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Beyond Hot
Jupiters:

The Age of Kepler

Kepler found many Earths, super-
Earths and sub-Neptunes, as well as

Giants



Transit Spectra

 At terminator - couples aspects of day and night
 Chemistry at transition?
 Day/night temperatures
 Ingress/Egress asymmetry



Burrows, Rauscher, Spiegel, & Menou  2010

Fractional Atmosphere vs. Wavelength







GJ 1214b: Transit Radius vs. Wavelength

Howe & Burrows 2012, in press



Haze on HD 189733b

Figure from Pont, Knutson et al.
(2007) showing atmospheric
transmission function derived
from HST ACS measurements
between 600-1000 nm



HD 209458b: Transit Radius vs. Wavelength -
Measuring Orbit and Wind Speeds?

Using Burrows, Rauscher, Spiegel, & Menou  2010

Ingress Ingress vsvs. Egress. Egress

Also, re tau Boo B



Atmospheric Clouds/Hazes

 Opacities
 Physical extent
 More important for transit spectra than secondary eclipse

or light curve spectra, but …
 HD 189733b (e.g., Pont et al.)







Secondary Eclipse - Emission
Spectra, Hot Upper
Atmospheres, and

Inversions
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Spitzer ST:
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 Heated upper atmosphere!
IRAC 1 < IRAC 2 !



Burrows et al. 2007

Water in
Emission!

IRAC 1 < IRAC 2 !

!

H2 O



Machalek et al. 2008

XO-1b

But stellar irradiation
low; same as HD
189733b!



Indices of Upper-Atmosphere
Heating and Inversion:

 InversionInversion::    IRAC 2/IRAC1  - High IRAC 2/IRAC1  - High ““BumpBump””
at IRAC3 (water in emission?) - at IRAC3 (water in emission?) - ““otherother””
emission featuresemission features

 Hot Upper AtmosphereHot Upper Atmosphere: : ““HighHigh”” planet-star planet-star
flux ratios in IRAC 2, IRAC 3, and IRAC 4flux ratios in IRAC 2, IRAC 3, and IRAC 4
bands (and at 24 microns?)bands (and at 24 microns?)

 Hot Spot advection??Hot Spot advection??

 What is absorbing in the optical at altitude?What is absorbing in the optical at altitude?



Light Curves
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Burrows, Rauscher, Spiegel, & Menou  2010

Planet/Star Flux Ratio vs. Wavelength and Phase



Methane
Map: w/o
Upper
Atmos.
heating



J-band HD
209458b Map
(model a03)

BurrowsBurrows
et al. 2010et al. 2010



HD 209458b: Integrated Phase Light Curves:
With inversion/hot upper atmosphere

Burrows, Rauscher, Spiegel, & Menou 2010

     λ-dependent
Trough/peak shifts



HD 209458b: Integrated Phase Light Curves:
No upper atmosphere absorber

Burrows, Rauscher, Spiegel, & Menou 2010

     λ-dependent
Trough/peak shifts



New Ups And b Phase Curve at 24 µm

Harrington et al. 2010

Future:
Kepler,
warm
Spitzer,

JWST



First Longitudinal Temperature Profile for an Exoplanet:
HD 189733b’s Warm Night Side

1000 K 1200 K

1200 K 1000
K

Spitzer 8 μm observations of HD 189733b
(Knutson et al. 2007b, Nature 447, 183).



Evidence for a Diversity of Day-Night
Circulation Patterns

Large gradients:
υ And b* (Harrington et al. 2007)
HD 179949* (Cowan et al. 2008)
HAT-P-7 (Borucki et al. 2009)

Small gradients:
HD 189733b (Knutson et
al. 2007)
HD 209458 (Knutson et
al., in prep.)

Intermediate
gradients:
HD 149026 (Knutson et
al. 2009)

* non-transiting planet,
brightness/temperature gradient degenerate
with unknown orbital inclination and planet
radius

Large day-night brightness gradient
HAT-P-7 / Kepler

Time From Transit Center (days)
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Small day-night brightness gradient
HD 189733b / Spitzer



  Radius-Mass Relationship for
Irradiated EGPs (“Hot Jupiters”)

(dependence on age, star,
semi-major axis distance,
planet mass, “core mass,”
atmospheric opacities)



Giant Planet Radius Depends Upon
Atmosphere

 Radius depends upon core entropy and mass
 Atmosphere regulates core heat loss
 Extra heating in atmosphere (e.g., Joule heating?) affects T/P profile and

internal flux
 Day and Night sides cool differently
 Night side is colder, but may allow more core heat loss (Tn

eff  vs. Td
eff )

 Tn
eff (S,g) ;  Td

eff (S,g) --->    Teff(S,g)
 Opacities
 Metallicities
 Magnetic Torques and Joule Heating?
 Clouds
 3D Effects (irradiation, rotation …)



…Hundreds of Planets Are Known to be Transiting.

Some planets appear to
be inflated

Ice/Rock Planets

Massive planets on
highly eccentric orbits



Planet diversity

• Transit  fractional radius
                      (relative to host star)
                   inclination.

• RV        planetary mass

• Solid planets:
   - CoRoT-7b  : Period ~ 0.85 d
   - MEarth-1b: Period ~ 1.50 d

         => Diversity

Transiting planets
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CoRoT, M-Dwarf surveys



Core Entropy vs. Radius for Transiting Giant Planets

Spiegel & Burrows 2012



Approximate “Core” Mass vs. Stellar Metallicity

Burrows
et al. 2007

Note measurement of HAT-P-1b

HAT-P-14b
HAT-P-3b

See also Guillot et al. 2006



Spiegel & Burrows 2012

Day- and night-side cooling done consistentlyDay- and night-side cooling done consistently



Spectroscopic and Photometric
Discriminants of Giant Planet Formation

Scenarios

D. Spiegel and A. Burrows
2011



Initial BD/EGP Models are Quite Uncertain

 Initial Radius, entropies determine flux evolution for quite some time

 Hot-start/cold-start/warm-start - Signatures of mode of formation



1.0 Mj

51 Peg b

Olivine

Hayashi
Forbidden
Zone

Tidal









High-Contrast Imaging





HR 8799bcd



HR 8799b

Madhusudhan, Burrows, & Currie 2011

Very Dusty Atmospheres - low gravity?Very Dusty Atmospheres - low gravity?

See also Barman et al.See also Barman et al.





Exoplanet Science:Current
Measurement and Interpretative

Limitations



Systematic Uncertainties/Ambiguities in
Spectral Models

 Planets are not Stars - They have “character,” added complexity
 Opacities (line profiles …?)
 Abundances
 NLTE
 NCE
 Clouds
 Photochemistry
 3D Effects (irradiation, rotation …)
 χ2   is of dubious real use when models systematics-dominated

(models not merely a matter of physical parameters - but can have
errors of unknown magnitude and kind)

 Retrieval (forward and inverse) techniques have been primitive -
multiple degeneracies, systematic limitations

 Stellar Atmospheres took ~100 years to evolve as a discipline -
molecular/exoplanetary atmospheres are more complicated



Systematic Uncertainties in Data

 Limited SNR, bandwidths, resolution
 Star spots
 Absolute Calibration
 Earth’s atmosphere (H2O, OH, …)
 Spitzer “Ramps”
 Spitzer not designed for better than 10-2  - pushed to ~10-3

 Planet/Star flux ratios have varied by factors of ~2 from epoch to
epoch

 Measured Transit depths at the same wavelengths vary by factors of
~2



Parameters > Number of Data Points

 Model fits are often under-constrained
 Frequently, just two points fit (e.g., Fp /F* )!
 In the context of systematic data uncertainties, ….
 CO2 , abundances, thermal inversions, C/O ratios ?



One-D models for 3D objects?

 Many adjustable parameters (f, ε, α, κa, Pn , ”A,” abundances, Teff , T/P profiles,
“TiO”….)

 Advection of composition and heat?
 Latitudinal and longitudinal dependence of emissions/spectra - antenna gain?
 Solar ratios of elements?
 Metallicity dependence (weak for emission (secondary eclipse); strong for

transit (primary eclipse)?)
 Mixing-length convection?
 Eddy mixing?
 Transit spectra are for terminator region - transition region, ingress/egress

asymmetry



Limitations of 3D GC Modeling

 3D models have Mach ~ 1, but use “primitive” equations that assume
M << 1

 Filter sound waves (one exception)
 Can’t handle shock waves
 Based on Earth GCMs and parametrizations
 Use Rayleigh drag, even for close-in EGPs (“hot Jupiters”)
 Super-rotational speeds depend on ad hoc parameters
 Non-ideal MHD?
 Don’t match to core convective regions consistently
 Don’t incorporate 3D multi-frequency radiative transfer

 Importantly, GCMs were configured to look at winds/pressure, not
spectral emissions - there is a mismatch between the traditional
goals of Planetary and Earth scientists and Exoplanet Astronomers



Need high-quality, uniform, calibrated data
over a large spectral bandwidth

Need much more physical models, with
realistic (multi-D) radiative transfer



Training Set
 Many (most?) conclusions will be overturned

 The past 15 years has been but a training exercise - educating a
community

 Community has been practicing for the future - winnowing of ideas,
techniques ….

 With 2nd- and 3rd-generation data and much better and more
comprehensive models, we may start truly to learn about exoplanet
atmospheres and spectra

 Need mature ground-based and space-based initiatives and a
credible, reliable international plan/Roadmap for exoplanet
exploration in the next ~20 years

 Are we ready?



Spitzer ST:



JWST

Spitzer



 What limits super-rotational
atmospheric flows?

 Day/Night Contrasts?
 What is the “extra absorber” in

many hot-EGP atmospheres?
 Why are some “Hot Jupiters” so

large (Rp vs. Mp)?
 Is there a dynamical, structural,

and/or thermal role for B-fields?
 What condensates reside in

planetary atmospheres?
 Winds and Evaporation?
 Tidal Effects?
 Atmospheric, Envelope, and Core

compositions?
 Mode(s) of Formation (and

Signatures!)?

Theoretical Questions


