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Otherwise we would already have
expired from personal heat death...

entropy



Causal Horizons
Causal horizon = boundary of past of any future infinite worldline.
                                                                      (an “observer”)
“Outside” means the side with the worldline. 

exterior of 
black hole

Examples:

  interior of 
de Sitter-like
   horizons

Rindler-like horizons
of accelerating observers



Horizon Thermodynamics
The outside of a horizon is an OPEN system—
             info can leave (but not enter).

But the generalized entropy

still increases.  Area A of
horizon contributes to entropy.

Generalized Second Law (GSL).

 

observer



Why study the GSL?

Thermodynamics
       of Matter

Statistical Mechanics
         of Atoms

Thermodynamics
   of Horizons

Statistical Mechanics
      of Spacetime
(i.e. quantum gravity!)

Fact Hope
Analogy

My view: Too early to take sides about correct quantum gravity theory.

I want to find out what horizon thermodynamics implies about micro degrees of
freedom without being constrained to a specific model.



Semiclassical approximation
1. Pick a classical background and look at QFT state   . 

2. Expand out metric in powers of   :

3. See if the generalized entropy of the state     increases:

classical
background
metric 

quantized
gravitons

gravitational fields of matter/gravitons
calculated using expectation
of Einstein equation

         Entanglement entropy divergence must be renormalized!
         This will be done by considering only entropy differences.



Why try to prove the semiclassical GSL?

1) If we know why the GSL is true semiclassically, 
may be able to figure out what is required at the Planck scale.

2) We want to know when the GSL applies:

          * Can it be proven in a way which is local on the horizon?

          * Does it hold in a differential form at each horizon point,
          or only globally for stationary —> stationary processes?

          * What does the GSL assume (if anything) about
          matter (e.g. number of fields) and gravity (e.g. derivative couplings)

   * Is there a generalization to null surfaces which aren't horizons?

3) We understand QFT and GR better than quantum gravity.



   Hawking                           classical                               any                          null energy condition, cosmic censorship

classical:            assumes a classical background and neglects the outside entropy term.
hydrodynamic:  the entropy is approximated by a fully localizable four-vector.
semiclassical:    neglects fluctuations in the metric.
quasi-steady:     a small, slowly changing perturbation to a stationary black hole.

Zurek & Thorne                semiclassical                 quasi-steady                    entropy localization, renormalizability

Wald                         hydrodynamic                quasi-steady                                    adiabaticity (fixable)

Frolov & Page                 semiclassical                  quasi-steady                  CPT insufficient for charged BH (fixable)     
Sorkin 1                    quantum gravity                       any                                         inconsistent assumptions

Flanagan et al.                 hydrodynamic                        any                           null energy condition, Bekenstein bound

Sorkin 2                       semiclassical                   quasi-steady                   thermality undefined, not superradiant

  Mukohyama                   semiclassical                   quasi-steady                       free scalar field, not superradiant

Bousso et al.                 hydrodynamic                    any                         entropy gradient, isolation assumption

Fiola et al.                     semiclassical                          any                              RST model, large N, apparent horizon

PROOF  BY                       REGIME                      PERTURB.                EXTRA CONDITIONS  /  DIFFICULTIES

Don't Read This Slide
Instead read “Ten Proofs of the Generalized Second Law” (09):

A.C. Wall, arXiv:1007.1493, JHEP 06 (2009) 021



      Quasi-Steady Approximation
Before my work, the semiclassical proofs only showed either that

1.                   , where the fields may be rapidly varying but the
entropy is only shown to increase from the asymptotically infinite
past to the asymptotically infinite future, OR

2.             , where the fields are in a nearly steady state
(this can be obtained from case 1 by linear interpolation)

Either choice permits use of the “First Law”:

but then one can't check whether the GSL holds at each instant of 
time—need to check this with rapidly changing fields.  E.g. throwing 
a tea-cup into a black hole.  First Law not useful in this case.



If we want a differential form of the GSL, we have to be able
to show that the entropy can increase for arbitrary initial and
final slices:

Then

A section of a horizon
with horizon generating
lightrays shown in grey
and slices shown in red.

A local version of GSL, if true, gives hints about the local statistical 
mechanics of spacetime.  Maybe constrains microscopic QG physics?



       Proof of the GSL 
for rapidly changing fields

1. Applies to rapidly evolving semiclassical perturbations to any
stationary background horizon (e.g. Rindler, de Sitter, Kerr).

2. Proves                    for arbitrary initial and final slices of the
horizon.

3. Works for free fields of any spin.  Can also accommodate
certain superrenormalizable interactions.

END OF PART 1.  

PART 2 WILL EXPLAIN THE PHYSICAL
REASONING USED TO PROVE THAT BLACK HOLES
OBEY THE SECOND LAW...



INTERMISSION



       Proof of the GSL 
for rapidly changing fields

1. Applies to rapidly evolving semiclassical perturbations to any
stationary background horizon (e.g. Rindler, de Sitter, Kerr).

2. Proves                    for arbitrary initial and final slices of the
horizon.

3. Works for free fields of any spin.  Can also accommodate
certain superrenormalizable interactions.

start with special case: Rindler horizons.



Rindler GSL proof summary
“A proof of the generalized second law 
for rapidly evolving Rindler horizons”    
                 arXiv:1007.1493

Basic ideas:

1. Relate generalized entropy to free (boost) energy in wedge.
2. Relate free energy to a quantity known as “relative entropy”
3. Apply theorem that says relative entropy can't increase.

free boost energy relative entropy

(up to additive constants)
Previous proofs of the GSL implicitly used the concept of relative entropy (Casini 08).



A Rindler wedge is the intersection of the
past & future of uniformly accelerating worldline.

1-parameter family of Rindler wedges            
share same future horizon & fit inside each other.            

Go from bigger wedge to smaller wedge by restriction..

Rindler Wedges

perspective drawing of wedge 
& accelerating observer



QFT vacuum always KMS (i.e. thermal) in boost energy K when 
restricted to Rindler wedge, at temperature                    .

Consequence of the wedge's boost symmetry (Bisognano-Wichmann 75).

Rindler Wedges are Thermal

in out (formally) where the boost 
Killing energy on a slice      is: 

So the vacuum is thermal.  Next we will perturb it with quantum fields.



Area deficit ~ Boost Energy

Along each horizon generating lightray, the
Raychaudhuri & Einstein equations hold:

where                                   is the expansion
w.r.t. an affine parameter    .  

Linearize and integrate to get expression
in terms of        , the boost energy of the wedge,
up to constants.

constantsHorizon area canonically conjugate to boost time:
generalizes Carlip & Teitelboim (95), 
Massar & Parentani (00) to dynamical situations.

rapid
fields



Relative Entropy

Information theory property of two mixed states    and   .

Properties: 

(definition can be extended to arbitrary algebras of observables)

* Range is              .  Finite for nice enough states (no renormalization).
 
*

* If     is a KMS (thermal) state, proportional to free energy difference:

* Monotonicity: Always nonincreasing under restriction to subsystems:

when (Araki 75)

(Araki & Sewell 77)



Proof of the Rindler GSL

Let     be the state we are interested
in proving the GSL for.

Let     be the Minkowski vacuum state.

Since     is thermal in each wedge,
               is the free boost energy

 
up to terms constant in each wedge:

                                     is the renormalized entropy.

Relative entropy is monotonic under restriction, so the GSL holds!



The GSL 
comes from

Horizon Symmetry



Rindler Symmetry

Argument just given requires each
wedge to have a boost symmetry
so that the vacuum state     is thermal.

Commutator of two boosts is a
null translation symmetry.  Vacuum
state      invariant under this too. 

Rindler horizon invariant under 2d Lie group.
That's why it works.



    Black Holes have less symmetry

Spacetime has a Killing
boost symmetry only about
the bifurcation surface.

No null translation Killing symmetry.

Kerr is even worse because no
thermal Hartle-Hawking state
exists at all (angular momentum 
is unbounded below). 

    Proof does not work—take near-horizon limit?



Instead of using spacelike slices:



Push forward to the horizon itself

               The horizon has translation symmetry, 
             even though the full spacetime does not.



Restrict fields to horizon algebra
Possible to restrict free fields operators to the event horizon itself.
Tricky since fields must be smeared only across the horizon.
One finds that:

*       can't be restricted, but           can be.  Normally derivatives hurt,
but the field is already smeared in the k direction, and null mass shell
tells us that                                         so it actually helps.

*  The horizon algebra is ultralocal; each horizon generator is independent.

*  There is an infinite dimensional symmetry group:
translations and dilations of each horizon generator independently.
(boosts = dilations on the horizon)

* Can accommodate arbitrary (nonderivative) potentials             or
Yang Mills at the level of naïve Fock space perturbation theory. 
Does not affect horizon algebra or null energy.  But the RG flow may
introduce derivative couplings, unless theory is superrenormalizable.



Arbitrary horizons, arbitrary slices:

a piece of a horizon, 
with grey generators

Because each horizon generator
can be independently translated,
can translate to wiggly slices.

Can define a canonical vacuum state     
w.r.t. all null translation symmetries (Sewell 81).

     is KMS above any slice w.r.t. dilations
about that slice.  Formally,

where

This works on any background with a stationary
horizon even when no Hartle-Hawking state can
be defined on the bulk spacetime (e.g. Kerr).



a piece of a horizon, 
with grey generators

Adapting the Proof of the GSL

GSL can now be proven analogously
to Rindler case for semiclassical perturbations
to any stationary horizon:

Let        be the bulk state we are interested in,
Let        be any bulk state which restricts to
the vacuum state on the horizon, and is
otherwise arbitrary.   For each slice:

*       is thermal with respect to           , which is
proportional to the area A of the slice     .

*                                  up to additive constants.

*  Thus the GSL holds by monotonicity
of relative entropy.



Black Hole
Microstates



Why is the GSL true in full quantum gravity?

2.  Can (interacting) gravity be quantized directly on the horizon?
An ultraviolet scaling limit...
Poisson brackets of GR have been analyzed (Reisenberger 08).

1.  How does this relate to quantum gravity statistical mechanics?
Two different ways to approach issue:

A) Look for this infinite dimensional symmetry of the horizon
in a quantum gravity theory to get the GSL for similar reasons,

Or try to reverse the argument...

B) Find some other way to derive GSL in quantum gravity, and
then try to see Lorentz symmetry emerge from it.



Quantum Gravity Microstates

      What does this tell us about microstates in quantum gravity?

To explain the GSL in terms of a statistical mechanics, one must:

   1.  Identify the degrees of freedom whose state counting gives
rise to the area term,

   2.  Identify what kind of coarse-graining (if any) is needed to get the
semiclassical generalized entropy,

   3.  Explain why this entropy increases, for causal horizons, &

   4.  Explain why it can decrease, for null surfaces that aren't horizons.

If info is lost across horizons, (2) can be trivial but (3) is surprising!

If info is preserved outside, (3) seems easy, but (2) and (4) are hard!



matter

Even in the context of AdS/CFT,
info can be lost across a future
horizon if it falls across
prior to a past horizon.
(info is in the other CFT)

And yet, 
the generalized entropy
is still increasing!

Why?

Holographic Principle does not fully explain GSL



Not because info gets “stuck on the horizon”.

Causal horizon on left-hand side of incomplete slices.
No info escapes on right-hand side since slices meet.

And yet, generalized entropy is decreasing in Hartle-Hawking state!

(inconsistent with firewalls/fuzzballs?)



                  Conclusions

1. The semiclassical GSL holds because the horizon 
has more symmetry than the rest of the spacetime.

2.  The proof works for free or superrenormalizable 
matter theories, but rigorous interactions may require 
a more delicate near-horizon limit.

3.  Except in the case of nested Rindler wedges, where 
arbitrary interactions may be accommodated.
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