MS Seminar (Mathematics - String Theory)

Speaker: Jackson Wu (NCTS Hsinchu, Taiwan)
Title: A Holographic Model of the Kondo Effect
Date (JST): Tue, Mar 18, 2014, 13:15 - 14:45
Place: Seminar Room A
Abstract: We propose a model of the Kondo effect based on the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, also known as holography. The Kondo effect is the screening of a magnetic impurity coupled anti-ferromagnetically to a bath of conduction electrons at low temperatures. In a (1+1)-dimensional CFT description, the Kondo effect is a renormalization group flow triggered by a marginally relevant (0+1)-dimensional operator between two fixed points with the same Kac-Moody current algebra. In the large-N limit, with spin SU(N) and charge U(1) symmetries, the Kondo effect appears as a (0+1)-dimensional second-order mean-field transition in which the U(1) charge symmetry is spontaneously broken. Our holographic model, which combines the CFT and large-N descriptions, is a Chern-Simons gauge field in (2+1)-dimensional AdS space, AdS3, dual to the Kac-Moody current, coupled to a holographic superconductor along an AdS2 subspace. Our model exhibits several characteristic features of the Kondo effect, including a dynamically generated scale, a resistivity with power-law behavior in temperature at low temperatures, and a spectral flow producing a phase shift. Our holographic Kondo model may be useful for studying many open problems involving impurities, including for example the Kondo lattice problem.