillov-Reshetikhin
crystals (KR crystals for short) whose levels are not necessarily equal. We
show that, by tensoring with a certain highest weight element, such a crys-
tal becomes isomorphic as a full subgraph to a certain disjoint union of
Demagzure crystals contained in a tensor product of highest weight crys-
tals. Moreover, we show that this isomorphism preserves their Z-gradings,
where the Z-grading on the tensor product of KR crystals is given by the
energy function, and that on the other side is given by the minus of the
action of the degree operator.

1 Introduction

Crystal bases B(A) introduced by Kashiwara [13] can be viewed as bases at
g = 0 of highest weight modules V(A) of the quantized enveloping algebra U,(g)
associated with a Kac-Moody Lie algebra g. Crystal bases reflect the internal
structures of the modules, and are powerful combinatorial tools for studying
them.

Crystal bases are also useful for studying certain subspaces of V(A). For a
Weyl group element w, the Demazure module V,,(A), which is a module of
a Borel subalgebra, is defined by the submodule of V(A) generated by the
extremal weight space V(A),a. Kashiwara showed in [14] that there exists
a certain subset B, (A) C B(A) which is, in a suitable sense, a crystal basis
of Vi, (A). The subset By, (A) is called the Demazure crystal. Using Demazure
crystals, he gave a new proof of the character formula for Demazure modules
in the article, which expresses the character using the Demazure operators (see
[14] or Section 4 of the present article).

When g is an affine Kac-Moody Lie algebra, there is another class of modules
having crystal bases called Kirillov-Reshetikhin modules W (KR modules for
short), where r is a node in the classical Dynkin diagram and ¢ is a positive
integer. KR modules are finite-dimensional irreducible Uy (g)-modules, where
U,(g) is the quantum affine algebra without the degree operator. At least when
g is nonexceptional, it was proved that every W"¢ has a crystal basis B™*[12,
24, 25], which is called the Kirillov-Reshetikhin (KR) crystal.

Demazure crystals and KR crystals are known to have strong relations, and
the study of the relationship between them has been the subject of many articles.
For example, see [4, 16, 18, 19, 22, 28|.

Among these articles, [28] by Schilling and Tingley is quite important for
the present article. In the article, they studied a tensor product of perfect



KR crystals for nonexceptional g whose levels are all the same (perfectness
is a technical condition for a finite U, (g)-crystal which allows one to use the
crystal to construct highest weight crystals, see [11] or Subsection 5.2 of the
present article). They proved that, by tensoring with a certain highest weight
element, such a crystal becomes isomorphic to a certain Demazure crystal as a
full subgraph. Moreover, they also showed that this isomorphism preserves their
Z-gradings. Here, the tensor product of perfect KR crystals is Z-graded by the
energy function, which is a certain Z-function defined in a combinatorial way,
and the Z-grading of the Demazure crystal is given by the minus of the action
of the degree operator. Since the Demazure crystal has a character formula as
stated above, these results imply that the weight sum with the energy function
of the tensor product of perfect KR crystals (with same levels) can be expressed
by the Demazure character formula.

The aim of this article is to generalize the above results to a tensor product of
perfect KR crystals whose levels are not necessarily equal. In this case the tensor
product of perfect KR crystals, tensored with a highest weight element, is no
longer isomorphic to a single Demazure crystal. We show in this article, however,
that it is isomorphic to a certain disjoint union of Demazure crystals contained
in a tensor product of B(A)’s, and that this isomorphism also preserves their
Z-gradings.

Before stating our results, we prepare some notation. For a crystal B and a
Dynkin automorphism 7, we define a new crystal 7(B) = {7(b) | b € B} whose
weight function is wt(7(b)) = 7(wt(b)) and Kashiwara operators are

617:(1)) = %(6771(1-)17), fl’f‘(b) = %(f.,——l(l)b)
Let S be a subset of a crystal B, w a Weyl group element with a reduced

expression w = ;, - -+ 8;, and 7 a Dynkin automorphism. We denote by F,,(S)
the subset of 7(B) defined by

For$)= U A7)\ {0

J1se5Jk >0

(All the subsets F,,,(S) appearing in this article do not depend on the choices
of the reduced expressions.) For a dominant integral weight A, we denote by
uy the highest weight element of B(A).

Now let us mention our results. Assume that g is of nonexceptional type,
and let B™verilt . B'rrplr be perfect KR crystals. Here, ¢, is a particular
constant which ensures the perfectness for the KR crystal B™‘. We assume
b < by < oo < Ay, and put pj = ¢ wo(w,;) for 1 < j < p, where wo
is the longest element of the Weyl group of the simple Lie subalgebra gg C
g corresponding to the classical Dynkin diagram, and w, is the fundamental
weight of gg. Then the following theorem is proved, which is the main theorem
of the present article (Theorem 7.1):

Theorem 1.1. There exists an isomorphism

uepA[)@BT}NC’V'pZP R ® Brlvcrlel
lftup (u(fp—fp—l)l\o R--® .:Ftuz (U(ZQ—Zl)AO ® Fttq (UZIAO)) .. )

of full subgraphs, where t,, denotes the translation and Ay denotes the funda-
mental weight of g. Moreover, this isomorphism preserves the Z-gradings up to
a shift.



Using the combinatorial excellent filtration theorem [20, 8], it is easy to see
that the right hand side of the above isomorphism is a disjoint union of Demazure
crystals. Then similarly as a Demazure crystal, the weight sum of the right hand
side can be expressed using Demazure operators. Hence, we obtain the following
corollary (Corollary 7.2), where we set B = B"»¢»f @ ... @ Bricrl;

Corollary 1.2. Let aff : P,y — P denote the canonical section of the projection
from affine weight lattice P to the classical weight lattice P.y. Then we have

oloho+Cs Z affowt(b)—3D(b)
beB
= DtMp (e(fpffpfl)l\o ... Dtuz (e(fszl)/\o 'Dtul (eEIA“)) )

for some constant C, where Dy, is the Demazure operator associated with t,
(see Section 4).

Let X (B, i1,q) denote the one-dimensional sum [5, 6] associated with the
crystal B and a dominant integral weight p of gg. Then the above corollary is
equivalent to the following (Corollary 7.3):

Corollary 1.3. Let PS‘ be the set of dominant integral weights of go and
ch Vi, (1) the character of the irreducible go-module with highest weight . Then
we have

g ¢ Y X(B,u,q)ch Vy, (1) (1.1)

MEPJr

= e*prthMp (e(lpffp—l)/\o oDy, (6(5241)1\0 - Dy, (641A0)> ) ,

where we set ¢ =e 9.

Corollary 1.3 has an important application (and in fact this is the main
motivation of this work). The X = M conjecture presented in [5, 6] asserts
that a one-dimensional sum is equal to a fermionic form which is defined as a
generating function of some combinatorial objects called rigged configurations.
In [23], it is proved that when g is of type Ag),Dg) or E,(ll), the fermionic
forms also satisfy a similar equation as (1.1). Then we can prove the X = M
conjecture in the cases g = AP DIV from these equations (for details see [23]).

The plan of this article is as follows. In Section 2, we fix basic notation used
in the article. In Section 3, we briefly review the definition of crystals, and in
Section 4, we review the results on Demazure crystals. In Section 5, we review
the results on KR crystals, and construct the isomorphism in Theorem 1.1. In
Section 6, we review the definition and some results on the energy functions,
and finally in Section 7, we show that the isomorphism constructed in Section
5 preserves the Z-gradings, which completes the proof of Theorem 1.1.
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for some helpful comments, and A. Schilling for sending him her preprint.



2 Notation and basics

2.1 Affine Kac-Moody Lie algebra

Let g be a complex affine Kac-Moody Lie algebra with Cartan subalgebra b,
Dynkin node set I = {0,...,n}, Dynkin diagram I" and Cartan matrix A =
(@i;)ijer- In this article, we use the Kac’s labeling of nodes of Dynkin diagrams
in [9, Section 4.8]. Let a; € h* and oy € b (i € I) be the simple roots and the

simple coroots respectively, and A C h* the root system of g. Let (aq,...,an)
(resp. (ag,...,a,)) be the unique sequence of relatively prime positive integers
satisfying

Zaijaj =0 for all i € I (resp. Za;/aij =0 forall j €1I).
jEI iel

Let d € b be the degree operator, which is any element satisfying (a;, d) = dp; for
ie€l, K=73%,,a/a €b the canonical central element, 6 = 3, ; a;o; € b*
the null root, and W the Weyl group of g with simple reflections {s; | ¢ € I'}. In
this article we fix an arbitrary positive integer N, and define the weight lattice
of g by

P={ech | (\a))eZ (ic),(\d) € N Z}. (2.1)

(In the next subsection, we impose some condition on N so that P is preserved

by the action of the extended affine Weyl group W) Put PT™ = {\ € P |
(N o)) € Z>o (i € I)}, and let A; € PT (i € I) be any element satisfying

(Ai,of) = 65 forjel

(Note that we do not assume (A;,d) = 0.) Then we have PT = 3., Z>o\; +
N~Z6. For A € P, we call the integer (\, K) the level of )\, and for ¢ € Z
we denote P = {\ € P | (\,K) = £}. Let (, ) be a W-invariant symmetric
bilinear form on h* satisfying

(04, 05) = aivaflaij fori,jel, (a;,Ny)= (501-@61 foriel.

Let cl: h* — h*/Cé be the canonical projection, and put Py = cl(P), Pl =
cl(Pt), P4 = cl(P*) for £ € Z and (P})* = P} N P4. Since W fixes §, W acts
on h*/C6 and P.1. For i € I, define w; € P by w; = cl(A;) — a)cl(Ag). Note
that wo = 0 and w; for i € I\ {0} satisfies

(@i, ) = 6y for j € I\ {0}, (wi ) =—a;.

We define aff: h*/C§ — b* by the unique section of cl satisfying (aff(\),d) =0
for all A € h*/Cd. When no confusion is possible, we omit the notation cl(x) for
simplicity. In particular, we often write cl(A;) and cl(a;) simply as A; and «;.

Let Iy = I\ {0} and go C g the simple Lie subalgebra whose Dynkin node
set is Iy with Cartan subalgebra hy C h and Weyl group Wy C W. Let w}/ € ho
(j € Ip) be the unique element satisfying

(ai,w;-/> = Sij for ¢ € Io,

which also satisfies
<Oé(), w;/> = —(lj/(l(). (22)



For the notational convenience, we put wy = 0. Denote by wq the longest
element of W,. We canonically identify P9 with the weight lattice of go.
The bilinear form (, ) induces a bilinear form on P9, which is also denoted
by (', ). Then we have
(i) = aYa; (A, @) (2.3)

forz'e]and)\ePCOl.

2.2 Dynkin automorphisms and the extended affine Weyl
group
Let Aut (I') be the group of automorphisms of the Dynkin diagram I', that is,
the group of permutations 7 of I satisfying a;; = a,(;)-(;) for all 4,5 € I. Then
7 € Aut (T) satisfies
ar@y = a; and a¥(i) =a; foralliel. (2.4)

As [9, (6.5.2)], we define for A € P an endomorphism ¢, of h* by

() = 1t (o K)afE () — (o aff () + 2 (afF (), afE () (0, ) )3, (2.5)

The map A — t) defines an injective group homomorphism from PCO1 to the
group of linear automorphisms of h* orthogonal with respect to ( , ).

Let ¢; = max{1, a;/a}'} for i € Iy, and define sublattices M and M of P§ by

M = Z Zw(ao/ao), M: @ZCZ’ZDZ

weWy i€lp

Let T(M) and T(M) be the subgroups of GL(h*) defined by
T(M)={tx | A€ M}, T(M)={ty| e M}
It is known that [9, Proposition 6.5]
W =W, x T(M).
Define the subgroup W of GL(b*) by
W =Wy x T(M),

which is called the extended affine Weyl group. The action of W preserves A,
and elements w € Wy and A € M satisfy

wt,\w_l = twn)-
In the sequel, we assume that the positive integer N in (2.1) satisfies

271 (aff(\),aff(\)) € N™'Z for all X € M,

which ensures that W preserves P.



Let C C b = R®yz P be the fundamental chamber (i.e. C = {\ € b |

(M ai) > 0forall ¢ € I}), and ¥ C W the subgroup consisting of elements
preserving C'. Then we have .
W=WxX.

Note that an element w € W belongs to ¥ if and only if w preserves the set
of simple roots {ag,...,a,}. Hence 7 € ¥ induces a permutation of I (also
denoted by 7) by 7(a;) = a,;y, which belongs to Aut (') since (, ) is 7-
invariant. By abuse of notation, we denote by ¥ both the subgroup of W and
the subgroup of Aut (T).

We shall describe the subgroup ¥ C Aut (T') explicitly. A node i € I is called
a special node if 4 € Aut (T') - 0. Let I° C I be the set of special nodes. I?® for
nonexceptional g are as follows:

{0,1,...,n} for AS),

{0,1} for BS), Agi)_l,
I’ = ¢{0,n} for C,(LD, Dg_l,

{0,1,n—1,n} for Dél),

{0} for AS).

Assume i € I°\ {0} (in particular g # A$?)), and define 7% € W by

Ti = tw1 wii

where w; denotes the unique element of Wy which maps the simple system
{aq,9,...,a,} of go to {—0,1,...,44,...,a,} With 6 = 5 —apg € A. We
put 7° = id. The following proposition is well-known, but we give the proof for
completeness:

Proposition 2.1. (i) For alli € I°, ¢ belongs to X.

(ii) The map I* — ¥ defined by i — 7° is bijective.

(iii) If 7 € ¥ satisfies 7(i) = 0, then we have T = (%)~ 1.

Proof. If g is of type Aéi), then I* = {0} and M=M , which obviously imply
the assertions. So, assume g is not of this type. (i) Let ¢ € I \ {0}, and recall
that w; maps {a1,a9,...,an} to {—0,a1,...,4;,...,a,}. Then w;(—0) = o
also holds, and hence it is easily checked from the equation (2.5) that 7% = ¢, w;
preserves the set {ag, . .., @, }, which implies 7 belongs to 3. (ii) The injectivity
is obvious. Let 7 € ¥\ {id} be an arbitrary element, and decompose it as
T =ty wy where \; € M and w; € Wy. Since ty_ acts trivially on PY. we have

cl»
wy (cl(ey;)) = cl(a(j)) for j € I, which implies w, = w,(g). Then since

th (o) = T’LU_:(IO)(Oéj) = T(ar-1(jy = 8j,7(0)) = @j — ;)0 for j € Iy,
(2.5) forces A; = @, (g, and the surjectivity follows. From the proof of (ii), we
see that 7(0) = i implies 7 = 7°. Hence, the assertion (iii) follows. O

For nonexceptional g, 7¢ for i € I\ {0} are as follows:

Ag,l): 7(j) =j+imod n+1forall j el

BY, Dfﬂl: 1 =(0,1).



iV, Aéi)qi T"(j)=mn—jforall jel.
DY, nodd: 7! = (0,1)(n —1,n),
= 10,1,n—1,n) = (n—1,n,1,0), 7" 1(j) =n—j for j € I\ I?,
7(0,1,n — 1,n) = (n,n —1,0,1), 7*(j) = n —j for j € T\ I°.
DV, n even: 71 = (0,1)(n —1,n),
7 10,1,n—1,n) = (n—1,n,0,1), 7" 1(j) =n—jfor j € I\ I°,
7(0,1,n —1,n) = (n,n—1,1,0), 7"(j) =n—j for j € I'\ I*.

In the sequel, we assume that the fundamental weights Ag, . .., A,, are chosen
to satisfy 7(Aj) = A, for all 7 € ¥ and j € I. This is always possible by
choosing A; arbitrarily for representatives of I /% and setting A, (;y = 7(A;) for
7 € ¥. Then each element 7 € Aut (I') acts on P by 7(A;) = A,(;) and 7(6) = 9.

3 Definition of crystals

Let U,(g) be the quantum affine algebra associated with g and U (g) the one
without the degree operator. The weight lattices of U,(g) and Uy (g) are P and
P, respectively.

A U, (g)-crystal (resp. U, (g)-crystal) is by definition a set B equipped with
weight function wt: B — P (resp. wt: B — P,j) and Kashiwara operators
e, fi: B— BU{0} for i € I satisfying

wt(e;b) = wt(b) + a; and f;(e;b) =b for all i € I,b € B such that e;b # 0,
wt(fib) = wt(b) — a; and e;(f;0) =b for all i € I,b € B such that f;b # 0,

and (wt(b), ) = ¢;(b) — £;(b) where
£i(b) = max{k > 0| eFb #0}, ;(b) = max{k > 0| fFb # 0}.

In this article, we always assume that ¢;(b) < oo and ¢;(b) < co. We call B a
crystal if B is either a U,(g)-crystal or a U, (g)-crystal.

Remark 3.1. A U,(g)-crystal B can be regarded naturally as a U;(g)-crystal
by replacing the weight function wt: B — P by clowt: B — P,.

For two crystals By and B, their tensor product B; ® Bs = {by ® bs | b €
By, by € By} is defined with weight function wt(b; ® be) = wt(b1) + wt(b2) and
Kashiwara operators

e(b ® b ) _ eibl ®b2 lf g&i(b1> 2 Ei(bg),

e 2 b1 ®e;by if sz(bl) < Ei(b2)7
fibl & bay if (,Dz(bl) > Ei(b2)7
b1 ® fiba if @i(b1) < ei(b2).

For crystals By, By and their subsets S; C By, 52 C Bs, we say S1 and So
are isomorphic as full subgraphs and write S; = Ss if there exists a bijection
¥ from S; U {0} to Sz U {0} satisfying ¥(0) = 0, wt¥(b) = wt(b) for b € Sy,
U(e;b) = e;¥(b) for b € Sy such that e;b € S; U {0}, and ¥(f;b) = fi¥ () for
b € Sy such that f;b € S; U{0}.

fi(b1 ® bg) = {



For a crystal B and 7 € Aut ('), we define a crystal 7(B) as follows: as a
set 7(B) = {7(b) | b € B} = B. Its weight function and Kashiwara operators
are defined by

wt(7(b)) = 7(wt(b)) and (3.1)

e;7(b) = ?(67—1@)(7)» fiT(b) = ?(f‘r—l(i)b)»

where 7(0) is understood as 0. Obviously we have
7(B1 ® Bz) = 7(B1) ® 7(Ba)

for two crystals By and Bs. For a subset S C B, a subset 7(5) C 7(B) is defined
in the obvious way.

For J C I, we denote by U,(gs) the subalgebra of U,(g) whose simple roots
are J. If J = Iy, we denote Uy(g.s) by Uy(go). Uq(g.s)-crystals are defined in a
similar way. For a crystal B and a proper subset J of I, a connected component
of B regarded as a U,(gs)-crystal is called a U,(g)-component of B.

Definition 3.2 ([1]). We say a crystal B is regular if for every proper subset J
of I, B regarded as a U,(g)-crystal is isomorphic to a direct sum of the crystal
bases of integrable highest weight U,(g.s)-modules.

Let J C I. For a crystal B, we say that b € B is U,(gs)-highest weight if
ejb =0 for all j € J. For a proper subset J of I and a regular crystal B, every
Uq(g.)-component of B contains a unique Uj(gs)-highest weight element.

By [15], the actions of simple reflections on a regular crystal B defined by
FOE i it (b), al) > 0,

K3

P b == — (W ay
(b) {e,< Oy it (wt(b), aY) < 0

(3

are extended to the action of W denoted by w +— S,,. For every w € W and
b € B, we have wt (S, (b)) = w(wt(b)).

4 Demazure crystals

For a subset S of a crystal B and i € I, we denote F;S = {ffb | b€ S,k >
0}\ {0} € B,

For A € P, let V(A) denote the integrable highest weight U, (g)-module
with highest weight A, and B(A) its crystal basis with highest weight element
up. Let w be an element of W and w = s;, 8;,_, - -~ 84, its reduced expression.
Then it is known that the subset

Bw(A) = ‘ﬂk]:ik—l e '-7:1'1 {UA} C B(A)
is independent of the choice of the reduced expression of w [14].

Definition 4.1. The subset B, (A) of B(A) is called the Demazure crystal
associated with A and w.

Remark 4.2. Let b be the standard Borel subalgebra of g and U,(b) C U,(g)
the corresponding quantized enveloping algebra. The Demazure module V,,(A)
is defined by the U,(b)-submodule of V(A) generated by the weight space
V(A)wn)- The Demazure crystal By, (A) is known to be the crystal basis of
Viw(A) in a suitable sense [14], which is why it is so named.



For a subset S of a crystal and w € W with a reduced expression w =
Siyp - Siy, we write F, S = F;, - F;, S if it is well-defined. For example,
fw{u/\} = Bw(A).

Lemma 4.3. Let A € Pt andw e W.
(i) We have TBy(A) = B.yr—1 (7(A)) for 7 € Aut (T).
(ii) For i € I, we have

B,(A)  if l(siw) = b(w) — 1,

, (4.1)
Bs,w(A) if L(siw) = b(w) + 1,

}—sz(A) = {

where £ denotes the length function.
(iii) For every w' € W, Fy By (A) is well-defined, and Fy By (A) =2 By (A) for
some w'’ € W.

Proof. Since TB(A) = B(7(A)) and 7(F;S) = Fr;y7(S) for every S C B(A),
(i) follows. When {(s;w) = f(w) + 1, (4.1) follows by definition, and when
L(s;w) = f(w) — 1, (4.1) follows since

EBU)(A) = E(sz%w(A)) = Elew(A) = Bw(A)

The assertion (ii) is proved. To see that F, B, (A) is well-defined, it suffices

to show the operators F; on Demazure crystals satisfy braid relations: if the

order of s;s; for i,5 € I (i # j) is m < oo, then we have F;F;F; - -- By, (A) =
—_—

m
F;FiFj--- Bw(A). Since the element s;s;s;--- = sj5;5;--- is the longest ele-
—_———— (S —

m m

m
ment of the subgroup W; ; = (s;,s;) € W, (ii) implies

—_—— —

where w” is the unique element of the set {ow | ¢ € W; ;} whose length is
maximal. Hence our assertion is proved. Then the second statement of (iii) is
obvious from (ii). O

For w € W and 7 € Aut (T"), we write F,,r = Fo, 7T and By, (A) = By, (T(A))
for the notational convenience. The following proposition is immediate from
Lemma 4.3.

Proposition 4.4. For every A € P+ and w,w' € W, there ezists w” € W such
that
Fu Buw(A) =2 By (A).

Let C[P] denote the group algebra of P with basis e* (A € P), and define
for i € I a linear operator D; on C[P] by

f—e - si(f)

1—e

where s; acts on C[P] by s;(e*) = (). The operator D; is called the Demazure
operator associated with ¢. Note that D;(f) = f holds if f is s;-invariant. From
this, it is easily checked that D? = D;.



For every reduced expression w = s;, ---s;, of w € W, the operator D,, =
D;, ---D;, on C[P] is independent of the choice of the expression [17]. The
weight sum of a Demazure crystal is known to be expressed using Demazure
operators:

Theorem 4.5. [14] For A € Pt and w € W, we have

Z ewt(b) _ Dw(eA).

be By, (A)

For w € W and 7 € Aut (T'), we define an operator D,,, on C[P] by D, =
D,, o7, where 7 acts on C[P] by 7(e®) = ™),

Corollary 4.6. Let S be a disjoint union of Demazure crystals and i € 1. For
every w € W we have

Z et — po (Z ewt(b)) ' (4.2)

beF, (S) bes

Proof. We may assume that S is a single Demazure crystal, say S = B, (A).
By Proposition 4.4, it suffices to show the assertion for w =7 € ¥ and w = s;
for i € I. When w = 7 € X, the assertion is obvious from (3.1). Assume
that w = s;. If £(s;w’) = £(w') + 1, then we have F; By (A) = Bs,w (A), and
the assertion follows from Theorem 4.5. If ¢(s;w’) = £(w’) — 1, then we have
FiBy (A) = By (A). On the other hand, we have

D; Z ewt(b) _ Z ewt(b)

beB,,/(A) beB,,/ (A)

since the weight sum

Z Vi) — D, Z Wb
beBw/ (A) beBSiw/ (A)
is s;-invariant. Hence the assertion follows. O

It is known that B(A) ® B(A’) for A, A’ € P" is isomorphic to a direct sum
of the crystal bases of integrable highest weight modules, that is,

B(A) @ B(A) = €D B(), (4.3)
AET

where T is a possibly infinite multiset of elements of PT. The following theorem,
which was proved in [20, Proposition 12] and [8, Theorem 2.11], is known as the
combinatorial excellent filtration theorem:

Theorem 4.7. The image of the subset up ® By, (A') of B(A) ® B(A') under
the isomorphism (4.3) is a disjoint union of Demazure crystals.

10



5 Perfect Kirillov-Reshetikhin crystals

From this section to the end of the article, we assume that the type of g is
nonexceptional (i.e. one of the types A;l),B,(LI),Cfll),D,gl),Agg_l,Aéi),Dfi)_l).
Note that some of the statements below on Kirillov-Reshetikhin crystals may

have not been proved or not be true for exceptional g.

5.1 Kirillov-Reshetikhin crystals
For a U (g)-crystal B, define two maps €,: B — P} by

eb) =Y ci(d)Ai, (b)) =Y @i(b)A;i forbe B.
iel i€l
Note that wt(b) = p(b) — &(b).
Kirillov-Reshetikhin modules W (KR modules for short) are irreducible

finite-dimensional U (g)-modules parametrized by r € Iy and £ € Z>; (see [5] for
the precise definition). For nonexceptional g, the following theorem is known:

Theorem 5.1 ([12, 24, 25]). For eachr € Iy and £ € Z>1, the KR module W™*
has a crystal basis B™*.

The crystals B™ are called the Kirillov-Reshetikhin crystals (KR crystals
for short). In this article we denote by C the set consisting of tensor products
of KR crystals.

Let B be a regular crystal. An element b € B is called extremal if for every
weWandie€l,

€iSw(b) = 0if (wt(Sw (b)), ;) > 0 and fiS,(b) = 0 if (wt(Sw (b)), o) <0.

Definition 5.2 ([1]). A finite regular U, (g)-crystal B is called simple if there
exists A € Pé)l such that B has a unique element whose weight is A, the weights
of B are contained in the convex hull of WA, and the weight of each extremal
element is in WA.

Proposition 5.3 ([21, Proposition.3.8 (1)]). Every B € C is simple.

Since B € C is simple, B has a unique extremal element u(B) such that
(wt(u(B)),a)) > 0for all i € Iy. It is known that u(B"™*) is the unique element
with weight ¢c,., and we have u(B; ® By) = u(B;) ® u(Bs) for By,By € C.
Every B € C is connected by [1, Lemma 1.9 and 1.10]. Then by [10], we have
the following;:

Lemma 5.4 ([10, Lemma 3.3 (b)]). For B € C and every b € B, we have
B ={ei,---ei,(b) | k= 0,15 € I} \ {0}.
The following proposition is important:

Proposition 5.5. Let B € C. For every T € X, there exists a unique isomor-
phism p,: 7(B) = B of U}(g)-crystals.
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Proof. For a single KR crystal B = B™ 7(B"™*) = B™’ was proved in [28,
Lemma 6.5]. This implies 7(B) = B for general B € C since 7(B; ® By) =
7(B1)®7(Bsz). Since B is connected and an element of B with weight wt (u(B)

is unique, the uniqueness of the isomorphism holds. O

Using the isomorphism p, in the above proposition, we define an action of
¥ on B € C by 7(b) = p-(7(b)) for 7 € £. This action satisfies

Toe;=erpoTand 7o fi = fryor foralliel. (5.1)
Lemma 5.6. For every 7 € X, there exists some w € Wy such that
7(w(B)) = Swu(B) for all B €C.

Proof. Since 7 € W = Wy x T(M) and T(M) acts on PY trivially, there exists
w € Wy such that 7|po = w|po. Then since

Wt(T(U(B))) = T(Wt(u(B))) = w(wt(u(B))) = wt(Syu(B)),
7(u(B)) = Sy,u(B) follows by Proposition 5.3. O

The U, (go)-crystal structure of a KR crystal is known by [2, 7]. In particular,
we have the following proposition (for nonexceptional g):

Proposition 5.7. A KR crystal B™* is multiplicity free as a Uy(go)-crystal. In
other words, any two distinct Uy(go)-components of B™t are not isomorphic as
Uq(g0)-crystals.

Corollary 5.8. Let by, by € B™ be two distinct U,(go)-highest weight elements.
Then we have

@(b1) — @(b2) ¢ ZAo.

Proof. For j = 1,2, let B; C B™* be the U,(go)-component containing b;. Then
as a Uy (go)-crystal, B; is isomorphic to the crystal basis of the integrable highest
weight U, (go)-module with highest weight >, ;(bj)w;. Now, the assertion
is obvious from the above proposition. O

5.2 Perfect KR crystals
For a U} (g)-crystal B such that wt(B) C P

cl»

we define the level of B by

lev(B) = min{p(b), K) = min(e(b), K),

and the subset B, by
Buin ={b € B | (p(b), K) = lev(B)}
={be B|{g(b),K) =lev(B)}.

Definition 5.9 ([11]). For a positive integer ¢, a U (g)-crystal B is called a
perfect crystal of level £ if B satisfies the following conditions:

(i) B is isomorphic to the crystal basis of a finite-dimensional Uj(g)-module.
(i) B® B is connected.

12



(iii) There exists A € P9 such that wt(B) C A — > ic1, Z>oc and there exists
a unique element in B with weight .
(iv) The level of B is /.
(v) Both the maps € and ¢ induce bijections between the set By, and (P;})".
The following lemma is immediate:
Lemma 5.10. Let By, By be perfect crystals.
(i) lev(B; ® B2) = max{lev(B;),lev(Bs)}.
(ii) Iflev(By) > lev(By), then by ® by € By ® Bg belongs to (By ® Ba)min if and
only if by € (B1)min and (b)) —e(b2) € PCT. Moreover if by ®bs € (B1 ® Ba)min,
then
e(b1 ®@b2) =¢e(b1), (b1 @ b2) = p(b1) + wt(b2).
(iii) Iflev(B;) < lev(Ba), then by ® by € B; ® By belongs to (B1 ® Ba)min if and
only if by € (Ba)min and e(be) —p(b1) € PJ. Moreover if by by € (B1 ® B2)min,
then
(b1 @ ba) = e(ba) —wt(b1), (b1 ® b2) = p(b2).

The significance of the perfectness is due to the following theorem:

Theorem 5.11 ([11]). Let B be a perfect crystal of level £, A € PT a dominant
integral weight of level £, and b the unique element of B satisfying €(b) = cl(A).
Then for all A € PT such that p(b) = cl(A’), we have

B(A)® B = B(A)

as Uy (g)-crystals, and this isomorphism maps up @b to ups.

If B is a perfect crystal of level £, then € o ¢~ ! induces a bijection (PCJ{)@ —

(P1)¢, which is called the associated automorphism of B. _
For i € I, we denote by 7 € ¥ the unique element satisfying t,, (7%) "' €
W. Note that this definition is the same as that of Subsection 2.2 for ¢ € I°.

For i € I\ I%, 7" are as follows: for B,Sl), DY, Agi)fl, 7 =1id if i is even, and

7i=7lifiis odd. For OV, ASY D), 7% =id for allie I\ I*.

Theorem 5.12 ([3]).

(i) The level of a KR crystal B™* is [/c,](= min{m € Z | m > {/c,}), where
¢, 1s defined in Subsection 2.2.

(ii) B™ is perfect if and only if {/c, € Z.

(iii) The associated automorphism of B™°"* coincides with the action of (T7)
on (P1)*.

-1

Proof. The assertions (i) and (ii) were proved in [3]. The associated automor-
phism of each B™** is explicitly described in [3], and we can check the assertion
(iii) directly from them. We remark that the equation in [3, Subsection 4.3] for
the associated automorphism of B™* for Dr(ll) is misprint. It should be modified
as follows:

n n—2
loNp—1 + 01\, n even,
biN;) =l Ao+ U1 A1 + Ui, i +
7—(; ) ’ o ; {glAn—l + EOAn n odd.
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Let B = B™ be a (not necessarily perfect) KR crystal. B is known to have
a unique element belonging to Bpin, which we denote by m(B), such that

e(m(B)) = lev(B)Ay.

(If B is perfect, this fact follows from the definition. For non-perfect ones, see
[21, Lemma 3.11]). Similarly, B has a unique element m’(B) € B, such that

o(m'(B)) = lev(B)A,.
If B is perfect, we have from Theorem 5.12 (iii) that
p(m(B)) = lev(B)A- o).

The following theorem connects a perfect KR crystal with a Demazure crys-
tal:

Theorem 5.13 ([28, Theorem 6.1]). Let B = B"* be a perfect KR crystal.
Then the isomorphism

B(tAo) ® B = B(lArr(0))

giwen in Theorem 5.11 maps the subset uop, ® B onto the Demazure crystal
(£Ao).

B,

crwq ()

Later we need the following lemma:

Lemma 5.14. Let By, By be perfect KR crystals, and assume that lev(B;) <
lev(Bz). If by @by € (B1® Ba)min, then for every by € Ba there exists a sequence
i1,...,1; of elements of I such that
€i €y (b1 ®by) = b1 ® (e, -+~ €, b))
= b1 ® bs. (5.2)
Proof. By Lemma 5.10 (iii), bo € (B2)min and £(b2) — ¢(b1) € P, Set A =
aff (¢(b2)) and A’ = aff (¢(b2)). Then by Theorem 5.11, there exists an isomor-

phism
B(A) ® By = B(\)

which maps up ® by to upa,. Therefore, there exists a sequence iq,...,7; of
elements of I such that

Cip - iy (un @ by) = up @ (e, -+ - €5, by)
= up ® bs.

The above equation implies that &;,(e;,_, ---€;,05) > @5, (ua) = €, (b2) for each
1 < ¢ < k. Then it follows for each 1 < ¢ < k that

€ig(€ig_y - €i by) > &4, (ba) > @i, (b1),

and hence (5.2) holds. O
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5.3 Isomorphism as full subgraphs of U/ (g)-crystals
We need the following elementary lemma:

Lemma 5.15. Let By, By be crystals, and b; € B; (j = 1,2) arbitrary elements.
If fiby # 0 for some i € I, then there exist some by € By and m € Zq such
that

fi(b1) @ by = fi" (b1 @ b)y).

Proof. When ¢;(b1) > €;(b2), m = 1 and b, = by satisfy the assertion. When
@i(by) < ei(ba), m = &;(ba) — @i(by) + 2 and by = e~ 'by satisfy it. O

Proposition 5.16. Let B; = B3 for 1 < j < p be perfect KR crystals,
and assume that £y < ly < --- < £,. We put pj = cp,wo(wr,) for 1 < j < p,
and B =B, ® -+ ® By ® By. Then there exists an isomorphism

\I/B: uepAO ®B :) ]:tup (u(fpfzpfl)AO ® U ®‘7:tu2 (u(£2*£1)A0 ® ft!"l (uzlAO)) o )

of full subgraphs of U, (g)-crystals.

Proof. We show the assertion by the induction on p. If p = 1, then the assertion
follows from Theorem 5.13. Assume p > 1. We put 7 = 7" and w = tupT_l €

W. Since ug,z, ® By = Fo, (prT(O)), we have
Ugyng @ Bp @ -+ @ By = Foy(tgn, ) ® Bpo1 @ -+ @ By,
and we have from Lemma 5.15 that
Fuw(e,n, ) @ Bp1 @+ @ By = Foy(ug,a, o) @ Bp-1 @+ @ By).
Since we have from Proposition 5.5 that
U, A, ) @ Bp1 @ @B1 =7 (ug,p, ® Bp1 @ -+ ® By)
= ?<“<fp—ép71>z\o ® (uty 100 @ Bp-1® -+ ® Bl))v
the induction hypothesis implies the assertion. O

Remark 5.17. (i) Put BP~! = B, 1®---®@By®B;. We see from the construc-
tion of the isomorphism ¥y that the following diagram of set maps commutes
(where we set 7 = 777):

Ug, 1Ay @ Bp—l ®--® By ftupq (u(ép—l—ep—z)/\o & )

\IIBI?—l
mJ/go ulw

Ug, Ay & m(Bp) ®Bp1®--® By ?(U(@p_gpil)j\o ® ft%%l (- ))

Ug,hg ® Bp®@ By 1@+ @ By % Ft,, (’Z,L(gp_[pil)/\o ® }—tup,l (--- ))’

where the isomorphisms ¢ and ¢ are defined by

P(ue, 1ny ®b) =ug n, @m(B,) @ 7(b) forbe B,
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and
P(b) = ?(U(epfgp,l)/\o ® b) forb e .7-'%_1 (u(gp7174p72)A0 ®---)

respectively.

(ii) By Proposition 4.4 and Theorem 4.7, the right hand side of the isomorphism
U 5 is isomorphic as a full subgraph to a disjoint union of Demazure crystals.
(iii) The right hand side of ¥p also appeared in [20] as the crystal basis of a
generalized Demazure module.

Note that the right hand side of ¥p is a subset of a tensor product of
the crystal bases of U,(g)-modules. Hence each element b of this set has a
natural Z-grading defined by (wt(b),d). The goal of this article is to show,
under the isomorphism W g, the minus of this natural grading coincides up to a
shift with the grading on the left hand side given by the energy function, which
is introduced in the next section.

6 Energy function

Similarly as [11], the following proposition is proved from the existence of the
universal R-matrix and Theorem 5.1:

Proposition 6.1. Let B;,Bs €C.

(i) There exists a unique isomorphism o = op, p,: B1 ® By = Bs ® By of
U,(g)-crystals called the combinatorial R-matriz.

(ii) There exists a unique map H = Hp, p,: B1 ® By — Z called the local
energy function such that H(u(Bl ® BQ)) =0, H is constant on each Uy(go)-

component, and for by ® by € B1 ® By mapped to by ®51 € By ® By under o,
we have
H(eo(bl ® bg))
H(by ®bs) + 1 if eo(br ®b2) = eobs @ bz, eo(bs @ b1) = egbs @ by,
= H(bi ®b2) =1 ifeg(by ®b2) = b1 ® egba, eg(ba ® b1) = b2 ® egby,
H(b ®by) otherwise.

For By, B € C, we have o (u(B1) ® u(Bz)) = u(B2) ® u(By) by the weight
consideration. Recall that for every 7 € 3, there exists some w € W, such that
7(uw(B1) ® u(Bz)) = Su(u(B1) ® u(Bz)) by Lemma 5.6. Hence we have

oo7(u(B1) @ u(By)) =008y, (u(B1) ® u(Bz))
= Su(u(B2) @ u(B1)) = 7(u(B2) ® u(B1)),
which together with (5.1) implies that o commutes with the action of 7.

The following lemma is a consequence of the definition of the local energy
function:

Lemma 6.2. Let By, By € C, b; € B; for j = 1,2 such that o(b1 ®b3) :gg ®51,
and ji,...,j¢ an arbitrary sequence of elements of I satisfying ej, - - - e;, (b1 ®

b2) #0. If

6]‘[ "'€j1(b1 ®b2) = eiLk ~~ei/lbl ®eik ~-~ei1b2 and

6j[ ...ejl(b2 ®b1) = e%m .-.e,z_lb2 ®e;27m ...6g/lb1
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holds where

(s eeoydoy = {in, iy ULES, i} = {1y s im b U AL, i)
as multisets, then we have
H(ej,z S ey (bl ®b2)> — H(bl ®b2)
=#{1<qg<ml|igz=0} —#{1<q<k|i, =0}

For B € C, the energy function D = Dp: B — Z is defined as follows:
(i) If B is a single KR crystal, then define

DB(b) = HB,B (m’(B) (24 b) — HB,B (m'(B) ®’U,(B))
(ii) If By, By € C and B = B; ® Bs, then define

DB(bl ® bQ) - ‘DBl (bl) + DBQ(ZQ) + HBlsz(bl ® b2)7
where 0'31732([)1 ® bg) :gg ®gl.

Note that Dp is constant on each U,(go)-component of B by definition.
Proposition 6.3 ([27]). (i) For By, Bs, B3 € C, we have

D B,9B,)2Bs = DB10(B:0B3)-

Hence for every B € C, the function Dp is well-defined.
(ii) Lt B=B1®---®@B,€C. Forbj®---®b, € Band1 <1< j<p, define
b\ € B; by

Bi® --®Bj_1®9B; > B;®B;®---® Bj_1

bi® @b @b b @b @ @bt
Then we have
Dpbi®-@b) =Y. Dp ")+ > Hp p(bobl™).
1<j<p 1<j<k<p

Lemma 6.4. Let B € C and ¢ =lev(B). If b € B satisfies eo(b) > £, then we
have
D(epb) = D(b) — 1.
Proof. We show the assertion by the induction on the number p of tensor factors
of B. The case p =1 follows since
D(egb) = H(m/(B) ® egh) = H(m/(B) ®b) —1 = D(b) — 1.

Assume p > 1, and write B = By ® By and b = b; ® by. Note that we have

lev(By) < £ and lev(Bz) < £. Let by ® by = 0(by ® bz). Then we can show the

assertion by computing case by case. For example, assume eq(b; ®bs) = egby @by

and 60(52 ®51) = eobo ®51. Then we have eo(b1) = eo(by ® by) > ¢ and

) (52) =g (32 ®51) > ¢, which imply from the induction hypothesis that
D((’,ob) = D(@obl) + D(eobg) + H(EO(bl ® bg))

= (D(b1) = 1) + (D(b2) — 1) + (H(b1 @ b2) +1)
= D(b) — 1.

The other cases are proved similarly. O
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7 Main theorem

7.1 Statement and corollaries

Now, we state the main theorem of this article. This theorem is a generalization
of [28, Theorem 7.4], in which ¢; = ¢y = --- = {,, is assumed.

Theorem 7.1. Let B; = B"i¢rit for 1 < j < p be perfect KR crystals, and
assume that £y < ly < --- < L,. We put pj = ¢, ;wo(w,,) for 1 < j < p, and
B=DB,®---® By ® B;1. Then there exists an isomorphism

Vp: e, Ao ®B = ft“,p (u(fp—épfl)/\o Q- '®]'—t,¢2 (u(fz—fl)/\o ® ftul (uflAO)) o )
of full subgraphs of U,(g)-crystals satisfying
D(b) = —(wt Up(ug,n, ®b),d) +C (7.1)

for every b € B, where C € N™'Z is some global constant.

Recall that, as stated in Remark 5.17 (ii), the right hand side of ¥p is
isomorphic as a full subgraph to a disjoint union of Demazure crystals. Hence
we can see inductively using Corollary 4.6 that the following equation holds:

Corollary 7.2. Under the notation and the assumptions of Theorem 7.1, we
have

olpPo+Co Z gaffowt()—5D(b)
beB
— Dtup (e(fp—fp—l)/\o .. Dtm (6(52—51)/\0 . Dtul (641/\0)) .. ) .

Let PJF C PCO1 denote the set of dominant integral weights of go. (Recall that
we identify the weight lattice of go with PJ.) As [6, 5], the one-dimensional
sum X (B, u,q) € Z[g,q ] for u € Py is defined by

X(Bwag) = >, "
beB
eib=0 (i€lo)
wt(b)=p
Let chVg,(n) denote the character of the irreducible go-module with highest
weight p. Since

ZqD(b)ewt(b) - Z X (B, i, q)ch Vg, (1)
beB .U'EP[?—

holds, we have the following corollary:

Corollary 7.3. Under the notation and the assumptions of Theorem 7.1, we
have

¢ " X(B,nq)ch Vg, (p)
nePry

= efepAthMp (e(fpffp—l)/\o Dy, (6(42*41)/\0 - Dy, (661A0)> . ) ,

where we set ¢ = e~° and consider ch Vg, (1) as an element of C[P] via the map
aff: P, — P.
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Remark 7.4. Let n be a permutation of the set {1,...,p}, and put B, =
By1y ® --- ® By(p). Then we have from [27, Lemma 2.15] that

Dg, (0,(b)) = Dp(b) for every b € B,
where 0,,: B = B, is the unique isomorphism. In particular, we have

X (B, pt,q) = X(By, 1t q).

Hence for every 7, the above theorem and corollaries with B replaced by B,
(and the right hand sides unchanged) also hold.

7.2 Proof of the main theorem

In order to prove the main theorem, it remains to show that the isomorphism
Up constructed in Proposition 5.16 satisfies (7.1). To show this, we prepare
several lemmas.

Lemma 7.5. Let By, Bs € Cand T € X. For by ® by € By ® By mapped to
by ® by € By ® By under o, we have

H(by @ bg) — H(7(by @ b)) = (wt(bs) — wt(b2), @)1 g)- (7.2)

Proof. Although the proof is carried out in a similar way as that of [21, Lemma
8.2], we give it for the reader’s convenience.

The case 7 = id is trivial. We assume otherwise, and put ¢t = 771(0) €
I°\ {0}. If by = u(B1) and ba = u(Bsz), we have from Lemma 5.6 that

and hence the left hand side of (7.2) is 0. On the other hand, the right hand side
is also 0 since we have o (u(B1) ® u(Bz)) = u(Bz) ® u(B1), and the assertion
is proved in this case. Therefore by Lemma 5.4, it suffices to show for each
i € I that if (7.2) holds and e;(b; ® bz) # 0, then (7.2) with b; ® by replaced by
ei(by ® b2) also holds. If i # 0,1, it is easy to see that the both sides of (7.2) do
not change when b; ® bs is replaced by e;(b; ® b2). Assume that ¢ = 0. Since
t # 0, we have

(H(eo(b1 @ by)) — H(roegby ® bg))) _ (H(b1 @ by) — H(r(by ® bz)))

= (H(eolbr @ b2)) = H(by @b2)) = (H(ev 0 (b1 @1b2)) — H(r(by @b2)))

1 if eo(by @ bs) = eobr ® ba, eo(ba ® by) = egbo @ by,
=<¢ -1 if 60(b1 ® ba) = by ® egba, €0(b2 ® b1) = ba ® ey, (7.3)
0 otherwise.

On the other hand, putting eo(b; @ by) = b} @ by and eg(by ® by) = by @ U, we
easily check from (2.2) that

(wt(bh) —wt(bh), ) — (wt(bs) — wt(bs), @)

is equal to (7.3), which implies the assertion for ¢ = 0. The case ¢ = ¢ is
similar. O
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For B € C and ¢ € Z~, we define a subset hWISO[(B) C B by
hwi'(B) = {b € B | b is Uy(go)-highest weight, eo(b) < £}.

Lemma 7.6. Let B; = Brivcerjti (j = 1,2) be two perfect KR crystals, and
assume {1 > fo. For every by € hWISf1 (Bs), we have

0By,B, (M(B1) @ 7" (b2)) = b2 @ by
for some by € Bj.
Proof. Put 7 = 7. Since
@(m(B1)) = t1A+(o) and £(7(b2)) = €0(b2)Ar(0),

we have from Lemma 5.10 (ii) that m(By) ® 7(b2) € (By ® B2)min, €(m(B1) @
T(bz)) = €1A07 and

o(m(B1) @7(b2)) = (€1 — e0(b2)) Aro) + 7((b2)).
Put A = (61 — £0(b2))Aro) + T((b2)), and by ® b} = o(m(B1) @ 7(bs)). Since

by @by € (Ba ® B1)min, we have from Lemma 5.10 (iii) that b} € (B1)min and
o(b)) = p(by ® b)) = A. Hence from Theorem 5.12 (iii), we have

(b)) = 771 (A) = (1 — e0(b2)) Ao + ¢(b2). (7.4)
By Lemma 5.10 (iii), it follows that
05) = W(bh) +2(05) = 2(b)) +=(05) — et @ b5,

Then since b} is Uy (go)-highest weight and e(b,®b}) = € (m(B1)®@7(b2)) = (1A,
we have from (7.4) that
p(b5) € p(ba2) + ZAo,

which implies by = b}, by Corollary 5.8 as required. O

Lemma 7.7. Let B; = Brivcriti (j = 1,2) be two perfect KR crystals, and
assume {1 > £y. Then there exists some global constant C' such that

H(m(B1) ® 7(ba)) = —(wt(ba), )1 (gy) + C

for every by € hwlgf1 (Bz), where we put 7 = 7",

Proof. Although the proof of this lemma is basically the same as that of [26,
Lemma 4.7], we include it for the reader’s convenience.
It suffices to show for by, bl € hvvlgoé1 (B2) that

H(m(By1) ® 7(b})) — H(m(B1) @ 7(ba)) = —(wt(b}) — wt(bz), @ 1))
By Lemma 7.6, we have

o(m(B1) @ 7(bz)) = by ® by and o (m(B1) @ 7(b)) = bl @ b]
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for some by, bJ{ € B;. By Lemma 5.4, there exists a sequence iy, ...,i; of ele-
ments of I such that
(ST eilbg = bg

We choose such a sequence so that k is minimal. Then there exists a sequence

,71a"'7j€ el such that
ejz ~.~6j1(b2 ®b1) = eik --~6,L-1b2 ®ei27k ...ei,lbl
= b; ®€i27k B -ei/lbl.

Since b%@b{ € (B2® B1)min, by Lemma 5.14 we may assume €, " -ei/lbl = bJ{.
Then we have

ej, -+ €5, (m(B1) ® 7(b)) = m(B1) @ 7(b}).
We define the two sequences 7y, ..., 4, and 7}, ... ,%’Zﬂn of elements of I by
ejo ey (M(Br) @7(ba)) = ez, +regm(B1) @e; - e, 7(ba)
= m(B) ® (b))
Since
e, 6;17(172) = T(erfl(im) e 67_71(51)132) = T(b;),
we have €rm1(i) 6771(51)52 = bg, which implies
Z 067.71(2(1) - Z Oéiq S ZZO(S (75)
1<q<m 1<q<k

by the minimality of k.
By repeating the above procedure interchanging the roles of by and b;, we
obtain sequences of elements of I satisfying the following:

ejr, e (D) @bL) = eir - eirbl @eps L oeeeq-bl

- b2 & blv

ejz. -+ e (m(Br) @ 7(b))) = eir .
=m(B1) ® 7(b2),

Z OéTfl(;Z) — Z Qi S ZZQ(S. (76)

1<q<m* 1<q<k*

~-e;=m(B1) @ e;.
1

m*

et

By Lemma 6.2, we have
0= (H(m(B1) @ (b)) — H(m(B)) © 7(b2)))
+ (H(m(Bl) @7(by)) — H(m(By) ® T(b;>))
— (#1<a<kli,=0}-#{1<a<m|i, =0}
+(#{1<q<k i =0} —#{1<g<m" |i;=0})
= (#{1<q<kli, =0} +#{1<q <k iy =0})

_<#{1§q§m|%q=0}+#{1§q§m*|€Z:0}>.
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Since agp = a,-1(g) by (2.4), this equation together with (7.5) and (7.6) implies
that k =m, k* = m™*, and

{7740, .. 77 am) Y = {in, .o yin ), {77N@E), . ) = {a), i)
as multisets. Hence we have
H(m(B1) @ 7(b})) = H(m(B1) @ 7(b))
{1 <q<k|ig=0}—#{1<q<m|i, =0}
=#{1<q<klig=0}—#{l <qg<k|ig=7""(0)}
= (wb(b}) = wt(b2), @)1 ),
and the assertion is proved. O
The following lemma is crucial for the proof of our theorem:

Lemma 7.8. Let B; = Brivcriti (0 < j < p) be perfect KR crystals, and put
B=B®B®---®B,. We assume that by > {; for every 1 < j < p. Then
there exists some global constant C' such that

D(m(Bo) @ 7(b)) = D(b) — (wt(b), @)1 q)) + C
for every b € hwléoeo (B), where we put T =770

Proof. Let b=01 ®---® b, € hW<ZO( ), and define bgi) eBjfor1<i<j<p
as Proposition 6.3 (i ) Note that since the combinatorial R-matrix and the
action of 7 commute, the first tensor factor of the image of 7(b; ® - - - ®b;) under
the isomorphism

Bi®---®Bj1®B; = Bj®B;®---®Bj_1

is T(bj ). Since b € hw °(B) implies b;l) € hvvlgfO (Bj) for each 1 < j < p, we
have foreach 1 < j<p that

B8, (M(Bo) @ 7(b1")) = b @ b7
for some b’ € By by Lemma 7.6. Hence by Proposition 6.3 (ii), we have

D(m(Bo) @ 7(b)) = D(m(Bo)) + . DO+ Y H(m(Bo) @ 7(b{"))

1<5<p 1<5<p
1
+ > H o (I t)). (7.7)
1<j<k<p

For each 1 < j < p we have by Lemma 7.7 that
H (m(Bo) ® 7(0]")) = ~(wt(6]"), @Yo1)) + 0

for some constant C; independent of b( , and for each 1 < j < k < p we have
by Lemma 7.5 that

H(r(b) @ (0 ™)) = H(b; @b TV) = (wt (b ™) — wt (b)), Y1 g))-
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Hence, we have with some global constant C' that

7= DY+ >0 Hb; el = 3 (wtbi), @Y )

1<j<p 1<j<k<p 1<j<p
- )
= > i) —wi)), @Y o) + O
1<j<k<p
D) = Y (wt(bk), @) 1)) +C
1<k<p

The assertion is proved. O

Now, we give the proof of our main theorem:

Proof of Theorem 7.1. It remains to verify that U g in Proposition 5.16 satisfies
(7.1) for every b € B. First, we show the following claim.

claim. If every element b € hwjgfp (B) satisfies (7.1), then all the elements of
B satisty (7.1).

Let b € B be an arbitrary element. Since ug,z, ® B is isomorphic to a dis-
joint union of Demazure crystals (see Remark 5.17 (ii)), there exists a sequence
i1,...,1 of elements of I such that the element e;, ---e; (ug,a, ® b) # 0 is
U,(g)-highest weight. We show the claim by the induction on k. If £ = 0, then
ug,n, ® b itself is U, (g)-highest weight, which is equivalent to b € hw?f”(B).
Hence there is nothing to prove. Assume k > 0, and set b’ = e;,(b). Then (7.1)
with b replaced by b holds by the induction hypothesis. Note that if ¢; = 0,
then eo(b) > £, since eg(ug,n, ® b) = ug,a, @ €ob. Hence we have from Lemma
6.4 that

D(b) = D(V) + 60i, = —(wt Up(ug,a, @ V'), d) + 6os, + C
= —<Wt eil\I’B(U[pAO ® b)7d> + 6Oi1 + C
= —<Wt \I/B(Uép./\o 02y b)7d> + C’

and the claim is proved.

In particular, since the set hvvlgf1 (B1) contains only a single element m(B;
the assertion of the theorem for p = 1 follows from the claim. Assume p >
and we show the assertion of the theorem by the induction on p. Put BP~!
B,1® - -®Byand 7 =7"r. Let b € hwlgf” (B) be an arbitrary element, and
write b = b, ® P~ € B, ® BPL. Since lev(B,) > lev(B”™'), b € hw}. " (B)
implies by Lemma 5.10 (ii) that

)
1,

b, € hwi "(B,) and e(0P71) € (b)) — P
Since lev(B,) = £p, these are equivalent to
by =m(B,) and e(b""') € LA o) — PT.
Hence if we put v’ = 771 (b?~1), we have

b=m(B,) @ r(t) with ' € hwy "(BP1).
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Note that we have from Remark 5.17 (i) that
Up (UZPAO ® m(Bp) ® T(b/)) = ?(u(fp—ip_ﬂl\o R Vpp-1 (u€P71A0 ® b/))

Put ¢ = 771(0). Since ¥y is a U} (g)-crystal isomorphism, we have with some
global constant C' that

wt W (ug,n, @ m(By) @ 7(b)) = T(&ff owt(b') + Ao — (D(b') — C’)é)
= aff o wt(7(b')) + lpAr0) — (D) — (wt(V'), @) — C')d
= aff o wt(7(b)) + lpAr0) — (D) — (wt(V'), =) — C')6
by the induction hypothesis, where the second equality follows since
r= () =,

by Lemma 2.1 (iii), and the third one follows from (2.3). On the other hand,
we have from Lemma 7.8 that

D(m(Bp) ® T(b/)) = D(b/) —(wt(t)),@)) +C”

with some global constant C”. Hence the equation (7.1) holds for every b €
hwjgf” (B), and the theorem is proved from the claim. O
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