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Tools

Isolating blocks

An isolating block is a special isolating neighborhood such
that every point on its boundary leaves the neighborhood
immediately in one or another time direction.
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Tools

Useful Lemmas

@ An isolating block always exists

@ For an isolating block N, define its exit set n~ to be the
set of points on the boundary that leave N immediately.

n~ :={x € N |3y > 0 such that x - (0,59) N N = (}},

@ Then, (N,n™) is an index pair and Z(N) = [N/n"~]
o If Y is contractible, then Y/Z is homotopy equivalent to
the unreduced suspension SZ of Z.



Tools

Example

Consider a flow on R? given by (x,y) -t = (27'x,2%y). The disk
around the origin (0,0), which is a hyperbolic fixed point, is an
isolating block.
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Tools

Example (Continued)

unreduced suspension
7

1

N~——" .

The Conley index is (homotopy type of) the circle S?.



Tools

Linear flow

Consider a flow given by a bounded, self-adjoint, linear L with
no kernel on a Hilbert space.

@ Let X be a unit ball in H. Then X is an isolating block.
@ Pick a finite-dimensional eigenspace V' of L. Similarly, the

Conley index Z(X NV) is S~ the sphere with dimension
equal to the number of negative eigenvalues in V.

Stable Conley index
It turns out that we can define F(X) as

SVIZX V)= WX nw) = 80




Tools

Remark

@ Conley theory can be considered as a generalization of
Morse theory.

o If a group G acts on M and the flow is G-equivariant, then
we can define an equivariant version of Conley indices.

@ Seiberg-Witten Floer theory has U(1)-symmetry.



Seiberg-Witten Theory

2. Seiberg-Witten Theory

Reference
Kronheimer and Mrowka, Monopoles and three-manifolds.

Let Y be a closed, oriented, Riemannian 3-manifold equipped
with a spin® structure s.

@ This also means Y is given a unitary rank-two “spinor”
bundle S — Y with Clifford multiplication

p:TY — Hom(S,S)



Seiberg-Witten Theory

Configuration space

@ The configuration space C(Y,s) := A(Y) & I'(S) consists
of pairs of a spin® connection and a section of the spinor.

@ The gauge group G := Map(Y,S') acts on C(Y,s) by

u-(B,V) = (B —u tdu,ul).

@ The quotient configuration space is B(Y,s) :=C(Y,s)/G

<




Seiberg-Witten Theory

Seiberg-Witten vector field

@ The Chern-Simons-Dirac functional is given by

1 1
CSD(B,\IJ):—gfy(Bt—Bé)/\(FBt—i—FBé)—i-i/Y(DB\IJ,\I/>

® The Seiberg-Witten vector field is the gradient of the C'SD
1
VCSD(B, \I’) = (5 * FBt + T(\I’), DB\I/)

@ Roughly speaking, monopole Floer homology is a
semi-infinite S'-equivariant Morse homology of B(Y,s)
using C'SD as the Morse function.

@ The equation VCSD = 0 is the (3D) Seiberg-Witten
equation. Critical points are moduli space of the solutions
(and they are compact!).



Seiberg-Witten Theory

The Coulomb slice

In general, B(Y,s) is not a vector space, but a Hilbert bundle
over the Picard torus

T = HY(Y;iR)/(2miH*(Y; Z)).

To apply finite dimensional approximation, we instead consider

Definition

The Coulomb slice K := ker d* @ T'(S) € QL(Y;iR) & I'(S)

@ This is a universal cover

7" — K — B(Y,s).



Seiberg-Witten Theory

Outline of the construction of SWF

@ K is a vector space, but we lose compactness.

@ We can consider a certain collection Ry of enlarging closed
and bounded subsets of K.

@ On each Ry, we can find its stable Conley index E(Ry).

o Finally, we take limit

SWF(Y) =l B(Ry,).



Seiberg-Witten Theory

Previous works

@ (1992) Cohen, Jones, and Segal started studying about
existence of “Floer homotopy type”.

@ (1999) The stable Conley index on Hilbert spaces was
developed by Geba, Izydorek, Pruszko

@ (2003) In the Seiberg-Witten case, Manolescu successfully
constructed Floer homotopy type for 3-manifolds with
by = 0.

@ (2003) Kronheimer and Manolescu extended the
construction to 3-manifolds with b = 1 with nontorsion
spin® structure.



Computation

3. Computation

@ We will give an explicit computation for when Y = T3 with
a trivial spin® structure.

@ The computation applies to 3-manifolds with nonnegative
scalar curvature.

@ Using Hodge decomposition, we have ker d* = Q) & Q ,

where €y, is a space of harmonic 1-forms isomorphic to
H'(Y;iR) = R",



Computation

Tubular neighborhoods as isolating neighborhoods

@ In this case, all critical points and flow lines lie on €2,

@ The subset we consider will be a tubular neighborhood v(¢)
of a subset I, C Q, 2R3, ie. Ry = I, x B(Q, @ T'(S),¢€)

Q, pT(9) K
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Computation

Trick: linearizing a vector field

@ We can freely scale the radius of tubular neighborhoods.
This, in turn, scales the vector field.

@ We also use the fact that the (perturbed) vector field can
be written as L + ) where L is linear and @ is quadratic.

Isolating neighborhood : v(e) M v(1)
I
Vector field : L(h)v + mQu M L(h)v 4+ emQu

Approximating l l
L(h)v + Qu L(h)v



Computation

The linearized vector field

@ The linearized vector field on €, x I'(S) has a form

(h7 @b) = (EVf, (DBO+bh - 5)1/})7

where 9§, € are sufficiently small positive numbers (the
choice of € depends on ) and f is a Morse function on €.

@ We pick f(01,0s,605) = —cos 1 — cos Oy — cos Os.



Computation

The flow on €2,

o Vf induces a flow on 2.

@ For subsets on €2, we will consider the cube
I, = [~ (2k + $)m, (2k + 3)7]*, which is an isolating block
with no exit set.

1]
LT




Computation

A tubular neighborhood as an isolating block.

The tubular neighborhood v(I) is an isolating block.

does not happen

>~ 7

FACSY

@ One can check directly that the norm [u(¢)||* has no local
maximum using the second derivative test.

@ Consequently, we only need to understand the exit set.



Computation

Describing the exit set

From the first derivative of the norm ||v(¢)||?, we can deduce

Exit set of the tubular neighborhood

The exit set of v(Iy) is given by the set

{(h,v) € I, x S(1) | (L(h)v,v) < 0O}.

@ We can view this as a union of unit nonpositive cones

Cone<(V, L(h)) = {v € S(1) | (L(h)v,v) < 0} along fibers.



Computation

The spinor bundle

@ The spinor bundle is the trivial bundle 73 x C2.

@ Using Fourier transform, we have a decomposition

I(s) = @ Vi nanss

ni,n2,n3EZ

each Vi, nyn, is a 2-dimensional complex vector space
spanned by (ei(n161+n262+n363)’ 0) and (0’ ei(n191+n292+n393))'

@ Note that the S'-action comes from multiplication on I'(S)
by unit complex numbers.



Computation

The Dirac operator

o For b= (b1, by, b3) € R3, the operator Dy on Vi, ngng 18
given by a matrix

[ —(m+ %) -0 —(n3+3—i)—(n2+§—i)i}
—(n3+ ) + (ng + 2)i n+ % -6
@ The eigenvalues of the above matrix is

~5 (o B)2 o+ (i + 2202+ (ng + £2)2 with

. b1+ R -b—R .
eigenvectors [—bg n bgi:| and [_b3 n bgz} respectively.

@ The gauge symmetry can be seen as the matrix of Dy onit
on Vg is the same as the matrix of Dy on Vi, z.



Computation

The kernel of DE

@ Dy has kernel on a small sphere centered at centered at
27 (b1, by, bg), which is a critical point of index 0.

]
L]




Computation

Warm-up (1-dim down)

@ Consider a tubular neighborhood of a square
[—3,2m + 3]? x {0} with respect to a subspace
V=, ,-01V-i—j0

@ Look at signature of Dirac operators on V.

(_+_T___+) (—+—+'—+——)
i i
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Computation

Conclusion

@ After desuspension, the stable Conley index E(v(1y)) is an
“ S%sum” of (2k + 1) copies of S2.

e Equivariantly, the 2-sphere is S



Computation

Induced map on Conley indices

@ The inclusion v(I) C v(Ix11) induces a map between
Conley indices as well as their associated spectra.

E((ly)) = E@(Ix))-

@ The inclusion v(I;) C v(Ix+1) also induces an inclusion of
their exit sets

The colimit of spectra
SW F(T?) is the S%-sum of Z3 copies of SC.




Homology

4. Homology

@ Monopole Floer homology comes with three flavors
HM, HM M, HM related by a long exact sequence

S HM(Y) = HM(Y) = HM(Y) —

@ There are three S'-equivariant homology theories: the
Borel homology {{f 1, the coBorel homology Hf , and the
Tate homology H? "

These S'-equivariant homology groups of SW F(Y') agree with
the monopole Floer groups of Y.




Example

o As SWF(S3) = S°, the groups agree.

Homology

@ But for 73

4 3 2 1 0 1 2 3 4

HM,(T?) 73 73 73 73 78 173 7% 73 73
HM,(T3) o 0o o0 o0 o0 73 73 73 78

HM (T Z3 73 73 73 73 73 0 0 0
HS'"(SWF(T®) z 0 Z 0 Z 0 Z 0 Z
HS'(SWF(T®) 0 0 0 0 0 zZN' 7z 0 Z
HS'(SWF(T?) o0 Z 0 Z 0 zZVN 0 0 0

where N = 73

@ This is because there is an action by Z3 left.



Homology

Twisted parametrized spectrum

The construction is based on a concept of twisted parametrized
spectra introduced by Douglas.

@ Roughly speaking, a twisted parametrized spectrum is a
bundle of spectra twisted by automorphisms of the
category of spectra, e.g. suspensions.

@ One simple way to describe this is to use open cover and
transition functions.



Homology

Twisted Manolescu-Floer spectrum

@ There is a isomorphism between Conley indices induced by
the action of a harmonic gauge transformation u

IMRNV)—= Z((u-R)N(uV)).
@ However, when passing to spectra, we have

SYTASWE(Y) = 8@V A SWE(Y),



Twisted Manolescu-Floer spectrum

Homology

We define a twisted Manolescu-Floer spectrum SWF(Y) as a
twisted parametrized spectrum over the Picard torus.

t—g2

U61 +e2

—g1

Uo

Ue,

@ We use the standard cover of the torus and the transition
functions g; is the map given by wu; earlier.



Homology

The manifold S! x 52

@ Consider S' x S? with torsion spin® structure.

@ We can find that SWF(S! x §2,5) ~ S° using the same
method as T3.

@ Because the Dirac operator has no kernel, it turns out that
SWF(S! x §2,5) ~ St x SWF(S! x §2)5).



Homology

Homology of M(Ti)’,s)

There is a spectral sequence for Tate homology.

0 1 2 3

2 |72 73 7° Z
0 ONO O
01|z 73 73 Z
—1]0 OO O
—2\z 7° 73 7Z
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