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Abstract

In this paper, we study a tensor product of perfect Kirillov-Reshetikhin
crystals (KR crystals for short) whose levels are not necessarily equal. We
show that, by tensoring with a certain highest weight element, such a crys-
tal becomes isomorphic as a full subgraph to a certain disjoint union of
Demazure crystals contained in a tensor product of highest weight crys-
tals. Moreover, we show that this isomorphism preserves their Z-gradings,
where the Z-grading on the tensor product of KR crystals is given by the
energy function, and that on the other side is given by the minus of the
action of the degree operator.

1 Introduction

Crystal bases B(Λ) introduced by Kashiwara [13] can be viewed as bases at
q = 0 of highest weight modules V (Λ) of the quantized enveloping algebra Uq(g)
associated with a Kac-Moody Lie algebra g. Crystal bases reflect the internal
structures of the modules, and are powerful combinatorial tools for studying
them.

Crystal bases are also useful for studying certain subspaces of V (Λ). For a
Weyl group element w, the Demazure module Vw(Λ), which is a module of
a Borel subalgebra, is defined by the submodule of V (Λ) generated by the
extremal weight space V (Λ)wΛ. Kashiwara showed in [14] that there exists
a certain subset Bw(Λ) ⊆ B(Λ) which is, in a suitable sense, a crystal basis
of Vw(Λ). The subset Bw(Λ) is called the Demazure crystal. Using Demazure
crystals, he gave a new proof of the character formula for Demazure modules
in the article, which expresses the character using the Demazure operators (see
[14] or Section 4 of the present article).

When g is an affine Kac-Moody Lie algebra, there is another class of modules
having crystal bases called Kirillov-Reshetikhin modules W r,` (KR modules for
short), where r is a node in the classical Dynkin diagram and ` is a positive
integer. KR modules are finite-dimensional irreducible U ′

q(g)-modules, where
U ′

q(g) is the quantum affine algebra without the degree operator. At least when
g is nonexceptional, it was proved that every W r,` has a crystal basis Br,`[12,
24, 25], which is called the Kirillov-Reshetikhin (KR) crystal.

Demazure crystals and KR crystals are known to have strong relations, and
the study of the relationship between them has been the subject of many articles.
For example, see [4, 16, 18, 19, 22, 28].

Among these articles, [28] by Schilling and Tingley is quite important for
the present article. In the article, they studied a tensor product of perfect
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KR crystals for nonexceptional g whose levels are all the same (perfectness
is a technical condition for a finite U ′

q(g)-crystal which allows one to use the
crystal to construct highest weight crystals, see [11] or Subsection 5.2 of the
present article). They proved that, by tensoring with a certain highest weight
element, such a crystal becomes isomorphic to a certain Demazure crystal as a
full subgraph. Moreover, they also showed that this isomorphism preserves their
Z-gradings. Here, the tensor product of perfect KR crystals is Z-graded by the
energy function, which is a certain Z-function defined in a combinatorial way,
and the Z-grading of the Demazure crystal is given by the minus of the action
of the degree operator. Since the Demazure crystal has a character formula as
stated above, these results imply that the weight sum with the energy function
of the tensor product of perfect KR crystals (with same levels) can be expressed
by the Demazure character formula.

The aim of this article is to generalize the above results to a tensor product of
perfect KR crystals whose levels are not necessarily equal. In this case the tensor
product of perfect KR crystals, tensored with a highest weight element, is no
longer isomorphic to a single Demazure crystal. We show in this article, however,
that it is isomorphic to a certain disjoint union of Demazure crystals contained
in a tensor product of B(Λ)’s, and that this isomorphism also preserves their
Z-gradings.

Before stating our results, we prepare some notation. For a crystal B and a
Dynkin automorphism τ , we define a new crystal τ̃(B) = {τ̃(b) | b ∈ B} whose
weight function is wt

(
τ̃(b)

)
= τ

(
wt(b)

)
and Kashiwara operators are

eiτ̃(b) = τ̃
(
eτ−1(i)b

)
, fiτ̃(b) = τ̃

(
fτ−1(i)b

)
.

Let S be a subset of a crystal B, w a Weyl group element with a reduced
expression w = sik

· · · si1 and τ a Dynkin automorphism. We denote by Fwτ (S)
the subset of τ̃(B) defined by

Fwτ (S) =
⋃

j1,...,jk≥0

f jk

ik
· · · f j1

i1
τ̃(S) \ {0}.

(All the subsets Fwτ (S) appearing in this article do not depend on the choices
of the reduced expressions.) For a dominant integral weight Λ, we denote by
uΛ the highest weight element of B(Λ).

Now let us mention our results. Assume that g is of nonexceptional type,
and let Br1,cr1`1 , . . . , Brp,crp`p be perfect KR crystals. Here, cr is a particular
constant which ensures the perfectness for the KR crystal Br,cr`. We assume
`1 ≤ `2 ≤ · · · ≤ `p, and put µj = crj w0($rj ) for 1 ≤ j ≤ p, where w0

is the longest element of the Weyl group of the simple Lie subalgebra g0 ⊆
g corresponding to the classical Dynkin diagram, and $r is the fundamental
weight of g0. Then the following theorem is proved, which is the main theorem
of the present article (Theorem 7.1):

Theorem 1.1. There exists an isomorphism

u`pΛ0⊗Brp,crp`p ⊗ · · · ⊗ Br1,cr1`1

∼→Ftµp

(
u(`p−`p−1)Λ0 ⊗ · · · ⊗ Ftµ2

(
u(`2−`1)Λ0 ⊗Ftµ1

(u`1Λ0)
)
· · ·

)
of full subgraphs, where tµ denotes the translation and Λ0 denotes the funda-
mental weight of g. Moreover, this isomorphism preserves the Z-gradings up to
a shift.
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Using the combinatorial excellent filtration theorem [20, 8], it is easy to see
that the right hand side of the above isomorphism is a disjoint union of Demazure
crystals. Then similarly as a Demazure crystal, the weight sum of the right hand
side can be expressed using Demazure operators. Hence, we obtain the following
corollary (Corollary 7.2), where we set B = Brp,crp`p ⊗ · · · ⊗ Br1,cr1`1 :

Corollary 1.2. Let aff : Pcl → P denote the canonical section of the projection
from affine weight lattice P to the classical weight lattice Pcl. Then we have

e`pΛ0+Cδ
∑
b∈B

eaff◦wt(b)−δD(b)

= Dtµp

(
e(`p−`p−1)Λ0 · · ·Dtµ2

(
e(`2−`1)Λ0 · Dtµ1

(e`1Λ0)
)
· · ·

)
for some constant C, where Dtµ is the Demazure operator associated with tµ
(see Section 4).

Let X(B,µ, q) denote the one-dimensional sum [5, 6] associated with the
crystal B and a dominant integral weight µ of g0. Then the above corollary is
equivalent to the following (Corollary 7.3):

Corollary 1.3. Let P+
0 be the set of dominant integral weights of g0 and

chVg0(µ) the character of the irreducible g0-module with highest weight µ. Then
we have

q−C
∑

µ∈P+
0

X(B,µ, q)ch Vg0(µ) (1.1)

= e−`pΛ0Dtµp

(
e(`p−`p−1)Λ0 · · ·Dtµ2

(
e(`2−`1)Λ0 · Dtµ1

(e`1Λ0)
)
· · ·

)
,

where we set q = e−δ.

Corollary 1.3 has an important application (and in fact this is the main
motivation of this work). The X = M conjecture presented in [5, 6] asserts
that a one-dimensional sum is equal to a fermionic form which is defined as a
generating function of some combinatorial objects called rigged configurations.
In [23], it is proved that when g is of type A

(1)
n , D

(1)
n or E

(1)
n , the fermionic

forms also satisfy a similar equation as (1.1). Then we can prove the X = M

conjecture in the cases g = A
(1)
n , D

(1)
n from these equations (for details see [23]).

The plan of this article is as follows. In Section 2, we fix basic notation used
in the article. In Section 3, we briefly review the definition of crystals, and in
Section 4, we review the results on Demazure crystals. In Section 5, we review
the results on KR crystals, and construct the isomorphism in Theorem 1.1. In
Section 6, we review the definition and some results on the energy functions,
and finally in Section 7, we show that the isomorphism constructed in Section
5 preserves the Z-gradings, which completes the proof of Theorem 1.1.

Acknowledgements: The author is very grateful to M. Okado for answer-
ing many questions and providing a lot of references. Without his help, this
paper could not have been written. He also thank R. Kodera for reading the
manuscript very carefully and pointing out a lot of errors, S. Naito and Y. Saito
for some helpful comments, and A. Schilling for sending him her preprint.
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2 Notation and basics

2.1 Affine Kac-Moody Lie algebra

Let g be a complex affine Kac-Moody Lie algebra with Cartan subalgebra h,
Dynkin node set I = {0, . . . , n}, Dynkin diagram Γ and Cartan matrix A =
(aij)i,j∈I . In this article, we use the Kac’s labeling of nodes of Dynkin diagrams
in [9, Section 4.8]. Let αi ∈ h∗ and α∨

i ∈ h (i ∈ I) be the simple roots and the
simple coroots respectively, and ∆ ⊆ h∗ the root system of g. Let (a0, . . . , an)
(resp. (a∨

0 , . . . , a∨
n)) be the unique sequence of relatively prime positive integers

satisfying ∑
j∈I

aijaj = 0 for all i ∈ I (resp.
∑
i∈I

a∨
i aij = 0 for all j ∈ I).

Let d ∈ h be the degree operator, which is any element satisfying 〈αi, d〉 = δ0i for
i ∈ I, K =

∑
i∈I a∨

i α∨
i ∈ h the canonical central element, δ =

∑
i∈I aiαi ∈ h∗

the null root, and W the Weyl group of g with simple reflections {si | i ∈ I}. In
this article we fix an arbitrary positive integer N , and define the weight lattice
of g by

P = {λ ∈ h∗ | 〈λ, α∨
i 〉 ∈ Z (i ∈ I), 〈λ, d〉 ∈ N−1Z}. (2.1)

(In the next subsection, we impose some condition on N so that P is preserved
by the action of the extended affine Weyl group W̃ .) Put P+ = {λ ∈ P |
〈λ, α∨

i 〉 ∈ Z≥0 (i ∈ I)}, and let Λi ∈ P+ (i ∈ I) be any element satisfying

〈Λi, α
∨
j 〉 = δij for j ∈ I.

(Note that we do not assume 〈Λi, d〉 = 0.) Then we have P+ =
∑

i∈I Z≥0Λi +
N−1Zδ. For λ ∈ P , we call the integer 〈λ, K〉 the level of λ, and for ` ∈ Z
we denote P ` = {λ ∈ P | 〈λ,K〉 = `}. Let ( , ) be a W -invariant symmetric
bilinear form on h∗ satisfying

(αi, αj) = a∨
i a−1

i aij for i, j ∈ I, (αi,Λ0) = δ0ia
−1
0 for i ∈ I.

Let cl : h∗ → h∗/Cδ be the canonical projection, and put Pcl = cl(P ), P+
cl =

cl(P+), P `
cl = cl(P `) for ` ∈ Z and (P+

cl )
` = P+

cl ∩ P `
cl. Since W fixes δ, W acts

on h∗/Cδ and Pcl. For i ∈ I, define $i ∈ P 0
cl by $i = cl(Λi) − a∨

i cl(Λ0). Note
that $0 = 0 and $i for i ∈ I \ {0} satisfies

〈$i, α
∨
j 〉 = δij for j ∈ I \ {0}, 〈$i, α

∨
0 〉 = −a∨

i .

We define aff : h∗/Cδ → h∗ by the unique section of cl satisfying 〈aff(λ), d〉 = 0
for all λ ∈ h∗/Cδ. When no confusion is possible, we omit the notation cl(∗) for
simplicity. In particular, we often write cl(Λi) and cl(αi) simply as Λi and αi.

Let I0 = I \ {0} and g0 ⊆ g the simple Lie subalgebra whose Dynkin node
set is I0 with Cartan subalgebra h0 ⊆ h and Weyl group W0 ⊆ W . Let $∨

j ∈ h0

(j ∈ I0) be the unique element satisfying

〈αi, $
∨
j 〉 = δij for i ∈ I0,

which also satisfies
〈α0, $

∨
j 〉 = −aj/a0. (2.2)
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For the notational convenience, we put $∨
0 = 0. Denote by w0 the longest

element of W0. We canonically identify P 0
cl with the weight lattice of g0.

The bilinear form ( , ) induces a bilinear form on P 0
cl, which is also denoted

by ( , ). Then we have
(λ, $i) = a∨

i a−1
i 〈λ,$∨

i 〉 (2.3)

for i ∈ I and λ ∈ P 0
cl.

2.2 Dynkin automorphisms and the extended affine Weyl
group

Let Aut (Γ) be the group of automorphisms of the Dynkin diagram Γ, that is,
the group of permutations τ of I satisfying aij = aτ(i)τ(j) for all i, j ∈ I. Then
τ ∈ Aut (Γ) satisfies

aτ(i) = ai and a∨
τ(i) = a∨

i for all i ∈ I. (2.4)

As [9, (6.5.2)], we define for λ ∈ P 0
cl an endomorphism tλ of h∗ by

tλ(µ) = µ + 〈µ,K〉aff(λ) −
((

µ, aff(λ)
)

+
1
2
(
aff(λ), aff(λ)

)
〈µ,K〉

)
δ. (2.5)

The map λ 7→ tλ defines an injective group homomorphism from P 0
cl to the

group of linear automorphisms of h∗ orthogonal with respect to ( , ).
Let ci = max{1, ai/a∨

i } for i ∈ I0, and define sublattices M and M̃ of P 0
cl by

M =
∑

w∈W0

Zw(α0/a0), M̃ =
⊕
i∈I0

Zci$i.

Let T (M) and T (M̃) be the subgroups of GL(h∗) defined by

T (M) = {tλ | λ ∈ M}, T (M̃) = {tλ | λ ∈ M̃}.

It is known that [9, Proposition 6.5]

W ∼= W0 n T (M).

Define the subgroup W̃ of GL(h∗) by

W̃ = W0 n T (M̃),

which is called the extended affine Weyl group. The action of W̃ preserves ∆,
and elements w ∈ W0 and λ ∈ M̃ satisfy

wtλw−1 = tw(λ).

In the sequel, we assume that the positive integer N in (2.1) satisfies

2−1
(
aff(λ), aff(λ)

)
∈ N−1Z for all λ ∈ M̃,

which ensures that W̃ preserves P .
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Let C ⊆ h∗
R = R ⊗Z P be the fundamental chamber (i.e. C = {λ ∈ h∗

R |
(λ, αi) ≥ 0 for all i ∈ I}), and Σ ⊆ W̃ the subgroup consisting of elements
preserving C. Then we have

W̃ ∼= W o Σ.

Note that an element w ∈ W̃ belongs to Σ if and only if w preserves the set
of simple roots {α0, . . . , αn}. Hence τ ∈ Σ induces a permutation of I (also
denoted by τ) by τ(αi) = ατ(i), which belongs to Aut (Γ) since ( , ) is τ -
invariant. By abuse of notation, we denote by Σ both the subgroup of W̃ and
the subgroup of Aut (Γ).

We shall describe the subgroup Σ ⊆ Aut (Γ) explicitly. A node i ∈ I is called
a special node if i ∈ Aut (Γ) · 0. Let Is ⊆ I be the set of special nodes. Is for
nonexceptional g are as follows:

Is =



{0, 1, . . . , n} for A
(1)
n ,

{0, 1} for B
(1)
n , A

(2)
2n−1,

{0, n} for C
(1)
n , D

(2)
n+1,

{0, 1, n − 1, n} for D
(1)
n ,

{0} for A
(2)
2n .

Assume i ∈ Is \ {0} (in particular g 6= A
(2)
2n ), and define τ i ∈ W̃ by

τ i = t$iwi,

where wi denotes the unique element of W0 which maps the simple system
{α1, α2, . . . , αn} of g0 to {−θ, α1, . . . , α̂i, . . . , αn} with θ = δ − α0 ∈ ∆. We
put τ0 = id. The following proposition is well-known, but we give the proof for
completeness:

Proposition 2.1. (i) For all i ∈ Is, τ i belongs to Σ.
(ii) The map Is → Σ defined by i 7→ τ i is bijective.
(iii) If τ ∈ Σ satisfies τ(i) = 0, then we have τ = (τ i)−1.

Proof. If g is of type A
(2)
2n , then Is = {0} and M̃ = M , which obviously imply

the assertions. So, assume g is not of this type. (i) Let i ∈ Is \ {0}, and recall
that wi maps {α1, α2, . . . , αn} to {−θ, α1, . . . , α̂i, . . . , αn}. Then wi(−θ) = αi

also holds, and hence it is easily checked from the equation (2.5) that τ i = t$i
wi

preserves the set {α0, . . . , αn}, which implies τ i belongs to Σ. (ii) The injectivity
is obvious. Let τ ∈ Σ \ {id} be an arbitrary element, and decompose it as
τ = tλτ wτ where λτ ∈ M̃ and wτ ∈ W0. Since tλτ acts trivially on P 0

cl, we have
wτ

(
cl(αj)

)
= cl

(
ατ(j)

)
for j ∈ I, which implies wτ = wτ(0). Then since

tλτ (αj) = τw−1
τ(0)(αj) = τ(ατ−1(j) − δj,τ(0)) = αj − δj,τ(0)δ for j ∈ I0,

(2.5) forces λτ = $τ(0), and the surjectivity follows. From the proof of (ii), we
see that τ(0) = i implies τ = τ i. Hence, the assertion (iii) follows.

For nonexceptional g, τ i for i ∈ Is \ {0} are as follows:

A
(1)
n : τ i(j) = j + i mod n + 1 for all j ∈ I.

B
(1)
n , D

(2)
n+1: τ1 = (0, 1).
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C
(1)
n , A

(2)
2n−1: τn(j) = n − j for all j ∈ I.

D
(1)
n , n odd: τ1 = (0, 1)(n − 1, n),

τn−1(0, 1, n− 1, n) = (n− 1, n, 1, 0), τn−1(j) = n− j for j ∈ I \ Is,
τn(0, 1, n − 1, n) = (n, n − 1, 0, 1), τn(j) = n − j for j ∈ I \ Is.

D
(1)
n , n even: τ1 = (0, 1)(n − 1, n),

τn−1(0, 1, n−1, n) = (n−1, n, 0, 1), τn−1(j) = n− j for j ∈ I \ Is,
τn(0, 1, n − 1, n) = (n, n − 1, 1, 0), τn(j) = n − j for j ∈ I \ Is.

In the sequel, we assume that the fundamental weights Λ0, . . . , Λn are chosen
to satisfy τ(Λj) = Λτ(j) for all τ ∈ Σ and j ∈ I. This is always possible by
choosing Λj arbitrarily for representatives of I/Σ and setting Λτ(j) = τ(Λj) for
τ ∈ Σ. Then each element τ ∈ Aut (Γ) acts on P by τ(Λi) = Λτ(i) and τ(δ) = δ.

3 Definition of crystals

Let Uq(g) be the quantum affine algebra associated with g and U ′
q(g) the one

without the degree operator. The weight lattices of Uq(g) and U ′
q(g) are P and

Pcl respectively.
A Uq(g)-crystal (resp. U ′

q(g)-crystal) is by definition a set B equipped with
weight function wt: B → P (resp. wt: B → Pcl) and Kashiwara operators
ei, fi : B → B t {0} for i ∈ I satisfying

wt(eib) = wt(b) + αi and fi(eib) = b for all i ∈ I, b ∈ B such that eib 6= 0,

wt(fib) = wt(b) − αi and ei(fib) = b for all i ∈ I, b ∈ B such that fib 6= 0,

and 〈wt(b), α∨
i 〉 = ϕi(b) − εi(b) where

εi(b) = max{k ≥ 0 | ek
i b 6= 0}, ϕi(b) = max{k ≥ 0 | fk

i b 6= 0}.

In this article, we always assume that εi(b) < ∞ and ϕi(b) < ∞. We call B a
crystal if B is either a Uq(g)-crystal or a U ′

q(g)-crystal.

Remark 3.1. A Uq(g)-crystal B can be regarded naturally as a U ′
q(g)-crystal

by replacing the weight function wt: B → P by cl ◦ wt: B → Pcl.

For two crystals B1 and B2, their tensor product B1 ⊗ B2 = {b1 ⊗ b2 | b1 ∈
B1, b2 ∈ B2} is defined with weight function wt(b1 ⊗ b2) = wt(b1) + wt(b2) and
Kashiwara operators

ei(b1 ⊗ b2) =

{
eib1 ⊗ b2 if ϕi(b1) ≥ εi(b2),
b1 ⊗ eib2 if ϕi(b1) < εi(b2),

fi(b1 ⊗ b2) =

{
fib1 ⊗ b2 if ϕi(b1) > εi(b2),
b1 ⊗ fib2 if ϕi(b1) ≤ εi(b2).

For crystals B1, B2 and their subsets S1 ⊆ B1, S2 ⊆ B2, we say S1 and S2

are isomorphic as full subgraphs and write S1
∼= S2 if there exists a bijection

Ψ from S1 t {0} to S2 t {0} satisfying Ψ(0) = 0, wtΨ(b) = wt(b) for b ∈ S1,
Ψ(eib) = eiΨ(b) for b ∈ S1 such that eib ∈ S1 t {0}, and Ψ(fib) = fiΨ(b) for
b ∈ S1 such that fib ∈ S1 t {0}.
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For a crystal B and τ ∈ Aut (Γ), we define a crystal τ̃(B) as follows: as a
set τ̃(B) = {τ̃(b) | b ∈ B} ∼= B. Its weight function and Kashiwara operators
are defined by

wt
(
τ̃(b)

)
= τ

(
wt(b)

)
and (3.1)

eiτ̃(b) = τ̃(eτ−1(i)b), fiτ̃(b) = τ̃(fτ−1(i)b),

where τ̃(0) is understood as 0. Obviously we have

τ̃(B1 ⊗ B2) ∼= τ̃(B1) ⊗ τ̃(B2)

for two crystals B1 and B2. For a subset S ⊆ B, a subset τ̃(S) ⊆ τ̃(B) is defined
in the obvious way.

For J ⊆ I, we denote by Uq(gJ) the subalgebra of Uq(g) whose simple roots
are J . If J = I0, we denote Uq(gJ) by Uq(g0). Uq(gJ)-crystals are defined in a
similar way. For a crystal B and a proper subset J of I, a connected component
of B regarded as a Uq(gJ)-crystal is called a Uq(gJ)-component of B.

Definition 3.2 ([1]). We say a crystal B is regular if for every proper subset J
of I, B regarded as a Uq(gJ)-crystal is isomorphic to a direct sum of the crystal
bases of integrable highest weight Uq(gJ)-modules.

Let J ⊆ I. For a crystal B, we say that b ∈ B is Uq(gJ)-highest weight if
ejb = 0 for all j ∈ J . For a proper subset J of I and a regular crystal B, every
Uq(gJ)-component of B contains a unique Uq(gJ)-highest weight element.

By [15], the actions of simple reflections on a regular crystal B defined by

Ssi(b) =

{
f
〈wt(b),α∨

i 〉
i b if 〈wt(b), α∨

i 〉 ≥ 0,

e
−〈wt(b),α∨

i 〉
i b if 〈wt(b), α∨

i 〉 < 0

are extended to the action of W denoted by w 7→ Sw. For every w ∈ W and
b ∈ B, we have wt

(
Sw(b)

)
= w

(
wt(b)

)
.

4 Demazure crystals

For a subset S of a crystal B and i ∈ I, we denote FiS = {fk
i b | b ∈ S, k ≥

0} \ {0} ⊆ B.
For Λ ∈ P+, let V (Λ) denote the integrable highest weight Uq(g)-module

with highest weight Λ, and B(Λ) its crystal basis with highest weight element
uΛ. Let w be an element of W and w = sik

sik−1 · · · si1 its reduced expression.
Then it is known that the subset

Bw(Λ) = Fik
Fik−1 · · · Fi1{uΛ} ⊆ B(Λ)

is independent of the choice of the reduced expression of w [14].

Definition 4.1. The subset Bw(Λ) of B(Λ) is called the Demazure crystal
associated with Λ and w.

Remark 4.2. Let b be the standard Borel subalgebra of g and Uq(b) ⊆ Uq(g)
the corresponding quantized enveloping algebra. The Demazure module Vw(Λ)
is defined by the Uq(b)-submodule of V (Λ) generated by the weight space
V (Λ)w(Λ). The Demazure crystal Bw(Λ) is known to be the crystal basis of
Vw(Λ) in a suitable sense [14], which is why it is so named.
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For a subset S of a crystal and w ∈ W with a reduced expression w =
sik

· · · si1 , we write FwS = Fik
· · · Fi1S if it is well-defined. For example,

Fw{uΛ} = Bw(Λ).

Lemma 4.3. Let Λ ∈ P+ and w ∈ W .
(i) We have τ̃Bw(Λ) ∼= Bτwτ−1

(
τ(Λ)

)
for τ ∈ Aut (Γ).

(ii) For i ∈ I, we have

FiBw(Λ) =

{
Bw(Λ) if `(siw) = `(w) − 1,

Bsiw(Λ) if `(siw) = `(w) + 1,
(4.1)

where ` denotes the length function.
(iii) For every w′ ∈ W , Fw′Bw(Λ) is well-defined, and Fw′Bw(Λ) ∼= Bw′′(Λ) for
some w′′ ∈ W .

Proof. Since τ̃B(Λ) ∼= B(τ(Λ)) and τ̃(FiS) = Fτ(i)τ̃(S) for every S ⊆ B(Λ),
(i) follows. When `(siw) = `(w) + 1, (4.1) follows by definition, and when
`(siw) = `(w) − 1, (4.1) follows since

FiBw(Λ) = Fi

(
FiBsiw(Λ)

)
= FiBsiw(Λ) = Bw(Λ).

The assertion (ii) is proved. To see that Fw′Bw(Λ) is well-defined, it suffices
to show the operators Fi on Demazure crystals satisfy braid relations: if the
order of sisj for i, j ∈ I (i 6= j) is m < ∞, then we have FiFjFi · · ·︸ ︷︷ ︸

m

Bw(Λ) =

FjFiFj · · ·︸ ︷︷ ︸
m

Bw(Λ). Since the element sisjsi · · ·︸ ︷︷ ︸
m

= sjsisj · · ·︸ ︷︷ ︸
m

is the longest ele-

ment of the subgroup Wi,j = 〈si, sj〉 ⊆ W , (ii) implies

FiFjFi · · ·︸ ︷︷ ︸
m

Bw(Λ) = Bw′′(Λ) = FjFiFj · · ·︸ ︷︷ ︸
m

Bw(Λ),

where w′′ is the unique element of the set {σw | σ ∈ Wi,j} whose length is
maximal. Hence our assertion is proved. Then the second statement of (iii) is
obvious from (ii).

For w ∈ W and τ ∈ Aut (Γ), we write Fwτ = Fw τ̃ and Bwτ (Λ) = Bw

(
τ(Λ)

)
for the notational convenience. The following proposition is immediate from
Lemma 4.3.

Proposition 4.4. For every Λ ∈ P+ and w,w′ ∈ W̃ , there exists w′′ ∈ W̃ such
that

Fw′Bw(Λ) ∼= Bw′′(Λ).

Let C[P ] denote the group algebra of P with basis eλ (λ ∈ P ), and define
for i ∈ I a linear operator Di on C[P ] by

Di(f) =
f − e−αi · si(f)

1 − e−αi
,

where si acts on C[P ] by si(eλ) = esi(λ). The operator Di is called the Demazure
operator associated with i. Note that Di(f) = f holds if f is si-invariant. From
this, it is easily checked that D2

i = Di.
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For every reduced expression w = sik
· · · si1 of w ∈ W , the operator Dw =

Dik
· · ·Di1 on C[P ] is independent of the choice of the expression [17]. The

weight sum of a Demazure crystal is known to be expressed using Demazure
operators:

Theorem 4.5. [14] For Λ ∈ P+ and w ∈ W , we have∑
b∈Bw(Λ)

ewt(b) = Dw(eΛ).

For w ∈ W and τ ∈ Aut (Γ), we define an operator Dwτ on C[P ] by Dwτ =
Dw ◦ τ , where τ acts on C[P ] by τ(eΛ) = eτ(Λ).

Corollary 4.6. Let S be a disjoint union of Demazure crystals and i ∈ I. For
every w ∈ W̃ we have

∑
b∈Fw(S)

ewt(b) = Dw

(∑
b∈S

ewt(b)

)
. (4.2)

Proof. We may assume that S is a single Demazure crystal, say S = Bw′(Λ).
By Proposition 4.4, it suffices to show the assertion for w = τ ∈ Σ and w = si

for i ∈ I. When w = τ ∈ Σ, the assertion is obvious from (3.1). Assume
that w = si. If `(siw

′) = `(w′) + 1, then we have FiBw′(Λ) = Bsiw′(Λ), and
the assertion follows from Theorem 4.5. If `(siw

′) = `(w′) − 1, then we have
FiBw′(Λ) = Bw′(Λ). On the other hand, we have

Di

 ∑
b∈Bw′ (Λ)

ewt(b)

 =
∑

b∈Bw′ (Λ)

ewt(b)

since the weight sum

∑
b∈Bw′ (Λ)

ewt(b) = Di

 ∑
b∈Bsiw′ (Λ)

ewt(b)


is si-invariant. Hence the assertion follows.

It is known that B(Λ)⊗B(Λ′) for Λ, Λ′ ∈ P+ is isomorphic to a direct sum
of the crystal bases of integrable highest weight modules, that is,

B(Λ) ⊗ B(Λ′) ∼=
⊕
λ∈T

B(λ), (4.3)

where T is a possibly infinite multiset of elements of P+. The following theorem,
which was proved in [20, Proposition 12] and [8, Theorem 2.11], is known as the
combinatorial excellent filtration theorem:

Theorem 4.7. The image of the subset uΛ ⊗ Bw(Λ′) of B(Λ) ⊗ B(Λ′) under
the isomorphism (4.3) is a disjoint union of Demazure crystals.
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5 Perfect Kirillov-Reshetikhin crystals

From this section to the end of the article, we assume that the type of g is
nonexceptional (i.e. one of the types A

(1)
n , B

(1)
n , C

(1)
n , D

(1)
n , A

(2)
2n−1, A

(2)
2n , D

(2)
n+1).

Note that some of the statements below on Kirillov-Reshetikhin crystals may
have not been proved or not be true for exceptional g.

5.1 Kirillov-Reshetikhin crystals

For a U ′
q(g)-crystal B, define two maps ε, ϕ : B → P+

cl by

ε(b) =
∑
i∈I

εi(b)Λi, ϕ(b) =
∑
i∈I

ϕi(b)Λi for b ∈ B.

Note that wt(b) = ϕ(b) − ε(b).
Kirillov-Reshetikhin modules W r,` (KR modules for short) are irreducible

finite-dimensional U ′
q(g)-modules parametrized by r ∈ I0 and ` ∈ Z≥1 (see [5] for

the precise definition). For nonexceptional g, the following theorem is known:

Theorem 5.1 ([12, 24, 25]). For each r ∈ I0 and ` ∈ Z≥1, the KR module W r,`

has a crystal basis Br,`.

The crystals Br,` are called the Kirillov-Reshetikhin crystals (KR crystals
for short). In this article we denote by C the set consisting of tensor products
of KR crystals.

Let B be a regular crystal. An element b ∈ B is called extremal if for every
w ∈ W and i ∈ I,

eiSw(b) = 0 if
〈
wt

(
Sw(b)

)
, α∨

i

〉
≥ 0 and fiSw(b) = 0 if

〈
wt

(
Sw(b)

)
, α∨

i

〉
≤ 0.

Definition 5.2 ([1]). A finite regular U ′
q(g)-crystal B is called simple if there

exists λ ∈ P 0
cl such that B has a unique element whose weight is λ, the weights

of B are contained in the convex hull of Wλ, and the weight of each extremal
element is in Wλ.

Proposition 5.3 ([21, Proposition.3.8 (1)]). Every B ∈ C is simple.

Since B ∈ C is simple, B has a unique extremal element u(B) such that
〈wt

(
u(B)

)
, α∨

i 〉 ≥ 0 for all i ∈ I0. It is known that u(Br,`) is the unique element
with weight `$r, and we have u(B1 ⊗ B2) = u(B1) ⊗ u(B2) for B1, B2 ∈ C.
Every B ∈ C is connected by [1, Lemma 1.9 and 1.10]. Then by [10], we have
the following:

Lemma 5.4 ([10, Lemma 3.3 (b)]). For B ∈ C and every b ∈ B, we have

B = {eik
· · · ei1(b) | k ≥ 0, ij ∈ I} \ {0}.

The following proposition is important:

Proposition 5.5. Let B ∈ C. For every τ ∈ Σ, there exists a unique isomor-
phism ρτ : τ̃(B) ∼→ B of U ′

q(g)-crystals.
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Proof. For a single KR crystal B = Br,`, τ̃(Br,`) ∼= Br,` was proved in [28,
Lemma 6.5]. This implies τ̃(B) ∼= B for general B ∈ C since τ̃(B1 ⊗ B2) ∼=
τ̃(B1)⊗ τ̃(B2). Since B is connected and an element of B with weight wt

(
u(B)

)
is unique, the uniqueness of the isomorphism holds.

Using the isomorphism ρτ in the above proposition, we define an action of
Σ on B ∈ C by τ(b) = ρτ

(
τ̃(b)

)
for τ ∈ Σ. This action satisfies

τ ◦ ei = eτ(i) ◦ τ and τ ◦ fi = fτ(i) ◦ τ for all i ∈ I. (5.1)

Lemma 5.6. For every τ ∈ Σ, there exists some w ∈ W0 such that

τ
(
u(B)

)
= Swu(B) for all B ∈ C.

Proof. Since τ ∈ W̃ = W0 n T (M̃) and T (M̃) acts on P 0
cl trivially, there exists

w ∈ W0 such that τ |P 0
cl

= w|P 0
cl
. Then since

wt
(
τ
(
u(B)

))
= τ

(
wt

(
u(B)

))
= w

(
wt

(
u(B)

))
= wt

(
Swu(B)

)
,

τ
(
u(B)

)
= Swu(B) follows by Proposition 5.3.

The Uq(g0)-crystal structure of a KR crystal is known by [2, 7]. In particular,
we have the following proposition (for nonexceptional g):

Proposition 5.7. A KR crystal Br,` is multiplicity free as a Uq(g0)-crystal. In
other words, any two distinct Uq(g0)-components of Br,` are not isomorphic as
Uq(g0)-crystals.

Corollary 5.8. Let b1, b2 ∈ Br,` be two distinct Uq(g0)-highest weight elements.
Then we have

ϕ(b1) − ϕ(b2) /∈ ZΛ0.

Proof. For j = 1, 2, let Bj ⊆ Br,` be the Uq(g0)-component containing bj . Then
as a Uq(g0)-crystal, Bj is isomorphic to the crystal basis of the integrable highest
weight Uq(g0)-module with highest weight

∑
i∈I0

ϕi(bj)$i. Now, the assertion
is obvious from the above proposition.

5.2 Perfect KR crystals

For a U ′
q(g)-crystal B such that wt(B) ⊆ P 0

cl, we define the level of B by

lev(B) = min
b∈B

〈ϕ(b),K〉 = min
b∈B

〈ε(b),K〉,

and the subset Bmin by

Bmin = {b ∈ B | 〈ϕ(b), K〉 = lev(B)}
= {b ∈ B | 〈ε(b),K〉 = lev(B)}.

Definition 5.9 ([11]). For a positive integer `, a U ′
q(g)-crystal B is called a

perfect crystal of level ` if B satisfies the following conditions:
(i) B is isomorphic to the crystal basis of a finite-dimensional U ′

q(g)-module.
(ii) B ⊗ B is connected.

12



(iii) There exists λ ∈ P 0
cl such that wt(B) ⊆ λ−

∑
i∈I0

Z≥0αi and there exists
a unique element in B with weight λ.

(iv) The level of B is `.
(v) Both the maps ε and ϕ induce bijections between the set Bmin and (P+

cl )
`.

The following lemma is immediate:

Lemma 5.10. Let B1, B2 be perfect crystals.

(i) lev(B1 ⊗ B2) = max{lev(B1), lev(B2)}.
(ii) If lev(B1) ≥ lev(B2), then b1 ⊗ b2 ∈ B1 ⊗B2 belongs to (B1 ⊗B2)min if and
only if b1 ∈ (B1)min and ϕ(b1)−ε(b2) ∈ P+

cl . Moreover if b1⊗b2 ∈ (B1⊗B2)min,
then

ε(b1 ⊗ b2) = ε(b1), ϕ(b1 ⊗ b2) = ϕ(b1) + wt(b2).

(iii) If lev(B1) ≤ lev(B2), then b1 ⊗ b2 ∈ B1 ⊗B2 belongs to (B1 ⊗B2)min if and
only if b2 ∈ (B2)min and ε(b2)−ϕ(b1) ∈ P+

cl . Moreover if b1⊗b2 ∈ (B1⊗B2)min,
then

ε(b1 ⊗ b2) = ε(b2) − wt(b1), ϕ(b1 ⊗ b2) = ϕ(b2).

The significance of the perfectness is due to the following theorem:

Theorem 5.11 ([11]). Let B be a perfect crystal of level `, Λ ∈ P+ a dominant
integral weight of level `, and b the unique element of B satisfying ε(b) = cl(Λ).
Then for all Λ′ ∈ P+ such that ϕ(b) = cl(Λ′), we have

B(Λ) ⊗ B
∼→ B(Λ′)

as U ′
q(g)-crystals, and this isomorphism maps uΛ ⊗ b to uΛ′ .

If B is a perfect crystal of level `, then ε ◦ ϕ−1 induces a bijection (P+
cl )

` →
(P+

cl )
`, which is called the associated automorphism of B.

For i ∈ I, we denote by τ i ∈ Σ the unique element satisfying tci$i(τ
i)−1 ∈

W . Note that this definition is the same as that of Subsection 2.2 for i ∈ Is.
For i ∈ I \ Is, τ i are as follows: for B

(1)
n , D

(1)
n , A

(2)
2n−1, τ i = id if i is even, and

τ i = τ1 if i is odd. For C
(1)
n , A

(2)
2n , D

(2)
n+1, τ i = id for all i ∈ I \ Is.

Theorem 5.12 ([3]).
(i) The level of a KR crystal Br,` is d`/cre(= min{m ∈ Z | m ≥ `/cr}), where
cr is defined in Subsection 2.2.
(ii) Br,` is perfect if and only if `/cr ∈ Z.
(iii) The associated automorphism of Br,cr` coincides with the action of (τ r)−1

on (P+
cl )

`.

Proof. The assertions (i) and (ii) were proved in [3]. The associated automor-
phism of each Br,cr` is explicitly described in [3], and we can check the assertion
(iii) directly from them. We remark that the equation in [3, Subsection 4.3] for
the associated automorphism of Bn,` for D

(1)
n is misprint. It should be modified

as follows:

τ
( n∑

i=0

`iΛi

)
= `nΛ0 + `n−1Λ1 +

n−2∑
i=2

`iΛn−i +

{
`0Λn−1 + `1Λn n even,

`1Λn−1 + `0Λn n odd.

13



Let B = Br,` be a (not necessarily perfect) KR crystal. B is known to have
a unique element belonging to Bmin, which we denote by m(B), such that

ε
(
m(B)

)
= lev(B)Λ0.

(If B is perfect, this fact follows from the definition. For non-perfect ones, see
[21, Lemma 3.11]). Similarly, B has a unique element m′(B) ∈ Bmin such that

ϕ
(
m′(B)

)
= lev(B)Λ0.

If B is perfect, we have from Theorem 5.12 (iii) that

ϕ
(
m(B)

)
= lev(B)Λτr(0).

The following theorem connects a perfect KR crystal with a Demazure crys-
tal:

Theorem 5.13 ([28, Theorem 6.1]). Let B = Br,cr` be a perfect KR crystal.
Then the isomorphism

B(`Λ0) ⊗ B
∼→ B(`Λτr(0))

given in Theorem 5.11 maps the subset u`Λ0 ⊗ B onto the Demazure crystal
Btcrw0($r)(`Λ0).

Later we need the following lemma:

Lemma 5.14. Let B1, B2 be perfect KR crystals, and assume that lev(B1) ≤
lev(B2). If b1⊗b2 ∈ (B1⊗B2)min, then for every b′2 ∈ B2 there exists a sequence
i1, . . . , ik of elements of I such that

eik
· · · ei1(b1 ⊗ b′2) = b1 ⊗ (eik

· · · ei1b
′
2)

= b1 ⊗ b2. (5.2)

Proof. By Lemma 5.10 (iii), b2 ∈ (B2)min and ε(b2) − ϕ(b1) ∈ P+
cl . Set Λ =

aff
(
ε(b2)

)
and Λ′ = aff

(
ϕ(b2)

)
. Then by Theorem 5.11, there exists an isomor-

phism
B(Λ) ⊗ B2

∼→ B(Λ′)

which maps uΛ ⊗ b2 to uΛ′ . Therefore, there exists a sequence i1, . . . , ik of
elements of I such that

eik
· · · ei1(uΛ ⊗ b′2) = uΛ ⊗ (eik

· · · ei1b
′
2)

= uΛ ⊗ b2.

The above equation implies that εiq
(eiq−1 · · · ei1b

′
2) > ϕiq

(uΛ) = εiq
(b2) for each

1 ≤ q ≤ k. Then it follows for each 1 ≤ q ≤ k that

εiq (eiq−1 · · · ei1b
′
2) > εiq (b2) ≥ ϕiq (b1),

and hence (5.2) holds.
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5.3 Isomorphism as full subgraphs of U ′
q(g)-crystals

We need the following elementary lemma:

Lemma 5.15. Let B1, B2 be crystals, and bj ∈ Bj (j = 1, 2) arbitrary elements.
If fib1 6= 0 for some i ∈ I, then there exist some b′2 ∈ B2 and m ∈ Z>0 such
that

fi(b1) ⊗ b2 = fm
i (b1 ⊗ b′2).

Proof. When ϕi(b1) > εi(b2), m = 1 and b′2 = b2 satisfy the assertion. When
ϕi(b1) ≤ εi(b2), m = εi(b2) − ϕi(b1) + 2 and b′2 = em−1

i b2 satisfy it.

Proposition 5.16. Let Bj = Brj ,crj
`j for 1 ≤ j ≤ p be perfect KR crystals,

and assume that `1 ≤ `2 ≤ · · · ≤ `p. We put µj = crj w0($rj ) for 1 ≤ j ≤ p,
and B = Bp ⊗ · · · ⊗ B2 ⊗ B1. Then there exists an isomorphism

ΨB : u`pΛ0 ⊗B
∼→ Ftµp

(
u(`p−`p−1)Λ0 ⊗· · ·⊗Ftµ2

(
u(`2−`1)Λ0 ⊗Ftµ1

(u`1Λ0)
)
· · ·

)
of full subgraphs of U ′

q(g)-crystals.

Proof. We show the assertion by the induction on p. If p = 1, then the assertion
follows from Theorem 5.13. Assume p > 1. We put τ = τ rp and w = tµpτ−1 ∈
W . Since u`pΛ0 ⊗ Bp

∼→ Fw(u`pΛτ(0)), we have

u`pΛ0 ⊗ Bp ⊗ · · · ⊗ B1
∼→ Fw(u`pΛτ(0)) ⊗ Bp−1 ⊗ · · · ⊗ B1,

and we have from Lemma 5.15 that

Fw(u`pΛτ(0)) ⊗ Bp−1 ⊗ · · · ⊗ B1 = Fw(u`pΛτ(0) ⊗ Bp−1 ⊗ · · · ⊗ B1).

Since we have from Proposition 5.5 that

u`pΛτ(0) ⊗ Bp−1 ⊗ · · ·⊗B1
∼= τ̃

(
u`pΛ0 ⊗ Bp−1 ⊗ · · · ⊗ B1

)
∼= τ̃

(
u(`p−`p−1)Λ0 ⊗

(
u`p−1Λ0 ⊗ Bp−1 ⊗ · · · ⊗ B1

))
,

the induction hypothesis implies the assertion.

Remark 5.17. (i) Put Bp−1 = Bp−1⊗· · ·⊗B2⊗B1. We see from the construc-
tion of the isomorphism ΨB that the following diagram of set maps commutes
(where we set τ = τ rp):

u`p−1Λ0 ⊗ Bp−1 ⊗ · · · ⊗ B1
ΨBp−1

∼= //

ϕ∼=
��

Ftµp−1
(u(`p−1−`p−2)Λ0 ⊗ · · · )

∼= ψ

��
u`pΛ0 ⊗ m(Bp) ⊗ Bp−1 ⊗ · · · ⊗ B1� _

��

τ̃
(
u(`p−`p−1)Λ0 ⊗Ftµp−1

(· · · )
)

� _

��
u`pΛ0 ⊗ Bp ⊗ Bp−1 ⊗ · · · ⊗ B1

ΨB

∼= // Ftµp

(
u(`p−`p−1)Λ0 ⊗Ftµp−1

(· · · )
)
,

where the isomorphisms ϕ and ψ are defined by

ϕ(u`p−1Λ0 ⊗ b) = u`pΛ0 ⊗ m(Bp) ⊗ τ(b) for b ∈ Bp−1,
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and

ψ(b) = τ̃
(
u(`p−`p−1)Λ0 ⊗ b

)
for b ∈ Ftµp−1

(u(`p−1−`p−2)Λ0 ⊗ · · · )

respectively.
(ii) By Proposition 4.4 and Theorem 4.7, the right hand side of the isomorphism
ΨB is isomorphic as a full subgraph to a disjoint union of Demazure crystals.
(iii) The right hand side of ΨB also appeared in [20] as the crystal basis of a
generalized Demazure module.

Note that the right hand side of ΨB is a subset of a tensor product of
the crystal bases of Uq(g)-modules. Hence each element b of this set has a
natural Z-grading defined by 〈wt(b), d〉. The goal of this article is to show,
under the isomorphism ΨB , the minus of this natural grading coincides up to a
shift with the grading on the left hand side given by the energy function, which
is introduced in the next section.

6 Energy function

Similarly as [11], the following proposition is proved from the existence of the
universal R-matrix and Theorem 5.1:

Proposition 6.1. Let B1, B2 ∈ C.
(i) There exists a unique isomorphism σ = σB1,B2 : B1 ⊗ B2

∼→ B2 ⊗ B1 of
U ′

q(g)-crystals called the combinatorial R-matrix.
(ii) There exists a unique map H = HB1,B2 : B1 ⊗ B2 → Z called the local
energy function such that H

(
u(B1 ⊗ B2)

)
= 0, H is constant on each Uq(g0)-

component, and for b1 ⊗ b2 ∈ B1 ⊗ B2 mapped to b̃2 ⊗ b̃1 ∈ B2 ⊗ B1 under σ,
we have

H
(
e0(b1 ⊗ b2)

)
=


H(b1 ⊗ b2) + 1 if e0(b1 ⊗ b2) = e0b1 ⊗ b2, e0(̃b2 ⊗ b̃1) = e0b̃2 ⊗ b̃1,

H(b1 ⊗ b2) − 1 if e0(b1 ⊗ b2) = b1 ⊗ e0b2, e0(̃b2 ⊗ b̃1) = b̃2 ⊗ e0b̃1,

H(b1 ⊗ b2) otherwise.

For B1, B2 ∈ C, we have σ
(
u(B1) ⊗ u(B2)

)
= u(B2) ⊗ u(B1) by the weight

consideration. Recall that for every τ ∈ Σ, there exists some w ∈ W0 such that
τ
(
u(B1) ⊗ u(B2)

)
= Sw

(
u(B1) ⊗ u(B2)

)
by Lemma 5.6. Hence we have

σ ◦ τ
(
u(B1) ⊗ u(B2)

)
= σ ◦ Sw

(
u(B1) ⊗ u(B2)

)
= Sw

(
u(B2) ⊗ u(B1)

)
= τ

(
u(B2) ⊗ u(B1)

)
,

which together with (5.1) implies that σ commutes with the action of τ .
The following lemma is a consequence of the definition of the local energy

function:

Lemma 6.2. Let B1, B2 ∈ C, bj ∈ Bj for j = 1, 2 such that σ(b1⊗b2) = b̃2⊗ b̃1,
and j1, . . . , j` an arbitrary sequence of elements of I satisfying ej`

· · · ej1(b1 ⊗
b2) 6= 0. If

ej`
· · · ej1(b1 ⊗ b2) = ei′`−k

· · · ei′1
b1 ⊗ eik

· · · ei1b2 and

ej`
· · · ej1 (̃b2 ⊗ b̃1) = eĩm

· · · eĩ1
b̃2 ⊗ eĩ′`−m

· · · eĩ′1
b̃1
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holds where

{j1, . . . , j`} = {i1, . . . , ik} t {i′1, . . . , i′`−k} = {̃i1, . . . , ĩm} t {̃i′1, . . . , ĩ′`−m}

as multisets, then we have

H
(
ej`

· · · ej1(b1 ⊗ b2)
)
− H(b1 ⊗ b2)

= #{1 ≤ q ≤ m | ĩq = 0} − #{1 ≤ q ≤ k | iq = 0}.

For B ∈ C, the energy function D = DB : B → Z is defined as follows:
(i) If B is a single KR crystal, then define

DB(b) = HB,B

(
m′(B) ⊗ b

)
− HB,B

(
m′(B) ⊗ u(B)

)
.

(ii) If B1, B2 ∈ C and B = B1 ⊗ B2, then define

DB(b1 ⊗ b2) = DB1(b1) + DB2 (̃b2) + HB1,B2(b1 ⊗ b2),

where σB1,B2(b1 ⊗ b2) = b̃2 ⊗ b̃1.

Note that DB is constant on each Uq(g0)-component of B by definition.

Proposition 6.3 ([27]). (i) For B1, B2, B3 ∈ C, we have

D(B1⊗B2)⊗B3 = DB1⊗(B2⊗B3).

Hence for every B ∈ C, the function DB is well-defined.
(ii) Let B = B1 ⊗ · · · ⊗Bp ∈ C. For b1 ⊗ · · · ⊗ bp ∈ B and 1 ≤ i ≤ j ≤ p, define
b
(i)
j ∈ Bj by

Bi ⊗ · · · ⊗ Bj−1 ⊗ Bj
∼→ Bj ⊗ Bi ⊗ · · · ⊗ Bj−1

bi ⊗ · · · ⊗ bj−1 ⊗ bj 7→ b
(i)
j ⊗ b̃i ⊗ · · · ⊗ b̃j−1.

Then we have

DB(b1 ⊗ · · · ⊗ bp) =
∑

1≤j≤p

DBj (b
(1)
j ) +

∑
1≤j<k≤p

HBj ,Bk
(bj ⊗ b

(j+1)
k ).

Lemma 6.4. Let B ∈ C and ` = lev(B). If b ∈ B satisfies ε0(b) > `, then we
have

D(e0b) = D(b) − 1.

Proof. We show the assertion by the induction on the number p of tensor factors
of B. The case p = 1 follows since

D(e0b) = H
(
m′(B) ⊗ e0b

)
= H

(
m′(B) ⊗ b

)
− 1 = D(b) − 1.

Assume p > 1, and write B = B1 ⊗ B2 and b = b1 ⊗ b2. Note that we have
lev(B1) ≤ ` and lev(B2) ≤ `. Let b̃2 ⊗ b̃1 = σ(b1 ⊗ b2). Then we can show the
assertion by computing case by case. For example, assume e0(b1⊗b2) = e0b1⊗b2

and e0(̃b2 ⊗ b̃1) = e0b̃2 ⊗ b̃1. Then we have ε0(b1) = ε0(b1 ⊗ b2) > ` and
ε0(̃b2) = ε0(̃b2 ⊗ b̃1) > `, which imply from the induction hypothesis that

D(e0b) = D(e0b1) + D(e0b̃2) + H
(
e0(b1 ⊗ b2)

)
=

(
D(b1) − 1

)
+

(
D(̃b2) − 1

)
+

(
H(b1 ⊗ b2) + 1

)
= D(b) − 1.

The other cases are proved similarly.
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7 Main theorem

7.1 Statement and corollaries

Now, we state the main theorem of this article. This theorem is a generalization
of [28, Theorem 7.4], in which `1 = `2 = · · · = `p is assumed.

Theorem 7.1. Let Bj = Brj ,crj
`j for 1 ≤ j ≤ p be perfect KR crystals, and

assume that `1 ≤ `2 ≤ · · · ≤ `p. We put µj = crj w0($rj ) for 1 ≤ j ≤ p, and
B = Bp ⊗ · · · ⊗ B2 ⊗ B1. Then there exists an isomorphism

ΨB : u`pΛ0 ⊗B
∼→ Ftµp

(
u(`p−`p−1)Λ0 ⊗· · ·⊗Ftµ2

(
u(`2−`1)Λ0 ⊗Ftµ1

(u`1Λ0)
)
· · ·

)
of full subgraphs of U ′

q(g)-crystals satisfying

D(b) = −〈wtΨB(u`pΛ0 ⊗ b), d〉 + C (7.1)

for every b ∈ B, where C ∈ N−1Z is some global constant.

Recall that, as stated in Remark 5.17 (ii), the right hand side of ΨB is
isomorphic as a full subgraph to a disjoint union of Demazure crystals. Hence
we can see inductively using Corollary 4.6 that the following equation holds:

Corollary 7.2. Under the notation and the assumptions of Theorem 7.1, we
have

e`pΛ0+Cδ
∑
b∈B

eaff◦wt(b)−δD(b)

= Dtµp

(
e(`p−`p−1)Λ0 · · ·Dtµ2

(
e(`2−`1)Λ0 · Dtµ1

(e`1Λ0)
)
· · ·

)
.

Let P+
0 ⊆ P 0

cl denote the set of dominant integral weights of g0. (Recall that
we identify the weight lattice of g0 with P 0

cl.) As [6, 5], the one-dimensional
sum X(B,µ, q) ∈ Z[q, q−1] for µ ∈ P+

0 is defined by

X(B,µ, q) =
∑
b∈B

eib=0 (i∈I0)
wt(b)=µ

qD(b).

Let chVg0(µ) denote the character of the irreducible g0-module with highest
weight µ. Since ∑

b∈B

qD(b)ewt(b) =
∑

µ∈P+
0

X(B,µ, q)ch Vg0(µ)

holds, we have the following corollary:

Corollary 7.3. Under the notation and the assumptions of Theorem 7.1, we
have

q−C
∑

µ∈P+
0

X(B,µ, q)ch Vg0(µ)

= e−`pΛ0Dtµp

(
e(`p−`p−1)Λ0 · · ·Dtµ2

(
e(`2−`1)Λ0 · Dtµ1

(e`1Λ0)
)
· · ·

)
,

where we set q = e−δ and consider chVg0(µ) as an element of C[P ] via the map
aff : Pcl → P .
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Remark 7.4. Let η be a permutation of the set {1, . . . , p}, and put Bη =
Bη(1) ⊗ · · · ⊗ Bη(p). Then we have from [27, Lemma 2.15] that

DBη

(
ση(b)

)
= DB(b) for every b ∈ B,

where ση : B
∼→ Bη is the unique isomorphism. In particular, we have

X(B,µ, q) = X(Bη, µ, q).

Hence for every η, the above theorem and corollaries with B replaced by Bη

(and the right hand sides unchanged) also hold.

7.2 Proof of the main theorem

In order to prove the main theorem, it remains to show that the isomorphism
ΨB constructed in Proposition 5.16 satisfies (7.1). To show this, we prepare
several lemmas.

Lemma 7.5. Let B1, B2 ∈ C and τ ∈ Σ. For b1 ⊗ b2 ∈ B1 ⊗ B2 mapped to
b̃2 ⊗ b̃1 ∈ B2 ⊗ B1 under σ, we have

H
(
b1 ⊗ b2

)
− H

(
τ(b1 ⊗ b2)

)
= 〈wt(b2) − wt(b̃2), $∨

τ−1(0)〉. (7.2)

Proof. Although the proof is carried out in a similar way as that of [21, Lemma
8.2], we give it for the reader’s convenience.

The case τ = id is trivial. We assume otherwise, and put t = τ−1(0) ∈
Is \ {0}. If b1 = u(B1) and b2 = u(B2), we have from Lemma 5.6 that

H
(
τ(u(B1) ⊗ u(B2))

)
= H

(
u(B1) ⊗ u(B2)

)
= 0,

and hence the left hand side of (7.2) is 0. On the other hand, the right hand side
is also 0 since we have σ

(
u(B1) ⊗ u(B2)

)
= u(B2) ⊗ u(B1), and the assertion

is proved in this case. Therefore by Lemma 5.4, it suffices to show for each
i ∈ I that if (7.2) holds and ei(b1 ⊗ b2) 6= 0, then (7.2) with b1 ⊗ b2 replaced by
ei(b1 ⊗ b2) also holds. If i 6= 0, t, it is easy to see that the both sides of (7.2) do
not change when b1 ⊗ b2 is replaced by ei(b1 ⊗ b2). Assume that i = 0. Since
t 6= 0, we have(

H
(
e0(b1 ⊗ b2)

)
− H

(
τ ◦ e0(b1 ⊗ b2)

))
−

(
H

(
b1 ⊗ b2

)
− H

(
τ(b1 ⊗ b2)

))
=

(
H

(
e0(b1 ⊗ b2)

)
− H(b1 ⊗ b2)

)
−

(
H

(
et ◦ τ(b1 ⊗ b2)

)
− H

(
τ(b1 ⊗ b2)

))
=


1 if e0(b1 ⊗ b2) = e0b1 ⊗ b2, e0(̃b2 ⊗ b̃1) = e0b̃2 ⊗ b̃1,

−1 if e0(b1 ⊗ b2) = b1 ⊗ e0b2, e0(̃b2 ⊗ b̃1) = b̃2 ⊗ e0b̃1,

0 otherwise.
(7.3)

On the other hand, putting e0(b1 ⊗ b2) = b′1 ⊗ b′2 and e0(b̃2 ⊗ b̃1) = b̃′2 ⊗ b̃′1, we
easily check from (2.2) that

〈wt(b′2) − wt(b̃′2), $
∨
t 〉 − 〈wt(b2) − wt(b̃2), $∨

t 〉

is equal to (7.3), which implies the assertion for i = 0. The case i = t is
similar.
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For B ∈ C and ` ∈ Z>0, we define a subset hw≤`
I0

(B) ⊆ B by

hw≤`
I0

(B) = {b ∈ B | b is Uq(g0)-highest weight, ε0(b) ≤ `}.

Lemma 7.6. Let Bj = Brj ,crj
`j (j = 1, 2) be two perfect KR crystals, and

assume `1 ≥ `2. For every b2 ∈ hw≤`1
I0

(B2), we have

σB1,B2

(
m(B1) ⊗ τ r1(b2)

)
= b2 ⊗ b1

for some b1 ∈ B1.

Proof. Put τ = τ r1 . Since

ϕ
(
m(B1)

)
= `1Λτ(0) and ε

(
τ(b2)

)
= ε0(b2)Λτ(0),

we have from Lemma 5.10 (ii) that m(B1) ⊗ τ(b2) ∈ (B1 ⊗ B2)min, ε
(
m(B1) ⊗

τ(b2)
)

= `1Λ0, and

ϕ
(
m(B1) ⊗ τ(b2)

)
=

(
`1 − ε0(b2)

)
Λτ(0) + τ

(
ϕ(b2)

)
.

Put Λ =
(
`1 − ε0(b2)

)
Λτ(0) + τ

(
ϕ(b2)

)
, and b′2 ⊗ b′1 = σ

(
m(B1) ⊗ τ(b2)

)
. Since

b′2 ⊗ b′1 ∈ (B2 ⊗ B1)min, we have from Lemma 5.10 (iii) that b′1 ∈ (B1)min and
ϕ(b′1) = ϕ(b′2 ⊗ b′1) = Λ. Hence from Theorem 5.12 (iii), we have

ε(b′1) = τ−1(Λ) =
(
`1 − ε0(b2)

)
Λ0 + ϕ(b2). (7.4)

By Lemma 5.10 (iii), it follows that

ϕ(b′2) = wt(b′2) + ε(b′2) = ε(b′1) + ε(b′2) − ε(b′2 ⊗ b′1).

Then since b′2 is Uq(g0)-highest weight and ε(b′2⊗b′1) = ε
(
m(B1)⊗τ(b2)

)
= `1Λ0,

we have from (7.4) that
ϕ(b′2) ∈ ϕ(b2) + ZΛ0,

which implies b2 = b′2 by Corollary 5.8 as required.

Lemma 7.7. Let Bj = Brj ,crj
`j (j = 1, 2) be two perfect KR crystals, and

assume `1 ≥ `2. Then there exists some global constant C such that

H
(
m(B1) ⊗ τ(b2)

)
= −〈wt(b2), $∨

τ−1(0)〉 + C

for every b2 ∈ hw≤`1
I0

(B2), where we put τ = τ r1 .

Proof. Although the proof of this lemma is basically the same as that of [26,
Lemma 4.7], we include it for the reader’s convenience.

It suffices to show for b2, b
†
2 ∈ hw≤`1

I0
(B2) that

H
(
m(B1) ⊗ τ(b†2)

)
− H

(
m(B1) ⊗ τ(b2)

)
= −〈wt(b†2) − wt(b2), $∨

τ−1(0)〉.

By Lemma 7.6, we have

σ
(
m(B1) ⊗ τ(b2)

)
= b2 ⊗ b1 and σ

(
m(B1) ⊗ τ(b†2)

)
= b†2 ⊗ b†1
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for some b1, b
†
1 ∈ B1. By Lemma 5.4, there exists a sequence i1, . . . , ik of ele-

ments of I such that
eik

· · · ei1b2 = b†2.

We choose such a sequence so that k is minimal. Then there exists a sequence
j1, . . . , j` ∈ I such that

ej`
· · · ej1(b2 ⊗ b1) = eik

· · · ei1b2 ⊗ ei′`−k
· · · ei′1

b1

= b†2 ⊗ ei′`−k
· · · ei′1

b1.

Since b†2⊗b†1 ∈ (B2⊗B1)min, by Lemma 5.14 we may assume ei′`−k
· · · ei′1

b1 = b†1.
Then we have

ej`
· · · ej1

(
m(B1) ⊗ τ(b2)

)
= m(B1) ⊗ τ(b†2).

We define the two sequences ĩ1, . . . , ĩm and ĩ′1, . . . , ĩ
′
`−m of elements of I by

ej`
· · · ej1

(
m(B1) ⊗ τ(b2)

)
= eĩ′`−m

· · · eĩ′1
m(B1) ⊗ eĩm

· · · eĩ1
τ(b2)

= m(B1) ⊗ τ(b†2)

Since
eĩm

· · · eĩ1
τ(b2) = τ(eτ−1 (̃im) · · · eτ−1 (̃i1)

b2) = τ(b†2),

we have eτ−1 (̃im) · · · eτ−1 (̃i1)
b2 = b†2, which implies∑

1≤q≤m

ατ−1 (̃iq) −
∑

1≤q≤k

αiq ∈ Z≥0δ (7.5)

by the minimality of k.
By repeating the above procedure interchanging the roles of b2 and b†2, we

obtain sequences of elements of I satisfying the following:

ej∗
`∗
· · · ej∗

1
(b†2 ⊗ b†1) = ei∗

k∗ · · · ei∗1
b†2 ⊗ ei′∗

`∗−k∗ · · · ei′1
∗b†1

= b2 ⊗ b1,

ej∗
`∗
· · · ej∗

1

(
m(B1) ⊗ τ(b†2)

)
= eĩ′

∗
`∗−m∗

· · · eĩ′1
∗m(B1) ⊗ eĩ∗

m∗
· · · eĩ∗1

τ(b†2)

= m(B1) ⊗ τ(b2),∑
1≤q≤m∗

ατ−1 (̃i∗q) −
∑

1≤q≤k∗

αi∗q
∈ Z≥0δ. (7.6)

By Lemma 6.2, we have

0 =
(
H

(
m(B1) ⊗ τ(b†2)

)
− H

(
m(B1) ⊗ τ(b2)

))
+

(
H

(
m(B1) ⊗ τ(b2)

)
− H

(
m(B1) ⊗ τ(b†2)

))
=

(
#{1 ≤ q ≤ k | iq = 0} − #{1 ≤ q ≤ m | ĩq = 0}

)
+

(
#{1 ≤ q ≤ k∗ | i∗q = 0} − #{1 ≤ q ≤ m∗ | ĩ∗q = 0}

)
=

(
#{1 ≤ q ≤ k | iq = 0} + #{1 ≤ q ≤ k∗ | i∗q = 0}

)
−

(
#{1 ≤ q ≤ m | ĩq = 0} + #{1 ≤ q ≤ m∗ | ĩ∗q = 0}

)
.
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Since a0 = aτ−1(0) by (2.4), this equation together with (7.5) and (7.6) implies
that k = m, k∗ = m∗, and

{τ−1(̃i1), . . . , τ−1(̃im)} = {i1, . . . , ik}, {τ−1(̃i∗1), . . . , τ
−1(̃i∗m∗)} = {i∗1, . . . , i∗k∗}

as multisets. Hence we have

H
(
m(B1) ⊗ τ(b†2)

)
− H

(
m(B1) ⊗ τ(b2)

)
=#{1 ≤ q ≤ k | iq = 0} − #{1 ≤ q ≤ m | ĩq = 0}
=#{1 ≤ q ≤ k | iq = 0} − #{1 ≤ q ≤ k | iq = τ−1(0)}

= − 〈wt(b†2) − wt(b2), $∨
τ−1(0)〉,

and the assertion is proved.

The following lemma is crucial for the proof of our theorem:

Lemma 7.8. Let Bj = Brj ,crj
`j (0 ≤ j ≤ p) be perfect KR crystals, and put

B = B1 ⊗ B2 ⊗ · · · ⊗ Bp. We assume that `0 ≥ `j for every 1 ≤ j ≤ p. Then
there exists some global constant C such that

D
(
m(B0) ⊗ τ(b)

)
= D(b) − 〈wt(b), $∨

τ−1(0)〉 + C

for every b ∈ hw≤`0
I0

(B), where we put τ = τ r0 .

Proof. Let b = b1 ⊗ · · · ⊗ bp ∈ hw≤`0
I0

(B), and define b
(i)
j ∈ Bj for 1 ≤ i ≤ j ≤ p

as Proposition 6.3 (ii). Note that, since the combinatorial R-matrix and the
action of τ commute, the first tensor factor of the image of τ(bi⊗· · ·⊗bj) under
the isomorphism

Bi ⊗ · · · ⊗ Bj−1 ⊗ Bj
∼→ Bj ⊗ Bi ⊗ · · · ⊗ Bj−1

is τ(b(i)
j ). Since b ∈ hw≤`0

I0
(B) implies b

(1)
j ∈ hw≤`0

I0
(Bj) for each 1 ≤ j ≤ p, we

have for each 1 ≤ j ≤ p that

σB0,Bj

(
m(B0) ⊗ τ(b(1)

j )
)

= b
(1)
j ⊗ bj

for some bj ∈ B0 by Lemma 7.6. Hence by Proposition 6.3 (ii), we have

D
(
m(B0) ⊗ τ(b)

)
= D

(
m(B0)

)
+

∑
1≤j≤p

D(b(1)
j ) +

∑
1≤j≤p

H
(
m(B0) ⊗ τ(b(1)

j )
)

+
∑

1≤j<k≤p

H
(
τ(bj) ⊗ τ(b(j+1)

k )
)
. (7.7)

For each 1 ≤ j ≤ p we have by Lemma 7.7 that

H
(
m(B0) ⊗ τ(b(1)

j )
)

= −〈wt(b(1)
j ), $∨

τ−1(0)〉 + Cj

for some constant Cj independent of b
(1)
j , and for each 1 ≤ j < k ≤ p we have

by Lemma 7.5 that

H
(
τ(bj) ⊗ τ(b(j+1)

k )
)

= H
(
bj ⊗ b

(j+1)
k

)
− 〈wt(b(j+1)

k ) − wt(b(j)
k ), $∨

τ−1(0)〉.
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Hence, we have with some global constant C that

(7.7) =
∑

1≤j≤p

D(b(1)
j ) +

∑
1≤j<k≤p

H
(
bj ⊗ b

(j+1)
k

)
−

∑
1≤j≤p

〈wt(b(1)
j ), $∨

τ−1(0)〉

−
∑

1≤j<k≤p

〈wt(b(j+1)
k ) − wt(b(j)

k ), $∨
τ−1(0)〉 + C

= D(b) −
∑

1≤k≤p

〈wt(bk), $∨
τ−1(0)〉 + C

= D(b) − 〈wt(b), $∨
τ−1(0)〉 + C.

The assertion is proved.

Now, we give the proof of our main theorem:

Proof of Theorem 7.1. It remains to verify that ΨB in Proposition 5.16 satisfies
(7.1) for every b ∈ B. First, we show the following claim.

claim. If every element b ∈ hw≤`p

I0
(B) satisfies (7.1), then all the elements of

B satisfy (7.1).

Let b ∈ B be an arbitrary element. Since u`pΛ0 ⊗ B is isomorphic to a dis-
joint union of Demazure crystals (see Remark 5.17 (ii)), there exists a sequence
i1, . . . , ik of elements of I such that the element eik

· · · ei1(u`pΛ0 ⊗ b) 6= 0 is
Uq(g)-highest weight. We show the claim by the induction on k. If k = 0, then
u`pΛ0 ⊗ b itself is Uq(g)-highest weight, which is equivalent to b ∈ hw≤`p

I0
(B).

Hence there is nothing to prove. Assume k > 0, and set b′ = ei1(b). Then (7.1)
with b replaced by b′ holds by the induction hypothesis. Note that if i1 = 0,
then ε0(b) > `p since e0(u`pΛ0 ⊗ b) = u`pΛ0 ⊗ e0b. Hence we have from Lemma
6.4 that

D(b) = D(b′) + δ0i1 = −〈wtΨB(u`pΛ0 ⊗ b′), d〉 + δ0i1 + C

= −〈wt ei1ΨB(u`pΛ0 ⊗ b), d〉 + δ0i1 + C

= −〈wtΨB(u`pΛ0 ⊗ b), d〉 + C,

and the claim is proved.

In particular, since the set hw≤`1
I0

(B1) contains only a single element m(B1),
the assertion of the theorem for p = 1 follows from the claim. Assume p > 1,
and we show the assertion of the theorem by the induction on p. Put Bp−1 =
Bp−1 ⊗ · · · ⊗ B1 and τ = τ rp . Let b ∈ hw≤`p

I0
(B) be an arbitrary element, and

write b = bp ⊗ bp−1 ∈ Bp ⊗ Bp−1. Since lev(Bp) ≥ lev(Bp−1), b ∈ hw≤`p

I0
(B)

implies by Lemma 5.10 (ii) that

bp ∈ hw≤`p

I0
(Bp) and ε(bp−1) ∈ ϕ

(
bp

)
− P+

cl .

Since lev(Bp) = `p, these are equivalent to

bp = m(Bp) and ε(bp−1) ∈ `pΛτ(0) − P+
cl .

Hence if we put b′ = τ−1(bp−1), we have

b = m(Bp) ⊗ τ(b′) with b′ ∈ hw≤`p

I0
(Bp−1).
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Note that we have from Remark 5.17 (i) that

ΨB

(
u`pΛ0 ⊗ m(Bp) ⊗ τ(b′)

)
= τ̃

(
u(`p−`p−1)Λ0 ⊗ ΨBp−1(u`p−1Λ0 ⊗ b′)

)
.

Put t = τ−1(0). Since ΨBp−1 is a U ′
q(g)-crystal isomorphism, we have with some

global constant C that

wtΨB

(
u`pΛ0 ⊗ m(Bp) ⊗ τ(b′)

)
= τ

(
aff ◦ wt(b′) + `pΛ0 −

(
D(b′) − C ′)δ)

= aff ◦ wt
(
τ(b′)

)
+ `pΛτ(0) −

(
D(b′) − (wt(b′), $t) − C ′)δ

= aff ◦ wt
(
τ(b′)

)
+ `pΛτ(0) −

(
D(b′) − 〈wt(b′), $∨

t 〉 − C ′)δ
by the induction hypothesis, where the second equality follows since

τ = (τ t)−1 = w−1
t t−$t

by Lemma 2.1 (iii), and the third one follows from (2.3). On the other hand,
we have from Lemma 7.8 that

D
(
m(Bp) ⊗ τ(b′)

)
= D

(
b′

)
− 〈wt(b′), $∨

t 〉 + C ′′

with some global constant C ′′. Hence the equation (7.1) holds for every b ∈
hw≤`p

I0
(B), and the theorem is proved from the claim.
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