

Future high-energy gamma-ray observatory: Cherenkov Telescope Array (CTA)

<u>Masaaki Hayashida (ICRR)</u> IMPU seminar, Nov 27, 2013

Theme: Cold dark matter (WIMP) search in the gamma-ray observations

- 1. a highlight of dark matter study by Fermi-LAT
- 2. What is CTA?
 - 1. detection principle of the Cherenkov Telescope
 - 2. CTA project (design, performance)
- 3. Prospects for the WIMP search with CTA
 - 1. dwarf galaxies
 - 2. Cluster of galaxies
 - 3. Milky way Halos

Doro et al. 2013, APh, 43, 189 (arXiv:1208.5356)

High energy Gamma-ray Sky

Fermi-LAT (E > 1 GeV)

Fermi Large Area Telescope (LAT)

- On board the Fermi Gamma-ray Space Telescope
 - Launched June 11, 2008
 - Started taking data Aug 2008
 - 5 year mission
 - Mission extended at least through 2016

Large Area Telescope (LAT)

Observes 20% of the sky at any instant, views entire sky every 3 hrs 20 MeV - 300 GeV - includes unexplored region between 10 - 100 GeV

Can go >300 GeV

Gamma-ray Burst Monitor (GBM) Observes entire unocculted sky Detects transients from 8 keV - 40 MeV 11/5/2013

High energy astrophysics

Pulsar

Fundamental physics

Dark matter candidates

 No known particles are good candidates for dark matter

"generic" WIMPs has:

- mass (M_{DM})~ a few 100 GeV
- annihilation cross section (<σv>) ~ 10⁻²⁶ cm³/s

How to Detect WIMPs

osmic Ray Research

University of Tokyo

Indirect WIMP Signatures

iversity of Tokyo

- Bringmann et al. and Weniger showed evidence for a narrow spectral feature near 130 GeV near the Galactic center (GC)
- Signal is particularly strong in 2 out of 5 test regions, shown above
- Over 4σ , with S/N > 30%, up to ~60% in optimized regions of interest (ROI)

New analysis for line search (by Fermi-LAT collaboration)

- Data were reprocessed. Now, the feature can be seen at 133 GeV
- s_{local} decreased in 4.4 yr data by ~10% compared to 3.7 yr data
- Since spring 2012, feature has decrease
- More "background-like"

More observations are needed,,,,,

High-energy γ-ray observations

<u>0.1 – a few 100 GeV</u>:
 Satellite

Fermi Gamma-ray Space Telescope

effective area: 1 m²

- a few 10 GeV Imaging Atmospheric
 - Cherenkov Telescope (IACT)
- indirect
- effective area: 10⁵ m²

	Satellite Fermi	Ground-based IACTs	10 ⁸ eV Satellite
Gamma-ray detection	Direct (pair creation)	Indirect (atmospheric Cherenkov)	10 ¹² eV 1m ²
Energy	Up to a few 100GeV	From a few tens GeV	Air Shower & Cherenkov light
Positive aspects	High S/N Large FOV	Large area Good ⊿θ	Ground
Negative aspects	Small area High cost	Large Background Small FOV duty cycle ~ 10 %	~10 ⁵ m ²

Detection of E>100 GeV γ-rays Image: Comparison of Co

- Particle

 shower

 10 km
 10 km
- **Cherenkov light** is emitted by relativistic particles in the shower
- number of hadron/gamma more than 1000 times
 -> need to reject hadron events

<u>γ showers</u>

- Narrow images
- Aligned towards source direction

hadronic showers

- Spread images
- Isotropic arrival direction

IACTs in currently operation

From current array to CTA

The Cherenkov Telescope Array

Core-energy array:

23 x 12 m tel. (MST) FOV: 7-8 degrees mCrab sensitivity in the 100 GeV–10 TeV domain

High-energy section:

30-70 x 4-6 m tel. (SST) - FOV: ~10 degrees 10 km² area at multi-TeV energies

Low-energy section:

4 x 23 m tel. (LST) (FOV: 4-5 degrees) energy threshold of some 10 GeV

> First Science: ~2016 Completion: ~2019

4 x 23 m tel. (FOV: 4-5 deg

energy threshold of some 10 GeV

> First Science: ~2016 Completion: ~2019

Site candidates

Leoncito (Argentina), San Antonio (Argentina)

Possible array configuration

SST 4.3m

Institute for Cosmic Ray Research University of Tokyo

Telescopes

	SST "small"	MST "medium"	LST "large"	SCT "medium 2-M"
Number	70 (S)	25 (S) 15 (N)	4 (S) 4 (N)	36 (S)
Spec'd range	> few TeV	200 GeV to 10 TeV	20 GeV to 1 TeV	200 GeV to 10 TeV
Eff. mirror area	> 5 m²	> 88 m²	> 330 m ²	> 40 m ²
Field of view	> 8º	> 7°	> 4.4°	> 7º
Pixel size ~PSF θ ₈₀	< 0.25°	< 0.18°	< 0.11°	< 0.075°
Positioning time	90 s, 60 s goal	90 s, 60 s goal	50 s, 20 s goal	90 s, 60 s goal
Availability	> 97% @ 3 h/week	>97% @ 6 h/week	>95% @ 9 h/week	>97% @ 6 h/week
Target capital cost	420 k€	1.6 M€	7.4 M€	2.0 M€

sensitivity

Institute for Cosmic Ray Research University of Tokyo

Japanese contributions to CTA hardware developments

Development of LST

Telescope specification

- Diameter: 23m
- Dish area: ~ 370 m²
- F/D = 1.2, F=28m
- Dish profile: Parabolic
 - Isochronicity < 0.6 nsec (rms)
- Total weight: ~70 tons
- Fast rotation: 180 deg/ 20sec
- Deformation of mirror dish: <10mm
- Active mirror Control
- Pointing accuracy: 14 arcsec

Designed by MPI Munich and MERO

LST hardware development

Mirror developments

developed in SANKO in Japan

<surface accuracy> +20µm -20µm

Specification:

- Hex, 1.5m flat-flat (2m2)
- Focal length: 28 m
- PSF: 0.03° (1/3 pixel)
- Weight: 47 kg

200 mirrors for 1 LST

Camera developments

LST-Camera 265 clusters/1855 pixels (0.1°pixel, FOV 4.5°, Weigh< 2 ton)

3 clusters

Detectors: PMT (Hamamatsu Photonics)

trigger+GHz Readout

PMT: Quantum efficiency 40% at 350 nm (30-35% in old types)

what can we do with CTA??

Performances: Fermi-LAT and CTA

10-8

10-9

10-10

10-11

10-12

10-13

10-14

Differential Flux E²dN/dE (erg cm² s⁻¹)

Iniversity of Tokyo

compared to the current Cherenkov telescopes,,,,

- 1. energy range is extended: 20 GeV to 100 TeV
 - best for >100 GeV WIMPs search
- 2. increased FOV
 - (5°-8° [СТА] VS 2°-5°[now])
- 3. better angular resolution
 - (0.1° [СТА] VS 0.2° [now])
- 4. better energy resolution
 - (10-20 %[ста] vs 15-30% [now])

Targets for Dark Matter Searches

Search Technique	advantages	challenges	
Galactic center	Good Statistics	Source confusion/Diffuse background	
Satellites, Subhalos	Low background, Good source id	Low statistics	
Milky Way halo	Large statistics	Galactic diffuse background	
Extra- galactic	Large Statistics	Astrophysics, galactic diffuse background	
Spectral ines	No astrophysical uncertainties, good source id	Low statistics	
Clusters of Galaxies	Low background, Good source id	Low statistics	

E.A. Baltz et al. JCAP07 (2008) 013

No gamma-ray background emission is expected!!! Choice of targets:

- "classical" dSphs:
 - Draco, Ursa Minor (North), Sculptor, Carina (South)
- ultra-faint dSphs: (larger astronomical uncertainties)
 - Coma Berenices, Segue 1, Willman 1

<assumptions>

- NFW and core isothermal DM halo profile
- study annihilation spectra (broad continuum), assuming in turn 100% branching ratio into a specific channel (bb_{var}, τ + τ or μ + μ -)

Indirect WIMP Signatures

niversity of Tokyo

Dwarf Galaxies: 100 hrs

Dwarf Galaxies: 100 hrs

Boost factors required for detection

to reach "thermal cross-section" of $<\sigma v>: 3x10^{-26} [cm^3/s]$

 5σ detection in 100h obs.

cosmic-ray induced γ rays can be contaminated (although no such emission is detected so far.)

- study in two objects
 - Perseus: highest CR-induced photon yield but a low DM content
 - Fornax: opposite reason

(based on N-body simulation by Pinzke et al. 2011 PRD)

- assuming the presence of DM subhalos
 - boost factor from subhalos is estimated (Pinzke et al. 2011) 910 for Perseus, 580 for Fornax (for a minimal halo mass of 10⁻⁶ Msolar)

Cluster of Galaxies

in reality, they are mixed,,,,,, how can we distinguish?

Cluster of Galaxies

Milky Way halo

but with the largest astrophysical gamma-ray background,,

Milky Way Halo simulated by Taylor & Babul (2005) All-sky map of DM gamma-ray emission (Baltz 2006)

MW Halo: observation strategies

On-off

В

b) On-Off Method (excluding lbl < 0.3 deg)

- more sensitive
- Challenging background control

cf. *J*~2x10¹⁹ Segue 1 (dSph)

16.4

22.8

28.7

0.1

10

1

niversity of Tokyo

0.00751

0.01384

0.02211

MW Halo: prospect

Prospects for the DM search

o dSph Galaxies:

⟨σ_{ann}ν⟩~10⁻²⁴cm³s⁻¹ BF=25 (Segue 1)

- Galaxy Clusters ⟨σ_{see}v⟩~10⁻²⁵ cm³ s⁻¹
 - CR background, extended emission
- Galactic Halo

Probing the WIMP parameter space!

 Complementarity with Fermi-LAT and direct searches

Time schedule

LST construction (Jan 2013)

CTA observatory

The first open observatory in the field of IACT

- CTA will drastically improve the observations in the 20 GeV – 100 TeV band
- 2. First light will be foreseen in 2016 and the full operation will start 2019
- 3. CTA-Japan mainly contributes to the LST developments (hardware and MC)
- 4. CTA can probe "WMAP space" < with the Milky way halo study.
- 5. CTA will be the open observatory!!! You can use it!!!