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Spectroscopy we learned at high school

• A flame test is a qualitative method to identify an element.

Cu Na

• An emission spectrum is used to quantitatively distinguish
different elements.

Cu Na
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Supersymmetric spectroscopy via spectral network

• Using spectral network, we can get the BPS spectrum of a 4d
N = 2 theory of class S on the Coulomb branch.

• We use the BPS spectrum to identify such a theory, which is
useful when the theory is strongly coupled and we lack any
perturbative approach to understand it.
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4d N = 2 theory of class S and BPS states

• The low-energy effective theory of a 4d N = 2 gauge theory
can be understood as being from an M5-brane wrapping a
complex 1-dimensional curve, called Seiberg-Witten curve.
[Seiberg-Witten, 1994]

• A theory of class S is obtained from multiple M5-branes
wrapping a punctured Riemann surface, which in the Coulomb
branch merge into a single M5-brane wrapping a
Seiberg-Witten curve. [Gaiotto, 2009]

• A 4d state that has its mass tied to the central charge of the
SUSY algebra, called a BPS state, is identified with an
M2-brane that ends along a 1-cycle of the Seiberg-Witten
curve. Its mass is given by integrating a 1-form, called
Seiberg-Witten differential, along the 1-cycle.
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S-walls and spectral network

• When we have a Seiberg-Witten curve f (t, x) = 0 as a
multi-sheeted cover over the t-plane and the corresponding
Seiberg-Witten differential λ = λ(t, x)dt, we obtain an
Sjk-wall of a spectral network by solving

∂λjk
∂τ

= (λj(t, x)− λk(t, x)) ∂t
∂τ

= eiθ,

where λi is the value of λ on the i-th sheet, and τ is a real
parameter along the Sjk-wall. [Klemm-Lerche-Mayr-Vafa-Warner, 1996]

[Gaiotto-Moore-Neitzke, 2009,2010,2011,2012]

• The collection of the S-walls at a value of θ is called a
spectral network. [Gaiotto-Moore-Neitzke, 2012]
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Punctures of the theory of class S

• When we represent a Seiberg-Witten curve in (x, t) ∈ T ∗C as

xN +
N∑

k=2
φk(t)xN−k = 0,

where C is a Riemann sphere with punctures, each puncture is
labeled by D = (d2, d3, . . . , dN−1, dN ), where

φk = (dt)k/tdk + · · · .

• When a Seiberg-Witten differential λ = x dt has a singularity
at t = 0 such that the singular part of λ is described by∑

i=0

ci
tai

dt, ai > ai+1 > 0,

we call the point a regular puncture if a0 ≤ 1, and an irregular
puncture if a0 > 1.
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4d N = 2 SCFT at AD point from 6d N = (2, 0) theory

• When a 4d N = 2 theory has mutually nonlocal massless
states in the IR limit, it flows to an interacting SCFT.
[Argyres-Douglas, 1995][Argyres-Plesser-Seiberg-Witten, 1995]

• Compactifying the 6d N = (2, 0) AN theory on a Riemann
sphere with an irregular puncture leads to a 4d N = 2 SCFT
of Argyres-Douglas type. [Gaiotto-Moore-Neitzke, 2009][Cecotti-Neitzke-Vafa, 2010]

[Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa, 2011][Bonelli-Maruyoshi-Tanzini, 2012][Xie, 2013]

• The theory on the Coulomb branch of an SCFT from an
Argyres-Douglas fixed point has massive BPS states that
become mutually nonlocal and massless when we flow the
theory to the fixed point.

• By studying the spectral network of the theory, we can find
such BPS states.
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4d N = 2 SCFTs from 6d A1

S[A1, C;Dn+5]
From compactifying 6d A1 on a Riemann sphere C with

• an irregular puncture Dn+5 = (d2) = (n + 5) at t =∞

S[A1, C;Dreg,Dn+2]
From 6d A1 on C with a regular puncture Dreg at t = 0 and

• an irregular puncture Dn+2 = (d2) = (n + 2) at t =∞

A1

Dn+5 ?

S[A1, C;Dn+5]

A1

?Dn+2

• Dreg

S[A1, C;Dreg,Dn+2]
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4d N = 2 SCFTs from 6d AN−1

S[AN−1, C;DI], S[AN−1, C;DII]
From 6d AN−1 on C with an irregular puncture at t =∞,

• DI = (d2, . . . , dN ) = (4, 6, . . . , 2N − 2, 2N + 2)
• DII = (d2, . . . , dN ) = (4, 6, . . . , 2N − 4, 2N , 2N + 2)

S[A2, C;Dreg,DIII]
From 6d A2 on C with a regular puncture Dreg at t = 0 and

• an irregular puncture DIII = (d2, d3) = (3, 5) at t =∞

AN−1

DI ?

S[AN−1, C;DI]

AN−1

DII ?

S[AN−1, C;DII]

A2

?DIII

• Dreg

S[A2, C;Dreg,DIII]
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Summary of results

• We claim equivalences between 4d N = 2 SCFTs of different
descriptions by analyzing the spectral network of the theory
from the IR Coulomb branch of each SCFT.

• A minimal BPS spectrum of each class is represented by a
quiver based on a Dynkin diagram Γ.

• Theories in the same Γ-class have the same BPS spectrum
and exhibit the same wall-crossings.

Γ 6d A1 6d AN−1
An=N−1, N ≥ 3 S[A1, C;Dn+5] S[AN−1, C;DI]

D3 = A3
S[A1, C;D8] S[A3, C;DI]S[A1, C;Dreg,D5]

D4 S[A1, C;Dreg,D6] S[A2, C;DII]
S[A2, C;Dreg,DIII]

Dn=N+1, N ≥ 4 S[A1, C;Dreg,Dn+2] S[AN−1, C;DII]
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S-walls around a branch point of ramification index N
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N = 4

For f (t, x) = t − xN and λ = x dt, there are
N 2 − 1 Sjk-walls described by

tjk(τ) = (exp(iθ)/ωjk)
N

N+1 τ,

where ωjk = ωj − ωk and ωk = exp
(

2πi
N k

)
.

2. Spectral network and BPS states — Building blocks of spectral network 13 / 37



S-walls around an SU(N ) regular puncture

H12L H12LH21L

θ < θc θ = θc

H12L

H12L

H21L

m → 0

2´H12L

m = 0

• There are N − 1 branch points
corresponding to the mass
parameters.

• A closed S-wall appears around
a puncture when
θ = θc = arg [i(mj −mk)]

• When all mj = 0, we have
f (t, v) = t − vN and λ = v

t dt
that gives N (N − 1) S-walls
described by

t(τ) =
(
eiθ/ωjk

)N
τ
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BPS joint of S-walls

S-walls Si1i2 , Si2i3 , . . ., Sini1 of the spectral network from AN>1
can form a joint, where λi1i2 + λi2i3 + · · ·+ λini1 = 0 is satisfied.

H12L

H23L

H13L

spectral network
Seiberg-Witten curve and
S-walls
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4d BPS states from finite S-walls and their central charge
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θ < θc

• We obtain the 4d BPS states from
the cycles of the Seiberg-Witten
curve.

• Spectral networks enable us to
identify the cycles with finite
S-walls that have finite values of
the integration of λ along the
S-wall,

Z =
∫ τf

τi
λjk(t) ∂t

∂τ
dτ =

∫ τf

τi
eiθdτ,

where Z is the central charge of
the BPS state.
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4d BPS states from finite S-walls and their central charge
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Seiberg-Witten curve from A1 and a finite
S-wall
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4d BPS states from finite S-walls and their central charge

H21L

H21L

H21L

H12L

H12L

H12L

θ > θc

• We obtain the 4d BPS states from
the cycles of the Seiberg-Witten
curve.

• Spectral networks enable us to
identify the cycles with finite
S-walls that have finite values of
the integration of λ along the
S-wall,

Z =
∫ τf

τi
λjk(t) ∂t

∂τ
dτ =

∫ τf

τi
eiθdτ,

where Z is the central charge of
the BPS state.
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IR charges from finite S-walls

• The intersection of two 1-cycles corresponding to two finite
S-walls give the skew-symmetric electric-magnetic inner
product of the corresponding BPS states.

〈γ1, γ2〉 = 〈Sij ,Sjk〉 =
∑

r
q(r)

1 p(r)
2 − p(r)

1 q(r)
2
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A2-class: S[A1, C;D7] with minimal BPS spectrum

• Click here to see the animation of the spectral network.

θ = arg(Z1) θ = arg(Z2) Finite S-walls

central charges

state (e,m)
1 (1, 0)
2 (0, 1)
IR charges

1 2

BPS quiver
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A2-class: S[A1, C;D7] with maximal BPS spectrum

• After a wall-crossing, S[A1, C;D7] has a maximal BPS
spectrum with three BPS states.

• Click here to see the animation of the spectral network.

θ = arg(Z2) θ = arg(Z3) θ = arg(Z1) finite S-walls

central charges

state (e,m)
1 (1, 0)
2 (0, 1)
3 (1, 1)
IR charges
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A2-class: S[A2, C;DI] with minimal BPS spectrum

• Another SCFT in the same A2-class as S[A1, C;D7] can be
obtained from 6d A2 theory. [Gaiotto-Moore-Neitzke, 2012]

• Click here to see the animation of the spectral network.
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A2-class: S[A2, C;DI] with maximal BPS spectrum

• After a wall-crossing, there appears a joint of three S-walls,
giving the third BPS state. [Gaiotto-Moore-Neitzke, 2012]

• Click here to see the animation of the spectral network.
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A3-class: S[A1, C;D8] with SU(2)f

• A minimal BPS spectrum is represented with an A3 quiver.
• There is a doublet of SU(2)f .

finite S-walls central charges

1 2 1

BPS quiver
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A3-class: S[A1, C;D8] with SU(2)f

• BPS spectrum when the theory is on the BPS wall.
• With SU(2)f maintained, the central charges of three BPS
states align at the same time.

finite S-walls central charges θ = θc
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A3-class: S[A1, C;D8] with SU(2)f

• After the wall-crossing with SU(2)f , Maximal BPS spectrum
has three additional BPS states, one doublet and one singlet.

finite S-walls central charges

state (e,m)
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A3-class: S[A3, C;DI] with minimal BPS spectrum
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A3-class: S[A3, C;DI] with maximal BPS spectrum

• When the spectral network is from two branch points of index
4, it gives the maximal, symmetric BPS spectrum.

• This spectrum contains two doublets and two singlets of
SU(2)f , and each state has the same IR charge as the
corresponding BPS state of S[A1, C;D8].
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D3(= A3)-class: S[A1, C;Dreg,D5] with SU(2)f

• From a regular puncture with SU (2)f , a doublet of S-walls
flow out of it.

• This provides a doublet of SU (2)f , which is also contained in
the BPS spectrum of other theories of A3-class, but how it
realized in a spectral network is different.

θ = arg(Z2
1 ) θ = arg(Z2)

4. Theories of Dn -class — D3-class (= A3-class) 27 / 37



D3(= A3)-class: S[A1, C;Dreg,D5] with SU(2)f

• Wall-crossing with SU(2)f maintained results in three
additional BPS states, giving the maximal BPS spectrum of
D3-class (= A3-class).
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D4-class: S[A1, C;Dreg,D6], minimal BPS spectrum
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D4-class: S[A1, C;Dreg,D6], wall-crossing with SU(3)f
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D4-class: S[A1, C;Dreg,D6], wall-crossing with SU(3)f
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D4-class: S[A1, C;Dreg,D6], wall-crossing with SU(3)f

finite S-walls

Z2

3

Z3

Z4

3

Z5

Z6

3

Z1

-Z2

3

-Z3

-Z4

3

-Z5

-Z6

3

-Z1

central charges

state (e,m)
1 (1, 0)
2 (0, 1)
3 (1, 3)
4 (1, 2)
5 (2, 3)
6 (1, 1)
IR charges

4. Theories of Dn -class — D4-class 30 / 37



D4-class: S[A2, C;DII], minimal BPS spectrum
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D4-class: S[A2, C;DII], maximal symmetric BPS spectrum
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D4-class: S[A2, C;Dreg,DIII], minimal BPS spectrum
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D4-class: S[A2, C;Dreg,DIII], maximal BPS spectrum
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Summary

• Using spectral network we can find out the BPS spectra of 4d
N = 2 theories of class S, including SCFTs at
Argyres-Douglas fixed points.

• BPS spectrum obtained via spectral network illustrates how
massless nonlocal states of an SCFT at an Argyres-Douglas
fixed point arise and how flavor symmetry enhancement
occurs.

• Matching the BPS spectra of theories with different
descriptions show there are equivalent classes of such theories,
each class being represented by a BPS quiver.
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Outlook

• Study SCFTs at AD points from other types of irregular
punctures [Xie,2012][Kanno-Maruyoshi-Shiba-Taki, 2013] and regular punctures
[Cecotti-Del Zotto, 2012][Cecotti-Del Zotto-Giacomelli, 2013]

• Understand how to use spectral network and BPS quiver in a
complementary way. [Cecotti-Neitzke-Vafa, 2010][Cecotti-Vafa, 2011]

[Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa, 2011]

• Study more general SCFTs of class S via spectral network.
[Gaiotto-Tachikawa-Seiberg, 2011][Chacaltana-Distler, 2010]

• Use spectral network to understand 6d (2, 0) theory in the
Coulomb branch.
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