Observational Evidence For Cosmological-Scale Extra Dimensions

Ghazal Geshnizjani with Niayesh Afshordi and Justin Khoury arXiv:0812.2244 [astro-ph]

Cosmology: the Golden Era

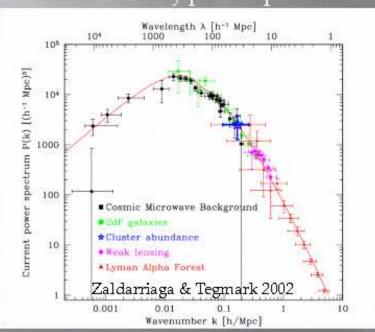
Cosmology: the Golden Era

 A six-parameter model can now explain (almost) all observations, ranging from the intergalactic neutral hydrogen to the Cosmic Microwave Background (CMB)

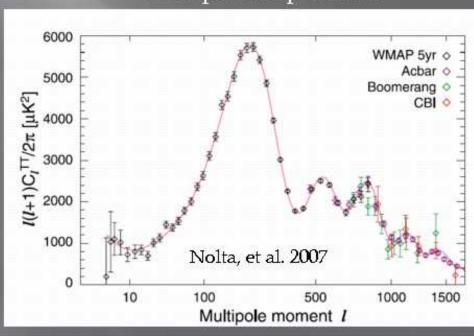
Cosmology: the Golden Era

 A six-parameter model can now explain (almost) all observations, ranging from the intergalactic neutral hydrogen to the Cosmic Microwave Background (CMB)

Cosmic density power spectrum



CMB power spectrum



Precision Cosmology

 Cosmological parameters are now measured with exquisite precision

WMAP 5-year Cosmological Interpretation

Komatsu, et al. 2008

TABLE 1 Summary of the cosmological parameters of ACDM model and the corresponding 68% intervals

Class	Parameter	$WMAP$ 5-year ML^a	$WMAP+BAO+SN\ ML$	WMAP 5-year Mean ^b	WMAP+BAO+SN Mean
Primary	$100\Omega_b h^2$	2.268	2.262	2.273 ± 0.062	$2.267^{+0.058}_{-0.059}$
	$\Omega_c h^2$	0.1081	0.1138	0.1099 ± 0.0062	0.1131 ± 0.0034
	Ω_{Λ}	0.751	0.723	0.742 ± 0.030	0.726 ± 0.015
	n_s	0.961	0.962	$0.963^{+0.014}_{-0.015}$	0.960 ± 0.013
	τ	0.089	0.088	0.087 ± 0.017	0.084 ± 0.016
	$\Delta_R^2(k_0^e)$	2.41×10^{-9}	2.46×10^{-9}	$(2.41 \pm 0.11) \times 10^{-9}$	$(2.445 \pm 0.096) \times 10^{-9}$

Is there any trouble in \(\cappa \) DM paradise? theoretical nightmares

Cosmological Constant Problem:

(what happened to rest of the vacuum energy?)

Standard model presents us with a vexing theoretical problem:

Why is Λ so unnaturally small?

* In EFT, robust contribution to vacuum energy is

$$\delta \rho_{\rm vac} \sim \sum_{\rm SM} m_{\rm SM}^4 \log(\Lambda_{\rm UV}/m_{\rm SM})$$

which, already with the electron, is $\gg (1~{
m meV})^4$

Is there any trouble in \CDM paradise?

Live happily: Anthropic reasoning Or ...

* In EFT, robust contribution to vacuum energy is

$$\delta \rho_{\rm vac} \sim \sum_{\rm SM} m_{\rm SM}^4 \log(\Lambda_{\rm UV}/m_{\rm SM})$$

which, already with the electron, is $\gg (1~{
m meV})^4$

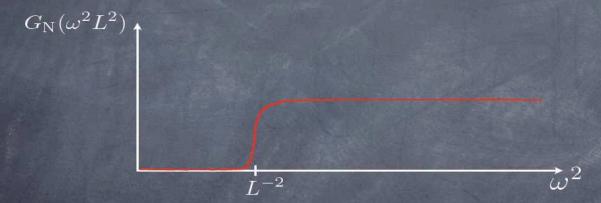
looking for a panacea:

de-Gravitation

Dvali, Hofmann, and Khoury 07

infrared-modified gravity theories, inspired by brane-world constructions with infinite-volume extra dimension

$$G_{\rm N}^{-1}(\Box L^2)G_{\mu\nu} = 8\pi T_{\mu\nu} \qquad ; \quad \Box \equiv \nabla^\mu \nabla_\mu$$
 high-pass filter



Sources with wavelength << L gravitate normally, whereas those with wavelength >> L (including vacuum energy) degravitate.

Cosmological degravitation

Around Minkowski space:

$$(\mathcal{E}h)_{\mu\nu} + \frac{m^2(\Box)}{2}(h_{\mu\nu} - \eta_{\mu\nu}h) = T_{\mu\nu}$$

$$m^2(\Box) = r_c^{-2(1-\alpha)}(-\Box)^{\alpha} \quad 0 < \alpha < 1/2$$

- Promising for solving the cosmological constant problem (not the coincidence problem)
- Due to the higher-dimensional nature of these constructions, extracting cosmological predictions presents a daunting technical challenge.

Snapshot of the theoretical progress so far

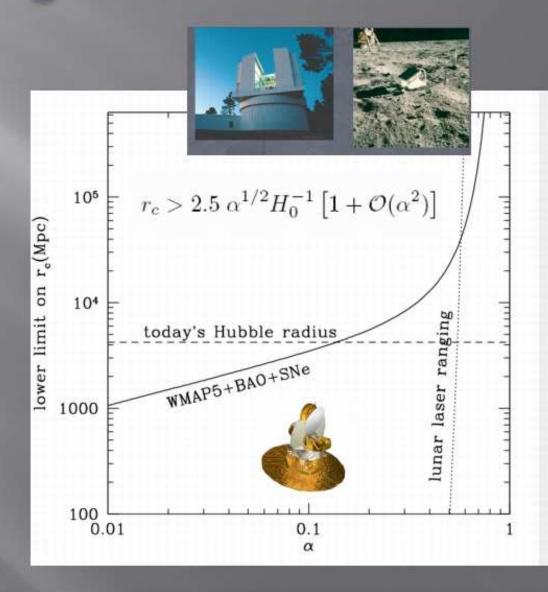
- The 4d graviton is no longer massless but a resonance (a continuum of massive states) with a tiny width r_c^{-1} .
- On intermediate (albeit cosmologically relevant) scales, an extra scalar force which enhances gravitational attraction by order unity.
- Non-linear interactions can suppress the effects near astrophysical sources.
- The theories of interest are higher-dimensional generalizations of the Dvali-Gabadadze-Porrati model in which our visible universe is confined to a 3-brane.
- It has been shown instabilities are absent if our 3-brane lies within a succession of higher-dimensional branes, each with their own induced gravity term, and embedded in one another in a flat bulk space-time (Cascading Gravity). In the simplest codimension-2 case, for instance, our 3-brane is embedded in a 4-brane within a 6-dimensional bulk.

What are the implications for Cosmological observations?

- General cosmological solution is non-existent; We pick any hint we can from theory and fill out the holes with observations.
- The modifications to Friedmann Equation in cascading gravity suggest slow varying function of Hr_c equation and analogy with α=1/2, Dvali, Gabadadze, Porati model suggest for:

$$H^2 = \frac{8\pi G}{3}\rho - \frac{H^{2\alpha}}{r_c^{2(1-\alpha)}}$$

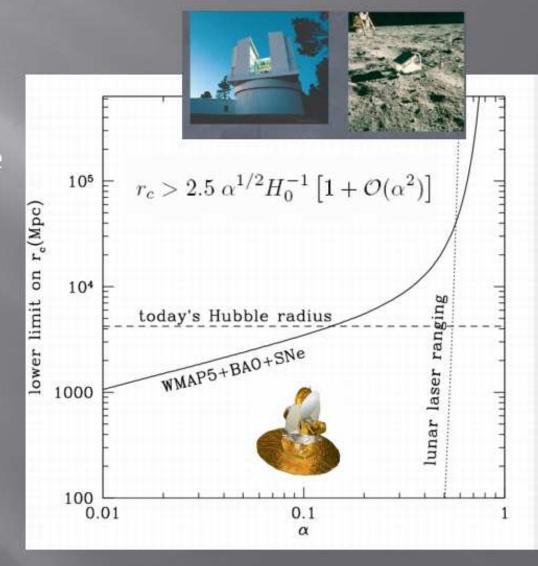
Degravitating FRW



Degravitating FRW

■ FRW with $\alpha \rightarrow 0$

(massive graviton)
indistinguishable
from ACDM



Inhomogeneous Universe could be different

Inhomogeneous Universe could be different

- Could lead to larger growth on intermediate scales:
 - Gravity becomes massive \rightarrow fifth force enhances gravitational attraction on non-relativistic matter (not photons $\Phi_{\perp} \neq -\Psi$)
- Possible Large Scale Implications:
 - We will fit our model so that ISW and Sachs-Wolfe effects cancel on super-horizon scales

Lensing and Newtonian potentials can be different

$$ds^{2} = -(1 + 2\Psi)dt^{2} + a^{2}(1 + 2\Phi)d\vec{x}^{2}$$

- $\Psi = -\Phi$ in Λ CDM+General Relativity
- Non-relativistic matter follows -Ψ
- □ Photons (Lensing and ISW) see $\Phi_{\perp} = (\Phi \Psi)/2$
- Φ_{_≠} -Ψ could signal the breakdown of General Relativity

observational anomalies (to be taken with a grain of salt)

observational anomalies (to be taken with a grain of salt)

- Structure on small scales
 - CBI excess (X-ray clusters?)
 - Lyman-α forest
- Structure on large scales
 - Integrated Sachs-Wolfe effect
 - Dark flow
- Cosmic Microwave Background
 - CMB auto-correlation vanishes beyond 60 deg's

CBI excess: Census of SZ clusters at z~1

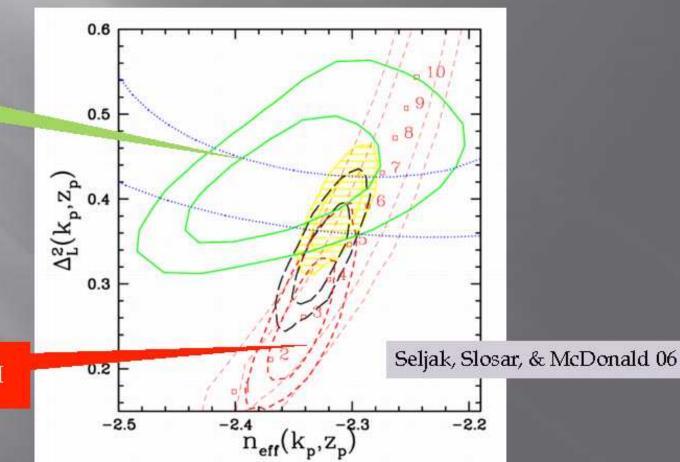
Do we underpredict the # of clusters? z~1000 • ACBAR 08 ACBAR 07 1000 o CBI σ_8 1.0 100 ACBAR+WMAP3 CMBall+BIMA 1000 1500 2000 2500 3000 0.92 0.94 0.96 0.98 1.00 1.02 0.92 0.94 0.96 0.98 1.00 1.02

ns

Lyman-α excess: structure at z~3

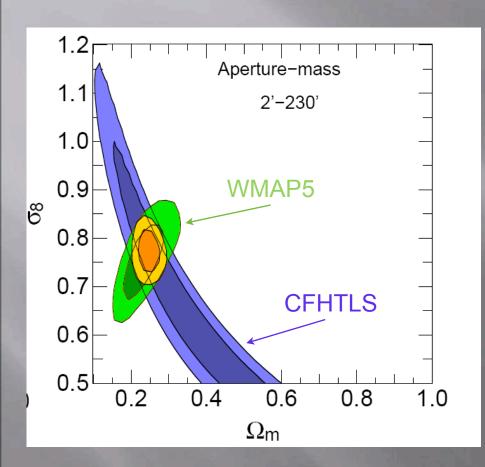
Ly-α, more clumpy than CMB predicts?

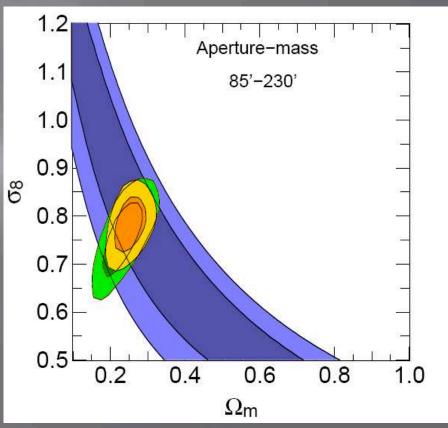
Lyman-α forest



WMAP3+∧CDM

But σ₈ from lensing is consistent with ΛCDM



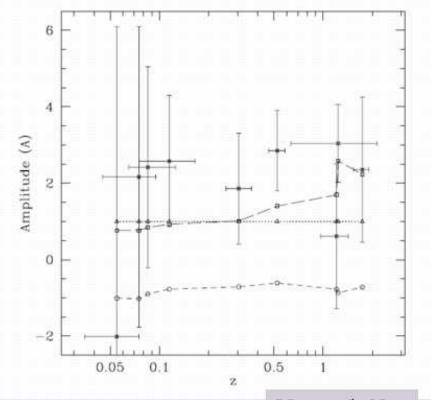


Fu, et al. 2008: Very weak lensing in the CFHTLS

ISW effect X galaxies: metric Pert. at z~0.1-1

Gravitational Potential: 2.23±0.60 larger than ΛCDM predicts

A = Observed ISW / Predicted ISW



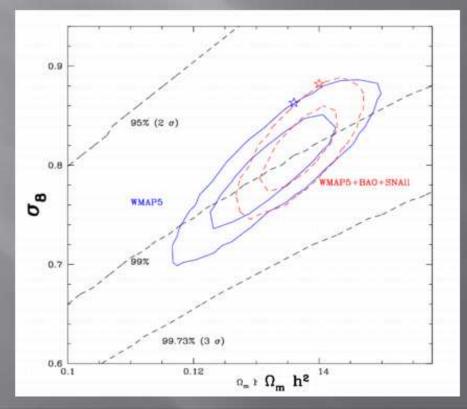
Sample	Amplitude $(A \pm \sigma)$
2MASS0	-2.01 ± 11.41
2MASS1	$+3.44 \pm 4.47$
2MASS2	$+2.86 \pm 2.87$
2MASS3	$+2.44 \pm 1.73$
LRG0	$+1.82 \pm 1.46$
LRG1	$+2.79 \pm 1.14$
QSO0	$+0.26 \pm 1.69$
QSO1	$+2.59 \pm 1.87$
NVSS	$+2.92 \pm 1.02$
All Samples	$+2.23 \pm 0.60$

Ho, et al. 08

Dark Bulk Flow I: velocities at z=0

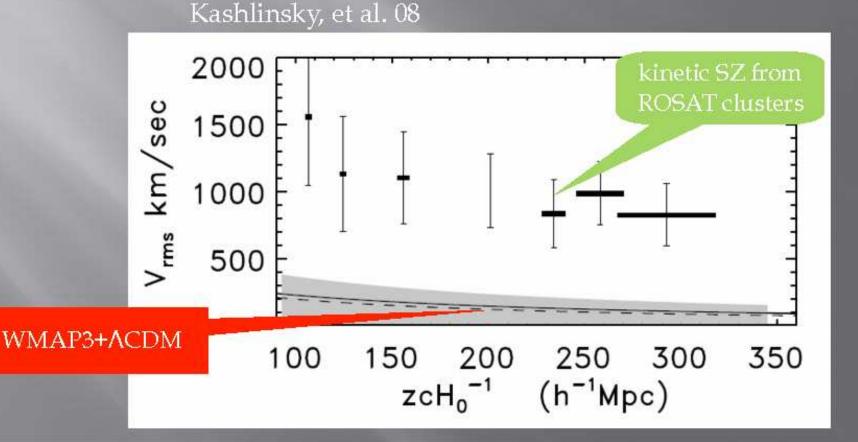
□ Local bulk flow within 50 Mpc is $407 \pm 81 \text{ km/s}$ → Λ CDM predicts: $v_{rms} = 190 \text{ km/s}$

Watkins, Feldman, & Hudson 08

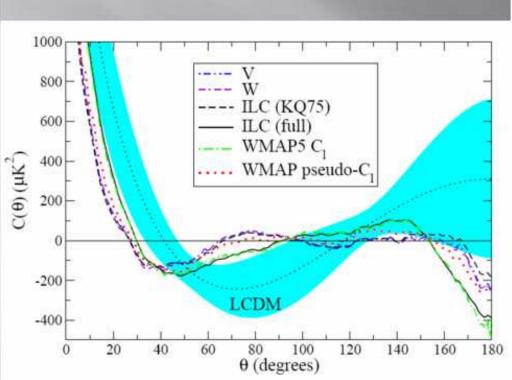


Dark Bulk Flow II: velocities at z=0

Local bulk flow within 300 Mpc is ~1000 ± 300
 km/s: First statistical detection of kinetic SZ effect



CMB auto-correlation, beyond 60 deg's

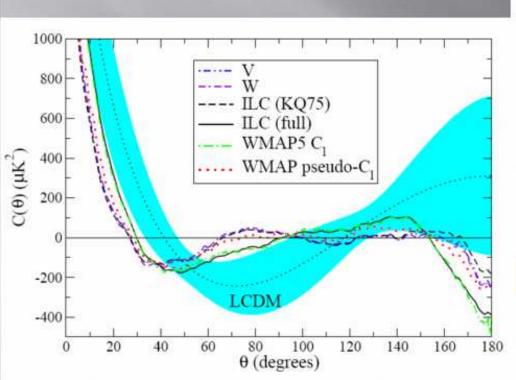


$$S_{1/2} \equiv \int_{-1}^{1/2} \left[\mathcal{C}(\theta) \right]^2 \mathrm{d}(\cos \theta)$$

Data Source	$S_{1/2} (\mu K)^4$	$P(S_{1/2})$ (per cent)
Source	(μK)	(per cent)
V3 (kp0, DQ)	1288	0.04
W3 (kp0, DQ)	1322	0.04
ILC3 (kp0, DQ)	1026	0.017
ILC3 (kp0), $C(>60^{\circ})=0$	0	
ILC3 (full, DQ)	8413	4.9
V5 (KQ75)	1346	0.042
W5 (KQ75)	1330	0.038
V5 (KQ75, DQ)	1304	0.037
W5 (KQ75, DQ)	1284	0.034
ILC5 (KQ75)	1146	0.025
ILC5 (KQ75, DQ)	1152	0.025
ILC5 (full, DQ)	8583	5.1
WMAP3 pseudo- C_{ℓ}	2093	0.18
WMAP3 MLE C_{ℓ}	8334	4.2
Theory3 C_{ℓ}	52857	43
WMAP5 C_{ℓ}	8833	4.6
Theory5 C_{ℓ}	49096	41

Copi, Huterer, Schwarz, & Starkman 08

CMB auto-correlation, beyond 60 deg's



$$S_{1/2} \equiv \int_{-1}^{1/2} \left[\mathcal{C}(\theta) \right]^2 \mathrm{d}(\cos \theta)$$

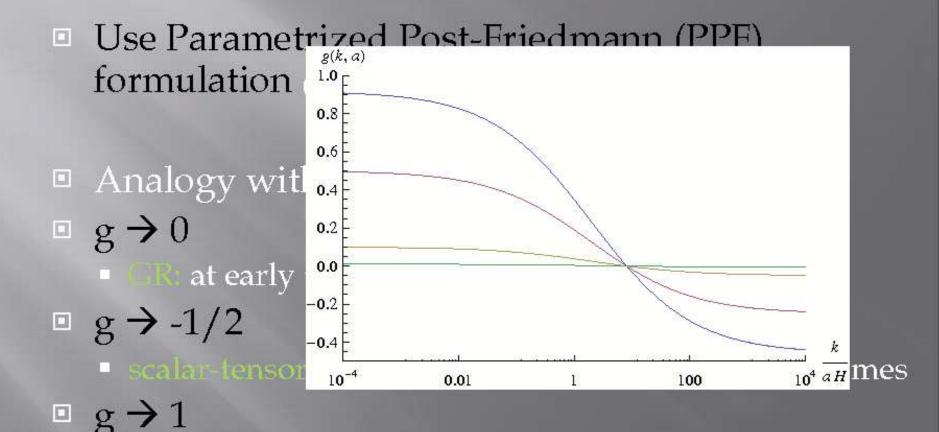
Data Source	$S_{1/2} \atop (\mu \mathrm{K})^4$	$P(S_{1/2})$ (per cent)
V3 (kp0, DQ)	1288	0.04
W3 (kp0, DQ)	1322	0.04
ILC3 (kp0, DQ)	1026	0.017
ILC3 (kp0), $C(>60^{\circ})=0$	0	_
ILC3 (full, DQ)	8413	4.9
V5 (KQ75)	1346	0.042
W5 (KQ75)	1330	0.038
V5 (KQ75, DQ)	1304	0.037
W5 (KO75 DO)	1984	0.034
ILC5 (KQ75)	1146	0.025
ILC5 (KQ75, DQ)	1152	0.025
ILC5 (full, DQ)	8583	5.1
WMAP3 pseudo- C_{ℓ}	2093	0.18
WMAP3 MLE C_ℓ	8334	4.2
Theory3 C_{ℓ}	52857	43
WMAP5 Ce	8833	4.6
Theory5 C_{ℓ}	49096	41

Copi, Huterer, Schwarz, & Starkman 08

How we deal with perturbations

- Use Parametrized Post-Friedmann (PPF) formulation (Hu & Sawicki 2007): $g = \frac{\Phi + \Psi}{\Phi \Psi}$
- Analogy with DGP model for $\alpha = 1/2$
- $g \rightarrow 0$
 - ©R: at early times or large densities
- $g \rightarrow -1/2$
 - scalar-tensor theory: on sub-horizon scales at late times
- $g \rightarrow 1$
 - Newtonian potential vanishes on super-horizon scales at late times

How we deal with perturbations



 Newtonian potential vanishes on super-horizon scales at late times

Cancelling ISW against Sachs-Wolfe

On super-horizon scales, in the matter era:

$$\frac{\delta T_{\rm CMB}}{T_{\rm CMB}} = \frac{1}{3}\Phi_{-} + 2\int dt \frac{\partial \Phi_{-}}{\partial t} \simeq \frac{1}{3}\Phi_{-} + 2\Delta\Phi_{-}$$

 Assuming adiabatic initial condition ς remains constant on large scales (Bertschinger 2006)

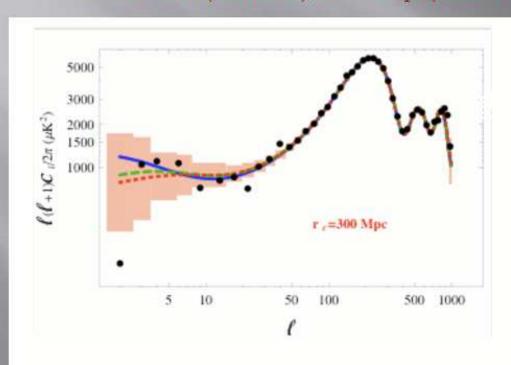
$$\begin{split} \zeta = \mathrm{const.} &= \frac{H}{H'} \left[(g-1)\Phi_- - g'\Phi_- - (g+1)\Phi'_- \right] \\ &\quad + (g+1)\Phi_- \simeq \frac{(5+g)\Phi_-}{3} \end{split}$$

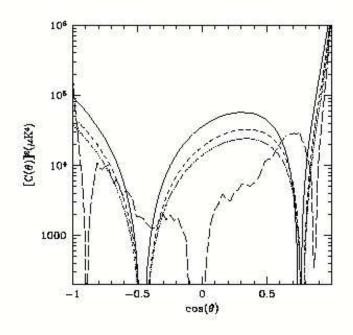
If g goes from 0 to 1, ISW and Sachs-Wolfe cancel!

de-Correlating CMB on large angles

CMB angular power spectra

best-fit ACDM (solid curve), rc = 600 Mpc (dashed curve) and r= 300 Mpc (short-dashed curve)

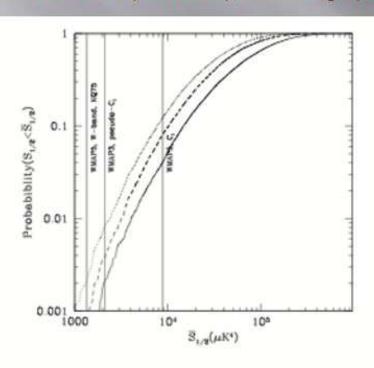


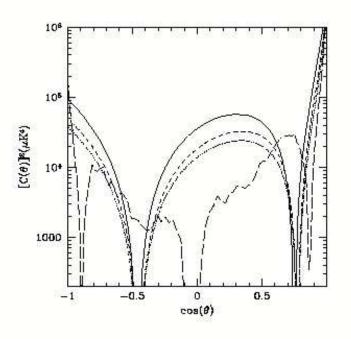


de-Correlating CMB on large angles

CMB angular power spectra

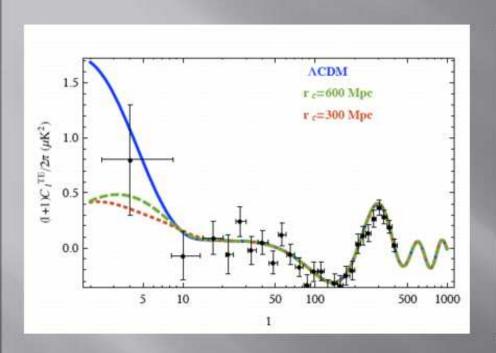
best-fit ACDM (solid curve), rc = 600 Mpc (dashed curve) and r= 300 Mpc (short-dashed curve)

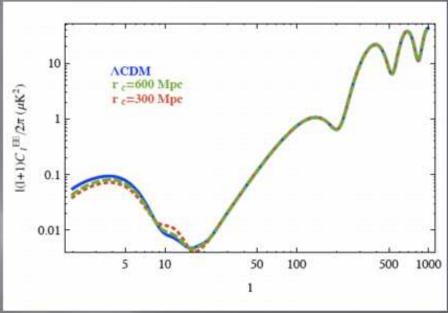




$$S_{1/2} \equiv \int_{-1}^{1/2} \left[\mathcal{C}(\theta) \right]^2 d(\cos \theta)$$

Prediction for CMB Polarization power spectra



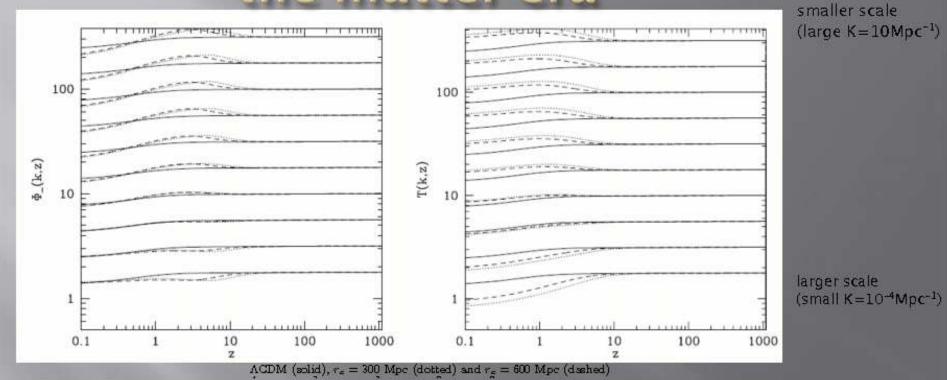


Temperature-Polarization (TE) power spectrum

polarization(EE) power spectrum

predicts a significantly lower TE cross-power spectrum at I < 10, which should be clearly distinguished from ΛCDM by the Planck satellite, due to its better polarization sensitivity and foreground cleaning capabilities

Potential Transfer Function in the matter era



comoving density perturbations $\Delta_{\rm m}/a$

Plenty of excess power on small scales

Lensing, Φ

Lensing potential is much less affected