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1) Introduction

(1-1) What is the guantum entanglement ?

In guantum mechanics, a physical state is described by a vector in
Hilbert space.

If we consider a spin of an electron (= two dimensional Hilbert
space), a state is generally described by the linear combination:

W)=alt)+bd), |af +[b[=L1



Consider two spin systems. We can think of the following states:

(i) A direct product state (unentangled state)

)= 1), +4), e (1), +[4), |
S

Independent
(ii)) An entangled state

#)=([7), 84}, -[¥), [}, | W2

One determines the other | G Q

3 Non-local correlation




A measure of quantum entanglement is known as
the entanglement entropy defined as follows.

Divide a quantum system into two subsystems A and B.
H =H,®H, .

Define the reduced density matrix ,0A by
0, :TrB|‘P><‘P‘ .

The entanglement entropy SA is now defined by

SA — —TI'A /OA logpA . (von-Neumann entropy)



The Simplest Example: two spins (2 qubits)
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EE in Quantum Many-body Systems and QFTs

The EE is defined geometrically
(sometime called geometric entropy).

Continuum N- i
Limit £=0 : tlkmes Ice
' | )
OA + 0B
s (O~
€ - Hg =H,®H;

Quantum Many-body Systems Quantum Field Theories (QFTs)



(1-2) Holographic Entanglement Entropy

HEE formula [Ryu-TT 06, proven by Lewkowycz-Maldacena 13]

Area(y,)

y 4G,

/ Area of minimal surface

Entanglement entropy in hyperbolic space
for CFTs (quantum many-body

systems at critical points)
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Note: the HEE formula can be regarded as a generalization
of Bekenstein-Hawking formula of black hole entropy:

~ Area of BH

S
A 4G,

A Killing horizon (time independent black holes)

< All components of extrinsic curvature are vanishing.

M

A minimal surface (or extremal surface)

<Traces of extrinsic curvature are vanishing.




The HEE suggests that

“Spacetime in Gravity
= Collections of tiny bits of qguantum entanglement” ?

o _Area(y,) Area(y,)
A T ~ b .
4G, ]

pl

Planck length



The quantum entanglement can be a key concept to
understand the holography.

d+1 dim.
oM d+2 dim. M
Boundary Bulk

¥ Holography

Quantum many-body system =  (Quantum) gravity

) 9 v

‘ [Ryu-TT 06] ‘

Entanglement entropy (EE) = érea of minimal surfaceJ

Y .
+ quantum corrections

A framework to realize this is the entanglement renormalization.



Advantages of EE

e EEis defined for any quantum many-body systems. = Universal
(In cond-mat, EE = a quantum order parameter)

 Inthe presence of quantum corrections, the metric may not
be a good description of the spacetime. But, the EE is robust.

 EE can capture spacetime topologies. For example,

\e©
‘a‘\% ﬁ EE>0

sel;tef;g/eo, Q ® Q EE=0

A B %



Contents

1) Introduction

@ Entanglement Renormalization and AdS/CFT

3 Finite Temperature CFT and AdS Black Holes

@ Possible Gravity Duals of Flat Space and Volume Law
®) Discussions



(@ Entanglement Renormalization and AdS/CFT

(2-1) Our Motivation

In principle, we can obtain a metric from a CFT as follows:

a CFT state = Information (~EE) = Minimal Areas = metric

‘LP> SA Area(yA) g,uv

One candidate of such frameworks is so called the entanglement
renormalization (MERA) [Vidal 05 (for a review see 0912.1651)] as

pointed out by [Swingle 09].  [cf. Emergent gravity: Raamsdonk 09, Lee 09]



(2-2) Tensor Network (TN)

[See e.g. the review Cirac-Verstraete 09]
Recently, there have been remarkable progresses in numerical
algorithms for quantum lattice models, based on so called

tensor product states.

This leads to various nice variational ansatzs for the ground state

wave functions in various quantum many-body systems.

= An ansatz is good if it respects the quantum entanglement
of the true ground state.



T - M,

Ex. Matrix Product State (MPS) [DMRG: White 92,...,

Rommer-Ostlund 95,..]

a. =12,..,%,
[0-162 G-n] Gi=TOr\L.

Spin chain ‘

W)= D TrM(c,)M(c,)--M(0,)] |0y, 05+, 0,)

01,05, 0} n Spins




MPS and TTN are not good near quantum critical points (CFTs)

because their entanglement entropies are too small:

S,<2logy (<<logL~S;™).

Sa ~ Ny -log 7,

In general,

N. . = min[#Intersections of y,].




(2-3) AdS/CFT and (c)MERA

MERA (Multiscale Entanglement Renormalization Ansatz):
An efficient variational ansatz to find CFT ground states have been

developed recently. [Vidal 05 (for a review see 0912.1651)].

To respect its large entanglement in a CFT, we add (dis)entanglers.
Unitary transf.

between 2 spins

—

6, 0, 03 04 05 0, 0; Oy 0, 0, 03 0, 05 0, 0; Oy



Calculations of EE in 1+1 dim. MERA

S, o« Min[#Bonds] oc log L
= agrees with 2d CFTs.




A conjectued relation to AdS/CFT [swingle 09]

Min[# Bonds] / _
/ Min[Area]
U=—oo(=Ug)
| -

Equivalent ?

2u 2 142, Ag?

Metric = ds? + & (—dt? + d¢?) = 92— 9L + X7
& L

—u

where z=¢-e



Now, to make the connection to AdS/CFT clearer, we would like
to consider the MERA for quantum field theories.

Continuous MERA (cMERA)

[Haegeman-Osborne-Verschelde-Verstraete 11]

P(u)) =P-exp(—iﬂRds[K(s)+L])- Q)

True ground state IR state
(highly entangled) (no entanglement)

—> Real space renormalization flow : lengthscale~¢-e™.

K(u) : disentangler, L: scale transformation

Conjecture

d+1 dim. cMERA = gravityon AdS,,, z=¢-e".




(2-4) Emergent Metric from cMERA [nozaki-Ryu-TT 12]

We focus on gravity duals of translational invariant static states,
which are not conformal in general.

We conjecture that the metric in the extra direction is given by

using the Bures metric (or Fisher information metric):

7

_ Ae” The total volume of phase space
1 _ d d _ P P
N = jdX jo dk™ = at energy scale u.

g du’ =N .(1—‘<‘P(u) € | W (u+du))




Bures Metric

The Bures distance between two states is defined by

D(v,,v,) :1_‘<W1 | W2>‘2'

More generally, for two mixed states p1 and p2,

D(py, p5) =1-TrJ\ o, Py

When the state depends on the parameters {&i},

the Bures metric (Fisher information metric) is defined as
Dy (&), (& +d&)] = gyd&'ds .

= Reparameterization invariant (in our case: coordinate u)



iLdu

The operation @ " removes the coarse-graining procedure

to extract the strength of unitary transformations (disentanglers ).

= Our metric = the density of disentanglers

= the metric guu in the gravity dual

/

Understandable from the HEE:

(d-1)u

SA~ Odu guu'e

R B > Uu=-logz
%:O Ug =~




(2-5) Emergent Metric in a (d+1) dim. Free Scalar Theory
Hamiltonian: H :%jdkd[ﬂ(k)z(—k) + (k% +m*)d(k)p(—K)].

Ground state ‘\P> : ak\\P> = 0.

Moreover, we introduce the 'IR state’ Q> which has no real

Space entanglement.

a,|Q) =0, a, =N¢(x)+ﬁn(x),
e [Q)=TT0). al =M. ¢(x)_ﬁﬁ(x).

= S5, =0.



For a free scalar theory, the ground state corresponds to
K (U) = % [k Ly )(ke™ /M Jayar, +(he)]
where I'(x)Isa cutoff function: I'(x) = 8(1-| x|).

1. e

2 e tm?/M?’

7(S) = (form=0, y(u)=1/2.)

For the excited states, y(S) becomes time-dependent.
One might be tempting to guess

Density of bonds
2U
> d)_{Z — gttdtz» \ guu OC| Z(U) | ?

€
E

ds?

. 2
Gravity ~— guudu T

Indeed, the previous proposal for guu leadto (,, = ;((U)Z.



2U

Explicit metric  |dSgay = 9,,du° + egz .dX* — g, dt*

(i) Massless scalar (E=k)

Oy = % —> the pure AdS

(ii) Lifshitz scalar (E=k")
2

Ju = VT —> the Lifshitz geometry
(iii) Massive scalar
e4u

Ju = 4(e® +m?/A*)?

2 2
— ds? = 92 +( 1 —m—j(diz—dtz).

Z° A°z% A°
Capped off in the IR z<1/m



@) Finite Temperature CFT and AdS Black Holes

(3-1) Excited States in MERA

Before we study finite temperature states (mixed state),
we would like to examine a class of excited states (pure states),
called guantum quenches.

Quantum quenches are triggered by sudden large excitations,
induced by an instantaneous shift of parameters in the
Hamiltonian.

m(t)
mO
e.g. mass shift: t = an excited state in CFT
>




Such a excited state is in the class defined as follows:

(Ak ak T Bkajk)

¥)=0, (A ~|B =D
To realized these states, we need to extend the ansatz such that

K(u) = %jdkdr(ke“ /M )[g (Wasa’, +9g (u)a,a, ]

= SU(1,1) Bogoliubov transf. Mk(u)

p(U) g (u)

M = . .
() (qk(u) D ()

]eSU(l,l), | p(u) [* +] g (u)P=1,

(Ak (U);Bk (U)) = gak ) ,Bk) M, (u).

N
scaleu IR limit




We can express Mk(u) by introducing 2 X 2 matrix G(u):
M, (U) = ISeXp(— [ Gyrie: /A)),

= M, (0)= ﬁexp[— j,zgke(u)j,

UV limit

~ G(u) = k MLO)

_ K
M 0. (u= IogX)
: / I d —u + A+ *
The choice: K (u) = Ejdk F(ke /M )[g (wWa,a’, +g (u)a.a_, ]

correspondsto  G(U) = (

0 g(U)]
g'(u) 0 )



For a given UV state‘\P>(: ‘\P(O)>) or equally M, (0) ,
the intermediate state |'¥'(U)) or M, (u) is determined
up to an ambiguity.

This stems from the phase factor ambiguity of wave function:

(A, +Ba’)|¥)=0 = e%“Y.(Aa +Ba’)|¥)=0.

Our conjecture: t e c\\c©
the phase ambiguity g, (t) N /
< the choice of the time slice A
F(t,u) = const. > U
_ Ug =0
U, =0




A Description of Quantum Quench by Calabrese-Cardy 05

_pH
Y(t=0)~e *
Regularization factor Boundary state

because the real excitation
energy is finite.

Am~1/B (~ effective temp.)



Ex. Free Massless Scalar field (Dirichlet b.c.)

(L) = exp(—% I dke *'*e*"a’a’, j\ 0),

1 L e‘ﬂk/z L
Ak _ _ elkt+|9k () B _ ) e—lkt+|6’k (t).
N | © J1-eH
We fix Bk(t) such that we have the form: G(u) :(g’iu) géu))l

Thisleadsto g(u)= %+ sinh(liﬂ/ ) (ktsin(26?k (1)) —kT'Bcos(Zé’k (t))j.

Note: 6, (t) =—kt whenk >>p.



Time dependent metric from the 2d Quantum Quench

Light cone: looks like a

Z4/9,, =g(u) gravitational wave.
2494

We can also (analytically) confirm the linear growth: SAoct
because g(u)oct at late time. This is also true in higher dim.

This is consistent with the known CFT (2d) [Calabrese-Cardy 05].
and with the holographic result (any d). [Hartman-Maldacena 13]



Comparison with AdS BH

The holographic dual of a quantum quench was analytically

constructed as the half of eternal AdS BH. [Hartman-Maldacena 13]

cMERA

Gravity dual of quantum quench

ANV AN

Nice slice

CF

T1

Eternal AdS BH

dual to finite temp. CFT



(3-2) Finite Temperature CFT MERA

Indeed, in our free scalar model, we find this relation as follows:

1 — —2i + At
\\If(t)>QQ =N -exp(—ajdke lzg=2lgs akj\ 0).
t /2 projection: CFT1=CFT2
‘\P(t)>FiniteT - N '.e_th .Ze_ﬁEn/Z‘ n>1‘ ﬁ>2

:N'-exp(— j dke *'?e*"a’a" ) ‘O>

Therefore we can construct the cMERA for the finite temp. CFT.
We can indeed prove that the metric guu, defined in a quantum
information theoretically is identical to that of the quantum quench.



@ Possible Gravity Duals of Flat Space and Volume Law

If we consider the almost flat metric (HEE ocVolume)

—-W WU)

ds® =e”™du’® +e™dx* =dy” + y*"dx* (y=¢
2wu

< Gy =€

the corresponding dispersion relation reads

ko, E "
u)==— =™ —E, =e
x(u) 5 E E, jkAeu k

This leads to the highly non-local Hamiltonian:

H = [ax 6007 + (e F g



Confirmation of Volume law € Non-local QFTs [Shiba-TT 13]
ex. w=1, d=1

© A=80 © A=1000
- A=800
A=60 A=600
A=40 L : L ..... A=400
.’___f 2000 |- . . . L
b

— Volume law |

(AL/2" (L << A)
' cA® (L>>A)
— consistent with HEE!

S

|12




®) Conclusions

The idea of the entanglement renormalization can be
a basic mechanism of the AdS/CFT correspondence.

We explored this connection by examining cMERA and proposed
a metric in the extra dimension purely in terms of QFT data.

Many future problems:

e How to calculate gtt ? Boosting the subsystem ? Finite temp.?
e The effect of Large N limitin cMERA ?

(largen N limit <locality=saturation of entropy bound ?)
e Time slices and diff. inv. in cMERA ?

* Free field theories = Higher spin gauge theory?
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