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Abstract. For a minimal affinization over a quantum loop algebra of type
BC, we provide a character formula in terms of Demazure operators and mul-
tiplicities in terms of crystal bases. We also provide a simple formula for the
limit of characters. These are achieved by verifying that its graded limit (a

variant of a classical limit) is isomorphic to some multiple generalization of
a Demazure module, and by determining the defining relations of the graded
limit.

1. Introduction

Let g be a complex simple Lie algebra of rank n, and Lg = g ⊗ C[t, t−1] the
associated loop algebra. The theory of finite-dimensional representations of the
quantum loop algebra Uq(Lg) has been intensively studied from various viewpoints
in recent years. For example, see the survey [CH10] and references therein.

In [Cha95], Chari introduced the notion of minimal affinizations. An affinization

V̂ of a simple Uq(g)-module V is by definition a simple Uq(Lg)-module whose
highest weight is equal to that of V . Two affinizations of V are said to be equivalent
if they are isomorphic as Uq(g)-modules. Then one can define a partial ordering on
the set of equivalence classes of affinizations of V , and minimal ones with respect
to this ordering are called minimal affinizations. An almost complete classification
of minimal affinizations was done by Chari and Pressley in [Cha95, CP95a, CP96a,
CP96b], and in particular it was proved that, if g is of type ABCFG, for every
simple Uq(g)-module its minimal affinization is unique.

Given a minimal affinization, one can consider its classical limit. By restricting
it to the current algebra g[t] = g⊗C[t] and taking a pull-back, a graded g[t]-module
is obtained. In this article we call this the graded limit. Graded limits are quite
important for the study of minimal affinizations since the Uq(g)-module structure
of a minimal affinization is completely determined by the U(g)-module structure of
its graded limit. This idea was applied in [Cha01, CM06b] to Kirillov-Reshetikhin
modules, which are minimal affinizations whose highest weights are multiples of a
fundamental weight.

The graded limits of general minimal affinizations were first studied by Moura
in [Mou10]. In the article, he defined some two g[t]-modules using the graded limits
of Kirillov-Reshetikhin modules, and conjectured in all types that the graded limit
of a minimal affinization is isomorphic to them. This conjecture was proved in type
A and partially in type BD in the article, and partially in type E6 in [MP11].

In the present paper we study in more detail the graded limits of minimal affiniza-
tions in type ABC. These are the classical types in which minimal affinizations are
unique. (Our main interest is in type BC since type A is well-known.)

To introduce our results, let us define some g[t]-modules. Denote by ĝ the non-

twisted affine Lie algebra associated with g, and by b̂ ⊆ ĝ the standard Borel

subalgebra. Let ξ1, . . . , ξp ∈ P̂ be a sequence of weights of ĝ, and assume that

each ξi belongs to the affine Weyl group orbit ŴΛi of a dominant integral weight
1
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Λi ∈ P̂+. We define a b̂-module D(ξ1, . . . , ξp) by

D(ξ1, . . . , ξp) = U(b̂)(vξ1 ⊗ · · · ⊗ vξp) ⊆ V̂ (Λ1)⊗ · · · ⊗ V̂ (Λp),

where V̂ (Λ) is the simple highest weight ĝ-module with highest weight Λ, and
vξ is an extremal weight vector with weight ξ. When p = 1, D(ξ1) is called a
Demazure module. It is easily seen that, if each ξi is dominant with respect to g,
then D(w◦ξ1, . . . , w◦ξp) is g[t]-stable, where w◦ is the longest element of the Weyl
group of g.

Let Vq(λ) be the simple Uq(g)-module with highest weight λ ∈ P+, and assume
that Lq(π) is a minimal affinization of Vq(λ) (here π denotes the ℓ-highest weight.
See Subsection 3.2). By L(π) we denote its graded limit. Our first main theorem
is the following (Theorem 4.5).

Theorem 1.1. As a g[t]-module, L(π) is isomorphic to D(w◦ξ1, . . . , w◦ξn) with

suitable g-dominant ξ1, . . . , ξn ∈ P̂ .

When g is of type AB and λ =
∑

i miϖi (ϖi are the fundamental weights of g),
we set ξi = miϖi + m′

iΛ0, where m′
i = ⌈mi/2⌉ if g is of type B and i = n, and

m′
i = mi otherwise. Here Λ0 is the fundamental weight of ĝ associated with the

additional index 0. In type C, we need to choose ξi’s in a little more complicated
way. For the detail see Subsection 4.2.

Let g = n+ ⊕ h⊕ n− be a triangular decomposition of g, and denote by αi and
α∨
i the simple roots and coroots respectively. Our second main theorem gives the

defining relations of L(π) (Theorem 4.6).

Theorem 1.2. The graded limit L(π) is isomorphic to the cyclic g[t]-module gen-
erated by a nonzero vector v with relations

n+[t]v = 0, (h⊗ ts)v = δs0⟨h, λ⟩v for h ∈ h, s ≥ 0, f
⟨α∨

i ,λ⟩+1
i v = 0 for 1 ≤ i ≤ n,

t2n−[t]v = 0, and (fα ⊗ t)v = 0 for α ∈ ∆1
+,

where ∆1
+ is a subset of the positive roots ∆+ defined by

∆1
+ =

{
α ∈ ∆+

∣∣∣ α =
∑

1≤i≤n

niαi with ni ≤ 1 for all i
}
.

These theorems are motivated by the Moura’s conjecture stated above. In fact
when g is of type B, the conjecture is proved from our theorems. More precisely,
in type B the modules appearing in the theorems are isomorphic to the ones de-
fined in [Mou10], and therefore the two theorems and his conjecture are equivalent.
(They are not in type C, and the module D(w◦ξ1, . . . , w◦ξn) is essentially needed
to formulate Theorem 1.1 in this type.) It should also be noted that Theorem 1.2,
together with a result of [Her07], gives a proof to [CG11, Conjecture 1.13] in type
B.

The module D(w◦ξ1, . . . , w◦ξn) can be constructed in another way as follows.

For a b̂-submodule D of a ĝ-module V and an index i, let FiD be the (b̂ ⊕ Cfi)-
submodule of V generated by D. For an element w ∈ Ŵ with reduced expression

w = si1 · · · sip , set FwD = Fi1 · · ·FipD. One can naturally extend Fw to w ∈ Ŵ⋊Σ
(see Section 2.2), where Σ is the group of Dynkin diagram automorphisms. For each

1 ≤ i ≤ n, let Λi be the dominant integral weight satisfying ξi ∈ ŴΛi. Then for

suitable w1, . . . , wn ∈ Ŵ ⋊ Σ (see Subsection 4.3), it follows that

D(w◦ξ1, . . . , w◦ξn) (1.1)

∼= Fw◦w1

(
D(Λ1)⊗ Fw2

(
D(Λ2)⊗ · · · ⊗ Fwn−1

(
D(Λn−1)⊗ FwnD(Λn)

)
· · ·
))

.
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The character of such a module is given by [LLM02] in terms of Demazure operators
Dw (see Subsection 2.2). Since the character of Lq(π) is equal to that of L(π), we
obtain the following character formula as a corollary of Theorem 1.1 (Corollary
4.10).

Corollary 1.3.

chLq(π) = Dw◦w1

(
eΛ

1

· Dw2

(
eΛ

2

· · · Dwn−1

(
eΛ

n−1

· Dwn

(
eΛ

n))
· · ·
))∣∣∣

eΛ0=eδ=1
,

where δ is the null root.

The right-hand side of (1.1) has a crystal analogue. Using this, we can express
the Uq(g)-module multiplicities of Lq(π) as the number of some elements in a crystal
basis (Corollary 4.11). We would like to emphasize that the crystal basis appearing
here is (essentially) of finite type (see Remark 4.12).

On the other hand, we deduce from Theorem 1.2 the following formula for the
limit of normalized characters (Corollary 4.13).

Corollary 1.4. Let J ⊆ {1, . . . , n}, and λ1, λ2, . . . be an infinite sequence of el-
ements of P+ such that limk→∞⟨λk, α

∨
i ⟩ = ∞ if i /∈ J and ⟨λk, α

∨
i ⟩ = 0 for all

k otherwise. Assume that Lq(πk) is a minimal affinization of Vq(λk) for each k.
Then limk→∞ e−λkchLq(πk) exists, and

lim
k→∞

e−λkchLq(πk) =
∏

α∈∆+\∆J
+

1

1− e−α
·

∏
α∈∆+\∆1,J

+

1

1− e−α
,

where ∆J
+ = ∆+ ∩

(∑
i∈J Zαi

)
and ∆1,J

+ = {α ∈ ∆+ | α =
∑

i niαi with ni ≤
1 if i /∈ J}.

This corollary, together with [MY12, Corollary 5.6], gives a proof to [loc. cit.,
Conjecture 6.3].

The theorems are established by showing one by one the existence of three sur-
jective homomorphisms

D(w◦ξ1, . . . , w◦ξn) ↠ M(λ), M(λ) ↠ L(π), L(π) ↠ D(w◦ξ1, . . . , w◦ξn),

where M(λ) denotes the g[t]-module defined in Theorem 1.2. The key idea to verify
the first one is to determine the defining relations of D(w◦ξ1, . . . , w◦ξn) inductively
using the isomorphism (1.1). A main tool to prove the latter two is the theory
of q-characters introduced by Frenkel and Reshetikhin [FR99]. A q-character is
a generalization of a usual character which records the dimensions of generalized
eigenspaces (i.e., ℓ-weight spaces) of a Uq(Lg)-module with respect to the commu-
tative subalgebra Uq(Lh).

In this article we concentrate only on the type ABC. However, (at least a part
of) these results would hold in the other types. These will be studied in future
publications.

It should be noted that a module similar to the right-hand side of (1.1) also
appears in another study of graded limits. In [Nao12], it was proved that the fusion
product of graded limits of Kirillov-Reshetikhin modules is isomorphic to such a
module. This fact was essentially used to prove the X = M conjecture in type AD.

The plan of this article is as follows. In Section 2, after fixing some notation we
define modules D(ξ1, . . . , ξp) and study their properties. In Section 3, we review the
theory of finite-dimensional representations of a quantum loop algebra. In Section
4, we state our main theorems and corollaries. Finally in Section 5, we establish our
main theorems by showing the existence of three surjective homomorphisms. For
this we need some results on q-characters, which are also recalled in this section.
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Index of notation

We provide for the reader’s convenience a brief index of the notation which is
used repeatedly in this paper:

2.1: C = (cij)1≤i,j≤n, I, d1, . . . , dn, g, h, b, ∆, ∆+, αi, ϖi, P , P+, Q, Q+, W ,

w◦, eα, fα, α
∨ (α ∈ ∆), n±, gJ , ĝ, K, d, ĥ, b̂, ∆̂, ∆̂+, ∆̂

re, ∆̂re
+ , δ, Î, α0, e0,

f0, α
∨ (α ∈ ∆̂re), Λ0, P̂ , P̂+, Q̂, Q̂+, λ ≤ ν, Ŵ , Σ, W̃ , La, a[t], tsg[t], V (λ),

V (λ, a), chhV .

2.2: V̂ (Λ), vξ, D(ξ1, . . . , ξp), p̂i, Fi, Fw, Dw, v
τ .

3.1: qi, Uq(Lg), x
±
i,r, k

±
i , hi,m, Uq(Ln±), Uq(Lh), Uq(g), Uq(LgJ), Uq(LhJ ).

3.2: Vq(λ), P
+
q , ϖi,a, Pq, wt, Vρ, Lq(π), vπ, π

∗, ∗π.

3.3: π
(i)
m,a, Pq,J , ρJ .

3.4: A,
(
x±
i,r

)(k)
, UA(Lg), P+

A , LA(π), Lq(π).

4.1: L(π), vπ.
4.2: ξ1, . . . , ξn, i

♭, pi, ∆
1
+.

4.3: w1, . . . , wn, w[r,t], Λ
1, . . . ,Λn.

5.1: M(λ), αp,q, vM , D, vD.
5.2: wtℓ(V ), chqV , αi,a, ν ≤ ρ.

2. Lie algebras

2.1. Notation and basics. Let C = (cij)1≤i,j≤n be a Cartan matrix of finite type,
and set I = {1, . . . , n}. Denote by D = diag(d1, . . . , dn) the diagonal matrix such
that DC is symmetric and the numbers d1, . . . , dn are coprime positive integers.

Let g be the complex simple Lie algebra associated with C. Fix a Cartan sub-
algebra h and a Borel subalgebra b containing h. Let ∆ be the root system, and
∆+ the set of positive roots. Denote by αi (i ∈ I) the simple roots and by ϖi

(i ∈ I) the fundamental weights, which are labeled as in [Kac90, Section 4.8]. For
notational convenience, we set ϖ0 = 0. Let P be the weight lattice, P+ the set of
dominant integral weights, Q the root lattice and Q+ =

∑
i∈I Z≥0αi. Let W be

the Weyl group and w◦ the longest element.
For each α ∈ ∆, denote by gα the corresponding root space, and fix nonzero

elements eα ∈ gα, fα ∈ g−α and α∨ ∈ h such that

[eα, fα] = α∨, [α∨, eα] = 2eα, [α∨, fα] = −2fα.

We also use the notation ei = eαi , fi = fαi for i ∈ I. Set n± =
⊕

α∈∆+
g±α.

For a subset J ⊆ I, denote by gJ the semisimple Lie subalgebra of g generated by
{ei, fi | i ∈ J}.

Let θ ∈ ∆+ be the highest root, and denote by ( , ) the unique non-degenerate
invariant symmetric bilinear form on g normalized so that (θ∨, θ∨) = 2. The
restriction of this bilinear form on h induces a linear isomorphism ν : h → h∗. By
( , ) we also denote the bilinear form on h∗ induced by ν−1.

Let ĝ be the non-twisted affine Lie algebra associated with g:

ĝ = g⊗ C[t, t−1]⊕ CK ⊕ Cd,
where K denotes the canonical central element and d is the degree operator. The
Lie bracket of ĝ is given by

[x⊗ tm+a1K + b1d, y ⊗ tn + a2K + b2d]

= [x, y]⊗ tm+n + nb1y ⊗ tn −mb2x⊗ tm +mδm,−n(x, y)K.
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Naturally g is regarded as a Lie subalgebra of ĝ. A Cartan subalgebra ĥ and a

Borel subalgebra b̂ are defined as follows:

ĥ = h⊕ CK ⊕ Cd, b̂ = ĥ⊕ n+ ⊕ g⊗ tC[t].

Set n̂+ = n+ ⊕ g⊗ tC[t].
We often consider h∗ as a subspace of ĥ∗ by setting ⟨K,λ⟩ = ⟨d, λ⟩ = 0 for

λ ∈ h∗. Let ∆̂ be the root system of ĝ, ∆̂+ the set of positive roots, ∆̂re the set of

real roots, and ∆̂re
+ = ∆̂re ∩ ∆̂+. Denote by δ the indivisible imaginary root in ∆̂+.

Set Î = I ⊔ {0}, α0 = δ − θ, e0 = fθ ⊗ t and f0 = eθ ⊗ t−1. For α = β + sδ ∈ ∆̂re

with β ∈ ∆ and s ∈ Z, define α∨ ∈ ĥ by

α∨ = β∨ +
2s

(α, α)
K.

Denote by Λ0 ∈ ĥ∗ the unique element satisfying ⟨K,Λ0⟩ = 1 and ⟨h,Λ0⟩ =

⟨d,Λ0⟩ = 0, and define P̂ , P̂+ ⊆ ĥ∗ by

P̂ = P ⊕ ZΛ0 ⊕ Cδ and P̂+ =
{
λ ∈ P̂ | ⟨α∨

i , λ⟩ ≥ 0 for all i ∈ Î
}
.

Let Q̂ =
∑

i∈Î Zαi and Q̂+ =
∑

i∈Î Z≥0αi. For λ, µ ∈ P̂ , we write λ ≤ µ if

µ−λ ∈ Q̂+. Let Ŵ be the Weyl group of ĝ, and regard W naturally as a subgroup

of Ŵ . Let ℓ : Ŵ → Z≥0 be the length function. Denote by Σ the group of Dynkin

diagram automorphisms of ĝ. A linear action of Σ on ĥ∗ is defined by letting τ ∈ Σ
act as follows:

τ(αi) = ατ(i) for i ∈ Î , τ(Λ0) = ϖτ(0) + Λ0 −
1

2

(
ϖτ(0), ϖτ(0)

)
δ.

Let W̃ be the subgroup of GL(ĥ∗) generated by Ŵ and Σ. Since τsi = sτ(i)τ holds

for τ ∈ Σ and i ∈ Î, we have W̃ = Ŵ ⋊ Σ. We also define an action of Σ on ĝ by
letting τ ∈ Σ act as a Lie algebra automorphism given by

τ(ei) = eτ(i), τ(α∨
i ) = α∨

τ(i), τ(fi) = fτ(i) for i ∈ Î and τ(d) = d+ ν−1
(
ϖτ(0)

)
.

The length function ℓ is extended on W̃ by setting ℓ(wτ) = ℓ(w) for w ∈ Ŵ , τ ∈ Σ.
Given a Lie algebra a, its loop algebra La is defined by the tensor product

a ⊗ C[t, t−1] equipped with the Lie algebra structure given by [x ⊗ f, y ⊗ g] =
[x, y]⊗ fg. Let a[t] and tsa[t] for s ∈ Z>0 denote the Lie subalgebras a⊗ C[t] and
a⊗ tsC[t] respectively. The Lie algebra a[t] is called the current algebra associated
with a.

Denote by V (λ) the simple g-module with highest weight λ ∈ P+. For a ∈ C×,
let eva : Lg → g denote the evaluation map defined by eva(x⊗ f) = f(a)x. Denote
by V (λ, a) the simple Lg-module defined by the pull-back of V (λ) with respect to
eva, which is called an evaluation module. An evaluation module for g[t] is similarly
defined, and also denoted by V (λ, a) (λ ∈ P+, a ∈ C).

For a finite-dimensional semisimple h-module V , define the h-character chhV by

chhV =
∑
λ∈h∗

eλ dimVλ ∈ Z[h∗],

where Vλ = {v ∈ V | hv = ⟨h, λ⟩v for h ∈ h}. For a finite-dimensional semisimple

ĥ-module V̂ , the ĥ-character chĥV̂ ∈ Z[ĥ∗] is defined similarly. We will omit the

subscript h or ĥ when they are obvious from the context.
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2.2. Demazure modules and generalizations. For each ξ ∈ Ŵ (P̂+), we define

a b̂-module D(ξ) as follows: let Λ be the unique element of P̂+ such that ξ ∈ ŴΛ,

and denote by V̂ (Λ) the simple highest weight ĝ-module with highest weight Λ. Let

vξ ∈ V̂ (Λ) be an extremal weight vector with weight ξ, and set D(ξ) = U(b̂)vξ ⊆
V̂ (Λ).

Definition 2.1. The b̂-module D(ξ) is called a Demazure module.

Note that, for i ∈ Î, D(ξ) is fi-stable if and only if ⟨α∨
i , ξ⟩ ≤ 0. In this article

we consider the following generalization of a Demazure module. Let ξ1, . . . , ξp be a

sequence of elements of Ŵ (P̂+). For each 1 ≤ j ≤ p, let Λj be the element of P̂+

satisfying ξj ∈ ŴΛj , and define a b̂-submodule D(ξ1, . . . , ξp) of V̂ (Λ1)⊗· · ·⊗V̂ (Λp)
by

D(ξ1, . . . , ξp) = U(b̂)(vξ1 ⊗ · · · ⊗ vξp).

If ⟨α∨
i , ξj⟩ ≤ 0 holds for all 1 ≤ j ≤ p, then D(ξ1, . . . , ξp) is fi-stable.

Though it seems difficult to give characters of D(ξ1, . . . , ξp) in general, when the
sequence ξ1, . . . , ξp has some special property, the character is given in terms of
Demazure operators. To explain this, let us recall a result in [LLM02].

Denote by p̂i for i ∈ Î the parabolic subalgebra b̂⊕Cfi ⊆ ĝ. For a ĝ-module V ,

a b̂-submodule D of V and i ∈ Î, let FiD = U(p̂i)D ⊆ V . For w ∈ Ŵ with reduced
expression w = si1 · · · sik , we set

FwD = Fi1 · · ·FikD.

Though the definition of Fw depends on the choice of a reduced expression, we
will use this by abuse of notation (most of the modules FwD in this article do not

depend on the choices). For i ∈ Î, define a linear operator Di on Z[P̂ ] by

Di(f) =
f − e−αi · si(f)

1− e−αi
,

where si acts on Z[P̂ ] by si(e
λ) = esi(λ). The operator Di is called the Demazure op-

erator associated with i. For w ∈ Ŵ and its reduced expression w = si1 · · · sik , the
operator Dw = Di1 · · · Dik is independent of the choice of the expression [Kum02].
The following theorem is a reformulation of [Theorem 5]MR1887117 for our setting

(note that D(Λ) is 1-dimensional if Λ ∈ P̂+):

Theorem 2.2. For sequences Λ1, . . . ,Λp of elements of P̂+ and w1, . . . , wp of

elements of Ŵ , we have

chĥFw1

(
D(Λ1)⊗ Fw2

(
D(Λ2)⊗ · · · ⊗ Fwp−1

(
D(Λp−1)⊗ FwpD(Λp)

)
· · ·
))

= Dw1

(
eΛ1 · Dw2

(
eΛ

2

· · · Dwp−1

(
eΛp−1 · Dwp(e

Λp)
)
· · ·
))

. (2.1)

Remark 2.3. In [LLM02], the authors studied b̂-modules Vi,m called generalized

Demazure modules. The b̂-module in the left-hand side of (2.1) is easily identi-
fied with a generalized Demazure module (see [loc. cit., Subsection 1.1], in which
the authors explain how a Demazure module is identified with a generalized De-
mazure module). Under this identification, the above equality follows from [loc.
cit., Theorem 5].

In some cases, we can construct D(ξ1, . . . , ξp) using Fw’s. To see this, we need
the following lemma.



DEMAZURE MODULES AND GRADED LIMITS OF MINIMAL AFFINIZATIONS 7

Lemma 2.4. Let ξ1, . . . , ξp be a sequence of elements of Ŵ (P̂+) and i ∈ Î. If
⟨α∨

i , ξj⟩ ≥ 0 holds for all 1 ≤ j ≤ p, then we have

FiD(ξ1, . . . , ξp) = D(siξ1, . . . , siξp).

Proof. Let sl2,i be the Lie subalgebra of ĝ spanned by {ei, α∨
i , fi}. Since eivξj = 0

and fivsiξj = 0 hold for all j, we easily see that

U(sl2,i)(vξ1 ⊗ · · · ⊗ vξp) = U(sl2,i)(vsiξ1 ⊗ · · · ⊗ vsiξp).

Since D(siξ1, . . . , siξp) is p̂i-stable, this implies the assertion. □

Let w1, . . . , wp be a sequence of elements of Ŵ , and denote by w[r,t] the element

wrwr+1 · · ·wt ∈ Ŵ for 1 ≤ r ≤ t ≤ p. We assume that ℓ(w[1,p]) =
∑p

j=1 ℓ(wj).

Then for every 1 ≤ r ≤ t ≤ p and Λ ∈ P̂+, if wr = si1 · · · siN(r)
is a reduced

expression, then

⟨α∨
iu , siu+1 · · · siN(r)

w[r+1,t]Λ⟩ ≥ 0

holds for all 1 ≤ u ≤ N(r) since ℓ(w[r,t]) =
∑t

j=r ℓ(wj). Hence by applying Lemma
2.4 several times, the following proposition is proved.

Proposition 2.5. Let Λ1, . . . ,Λp be a sequence of elements of P̂+, and w1, . . . , wp

a sequence of elements of Ŵ such that ℓ(w[1,p]) =
∑n

j=1 ℓ(wj). Then we have

Fw1

(
D(Λ1)⊗ Fw2

(
D(Λ2)⊗ · · · ⊗ Fwp−1

(
D(Λp−1)⊗ FwpD(Λp)

)
· · ·
))

= D
(
w[1,1]Λ

1, w[1,2]Λ
2, . . . , w[1,p−1]Λ

p−1, w[1,p]Λ
p
)
. (2.2)

In conclusion, if there is a sequence w1, . . . , wp ∈ Ŵ satisfying ξj = w[1,j]Λ
j with

Λj ∈ P̂+ and ℓ(w[1,p]) =
∑p

j=1 ℓ(wj), then the character of D(ξ1, . . . , ξp) is given
by Theorem 2.2 and Proposition 2.5.

For later use, we need to generalize the above results for elements of W̃ . For
τ ∈ Σ and a ĝ-module V , let us denote by FτV the ĝ-module {vτ | v ∈ V }
with τ(x)vτ = (xv)τ for x ∈ ĝ and v ∈ V . Note that if v ∈ Vξ (ξ ∈ P̂ ), then vτ ∈
(FτV )τξ. For a b̂-submodule D of V , let FτD denote the b̂-submodule {vτ | v ∈ D}
of FτV . By definition we have FτFi = Fτ(i)Fτ . Set Fwτ = FwFτ for w ∈ Ŵ and
τ ∈ Σ.

Lemma 2.6. For a sequence ξ1, . . . , ξp of elements of Ŵ (P̂+), we have

FτD(ξ1, . . . , ξp) ∼= D(τξ1, . . . , τξp).

Proof. It is easy to see that Fτ V̂ (Λ) ∼= V̂ (τΛ) for Λ ∈ P̂+. Let Λ1, . . . ,Λp ∈ P̂+ be

the elements such that ξj ∈ ŴΛj . We have

Fτ

(
V̂ (Λ1)⊗ · · · ⊗ V̂ (Λp)

) ∼= Fτ V̂ (Λ1)⊗ · · · ⊗ Fτ V̂ (Λp)

∼= V̂ (τΛ1)⊗ · · · ⊗ V̂ (τΛp),

and this isomorphism maps (vξ1 ⊗ · · ·⊗ vξp)
τ to a nonzero scalar multiple of vτξ1 ⊗

· · · ⊗ vτξp . Hence the assertion follows. □

Now the following proposition is an easy generalization of Proposition 2.5 (w[r,t]

are defined as above).
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Proposition 2.7. Let Λ1, . . . ,Λp be a sequence of elements of P̂+, and w1, . . . , wp

a sequence of elements of W̃ such that ℓ(w[1,p]) =
∑p

j=1 ℓ(wj). Then we have

Fw1

(
D(Λ1)⊗ Fw2

(
D(Λ2)⊗ · · · ⊗ Fwp−1

(
D(Λp−1)⊗ FwpD(Λp)

)
· · ·
))

∼= D
(
w[1,1]Λ

1, w[1,2]Λ
2, . . . , w[1,p−1]Λ

p−1, w[1,p]Λ
p
)
.

For τ ∈ Σ, define a linear operator Dτ on Z[P̂ ] by Dτ (e
λ) = eτ(λ). Obviously

chFτD = DτchD holds, and we have DτDi = Dτ(i)Dτ [FL06, Lemma 4]. Set

Dwτ = DwDτ for w ∈ Ŵ and τ ∈ Σ. Now the following corollary is obvious from
Theorem 2.2.

Corollary 2.8. For sequences Λ1, . . . ,Λp ∈ P̂+ and w1, . . . , wp ∈ W̃ , the equality
(2.1) holds.

3. Quantum loop algebras

3.1. Definitions and basics. Let C(q) denote the ring of rational functions in an
indeterminate q. Set qi = qdi for i ∈ I, and

[l]qi =
qli − q−l

i

qi − q−1
i

, [s]qi ! = [s]qi [s− 1]qi · · · [1]qi ,
[
s
s′

]
qi

=
[s]qi !

[s− s′]qi ![s
′]qi !

for l ∈ Z and s, s′ ∈ Z≥0 with s ≥ s′. The quantum loop algebra Uq(Lg) is the
associative C(q)-algebra with generators

x±
i,r (i ∈ I, r ∈ Z), k±1

i (i ∈ I), hi,m (i ∈ I,m ∈ Z \ {0})

and the following relations (i, j ∈ I, r, r′ ∈ Z,m,m′ ∈ Z \ {0}):
kik

−1
i = k−1

i ki = 1, [ki, kj ] = [ki, hj,m] = [hi,m, hj,m′ ] = 0,

kix
±
j,mk−1

i = q
±cij
i x±

j,m, [hi,m, x±
j,r] = ± 1

m
[mcij ]qix

±
j,r+m,

[x+
i,r, x

−
j,r′ ] = δij

ϕ+
i,r+r′ − ϕ−

i,r+r′

qi − q−1
i

,

x±
i,r+1x

±
j,r′ − q

±cij
i x±

j,r′x
±
i,r+1 = q

±cij
i x±

i,rx
±
j,r′+1 − x±

j,r′+1x
±
i,r,∑

σ∈Ss

s∑
k=0

(−1)k
[
s
k

]
qi

x±
i,rσ(1)

· · ·x±
i,rσ(k)

x±
j,r′x

±
i,rσ(k+1)

· · ·x±
i,rσ(s)

= 0 if i ̸= j

for all sequences of integers r1, . . . , rs, where s = 1−cij , Ss is the symmetric group
on s letters, and ϕ±

i,r’s are determined by equating coefficients of powers of u in the
formula

∞∑
r=0

ϕ±
i,±ru

±r = k±1
i exp

(
±(qi − q−1

i )
∞∑

r′=1

hi,±r′u
±r′

)
,

and ϕ±
i,∓r = 0 for r > 0. The algebra Uq(Lg) is isomorphic to the quotient of the

quantum affine algebra U ′
q(ĝ) by the ideal generated by a certain central element

[Dri87, Bec94]. Denote by Uq(Ln±) and Uq(Lh) the subalgebras of Uq(Lg) gener-

ated by {x±
i,r | i ∈ I, r ∈ Z} and

{
k±1
i , hi,m | i ∈ I,m ∈ Z \ {0}

}
respectively. Then

we have
Uq(Lg) = Uq(Ln−)Uq(Lh)Uq(Ln+) (3.1)

by the existence of a Poincaré-Birkhoff-Witt type basis [Bec94]. Denote by Uq(g)

the subalgebra generated by {x±
i,0, k

±1
i | i ∈ I} which is isomorphic to the quantized

enveloping algebra associated with g. For a subset J ⊆ I, let Uq(LgJ ) denote the

subalgebra generated by {k±1
i , hi,r, x

±
i,s | i ∈ J, r ∈ Z \ {0}, s ∈ Z}. We also define



DEMAZURE MODULES AND GRADED LIMITS OF MINIMAL AFFINIZATIONS 9

Uq(LhJ) in an obvious way. When J = {i} for some i ∈ I, we simply write Uq(Lgi)
and Uq(Lhi).

The algebra Uq(Lg) has a Hopf algebra structure [Lus93, CP94]. In particular if
V and W are Uq(Lg)-modules, then V ⊗W and V ∗ are Uq(Lg)-modules, and we
have (V ⊗W )∗ ∼= W ∗ ⊗ V ∗.

3.2. Finite-dimensional modules. For a Uq(g)-module V and λ ∈ P , set

Vλ =
{
v ∈ V | kiv = q

⟨α∨
i ,λ⟩

i v for i ∈ I
}
.

We say V is of type 1 if V satisfies

V =
⊕
λ∈P

Vλ.

For a finite-dimensional Uq(g)-module V of type 1, define its character chV by

chV =
∑
λ∈P

eλ dimVλ ∈ Z[P ].

The category of finite-dimensional Uq(g)-modules of type 1 is semisimple. For
λ ∈ P+, let Vq(λ) denote the Uq(g)-module generated by a nonzero vector vλ with
relations

x+
i,0vλ = 0, kivλ = q

⟨α∨
i ,λ⟩

i vλ,
(
x−
i,0

)⟨α∨
i ,λ⟩+1

vλ = 0 for i ∈ I.

The module Vq(λ) is simple, finite-dimensional and of type 1, and every simple
finite-dimensional Uq(g)-module of type 1 is isomorphic to some Vq(λ). Moreover,
we have chVq(λ) = chV (λ). For details of these results, see [CP94] for example.

Now we recall the basic results on finite-dimensional Uq(Lg)-modules. Let P+
q

denote the monoid (under coordinate-wise multiplication) of I-tuples of polynomials
π =

(
π1(u), . . . ,πn(u)

)
such that each πi(u) is expressed as

πi(u) = (1− a1u)(1− a2u) · · · (1− aku)

for some k ≥ 0 and aj ∈ C(q)×. In other words, P+
q is a free abelian monoid

generated by {ϖi,a | i ∈ I, a ∈ C(q)×} where

(
ϖi,a

)
j
(u) =

{
1− au if j = i,

1 otherwise.

Denote by Pq the corresponding free abelian group, which is called the ℓ-weight
lattice. We say ρ ∈ Pq is dominant if ρ ∈ P+

q . Define a homomorphism wt: Pq → P
by

wt(ϖi,a) = ϖi for all a ∈ C(q)×.

A nonzero vector v of a Uq(Lg)-module V is said to be an ℓ-weight vector with
ℓ-weight ρ ∈ Pq if

(ϕ±
i,±r − γ±

i,±r)
Nv = 0 for N ≫ 0

holds for all i ∈ I and r ∈ Z≥0, where γ±
i,±r (i ∈ I, r ∈ Z≥0) are the rational

functions in q determined by the formula

∞∑
r=0

γ+
i,ru

r = q
⟨α∨

i ,wt(ρ)⟩
i

ρi(q
−1
i u)

ρi(qiu)
=

∞∑
r=0

γ−
i,−ru

−r,

in the sense that the left- and right-hand sides are the Laurent expansions of the
middle term about u = 0 and u = ∞, respectively. Denote by Vρ the subspace
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consisting of ℓ-weight vectors with ℓ-weight ρ. If V =
⊕

ρ∈Pq
Vρ holds, we say V

is an ℓ-weight module. For an ℓ-weight module V and µ ∈ P , we have

Vµ =
⊕
ρ∈Pq

wt(ρ)=µ

Vρ,

since ϕ+
i,0 = ki and γ+

i,0 = q
⟨α∨

i ,wt(ρ)⟩
i . In particular, an ℓ-weight module is of

type 1 as a Uq(g)-module. We say a Uq(Lg)-module V is ℓ-highest weight with
ℓ-highest weight vector v and ℓ-highest weight π ∈ P+

q if v ∈ Vπ, Uq(Ln+)v = 0
and Uq(Ln−)v = V hold. A standard argument using (3.1) shows that for each
π ∈ P+

q , there exists a unique simple ℓ-highest weight module Lq(π) with ℓ-highest
weight π (up to isomorphism). Denote an ℓ-highest weight vector of Lq(π) by vπ.

Theorem 3.1 ([CP95b]). For every π ∈ P+
q , Lq(π) is finite-dimensional and

ℓ-weight. Moreover, every simple finite-dimensional ℓ-weight Uq(Lg)-module is iso-
morphic to Lq(π) for some π ∈ P+

q .

Remark 3.2. For every sequence of (not necessarily splitting) polynomials π =(
π1(u), . . . ,πn(u)

)
such that πi(0) = 1 (i ∈ I), the simple module Lq(π) defined as

above is finite-dimensional. For later use, however, it is more convenient to restrict
our consideration only to Lq(π) with π ∈ P+

q . In particular, this restriction makes

it easier to apply the theory of q-characters. Since π ∈ P+
q implies that Lq(π) is

ℓ-weight by [FM01, Theorem 4.1], the above theorem follows from [CP95b].

Let i 7→ ī be the bijection I → I determined by αī = −w◦(αi). We define
endomorphisms π 7→ π∗ and π 7→ ∗π of the monoid P+

q by setting

ϖ∗
i,a = ϖī,aq−r∨h∨ , ∗ϖi,a = ϖī,a−1q−r∨h∨

respectively, where h∨ is the dual Coxeter number of g and r∨ = max{cijcji | i ̸= j}.
By [Cha95, Proposition 1.6], there is a unique involution σ of Uq(Lg) such that

σ(x±
i,r) = −x∓

i,−r, σ(hi,m) = −hi,−m, σ(k±1
i ) = k∓1

i , σ(ϕ±
i,r) = ϕ∓

i,−r

for i ∈ I, r ∈ Z and m ∈ Z \ {0}, and σ is also a coalgebra anti-involution. For a
Uq(Lg)-module V , denote by σ∗V its pull-back with respect to σ. As a consequence
of [FM01, Corollary 6.9], we have the following lemma.

Lemma 3.3. For every π ∈ P+
q , we have

Lq(π)
∗ ∼= Lq(π

∗) and σ∗Lq(π) ∼= Lq(
∗π)

as Uq(Lg)-modules.

3.3. Minimal affinizations. Here we recall the definition of minimal affinizations
and their classification when the shape of the Dynkin diagram of g is a straight
line, i.e., g is of type ABCFG.

Definition 3.4 ([Cha95]). Let λ ∈ P+.
(i) A simple finite-dimensional Uq(Lg)-module Lq(π) is said to be an affinization
of Vq(λ) if wt(π) = λ.
(ii) Affinizations V and W of Vq(λ) are said to be equivalent if they are isomorphic
as Uq(g)-modules. We denote by [V ] the equivalence class of V .

If V is an affinization of Vq(λ), as a Uq(g)-module we have

V ∼= Vq(λ)⊕
⊕
µ<λ

Vq(µ)
⊕mµ(V )

with some mµ(V ) ∈ Z≥0. Let V and W be affinizations of Vq(λ), and define
mµ(V ),mµ(W ) as above. We write [V ] ≤ [W ] if for all µ ∈ P+, either of the
following holds:
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(i) mµ(V ) ≤ mµ(W ), or
(ii) there exists some ν > µ such that mν(V ) < mν(W ).

Then ≤ defines a partial ordering on the set of equivalence classes of affinizations
of Vq(λ) [Cha95, Proposition 3.7].

Definition 3.5 ([Cha95]). We say an affinization V of Vq(λ) is minimal if [V ] is
minimal in the set of equivalence classes of affinizations of Vq(λ) with respect to
this ordering.

Given i ∈ I, a ∈ C(q)× and m ∈ Z≥0, define π
(i)
m,a ∈ P+

q by

π(i)
m,a =

m∏
k=1

ϖi,aqm−2k+1
i

.

Note that π
(i)
0,a is the unit element of the monoid P+

q for all i ∈ I and a ∈ C(q)×.
For g of type ABCFG, minimal affinizations are completely classified.

Theorem 3.6 ([Cha95, CP95a]). Assume g is of type ABCFG. For each λ ∈ P+,
there exists a unique minimal affinization of Vq(λ) up to equivalence. Moreover for
λ =

∑
i∈I miϖi, Lq(π) is a minimal affinization of Vq(λ) if and only if π is in the

form
∏

i∈I π
(i)
mi,ai with (ai)i∈I satisfying one of the following conditions:

(I) For all 1 ≤ i < j ≤ n, ai/aj =
∏

i≤k<j ck(λ),

(II) For all 1 ≤ i < j ≤ n, ai/aj =
∏

i≤k<j ck(λ)
−1,

where we set ck(λ) = qdkmk+dk+1mk+1+dk−ck,k+1−1.

Remark 3.7. (i) Because of different normalizations in some definitions, the condi-
tions of ai’s are rewritten in a slightly different way from the ones in [Cha95, CP95a].
(ii) The situation is more complicated in type DE because of the existence of a
trivalent node, and the number of the equivalence classes of minimal affinizations
of Vq(λ) differs depending on λ. In this case, the classification has been achieved
except for λ orthogonal to the trivalent node (see [CP96a, CP96b]). We omit the
details since we do not consider this case in this article.

Definition 3.8. The simple modules Lq(π
(i)
m,a), which are minimal affinizations

of Vq(mϖi), are called Kirillov-Reshetikhin modules. Among them, the ones with
m = 1 are called fundamental modules.

For a nonempty subset J ⊆ I such that gJ is simple, denote by Pq,J the ℓ-weight
lattice of Uq(LgJ), and define a map Pq ∋ ρ → ρJ ∈ Pq,J by letting ρJ be the
J-tuple

(
ρi(u)

)
i∈J

.

Lemma 3.9 ([CP96b, Lemma 2.3]). For every π ∈ P+
q , the Uq(LgJ )-submodule

of Lq(π) generated by an ℓ-highest weight vector vπ is isomorphic to the simple
Uq(LgJ)-module with ℓ-highest weight πJ .

For µ =
∑

i∈I miϖi ∈ P , write µJ =
∑

i∈J miϖi. From this lemma and Theo-
rem 3.6, the following corollary is easily proved.

Corollary 3.10. Assume that g is of type ABCFG. If Lq(π) is a minimal affiniza-
tion of Vq(λ), then the Uq(LgJ )-submodule of Lq(π) generated by vπ is a minimal
affinization of the simple Uq(gJ)-module with highest weight λJ .

In type A, the structure of minimal affinizations are much simpler than that of
the other types.

Theorem 3.11 ([Jim86, Section 2], [CP96b, Theorem 3.1]). Assume that g is of
type A. If Lq(π) is a minimal affinization of Vq(λ), then Lq(π) is isomorphic to
Vq(λ) as a Uq(g)-module.
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3.4. Classical limits. In this subsection we assume that g is classical, since some
of the results below (for example Proposition 3.13) have been proved under this
assumption.

Let A = C[q, q−1] ⊆ C(q). An A-submodule L of a C(q)-vector space V is called
an A-lattice if L is a free A-module and C(q)⊗A L = V holds.

Set
(
x±
i,r

)(k)
=
(
x±
i,r

)k
/[k]qi ! for i ∈ I, r ∈ Z and k ∈ Z≥0, and denote by UA(Lg)

the A-subalgebra of Uq(Lg) generated by
{
k±1
i ,
(
x±
i,r

)(k) ∣∣ i ∈ I, r ∈ Z, k ∈ Z>0

}
.

Define UA(g) in a similar way. Then UA(Lg) and UA(g) are A-lattices of Uq(Lg)
and Uq(g) respectively [Cha01, Lemma 2.1], [Lus93]. Set

U1(Lg) = C⊗A UA(Lg) and U1(g) = C⊗A UA(g),

where C is regarded as an A-module by letting q act by 1. As shown in the
proof of [Cha01, Lemma 2.1], the A-lattice of the quantum affine algebra U ′

q(ĝ) in
[Lus93] is mapped onto UA(Lg) under the canonical projection. Hence the following
proposition is proved from [Lus93], [CP94, Proposition 9.3.10].

Proposition 3.12. The universal enveloping algebra U(Lg) is isomorphic to the
quotient of U1(Lg) by the ideal generated by 1⊗ ki − 1⊗ 1 (i ∈ I). In particular if
V is a U1(Lg)-module on which 1⊗ ki’s act by 1, then V is an Lg-module. Similar
statement also holds for U(g) and U1(g).

Following [CP01], we call π ∈ P+
q integral if, for all i ∈ I, the polynomial

πi(u) has coefficients in A and the coefficient of the highest power of u lies in
C×qZ. Denote by P+

A the set of integral elements in P+
q . Let π ∈ P+

A , and
LA(π) = UA(Lg)vπ ⊆ Lq(π).

Proposition 3.13 ([CP01, Cha01]).
(i) LA(π) is spanned by the vectors(

x−
i1,l1

)(s1)(
x−
i2,l2

)(s2) · · · (x−
ip,lp

)(sp)
vπ

for p ≥ 0, ij ∈ I, sj ∈ Z≥0 and 0 ≤ lj ≤ N with sufficiently large N .

(ii) LA(π) is an A-lattice of Lq(π).

Set

Lq(π) = C⊗A LA(π),

which is called the classical limit of Lq(π). Lq(π) is an Lg-module by Proposition
3.12, and we have

chLq(π) = chLq(π). (3.2)

Since chVq(µ) = chV (µ) holds for all µ ∈ P+, we also have

[Lq(π) : Vq(µ)] = [Lq(π) : V (µ)] (3.3)

for all µ ∈ P+, where the left- and right-hand sides are the multiplicities as a
Uq(g)-module and g-module respectively.

4. Main theorems and corollaries

In this section, we assume that g is of type ABC.
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4.1. Graded limit. Let λ ∈ P+, and let π ∈ P+
A be such that Lq(π) is a minimal

affinization of Vq(λ) (such an element exists by Theorem 3.6). Denote by π =(
π1(u), . . . ,πn(u)

)
the I-tuple of polynomials with coefficients in C obtained from

π by evaluating q at 1. From Theorem 3.6, we easily see that there exists a unique
nonzero complex number a satisfying

πi(u) = (1− au)⟨α
∨
i ,λ⟩ for all i ∈ I.

Hence the following lemma is proved from [CP01, Lemma 4.7].

Lemma 4.1. There exists a surjective Lg-module homomorphism from the classical
limit Lq(π) to the evaluation module V (λ, a).

Define a Lie algebra automorphism τa : g[t] → g[t] by

τa
(
x⊗ f(t)

)
= x⊗ f(t− a) for x ∈ g, f ∈ C[t].

We consider Lq(π) as a g[t]-module by restriction, and define a g[t]-module L(π)

by the pull-back τ∗aLq(π).

Definition 4.2. We call the g[t]-module L(π) the graded limit of the minimal
affinization Lq(π).

In fact, L(π) turns out to be a graded g[t]-module from our main theorems,
which justify the name “graded limit”. We see from Proposition 3.13 (i) and the
construction that the vector vπ = 1⊗ vπ generates L(π) as a g[t]-module. Elemen-
tary properties of L(π) are as follows.

Lemma 4.3. (i) There exists a surjective g[t]-module homomorphism from L(π)
to V (λ, 0).
(ii) The vector vπ satisfies the relations

n+[t]vπ = 0, (h⊗ ts)vπ = δs0⟨h, λ⟩vπ for h ∈ h, s ≥ 0.

(iii) We have

chLq(π) = chL(π).

(iv) For every µ ∈ P+, we have

[Lq(π) : Vq(µ)] = [L(π) : V (µ)].

Proof. The assertion (i) follows from Lemma 4.1, and (ii) follows from the construc-
tion and (i). The assertions (iii) and (iv) are consequences of (3.2) and (3.3) since

Lq(π) ∼= L(π) as g-modules. □

The following is obvious from Theorem 3.11 and Lemma 4.3.

Corollary 4.4. When g is of type A, the graded limit L(π) is isomorphic to the
evaluation module V (λ, 0).

4.2. Main theorems. Throughout the rest of this section, we fix λ =
∑

i∈I miϖi ∈
P+ and π ∈ P+

A such that Lq(π) is a minimal affinization of Vq(λ).
In this subsection, we shall state our main theorems. (Although these are trivial

in type A, we include this type for completeness.) Their proofs are given in the
next section.

Let us define an n-tuple ξ1, . . . , ξn of elements of P̂ as follows. If g is of type An,
then ξi = mi(ϖi + Λ0) for all i ∈ I. If g is of type Bn, then

ξi =

{
mi(ϖi + Λ0) if 1 ≤ i ≤ n− 1,

mnϖn + ⌈mn/2⌉Λ0 if i = n,
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where ⌈s⌉ = min{r ∈ Z | r ≥ s}. If g is of type Cn, the definition is a little more

complicated. Let J = {1 ≤ i ≤ n− 1 | mi > 0}, and define i♭ ∈ Î for each i ∈ I by

i♭ =

{
max

(
{0} ⊔ {j ∈ J | j < i}

)
if i ∈ J,

i otherwise.

Let j0 = max
(
{0} ⊔ J

)
, and define a sequence p0, p1, . . . , pn with pi ∈ {0, 1} as

follows: set pj0 = 0, and define pi for i ∈
(
{0} ⊔ J

)
\ {j0} recursively by

pi♭ ≡ mi + pi mod 2.

We put pi = 0 for i ∈ I \ J . Now ξ1, . . . , ξn is defined by

ξi = pi♭ϖi♭ + (mi − pi)ϖi +
di
2

(
mi − pi + pi♭

)
Λ0.

Note that
∑

i∈I ξi ∈ λ + Z>0Λ0 holds in all cases. Our first main theorem is the
following.

Theorem 4.5. The graded limit L(π) is isomorphic to D(w◦ξ1, . . . , w◦ξn) as a
g[t]-module.

In type A, ξi ∈ P̂+ holds for all i. Thus the g[t]-module D(w◦ξ1, . . . , w◦ξn) is the
submodule of V (m1ϖ1, 0) ⊗ · · · ⊗ V (mnϖn, 0) generated by the tensor product of
highest weight vectors, which is isomorphic to V (λ, 0). Hence the theorem follows
from Corollary 4.4.

Let ∆1
+ be a subset of ∆+ defined by

∆1
+ =

{
α ∈ ∆+

∣∣∣ α =
∑
i∈I

niαi with ni ≤ 1 for all i ∈ I
}
.

The second main theorem is the following.

Theorem 4.6. The graded limit L(π) is isomorphic to the cyclic g[t]-module gen-
erated by a nonzero vector v with relations

n+[t]v = 0, (h⊗ ts)v = δs0⟨h, λ⟩v for h ∈ h, s ≥ 0, fmi+1
i v = 0 for i ∈ I,

t2n−[t]v = 0 and (fα ⊗ t)v = 0 for α ∈ ∆1
+. (4.1)

When g is of type A, ∆1
+ = ∆+ holds and therefore the theorem is easily proved

from Corollary 4.4.

Remark 4.7. This theorem implies that L(π) is a projective object in a certain
full-subcategory of the category of g⊗

(
C[t]/t2C[t]

)
-modules introduced in [CG11].

In particular this, together with [Her07, Theorem 6.1], gives a proof to [CG11,
Conjecture 1.13] in type B.

Remark 4.8. As stated in the introduction, these two theorems are equivalent to
[Mou10, Conjecture 3.20] in type AB.

4.3. Corollaries. Here we shall give several corollaries on minimal affinizations
Lq(π), which are obtained from the corresponding statements on L(π) by applying
Lemma 4.3 (iii), (iv).

First we apply the results in Subsection 2.2 to the module D(w◦ξ1, . . . , w◦ξn) in

Theorem 4.5. Let us define wi ∈ W̃ for each 1 ≤ i ≤ n as follows:
(i) If g is of type A, then wi = id for all 1 ≤ i ≤ n.
(ii) If g is of type B, then

wi = si−1si−2 · · · s1τ,
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where τ denotes the element of Σ which exchanges the nodes 0 and 1.
(iii) If g is of type C, then

wi = si−1si−2 · · · s1s0.

For 1 ≤ r ≤ t ≤ n, denote by w[r,t] the product wrwr+1 · · ·wt ∈ W̃ . If r > t, we set
w[r,t] = id.

Lemma 4.9. (i) (a) When g is of type B, we have

w[1,i](Λ0) ≡ ϖi + δi,nϖn + Λ0 mod Qδ, and

w[1,i](ϖn + Λ0) = ϖn + Λ0

for 1 ≤ i ≤ n.
(b) When g is of type C, we have

w[1,i](ϖj + Λ0) ≡

{
ϖi−j +ϖi + Λ0 (0 ≤ j < i)

ϖj + Λ0 (i ≤ j)
mod Qδ

for 1 ≤ i ≤ n.
(ii) We have ℓ(w[1,n]) =

∑n
i=1 ℓ(wi).

Proof. The assertion (i) is proved by direct calculations. When g is of type B, by
applying the sequence

w[1,n] = τ(s1τ) · · · (sn−1 · · · s1τ)
to Λ0, we see that each reflection sj changes the weight by a positive multiple of
αj , which implies the assertion (ii). The proof for type C is the same. □

We also define a sequence Λ1, . . . ,Λn of elements of P̂+ as follows:
(i) If g is of type A, then Λi = ξi for all i.
(ii) If g is of type B, then

Λi =

{
miΛ0 for 1 ≤ i ≤ n− 1,

mnϖn + ⌈mn/2⌉Λ0 for i = n,

where mn = 0 if mn is even, and mn = 1 otherwise.
(iii) If g is of type C, then

Λi =

{
pi♭ϖi−i♭ +

1
2

(
mi − pi + pi♭

)
Λ0 for 1 ≤ i ≤ n− 1,

mn(ϖn + Λ0)(= ξn) for i = n.

We see from Lemma 4.9 (i) that

w[1,i]Λ
i ≡ ξi mod Qδ

for all i ∈ I. Hence by Proposition 2.7, we have a g[t]-module isomorphism

D(ξ1, . . . , ξn) (4.2)

∼= Fw1

(
D(Λ1)⊗ Fw2

(
D(Λ2)⊗ · · · ⊗ Fwn−1

(
D(Λn−1)⊗ FwnD(Λn)

)
· · ·
))

.

Then since the isomorphism

L(π) ∼= D(w◦ξ1, . . . , w◦ξn) ∼= Fw◦D(ξ1, . . . , ξn)

follows from Theorem 4.5 and Lemma 2.4, we see that L(π) is isomorphic to the
g[t]-module

Fw◦w1

(
D(Λ1)⊗ Fw2

(
D(Λ2)⊗ · · · ⊗ Fwn−1

(
D(Λn−1)⊗ FwnD(Λn)

)
· · ·
))

. (4.3)

Now the following character formula for Lq(π) is obtained using Corollary 2.8 and
Lemma 4.3 (iii).
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Corollary 4.10.

chLq(π) = Dw◦w1

(
eΛ

1

· Dw2

(
eΛ

2

· · · Dwn−1

(
eΛ

n−1

· Dwn(e
Λn

)
)
· · ·
))∣∣∣

eΛ0=eδ=1
.

Next we give multiplicities of Uq(g)-modules in Lq(π) in terms of crystal bases.
We refer to [HK02] for the basic theory of crystal bases. Let B(Λ) be the crystal

basis of V̂ (Λ) for Λ ∈ P̂+, and uΛ its highest weight element. For τ ∈ Σ, let b 7→ bτ

denote the bijection from B(Λ) to B(τΛ) satisfying

uτ
Λ = uτΛ and f̃τ(i)(b

τ ) = (f̃ib)
τ for i ∈ Î ,

where f̃i are the Kashiwara operators. Let Λ(1), . . . ,Λ(p) be an arbitrary sequence

of elements of P̂+, and T a subset of the crystal basis B
(
Λ(1)

)
⊗ · · ·⊗B

(
Λ(p)

)
. We

define a subset FτT by

FτT =
{
bτ1 ⊗ · · · ⊗ bτp

∣∣ b1 ⊗ · · · ⊗ bp ∈ T
}
⊆ B

(
τΛ(1)

)
⊗ · · · ⊗B

(
τΛ(p)

)
.

For w ∈ Ŵ with reduced expression w = si1 · · · sik , we also define a subset FwT by

FwT =
{
f̃s1
i1
f̃s2
i2

· · · f̃sk
ik
b
∣∣ sj ≥ 0, b ∈ T

}
\ {0} ⊆ B

(
Λ(1)

)
⊗ · · · ⊗B

(
Λ(p)

)
.

Set Fwτ = FwFτ . Now let us define a subset Z ′ of a Uq(ĝ)-crystal basis by

Z ′ =Fw◦w1

(
uΛ1 ⊗Fw2

(
uΛ2 ⊗ · · · ⊗ Fwn−1

(
uΛn−1 ⊗Fwn(uΛn)

)
· · ·
))

.

Since this is a crystal analogue of the module (4.3) (see [LLM02], in which B(Λ) are
realized using LS paths), there is one-to-one correspondence between the classically
highest weight elements (i.e., elements annihilated by ẽi for i ∈ I) in Z ′ and the
simple g-module components of L(π). Note that Fw◦ generates no new classically
highest weight elements, which implies that the same statement also holds for

Z = Fw1

(
uΛ1 ⊗Fw2

(
u2
Λ ⊗ · · · ⊗ Fwn−1

(
uΛn−1 ⊗Fwn(uΛn)

)
· · ·
))

instead of Z ′. From this and Lemma 4.3 (iv), we have the following corollary.

Corollary 4.11. For every µ ∈ P+, we have[
Lq(π) : Vq(µ)

]
= #{b ∈ Z | h-weight of b is µ, ẽi(b) = 0 for i ∈ I}.

Remark 4.12. Assume that g is of type BC, and let J = {0, 1, . . . , n − 1} ⊆ Î,
Uq(ĝJ) be the subalgebra of Uq(ĝ) whose set of simple roots are J , and WJ its
Weyl group. Since wi belongs to WJ ⋊Σ for all i ∈ I, we can regard Z as a subset
of the crystal basis of a suitable Uq(ĝJ)-module. In view of this, Corollary 4.11
implies that the multiplicities of Lq(π) are expressed in terms of Uq(ĝJ)-crystal
bases, which is of finite type (Dn and Cn respectively).

Finally we give a formula for the limit of normalized characters of minimal

affinizations. Let J be a subset of I, and set ∆J
+ = ∆+ ∩

(∑
i∈J Z≥0αi

)
and

∆1,J
+ = {α ∈ ∆+ | α =

∑
i∈I

niαi with ni ≤ 1 if i /∈ J}.

Assume that λ1, λ2, . . . is an infinite sequence of elements of P+ such that

⟨α∨
i , λk⟩ = 0 for all i ∈ J, k = 1, 2, . . . ,

and

lim
k→∞

⟨α∨
i , λk⟩ = ∞ for all i /∈ J.
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Corollary 4.13. Let π1,π2, . . . be an infinite sequence of elements of P+
A such that

Lq(πk) is a minimal affinization of Vq(λk). Then limk→∞ e−λkchLq(πk) exists, and

lim
k→∞

e−λkchLq(πk) =
∏

α∈∆+\∆J
+

1

1− e−α
·

∏
α∈∆+\∆1,J

+

1

1− e−α
. (4.4)

Proof. By Lemma 4.3 (iii), it suffices to show that limk→∞ e−λkchhL(πk) coincides
with the right-hand side. Define a Lie subalgebra aJ of g[t] by

aJ = n+[t]⊕ h[t]⊕
⊕

α∈∆J
+

Cfα ⊕
⊕

α∈∆1,J
+

C(fα ⊗ t)⊕ t2n−[t].

For each λk, let Cvk be a 1-dimensional aJ -module defined by

hvk = ⟨h, λk⟩vk for h ∈ h, (aJ ∩ n̂+)vk = fαvk = 0 for α ∈ ∆J
+,

and define a g[t]-module Mk by

Mk = U(g[t])⊗U(aJ ) Cvk.

For all k, e−λkchh Mk coincides with the right-hand side of (4.4). Note that Mk

and L(πk) have natural Z≥0-grading, which we normalize so that the degrees of
vk and vπk

are 0. We denote these gradings by superscripts. By Theorem 4.6,
there exists a surjective homomorphism Φk : Mk → L(πk), and kerΦk is generated

by wi
k = f

⟨α∨
i ,λk⟩+1

i vk for i /∈ J . A standard calculation shows n+w
i
k = 0, which

implies kerΦk =
∑

i/∈J U(n−[t])U(th[t])U(tn+[t])w
i
k. Hence if β ∈ Q+ and s ≥ 0

satisfies (kerΦk)
s
λk−β ̸= 0, there exists i satisfying

−β + sδ + (⟨α∨
i , λk⟩+ 1)αi ∈ w◦Q̂

+.

When β and s are fixed, this does not occur for sufficiently large k, which implies

dim(Mk)
s
λk−β = dimL(πk)

s
λk−β if k ≫ 0.

Since (Mk)
s
λk−β = 0 except for finitely many s if β is fixed, the assertion follows

from this. □

5. Proof of main theorems

Throughout this section, we assume g is of type BC unless specified otherwise,
and fix λ =

∑
i∈I miϖi ∈ P+ and π ∈ P+

A such that Lq(π) is a minimal affinization

of Vq(λ). We freely use the notation in Section 4, ξi, Λ
i, etc..

Let M(λ) denote the g[t]-module defined in terms of generators and relations in
Theorem 4.6. We shall verify one by one the existence of surjective homomorphisms

D(w◦ξ1, . . . , w◦ξn) ↠ M(λ), M(λ) ↠ L(π), L(π) ↠ D(w◦ξ1, . . . , w◦ξn),

which implies Theorems 4.5 and 4.6 simultaneously. For the proof of the latter two,
we need some results on q-characters. These are recalled in Subsection 5.2.

5.1. Proof of D(w◦ξ1, . . . , w◦ξn) ↠ M(λ). Let us prepare several notation.
For 1 ≤ p ≤ q ≤ n, set αp,q = αp + αp+1 + · · ·+ αq. Then

∆+ =

{
{αp,q | p ≤ q} ⊔ {αp,n + αq,n | p < q} g = Bn,

{αp,q | p ≤ q} ⊔ {αp,n + αq,n−1 | p ≤ q < n} g = Cn.

Set αp,q = 0 if p > q. For α = β+sδ ∈ ∆̂re with β ∈ ∆ and s ∈ Z, we denote by xα

the vector eβ ⊗ ts ∈ ĝ. Let vM denote the generator of M(λ) in the definition. Set
D = D(w◦ξ1, . . . , w◦ξn), and vD = vξ1 ⊗ · · · ⊗ vξn ∈ D, which is also a generator
as a g[t]-module. Recall that D is by definition a module over g[t]⊕CK ⊕Cd, and
K and d act on vD by some scalar multiplications. In this subsection, we also view
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M(λ) as a module over this Lie algebra by letting K and d act on vM by the same
multiplications.

For α ∈ ∆̂re, we define the nonnegative integer ρ(α) by

ρ(α) =
n∑

k=1

max
{
0,−⟨α∨, ξk⟩

}
.

Assume that α = β + sδ ∈ ∆̂re
+ . The following assertions are checked by direct

calculations.

(i) We have ρ(β + sδ) = 0 unless −β ∈ ∆+ \∆1
+ and s = 1.

(ii) If g is of type B and p < q, we have

ρ
(
− (αp,n + αq,n) + δ

)
=

n−1∑
k=q

mk +
⌊
mn/2

⌋
.

(iii) If g is of type C, we have for p < q that

ρ
(
− (αp,n + αq,n−1) + δ

)
=

{∑n−1
k=q mk − 1 if

∑n−1
k=q mk ∈ 2Z≥0 + 1 and mk = 0 for all p ≤ k < q,∑n−1

k=q mk otherwise,

and ρ
(
− (αq,n + αq,n−1) + δ

)
=
⌊∑n−1

k=q mk/2
⌋
.

The following proposition is essential in this subsection.

Proposition 5.1. (i) If g is of type B, we have

AnnU(n̂+)vD = U(n̂+)

( ∑
α∈∆̂re

+

Cxρ(α)+1
α + th[t]

)
.

(ii) If g is of type C, we have

AnnU(n̂+)vD = U(n̂+)

( ∑
α∈∆̂re

+

Cxρ(α)+1
α +

∑
(α,β)∈S

1≤k<ρ(α)/2+1

Cxρ(α)−2k+1
α xk

β + th[t]

)
,

where S is a subset of ∆̂re
+ × ∆̂re

+ defined by

S =

{(
− (αp,n + αq,n−1) + δ,−(αq,n + αq,n−1) + δ

) ∣∣∣∣ 1 ≤ p < q ≤ n

}
.

Assuming Proposition 5.1 for a while, we shall prove D ↠ M(λ). Set D′ =

D(ξ1, . . . , ξp) ⊆ D, which is generated by vD as a b̂-module.

Lemma 5.2. There is a b̂-module homomorphism from D′ to M(λ) mapping vD
to vM .

Proof. Since the ĥ-weights of vD and vM are same, it is enough to check that

AnnU(n̂+)vD annihilates vM . First we shall show x
ρ(α)+1
α vM = 0 when g = Bn and

α = −(αp,n + αq,n) + δ with p < q. Set γ = αq,n. It is easily checked that⟨
γ∨, λ+

(
ρ(α) + 1

)
α
⟩
=

(
2
n−1∑
k=q

mk +mn

)
− 2

( n−1∑
k=q

mk + ⌊mn/2⌋+ 1

)
< 0.

On the other hand, a direct calculation shows xγx
ρ(α)+1
α vM = 0, which implies

x
ρ(α)+1
α vM = 0 as desired since M(λ) is a finite-dimensional g-module. For g = Cn
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and α = −(αq,n + αq,n−1) + δ with q < n, x
ρ(α)+1
α vM = 0 is proved by the same

argument with γ = αq,n−1.

Next we shall show x
ρ(α)−2k+1
α xk

βvM = 0 for g = Cn,

α = −(αp,n + αq,n−1) + δ, β = −(αq,n + αq,n−1) + δ with p < q,

and 0 ≤ k < ρ(α)/2 + 1. If ρ(α) =
∑n−1

k=q mk, this is proved by the same argument

as above with γ = αq,n−1. So we may assume that
∑n−1

k=q mk is odd and mk = 0

for p ≤ k < q (in this case ρ(α) =
∑n−1

k=q mk − 1 ∈ 2Z≥0). The assertion is proved

by the descending induction on k. Set γ = α− β = −αp,q−1. Since ρ(β) = ρ(α)/2
and xγvM = 0, we have

0 = xγx
ρ(α)/2+1
β vM ∈ C×xαx

ρ(α)/2
β vM .

Hence the case k = ρ(α)/2 is proved. Assume k < ρ(α)/2. A direct calculation
using xγvM = 0 shows

x2
γx

ρ(α)−2k−1
β+γ xk+2

β vM =a1x
2
β+2γx

ρ(α)−2k−3
β+γ xk+2

β vM

+ a2xβ+2γx
ρ(α)−2k−1
β+γ xk+1

β vM + a3x
ρ(α)−2k+1
β+γ xk

βvM

for some a1, a2, a3 ∈ C with a3 ̸= 0 (let xl
β+γ = 0 if l ≤ 0). By the induction

hypothesis, this implies x
ρ(α)−2k+1
α xk

βvM = 0 as desired. The other relations are
trivially checked, and the lemma is proved. □

Let w◦ = si1 · · · sir−1sir be a reduced expression of w◦, and set wk
◦ = sik · · · sir .

We defineDk = Fwk
◦
D′ for 1 ≤ k ≤ r+1. Note thatDr+1 = D′, andD1 = D follows

from Lemma 2.4. In the following, we shall verify by the descending induction on

k that there exists a nonzero b̂-module homomorphism from Dk to M(λ). This
for k = r + 1 is just Lemma 5.2. Assume k ≤ r, and consider a p̂ik -module
U(p̂ik) ⊗U(b̂) D

k+1. This has a unique maximal finite-dimensional p̂ik -quotient

[Jos85], which we denote by D̃k+1. Note that, if N is a finite-dimensional p̂ik -

module, every b̂-module homomorphism Dk+1 → N uniquely extends to a p̂ik -

module homomorphism D̃k+1 → N by definition. By the induction hypothesis,

there is a nonzero b̂-module homomorphism Dk+1 → M(λ), which extends to a p̂ik -

module homomorphism D̃k+1 → M(λ). Hence it suffices to show that D̃k+1 ∼= Dk.
The identity on Dk+1 extends to a homomorphism

D̃k+1 → FikD
k+1 = U(p̂ik)D

k+1 = Dk,

and this is obviously surjective. On the other hand, [Jos85, Lemmas 2.6, 2.8(i)] and
Theorem 2.2 imply

chĥD̃
k+1 = DikchĥD

k+1 = chĥFikD
k+1 = chĥD

k,

and therefore D̃k+1 ∼= Dk holds as desired.
We have verified that there is a nonzero b̂-module homomorphism from D to

M(λ). Note that D and M(λ) are generated by the 1-dimensional weight spaces
Dw◦λ and M(λ)w◦λ respectively, and these spaces are annihilated by n−. From
this, we easily see that the homomorphism is surjective, and extends to one of
g[t]-modules. Hence D ↠ M(λ) is proved.

It remains to show Proposition 5.1. For 1 ≤ j ≤ n and 0 ≤ i ≤ j, let

v(i, j) = vwiΛj ⊗ vwiwj+1Λj+1 ⊗ · · · ⊗ vwiw[j+1,n−1]Λn−1 ⊗ vwiw[j+1,n]Λn ,

which is a generator of the b̂-module

D(i, j) = Fwi

(
D(Λj)⊗Fwj+1

(
D(Λj+1)⊗· · ·⊗Fwn−1

(
D(Λn−1)⊗FwnD(Λn)

)
· · ·
))
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by Proposition 2.7 (here we set w0 = id). Note that D′ is isomorphic to D(1, 1)
by (4.2), and this isomorphism maps vD to v(1, 1). Hence it suffices to determine
the annihilator of v(1, 1). In the following, we shall achieve this by determining the
annihilators of v(i, j)’s inductively.

We prepare two lemmas. For i ∈ Î, define a Lie subalgebra n̂i of n̂+ by n̂i =⊕
α∈∆re

+\{αi} Cxα ⊕ th[t]. Note that n̂+ = Cei ⊕ n̂i.

Lemma 5.3. Let i ∈ Î, ξ ∈ P̂ such that ⟨α∨
i , ξ⟩ ≥ 0, V be an integrable ĝ-module,

and T a finite-dimensional b̂-submodule of V . Assume the following.
(i) T is generated by a weight vector v ∈ Tξ satisfying eiv = 0.
(ii) There is an ad(ei)-invariant left U(n̂i)-ideal I such that

AnnU(n̂+)v = U(n̂+)ei + U(n̂+)I.
(iii) We have chĥFiT = DichĥT .

Let v′ = f
⟨α∨

i ,ξ⟩
i v ∈ FiT . Then we have

AnnU(n̂+)v
′ = U(n̂+)e

⟨α∨
i ,ξ⟩+1

i + U(n̂+)ri(I),
where ri denotes the algebra automorphism of U(ĝ) corresponding to si.

Proof. The following proof is essentially same as a part of the proof of [Jos85,
Theorem 3.4].

By the ad(ei)-invariance of I, it follows that
U(n̂+)I = C[ei]I ⊆ I + U(n̂+)ei.

Hence (ii) implies AnnU(n̂i)v = I, for U(n̂+) = U(n̂+)ei ⊕ U(n̂i). By [Kac90,

Lemma 3.8], there is a p̂i-module automorphism r′i on FiT satisfying r′i(v) ∈ C×v′

and (r′i)
−1xr′i = ri(x) for x ∈ p̂i. Hence by applying ri to AnnU(n̂i)v = I, we have

AnnU(n̂i)v
′ = ri(I). Now, since (iii) implies

AnnU(n̂+)v
′ = U(n̂+)e

⟨α∨
i ,ξ⟩+1

i + U(n̂+)AnnU(n̂i)v
′

by [Jos85, Proposition 3.2], the assertion is proved. □

For 1 ≤ j ≤ n and 0 ≤ i ≤ j, define ρi,j : ∆̂
re → Z≥0 by

ρi,j(α) =
n∑

k=j

max
{
0,−⟨α∨, wiw[j+1,k]Λ

k⟩
}
,

and put ∆̂re
+(i, j) = {α ∈ ∆̂re

+ | ρi,j(α) > 0}. When j < n, we have

ρ0,j(α) = ρj+1,j+1(α) + max{0,−⟨α∨,Λj⟩} = ρj+1,j+1(α) for α ∈ ∆̂re
+ , (5.1)

which implies ∆̂re
+(0, j) = ∆̂re

+(j + 1, j + 1).

Lemma 5.4. Assume 1 ≤ i ≤ j ≤ n.
(i) If g = Bn, then

∆̂re
+(i, j) ⊆

{
αp,i−1

∣∣ 1 ≤ p < i
}
⊔
{
αp,q

∣∣ 1 ≤ p ≤ j ≤ q < n, p ̸= i
}

⊔
{
− (αi,n + αq,n) + δ

∣∣∣ j < q ≤ n
}
⊔
{
− (αp,n + αq,n) + δ

∣∣∣ j < p < q ≤ n
}
.

(ii) If g = Cn, then

∆̂re
+(i, j) ⊆

{
αp,i−1

∣∣ 1 ≤ p < i
}
⊔
{
αp,q

∣∣ 1 ≤ p ≤ j ≤ q < n, p ̸= i
}

⊔
{
− (αi,n + αq,n−1) + δ

∣∣∣ q = i or j < q ≤ n
}

⊔
{
− (αp,n + αq,n−1) + δ

∣∣∣ j < p ≤ q ≤ n
}
.
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Proof. We prove (i) only (the proof of (ii) is similar). Note that the following two
containments hold:

∆̂re
+(i+ 1, j) ⊆ si

(
∆̂re

+(i, j)
)
⊔ {αi} for i < j, and (5.2)

∆̂re
+(1, j) ⊆ τ

(
∆̂re

+(j + 1, j + 1)
)

for j < n. (5.3)

In fact, (5.2) holds since ρi+1,j(α) = ρi,j(siα), and (5.3) holds since

ρ1,j(α) = ρ0,j(τα) = ρj+1,j+1(τα) for α ∈ ∆̂re
+

by (5.1). Then the assertion can be proved inductively from ∆̂re
+(0, n) = ∅ using

these containments. □

Now let us begin the proof of Proposition 5.1. First assume that g is of type Bn.
We verify the assertion

(Bi,j) AnnU(n̂+)v(i, j) = U(n̂+)

( ∑
α∈∆re

+

Cxρi,j(α)+1
α + th[t]

)
by the induction on (i, j), which with i = j = 1 implies the proposition. (B0,n)
is obvious since D(0, n) = D(Λn) is a trivial n̂+-module and ρ0,n(α) = 0 for all

α ∈ ∆̂re
+ . We easily see that (Bj+1,j+1) implies (B0,j) from (5.1) and v(0, j) =

vΛj ⊗ v(j + 1, j + 1), and it is also easy to check that (B0,j) implies (B1,j) since
v(1, j) = v(0, j)τ and ρ1,j(α) = ρ0,j(τα). It remains to show that (Bi,j) with
0 < i < j implies (Bi+1,j). For this, it suffices to show the ad(ei)-invariance of the
left U(n̂i)-ideal

Ii,j = U(n̂i)

( ∑
α∈∆̂re

+\{αi}

Cxρi,j(α)+1
α + th[t]

)

by Lemma 5.3. Note that, if β ∈ ∆̂re
+ is in the form β = lα+αi with some α ∈ ∆̂+

and l ∈ Z>0, then ρi,j(β) = 0 holds. In fact, the condition implies β ∈ ∆̂re
+ + δ, or

β ∈
{
αp,i

∣∣ p < i
}
⊔
{
αi,q

∣∣ q > i
}
⊔
{
αi,n + αq,n

∣∣ q ̸= i
}
⊔
{
− αp,i−1 + δ

∣∣ p < i
}

⊔
{
− αi+1,q + δ

∣∣ q > i
}
⊔
{
−
(
αi+1,n + αq,n

)
+ δ

∣∣∣ q ̸= i, i+ 1
}
,

and hence ρi,j(β) = 0 holds from Lemma 5.4 and 0 < i < j. Then the ad(ei)-
invariance of Ii,j is immediately follows from this, as desired.

Next assume that g = Cn, and define a subset Sj of ∆̂re
+ × ∆̂re

+ for 1 ≤ j ≤ n by

Sj =

{(
− (αp,n + αq,n−1) + δ,−(αq,n + αq,n−1) + δ

) ∣∣∣∣ j ≤ p < q ≤ n

}
.

We verify the assertion (Ci,j): AnnU(n̂+)v(i, j) = Ji,j by the induction on (i, j),
where Ji,j is a U(n̂+)-ideal defined by

Ji,j = U(n̂+)

( ∑
α∈∆re

+

Cxρi,j(α)+1
α +

∑
(α,β)∈sisi+1···sj−1(Sj)

1≤k<ρi,j(α)/2+1

Cxρi,j(α)−2k+1
α xk

β + th[t]

)
.

Here we set w(Sj) =
{
(wα,wβ)

∣∣ (α, β) ∈ Sj

}
for w ∈ W . Note that (C1,1) implies

the proposition, and (C0,n) is obvious.
Let us show that (Cj+1,j+1) implies (C0,j). Since v(0, j) = vΛj ⊗ v(j + 1, j + 1),

we have AnnU(n̂+)v(0, j) = AnnU(n̂+)v(j + 1, j + 1), and hence it suffices to show
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that J0,j = Jj+1,j+1. We have ρ0,j(α) = ρj+1,j+1(α) for α ∈ ∆̂re
+ by (5.1), and

direct calculation shows

s0s1 · · · sj−1Sj = Sj+1 ⊔
{(

α1,q−1,−(αq,n + αq,n−1) + δ
) ∣∣∣∣ j < q ≤ n

}
. (5.4)

Hence it is enough to check

xρj+1,j+1(α)−2k+1
α xk

β ∈ Jj+1,j+1 (5.5)

for α = α1,q−1, β = −(αq,n+αq,n−1)+δ with j < q and 1 ≤ k < ρj+1,j+1(α)/2+1.
For every l1 ∈ Z≥2 and l2 ∈ Z≥0, it is directly checked from β = α0 + 2α that

e0x
l1
α x

l2
β = xl1

α x
l2
β e0 + a1x

l1−1
α xl2

β xα0+α + a2x
l1−2
α xl2+1

β (5.6)

with a1, a2 ∈ C×. Then since e0 and xα0+α belong to Jj+1,j+1, (5.5) is inductively

proved from x
ρj+1,j+1(α)+1
α ∈ Jj+1,j+1.

Finally, let us show that (Ci,j) with 0 ≤ i < j implies (Ci+1,j). For this, it
suffices to show the ad(ei)-invariance of the left U(n̂i)-ideal

Ii,j = U(n̂i)

( ∑
α∈∆re

+\{αi}

Cxρi,j(α)+1
α +

∑
(α,β)∈sisi+1···sj−1(Sj)

1≤k<ρi,j(α)/2+1

Cxρi,j(α)−2k+1
α xk

β+th[t]

)

by Lemma 5.3. When 0 < i < j, it is checked similarly as above that, if β ∈ ∆̂re
+ is

in the form β = lα + αi with α ∈ ∆̂+ and l ∈ Z>0, then ρi,j(β) = 0 holds. Since
[xα, xβ ] = 0 if (α, β) ∈ si · · · sj−1Sj , the ad(ei)-invariance of Ii,j follows from this,

as desired. Assume i = 0. Using ∆̂re
+(0, j) = ∆̂re

+(j+1, j+1), it is similarly checked

that, if β ∈ ∆̂re
+ is in the form β = lα+α0 with α ∈ ∆̂+ and l ∈ Z>0, then we have

ρ0,j(β) = 0, or

l = 2, α = α1,q−1 and β = −(αq,n + αq,n−1) + δ

for some j < q ≤ n. In the latter case, we see from (5.6) that

U(n̂0)

( ∑
0≤k<ρ0,j(α)/2+1

Cxρ0,j(α)−2k+1
α xk

β + xα0+α

)
is ad(e0)-invariant. Now the ad(e0)-invariance of I0,j is easily proved from (5.4).
The proof is complete.

5.2. q-characters. Here we recall some results on q-characters, which are necessary
in Subsections 5.3 and 5.4. For a finite-dimensional ℓ-weight module V , define its
ℓ-weight set wtℓV and q-character chqV by

wtℓV = {ρ ∈ Pq | Vρ ̸= 0} and chqV =
∑
ρ∈Pq

(dimVρ)ρ ∈ Z[Pq]

respectively. For finite-dimensional ℓ-weight modules V1, V2, we have chqV1 ⊗ V2 =
chqV1 · chqV2 [FR99]. For i ∈ I and a ∈ C(q)×, define αi,a ∈ Pq by

αi,a = π
(i)
2,a

∏
j ̸=i

(
π

(j)
−cj,i,a

)−1

.

Let Q+
q denote the monoid generated by {αi,a | i ∈ I, a ∈ C(q)×} and Qq the

corresponding abelian group. We write ρ ≤ ν for ρ,ν ∈ Pq if νρ−1 ∈ Q+
q holds.

Proposition 5.5 ([FM01, Theorem 4.1]). For every ρ ∈ P+
q , ν ∈ wtℓLq(ρ) implies

ν ≤ ρ.

The following proposition is proved from the study of Uq(Lsl2)-modules in [CP91,
CP95b, FR99].
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Proposition 5.6. Assume that g = sl2. Then the following statements hold, where
we omit the index i.
(i)

chqLq(πm,a) = πm,a

∑
0≤k≤m

∏
0≤j≤k−1

α−1
aqm−2j .

(ii) If V is an ℓ-highest weight module with ℓ-highest weight πm,a, then we have

chqLq(πm,a) ≤ chqV ≤
∏

1≤j≤m

chqLq(ϖaqm−2j+1) = πm,a

∏
1≤j≤m

(1 +α−1
aqm−2j+2),

where the inequality f ≤ g means g − f ∈ Z≥0[Pq]. In particular, the dimension of
each ℓ-weight space of V is at most 1.

Recall the map Pq ∋ ρ 7→ ρJ ∈ Pq,J for a subset J ⊆ I defined in Subsection
3.3. The following proposition is an easy consequence of results in [FM01, Section
3].

Proposition 5.7. Let V be a finite-dimensional ℓ-weight module, and J ⊆ I a
subset such that gJ is simple. For an ℓ-weight vector v ∈ Vρ, let W = Uq(LgJ)v.
Assume that a vector w ∈ W is an ℓ-weight with respect to Uq(LhJ), and its ℓ-weight
is

ρJ

∏
i∈J,a∈C(q)×

(αi,a)
v(i,a)
J ∈ Pq,J

with some integers v(i, a). Then w is also ℓ-weight with respect to Uq(Lh), and its

ℓ-weight is ρ
∏

α
v(i,a)
i,a .

Let j ∈ I. We say ρ =
∏

i∈I,a∈C(q)× ϖ
u(i,a)
i,a ∈ Pq is j-dominant if u(j, a) ≥ 0

holds for all a ∈ C(q)×. The following proposition was established by Hernandez.

Proposition 5.8 ([Her08, Lemma 5.6]). Let ρ ∈ P+
q , and ν ∈ wtℓLq(ρ) \ {ρ}.

Then there exist some j ∈ I and ν ′ ∈ wtℓLq(ρ) such that

(i) ν′ is j-dominant,

(ii) ν′ ∈ ν
∏

a∈C(q)× α
Z≥0

j,a ,

(iii)
(
Uq(Lgj)Lq(ρ)ν

)
∩ Lq(ρ)ν′ ̸= 0.

Definition 5.9 ([FM01]). Let ρ ∈ Pq and assume that there is some a ∈ C× such

that ρ =
∏

i∈I,k∈Z ϖ
u(i,k)

i,aqk
with some u(i, k) ∈ Z. We say ρ is right-negative if

kmax = max{k ∈ Z | u(i, k) ̸= 0 for some i ∈ I} satisfies u(i, kmax) ≤ 0 for all i ∈ I.

Note that if ρ is right-negative, ρ does not belong to P+
q . We easily see that

α−1
i,a are right-negative.

Lemma 5.10 ([FM01]). (i) If ρ is right-negative and ν ≤ ρ, then ν is also right-
negative.
(ii) If ρ ∈ wtℓLq(ϖi,a) \ {ϖi,a}, then ρ ≤ ϖi,aα

−1
i,aqi

. In particular ρ is right-

negative by (i).

5.3. Proof of M(λ) ↠ L(π). Let vπ ∈ Lq(π) be an ℓ-highest weight vector. For
1 ≤ i ≤ j ≤ n and p ∈ Z, define vp(i, j) ∈ Lq(π) by

vp(i, j) =

{
x−
i,px

−
i+1,0x

−
i+2,0 · · ·x

−
j,0vπ if π satisfies (I),

x−
j,px

−
j−1,0x

−
j−2,0 · · ·x

−
i,0vπ if π satisfies (II),

where (I) and (II) are the conditions in Theorem 3.6. Let {ai}i∈I be the sequence
of rational functions in Theorem 3.6 associated with π. The following lemma is
crucial in this subsection.
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Lemma 5.11. Let 1 ≤ i ≤ j ≤ n.
(i) For all p ∈ Z, vp(i, j) is a scalar multiple of v0(i, j).
(ii) The vector v0(i, j) is a simultaneous Uq(Lh)-eigenvector, and its ℓ-weight is

π
∏

i≤k≤j α
−1
k,akq

mk
k

.

Let us assume this lemma for a moment. To prove M(λ) ↠ L(π), we need
to check that the vector vπ = 1 ⊗ vπ ∈ L(π) satisfies the defining relations of
M(λ). Using the commutativity [x−

k,r, x
−
l,s] = 0 for |k − l| ≥ 2, we easily see that

Proposition 5.11 (i) implies

[x−
i,1, [x

−
i+1,0, . . . , [x

−
j−1,0, x

−
j,0]. . .]]vπ ∈ Vq(λ) ⊆ Lq(π) if π satisfies (I), and

[x−
j,1, [x

−
j−1,0, . . . , [x

−
i+1,0, x

−
i,0]. . .]]vπ ∈ Vq(λ) ⊆ Lq(π) if π satisfies (II)

for all 1 ≤ i ≤ j ≤ n. Here Vq(λ) denotes (by abuse of notation) the Uq(g)-
submodule of Lq(π) generated by vπ. By the definition of L(π), this implies

(fα ⊗ t)vπ ∈ V (λ) ⊆ L(π) if α = αi + · · ·+ αj ∈ ∆1
+.

Since the restriction of the surjection L(π) ↠ V (λ, 0) in Lemma 4.3 (i) on V (λ) is
an isomorphism, this implies (fα ⊗ t)vπ = 0 for all α ∈ ∆1

+. The other relations
are proved from this relation or follow from Lemma 4.3. The assertion is proved.

The following lemma is shown in [CP95a, Lemma 3.6].

Lemma 5.12. Assume g is of type ABC. Let i ∈ I, µ ∈ P+ such that ⟨α∨
j , µ⟩ = 0

for i < j < n, and ρ ∈ P+
q such that Lq(ρ) is a minimal affinization of Vq(µ).

Define vp(i, j) ∈ Lq(ρ) similarly as above. Then for all i ∈ I and p ∈ Z, the vector
vp(i, n) is a scalar multiple of v0(i, n).

We verify Lemma 5.11 by the induction on j − i, assuming π satisfies condition
(I). (The proof for condition (II) is similar). In view of Corollary 3.10, the case
i = j follows from Proposition 5.6. Let i ≤ j − 1. Since mj = 0 implies vp(i, j) = 0

for p ∈ Z, we may assume mj > 0. Set ν = π
∏

i+1≤k≤j α
−1

k,akq
mk
k

, and let W =

Uq(Lgi)v0(i+1, j) ⊆ Lq(π). By the induction hypothesis, W is an ℓ-highest weight
Uq(Lgi)-module, and its ℓ-highest weight with respect to Uq(Lhi) is

νi(u) = πi(u) ·
(
α−1

i+1,ai+1q
mi+1

)
i
(u) =

∏
1≤k≤mi−ci+1,i

(1− aiq
mi−2k+1
i u).

Hence by Proposition 5.6 (ii), each ℓ-weight space of W is 1-dimensional. Let us
assume that the assertion (i) of Lemma 5.11 does not hold, which implies that the
dimension of the weight space Wλ−

∑
i≤k≤j αk

is at least 2. Hence by Proposition 5.7,

we can take Ys ∈
⊕

p C(q)x
−
i,p (s = 1, 2) such that 0 ̸= Ysv0(i+ 1, j) ∈ Lq(π)να−1

i,bs

for some bs ∈ aiq
Z
i with b1 ̸= b2. Let l = min{i < l′ < j | ml′ > 0}, which exists by

Lemma 5.12 and Corollary 3.10. We easily see that να−1
i,bs

is not (l+ 1)-dominant,

and hence there exists some ps ∈ Z such that x+
l+1,ps

Ysv0(i + 1, j) ̸= 0. From this

and the induction hypothesis, we see that Ysx
−
i+1,0 · · ·x

−
l,0v0(l + 2, j) is a nonzero

ℓ-weight vector, and its ℓ-weight is

να−1
i,bs

αl+1,al+1q
ml+1 = πα−1

i,bs

∏
i+1≤k≤j,k ̸=l+1

α−1
k,akq

mk .

by Proposition 5.5. By repeating this argument we finally see that Ysv0(i + 1, l)
is a nonzero ℓ-weight vector with ℓ-weight πα−1

i,bs

∏
i+1≤k≤l α

−1
k,akq

mk for s = 1, 2.

Since b1 ̸= b2, this contradicts with Lemma 5.12, and the assertion (i) is proved.
Now the assertion (ii) is easily proved from (i) and the induction hypothesis. The
proof is complete.
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Remark 5.13. In type B, M(λ) ↠ L(π) is also proved in [Mou10, Proposition
3.22] using the Frenkel-Mukhin algorithm.

5.4. Proof of L(π) ↠ D(w◦ξ1, . . . , w◦ξn). We begin with the proof of the
following lemma.

Lemma 5.14. For every i ∈ I, m ∈ Z≥0 and a ∈ C(q)×,

L
(
π(i)
m,a

) ∼= D
(
−mϖi +

⌈
dim/2

⌉
Λ0

)
.

Proof. If dim/2 ∈ Z, the assertion follows from [CM06b, Proposition 5.1.3] (see
also [FL07, Theorem 4]). Hence we may assume dim/2 /∈ Z, which is equivalent
to that αi is short and m = 2k + 1 for some k ∈ Z≥0. Then there is an injective
homomorphism

L(π(i)
m,a) ↪→ D(−2ϖi + Λ0)

⊗k ⊗D(−ϖi + Λ0)

by [CM06b, Theorem 2.2], which implies

L(π(i)
m,a)

∼= D(−2ϖi + Λ0, . . . ,−2ϖi + Λ0︸ ︷︷ ︸
k

,−ϖi + Λ0).

Since w◦w[1,i](Λ0) = −2ϖi+Λ0 and w◦w[1,i](ϖi+Λ0) = −ϖi+Λ0 hold by Lemma
4.9 (i), we have

D(−2ϖi+Λ0, . . . ,−2ϖi+Λ0︸ ︷︷ ︸
k

,−ϖi+Λ0) ∼= Fw◦w[1,i]

(
D(Λ0)

⊗k⊗D(ϖi + Λ0)
)

∼= D
(
−mϖi + (k + 1)Λ0

)
by Proposition 2.7. The assertion is proved. □

Hence in type B, L(π) ↠ D(w◦ξ1, . . . , w◦ξn) follows from [Mou10, Proposition
3.21]. (Note that this proposition does not imply our assertion in type C.)

In the rest of this subsection, we assume that g is of type C. For the proof of
the assertion in this type, we need the following lemma.

Lemma 5.15. Let 1 ≤ r < s ≤ n−1, and assume that ρ is an element of P+
A such

that Lq(ρ) is a minimal affinization of Vq(ϖr +ϖs). Then we have

L(ρ) ∼= D(−ϖr −ϖs + Λ0).

Assuming this lemma for a while, we shall prove L(π) ↠ D(w◦ξ1, . . . , w◦ξn) for
π satisfying condition (I). (The proof for condition (II) is similar.) The proof is
carried out in a similar line as that of [Mou10, Proposition 3.21]. First we recall
the following theorem, which is obtained by taking the dual of [Cha02, Theorem
5.1] and using Lemma 3.3.

Theorem 5.16. Let i1, . . . , ip ∈ I, b1, . . . , bp ∈ C(q)×, l1, . . . , lp ∈ Z≥0, and as-
sume that

brq
−lr
ir

/∈ qZ>0bsq
−ls
is

for all r < s. (5.7)

Then the submodule of Lq

(
π

(i1)
l1,b1

)
⊗· · ·⊗Lq

(
π

(ip)
lp,bp

)
generated by the tensor product

of ℓ-highest weight vectors is isomorphic to Lq

(∏p
k=1 π

(ik)
lk,bk

)
.

The following is an easy consequence of this theorem.

Corollary 5.17. Assume that i1, . . . , ip ∈ I, b1, . . . , bp ∈ C(q)×, and l1, . . . , lp ∈
Z≥0 satisfy (5.7). Then for any sequence 0 = k0 < k1 < . . . < kr−1 < kr = p,

the submodule of Lq

(∏k1

k=1 π
(ik)
lk,bk

)
⊗ · · · ⊗ Lq

(∏p
k=kr−1+1 π

(ik)
lk,bk

)
generated by the

tensor product of ℓ-highest weight vectors is isomorphic to Lq

(∏p
k=1 π

(ik)
lk,bk

)
.
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For each i ∈ I, define π(i) ∈ P+
q by

π(i) =

π
(i)
mi−pi,aiqpi

if i♭ = 0,

π
(i♭)

p
i♭
,a

i♭
q
−m

i♭
+1π

(i)
mi−pi,aiqpi

otherwise.

By Corollary 5.17, we have an injective Uq(Lg)-module homomorphism

Lq(π) → Lq

(
π(n)

)
⊗ · · · ⊗ Lq

(
π(2)

)
⊗ Lq

(
π(1)

)
,

which induces a UA(Lg)-module homomorphism

LA(π) → LA

(
π(n)

)
⊗ · · · ⊗ LA

(
π(2)

)
⊗ LA

(
π(1)

)
.

By applying C⊗A and taking the pull-back, we have a g[t]-module homomorphism

L
(
π
)
→
⊗1

i=n L
(
π(i)

)
mapping vπ to vπ(n)⊗· · ·⊗vπ(1) . SinceD(w◦ξn, . . . , w◦ξ1) ∼=

D(w◦ξ1, . . . , w◦ξn), to complete the proof it suffices to show for each 1 ≤ i ≤ n the
existence of a surjective homomorphism L

(
π(i)

)
↠ D(w◦ξi). If i♭ = 0 or pi♭ = 0,

this follows from Lemma 5.14. Assume that pi♭ = 1, and let

π1 = π
(i)

mi−pi−1,aiqpi−1 , π2 = ϖ
i♭,a

i♭
q
−m

i♭
+1ϖi,aiqmi−1 .

We have an inclusion Lq

(
π(i)

)
↪→ Lq(π1)⊗Lq(π2) by Corollary 5.17, and then using

the same argument as above, we obtain a g[t]-module homomorphism L
(
π(i)

)
→

L
(
π1

)
⊗L(π2). By Lemmas 5.14 and 5.15, this induces a surjective homomorphism

L
(
π(i)

)
↠ D

(
− (mi − pi − 1)ϖi +

1

2
(mi − pi − 1)Λ0,−ϖi♭ −ϖi + Λ0

)
.

By Proposition 2.7 and Lemma 4.9, we see that the right-hand side is isomorphic
to

Fw◦w[1,i]

(
D
(1
2
(mi − pi − 1)Λ0

)
⊗D

(
ϖi−i♭ + Λ0

)) ∼= D(w◦ξi),

and hence the assertion is proved.
It remains to show Lemma 5.15. Fix 1 ≤ r < s ≤ n− 1.

Lemma 5.18. As g-modules,

D(−ϖr −ϖs + Λ0) ∼=
r⊕

k=0

V (ϖr−k +ϖs−k).

Proof. Let Ĵ = {0, 1, . . . , s − 1} ⊆ Î and J = {1, . . . , s − 1} ⊆ I, and define ĝĴ by

the Lie subalgebra of ĝ generated by {ei, fi | i ∈ Ĵ} and ĥ. We also define gJ ⊆ g
similarly. Note that we have

D(−ϖr −ϖs + Λ0) = Fw◦w[1,s]
D(ϖs−r + Λ0).

Let wJ
◦ be the longest element of the Weyl group of gJ . Then FwJ

◦w[1,s]
D(ϖs−r+Λ0)

is a simple ĝĴ -module with highest weight ϖs−r + Λ0, and therefore we have

FwJ
◦w[1,s]

D(ϖs−r + Λ0) ∼=
r⊕

k=0

VJ(ϖr−k +ϖs−k)

as gJ -modules, where VJ(ν) denotes the simple highest weight gJ -module with
highest weight ν. Since VJ (ν) are Demazure modules for g, Fw◦wJ

◦
VJ(ν) = V (ν)

holds. Hence the assertion is proved. □

We also need the following lemma.
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Lemma 5.19. There exists an exact sequence

0 → Lq(ϖr,aϖs,aqs−r+2) → Lq(ϖr,a)⊗ Lq(ϖs,aqs−r+2)

→ Lq(ϖr−1,aqϖs+1,aqs−r+1).

Assuming this for a moment, we shall complete the proof of Lemma 5.15. Take
ρ as in Lemma 5.15. By the results in Subsections 5.1 and 5.3, we have

D(−ϖr −ϖs + Λ0) ↠ M(ϖr +ϖs) ↠ L(ρ).

Hence it suffices to show that dimL(ρ) ≥ dimD(−ϖr − ϖs + Λ0). Recall that
every fundamental module Lq(ϖi,a) is simple as a Uq(g)-module (in type C), and
it follows for 1 ≤ i < j ≤ n that

Vq(ϖi)⊗ Vq(ϖj) (5.8)

∼=

{⊕i
k=0 Vq(ϖi−k +ϖj−k)⊕

⊕i
k=1 Vq(ϖi−k +ϖn−|n−j−k|) if j ≤ n− 1,⊕i

k=0 Vq(ϖi−k +ϖn−k) if j = n.

By Theorem 3.6, ρ = ϖr,aϖs,aqε(s−r+2) for some a ∈ C(q)× and ε ∈ {±1}. Let us
assume ε = +1 first. Using

Lq(ϖr−1,aqϖs+1,aqs−r+1) ↪→ Lq(ϖr−1,aq)⊗ Lq(ϖs+1,aqs−r+1),

we see from Lemma 5.19 and (5.8) that Lq(ρ) contains Vq(ϖr−k+ϖs−k) (0 ≤ k ≤ r)
as simple Uq(g)-components. Hence dimL(ρ) = dimLq(ρ) ≥ dimD(−ϖr−ϖs+Λ0)
holds by Lemma 5.18, as desired. Since dimLq(ρ) = dimLq(

∗ρ) holds by Lemma
3.3, the case ε = −1 is also proved.

Now let us prove Lemma 5.19. It suffices to show that

wtℓ

(
Lq(ϖr,a)⊗ Lq(ϖs,aqs−r+2)

)
∩ P+

q =
{
ϖr,aϖs,aqs−r+2 ,ϖr−1,aqϖs+1,aqs−r+1

}
and each dominant ℓ-weight space is 1-dimensional. Assume that ρ1 ∈ wtℓLq(ϖr,a)
and ρ2 ∈ wtℓLq(ϖs,aqs−r+2) satisfy ρ1ρ2 ∈ P+

q . If ρ2 ̸= ϖs,aqs−r+2 , it follows that

ρ1ρ2 ≤ ϖr,aϖs,aqs−r+2α−1
s,aqs−r+3

by Lemma 5.10 (ii), and therefore ρ1ρ2 is right-negative by Lemma 5.10 (i). Hence
we have ρ2 = ϖs,aqs−r+2 .

We need to show one more lemma. For ν ∈ wtℓLq(ϖr,a), define ui(ν) ∈ Z≥0 for
i ∈ I by ϖr − wt(ν) =

∑
i∈I ui(ν)αi. Let u(ν) =

∑
i∈I ui(ν) ∈ Z≥0.

Lemma 5.20. Let r ≤ k ≤ n, and assume that ν ∈ wtℓLq(ϖr,a) satisfies uk(ν) > 0

and ul(ν) = 0 for l > k. Then ν ≤ ϖr,aα
−1
k,aqp(k) holds, where we set p(k) =

k − r + 1 + δkn.

Proof. We prove this by the induction on k. The case k = r follows from Lemma
5.10 (ii). Let k > r, and assume that there is an element ν such that uk(ν) > 0,
ul(ν) = 0 for l > k, and ν ≰ ϖr,aα

−1
k,aqp(k) . We may assume that u(ν) is minimal

among such elements. By Proposition 5.8, there exists j ∈ I and ν ′ ∈ wtℓLq(ϖr,a)
satisfying the conditions (i)–(iii). If uk(ν

′) > 0, then ν ′ also satisfies the assumption
of ν, which contradicts the minimality of u(ν). Hence j = k and uk(ν

′) = 0 follow.
We easily see that uk−1(ν) > 0, and therefore uk−1(ν

′) > 0 also holds. Hence by
the induction hypothesis, ν ′ ≤ ϖr,aα

−1
k−1,aqk−r holds. On the other hand, we see

from the weight set of Lq(ϖr,a) ∼= Vq(ϖr) that uk−1(ν
′) = 1, which implies

ν ′ ∈ ϖr,aα
−1
k−1,aqk−r

∏
l<k−1,b∈C(q)×

α
Z≤0

l,b .
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Thus we have ν ′
k(u) = 1−aqk−r. Then using Propositions 5.6 and 5.7, we see from

the condition (iii) that ν = ν ′α−1
k,aqk−rqk

≤ ϖr,aα
−1
k,aqp(k) , which is a contradiction.

The assertion is proved. □

This lemma implies that, if ν ∈ wtℓLq(ϖr,a) satisfies uk(ν) > 0 for some k > s,
then νϖs,aqs−r+2 is right-minimal. Hence uk(ρ1) = 0 holds for all k > s. Since
ρ1ϖs,aqs−r+2 ∈ P+

q implies wt(ρ1) +ϖs ∈ P+, this implies

wt(ρ1) ∈ {ϖr, ϖr−1 −ϖs +ϖs+1}.

Then we see from [CM06a, Theorem 2.7] that

ρ1 ∈ {ϖr,a,ϖr−1,aqϖ
−1
s,aqs−r+2ϖs+1,aqs−r+1}

and dimLq(ϖr,a)ρ1 = 1. Now the assertion is obvious. The proof is complete.
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