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Spectroscopy we learned at high school

e A flame test is a qualitative method to identify an element.

Cu Na

e An emission spectrum is used to quantitatively distinguish
different elements.

Cu Na
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Supersymmetric spectroscopy via spectral network

e Using spectral network, we can get the BPS spectrum of a 4d
N = 2 theory of class S on the Coulomb branch.

e We use the BPS spectrum to identify such a theory, which is
useful when the theory is strongly coupled and we lack any
perturbative approach to understand it.

3
Zs Z

- Zg

spectral network finite S-walls central charges

1. Introduction 3 /37



4d N = 2 theory of class S and BPS states

e The low-energy effective theory of a 4d N = 2 gauge theory
can be understood as being from an M5-brane wrapping a
complex 1-dimensional curve, called Seiberg-Witten curve.

[Seiberg-Witten, 1994]

e A theory of class S is obtained from multiple M5-branes
wrapping a punctured Riemann surface, which in the Coulomb
branch merge into a single Mb5-brane wrapping a
Seiberg-Witten curve. [caiotto, 2009]

e A 4d state that has its mass tied to the central charge of the
SUSY algebra, called a BPS state, is identified with an
M2-brane that ends along a 1-cycle of the Seiberg-Witten
curve. lts mass is given by integrating a 1-form, called
Seiberg-Witten differential, along the 1-cycle.
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S-walls and spectral network

e When we have a Seiberg-Witten curve f(¢,2) =0 as a
multi-sheeted cover over the ¢-plane and the corresponding
Seiberg-Witten differential A = \(¢, x)dt, we obtain an
Sji-wall of a spectral network by solving

or

ot _

or

where ); is the value of X on the i-th sheet, and 7 is a real
parameter a|0ng the S]k—Wa” [Klemm-Lerche-Mayr-Vafa-Warner, 1996]

[Gaiotto-Moore-Neitzke, 2009,2010,2011,2012]

e The collection of the S-walls at a value of 6 is called a
SpeCtra| netWOI’k. [Gaiotto-Moore-Neitzke, 2012]
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Punctures of the theory of class S

e When we represent a Seiberg-Witten curve in (z,t) € T*C as

N
VY o)V =0,
k=2

where C is a Riemann sphere with punctures, each puncture is
labeled by D = (da, ds, ..., dn_1,dn), where

O = (dD)* /4

e When a Seiberg-Witten differential A = x dt has a singularity
at t = 0 such that the singular part of A is described by

Cs
Zr;dt, a; > ajy1 > 0,
=0

we call the point a regular puncture if ag < 1, and an irregular
puncture if ag > 1.
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4d N = 2 SCFT at AD point from 6d N =

When a 4d N = 2 theory has mutually nonlocal massless
states in the IR limit, it flows to an interacting SCFT.
[Argyres-Douglas, 1995][Argyres-Plesser-Seiberg-Witten, 1995]

Compactifying the 6d N' = (2,0) Ay theory on a Riemann
sphere with an irregular puncture leads to a 4d NV = 2 SCFT
of Argyres-Douglas type. [Gaiotto-Moore Neitzke, 2009][Cecotti-Neitzke-Vafa, 2010]
[Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa, 2011][Bonelli-Maruyoshi-Tanzini, 2012][Xie, 2013]
The theory on the Coulomb branch of an SCFT from an
Argyres-Douglas fixed point has massive BPS states that
become mutually nonlocal and massless when we flow the
theory to the fixed point.

By studying the spectral network of the theory, we can find
such BPS states.
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4d N = 2 SCFTs from 6d A4,

From compactifying 6d A; on a Riemann sphere C with
e an irregular puncture D45 = (d2) = (n+5) at t = c©

S[Ala C: Drega Dn+2]

From 6d A; on C with a regular puncture D, at ¢t = 0 and

e an irregular puncture Dy 0 = (d2) = (n+2) at t = c©

Dn+5 Dn+2

Dreg
S[Alyc;pn+5] S[Alyc;Dreg7Dn+2]
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4d N = 2 SCFTs from 6d Ayx_;

S[An_1,C; Dy, S[AN_1,C; Dy

From 6d Ay_1 on C with an irregular puncture at t = oo,
e Dy = (dg,...,dy) = (4,6,...,2N —2,2N + 2)
e Dy = (dg,...,dy) = (4,6,...,2N —4,2N 2N + 2)

S[As2,C; Dreg, D

From 6d A3 on C with a regular puncture D, at t = 0 and

e an irregular puncture Dyyp = (d2, d3) = (3,5) at t = o0

Dy Dry D

Dieg
S[An-1,C;Dy] S[AN_1,C; Dy S[A2,C; Dyeg, D11
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Summary of results

e We claim equivalences between 4d N' = 2 SCFTs of different
descriptions by analyzing the spectral network of the theory
from the IR Coulomb branch of each SCFT.

e A minimal BPS spectrum of each class is represented by a
quiver based on a Dynkin diagram T'.

e Theories in the same I'-class have the same BPS spectrum
and exhibit the same wall-crossings.

r 6d A 6d Ay_1
Ap=n-1, N >3 S[A1,C; Dy S[ANn-1,C; D]
o S[A17C7D8] .
Ds=4s | si4,,¢Dppy | SA2GTI
S[A2,C; Dy
D, S[A1,C;Dyey, D
4 [ ! g 6] S[A27C;D7’697DHI]
Dn:N—l—lr N >4 S[AvaEDregaprkﬂ] S[AN—laC;DII]
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S-walls around a branch point of ramification index N

For f(t,z) = t — 2" and A = z dt, there are
N? — 1 Sj-walls described by

L (7) = (exp(if) Jwy,) ¥+ 7,

/ where wj, = w; — wy and wy, = exp (%k)
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S-walls around an SU(N) regular puncture

e There are N — 1 branch points
corresponding to the mass
parameters.

e A closed S-wall appears around
a puncture when
0 = 0. = arg [i(m; — my)]

e When all m; = 0, we have
f(t,v) =t—o" and A = 2dt
that gives N(N — 1) S-walls
described by

)= () 7
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BPS joint of S-walls

S-walls S;,4,, Siyigs - -, Siiy of the spectral network from Ay~
can form a joint, where \; i, + Aiyis + -+ + Ai,i; = 0 is satisfied.

Seiberg-Witten curve and
spectral network S-walls
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4d BPS states from finite S-walls and their central charge

o We obtain the 4d BPS states from
the cycles of the Seiberg-Witten
curve.

e Spectral networks enable us to
identify the cycles with finite
S-walls that have finite values of
the integration of A along the
S-wall,

i ot i
Z:/Ti )\jk(t)aTdT:/Ti e dr,

where Z is the central charge of
the BPS state.

0 < 0.
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4d BPS states from finite S-walls and their central charge

Seiberg-Witten curve from A; and a finite
0 =6 S-wall
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4d BPS states from finite S-walls and their central charge

o We obtain the 4d BPS states from
the cycles of the Seiberg-Witten
curve.

e Spectral networks enable us to
identify the cycles with finite
S-walls that have finite values of
the integration of A along the
S-wall,

i ot i
Z:/Ti )\jk(t)aTdT:/Ti e dr,

where Z is the central charge of
the BPS state.

0 > 0.
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IR charges from finite S-walls

e The intersection of two 1-cycles corresponding to two finite
S-walls give the skew-symmetric electric-magnetic inner
product of the corresponding BPS states.

(71,72) = (S, Sip) = qu py) = pi7 gl

12 12
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3. Theories of A,-class
Ag-class
As-class



Ag-class: S[A1,C; D;] with minimal BPS spectrum

e Click here to see the animation of the spectral network.

0 = arg(Z) 0 = arg(Z,) Finite S-walls
state | (e, m)
| L LD o—@
| 2 10,1
central charges IR charges BPS quiver
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http://theory.caltech.edu/~chan/spectral_network/a2SN_minimal.gif

Ag-class: S[A1,C; D;] with maximal BPS spectrum

o After a wall-crossing, S[A1,C; D7| has a maximal BPS
spectrum with three BPS states.
e Click here to see the animation of the spectral network.

0 =arg(Z) 0=arg(Z)

central charges IR charges
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http://theory.caltech.edu/~chan/spectral_network/a2SN_maximal.gif

Ay-class: S[As,C; Dy| with minimal BPS spectrum

e Another SCFT in the same As-class as S[A4;,C; D7| can be
obtained from 6d Ao theory. [caiotto Moore Neitzke, 2012]
e Click here to see the animation of the spectral network.

(23) (12)
(12) 23

0 = arg(Zy) =arg(Zy) finite S-walls
central charges BPS quiver
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http://theory.caltech.edu/~chan/spectral_network/a2SNFromA2_rho_inf.gif

Ag-class: S[As,C; Dy| with maximal BPS spectrum

e After a wall-crossing, there appears a joint of three S-walls,
giving the third BPS state. [Gaiotto-Moore-Neitzke, 2012]
e Click here to see the animation of the spectral network.

(12) (23

—
-

(23) 12

0 =arg(Z1) 0=arg(Zs) finite S-walls
state | (e, m)
iy Z;
\/ 1 (17 O)
~Z3 /\ Z3 2 (0 1)
> Zy 3 (1’ 1)

central charges IR charges
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http://theory.caltech.edu/~chan/spectral_network/a2SNFromA2_rho_1.gif

As-class: S[A1,C; Ds] with SU(2)¢

e A minimal BPS spectrum is represented with an Ag quiver.
e There is a doublet of SU(2);.

T O——®

finite S-walls central charges BPS quiver
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As-class: S[A1,C; Ds] with SU(2)¢

e BPS spectrum when the theory is on the BPS wall.

e With SU(2); maintained, the central charges of three BPS
states align at the same time.

/
e

finite S-walls central charges 0 =0,
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As-class: S[A1,C; Ds] with SU(2)¢

o After the wall-crossing with SU(2)¢, Maximal BPS spectrum
has three additional BPS states, one doublet and one singlet.

state | (e, m)
1 (1,0)
2 (0,1)
3| (1,1)
4 (2,1)
finite S-walls central charges IR charges
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As-class: S[As,C; Dy| with minimal BPS spectrum

0 = arg(Zl)

(23 Z

@ 1 X 1 @ _z 7 A 7, Z : 5 5
(23 )

finite S-walls on the Z-plane BPS quiver
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As-class: S[As,C; D;| with maximal BPS spectrum

e When the spectral network is from two branch points of index
4, it gives the maximal, symmetric BPS spectrum.

e This spectrum contains two doublets and two singlets of
SU(2), and each state has the same IR charge as the
corresponding BPS state of S[A1,C; Ds].

Z;

B state | (e, m)

1 1 | (1,0)

B L2 (0,1)
2 4 (1,1)

M 6 (2,1)

0 = arg(Z2) 0 = arg(Z) central charges IR charges
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4. Theories of D,,-class
Ds-class (= As-class)
Dy-class



Dg(: Ag)—ClaSSZ S[Al,C; Drega D5] with SU(Q)]{

e From a regular puncture with SU(2);, a doublet of S-walls
flow out of it.

e This provides a doublet of SU(2)¢, which is also contained in
the BPS spectrum of other theories of As-class, but how it
realized in a spectral network is different.

0 = arg(Z7) 0 = arg(Z)

4. Theories of Dy-class — Dg-class (= Ag-class)



Dg(: Ag)—ClaSSZ S[Al,C; Drega D5] with SU(Q)]{

e Wall-crossing with SU(2)¢ maintained results in three
additional BPS states, giving the maximal BPS spectrum of

Ds-class (= As-class).

SRR

AV

—

4. Theories of Dy-class — Dg-class (= Ag-class)

O—@—®

state | (e, m)
1 (1,0)
2 (0,1)
3 (1,1)
4 (2, 1)



Dy-class: S[A1,C; Dyeg, D], minimal BPS spectrum

—— u
at general 0 finite S-walls
2 state | (e, m) (®

1 | (1,0
S B R

-z 3 (17 0) e

central charges IR charges BPS quiver
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Dy-class: S[A1,C; Dyeg, Dg), wall-crossing with SU(3);

2 state | (e, m)
1 (1,0)
2 ] (0,1)
IR charges

& —Zra»7;

z 2

finite S-walls central charges BPS quiver
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Dy-class: S[A1,C; Dyeg, Dg), wall-crossing with SU(3);

state | (e, m)
1 (1,0)
I N 2 (0,1)
. 3 | (1,3)
4 (1,2)
5 | (2,3)
6 (1,1)
finite S-walls central charges IR charges
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Dy-class: S[A1,C; Dyeg, Dg), wall-crossing with SU(3);

. state | (e, m)
% ) 1 (1,0)
2 z 2 | (0,1)
2 \\ = 3 | (1,3)
-z -z 4 (1,2)
S 5 (2,3)
| 6 | (1,1)
finite S-walls central charges IR charges
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Dy-class: S[As,C; Dy, minimal BPS spectrum

(23)

(23)

(12%—X%(12)

(23)

(23)

arg(Z3) < 0 < arg(Z1) finite S-walls

Z

state | (e, m) 2
- 1 | (1,0
2 | (0,1)

central charges IR charges BPS quiver
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Dy-class: S[As,C; Dyi|, maximal symmetric BPS spectrum

central charges IR charges

4. Theories of D,,-class — Dy4-class



Dy-class: S[As,C; Dyeg, Drrr], minimal BPS spectrum

12) 12) (123)
0 ~ arg(Z;) 0 ~ arg(Z3) finite S-walls
ZZ
T state | (e, m) &
2 1 | (1,0 @)
L 2 [0 e
central charges IR charges BPS quiver
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Dy-class: S[As,C; Dyeg, Dirr], maximal BPS spectrum

0 ~ arg(Z3) 0 ~ arg(Z;) finite S-walls
. state | (e, m)
% 1 (1,0)
2 z 2 (0,1)
2 \\ 2 3 | (1,3)
257 23 1| (1,2)
J ) (2,3)
6 (1,1)
central charges IR charges
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5. Summary and Outlook



e Using spectral network we can find out the BPS spectra of 4d
N = 2 theories of class S, including SCFTs at
Argyres-Douglas fixed points.

e BPS spectrum obtained via spectral network illustrates how
massless nonlocal states of an SCFT at an Argyres-Douglas
fixed point arise and how flavor symmetry enhancement
occurs.

e Matching the BPS spectra of theories with different
descriptions show there are equivalent classes of such theories,
each class being represented by a BPS quiver.
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Outlook

e Study SCFTs at AD points from other types of irregular
PUNCLUFES [Xie,2012][Kanno-Maruyoshi-Shiba-Taki, 2013] and regular punctures
[Cecotti-Del Zotto, 2012][Cecotti-Del Zotto-Giacomelli, 2013]

e Understand how to use spectral network and BPS quiver in a
com p|ementary Way [Cecotti-Neitzke-Vafa, 2010][Cecotti-Vafa, 2011]
[Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa, 2011]

e Study more general SCFTs of class S via spectral network.
[Gaiotto-Tachikawa-Seiberg, 2011][Chacaltana-Distler, 2010]

e Use spectral network to understand 6d (2,0) theory in the
Coulomb branch.
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