Progress Towards the Core-Collapse Supernova Mechanism

Adam Burrows, Josh Dolence, Jeremiah Murphy, Jason Nordhaus, Christian Ott, John Bell, Ann Almgren, Luc Dessart, Eli Livne, Tim Brandt

Mechanisms of Explosion

- Direct Hydrodynamic Mechanism: always fails
- Neutrino-Driven Wind Mechanism, ~1D; Low-mass progenitors
- 2D Convection Neutrino-driven (circa 1995-2009) ("SASI" not a mechanism, but a shock instability)
- Neutrino-Driven Jet/Wind Mechanism, Rapidly rotating AIC of White Dwarf
- MHD/Rapid Rotation "Hypernovae"?
- Acoustic Power/Core-oscillation Mechanism? (Aborted if neutrino mechanism works earlier; Weinberg & Quataert ?)
- 3D "Convection" Neutrino-driven Mechanism

Important Ingredients/Physics

- Progenitor Models (and initial perturbations?)
- Multi-D Hydrodynamics (3D)
- Multi-D Neutrino Transport (multi-D) (most challenging aspect)
- Instabilities Neutrino-Driven Convection (+ SASI?)
- Neutrino Processes Cross sections, emissivities, etc. (at high densities?)
- General Relativity (May & White; Schwartz; Bruenn et al.; Mueller et al.; Kotake et al.)

Explosion Energy and Nickel Mass vs. ZAMS Mass

Neutrino Mechanism Confusion?

- 2D explosions compromised by Axial Sloshing ("SASI"), which is not much in evidence in (non-rotating) 3D simulations
- 2D: Groups do not agree qualitatively or quantitatively
- When models explode, explosion is marginal and get very different energies
- Compromised by "ray-by-ray" approximations employed by some?
- 3D not reproducing explosions seen in 2D
- Is something missing?

VULCAN/2D Multi-Group, Multi-Angle, Time-dependent Boltzmann/Hydro (6D)

- With multi-D transport
- Arbitrary Lagrangian-Eulerian (ALE); remapping
- 6 dimensional (1(time) + 2(space) + 2(angles) + 1(energy-group))
- Moving Mesh, Arbitrary Grid; Core motion (kicks?)
- 2D multi-group, multi-angle, S_n (~150 angles), time-dependent, implicit transport - Ott et al. 2009
- 2D MGFLD, rotating version (quite fast)
- Poisson gravity solver
- Axially-symmetric; Rotation
- MHD version ("2.5D") div B = 0 to machine accuracy; torques
- Flux-conservative; smooth matching to diffusion limit
- Parallelized in energy groups; almost perfect parallelism
- Livne, Burrows et al. (2004,2007a)
- Burrows et al. (2006,2007b), Ott et al. (2005,2008); Dessart et al. 2005ab,2006

CASTRO - 3D AMR, Multi-Group Radiation-Hydrodynamic Supernova Code

- 2nd-order, Eulerian, unsplit, compressible hydro
- PPM and piecewise-linear methodologies
- Multi-grid Poisson solver for gravity
- Multi-component advection scheme with reactions
- Adaptive Mesh Refinement (AMR) flow control, memory management, grid generation
- Block-structured hierarchical grids
- Subcycles in time (multiple timestepping coarse, fine)
- Sophisticated synchronization algorithm
- BoxLib software infrastructure, with functionality for serial distributed and shared memory architectures
- 1D (cartestian, cylindrical, spherical); 2D (Cartesian, cylindrical); 3D (Cartesian)
- Transport is fully multi-D a conservative implementation of MGFLD, with v/c terms and inelastic scattering
- Uses scalable linear solvers (e.g., hypre) with high-performance preconditioners that feature parallel multi-grid and Krylov-based iterative methods challenging!
- Developers: John Bell, Ann Almgren, Weiqun Zhang, Louis Howell, Adam Burrows, Jason Nordhaus - LBNL, LLNL, Princeton

8.8-So	ola	ar	m	as	s I	Pro	og	en	ito	or	of	f N	Jo	m	ot	0:	N	eu	ıtr	in) –C	dri	ίve	en	W	Vi	nd	E	XI	olo	osic	on	2
SDAT	*	*		•		*	-	*		*	•	*	•	-	-	•	•	•			•	•	*	•	*	•		•	*		X		2
First shown	2	*	*	*	*	*	۲	*	٠	*	*	*	*	+	٠	*	+	•	+	*	*	*	*	*	*	×	8	*	*	×	St		
by Kitaura et	* ,	*	1	1	· .	*	· .	*	× .	*	*		*	*	-	-	*	*	*	* *	*	* *	•	*	*	*	*		*				22
al. 2006		,	1		,					*		+	-	1	+	+	1	-	+		*		*		•		*	*	*	-			
D	*	٧	*	9	•	۲	*	2	*	٠	*	*	*	*	٠	+	*	+	*	*	*	*	*	*	×	•	*	*	٠	*			
Burrows,	1	*	1	*	1	*	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1	*	*			
Dessart, &	,	,	\$		í,	ļ	1	, ×	*	*	,		*	-	1	:	•	•	*	*	*	*	*		* *	2	*			5 8			
Livne 2007		,			×		ø		*	¥	*				-		-	•	*	*	×	*	*	e.	*	*	*	ŧ	•	٠			
	+	۷	•	۷	*	*	*	٠	٠	۲	*	٠	*	-	•	•	*	٠	*	*	*	*	*	٠	*	٠	۲	4	۲	*			
	*	*	1	*	*	*	*	+	*	1	*	•	1	*	*	*	*	*	*	*	•	*	÷	•	٠	*	*	ŧ	٠	ł.			
	1	1	1	3	4	4	× ,		*	1	*	1	1	Č,	1	2	-		N.		•		*	•	к. к	:	*	•					
SN 2009md:	4		+		•	+	,		+		4	1	+	1	,		1		x		+	+		•	+	•	*	+	•				
	4	٠		4	+	+	٠	+	٠	4		8	x	¢	×	*	,	,	¥.	٠	*	*	•	•	+	•	*	¥.	٠	٠			
SN 1997D:	*	*	*	*	+	4	*	*	*	1	1	1	*	ð.	-	-	Ľ	1	1	*	*	*	*	*	F	•	*	Ŧ	+	۴			
	*		-	4	•	4	4	4			•		-	-		1	2	2		-			r +	е 6	ь 6	:	*	+ +	-	•			
I E			•	4	•	×	٠		*	8	2	*	*	*	+	+		*	*	8	*	*		•	ĸ	,	,						
Low Energy	4	٠	٠	•	×	٠	×,	*	2	×	*	*	•	•	•	•	*	•	*	*	*	*	٨	6	*	*	*	£	٠	٠			
Explosion	*	4	1	*	*	*	Č	*	~	*	°.	*	*	1	*	•	1	*	1	*	4	*	*	*	*	Č.,	*	1	*	1			
NOTE	ì			2	-		÷.	2	\$	*			*	-		*	-	*			*	2	2		°.	2		,	2				
NOTE	×	8		8					*	•		т.	-	-		+	Ŧ	*	π.					*			8	+	e	*			
WIND	*	×	×		x		*	×	•	*	•	*	•	+	٠	+	+	+	*	*	×		×	*	×	×	×	×	*	×			
THAT	*	*	•	*	*	*	*	*	*	*	*	*	*	*	*	π	*	*	*	*	*	*	1	ÓN	leN	lg:	8.8	B M	50	п			1
FOLLOWS	2	*	2	*		-				*	*	+	-	+	4	+	+	+	+	-			11	Tim									//
	*	*			•		•	*	*	•	•	-	•	-	-	•	-	-	+				Ra	idi	IS :		300	.00	kn	1		1	

MHD Jets and RMHD Simulations of Core Collapse: Rapid Rotation Required

Hypernovae! (connections with GRBs)

Burrows, Dessart, Livne, Ott, & Murphy 2007; et al. 2007, 2008

Rotation Winding, the MRI and B-field Stress effects

The only multi-group "2 1/2"-D Radiation-Magneto-Hydrodynamic (RMHD) simulations of Core-Collapse Supernovae performed (Burrows et al. 2007)

The Generic Neutrino Heating Mechanism - Multi-D Crucial

The Pause that Refreshes?

L_v vs. Accretion Rate Parameter Study

Simple Dynamical model for Shock Radius Evolution: Intersection of Critical Curve

$$\frac{d^2 R}{dt^2} + 2\beta \lambda \frac{dR}{dt} = \varepsilon \lambda_{adv}^2 \left(R_E(L, \dot{M}) - R \right),$$

$$\frac{d(L - L_c(t))}{dt} = \lambda_{adv} \left(L_A(\dot{M}) + L_c(t) - L \right),$$

$$\lambda \sim \frac{1}{\tau_{adv}} \left(1 - \frac{L}{L_{cr}(\dot{M})} \right),$$

$$\dot{M} = f(t)$$

Simplified Dynamical Model of Shock Evolution with Abrupt Change in Accretion Rate

Comparison of Dynamical Model Results with Hydrodynamic Models

How do the critical luminosities differ between 1D, 2D, and 3D?

Critical Curve for Neutrino Mechanism: 1D versus 2D

Murphy & Burrows 2008

A Tale of Two Instabilities:

Neutrino-driven Convection (Buoyancy) versus the Sanding Accretion-Shock Instability ("SASI")

CASTRO - 1D, 2D, 3D

Hydro, plus simple transport Results

2D:2.3

"Inverse" Energy Cascade in 2D -

Buoyancy-Driven Convection has (anomalously) a lot of large-scale power - Often confused for the SASI

Shock Surface Power Spectrum versus Driving Luminosity

"When Neutrinos Drive the Explosion, Neutrinos Drive the Turbulence"

The "SASI" is Less Relevant (or is Sub-Dominant) in Neutrino-Driven Supernovae

Confusing in 2D Buoyancy-Driven Convection with the SASI

 In 2D, convection (inverse) cascades to large scales and small spherical harmonic order (I)

● The SASI favors small angular orders I (=1 (dipolar), 2) → Confusion

• Misled by the notion that convection is a small-scale, large-I phenomenon, some said large-scale, small I, motions couldn't be convection - small $\Delta R/R$

- However, large $\Delta R/R$ convection favors small I, larger scales
- Computationally limited to 2D, the wrong intuitions were developed
- Nature is 3D cascade is to small scales, but SASI is still large scale (as in 2D) not much in evidence in 3D

Character of 3D Turbulence Qualitatively Different than that in 2D **Amplitudes of Dipolar** ("Sloshing") Modes much Smaller in 3D

Character of 3D turbulence and Explosion Very Different from those in 2D

Again - Buoyancy-driven Bubbles!; No Sign of "SASI"

Hanke et al. 2013: 300 km 900 km 19 me 800 km 300 km

 v_{θ}

 v_{ϕ}

l

101

 $l^{-5./3}$

 10^{2}

Bubble(s) lead (and lead to) Explosion

(Dolence et al. 2013)

L=2.2

Time after bounce = 0.0001 seconds

Dimensional Dependence of:

1) Dwell time in Gain region

2) Turbulent Pressures (!)

3) Cooling rate interior to Gain Radius

4) Unstable Mode order (I)5) Delay to Explosion (!)

Possible Problems with "Ray-by-ray" Pseudo-Transport

Ray-by-ray May Exaggerate Angular and Temporal Variation in Neutrino Fluxes and Heating

o In 2D, the artificial sloshing along the axis (identified by some with the SASI) might facilitate explosion

o "Ray-by-ray" heating rate correlates too strongly with axial motion

o Real Multi-D transport smoothes angular variation of matter sources

o Needs to be tested (but has not been)

S Stan	100 km	Time after bounce=-169.5 ms	
	2D (Castro): MGFLD with multi-D	Transport (no ray-by-ra	y)

Time:0.601564

2D, 1D (Castro): MGFLD with multi-D Transport (no ray-by-ray)

Burrows et al. 2013; Dolence et al. 2013

Burrows et al. 2013; Dolence et al. 2013

10

0.0

0.1

0.2

Time after bounce [s]

0.3

0.4

12 solar mass (WH 2007) 2D (Castro): MGFLD with multi-D Transport

25 solar mass (WH 2007) 2D (Castro): MGFLD with multi-D Transport

25 solar mass (WH 2007) 2D (Castro): MGFLD with multi-D Transport, with Shelf (!)

Different EOSs

The Effects of Drastic Changes in Neutrino Opacities - FEEDBACKS

Drastic Changes in Neutrino Opacities: 1D Examples

Pre-Collapse Perturbations

See also Couch & Ott 2013

t = +0 ms =600km A - 4 re × 150 0.400 1 1 1 t t 1 t 1 1 1 1 1 ٦ Perturbations: 2D (VULCAN) - Spikes

STURSTAN	-	2.0	26	200	2.0	22																	-	merulie				
St Street	N.	<u>s</u>	<u>N.</u>	<u>s</u>	N	<u>ь</u>	2	¥.	3		4	1	-	4.	2	:: 1 :	T.	1	ı	1	1	è	1	LUI .	1	5		
STATI		r=	=30)0k	m		x	(5)	\$	t	=	_ <mark>.</mark> 0	m	IS	2.	£	2	en	itro	ору		15		1	RATE			
	28			а. С.		-		14				4			- 33 - 33		10 10]	0			E.C.N	2.		
(IIIIIII)	*		×	Ň	<u>х</u>		3		•	*		1. 1	181	*	3	4	1	4	×.	×	*	R			-	aan a		
- the		~	1	>	2	¥	2	•	5		0.82	3.	3 4	4	3 2 3	ł	a.	Ľ	*	*	*	0	-		-	-		
	9	*	*	•	1		8	1	•			i.		4	•	4	8	4	×	۲	¥.	0	2					
	4	~	**		*	્ય	×	•		٠	s:	4	146	*	а.		J		*		e	×.	÷					
		~	*	~		-		•	*	3	÷.	6	200	÷		4	e e			*			ب	Sec.				
			-		1							1.									-			1.1.19				
																			~									
	*	*	*	*		*		4								*	4											
	•	77.	7	5. 7	3	1991	*	88	<u>×</u>		.*	i#	128	*		Ń	*	11 5 8	1	199	71		() -					
12 12 12 12 12 12 12	*	-+	-	-	-	1	4	8	•		*	1		•	8 2	s.	XX	1 6 2	٠	-	٠		÷н					
	ŧ.	-			4			8. 199	ŝ		÷		۲	¥.	Ð	÷	<u>()</u>	E.	٠	×.	÷		÷			22		
	÷		÷.	્ય	A		a.				40	æ		×				1.60	*		*	*	1	1.1				
	-	2			4		5	4							a	4			2	~	2	A	~					
State of the second		30		76	37 24							2												1.00				
	^	**	9 4 7	· •			*	•	<u>^</u>		19. 	*		ľ.	*	*	*			*	*		*					
		~	1	ંગ	\$		*	× .	*	4	2	24	57-13	*	e.	*	4		*	*	*	4	14					
State and a second		>	1	*		Ł	*	•			•			3	*		*		*	*	*	٠	*					
	*	×	*	×	~	,	~		7		۲	÷	а.	×		4	3	4	×	*	~	6	~~	il and the		26		
	*		×		*	÷	,	P	,	•	Ŧ	+	+	t	۲	5		5	*		ĸ	•		1.4.10				
		,	5	7		- 2	7	,	Ŧ		r.	7	т.	T	4	5	14		S.	x	2		~					
													1						1	1				5.653				
									1																	-		
	2	1	,	2	1	T	7	T	r	T	r	2	T	T	1	٦	X	1	×.	1	5	~	~	100		//		
														-	-									7 14 14 14		/		

Perturbations: 2D (VULCAN): 1 = 1

Core-Collapse Theory: A Status Summary

- "SASI" is not a mechanism
- "Ray-by-ray" may be problematic
- Neutrino-driven convection > SASI
- Multi-D is Key Enabler of explosion for (almost) all viable mechanisms
- Progenitor structure crucial (initial perturbations? -Density shelfs?)
- Neutrino mechanism: 3D? > 2D > 1D Critical condition
- Neutrino Mechanism marginal/ambiguous in 2D; Need to go to 3D, but 3D not exploding !?
- GR may be important
- Pulsar Kicks are Simple Recoils in Multi-D context
- MHD explosion models require rapid rotation (rare); Hypernovae? < 2 x 10⁵² ergs
- GRBs may be preceded by Non-Rel. precursor jets launched during PNS phase