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Motivation

Can we construct healthy and consistent massive gravity?



“Linear” massive gravity

• Fierz-Pauli massive gravity (Fierz, Pauli, 1939)
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Only allowed mass term  
which does not have ghost at linear order

Linearized  
Einstein-Hilbert term

(1)  Linear theory 
(2)  Lorentz invariant theory, but gauge invariance is broken 
(3)  No ghost at linear order 
      (5 DOF=massless tensor+massless vector+massless scalar) 
(4)  Simple nonlinear extension contains ghost at nonlinear level 
　  (Boulware-Deser ghost, 6th DOF) (Boulware, Deser, 1971)



1st version of nonlinear massive gravity
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Hµ⌫ = gµ⌫ � fµ⌫

• Stuckelberg field

• Define new covariant fluctuation tensor

φa  are four scalar fields
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• Covariant form of non-linear FP action

Covariant tensor
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Decoupling limit
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• Expand Stuckelberg field around unitary gauge

m ! 0, MPl ! 1, T ! 1, ⇤5 and

T

MPl
are fixed

• Non-linear leading action within decoupling limit,
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ĥµ⌫T

µ⌫

�

SA =

Z
d

4
x


�1

2
Fµ⌫F

µ⌫

�

S⇡ =

Z
d

4
x


�3(@⇡̂)2 +

1

⇤5
5

�
(⇤⇡̂)3 � (⇤⇡̂)(@µ@⌫ ⇡̂)

2
 
+

1

MPl
⇡̂T

�

does not couple with 
EM tensor

Higher derivative 
Lagrangian, not galileon

6th DOF appears in theory →BD ghost 

Creminelli et.al. (2005)

Decoupling limit
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(Boulware, Deser, 1972 )

Thanks to Poincare 
symmetry in field space, 
we can decompose φ 
into scalar and vector



Adding higher-order potential terms
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de Rham, Gabadadze (2010)

• Action
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Fierz-Pauli tuning



Eliminating 6th DOF

• Non-linear Lagrangian
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de Rham, Gabadadze (2010)

We choose these coefficients so that the Lagrangian becomes total derivative 

This yields the higher order derivative 
(the origin of BD ghost)



Eliminating 6th DOF

• Choosing the coefficients
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These combinations kill all scalar self-interaction terms !



Action in decoupling limit

• The next order interactions
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• The action in the decoupling limit
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(1) The remaining nonlinear interactions are galileons  
      (EOM is 2nd order differential equations) 
(2)  The cutoff energy scale is Λ3 

      (We cannot trust the theory above Λ3)



Resummation of nonlinear potential 
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• Define the new tensor

• Property of this tensor in the decoupling limit

• dRGT massive gravity

de Rham, Gabadadze, Tolley (2011)
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Quasi-dilaton theory is the candidate for massive gravity theory, which couples to an addititonal
scalar degrees of freedom. Similarly to dRGT massvie gravity theory, there is no BD ghost in this
thoery. In this paper, we show that there is no usual solution, which posses Vainshtein mechanism.
Insted, we only have cosmological solution. We clarly show that assymptotically Minkowski solution
has always ghost in the scalar modes in the decoupling limit of the theory.

I. INTRODUCTION

It is now belived that general relativity is the theory of gravity, which describe solar system scale and it has been
tested for a long decade. It seems that there is no contradiction within tests in our solar system scales. However, if
we extend this theory to ”cosmology”, we still have a number of question that we can not understand yet. One is
the existance of dark matter, and this is now believed as some particle that we have not discovered yet. Nonetheless
this unknow matter could be of the form of some energy or be part of the theory of gravity. Another example is dark
energy, which is responsible for current cosmic accleration of the universe, and this existance has not confirmed yet.
This unknow energy constitues 72 percent of the energy in the universe. One possible solution is the cosmological
constant, but this model suffers from the cosmological constant porblem.
There might be a chance to explain this cosmic acceleration, for example, modification of gravity or other fluid

that we have not discovered yet. As a candiate of alternative theory of gravity, massive gravity has been recently
attracted considerable attention. In 1939, Pauli and Fierz found that the ”linearized” massive gravity which does
not possess ghost. This theory is based on general relativity, and the mass is measured by the difference between
the fluctuation of the metric and Minkowski metric. However, Boulwer and Deser found that there is always ghost
at nonlienar level. Now we have ghost free massive gravity constructed by de Rham, Gabadadze, and Tolley. This
includes all the nonliear terms and describe massive spin-2 particle. Now we have some question whether we can add
the additional scalar model in massive gravity, and this has been done by [] by introducing new symmetry, called
quasi-dilaton theory. This model contains massive spin-2 mode, whose number of degree of freedom is five, and one
dilaton mode. It is still opened question whether we have Vainshtein mechanism in this thoery.
In this paper, we examine the Vainshtein mechanism in quasi-dilaton theory.

II. THEORY

The action for massive gravity can be described by
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and the new nonlinear tensor is defiend by

Kµ
ν = δµν −

√
ηabgµα∂αφa∂νφb (3)

Here φa is called Stuckelberg field, which is responsible for restoring general covariance of the theory. Fixing gauge,
corresponding to φa = xa, reduces to original theory of massive gravity. Here we have five degrees of freedom, which
can be decomposed into two massless graviton, two massless vector, and one massless scalar. It has been shown that
the this theory is free of BD ghost in the full theory done by Hassan and Rosen.
Now we impose the the new global symmetry

σ → σ − αMPl, φa → eαφa (4)

and define the new tensor
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It is very clear that this tensor is invariant under the new global symmetry. Then the action for the new action is
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In usual massive gravity, this term disappears on the boudary, however, in this theory, we can have this kind like term
thanks to the new additional degrees of freedom.

III. DECOUPLING LIMIT

Now we want to focus on the nonlinear effect of the new additional degrees of freedom. It is very convenient to use
the framework called decoupling limit, which allow us to extract the scalar mode of the graviton. In usual, the vector
mode decoupled from the tensor mode in the linear level, therefore, we can safely ignore vector mode. In quasi-dilaton
thoery, we can also extract another scalar mode, dilaton, by taking the decoupling limit. In order to to so, we expand
Stuckelberg field as
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No BD ghost in full theory (Hassan, Rosen 2011)

Total derivative in the decoupling limit



“Ghost-free” nonlinear massive gravity

• de Rham-Gabadadze-Tolley massive gravity (de Rham, Gabadadze, Tolley, 2011)
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φa is called Stuckelberg field, which 
restores general covariance
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(1)  Nonlinear theory 
(2)  Lorentz invariant theory 
(3)  No ghost at full order (5 DOF, No BD ghost) (Hassan, Rosen, 2011) 
(4)  Unique theory of massive spin-2 field as an extension of general relativity 
      (GR + mass term)



Decoupling limit
• Decoupling limit : Easy to capture high energy behavior within Compton 

wavelength of massive graviton

•  dRGT Lagrangian in the decoupling limit

de Rham, Gabadadze (2010)

There are a number of candidates of nonlinear derivative interaction terms such as
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Here nh ≥ 1 and nπ ≥ 1. For the lowest order of hµν , nh = 1, the energy scales are
Λ5 for nπ = 2, Λ4 for nπ = 3, and Λ11/3 for nπ = 4, where are lower energy scales
than Λ3. Therefore, in order to satisfy the requirement 2, these term ∂2h (∂2π)nπ

has to be eliminated by the construction of Lagrangian, and we show that such
eliminations are possible for derivative interaction in the next section. For the next
order of hµν , nh = 2, the energy scale is always Λ3 and irrelevant with the value of
nπ, which automatically satisfies the requirement 3.

3.1 HR order
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general covariance of the theory [17]. The Stuckelberg field is arbitrary, and choosing
the unitary gauge, φa = xa, reduces to Fierz-Pauli massive gravity at linear level.

The decoupling limit is very convenient to capture high energy behavior below the
Compton wavelength of graviton mass. Due to the decoupling of vector modes, we
can safely ignore the vector modes in the decoupling limit. Usually the Stuckelberg
field can be expanded around the unitary gauge,

φa = δaµx
µ − ηaµ∂µπ/MPlm

2, (6)

where π describes the scalar mode of massive graviton. We also expand the physical
metric as gµν = ηµν + hµν . Thus we can extract the tensor and scalar mode in
massive graviton with taking some limits,

MPl → ∞, m → 0, Λ3 = (MPlm
2)1/3 = fixed,

Tµν

MPl
= fixed. (7)

Then the action in the decoupling limit is given by

LDL = −1

4
hµνEαβ

µν hαβ − hµν

[
1

4
ε ργα
µ ε β

νργ Παβ +
3α3 + 4

16Λ3
3

ε γαρ
µ ε βσ

νγ ΠαβΠρσ

+
α3 + 4α4

16Λ6
3

ε αγρ
µ ε βδσ

ν ΠαβΠγδΠρσ

]
+

1

MPl
hµνTµν ,(8)

where we defined Πµν ≡ ∂µ∂νπ. The Λ3 is the cutoff energy scale of this theory, and
the theory above Λ3 can not be trusted. The self-interactions of the scalar mode
become the total derivative in the decoupling limit, therefore, BD ghost does not
appear at nonliear level. In addition, it is very clear that remaining equations of
motion for both hµν and π is the second order differential equation, which prevents
BD ghost from appearing in the theory.

3 Construction of Lagrangians

Now we want to add nonlinear derivative interaction terms in dRGT massive gravity.
To the end, we require the following restrictions :

1. Linearlization of hµν reproduces Fierz-Pauli massive gravity. (This is equiv-
alent with requiring Lorentz invariance and absence of Boulware-Daser ghost
at linear level.)

2. Cut off energy scale is Λ3 (All nonlinear terms with energy scales below Λ3 in
the decoupling limit has to be eliminated.).

3. A derivative interaction term should contribute at the energy scale Λ3.

4. The resultant theory does not have Boulware-Daser ghost.
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Galileon type interactions

Standard gravity part

•  2nd order differential EOM (NO BD ghost) 
•  Cutoff energy scale is Λ3
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π is the scalar mode  
of massive graviton



• There is no flat and closed FRW solution (D’Amico et al., 2011) 

• Open FRW solution (Gumrukcuoglu, Lin, Mukohyama, 2011) 

!

!

!

!

!

• Linear perturbations are fine, and scalar and vector perturbations are exactly 
the same as GR because of vanishing the kinetic terms (Gumrukcuoglu, Lin, 
Mukohyama, 2011) 

• There is ghost-instability at nonlinear level (Gumrukcuoglu, Lin, Mukohyama, 2012) 

• Consistent massive gravity : Quasi-dilaton theory (massive graviton + scalar)(de 
Felice, Mukohyama, 2013), SO(3) massive gravity (Lorentz breaking) (Lin, 2013)

Cosmologies

Out of the three solutions of the constraint (20), the trivial solution ȧ = sgn(ḟ/f)
√
−KN

corresponds to the Minkowski spacetime in open chart. The remaining two branches of

solutions are given by [23]

α(t) = X±a(t) , X± ≡
1 + 2α3 + α4 ±

√

1 + α3 + α2
3 − α4

α3 + α4
(> 0) , (22)

and describe FRW cosmologies with K < 0.2 In the present paper we will focus only on

these nontrivial cosmological solutions.

Using the above constraint and varying the action (17) with respect to N and a, we

obtain the remaining background equations

3H2 +
3K

a2
= Λ± +

1

M2
P l

ρ ,

−
2Ḣ

N
+

2K

a2
=

1

M2
P l

(ρ+ P ), (23)

where ρ and P are the energy density and the pressure of matter fields calculated from

Imatter , and

Λ± ≡ −
m2

g

(α3 + α4)
2

[

(1 + α3)
(

2 + α3 + 2α2
3 − 3α4

)

± 2
(

1 + α3 + α2
3 − α4

)3/2
]

. (24)

Thus, for the cosmological solutions (22), the contribution from the graviton mass term

Imass at the background level mimics a cosmological constant with the value Λ±.

For α4 = (3 + 2α3 + 3α2
3)/4 and ±(1 + α3) > 0, the effective cosmological constant Λ±

vanishes, and the background solution reduces to the open FRW universe solution of GR.

On the other hand, both X± and Λ± diverge for α4 = −α3 and ±(1 + α3) > 0. In Figure 1,

we show the sign of Λ± in the (α3,α4) space. Note that X± are restricted to be positive by

definition, as explained in footnote 2. Except for the restriction due to the positivity of X±,

these are in agreement with the analogous region plots presented in Ref.[24] 3.

2 Note that X± are positive by definition since α(t) > 0 and we assumed a(t) > 0. If we instead assumed

a(t) < 0 then the corresponding solutions would be α(t) = −X±a(t) with the same X± and we would

conclude X± > 0 again. The essential reason for the positivity of X± is that the square-root in (8) is the

positive one.
3 Substituting α3 → 3α3, α4 → 12α4, and switching the positive and negative branch definitions, our

expression (24) recovers Eq.(6.6) of Ref.[24]. However, note that fµν in the solution of [24] does not

respect the FRW symmetry.
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Derivative interactions in massive gravity



DOF in Fierz-Pauli theory

UFP = "µ↵⇢�"⌫�⇢�hµ⌫h↵�

→　Antisymmetric tensor ensures that h00 becomes a Lagrange multiplier  
The Hamiltonian constraint kills BD ghost 

• Fierz-Pauli mass term

• Einstein-Hilbert term

LEH = "µ⌫⇢�"↵�� � @µ@↵ h⌫� h⇢�

• h00 and hij are Lagrange multipliers 
    (Existence of Hamiltonian and momentum constraints) 
•  DOF of massless graviton = 2

• h00 is Lagrange multiplier 
    (Existence of Hamiltonian constraint) 
•  DOF of massless graviton = 5



Derivative interaction in Fierz-Pauli theory

• Derivative interaction in Fierz-Pauli theoryspin-2 theories, which is given by

L2,3 ∼ M2
Pl ε

µνρσεαβγδ∂µ∂α hνβ hργ hσδ, (2)

in four dimension. Here εµνρσ is the Levi-Civita symbol normalized so that ε0123 =
−1. The anti-symmetric structure of Eq. (2) prevents h00 from appearing nonlin-
early, thus this term is definetly linear in h00, and it becomes Lagrange multiplier,
which produces a Hamiltonian constraint. However, h00 itself does not give a Hamil-
tonian constraint in de Rham-Gabadadze-Tolley massive gravity, hence it is not for
sure that there exists a nonlinear version of derivative interaction Eq. (2).

In this paper, we extend dRGT massive gravity theory by introducing ”nonlin-
ear” derivative interactions and investigate whether this ghost-free derivative inter-
action is consistent theory or not. In section 2, we briefly review dRGT massive
gravity and Λ3 theory in the decoupling limit. In section 3, we construct the most
general Lagrangian of nonlinear derivative interactions. In section 4, we investigate
consistency of the nonlinear derivative interactions introduced in section 3 by using
ADM formalism.

Throughout the paper, we use units in which the speed of light and the Planck
constant are unity, c = ! = 1, and MPl is the reduced Planck mass related with
Newton’s constant by MPl = 1/

√
8πG. We follow the metric signature convention

(−,+,+,+). Some contractions of rank-2 tensor is denoted by Kµ
µ = [K], Kµ

νKν
µ =

[K2], Kµ
αKα

βKβ
µ = [K3], and so on.

2 de Rham-Gabadadze-Tolley massive gravity

The action for ghost-free massive gravity is given by [7, 8]

SMG =
M2

Pl

2

∫
d4x

√
−g

[
R− m2

4
(U2 + α3U3 + α4U4)

]
+ Sm[gµν ,ψ], (3)

where potentials are given by

U2 = 2εµαρσε
νβρσKµ

νKα
β = 4

(
[K2]− [K]2

)
,

U3 = εµαγρε
νβδρKµ

νKα
βK

γ
δ = −[K]3 + 3[K][K2]− 2[K3],

U4 = εµαγρε
νβδσKµ

νKα
βK

γ
δK

ρ
σ (4)

= −[K]4 + 6[K]2[K2]− 3[K2]2 − 8[K][K3] + 6[K4],

and

Kµ
ν = δµν −

√
δµν −Hµ

ν

= δµν −
√
ηabgµα∂αφa∂νφb. (5)

Here α3 and α4 are constants, the fluctuation tensor Hµν is defined by Hµν =
gµν−ηab∂µφa∂νφb, and φa is called Stuckelberg field, which is responsible for restoring

3

Levi-Civita structure ensures that the Lagrangian is linear in h00

→　h00 becomes a Lagrange multiplier, which kills BD ghost

• In 4 dimension, there is no more derivative interaction, which kills BD ghost. 
(due to the number of indices in the antisymmetric tensor.) 

•Fierz-Pauli theory is actually linear theory, but this derivative interactions is 
nonlinear !! If we want to consider this term, we need to think about Einstein-
Hilbert term, instead of linearized Einstein-Hilbert.

 (Kurt Hinterbichler, 2013)



Our work : Is there any consistent nonlinear derivative interactions  
                       in de Rham-Gabadadze-Tolley massive gravity??

SMG =
M

2
Pl

2

Z
d

4
x

p
�g


R� m

2

4
(U2 + ↵3U3 + ↵4U4)

�
+ Sint + Sm[gµ⌫ , ],

U2 = "µ↵⇢�"
⌫�⇢�Kµ

⌫K↵
�

U3 = "µ↵�⇢"
⌫��⇢Kµ

⌫K↵
�K

�
�

U4 = "µ↵�⇢"
⌫���Kµ

⌫K↵
�K

�
�K

⇢
�

Kµ
⌫ = �µ⌫ �

p
�µ⌫ �Hµ

⌫

= �µ⌫ �
p

⌘abgµ↵@↵�a@⌫�b



Guidelines for construction of Lagrangian

(1)  Linearization of hμν reproduces Fierz-Pauli theory 

• Lorentz invariance 

• Free of Boulware-Deser ghost at linear level 

(2)  Cut off energy scale is Λ3 

• All nonlinear terms below Λ3  have to be eliminated 

(3)  Free of Boulware-Deser ghost

• Candidates for derivative interactions using the Riemann tensorThere are a number of candidates of nonlinear derivative interaction terms such as

Lint ⊃ M2
Pl

√
−gHR, M 2

Pl

√
−gH2R, M2

Pl

√
−gH3R, · · ·. (9)

Here we set the mass scale to be M2
Pl for requirement 2. First, we count the energy

scale in the decoupling limit. From Eq. (6), Hµν undergoes the following transfor-
mation,

Hµν → hµν

MPl
+ 2

∂µ∂νπ

MPlm2
− ∂µ∂απ∂µ∂απ

M2
Plm

4
, (10)

then the canonically normalized Lagrangian can be schematically written as

Lint ∼ Λ2−nh−3nπ
λ hnh−1∂2h (∂2π)nπ , (11)

where we defiened the energy scale

Λλ = (Mpm
λ−1)1/λ, λ =

nh + 3nπ − 2

nh + nπ − 2
. (12)

Here nh ≥ 1 and nπ ≥ 1. For the lowest order of hµν , nh = 1, the energy scales are
Λ5 for nπ = 2, Λ4 for nπ = 3, and Λ11/3 for nπ = 4, where are lower energy scales
than Λ3. Therefore, in order to satisfy the requirement 2, these term ∂2h (∂2π)nπ

has to be eliminated by the construction of Lagrangian, and we show that such
eliminations are possible for derivative interaction in the next section. For the next
order of hµν , nh = 2, the energy scale is always Λ3 and irrelevant with the value of
nπ, which automatically satisfies the requirement 3.

3.1 HR order

In this subsection we start with lowest order terms in a general form,

Lint,1 = M2
Pl

√
−gHµν(R

µν + dRgµν), (13)

where d is a constant. To determine the constant d, we first take unitary gauge,
Hµν = hµν , and linearlize the Lagrangian around Minkowski spacetime, gµν = ηµν +
hµν . Then the lowest order of Lint,1 gives order of (∂h)2, which is the same order of
quadratic Lagrangian of Einstein-Hibert term. In order to satisfy the requirement 1,
we require the quadratic action of Lint,1 has to be proportional to Einstein-Hilbert
term,

L(2)
int,1 ∝ M2

Pl

[√
−gR

]

h2

. (14)

Therefore, we require d = −1/2. Note that Lint,1 can be written in terms of Riemann
dual tensor,

Lint,1 = M2
Pl

√
−gεµνρσεαβγσRµανβ Hργ . (15)

5

Hµ⌫ = gµ⌫ � ⌘ab@µ�
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• Guidelines



Energy scales of derivative interactions  
in the decoupling limit
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The Lagrangian satisfies requirement (1) : Fierz-Pauli theory at linear theory



HR order term in the decoupling limit
• The lowest order term in the decoupling limit

This is not zero or total derivative, and EOM contains higher derivatives

Total derivative

As we stated in the beginning of this section, the energy scale of nh = 1 terms in
the decoupling limit is potentially dengerous and these terms has to be eliminated.
Therefore, we take the decoupling limit of the Lagrangian Lint,1. Using the property,

[√
−gεµνρσεαβγσRµανβ

]

h

= −εµνρσεαβγσ∂µ∂α hνβ, (16)

the lowest order term for nh = 1 is given by

Lint,1

∣∣∣∣
∂2h ∂2π

= − 2

m2
εµνρσεαβγσ∂µ∂α hνβ ∂ρ∂γπ

= − 2

m2
∂γ(ε

µνρσεαβγσ∂µ∂α hνβ ∂ρπ). (17)

This is nothing but a total derivative and a cancellation of ∂2h ∂2π term is automat-
ically satisfied by the anti-symmetric structure of Lint,1. However, the next order
nπ = 2 is not total derivative,

Lint,1

∣∣∣∣
∂2h (∂2π)2

=
1

Λ5
5

εµνρσεαβγσ∂µ∂α hνβ ∂ρ∂aπ∂
a∂γπ. (18)

Only way to eliminate this term is adding the next order Lagrangian,

Lint,1,2 =
1

4
M2

Pl

√
−gεµνρσεαβγσRµανβ HρaH

a
γ. (19)

This Lagrangian clearly produces the couter term of Eq.(18), but it contains nπ = 3
term,

Lint,1.2

∣∣∣∣
∂2h (∂2π)3

=
1

Λ8
4

εµνρσεαβγσ∂µ∂α hνβ ∂ρ∂aπ∂
a∂bπ∂

b∂γπ. (20)

This nπ = 3 term can be also elimianted by adding the Lagrangian,

Lint,1,3 =
1

8
M2

Pl

√
−gεµνρσεαβγσRµανβ HρaH

a
bH

b
γ. (21)

Then we can perform the same procedure to eliminate nh = 1 term in the decoupling
limit by introducing appropriate counter term. One can notice that the coefficients
of counterparts has the following recursive relation,

d̄n = −
i≤N/2∑

i=1

1

2n
(−1)i 2n−2i

n−iCi d̄n−i. (22)

This coefficient is nothing but the expansion coefficients ofK tensor, d̄n = (2n)!/((1−
2n)(n!)24n). Using the expanded expression of (5),

Kµ
ν = −

∞∑

n=1

d̄n(H
n)µν , (23)
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The counter part of this term can eliminate this term

Λ5 term is eliminated !



HR order term in the decoupling limit

nh =1

nπ =1 ∞

nπ =2 Λ5

nπ =3 Λ4

nπ =4 Λ11/3

... ...

nπ =n Λ (3n-1)/(n-1)

Automatically total derivative

• HR order Lagrangian
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HR order term

• The total Lagrangians including counter terms is given by
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This coefficient is nothing but the expansion coefficients ofK tensor, d̄n = (2n)!/((1−
2n)(n!)24n). Using the expanded expression of (5),

Kµ
ν = −

∞∑

n=1

d̄n(H
n)µν , (24)

the Lagrangian can be resummed by using K tensor,

Lint,1 = M2
Pl

√
−gεµνρσεαβγσRµανβ Kργ. (25)

This Lagrangian does not have the terms of the energy scale below Λ3, and nonlinear
term contributes at Λ3. Note that from the definition of K tensor, Kµν |hµν=0 ≡
∂µ∂νπ, we have only one nh = 1 term, and K tensor ensures nh = 1 term to be a
total derivative in the decoupling limit.

3.2 H2R order

Next we want to consider next order Lagrangian, H2R. Since we want to eliminate
the energy scale below Λ3, we perform the same proceedure of HR case. Starting
point of the Lagrangian is

Lint,2 = M2
Pl

√
−gεµνρσεαβγδRµανβ Hργ Hσδ. (26)

This is the only total derivative combination, which eliminates ∂2h (∂2π)2 term.
If we have different combination of H2R, then ∂2h (∂2π)2 term remains because
higer order Lagrangian H3R cannot eliminate ∂2h (∂2π)2 term. Now the term (26)
produce ∂2h (∂2π)3 term, but we can always add counter parts to eliminate order
by order. With the same procedure in the previous subsection, the counterparts can
be resummed by using K tensor again,

Lint,2 = M2
Pl

√
−gεµνρσεαβγδRµανβ Kργ Kσδ. (27)

Appearantly, ∂2h (∂2π)2 term is a total derivative, and there is no higher order terms
of π for nh = 1 in the decouling limit from the definition of K tensor. Surprisingly,
linearization of (27) in hµν in unitary gauge gives the ”pseudo-linear” derivative
interaction term (2).

One might think that we can start with O(H3R) term, however, we do not
have total derivative combination of ∂2h (∂2π)3 due to the number of indices of
anti-symmetric tensor in four dimension, which means there is no higher order La-
grangian satisfying the restrictions. Therefore, the most general nonlinear derivative
interaction for dRGT massive gravity is

Lint = αM2
Pl

√
−gεµνρσεαβγσRµανβ Kργ + βM2

Pl

√
−gεµνρσεαβγδRµανβ Kργ Kσδ, (28)

where α and β are model parameters.
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• The final Lagrangian of HR order term

The Lagrangian satisfies requirements (2) : Λ3 theory in the decoupling limit



H2R order term
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appear

} These terms might be eliminated by 
adding higher order terms 

• Consider the most general combination of this order

⇠ "µ⌫⇢�"↵��� @µ@↵h⌫� @⇢@�⇡ @�@�⇡

Lint,2 = M2
Pl

p
�g Rµ⌫↵�(c1Hµ↵H⌫� + · · ·)



H2R order term

• The Lagrangian is 

• With the same method of the previous case, we get the resumed Lagrangian 
of H2R order term

This coefficient is nothing but the expansion coefficients ofK tensor, d̄n = (2n)!/((1−
2n)(n!)24n). Using the expanded expression of (5),

Kµ
ν = −

∞∑

n=1

d̄n(H
n)µν , (24)

the Lagrangian can be resummed by using K tensor,

Lint,1 = M2
Pl

√
−gεµνρσεαβγσRµανβ Kργ. (25)

This Lagrangian does not have the terms of the energy scale below Λ3, and nonlinear
term contributes at Λ3. Note that from the definition of K tensor, Kµν |hµν=0 ≡
∂µ∂νπ, we have only one nh = 1 term, and K tensor ensures nh = 1 term to be a
total derivative in the decoupling limit.

3.2 H2R order

Next we want to consider next order Lagrangian, H2R. Since we want to eliminate
the energy scale below Λ3, we perform the same proceedure of HR case. Starting
point of the Lagrangian is

Lint,2 = M2
Pl

√
−gεµνρσεαβγδRµανβ Hργ Hσδ. (26)

This is the only total derivative combination, which eliminates ∂2h (∂2π)2 term.
If we have different combination of H2R, then ∂2h (∂2π)2 term remains because
higer order Lagrangian H3R cannot eliminate ∂2h (∂2π)2 term. Now the term (26)
produce ∂2h (∂2π)3 term, but we can always add counter parts to eliminate order
by order. With the same procedure in the previous subsection, the counterparts can
be resummed by using K tensor again,

Lint,2 = M2
Pl

√
−gεµνρσεαβγδRµανβ Kργ Kσδ. (27)

Appearantly, ∂2h (∂2π)2 term is a total derivative, and there is no higher order terms
of π for nh = 1 in the decouling limit from the definition of K tensor. Surprisingly,
linearization of (27) in hµν in unitary gauge gives the ”pseudo-linear” derivative
interaction term (2).

One might think that we can start with O(H3R) term, however, we do not
have total derivative combination of ∂2h (∂2π)3 due to the number of indices of
anti-symmetric tensor in four dimension, which means there is no higher order La-
grangian satisfying the restrictions. Therefore, the most general nonlinear derivative
interaction for dRGT massive gravity is

Lint = αM2
Pl

√
−gεµνρσεαβγσRµανβ Kργ + βM2

Pl

√
−gεµνρσεαβγδRµανβ Kργ Kσδ, (28)

where α and β are model parameters.
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This is the only combination that the lowest order Λ5 term 
becomes a total derivative

• H3R, HR2 or higher order terms?? → No!

In four dimension, there is no total derivative combination of the lowest 
order term in the decoupling limit 



Riemann derivative interactions

• In 4 dimension, the general derivative interaction for massive graviton is

• We can also construct derivative interactions in arbitrary dimensions D

Lint = M2
Pl

p
�g "µ⌫⇢�"↵���Rµ↵⌫� (↵ g⇢� K�� + �K⇢� K��)

α and β are parameters 

d is even number

2  d  m  D � 1

These Lagrangians satisfy the requirements (1) and (2)

L(D,d,m)
int =MD�2

Pl m2�dp�g "µ1µ2···µD"⌫1⌫2···⌫DRµ1⌫1µ2⌫2 · · ·Rµd�1⌫d�1µd⌫d

⇥ gµd+1⌫d+1 · · · gµm⌫m Kµm+1⌫m+1 · · · KµD⌫D



Boulware-Deser ghost??

• Λ3 theory in the decoupling limit

• We constructed the Λ3 nonlinear derivative interactions, but we still need to 
check the requirement (3) : the existence of BD ghost 

There are extra degrees of freedom, which leads to ghost...

Ghost appears at Λ3

LDL ⇠ 1

⇤3
3

⇡


R2 � 4Rµ⌫R

µ⌫ +Rµ⌫⇢�R
µ⌫⇢�

�

h2

+
1

⇤3n⇡
3

O[h@2h (@2⇡)n⇡ ]

These terms yield 4th order 
differential Eq for h and π 
(coming from Lint,1 and Lint,2)

EOM is 2nd order differential equation 
(coming from Lint,2)



Other derivative interactions (in progress)

• In 4 dimension, we found other Λ3 derivative interactions without the Riemann 
tensor

We cannot kill higher derivative terms in EOM even if we combine all four 
derivative interaction terms…

energy scale, Λ7 for nπ = 3, Λ5 for nπ = 4, and Λ13/3 for nπ = 5 from Eq. (12).
Thus these self-interactions has to be eliminated. Obviously, these self-interactions
contains the forth derivatives in the Lagrangian, this means there is no combinations,
which yield 2nd order differential equation of motion, as expected from Horndeski
theory. Thus we need to eliminate these terms. First we want to extract the scalar
mode of the Lagrangian L′

int,1, which is given by,

L′
int,1 ⊃ M2

Plε
µνρσεαβγσ ∂µ∂α

(
2
∂ν∂βπ

MPlm2
− ∂ν∂λπ∂β∂λπ

M2
Plm

4

)

×
(
2
∂ρ∂γπ

MPlm2
− ∂ρ∂λπ∂γ∂λπ

M2
Plm

4

)
(36)

The first term in the first and second prefeces are zero due to anti-symmetric tensor.
Thus only option to eliminate this self-interactions is replacing either Hνβ in the
Lagrangian into Kνβ, therefore

L′
int,1 = M2

Pl

√
−g εµνρσεαβγσ ∇µ∇αKνβ Hργ

= −M2
Pl

√
−g εµνρσεαβγσ ∇αKνβ ∇µHργ , (37)

L′
int,2 = M2

Pl

√
−g εµνρσεαβγδ ∇µ∇αKνβ HργHδσ

= −2M2
Pl

√
−g εµνρσεαβγδ ∇αKνβ ∇µHργHδσ (38)

Here the Lagrangian L′
int,2 can be obtained by the same argument. Then these

derivative interactions does not contain self-interactions of the scalar mode. Next
we want to check nh = 1 term,

L′
int,1 = −M2

Pl

√
−g εµνρσεαβγσ ∇αKνβ ∇µKργ, (39)

L′
int,2 = −2M2

Pl

√
−g εµνρσεαβγδ ∇αKνβ ∇µKργHδσ (40)

One can notice that the first Lagragnian is tottaly determined by requiring Λ3 theory
in the decoupling limit. However, the second Lagrangian can not be determined
solely by Λ3 theroy, and it leaves the dependence of an arbitrary function of Hµν ,
which is given by

L′
int,2 = −2M2

Pl

√
−g εµνρσεαβγδ ∇αKνβ ∇µKργFδσ(H..) (41)

Here the arbitrary function Fµν(H) is the function of Hµν , where the other indcies
are contracted properly. This arbitrary function should be determined by Λ3 theory
so that ghost modes does not appear in the theory. One way to determine the
arbitrary function is to require ghost-free Lagrangian of only L′

int,2. Another way is
the combination of Lint,2 and L′

int,2. To find an arbitrary function in the Lagrangian,
we can perform the same procedure of the construction of Lint,2. If we expand the
arbitrary function from the lowest order, then

Fµν(H..) = Hµν + c21HµαH
α
ν + c22H Hµν (42)

+ c31HµαH
α
βH

β
ν + c32HHµαH

α
ν + c33H

2 Hµν · ·· (43)

Then we take a lool at equation of motions and check whether higer order derivatives
can be eliminated or not.
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• Λ3 theory in the decoupling limit

LDL ⇠ 1

⇤3
3

⇡


R2 � 4Rµ⌫R

µ⌫ +Rµ⌫⇢�R
µ⌫⇢�

�

h2

+
1

⇤3n⇡
3

O[h@2h (@2⇡)n⇡ ]

EOM is 2nd order differential equation 
(coming from L’int,2)

These terms yield 4th order 
differential Eq for h and π 
(coming from L’int,1 and L’int,2)



Appropriate mass scale of derivative interactions?

•  So far, the mass scale of the derivative interactions was Mpl

• In addition, if M < MPl, 

Lint = M2
Pl

p
�g "µ⌫⇢�"↵���Rµ↵⌫� (↵ g⇢� K�� + �K⇢� K��)

If the mass scale M is not MPl and smaller than MPl,  
the ghost scale is roughly above the cutoff energy scale.

LDL ⇠ 1

⇤3
3

⇡


R2 � 4Rµ⌫R

µ⌫ +Rµ⌫⇢�R
µ⌫⇢�

�

h2

+
1

⇤3n⇡
3

O[h@2h (@2⇡)n⇡ ]

M

This coefficient is nothing but the expansion coefficients ofK tensor, d̄n = (2n)!/((1−
2n)(n!)24n). Using the expanded expression of (5),

Kµ
ν = −

∞∑

n=1

d̄n(H
n)µν , (24)

the Lagrangian can be resummed by using K tensor,

Lint,1 = M2
Pl

√
−gεµνρσεαβγσRµανβ Kργ. (25)

This Lagrangian does not have the terms of the energy scale below Λ3, and nonlinear
term contributes at Λ3. Note that from the definition of K tensor, Kµν |hµν=0 ≡
∂µ∂νπ, we have only one nh = 1 term, and K tensor ensures nh = 1 term to be a
total derivative in the decoupling limit.

3.2 H2R order

Next we want to consider next order Lagrangian, H2R. Since we want to eliminate
the energy scale below Λ3, we perform the same proceedure of HR case. Starting
point of the Lagrangian is
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This is the only total derivative combination, which eliminates ∂2h (∂2π)2 term.
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Appearantly, ∂2h (∂2π)2 term is a total derivative, and there is no higher order terms
of π for nh = 1 in the decouling limit from the definition of K tensor. Surprisingly,
linearization of (27) in hµν in unitary gauge gives the ”pseudo-linear” derivative
interaction term (2).

One might think that we can start with O(H3R) term, however, we do not
have total derivative combination of ∂2h (∂2π)3 due to the number of indices of
anti-symmetric tensor in four dimension, which means there is no higher order La-
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where α and β are model parameters.
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ΛR＞Λ3 Λghost＞ΛR＞Λ3

If Λghost＞Λcutoff＞ΛR＞Λ3, the theory might still survive…



Summary

• We found the most general derivative interactions in dRGT massive gravity  

• The energy scales below Λ3 can be eliminated by adding counter terms 

• The Lagrangians can be resumed by using K tensor 

• The most general derivative interactions contain four interactions 

• Nonlinear terms contribute at Λ3 

• Appropriate DOF? 

• 4th order differential EOM of the scalar and tensor mode in the decoupling limit 

• Ghost appears at Λ3 in dRGT theory + derivative interactions

The mass scale of the derivative interactions should be M< Mpl 


