# GTM TK

Tuesday, October 22, 2013 3:12 PM



## Isolating blocks

An *isolating block* is a special isolating neighborhood such that every point on its boundary leaves the neighborhood immediately in one or another time direction.



# Useful Lemmas

- An isolating block always exists
- For an isolating block N, define its **exit set**  $n^-$  to be the set of points on the boundary that leave N immediately.

$$n^{-} := \{ x \in \partial N \, | \, \exists \, \delta_0 > 0 \text{ such that } x \cdot (0, \delta_0) \cap N = \emptyset \},\$$

- $\bullet\,$  Then,  $(N,n^-)$  is an index pair and  $\mathcal{I}(N)=[N/n^-]$
- If Y is contractible, then Y/Z is homotopy equivalent to the unreduced suspension SZ of Z.

Tools

### Example

Consider a flow on  $\mathbb{R}^2$  given by  $(x, y) \cdot t = (2^{-t}x, 2^t y)$ . The disk around the origin (0, 0), which is a hyperbolic fixed point, is an isolating block.





Computation

Homology

# Example (Continued)



The Conley index is (homotopy type of) the circle  $S^1$ .

### Linear flow

Consider a flow given by a bounded, self-adjoint, linear L with no kernel on a Hilbert space.

- Let X be a unit ball in H. Then X is an isolating block.
- Pick a finite-dimensional eigenspace V of L. Similarly, the Conley index  $\mathcal{I}(X \cap V)$  is  $S^{V^-}$  the sphere with dimension equal to the number of negative eigenvalues in V.

#### Stable Conley index

It turns out that we can define E(X) as

$$\Sigma^{-V^-}\mathcal{I}(X\cap V)\cong\Sigma^{-W^-}\mathcal{I}(X\cap W)\cong S^0$$

### Remark

- Conley theory can be considered as a generalization of Morse theory.
- If a group G acts on M and the flow is G-equivariant, then we can define an equivariant version of Conley indices.
- Seiberg-Witten Floer theory has U(1)-symmetry.

# 2. Seiberg-Witten Theory

#### Reference

Kronheimer and Mrowka, Monopoles and three-manifolds.

Let Y be a closed, oriented, Riemannian 3-manifold equipped with a spin<sup>c</sup> structure  $\mathfrak{s}$ .

• This also means Y is given a unitary rank-two "spinor" bundle  $S \to Y$  with Clifford multiplication

 $\rho: TY \to Hom(S,S)$ 

Computation

Homology

#### Configuration space

#### Definition

- The configuration space  $C(Y, \mathfrak{s}) := \mathcal{A}(Y) \oplus \Gamma(S)$  consists of pairs of a spin<sup>c</sup> connection and a section of the spinor.
- The gauge group  $\mathcal{G} := \operatorname{Map}(Y, S^1)$  acts on  $\mathcal{C}(Y, \mathfrak{s})$  by

$$u \cdot (B, \Psi) = (B - u^{-1}du, u\Psi).$$

• The quotient configuration space is  $\mathcal{B}(Y, \mathfrak{s}) := \mathcal{C}(Y, \mathfrak{s})/\mathcal{G}$ 

# Seiberg-Witten vector field

• The Chern-Simons-Dirac functional is given by

$$CSD(B,\Psi) = -\frac{1}{8} \int_Y (B^t - B_0^t) \wedge (F_{B^t} + F_{B_0^t}) + \frac{1}{2} \int_Y \langle D_B \Psi, \Psi \rangle$$

 $\bullet\,$  The Seiberg-Witten vector field is the gradient of the CSD

$$\nabla CSD(B,\Psi) = (\frac{1}{2} * F_{B^t} + \tau(\Psi), D_B\Psi)$$

- Roughly speaking, monopole Floer homology is a semi-infinite S<sup>1</sup>-equivariant Morse homology of B(Y, s) using CSD as the Morse function.
- The equation  $\nabla CSD = 0$  is the (3D) Seiberg-Witten equation. Critical points are moduli space of the solutions (and they are compact!).

## The Coulomb slice

In general,  $\mathcal{B}(Y, \mathfrak{s})$  is not a vector space, but a Hilbert bundle over the Picard torus

$$\mathbb{I}^{b_1} = H^1(Y; i\mathbb{R})/(2\pi i H^1(Y; \mathbb{Z})).$$

To apply finite dimensional approximation, we instead consider

#### Definition

The Coulomb slice  $\mathcal{K} := \ker d^* \oplus \Gamma(S) \subset \Omega^1(Y; i\mathbb{R}) \oplus \Gamma(S)$ 

• This is a universal cover

F

$$\mathbb{Z}^{b_1} \to \mathcal{K} \to \mathcal{B}(Y,\mathfrak{s}).$$

## Outline of the construction of SWF

- $\mathcal{K}$  is a vector space, but we lose compactness.
- We can consider a certain collection  $\mathcal{R}_k$  of enlarging closed and bounded subsets of  $\mathcal{K}$ .
- On each  $\mathcal{R}_k$ , we can find its stable Conley index  $E(\mathcal{R}_k)$ .
- Finally, we take limit

$$SWF(Y) := \underset{\longrightarrow}{\lim} E(\mathcal{R}_k).$$

### Previous works

- (1992) Cohen, Jones, and Segal started studying about existence of "Floer homotopy type".
- (1999) The stable Conley index on Hilbert spaces was developed by Geba, Izydorek, Pruszko
- (2003) In the Seiberg-Witten case, Manolescu successfully constructed Floer homotopy type for 3-manifolds with  $b_1 = 0$ .
- (2003) Kronheimer and Manolescu extended the construction to 3-manifolds with  $b_1 = 1$  with nontorsion spin<sup>c</sup> structure.

# 3. Computation

- We will give an explicit computation for when  $Y = T^3$  with a trivial spin<sup>c</sup> structure.
- The computation applies to 3-manifolds with nonnegative scalar curvature.
- Using Hodge decomposition, we have ker  $d^* = \Omega_h \oplus \Omega_{\perp}$ , where  $\Omega_h$  is a space of harmonic 1-forms isomorphic to  $H^1(Y; i\mathbb{R}) \cong \mathbb{R}^{b_1}$ .

#### Tubular neighborhoods as isolating neighborhoods

- $\bullet\,$  In this case, all critical points and flow lines lie on  $\Omega_h$
- The subset we consider will be a tubular neighborhood  $\nu(\epsilon)$ of a subset  $I_k \subset \Omega_h \cong \mathbb{R}^3$ , i.e.  $\mathcal{R}_k = I_k \times B(\Omega_\perp \oplus \Gamma(S), \epsilon)$



# Trick: linearizing a vector field

- We can freely scale the radius of tubular neighborhoods. This, in turn, scales the vector field.
- We also use the fact that the (perturbed) vector field can be written as L + Q where L is linear and Q is quadratic.

$$\begin{array}{cccc} \text{Isolating neighborhood} : & \nu(\epsilon) & \xrightarrow{\text{Scaling}} & \nu(1) \\ & \text{Vector field} : & L(h)v + \pi Qv & \xrightarrow{\text{Scaling}} & L(h)v + \epsilon \pi Qv \\ & \text{Approximating} & & & \downarrow \\ & L(h)v + Qv & & L(h)v \end{array}$$

## The linearized vector field

• The linearized vector field on  $\Omega_h \times \Gamma(S)$  has a form

$$(h,\psi)\mapsto (\epsilon\nabla f, (D_{B_0+b_h}-\delta)\psi),$$

where  $\delta, \epsilon$  are sufficiently small positive numbers (the choice of  $\epsilon$  depends on  $\delta$ ) and f is a Morse function on  $\Omega_h$ .

• We pick  $f(\theta_1, \theta_2, \theta_3) = -\cos \theta_1 - \cos \theta_2 - \cos \theta_3$ .

# The flow on $\Omega_h$

- $\nabla f$  induces a flow on  $\Omega_h$ .
- For subsets on  $\Omega_h$ , we will consider the cube  $I_k = [-(2k + \frac{1}{2})\pi, (2k + \frac{1}{2})\pi]^3$ , which is an isolating block with no exit set.



# A tubular neighborhood as an isolating block.

#### Claim

The tubular neighborhood  $\nu(I_k)$  is an isolating block.



- One can check directly that the norm  $||v(t)||^2$  has no local maximum using the second derivative test.
- Consequently, we only need to understand the exit set.

Homology

# Describing the exit set

From the first derivative of the norm  $||v(t)||^2$ , we can deduce

Exit set of the tubular neighborhood

The exit set of  $\nu(I_k)$  is given by the set

 $\{(h,v)\in I_k\times S(1)\,|\,\langle L(h)v,v\rangle\leq 0\}.$ 



• We can view this as a union of unit nonpositive cones  $\operatorname{Cone}_{\leq}(V, L(h)) = \{v \in S(1) \mid \langle L(h)v, v \rangle \leq 0\}$  along fibers.

## The spinor bundle

- The spinor bundle is the trivial bundle  $T^3 \times \mathbb{C}^2$ .
- Using Fourier transform, we have a decomposition

$$\Gamma(S) = \bigoplus_{n_1, n_2, n_3 \in \mathbb{Z}} V_{n_1, n_2, n_3},$$

each  $V_{n_1,n_2,n_3}$  is a 2-dimensional complex vector space spanned by  $(e^{i(n_1\theta_1+n_2\theta_2+n_3\theta_3)}, 0)$  and  $(0, e^{i(n_1\theta_1+n_2\theta_2+n_3\theta_3)})$ .

• Note that the  $S^1$ -action comes from multiplication on  $\Gamma(S)$  by unit complex numbers.

## The Dirac operator

• For  $\vec{b} = (b_1, b_2, b_3) \in \mathbb{R}^3$ , the operator  $D_{\vec{b}}$  on  $V_{n_1, n_2, n_3}$  is given by a matrix

$$\begin{bmatrix} -(n_1 + \frac{b_1}{2\pi}) - \delta & -(n_3 + \frac{b_3}{2\pi}) - (n_2 + \frac{b_2}{2\pi})i \\ -(n_3 + \frac{b_3}{2\pi}) + (n_2 + \frac{b_2}{2\pi})i & n_1 + \frac{b_1}{2\pi} - \delta \end{bmatrix}$$

- The eigenvalues of the above matrix is  $-\delta \pm \sqrt{(n_1 + \frac{b_1}{2\pi})^2 + (n_2 + \frac{b_2}{2\pi})^2 + (n_3 + \frac{b_3}{2\pi})^2}$ with eigenvectors  $\begin{bmatrix} -b_1 + R\\ -b_3 + b_2i \end{bmatrix}$  and  $\begin{bmatrix} -b_1 - R\\ -b_3 + b_2i \end{bmatrix}$  respectively.
- The gauge symmetry can be seen as the matrix of  $D_{\vec{b}+2\pi\vec{u}}$  on  $V_{\vec{n}}$  is the same as the matrix of  $D_{\vec{b}}$  on  $V_{\vec{n}+\vec{u}}$ .

Computation

Homology

# The kernel of $D_{\vec{b}}$

•  $D_{\vec{b}}$  has kernel on a small sphere centered at centered at  $2\pi(b_1, b_2, b_3)$ , which is a critical point of index 0.



# Warm-up (1-dim down)

- Consider a tubular neighborhood of a square  $\left[-\frac{1}{2}, 2\pi + \frac{1}{2}\right]^2 \times \{0\}$  with respect to a subspace  $V = \bigoplus_{i,j=0,1} V_{-i,-j,0}.$
- Look at signature of Dirac operators on V.



### Conclusion

• After desuspension, the stable Conley index  $E(\nu(I_k))$  is an "S<sup>0</sup>-sum" of  $(2k+1)^3$  copies of S<sup>2</sup>.



• Equivariantly, the 2-sphere is  $S^{\mathbb{C}}$ 

# Induced map on Conley indices

• The inclusion  $\nu(I_k) \subset \nu(I_{k+1})$  induces a map between Conley indices as well as their associated spectra.

$$E(\nu(I_k)) \rightarrow E(\nu(I_{k+1})).$$

 The inclusion ν(I<sub>k</sub>) ⊂ ν(I<sub>k+1</sub>) also induces an inclusion of their exit sets

The colimit of spectra

 $SWF(T^3)$  is the  $S^0$ -sum of  $\mathbb{Z}^3$  copies of  $S^{\mathbb{C}}$ .

# 4. Homology

• Monopole Floer homology comes with three flavors  $\overrightarrow{HM}, \overrightarrow{HM}, \overrightarrow{HM}$  related by a long exact sequence

$$\ldots \to \overline{HM}(Y) \to \widetilde{HM}(Y) \to \widehat{HM}(Y) \to \ldots$$

• There are three  $S^1$ -equivariant homology theories: the Borel homology  $H_*^{S^1}$ , the coBorel homology  $\hat{H}_*^{S^1}$ , and the Tate homology  $\bar{H}_*^{S^1}$ .

#### Conjecture

These  $S^1$ -equivariant homology groups of SWF(Y) agree with the monopole Floer groups of Y. Tools

## Example

- As  $SWF(S^3) = S^0$ , the groups agree.
- But for  $T^3$

|                                 | -4             | -3             | -2             | -1             | 0              | 1                  | 2              | 3              | 4              |
|---------------------------------|----------------|----------------|----------------|----------------|----------------|--------------------|----------------|----------------|----------------|
| $\overline{HM}_*(T^3)$          | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ | $\mathbb{Z}^3$     | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ |
| $\widecheck{HM}_*(T^3)$         | 0              | 0              | 0              | 0              | 0              | $\mathbb{Z}^3$     | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ |
| $\widehat{HM}_*(T^3)$           | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ | $\mathbb{Z}^3$ | $\mathbb{Z}^3$     | 0              | 0              | 0              |
| $\bar{H}_*^{S^1}(SWF(T^3))$     | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0                  | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| $H_*^{S^1}(SWF(T^3))$           | 0              | 0              | 0              | 0              | 0              | $\mathbb{Z}^{N-1}$ | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| $\widehat{H}_*^{S^1}(SWF(T^3))$ | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}^N$     | 0              | 0              | 0              |
| where $N = \mathbb{Z}^3$        |                |                |                |                |                |                    |                |                |                |

• This is because there is an action by  $\mathbb{Z}^3$  left.

## Twisted parametrized spectrum

The construction is based on a concept of twisted parametrized spectra introduced by Douglas.

- Roughly speaking, a twisted parametrized spectrum is a bundle of spectra twisted by automorphisms of the category of spectra, e.g. suspensions.
- One simple way to describe this is to use open cover and transition functions.

## Twisted Manolescu-Floer spectrum

• There is a isomorphism between Conley indices induced by the action of a harmonic gauge transformation u

$$\mathcal{I}(\mathcal{R} \cap V) \to \ \mathcal{I}((u \cdot \mathcal{R}) \cap (u \, V)).$$

• However, when passing to spectra, we have

$$S^{V^-} \wedge SWF(Y) \to S^{(uV)^-} \wedge SWF(Y),$$

## Twisted Manolescu-Floer spectrum

We define a twisted Manolescu-Floer spectrum  $\widetilde{SWF}(Y)$  as a twisted parametrized spectrum over the Picard torus.



• We use the standard cover of the torus and the transition functions  $g_i$  is the map given by  $u_i$  earlier.

# The manifold $S^1 \times S^2$

- Consider  $S^1 \times S^2$  with torsion spin<sup>c</sup> structure.
- We can find that  $SWF(S^1 \times S^2, \mathfrak{s}) \simeq S^0$  using the same method as  $T^3$ .
- Because the Dirac operator has no kernel, it turns out that  $\widetilde{SWF}(S^1 \times S^2, \mathfrak{s}) \simeq S^1 \times SWF(S^1 \times S^2, \mathfrak{s}).$

Homology



There is a spectral sequence for Tate homology.

