DEMAZURE MODULES AND GRADED LIMITS OF MINIMAL
AFFINIZATIONS

KATSUYUKI NAOI

ABSTRACT. For a minimal affinization over a quantum loop algebra of type
BC, we provide a character formula in terms of Demazure operators and mul-
tiplicities in terms of crystal bases. We also provide a simple formula for the
limit of characters. These are achieved by verifying that its graded limit (a
variant of a classical limit) is isomorphic to some multiple generalization of
a Demazure module, and by determining the defining relations of the graded
limit.

1. INTRODUCTION

Let g be a complex simple Lie algebra of rank n, and Lg = g ® C[t,t71] the
associated loop algebra. The theory of finite-dimensional representations of the
quantum loop algebra U, (Lg) has been intensively studied from various viewpoints
in recent years. For example, see the survey [CH10] and references therein.

In [Cha95], Chari introduced the notion of minimal affinizations. An affinization
V of a simple Uy(g)-module V is by definition a simple U,(Lg)-module whose
highest weight is equal to that of V. T'wo affinizations of V" are said to be equivalent
if they are isomorphic as Uy(g)-modules. Then one can define a partial ordering on
the set of equivalence classes of affinizations of V', and minimal ones with respect
to this ordering are called minimal affinizations. An almost complete classification
of minimal affinizations was done by Chari and Pressley in [Cha95, CP95a, CP96a,
CP96b], and in particular it was proved that, if g is of type ABCFG, for every
simple U,(g)-module its minimal affinization is unique.

Given a minimal affinization, one can consider its classical limit. By restricting
it to the current algebra g[t] = g® CJ[t] and taking a pull-back, a graded g[t]-module
is obtained. In this article we call this the graded limit. Graded limits are quite
important for the study of minimal affinizations since the U,(g)-module structure
of a minimal affinization is completely determined by the U(g)-module structure of
its graded limit. This idea was applied in [Cha0l, CMO06b] to Kirillov-Reshetikhin
modules, which are minimal affinizations whose highest weights are multiples of a
fundamental weight.

The graded limits of general minimal affinizations were first studied by Moura
in [Moul0]. In the article, he defined some two g[t]-modules using the graded limits
of Kirillov-Reshetikhin modules, and conjectured in all types that the graded limit
of a minimal affinization is isomorphic to them. This conjecture was proved in type
A and partially in type BD in the article, and partially in type Fg in [MP11].

In the present paper we study in more detail the graded limits of minimal affiniza-
tions in type ABC'. These are the classical types in which minimal affinizations are
unique. (Our main interest is in type BC since type A is well-known.)

To introduce our results, let us define some g[t]-modules. Denote by g the non-
twisted affine Lie algebra associated with g, and by b C g the standard Borel
subalgebra. Let &;,...,&, € P be a sequence of weights of g, and assume that
each &; belongs to the affine Weyl group orbit WA’ of a dominant integral weight
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AP € P+. We define a b-module D(&,...,&) by
D(&,.... &) =UD)(ve, ® - ®vg,) CV(A) @ @ V(AP),

where V(A) is the simple highest weight §-module with highest weight A, and
ve is an extremal weight vector with weight £&. When p = 1, D(&) is called a
Demazure module. It is easily seen that, if each &; is dominant with respect to g,
then D(wo&y, ..., wo&p) is g[t]-stable, where w, is the longest element of the Weyl
group of g.

Let V,4()) be the simple U,(g)-module with highest weight A € P*, and assume
that Ly(7r) is a minimal affinization of V() (here 7 denotes the ¢-highest weight.
See Subsection 3.2). By L(m) we denote its graded limit. Our first main theorem
is the following (Theorem 4.5).

Theorem 1.1. As a g[t]-module, L(w) is isomorphic to D(wo&y, ..., we&,) with
suitable g-dominant &1, ...,&, € P.

When g is of type AB and A = ), m;w; (w; are the fundamental weights of g),
we set & = myw; + m,Ag, where m;, = [m;/2] if g is of type B and i = n, and
m); = m; otherwise. Here Ag is the fundamental weight of g associated with the
additional index 0. In type C, we need to choose &;’s in a little more complicated
way. For the detail see Subsection 4.2.

Let g =n; @b dn_ be a triangular decomposition of g, and denote by «; and
o the simple roots and coroots respectively. Our second main theorem gives the
defining relations of L(m) (Theorem 4.6).

Theorem 1.2. The graded limit L(w) is isomorphic to the cyclic g[t]-module gen-
erated by a nonzero vector v with relations

nyftlv =0, (h®t*)v = ds0(h, \)v for h € h,s >0, f;a"'v’AHlv =0 for1<i<n,
t*n_[tlo=0, and (fa®@t)v =0 for a € AL,
where Al+ is a subset of the positive roots Ay defined by

Ai_ = {a€A+ ‘ o= Z n;o; with ng; <1 for alli}.

1<i<n

These theorems are motivated by the Moura’s conjecture stated above. In fact
when g is of type B, the conjecture is proved from our theorems. More precisely,
in type B the modules appearing in the theorems are isomorphic to the ones de-
fined in [Moul0], and therefore the two theorems and his conjecture are equivalent.
(They are not in type C, and the module D(wo&1, ..., w.§,) is essentially needed
to formulate Theorem 1.1 in this type.) It should also be noted that Theorem 1.2,
together with a result of [Her07], gives a proof to [CG11, Conjecture 1.13] in type
B.

The module D(wo&y, ..., w.€,) can be constructed in another way as follows.
For a b-submodule D of a g-module V and an index i, let F;D be the (b ® Cf;)-
submodule of V' generated by D. For an element w € W with reduced expression
w =84 -8, set FyyD =F; - F; D. One can naturally extend F, to w € WXy
(see Section 2.2), where X is the group of Dynkin diagram automorphisms. For each
1 <4 < n,let A" be the dominant integral weight satisfying & € WA?. Then for
suitable wy, ..., w, € Wxy (see Subsection 4.3), it follows that

D(woéy, ..., we&) (1.1)
= Fuou, (D(Al) ® Fy, (D(AQ) ® Q@ Fy,_, (D(A”_l) ® Fw"D(A")) ) ))
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The character of such a module is given by [LLMO02] in terms of Demazure operators
D, (see Subsection 2.2). Since the character of L, () is equal to that of L(w), we
obtain the following character formula as a corollary of Theorem 1.1 (Corollary
4.10).

Corollary 1.3.
ch Ly(7) = Dwow, (eA1 - Du, (eA2 Dy, (61\"*1 Dy, (eA")>_ ) ))

where § is the null root.

)
eho=ed=1

The right-hand side of (1.1) has a crystal analogue. Using this, we can express
the U, (g)-module multiplicities of L, (7r) as the number of some elements in a crystal
basis (Corollary 4.11). We would like to emphasize that the crystal basis appearing
here is (essentially) of finite type (see Remark 4.12).

On the other hand, we deduce from Theorem 1.2 the following formula for the
limit of normalized characters (Corollary 4.13).

Corollary 1.4. Let J C {1,...,n}, and A1, Aa,... be an infinite sequence of el-
ements of PT such that limg 0o (Ag, ) = 00 if i ¢ J and (Mg, ) = 0 for all
k otherwise. Assume that Ly(my) is a minimal affinization of Vy(Ax) for each k.
Then limy,_, o €~ ch Ly(my) exists, and

1 1
. A _ —_—
kli)n;oe kch Ly(mg) = | I 1_eo H 1—ea’
aeA\AT acA\ALY

where A{ = Ay N (ZieJZO‘i> and Ai_’J ={aec Ay |a=>,n0; withn; <
1ifi¢ J).

This corollary, together with [MY12, Corollary 5.6], gives a proof to [loc. cit.,
Conjecture 6.3].

The theorems are established by showing one by one the existence of three sur-
jective homomorphisms

D(woéi, ..., wolpn) = M(N), M(\) — L(xw), L(m)—> D(wo,...,wokn),

where M () denotes the g[t]-module defined in Theorem 1.2. The key idea to verify
the first one is to determine the defining relations of D(wo&1, ..., w.&,) inductively
using the isomorphism (1.1). A main tool to prove the latter two is the theory
of g-characters introduced by Frenkel and Reshetikhin [FR99]. A g¢-character is
a generalization of a usual character which records the dimensions of generalized
eigenspaces (i.e., {-weight spaces) of a U,(Lg)-module with respect to the commu-
tative subalgebra U, (Lb).

In this article we concentrate only on the type ABC. However, (at least a part
of) these results would hold in the other types. These will be studied in future
publications.

It should be noted that a module similar to the right-hand side of (1.1) also
appears in another study of graded limits. In [Naol2], it was proved that the fusion
product of graded limits of Kirillov-Reshetikhin modules is isomorphic to such a
module. This fact was essentially used to prove the X = M conjecture in type AD.

The plan of this article is as follows. In Section 2, after fixing some notation we
define modules D(&q, . .., §,) and study their properties. In Section 3, we review the
theory of finite-dimensional representations of a quantum loop algebra. In Section
4, we state our main theorems and corollaries. Finally in Section 5, we establish our
main theorems by showing the existence of three surjective homomorphisms. For
this we need some results on g-characters, which are also recalled in this section.
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Index of notation

We provide for the reader’s convenience a brief index of the notation which is
used repeatedly in this paper:

2.1: C = (cij)i<ij<n, I, d,y ... dn, 8,0, b, A, AL, ay, @;, P, PY,Q, QT, W,
Wo, €, fa, ¥ (€ A),ny, 97,8, K, d, E, E, 3, £+, ﬁre, ﬁ’f, 0, f, o, €o,
fo, @V (€ A™), Ao, P, P+, Q, Q*, A< v, W, S, W, La, a[t], t*g[t], V()),
V(A a), chyV.

2.2: V(A), ve, D(€1, ..., &), Pi» Fi, Fuy Dy 07

3.1 g;, UQ(L9)7 "L%w kii’ hi,mv Uq(Lni)a Uq(Lb)7 Uq(g)’ Uq(LgJ)v Uq(LbJ)'

3.2: Vy(N), P, @i, Py, W, Vi, Ly(T), U, ©°, .

3.3 wa, Pyss p.

3.4: A, (25)", Ua(Lg), PL, La(r), Ly(m)

i,

~—

4.1: L(7), Ug.
4.2: 51, ‘e ,fn, ib, Pi, A}F
4.3: w1, .. Wy Wy, AL AT

5.1: M(X), ap.q, vu, D, vp.
5.2: wtg(V), ch,V, a0, v < p.

2. LIE ALGEBRAS

2.1. Notation and basics. Let C = (¢;;)1<s j<n be a Cartan matrix of finite type,
and set I = {1,...,n}. Denote by D = diag(dy,...,d,) the diagonal matrix such
that DC' is symmetric and the numbers dy, ..., d, are coprime positive integers.

Let g be the complex simple Lie algebra associated with C. Fix a Cartan sub-
algebra b and a Borel subalgebra b containing . Let A be the root system, and
A, the set of positive roots. Denote by «; (i € I) the simple roots and by w;
(i € I) the fundamental weights, which are labeled as in [Kac90, Section 4.8]. For
notational convenience, we set wg = 0. Let P be the weight lattice, P the set of
dominant integral weights, @ the root lattice and Q* = Y., Z>oa;. Let W be
the Weyl group and w, the longest element.

For each @ € A, denote by g, the corresponding root space, and fix nonzero
elements e, € go, fo € §_o and a¥ € § such that

[eaafa] = ava [avaea] = 2eq, [avvfa] = _2fa.

We also use the notation e; = eq,, fi = fo, for i € I. Set ny = @a€A+ Jta-
For a subset J C I, denote by g the semisimple Lie subalgebra of g generated by

{ei,fi | 1€ J}
Let 8 € A be the highest root, and denote by (, ) the unique non-degenerate
invariant symmetric bilinear form on g normalized so that (6Y,6Y) = 2. The

restriction of this bilinear form on b induces a linear isomorphism v: h — h*. By
1

(, ) we also denote the bilinear form on h* induced by v—+.
Let g be the non-twisted affine Lie algebra associated with g:
§=9®C[t,t"']® CK ¢ Cd,
where K denotes the canonical central element and d is the degree operator. The
Lie bracket of g is given by
[z @t"+a1 K + bid,y @t" + as K + byd]

= [z,y] @ ™" + nbiy @ t" — mbox @ t™ + My (7, y) K.
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Naturally g is regarded as a Lie subalgebra of g. A Cartan subalgebra 6 and a
Borel subalgebra b are defined as follows:

h=haCKaCd, b=hen, egatC[]
Set ny =ny @ g® tC[t].

We often consider h* as a subspace of §* by setting (K, \) = (d A) = 0 for
Aeb*. Let A be the root system of g, A+ the set of positive roots, A™ the set of
real roots, and Af{f = Arn A+. Denote by § the indivisible imaginary root in A+.
Set f:II_I{O}7 ag=0—0,e0=fotand fo =ey @t . Forazﬁ—l—séeﬁre
with 3 € A and s € Z, define av € h by

2s

(@, @)

v:ﬁv_’_

Denote by Ay € H* the unique element satisfying (K,Ao) = 1 and (h,Ag) =
(d, Ag) = 0, and define P, PT C h* by

P=P®ZA®C§ and P*={reP|(a),\)>0forallicl}.

Let @ = ZiefZai and @* = Ziefzzoai' For \,u € ]3, we write A < p if
p—A€ Qr. Let W be the Weyl group of g, and regard W naturally as a subgroup
of W. Let £: W — Z>( be the length function. Denote by ¥ the group of Dynkin

diagram automorphisms of g. A linear action of ¥ on E* is defined by letting 7 € X
act as follows:

7 1
(i) = arqy foriel, 71(Ao) =) +MAo— 5

5 (@20, @r(0)d

Let W be the subgroup of GL(!) ) generated by W and 3. Since T8; = 87(;)7 holds

forre X and i€ I we have W = W x ¥. We also define an action of ¥ on g by
letting 7 € 3 act as a Lie algebra automorphism given by

(es) = ergpyy (@) =y, T(fi) = foy for i€ T and 7(d) = d+v" (@ (o))

The length function £ is extended on W by setting L(wT) = L(w) for w € W,rex.

Given a Lie algebra a, its loop algebra La is defined by the tensor product
a ® C[t,t!] equipped with the Lie algebra structure given by [z ® f,y ® g] =
[z,y] ® fg. Let aft] and t°a[t] for s € Z~( denote the Lie subalgebras a ® C[t] and
a ® t°CJt] respectively. The Lie algebra a[t] is called the current algebra associated
with a.

Denote by V(X) the simple g-module with highest weight A € P*. For a € C*,
let ev,: Lg — g denote the evaluation map defined by ev,(x ® f) = f(a)x. Denote
by V(A,a) the simple Lg-module defined by the pull-back of V' (\) with respect to
evg, which is called an evaluation module. An evaluation module for g[t] is similarly
defined, and also denoted by V(\,a) (A € P*,a € C).

For a finite-dimensional semisimple h-module V', define the h-character chy V' by

chyV = Z M dim Vy, € Z[h*],
A€

where V\ = {v € V | hv = (h, )\>v for h € h}. For a finite-dimensional semisimple
b module V the h character chAV € Z[b | is defined similarly. We will omit the

subscript b or f) when they are 0bv10us from the context.
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2.2. Demazure modules and generalizations. For each £ € W(ﬁ*‘), we define
a b-module D(¢) as follows: let A be the unique element of P+ such that ¢ e /I/I7A,
and denote by ‘7(A) the simple highest weight g-module with highest weight A. Let
ve € V(A) be an extremal weight vector with weight £, and set D(¢) = U(E)vg C
V(A).

Definition 2.1. The b-module D(¢) is called a Demazure module.

Note that, for i € I, D(€) is f;-stable if and only if (o, &) < 0. In this article
we consider the following generalization of a Demazure module. Let &;,...,&, be a
sequence of elements of W(}gﬂ For each 1 < j < p, let AJ be the element of pt
satisfying £, € WAJ, and define a b-submodule D(¢1, ..., &,) of V(AN ®--- @V (AP)
by

-~

D(fb s 75;0) = U(m(”& X ® vﬁp)'

If (aY,&;) <0 holds for all 1 < j < p, then D(&,...,§,) is fi-stable.

Though it seems difficult to give characters of D(1,...,§p) in general, when the
sequence &1, ...,&, has some special property, the character is given in terms of
Demazure operators. To explain this, let us recall a result in [LLMO02].

Denote by p; for i € T the parabolic subalgebra baC f; € g. For a g-module V,
a b-submodule D of V and i € f, let F;D = U(p;)D C V. Forw € W with reduced
expression w = s, - - - 8;,, we set

F,D=F, ---F;,D.

Though the definition of F,, depends on the choice of a reduced expression, we
will use this by abuse of notation (most of the modules F,, D in this article do not
depend on the choices). For i € I, define a linear operator D; on Z[P] by

f—e ™ si(f)

1—e

Di(f) = ;
where s; acts on Z[P] by s;(e*) = ™). The operator D; is called the Demazure op-
erator associated with i. For w € W and its reduced expression w = s;, - - - §;, , the
operator D,, = D;, ---D;, is independent of the choice of the expression [Kum02].
The following theorem is a reformulation of [Theorem 5|MR1887117 for our setting
(note that D(A) is 1-dimensional if A € P*):

Theorem 2.2. For sequences A',... AP of elements of Pt and wi, ..., wp Of
elements of W, we have

chg Py, (D(Al) ® Fu, (D(A2) ®-®F,, (D(AH) ® prD(Ap)) . ))
= Dy, (e/‘l - D, <€A2 Dy, , (e/\p—l -pr(eAp)) : )) (2.1)

Remark 2.3. In [LLMO02], the authors studied b-modules Vi,m called generalized
Demazure modules. The b-module in the left-hand side of (2.1) is easily identi-
fied with a generalized Demazure module (see [loc. cit., Subsection 1.1], in which
the authors explain how a Demazure module is identified with a generalized De-
mazure module). Under this identification, the above equality follows from [loc.
cit., Theorem 5].

In some cases, we can construct D(¢y,...,&,) using Fy,’s. To see this, we need
the following lemma.
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Lemma 2.4. Let &;,...,&, be a sequence of elements of /V[7(16+) and i € 1. If
(Y,&;) > 0 holds for all 1 < j < p, then we have

FiD(gla"'agp) = D(‘Sigla"'asigp)'

Proof. Let sly; be the Lie subalgebra of g spanned by {e;, o, fi}. Since e;ve, = 0
and f;vs,¢; = 0 hold for all j, we easily see that

U(E[Q_’i)(vfl R 'ng) - U(ﬁ[Q,i)(USif1 K- vsifp)'
Since D(s;1, ..., 8:&p) is pi-stable, this implies the assertion. O
Let wy, ..., w, be a sequence of elements of W, and denote by wy, ; the element
WyWyy1 -+ Wy € W for 1 <r <t < p We assume that £(wp ) = Z§:1 wy).

Then for every 1 < r <t < pand A € ﬁﬂ if w, = sy, -
expression, then

Sy 1S 8 reduced

v
<aiua Siyyr """ SiN(r)w[T+1,t]A> >0

holds for all 1 < wu < N(r) since £(wy, ) = Z;:T ¢(wj). Hence by applying Lemma
2.4 several times, the following proposition is proved.

Proposition 2.5. Let A',..., AP be a sequence of elements of ﬁ+, and wy, ..., Wwp
a sequence of elements of W such that £(wyy p)) = Z?Zl L(w;). Then we have

Fo, (D(Al) ® F, (D(Az) ®--®F, (D(AH) ®prD(Ap)). _ ))

= D(w[l,l]A17 w[172]A2, ceey w[l’p,l]/\p_l, w[lwp]Ap) . (22)

In conclusion, if there is a sequence wy, ..., w, € W satisfying £; = w[l’j]Aj with
A € P+ and Lwp p) = ?:1 £(w;), then the character of D(1,...,§p) is given
by Theorem 2.2 and Proposition 2.5.

For later use, we need to generalize the above results for elements of W. For
7 € ¥ and a g-module V, let us denote by F,V the g-module {v” | v € V}
with 7(z)v™ = (zv)” for z € g and v € V. Note that if v € V¢ (€ € ﬁ), then v™ €
(F;V)re. Fora b-submodule D of V, let F, D denote the b-submodule {v” | v € D}
of F.V. By definition we have F.F; = F.;F-. Set Fyy, = Fyy I’y for w € W and
TEX.

Lemma 2.6. For a sequence &1,...,&, of elements of W(ﬁ"‘), we have
F.D(&,...,&) 2 D(1&,...,7,).

Proof. Tt is easy to see that F,.V(A) = V(rA) for A € P+. Let A',..., AP € Pt be
the elements such that £; € WA7. We have

EVAY®- - @VAP) =2 FEVAY @ - @ F,V(AP)
> V(rA) ® - @ V(TAP),

and this isomorphism maps (ve, ® - ®vg, )" to a nonzero scalar multiple of v,¢, ®
-++ @ vr¢,. Hence the assertion follows. O

Now the following proposition is an easy generalization of Proposition 2.5 (wy,. 4
are defined as above).
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Proposition 2.7. Let A',..., AP be a sequence of elements of ]3+, and wy, ..., wp
a sequence of elements of W such that £(wy p)) = ?:1 L(w;). Then we have

Fo, (DAY @ Py (D) & - @ By, (DAP) ® F,, D))
= D(w[lvl]Al, w[172]A27 - 7U}[17p_1]Ap_1’ w[Lp]Ap).

For 7 € %, define a linear operator D, on Z[P] by D,(e*) = ™. Obviously
chF.D = DTchD holds, and we have D.D; = D,;D, [FL06, Lemma 4]. Set

Dwr = DD, for w € W and 7 € ¥. Now the following corollary is obvious from
Theorem 2.2.

Corollary 2.8. For sequences A',... AP € P+ and Wi, ..., Wp € W, the equality
(2.1) holds.
3. QUANTUM LOOP ALGEBRAS

3.1. Definitions and basics. Let C(gq) denote the ring of rational functions in an
indeterminate ¢. Set ¢; = ¢% for i € I, and

_qf_q;l s = [s] [s— &) _ [s]qi!
o = S0, ot = Bkt (3] = 5

for | € Z and s,s" € Z>o with s > s’. The quantum loop algebra U,(Lg) is the
associative C(g)-algebra with generators

+1 /. .
ai, (i€l,r€Z), ki'(i€l), hiym (i€l,meZ\{0})
and the following relations (i,5 € I,r,7’ € Z,m,m' € Z\ {0}):

3

kik ' =k 'k =1, iy ki) = [kiy hjm) = [Rims Bjme] = 0,
— :|: ij .+ + 1 +
ki Z‘] mkz =4q; “ Jx] m? [hi:m?xj,r] = i%[mcij]Qixj,rer?
+ _ (/b*
- i, v+’ i, m 1’
[x?:T’xj,r’} = 6“%7
Qi —4q;

+ + icu + + Cij + + + +
xi T-‘rlxj r qi l‘] T'IZ s+l qz xz rx] 41 j,r/+1‘ri,r’

2 Z o gt at + _ e
{ ] ey Tireu Tir Ciremyny  Firaw 0 ifi#j

c€G k=0

for all sequences of integers 71, ...,r,, where s = 1 —¢;;, & is the symmetric group
on s letters, and qﬁii,r’s are determined by equating coefficients of powers of u in the

formula
Z¢zir k;tlexp< *qz Zhvir’u >7

and ¢ = =0 for r > 0. The algebra U,(Lg) is 1sornorphlc to the quotient of the
quantum affine algebra Ué(ﬁ) by the ideal generated by a certain central element
[Dri87, Bec94]. Denote by U,(Lny) and U, (L) the subalgebras of U,(Lg) gener-
ated by {xﬁ |i€I,r€Z}and {kf' h, |i€I,meZ\{0}} respectively. Then
we have

Uq(Lg) = Uy(Ln_)Uq(Lb)Uy(Lin ) (3.1)
by the existence of a Poincaré-Birkhoff-Witt type basis [Bec94]. Denote by U,(g)
the subalgebra generated by {:vzi07 kil | i € I'} which is isomorphic to the quantized
enveloping algebra associated with g For a subset J C I, let Uy(Lg,) denote the
subalgebra generated by {ki*, h; .,z is £ lieJreZ\{0},scZ}. Wealso define
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U, (Lb ) in an obvious way. When J = {i} for some ¢ € I, we simply write U, (Lg;)
and U, (Lb;).

The algebra U, (Lg) has a Hopf algebra structure [Lus93, CP94]. In particular if
V and W are U,y(Lg)-modules, then V @ W and V* are U,(Lg)-modules, and we
have (V@ W)* = W*® V*.

3.2. Finite-dimensional modules. For a U,(g)-module V and A € P, set

V>\—{v€V|kv—qZ A vforze]}
We say V is of type 1 if V satisfies

V=V

AeP

For a finite-dimensional U,(g)-module V of type 1, define its character ch V' by

chV =" e*dimVy € Z[P).
AEP

The category of finite-dimensional U,(g)-modules of type 1 is semisimple. For
A € P*, let V,()\) denote the U,(g)-module generated by a nonzero vector vy with
relations

(o) = )<aiv’A>+1v)\ =0 foriel.

x;fom =0, kivyx=gq U, (xw
The module V,(\) is simple, finite-dimensional and of type 1, and every simple
finite-dimensional U, (g)-module of type 1 is isomorphic to some V(A). Moreover,
we have ch V;(X) = ch V(A). For details of these results, see [CP94] for example.
Now we recall the basic results on finite-dimensional U, (Lg)-modules. Let P;‘
denote the monoid (under coordinate-wise multiplication) of I-tuples of polynomials
m = (m1(u),...,m,(u)) such that each ;(u) is expressed as

mi(u) = (1 —aruw)(1 —agu) -+ (1 — agu)

for some k > 0 and a; € C(g)*. In other words, Pqu is a free abelian monoid
generated by {w;, | i € I,a € C(q)*} where

(Wi,a)j(u) _ {1 —au ifj= i.,

1 otherwise.

Denote by P, the corresponding free abelian group, which is called the ¢-weight
lattice. We say p € Py is dominant if p € Pqu . Define a homomorphism wt: P, — P
by

wt(w;,4) = w; foralla € C(q)*.

A nonzero vector v of a Uy(Lg)-module V is said to be an £-weight vector with
l-weight p € Py if

(¢, — Vi)Yo =0 for N>0
holds for all ¢ € I and r € Z>q, where Wfﬂ (1 € I,r € Z>p) are the rational
functions in ¢ determined by the formula

Z% = gfod o) £l ) Z%,ﬂ 7

~ pi(gqiu)

in the sense that the left- and right-hand sides are the Laurent expansions of the
middle term about v = 0 and u = oo, respectively. Denote by V|, the subspace
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consisting of /-weight vectors with f-weight p. If V = @pqu V, holds, we say V
is an £-weight module. For an ¢-weight module V and p € P, we have

Vo= P V.

pEP,
wt(p)=p

Vv
since ¢:0 = k; and '7i+,0 = qgai W) particular, an ¢-weight module is of

type 1 as a Uy(g)-module. We say a U,(Lg)-module V is ¢-highest weight with
(-highest weight vector v and f-highest weight = € P." if v € Vi, Uy(Lny)v = 0
and Uy(Ln_)v = V hold. A standard argument using (3.1) shows that for each
™ € P, there exists a unique simple £-highest weight module L,() with {-highest
weight 7 (up to isomorphism). Denote an ¢-highest weight vector of L,(7) by vg.

Theorem 3.1 ([CP95b]). For every @ € P}, Ly(w) is finite-dimensional and
C-weight. Moreover, every simple finite-dimensional £-weight Uy (Lg)-module is iso-
morphic to Ly(m) for some w € Pq"‘.

Remark 3.2. For every sequence of (not necessarily splitting) polynomials 7w =
(71 (u), ..., m,(u)) such that 7;(0) = 1 (i € I), the simple module L,(m) defined as
above is finite-dimensional. For later use, however, it is more convenient to restrict
our consideration only to Ly(7) with = € P.". In particular, this restriction makes
it easier to apply the theory of g-characters. Since 7 € P; implies that Lq(7) is
¢-weight by [FMO01, Theorem 4.1], the above theorem follows from [CP95b].

Let i — 7 be the bijection I — I determined by a; = —w,(;). We define
endomorphisms 7 — 7* and 7 — *m of the monoid P; by setting

* *
wiﬂ = wi’aq,whv, Wia = wi,a—lq—rvh\/

respectively, where h" is the dual Coxeter number of g and ¥ = max{c;;c;; | i # 7}
By [Cha95, Proposition 1.6], there is a unique involution o of U,(Lg) such that

o(a;,) = —af 0(him) = ~hi—m,  o(ki) = kT o(e7,) = o7 _,

fori € I,r € Z and m € Z\ {0}, and o is also a coalgebra anti-involution. For a
Uq(Lg)-module V', denote by o*V its pull-back with respect to o. As a consequence
of [FMO01, Corollary 6.9], we have the following lemma.

Lemma 3.3. For every w € P;, we have

Lq(m)" = Ly(w*) and 0" Lg(mw) = Le(*m)
as Ug(Lg)-modules.
3.3. Minimal affinizations. Here we recall the definition of minimal affinizations

and their classification when the shape of the Dynkin diagram of g is a straight
line, i.e., g is of type ABCFG.

Definition 3.4 ([Cha95]). Let A € PT.

(i) A simple finite-dimensional U,(Lg)-module L,(7) is said to be an affinization
of V() if wt(m) = A

(ii) Affinizations V and W of V() are said to be equivalent if they are isomorphic
as Uy(g)-modules. We denote by [V] the equivalence class of V.

If V is an affinization of V;()), as a U,(g)-module we have
V=V, & P Vil =)
pn<A

with some m,(V) € Zx¢. Let V and W be affinizations of V,()), and define
my,(V),m, (W) as above. We write [V] < [W] if for all p € P, either of the
following holds:
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(i) mu(V) < myu(W), or

(i) there exists some v > p such that m, (V) < m,(W).
Then < defines a partial ordering on the set of equivalence classes of affinizations
of V() [Cha95, Proposition 3.7].

Definition 3.5 ([Cha95]). We say an affinization V' of V,()) is minimal if [V] is
minimal in the set of equivalence classes of affinizations of V;(A) with respect to
this ordering.

Giveni € I, a € C(q)* and m € Z>¢, define 71'7(73,)# € P} by

m
(1) —
Trm,a = Wiyaqzvl—2k+1.

Note that 71'(()()1 is the unit element of the monoid P, for all i € I and a € C(q)*.
For g of type ABCFG, minimal affinizations are completely classified.

Theorem 3.6 ([Cha95, CP95al). Assume g is of type ABCFG. For each A\ € PT,
there exists a unique minimal affinization of Vy(X) up to equivalence. Moreover for
A= e miwi, Ly(m) is a minimal affinization of Vy(X) if and only if 7 is in the
Jorm [1;c; wy(fl)a with (a;)ier satisfying one of the following conditions:

(I) Forall1 <i<j<mn,ai/aj=[[;cpe;cn(N),

(II) Foralll1 <i<j<mn, a;/a; =]l;<; k(N7
where we set cp(\) = qPmrFderimisitdi—crpii—l

Remark 3.7. (i) Because of different normalizations in some definitions, the condi-
tions of a;’s are rewritten in a slightly different way from the ones in [Cha95, CP95a].
(ii) The situation is more complicated in type DE because of the existence of a
trivalent node, and the number of the equivalence classes of minimal affinizations
of V;(A) differs depending on A. In this case, the classification has been achieved
except for A orthogonal to the trivalent node (see [CP96a, CP96b]). We omit the
details since we do not consider this case in this article.

Definition 3.8. The simple modules Lq(ﬂ'q(,i)’a% which are minimal affinizations
of V,(mw;), are called Kirillov-Reshetikhin modules. Among them, the ones with
m =1 are called fundamental modules.

For a nonempty subset J C I such that g is simple, denote by P, ; the {-weight

lattice of U,(Lgy), and define a map P, > p — py € P, ; by letting p; be the
J-tuple (pi(u))ie].

Lemma 3.9 ([CP96b, Lemma 2.3]). For every ® € P,", the U,(Lg.)-submodule
of Ly(m) generated by an £-highest weight vector vy is isomorphic to the simple
Uq(Lg.s)-module with £-highest weight ;.

For =) ,c;miw; € P, write iy = ), ; miw;. From this lemma and Theo-
rem 3.6, the following corollary is easily proved.

Corollary 3.10. Assume that g is of type ABCFG. If Ly() is a minimal affiniza-
tion of V4 (X), then the Uy(Lgy)-submodule of Lq(m) generated by vx is a minimal
affinization of the simple Uy(g.s)-module with highest weight A ;.

In type A, the structure of minimal affinizations are much simpler than that of
the other types.

Theorem 3.11 ([Jim86, Section 2|, [CP96b, Theorem 3.1]). Assume that g is of
type A. If Ly(m) is a minimal affinization of Vi(X), then Ly(7) is isomorphic to
Vy(A) as a Uy(g)-module.
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3.4. Classical limits. In this subsection we assume that g is classical, since some
of the results below (for example Proposition 3.13) have been proved under this
assumption.

Let A = C[q,q7 '] € C(g). An A-submodule L of a C(g)-vector space V is called
an A-lattice if L is a free A-module and C(q) ® s L =V holds.

Set (zfr)(k) = (a:ﬁ)k/[k]qq' fori € I, r € Zand k € Z>o, and denote by Ua (Lg)
the A-subalgebra of U, (Lg) generated by {kiﬂ, (a:itr)(k) } i€l,r€Zke Ly}
Define Ua(g) in a similar way. Then Ua (Lg) and Ua(g) are A-lattices of U,(Lg)
and U,(g) respectively [Cha0l, Lemma 2.1], [Lus93]. Set

Ui(Lg) = C®a Ua(Lg) and Ui(g) = C®a Ua(g),

where C is regarded as an A-module by letting ¢ act by 1. As shown in the
proof of [Cha01, Lemma 2.1], the A-lattice of the quantum affine algebra U} (g) in
[Lus93] is mapped onto Ua (Lg) under the canonical projection. Hence the following
proposition is proved from [Lus93], [CP94, Proposition 9.3.10].

Proposition 3.12. The universal enveloping algebra U(Lg) is isomorphic to the
quotient of U1 (Lg) by the ideal generated by 1 @ k; — 1 ® 1 (i € I). In particular if
V is a Uy (Lg)-module on which 1 ® k;’s act by 1, then V is an Lg-module. Similar
statement also holds for U(g) and Uy(g).

Following [CPO1], we call w € P; integral if, for all i € I, the polynomial

7;(u) has coefficients in A and the coefficient of the highest power of w lies in
C*¢”. Denote by PX the set of integral elements in Pj . Let m € PI'{, and
La(m) =Ua(Lg)vx C Ly(m).

Proposition 3.13 ([CP01, Cha01]).
(i) La(m) is spanned by the vectors

(f”;,ll)(SI) (%,12)(52) o (xi;,lp)(sp)”w

forp>0,i; €1, 55 €Z>o and 0 < 1; < N with sufficiently large N.
(ii) La(7) is an A-lattice of Ly().
Set
Ly(m) = C®a La(m),

which is called the classical limit of L,(). Ly(7) is an Lg-module by Proposition
3.12, and we have

ch Ly(m) = ch Ly(m). (3.2)
Since ch V(1) = ch V(i) holds for all 4 € PT, we also have

[Lq(7) = Va(w)] = [Ly(m) : V()] (3-3)

for all u € PT, where the left- and right-hand sides are the multiplicities as a
U,(g)-module and g-module respectively.

4. MAIN THEOREMS AND COROLLARIES

In this section, we assume that g is of type ABC.
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4.1. Graded limit. Let A € P*, and let w € P; be such that L,(w) is a minimal
affinization of V,(\) (such an element exists by Theorem 3.6). Denote by 7™ =
(71(u), ..., 7n(u)) the I-tuple of polynomials with coefficients in C obtained from
7 by evaluating ¢ at 1. From Theorem 3.6, we easily see that there exists a unique
nonzero complex number a satisfying

7(u) = (1 — au)* N forallie I
Hence the following lemma is proved from [CP01, Lemma 4.7].

Lemma 4.1. There exists a surjective Lg-module homomorphism from the classical
limit Ly(m) to the evaluation module V (A, a).

Define a Lie algebra automorphism 7,: g[t] — g[t] by
Ta(z®@ f(t) =2 @ f(t—a) forxeg,feCl.

We consider L,() as a g[t]-module by restriction, and define a g[t]-module L(r)
by the pull-back 7} L, (7).

Definition 4.2. We call the g[t]-module L(7) the graded limit of the minimal
affinization L (7).

In fact, L(7) turns out to be a graded g[t]-module from our main theorems,
which justify the name “graded limit”. We see from Proposition 3.13 (i) and the
construction that the vector U, = 1 ® v, generates L(m) as a g[t]-module. Elemen-
tary properties of L(7) are as follows.

Lemma 4.3. (i) There exists a surjective g[t]-module homomorphism from L(w)
to V(A 0).
(ii) The vector U, satisfies the relations

0y [t]ie =0, (h®t°)Ur =0s0(h, \)Ur for h €b,s>0.

(iii) We have
ch Ly(w) = ch L().
(iv) For every u € PT, we have

[Lq(m) : Va(w)] = [L(7) - V()]

Proof. The assertion (i) follows from Lemma 4.1, and (ii) follows from the construc-
tion and (i). The assertions (iii) and (iv) are consequences of (3.2) and (3.3) since
L,(w) = L(m) as g-modules. O

The following is obvious from Theorem 3.11 and Lemma 4.3.

Corollary 4.4. When g is of type A, the graded limit L(w) is isomorphic to the
evaluation module V (X, 0).

4.2. Main theorems. Throughout the rest of this section, we fix A = Ziel m;w; €
P+ and w € PJ such that L,(m) is a minimal affinization of V,(\).

In this subsection, we shall state our main theorems. (Although these are trivial
in type A, we include this type for completeness.) Their proofs are given in the
next section. R

Let us define an n-tuple &1, . .., &, of elements of P as follows. If g is of type A,,
then & = m;(w; + Ag) for all ¢ € I. If g is of type B, then

" Y mpon + [m,/2]Ao if i =n,
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where [s] = min{r € Z | r > s}. If g is of type C,,, the definition is a little more
complicated. Let J = {1 <i <n—1|m; > 0}, and define i’ € I for each i € I by

, _ [max({oyufjes|j<i}) ified,
1 =
i otherwise.

Let jo = max ({0} L J), and define a sequence pg,p1,...,p, with p; € {0,1} as
follows: set p;, = 0, and define p; for i € ({O} U J) \ {jo} recursively by

pp =m; +p; mod 2.
We put p; =0 for i € I'\ J. Now &1, ...,&, is defined by

d.
§i = ppwyp + (M — pi)wi + é(mz —Di +Pib)A0-

Note that D, ;& € A+ ZsoAo holds in all cases. Our first main theorem is the
following.

Theorem 4.5. The graded limit L(w) is isomorphic to D(wo1,...,we&,) as a
g[t]-module.

In type A, & € P+ holds for all i. Thus the g[t]-module D(wo&1, ..., wsEy) is the
submodule of V(mjw1,0) ® - - - ® V(mywy,0) generated by the tensor product of
highest weight vectors, which is isomorphic to V' (A, 0). Hence the theorem follows
from Corollary 4.4.

Let Al be a subset of A defined by

A}'_:{OZGAJ,_’O[:Z'HVL‘OZZ’ withniglforalliGI}.
iel

The second main theorem is the following.

Theorem 4.6. The graded limit L(w) is isomorphic to the cyclic g[t]-module gen-
erated by a nonzero vector v with relations

nyftlo =0, (h®t*)v=0ds0(h,\)v for h € h,s >0, fim”lv =0 foriel,
n_[tlo=0 and (foa®t)v=0 fora € Al. (4.1)

When g is of type A, AL = A, holds and therefore the theorem is easily proved
from Corollary 4.4.

Remark 4.7. This theorem implies that L(7) is a projective object in a certain
full-subcategory of the category of g ® (C[t]/t>C[t])-modules introduced in [CG11].
In particular this, together with [Her07, Theorem 6.1], gives a proof to [CG11,
Conjecture 1.13] in type B.

Remark 4.8. As stated in the introduction, these two theorems are equivalent to
[Mou10, Conjecture 3.20] in type AB.

4.3. Corollaries. Here we shall give several corollaries on minimal affinizations
L, (), which are obtained from the corresponding statements on L(7) by applying
Lemma 4.3 (iii), (iv).

First we apply the results in Subsection 2.2 to the module D(wo&1, . .., wo&,) in
Theorem 4.5. Let us define w; € W for each 1 < i < n as follows:
(i) If g is of type A, then w; =id for all 1 < i < n.
(ii) If g is of type B, then

W; = 8;—18;-2 " 51T,
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where 7 denotes the element of ¥ which exchanges the nodes 0 and 1.
(iil) If g is of type C, then

W; = §§-18;—2 '+ 5150-
For 1 <r <t < n, denote by wy,.4 the product wyw;,41---wy € W.Ifr> t, we set
Wi,y = id.
Lemma 4.9. (i) (a) When g is of type B, we have

w4 (Ao) = @i + 8in@n + Ao mod Q6, and
wi,i) (@n + Ao) = @ + Ao

for1<i<n.
(b) When g is of type C, we have
wi—;+wi+A (0<j<4)

mod Q0o
w; + Ay (1 <) 0

w[l’i] (Wj + Ao) = {
for1 <i<n.
(ii) We have £(wp ) = D oiy L(wy).

Proof. The assertion (i) is proved by direct calculations. When g is of type B, by
applying the sequence

Wii,n] = 7(517) (Sn—1 - 817)

to A, we see that each reflection s; changes the weight by a positive multiple of
«;, which implies the assertion (ii). The proof for type C' is the same. O

We also define a sequence Al,..., A" of elements of Pt as follows:
(i) If g is of type A, then A® = ¢; for all i.
(ii) If g is of type B, then

A = m; Ao for1 <i<n-—1,
| mnwn + [ma/2]Ag for i =n,

where m,, = 0 if m,, is even, and m,, = 1 otherwise.
(iii) If g is of type C, then

N {pi.,w“b + 1 (mi—pi+pp)ho for1<i<n-—1,
mp (o, + Ao) (= &) for i = n.
We see from Lemma 4.9 (i) that
w[Li]Ai =¢; mod Q)

for all ¢ € I. Hence by Proposition 2.7, we have a g[t]-module isomorphism

D(&1,- .- &n) (4.2)

= F,, (D(A) @ Fy, (D(A%) @ -+ @ Py, (D(A™™1) @ F, D(A)) ).

Then since the isomorphism

L(m) 2 D(wo, ..., wopn) = Fy,D(&1,...,&n)

follows from Theorem 4.5 and Lemma 2.4, we see that L(7r) is isomorphic to the
g[t]-module

mm@wwmﬂm%w@mﬂ@wﬂ®mmmy».m)

Now the following character formula for L, () is obtained using Corollary 2.8 and
Lemma 4.3 (iii).
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Corollary 4.10.

ch Ly(7) = Dyow, (e/\l - Du, <6A2 Dy, (CA"*1 Dy, (eA"))_ ] ))

eMo :e‘5:1'
Next we give multiplicities of U,(g)-modules in L,(7) in terms of crystal bases.
We refer to [HK02] for the basic theory of crystal bases. Let B(A) be the crystal
basis of V/(A) for A € P*, and uy, its highest weight element. For 7 € %, let b+ b”
denote the bijection from B(A) to B(TA) satisfying
uh = urn and fr(07) = (fib)" foriel,

where fl are the Kashiwara operators. Let A(y),..., A, be an arbitrary sequence

of elements of 18"‘, and T a subset of the crystal basis B(A(l)) Q-+ ® B(A(p)). We
define a subset F,.T by

FT={b® @b |b@ -®bcT}CB(TAW) @ ®B(TAy)).

For w € W with reduced expression w = s;, - - - 8, , we also define a subset F,,T" by
Fol = {1 J52 - Fikv | 55 20,0 € TH\{0} € B(Ay) @ @ B(Agy)).

Set Fiyr = FuwFr. Now let us define a subset Z’ of a U,(g)-crystal basis by

2" = (11 ® Fuy (un2 @ -+ ® Fu_, (wares @ Fo, (uan) ).

Since this is a crystal analogue of the module (4.3) (see [LLMO02], in which B(A) are
realized using LS paths), there is one-to-one correspondence between the classically
highest weight elements (i.e., elements annihilated by €, for i € I) in Z’ and the
simple g-module components of L(7). Note that F,,, generates no new classically
highest weight elements, which implies that the same statement also holds for

Z = Fu (s © Fo (0] @+ @ Fu, (waees @ Fo, (warn))-++))
instead of Z’. From this and Lemma 4.3 (iv), we have the following corollary.

Corollary 4.11. For every u € P, we have
[Lo(m) : Vo(pn)] = #{b € Z | b-weight of b is i, &;(b) =0 fori € I}.

Remark 4.12. Assume that g is of type BC, and let J = {0,1,...,n— 1} C I,
U,(gs) be the subalgebra of U,(g) whose set of simple roots are J, and W its
Weyl group. Since w; belongs to W; x X for all 4 € I, we can regard Z as a subset
of the crystal basis of a suitable U, (g )-module. In view of this, Corollary 4.11
implies that the multiplicities of L,(m) are expressed in terms of U,(g,)-crystal
bases, which is of finite type (D,, and C,, respectively).

Finally we give a formula for the limit of normalized characters of minimal
affinizations. Let J be a subset of I, and set Ai =A:N (Zierzoai) and

Ai‘]:{aeAJr|a:Zniaiwithniglifi¢J}.
iel
Assume that A1, Ao, ... is an infinite sequence of elements of PT such that

<Oé;/,/\k>:O foralliGJ, k:1727"'7

and
lim (o), \g) =00 foralli ¢ J.

k—o0
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Corollary 4.13. Let wy, 72, ... be an infinite sequence of elements ofPX such that

Ly(my) is a minimal affinization of Vy(Ag). Thenlimg_yo e~ *ech Ly () exists, and
1 1

lim e MchLy(mp) =[] .l . (4.4)

k— o0 1—e
a€AL\AY aeA\ALT

Proof. By Lemma 4.3 (iii), it suffices to show that limy_,, e~**chy L(my) coincides
with the right-hand side. Define a Lie subalgebra a; of g[t] by

a=niftlobtle @ Cle @ Clfaot)ot*n_t.

aEA] acal’
For each A, let Cvg be a 1-dimensional aj-module defined by
hvg = (h, Ao for heh, (ayNng)vg = fop =0 for a € A_‘{_,
and define a g[t]-module M}, by
Mj, = U(glt]) ®u(a,) Cug-

For all k, e~ *:chy M}, coincides with the right-hand side of (4.4). Note that Mj
and L(my) have natural Z>(-grading, which we normalize so that the degrees of
v, and Uy, are 0. We denote these gradings by superscripts. By Theorem 4.6,
there exists a surjective homomorphism ®;: My — L(my), and ker @y, is generated

by wi = fi<a"'v’/\">+1vk for i ¢ J. A standard calculation shows nyw! = 0, which

implies ker @ = >, ; U(n_ [E)U(H[t])U (tny [t))wi. Hence if B € QT and s > 0
satisfies (ker ®4)3, 5 # 0, there exists i satisfying
—B+ 56+ ({a) , \p) + Doy € woQt.
When g and s are fixed, this does not occur for sufficiently large %k, which implies
dim(My)3, 5 = dim L(my)3, _g  if &> 0.

Since (Mk)ik,— 5 = 0 except for finitely many s if 3 is fixed, the assertion follows
from this. O

5. PROOF OF MAIN THEOREMS

Throughout this section, we assume g is of type BC unless specified otherwise,
and fix A = Y, ; m;w; € PT and € P} such that Ly(w) is a minimal affinization
of V;(X). We freely use the notation in Section 4, &;, A%, etc..

Let M () denote the g[t]-module defined in terms of generators and relations in
Theorem 4.6. We shall verify one by one the existence of surjective homomorphisms

D(w051a e 7w05n) - M()‘)7 M()‘) - L(T")a L(ﬂ') - D(w0§17~ . 'uwof’ﬂ)7

which implies Theorems 4.5 and 4.6 simultaneously. For the proof of the latter two,
we need some results on g-characters. These are recalled in Subsection 5.2.

5.1. Proof of D(wo&1,...,wo€n) — M(A). Let us prepare several notation.
For1<p<q<n,set apq=0ap+opr1+---+ oy Then

A, = Jlamalp=dU{opn+agnlp<dl g= B,
{apg lp <@t U{apn +agna|p<g<n} g=0Ch

Set ap g =0if p>q. Fora=p+sd € Are with B € A and s € Z, we denote by x,
the vector eg @ t° € g. Let vps denote the generator of M (\) in the definition. Set
D = D(woé, ..., wo€y), and vp = v¢, @ --- ® v, € D, which is also a generator
as a g[t]-module. Recall that D is by definition a module over g[t] & CK & Cd, and
K and d act on vp by some scalar multiplications. In this subsection, we also view
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M (M) as a module over this Lie algebra by letting K and d act on vy by the same
multiplications.
For o € A™, we define the nonnegative integer p(«) by

ZmaX{O— V&) }

Assume that « = 8+ s € A‘f. The following assertions are checked by direct
calculations.

(i) We have p(3 + s0) = 0 unless —3 € AL \ A} and s = 1.
(ii) If g is of type B and p < ¢, we have

n—1

p( (apm + Qg n) —|—6 ka—i— mn/2J
=q

(iii) If g is of type C, we have for p < ¢ that
p( - (apm + aqm—l) + 6)
{an k=1 if YT my € 2Zx0+ 1 and my =0 for all p < k < g,

D oheg Tk otherwise,
and p( — (agn + dgn-1) +6) = {ZZ;; mk/2J.
The following proposition is essential in this subsection.
Proposition 5.1. (i) If g is of type B, we have
AnnU(ﬁ+)vD = U(ﬁ+) Z Cl’g(a)+1 + ﬂ)[t}) .
aeﬁﬂf
(ii) If g is of type C, we have
Anny g, yvp = U(ﬁ+)( Z (Carg(o‘)“ + Z (ng(a) 2k+1 .k k4 tht ]>

aeﬁff (a,B)ES
1<k<p(a)/2+1

where S is a subset of ﬁ‘f X ﬁr_f defined by
S = {<_ (apn + agn-1) +6,—(agn +agn-1)+ (5) ‘ 1<p<qg< n}

Assuming Proposition 5.1 for a while, we shall prove D — M()). Set D’ =
D(&,...,¢&) C D, which is generated by vp as a b-module.

Lemma 5.2. There is a b-module homomorphism from D’ to M(X) mapping vp
to vpr.

Proof. Since the Eweights of vp and wys are same, it is enough to check that
Anny s, yvp annihilates vys. First we shall show xa(a)ﬂ =0 when g = B,, and
a=—(apn+ agn)+ 9 with p < g. Set v = ayn. It is easily checked that

n—1

<7V,/\+(P(a)+1)a> ( kaern)Q(zkar mn/2J+1) < 0.

On the other hand, a direct calculation shows z.,z4 (@)+1,

p(a)+1
Oé

vy = 0, which implies

vy = 0 as desired since M () is a finite-dimensional g-module. For g = C,
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and @ = —(agn + Agn—1) + 0 with ¢ < n, 25y = 0 is proved by the same
argument with v = oy n—1.
Next we shall show 24~ 2kﬂ;z:gvM =0 for g =C,,

a=—(apn+agn-1)+9, f=—(gn+agn_1)+06 withp<g,
and 0 <k < p(a)/2+ 1. If p(a) = Zz;ql my, this is proved by the same argument
as above with v = a4 ,—1. So we may assume that ZZ;; my, is odd and my =0
for p < k < ¢ (in this case p(a) = Zz;; my — 1 € 2Z>¢). The assertion is proved

by the descending induction on k. Set v = a — 8 = —ay 4—1. Since p(8) = p(a)/2
and z,vy = 0, we have

0= x,yxg(a)/%lvj\/j S (Cxxaa:g(a)/ v

Hence the case k = p(«)/2 is proved. Assume k < p(«)/2. A direct calculation
using z,vy = 0 shows

2, p(a)=2k—=1_k+2 po)—=2k—=3_ k+2
T4 Tg UM —alxﬁ_ﬂvmﬁJﬂ Ty TUM
pla)—2k—1 k41 p(a)—2k+1
+(I21}5+27$B+,Y Tg' UM + as xBJrW vaM

for some aj,as,a3 € C with ag # 0 (let xfﬂ,y = 01if [ < 0). By the induction

hypothesis, this implies xa(a) 2k g = 0 as desired. The other relations are
trivially checked, and the lemma is proved. O
Let wo, = s;, -+ 5;,_, 8;, be a reduced expression of w,, and set w® = s;, ---s; .

We define D* = F. D' for 1 <k <r+1. Note that D™ = D', and D1 D follows
from Lemma 2. 4 In the followmg7 we shall verify by the descending induction on
k that there exists a nonzero b-module homomorphism from D to M (A). This
for Kk = r+ 1 is just Lemma 5.2. Assume k < r, and consider a pzk—module
Upin) @y D*+1. This has a unique maximal finite-dimensional p;,-quotient
[Jos85], which we denote by D*1. Note that, if N is a finite-dimensional p;, -
module, every b-module homomorphism D**! — N uniquely extends to a p;, -
module homomorphism Dkl 4 N by definition. By the induction hypothesis,
there is a nonzero b-module homomorphism D¥+! — M()), which extends to a p;, -
module homomorphism Dk+1 M(X). Hence it suffices to show that Dk+1 o Dk,
The identity on D¥+! extends to a homomorphism

Ek:Jrl N Fika+1 _ U(Eik)Dk+1 _ Dk,
and this is obviously surjective. On the other hand, [Jos85, Lemmas 2.6, 2.8(i)] and
Theorem 2.2 imply
ch DF! = D;, chg DM = chg Fy, DM = chp DF,

and therefore D*+1 2 D¥ holds as desired. R

We have verified that there is a nonzero b-module homomorphism from D to
M(X). Note that D and M(\) are generated by the 1-dimensional weight spaces
Dy, x and M (X)qy,» respectively, and these spaces are annihilated by n_. From
this, we easily see that the homomorphism is surjective, and extends to one of
g[t]-modules. Hence D — M () is proved.

It remains to show Proposition 5.1. For 1 < j <nand 0 <i < j, let

(4, j) = Vw,p0 @ Vwjw; A+t @ @ Vg A= & Vwjwp g, A
which is a generator of the b-module

D(i. ) = Fu, (D) @ By, (D) © -0 By, (D) By, DAY))---))
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by Proposition 2.7 (here we set wy = id). Note that D’ is isomorphic to D(1,1)
by (4.2), and this isomorphism maps vp to v(1,1). Hence it suffices to determine
the annihilator of v(1,1). In the following, we shall achieve this by determining the
annihilators of v(i, j)’s inductively.

We prepare two lemmas. For i € I, define a Lie subalgebra 1; of i, by f; =
@a€A$\{ai} Czq @ th[t]. Note that ny = Ce; ® ;.

Lemma 5.3. Leti€ 1, £ € P such that (Y, &) >0, V be an integrable g-module,
and T a finite-dimensional b-submodule of V.. Assume the following.

(1) T is generated by a weight vector v € Te satisfying e;v = 0.

(ii) There is an ad(e;)-invariant left U(n;)-ideal T such that

AHHU(ﬁJr)U = U(ﬁ+)€7, + U(ﬁ+)I
(iii) We have chaFiT = Dz-chaT.
Let v = fﬂa’y’f)v € F;T. Then we have

~ aY, 1 ~
AHHU(ﬁ+)1}/ = U(ﬂ+)6§ 8+ + U(Il+)Ti(I),
where ; denotes the algebra automorphism of U(g) corresponding to s;.

Proof. The following proof is essentially same as a part of the proof of [Jos85,
Theorem 3.4].
By the ad(e;)-invariance of Z, it follows that

U(ﬁ+)I = (C[el]I g I—|— U(/I'Lr)ei.

Hence (ii) implies Annyg,)v = Z, for U(ny) = U(ny)e; @ U(n;). By [Kac90,
Lemma 3.8], there is a p;-module automorphism 7/ on F;T satisfying r’(v) € C*v’
and (r])~'@r] = ri(z) for z € p;. Hence by applying r; to Anny,)v = Z, we have
Anng g, v" = r;(Z). Now, since (iii) implies

(o )+

Anng g yv' = Uy e, pt U(ny)Anngg,)v”
by [Jos85, Proposition 3.2], the assertion is proved. O

For 1 <j<nand0<i<j, define p; ;: Are — Z>o by

pijla) = Z max {0, —(a”, wiw[j+1,k]Ak>}a
k=j

and put ﬁf(z,j) ={a e ﬁff | pi,j(a) > 0}. When j < n, we have

po.j(@) = pjs1j41(e) + max{0, —(a¥, A7)} = pji1 jp1(a) fora € AT, (5.1)
which implies A%(0,7) = AC(j + 1,5 +1).

Lemma 5.4. Assume 1 <i<j<n.
(i) If g = By, then

3Ere(i’j)g{o‘w'*l|1§p<i}u{04p,q{1§p§j§q<n, p;«éi}
I_I{—(oai,n+ozq,n)+5’j<q§n}l_l{—(ap7n+ozq7n)+5‘j<p<q§n}.
(ii) If g = C,,, then
zf(@j)g{am*l’1§p<i}u{ap,q{1§p§j§q<n7 p#i}
U{—(Oéi,n+aq,n_1)+5‘q:i orj<q§n}

u{_(ap,n+aq,n71>+6‘j<p§qgn}.
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Proof. We prove (i) only (the proof of (ii) is similar). Note that the following two
containments hold:

Ar(i+1,j)Cs (&f(z‘,j)) U{a;} fori<j, and (5.2)
Ar(1,5) gr(ﬁf(j+1,j+1)) for j < n. (5.3)
In fact, (5.2) holds since p;11 ;(a) = p; j(s;0), and (5.3) holds since
p1,i() = po j(Ta) = pjy1,j41(Ta) for a € ﬁfﬁ

by (5.1). Then the assertion can be proved inductively from ﬁf(O,n) = ) using
these containments. O

Now let us begin the proof of Proposition 5.1. First assume that g is of type B,,.
We verify the assertion

B.)) A yo(i.d) = U (3 Cateo @1+ o)
a€ALE

by the induction on (7,7), which with ¢ = j = 1 implies the proposition. (Bg )
is obvious since D(0,n) = D(A"™) is a trivial n;-module and pg,(a) = 0 for all
a € ﬁff We easily see that (Bji1,+1) implies (Bg ;) from (5.1) and v(0,5) =
vps @v(j 4+ 1,5+ 1), and it is also easy to check that (Bg ;) implies (By ;) since
v(l,5) = v(0,7)” and p1 () = poj(Ta). It remains to show that (B, ;) with
0 < i < j implies (B;11,;). For this, it suffices to show the ad(e;)-invariance of the
left U (n;)-ideal

T ;= U(&-)( > Cappltt g th[t])
acAe\{a;}
by Lemma 5.3. Note that, if § € Aff is in the form 8 = la + a; with some « € 3+
and [ € Zs, then p; ;(8) = 0 holds. In fact, the condition implies 8 € ﬁrf + 4, or
Be{opi|p<itu{oig|a>itu{oin+agn|q#i} U{ —api1+0|p<i}
U{ = it1,q+0|q> l}'—l{ — (10 + agn) +9 ‘ qFi,i+ 1}7

and hence p; ;(8) = 0 holds from Lemma 5.4 and 0 < ¢ < j. Then the ad(e;)-
invariance of Z; ; is immediately follows from this, as desired.

Next assume that g = C,,, and define a subset S; of ﬁfﬁ X ﬁ‘_‘f for 1 <j<nby

S; = {( (apn + agn-1) + 6, —(agn + agn-1) + 6) ' J<p<g< n}

We verify the assertion (C;;): Anny,)v(i,j) = Ji; by the induction on (4, ),
where J; ; is a U(ny)-ideal defined by

Jij = U(ﬁ+)< > Capoa(@tt 4 > Cafios () =2k gk 4 th[t]).
aEAT ((y,B)e:s{,si+1"'sj—1(Sj)
1<k<pi j(a)/2+1

Here we set w(S;) = {(wo, wB) | (o, B) € S;} for w € W. Note that (Cy,1) implies
the proposition, and (Cyp ) is obvious.

Let us show that (C,; 1 j41) implies (Cp ;). Since v(0,j) = vy @v(j +1,5+1),
we have Anny,yv(0,75) = Anng s, )v(j + 1,7 + 1), and hence it suffices to show
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that Jo; = Jj+1,j+1. We have pg (o) = pjt1,541(e) for a € Aff by (5.1), and
direct calculation shows

8081 sj_lSj = Sj+1 [ {(an—h —(Oéqm + aq,n—l) + 5) ‘ j <q S TL} (54)

Hence it is enough to check

.’L‘gj+1‘j+1(a)_2k+ll‘§ € Tis1 41 (5.5)
fora=a14-1, 8 =—(agn+agn-1)+0 withj <gand 1<k < pjt1,+1(a)/2+1.
For every Iy € Z>2 and Iy € Z>, it is directly checked from 5 = o + 2o that

Il Il Lhi—1,1 =2, lo+1
€T TS = TaTieo + 1Ty T4 Tagta + A2Tq arg+ (5.6)

with aq,a2 € C*. Then since ey and xqy+q belong to Jjt1,j+1, (5.5) is inductively

proved from ghthr (@t ¢ Ti41,5+1-
Finally, let us show that (C;;) with 0 < ¢ < j implies (C;41,;). For this, it

suffices to show the ad(e;)-invariance of the left U(n;)-ideal

L = U(ﬁi)( > Capatiy > cxgw<a>-2k+1x’g+th[t]>
acA\{a;} (.B)Esisit1s5-1(5;)
1<k<pi j(a)/2+1

by Lemma 5.3. When 0 < ¢ < j, it is checked similarly as above that, if 5 € ﬁ‘_‘f is
in the form § = la + a; with « € EJF and | € Zsq, then p; ;(8) = 0 holds. Since
[Za, 28] = 01if (o, B) € 8;---5-15, the ad(e;)-invariance of Z; ; follows from this,
as desired. Assume ¢ = 0. Using ﬁ’f(o,j) = ﬁf(] +1,j+1), it is similarly checked
that, if 5 € ﬁf is in the form 8 = la+ ag with o € 3+ and [ € Z~, then we have
po,j(B) =0, or

=2, a=a14-1 and B=—(agn +agn-1)+0

for some j < ¢ < n. In the latter case, we see from (5.6) that

U() ( Z (ngo,j(a)—%-i-lxg + xa0+a>
0<k<po,j(a)/2+1
is ad(eg)-invariant. Now the ad(eg)-invariance of Zy ; is easily proved from (5.4).
The proof is complete.

5.2. g-characters. Here we recall some results on g-characters, which are necessary
in Subsections 5.3 and 5.4. For a finite-dimensional ¢-weight module V', define its
{-weight set wt,V and g-character ch,V by

wteV ={p € Py |V, #0} and chyV =) (dimV,)p € Z[P,]
pEP,

respectively. For finite-dimensional /-weight modules V7, V2, we have ch, V7 ® Vo =
ch, Vi - chy Vo [FR99]. For i € I and a € C(q)*, define a; € Py by

4 , —1
ai,a = 71'%7:21‘ H (71-(—]0)]-7,-,@) .
i
Let QF denote the monoid generated by {a;, | i € I,a € C(g)*} and Q, the
corresponding abelian group. We write p < v for p,v € P, if vp~! € Q;’ holds.
Proposition 5.5 ([FMO01, Theorem 4.1]). For every p € P}, v € wtyLy(p) implies
v <p.

The following proposition is proved from the study of U, (Ls(z)-modules in [CP91,
CP95b, FR99).
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Proposition 5.6. Assume that g = sly. Then the following statements hold, where
we omit the index i.

(i)
Cthq(ﬂ-m,a) = T'm,a Z H a;ql'anZj'

0<k<m 0<j<k—1
(ii) If V is an £-highest weight module with £-highest weight T, o, then we have

Cthq(ﬂ'm,a) <ch,V < H Cthq(waqm*”*l) = Tm,a H (1+ agqlm—2j+2)7
1<j<m 1<j<m
where the inequality f < g means g — f € Z>o[P,]. In particular, the dimension of
each (-weight space of V is at most 1.

Recall the map P, > p — p; € P, ; for a subset J C I defined in Subsection
3.3. The following proposition is an easy consequence of results in [FMO1, Section
3].

Proposition 5.7. Let V' be a finite-dimensional ¢-weight module, and J C I a
subset such that gy is simple. For an {-weight vector v € V,, let W = Uy(Lgs)v.
Assume that a vector w € W is an L-weight with respect to Ug(Lb ), and its (-weight

18
s |1 (ctia) ") € Py s
i1€J,aeC(q)*

with some integers v(i,a). Then w is also L-weight with respect to Uy (Lb), and its
v(i,a)
i,a

L-weight is p|]

u(i,a)

Let j € I. We say p = [Liciucciqx @ia € Py is j-dominant if u(j,a) > 0
holds for all a € C(g)*. The following proposition was established by Hernandez.

Proposition 5.8 ([Her08, Lemma 5.6]). Let p € P, and v € wtyLq(p) \ {p}.
Then there exist some j € I and v’ € wtyLq(p) such that

(i) V' is j-dominant,

.. z
(ii) v" € v [oec(q aji“,

(i) (Ug(L;)Lo(p)s) O Lo(p)ur # 0.

Definition 5.9 ([FMO01]). Let p € P, and assume that there is some a € C* such
that p = [[;c;rez w?((;(;],f) with some (i, k) € Z. We say p is right-negative if

kmax = max{k € Z | u(i, k) # 0 for some i € I'} satisfies w(, kmax) < 0 for all i € I.

Note that if p is right-negative, p does not belong to PqJr . We easily see that

—1 . .
o, , are right-negative.

Lemma 5.10 ([FMO1]). (i) If p is right-negative and v < p, then v is also right-
negative.

(i) If p € wteLy(wia) \ {w0ia}, then p < wiyaa;;qi. In particular p is right-
negative by (i).

5.3. Proof of M (A) — L(w). Let vy € Ly(m) be an ¢-highest weight vector. For
1<i<j<nandpéeZ, define v,(i,j) € Ly(m) by

v (i ) = Ty pTii1.0%ita,0"TjoUn i 7 satisfies (I),
PR T, 10T 00 TiogUn i 7 satisfies (II),
where (I) and (II) are the conditions in Theorem 3.6. Let {a;};c; be the sequence

of rational functions in Theorem 3.6 associated with w. The following lemma is
crucial in this subsection.
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Lemma 5.11. Let 1 <i<j<n.
(i) For allp € Z, v,(i,7) is a scalar multiple of vy (3, ).
(ii) The wvector vo(3,j) is a simultaneous Uy(Lh)-eigenvector, and its {-weight is

™ Higkgj Qg™

Let us assume this lemma for a moment. To prove M(A) — L(w), we need
to check that the vector U = 1 ® vy € L(w) satisfies the defining relations of
M(A). Using the commutativity [z; ..z, ] = 0 for [k — | > 2, we easily see that
Proposition 5.11 (i) implies

[ [0+ [T5-1,0: 0 - JJom € Vo(A) © Ly(m) if 7 satisfies (I), and

(51, [xj__LO, v @00 %ol Jlve € Vg(A) C Ly(m)  if 7 satisfies (1)

for all 1 < 4 < j < n. Here V,()\) denotes (by abuse of notation) the U,(g)-
submodule of L,(7) generated by v.. By the definition of L(7), this implies

(fa®@t)Tr € V) CL(w) ifa=a;+ - +a; € AL.

Since the restriction of the surjection L(w) — V(A,0) in Lemma 4.3 (i) on V() is

an isomorphism, this implies (fo ® t)x = 0 for all & € A}. The other relations

are proved from this relation or follow from Lemma 4.3. The assertion is proved.
The following lemma is shown in [CP95a, Lemma 3.6].

Lemma 5.12. Assume g is of type ABC. Leti € I, p € P such that (o, ju) = 0
fori < j <mn, and p € P} such that Ly(p) is a minimal affinization of Vy(ju).
Define vy (i, ) € Lq(p) similarly as above. Then for all i € I and p € Z, the vector
vp(i,m) is a scalar multiple of vo(i,n).

We verify Lemma 5.11 by the induction on j — ¢, assuming 7 satisfies condition
(I). (The proof for condition (II) is similar). In view of Corollary 3.10, the case
i = j follows from Proposition 5.6. Let ¢ < j — 1. Since m; = 0 implies v, (4, j) =0

Q . — -1 —
for p € Z, we may assume m; > 0. Set v = 7 [[,, o, QX g and let W =

Uqy(Lgi)vo(i+1,7) € Ly(m). By the induction hypothesis, W is an ¢-highest weight
U, (Lg,)-module, and its ¢-highest weight with respect to U, (Lb;) is

viw) = miw) - (i) @ = [ (1- g ),

1<k<mi;—cit1,i

Hence by Proposition 5.6 (ii), each ¢-weight space of W is 1-dimensional. Let us
assume that the assertion (i) of Lemma 5.11 does not hold, which implies that the
dimension of the weight space WA,ZKKJ, oy is at least 2. Hence by Proposition 5.7,

we can take Y; € @, C(q)x;, (s = 1,2) such that 0 # Yvo(i + 1,5) € Lg(m), o

iw Vo,
for some b, € a;q? with by # by. Let | = min{i <1’ < j | my > 0}, which exists by
Lemma 5.12 and Corollary 3.10. We easily see that Va;bls is not (I + 1)-dominant,
and hence there exists some ps; € Z such that xlﬁ_LPSYSvO (i4+1,7) # 0. From this
and the induction hypothesis, we see that Yz, - "y Vo (I42,7) is a nonzero
{-weight vector, and its ¢-weight is

ua;blsalﬂ)alﬂqmzﬂ = ﬂa;bls H a;jlkqu.
i+ 1<k<jk#Al+1
by Proposition 5.5. By repeating this argument we finally see that Yiuvo(i + 1,1)
is a nonzero f-weight vector with /-weight wa;,}s [Livi<n< a;’}lkqu_ for s = 1,2.
Since by # be, this contradicts with Lemma 5.12, and the assertion (i) is proved.
Now the assertion (ii) is easily proved from (i) and the induction hypothesis. The
proof is complete.
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Remark 5.13. In type B, M(\) — L(mx) is also proved in [Moul0, Proposition
3.22] using the Frenkel-Mukhin algorithm.

5.4. Proof of L(w) — D(wo€1,...,we€y). We begin with the proof of the
following lemma.

Lemma 5.14. For everyi € I, m € Z>o and a € C(q)*,

L(']Tr(ib)’a) = D( — mw; + |—dim/2] AO).
Proof. It d;m/2 € Z, the assertion follows from [CMO06b, Proposition 5.1.3] (see
also [FLO7, Theorem 4]). Hence we may assume d;m/2 ¢ Z, which is equivalent

to that o; is short and m = 2k + 1 for some k € Z>. Then there is an injective
homomorphism

L(W’Er?,a) < D(—2w; + Ao)®* @ D(~w; + Ao)
by [CMO06b, Theorem 2.2], which implies
L(ﬂ’%),a) = D(—2w; + Ao, ..., —2w; + Ao, —w; + Ag).
k

Since wowp 4)(Ao) = —2w; + Ag and wewyy ;) (s + Ag) = —w; + Ag hold by Lemma
4.9 (i), we have

D(—2wi—|—A0, ey —2wi+Ao, —wi—i-Ao) = Fwow[l,i] (D(A0)®k® D(wl + AQ))
k

= D(—mwi + (k+ 1)A0)
by Proposition 2.7. The assertion is proved. O
Hence in type B, L(mw) — D(wo&1,. .., w.&,) follows from [Moul0, Proposition
3.21]. (Note that this proposition does not imply our assertion in type C.)

In the rest of this subsection, we assume that g is of type C. For the proof of
the assertion in this type, we need the following lemma.

Lemma 5.15. Let 1 <r < s <n-—1, and assume that p is an element of PX such
that Ly(p) is a minimal affinization of Vy(w, + ws). Then we have
L(p) 2 D(—w, —ws + Ag).
Assuming this lemma for a while, we shall prove L(7) - D(wo&1,. .., wo&,) for
7 satisfying condition (I). (The proof for condition (II) is similar.) The proof is
carried out in a similar line as that of [Moul0, Proposition 3.21]. First we recall

the following theorem, which is obtained by taking the dual of [Cha02, Theorem
5.1] and using Lemma 3.3.

Theorem 5.16. Let i1,...,i, € I, b,...,b, € C(q)%, l,...,l, € Z>o, and as-
sume that
bra; ¢ ¢P>bsq; s for allr < s. (5.7)

Then the submodule of Ly (wfjlgl) R (wl(:pb),) genefated by the tensor product
of L-highest weight vectors is isomorphic to Lq<H£:1 wl(;’“b)k)
The following is an easy consequence of this theorem.

Corollary 5.17. Assume that i1,...,i, € I, b1,...,b, € C(q)*, and l,...,l, €
Z>qo satisfy (5.7). Then for any sequence 0 = ko < k1 < ... < ky_1 < kr = p,

the submodule of Lq( 21:1 ”l(,:kb)k> Q- ® Lq< izkril_‘_l rl(zkb)k) generated by the

tensor product of £-highest weight vectors is isomorphic to Lq< (- ﬁl(zkb)k)
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For each i € I, define (V) P} by

x® if i =0,

m;—pi,a;qPi
b .
ﬂ.(% ) (1) _
Piw%bqimib +1 % m,; —pi,a;qPi

(1) —
'\ = .
otherwise.

By Corollary 5.17, we have an injective U;(Lg)-module homomorphism
Ly(m) = Ly(m™) @+ @ Ly (7®) @ Ly (xV),
which induces a U (Lg)-module homomorphism
La(w) — LA(W(")) Q- ® LA(TI'(Q)) ® LA(ﬂ'(l)).

By applying C®a and taking the pull-back, we have a g[t]-module homomorphism
L(w) — ®11:n L(7")) mapping U t0 Upim) @ *@Vpery. Since D(wolp, - - ., Woli1) =
D(wo&y, ... ,wo&y), to complete the proof it suffices to show for each 1 < i < n the
existence of a surjective homomorphism L(ﬂ'(i)) — D(wo&;). Ifi° = 0 or pp = 0,
this follows from Lemma 5.14. Assume that p; = 1, and let

™ :ﬂ(i)

mi—pi—Lagri=17 727 Wy

—m , +1 T, m;—1.
1 i

Y naigr

We have an inclusion L, (ﬂ(i)) — Lg(m1)QLg(m2) by Corollary 5.17, and then using
the same argument as above, we obtain a g[t]-module homomorphism L(ﬂ'(i)) —
L(?Tl) ® L(7s). By Lemmas 5.14 and 5.15, this induces a surjective homomorphism

. 1
L(mx®) - D( —(mi —pi — Dw; + §(mi —pi — D)Ao, —wp —@; + Ao)-

By Proposition 2.7 and Lemma 4.9, we see that the right-hand side is isomorphic
to

1
Fwow[lvi] (D(Q(mz —Pi — 1)AO) & D(wifib + AO)) = D(wofi)v

and hence the assertion is proved.
It remains to show Lemma 5.15. Fix 1 <r <s<n —1.

Lemma 5.18. As g-modules,
D(—w, —ws + Ag) & @V(wr,k + Ws—k)-
k=0
Proof. Let J = {0,1,...,s =1} C Tand J = {1,...,5 =1} C I, and define g5 by
the Lie subalgebra of g generated by {e;, fi | i € j} and 6 We also define gy C g
similarly. Note that we have

D(—wr—ws—i—Ao) :Fwow D(WS,T—‘er).

[1,s]

Let w? be the longest element of the Weyl group of g;. Then F,, D(ws—r+Ao)

Wy w[l,s]
is a simple ﬁj»module with highest weight ws_, + Ag, and therefore we have

ngw[l,S]D(ws—r + AO) = @ VJ(wr—k’ + ws—k)
k=0

as gyj-modules, where V;(v) denotes the simple highest weight g;-module with
highest weight v. Since V;(v) are Demazure modules for g, F, .. Vs(v) = V(v)
holds. Hence the assertion is proved. O

We also need the following lemma.



DEMAZURE MODULES AND GRADED LIMITS OF MINIMAL AFFINIZATIONS 27

Lemma 5.19. There exists an exact sequence
0— Lq(wrvaws’aqswu) — Lq(wha) & Lq(‘ws’aqsfwrz)
— Ly(0r—1,0gT s41,aqs—7+1)-

Assuming this for a moment, we shall complete the proof of Lemma 5.15. Take
p as in Lemma 5.15. By the results in Subsections 5.1 and 5.3, we have

D(—w, —ws + Aog) » M(w, + ws) - L(p).

Hence it suffices to show that dim L(p) > dim D(—w, — ws + Ag). Recall that
every fundamental module L,(zo; ,) is simple as a U,(g)-module (in type C), and
it follows for 1 < i < j < n that

Vo(wi) @ Vo(w;) (5:8)
o [ ®Bico Val@iok + 1) © Bimy Vo @ik + @njjng) Hj<n—1,
@220 V;](wi_k + wn_k) if j =n.

By Theorem 3.6, p = ©0, 4T, 4ge(s—r+2) for some a € C(g)* and € € {£1}. Let us

assume € = +1 first. Using

,aq

Lq(wT_17aqws+1’aqsfr+l) — Lq(wr_Laq) ® Lq(ws+1’aqs—r+l),

we see from Lemma 5.19 and (5.8) that L,(p) contains Vi (w,_x+ws—x) (0 < k <)
as simple U, (g)-components. Hence dim L(p) = dim L,(p) > dim D(—w, —ws+Ao)
holds by Lemma 5.18, as desired. Since dim L,(p) = dim L,(*p) holds by Lemma
3.3, the case ¢ = —1 is also proved.

Now let us prove Lemma 5.19. It suffices to show that

wte (Lq(wr,a) ® Lq(ws,aqS—TJf?)) n Pqu = {wr,aws,aqs—r*'%wrfl,aqwerl,aqS‘”‘“}

and each dominant ¢-weight space is 1-dimensional. Assume that p1 € wtyL,(w,q)
and po € Wty Ly (w0, 4q:-r+2) satisfy p1ps € Pj. If po # w0y gqe—r+2, it follows that

—1
P1P2 < Ty oW, gqs—r+2 Qg ags—r+s

by Lemma 5.10 (ii), and therefore p; po is right-negative by Lemma 5.10 (i). Hence
we have py = w ggs—r+2.

We need to show one more lemma. For v € wtyL, (%o, ), define u;(v) € Z>( for
i€ lby w, —wt(v) =3, ui(V)a;. Let u(v) =3, ui(v) € Z>o.

Lemma 5.20. Letr < k < n, and assume that v € wtyLq (w0, ) satisfies ug(v) > 0
and w(v) = 0 forl > k. Then v < w’“aaalziqu) holds, where we set p(k) =
k—r+1+4+0g,.

Proof. We prove this by the induction on k. The case k = r follows from Lemma
5.10 (ii). Let k > r, and assume that there is an element v such that ux(v) > 0,
w(v)=0forl >k, and v £ wr,aa;,qu(k). We may assume that u(v) is minimal
among such elements. By Proposition 5.8, there exists j € I and v’ € wtyL, (w0, 4)
satisfying the conditions (i)—(iii). If ug (') > 0, then v’ also satisfies the assumption
of v, which contradicts the minimality of u(v). Hence j = k and uy (') = 0 follow.
We easily see that ui_1(v) > 0, and therefore ug_1(v’) > 0 also holds. Hence by
the induction hypothesis, v’ < wnaal;ll,aqk,,,, holds. On the other hand, we see
from the weight set of Ly(wo, ) = V(w,) that ug_1(v') = 1, which implies

/ -1 Z<o
V€W a0y | H ;.
I<k—1,beC(q)*
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Thus we have v, (u) = 1 —ag*~". Then using Propositions 5.6 and 5.7, we see from

o -1 -1 . . ..
the condition (iii) that v = v Lo PR < TraQy ane)» which is a contradiction.

The assertion is proved. O

This lemma implies that, if v € wt,L4(w, ) satisfies ux(v) > 0 for some k > s,
then v, ,4s-r+2 is right-minimal. Hence uy(p1) = 0 holds for all k& > s. Since
P15 g2 € P;F implies wt(p1) 4+ @, € P, this implies

Wt(ﬂl) € {wraw’r—l — W + ws+1}~
Then we see from [CMO06a, Theorem 2.7] that
P1 € {wr,aa wT,17aqw;iqs,,.+2ws+17aqs_r+1}

and dim Ly (w;.q)p, = 1. Now the assertion is obvious. The proof is complete.
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