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SN-II progenitor evolution overview

Motivation for and importance of studying 8− 12 M� stars

Modelling stars

new ECSN progenitor models

Improvements to nuclear physics considerations for weak reaction rates
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Massive stars - CCSN progenitors
M & 10M�:

Central H, He, C, Ne, O, Si burning→ Fe core→ e−-captures→ collapse→
explosion

see e.g. Heger et al. 2003
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Massive stars - CCSN progenitors
M & 10M�:

Central H, He, C, Ne, O, Si burning→ Fe core→ e−-captures→ collapse→
explosion
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Super-AGB stars - EC-SN progenitors?

H, He, C burning→ ONe core growth→ e−-captures→ O delfagration→ Fe
core→ e−-captures→ collapse→ explosion

Miyaji et al. (1980), Nomoto (1984, 1987), Miyaji & Nomoto (1987), Ritossa et al. (1999),
Poelarends et al. (2008), Takahashi et al. (2013)
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Super-AGB stars - EC-SN progenitors?
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Motivation – Statistical

N(8− 12 M�)/N(M > 8 M�) = 0.42
(α = −2.35)

Jennings et al. (2012, see figure right)

Distinct lack of low mass SNII
progenitor models
(Nomoto ’84, ’87; Takahashi et al.
2013; Mueller et al. 2012)

Many challenges!

Supernova Remnant Progenitor Masses in M31 19

Figure 14. Left Panel: Histogram of median progenitor masses below 52 M!. Right Panel: Cumulative fraction of progenitor mass
distribution. We overplot a reference Salpeter IMF. Using a KS-test, we find the cumulative mass distribution consistent with a power-law
IMF of the form dN/dM ∝ Mα with −2.7 ≥ α ≥ −4.4. We plot these two slopes, as well as a Salpeter IMF (dN/dM ∝ M−2.35). While
the distribution of masses greater than 60 M! is not shown, the fraction greater than 60 M! is given by the value for the cumulative
fraction at 60 M!.
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Motivation – Compact objects

BeX spin period and orbital
eccentricity bimodality
(Knigge et al., 2011 Nature)

Spin period distribution, 0.1− 104s

Bimodal NS mass distribution
(Schwab et al., 2012)No. 1, 2010 NEUTRON-STAR MASS DISTRIBUTION 723

turn can be related to a critical pre-collapse mass for the ONeMg
core of ∼1.37 M". Hence, an e-capture SN is expected to occur
when a degenerate ONeMg core reaches this critical mass either
by accretion from an envelope inside an asymptotic giant branch
star (e.g., Siess 2007; Poelarends et al. 2008) or in a helium star
(e.g., Nomoto 1987), by accretion from a companion star (so-
called accretion-induced collapse; e.g., Nomoto & Kondo 1991),
or as a consequence of the merger of two CO white dwarfs and
the subsequent formation of an ONeMg core (e.g., Nomoto &
Iben 1985). Since the collapse occurs at a characteristic ONeMg
core mass, the resulting neutron-star mass is entirely determined
by the equation of state and the amount of core material that is
ejected in the SN.4 The case of Pulsar B in the double pulsar
system J0703−3039 suggests that this mass is close to 1.25 M"
(Podsiadlowski et al. 2005). Furthermore, since essentially the
whole core collapses to form a neutron star, the remaining
envelope is relatively easy to eject, leading to a fainter SN with
the ejection of very few heavy elements (see, e.g., Dessart et al.
2006; Kitaura et al. 2006). It has recently been argued that the
large kicks most neutron stars receive at birth (Hobbs et al.
2005) are caused by an accretion shock instability that causes a
wobbling of the core, imparting momentum in the process (e.g.,
Blondin & Mezzacappa 2006, 2007; Foglizzo et al. 2007; but see
Fryer & Young 2007 for a more skeptical point of view). Since,
in the case of an e-capture SN, the explosion occurs before these
instabilities have time to grow, no large kick is expected for a
neutron star formed through this channel.

The suggestion that e-capture SNe may produce low SN
kicks and a distinct low-mass neutron-star population was first
independently made by Podsiadlowski et al. (2004) and van den
Heuvel (2004).5van den Heuvel (2004) specifically discussed
this low-mass, low-kick population in the context of binary radio
pulsars and used the then-current observations of several neutron
star–neutron star binaries and a neutron star–white dwarf binary
to argue that they formed via e-capture.

Table 1 summarizes the main differences in neutron-star and
SN properties for these two channels. Note, in particular, that for
neutron stars formed from iron core-collapse one expects a range
of masses that is determined by the range of iron core masses
in the progenitors that allows a successful explosion, while in
the case of neutron stars from an e-capture SN one expects a
fairly well-determined mass. Thus, the distribution of post-SN
neutron-star masses directly constrains not only the equation of
state but also the properties of successful SN explosions.

3. NEUTRON-STAR SAMPLE

There are 14 neutron stars which have masses known with an
accuracy of better than ∼0.025 M". The majority of these (12)
are from double neutron-star systems; two are in binary systems
with suspected white dwarf companions. The properties of these
systems are summarized in Table 2 (for references, see, e.g.,
Stairs 2008). A histogram of the measured gravitational masses
is shown in the top panel of Figure 1.

The rapidly rotating pulsars have likely been spun up
by the accretion of a small to modest amount of matter
(0.001–0.07 M"). We correct for this effect by subtracting the
mass which would be necessary to spin up the star, treating

4 This ignores the role of rotation which may be important, in particular, in
the case of an accretion- or merger-induced collapse.
5 The latter author also suggested a third more massive population of neutron
stars with masses around 1.85 M" from stars with an initial mass around
20 M".

Figure 1. Mass histograms for the sample of 14 neutron stars. Top panel: the
measured (gravitational) masses of the neutron stars. Middle panel: the masses
of the neutron stars corrected for accretion as discussed in the text. Bottom
panel: the pre-collapse (baryonic) masses of the neutron stars, based on one
particular illustrative neutron-star equation of state.

it as a classical uniform-density sphere accreting from a disk
that extends down to its surface. We have verified that for a
range of plausible equations of state for neutron-star matter,
more sophisticated treatments lead to accreted (gravitational)
masses that differ from our simple model by less than ∼10%
(see, e.g., Cook et al. 1994). The results are shown in the
middle panel of Figure 1. Note the high degree of similar-
ity of this histogram with that for the uncorrected masses; the
maximum mass correction for any one neutron star is ∼0.07 M"
(for J1909−3744). The corrections for the other neutron stars
were less than ∼0.02 M".

Finally, we used a representative equation of state for neutron-
star matter (“MPA,” Müther, Prakash, & Ainsworth 1987) to
translate the observed gravitational mass into a pre-collapse
mass by calculating the baryonic mass corresponding to each
gravitational mass. The results are shown in the bottom panel of
Figure 1. In general, the pre-collapse masses are shifted upward
by ∼0.13 M".

As the equation of state remains theoretically uncertain, we
calculated the corrections for each of the equations of state
collected in Lattimer & Prakash (2001). Within this collection,
the correction to the mass of a 1.25 M" neutron star varied
over the range 0.09–0.18 M". However, given the small range
in mass considered (1.25–1.4 M"), the choice of equation of
state has little effect on the relative correction between any two
systems within this range. The net result of choosing a different
equation of state would be a systematic shift in the bottom panel
of Figure 1, as opposed to any significant stretching or skewing.

One can see from Figure 1 that there are two apparent popu-
lations of neutron-star mass: one centered at ∼1.25 M" and one
at ∼1.35 M" (measured, post-collapse mass). In terms of the
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Motivation – Nucleosynthesis

Abundance anti-correlations - second
(weak) r-process?

C. J. Hansen et al.: Silver and palladium help unveil the nature of a second r-process

Fig. 17. A strong anti-correlation is seen in this plot of [Ag/Ba] vs. [Ba/H] and [Pd/Ba] vs. [Ba/H]. Silver and palladium are therefore not main
s-process elements.

Fig. 18. To the left: [Ag/Eu] plotted as a function of [Eu/H], showing a clear and strong anti-correlation. To the right: [Pd/Eu] vs. [Eu/H]. This
means that Ag and Eu are not synthesised by the same process, nor are Pd and Eu. Silver and palladium are therefore not produced by the main
r-process.

ratios, instead of correcting only some elements. We are, how-
ever, fully aware of the importance of NLTE corrections, and that
would ideally be a better way to proceed, were NLTE corrections
to become available for all elements. As for the latter, dwarfs
and giants show in general very similar trends (see Figs. 13–18),
with the dwarfs having higher abundance values than the giants
at similar metallicities. However, the overall good agreement be-
tween dwarfs and giants suggests that the process creating Ag
and Pd is likely to be the same at all metallicites.

6.3. Formation processes and transitions around Zr

Zirconium and strontium clearly share a common formation
process at low metallicities down to and even slightly below
[Zr/H] = −3 (see the flat correlation for giants in Fig. 19). A
similar trend is found when comparing yttrium to zirconium and
yttrium to strontium. However, at higher [Fe/H] and [Sr/H] abun-
dances above −1 dex, we find an anti-correlation between Sr and
Zr for the dwarfs. At higher metallicities, this can indicate differ-
ences in the formation process – or a difference between the pro-
cess primarily responsible for the formation of the two elements.

Zirconium and barium seem to have different origins, as
shown in Fig. 20 (Zr; e.g. charged particle freeze-out or weak
r-process vs. Ba; main r-process origin at low metallicities).

These findings confirms those of Farouqi et al. (2009) and Kratz
et al. (2008a, see their Fig. 4), who found a low-entropy charged-
particle freeze-out process to be the primary formation process
of Sr, Y, and Zr at low metallicity. Here, we find indications of Zr
being created in a slightly different way from Sr and Y. Similar
trends are also seen for [Sr/Ba] and [Y/Ba] ratios, where the gi-
ants show clear anti-correlations. The trends for giants were al-
ready reported by e.g. François et al. (2007). For the dwarfs, this
trend is less pronounced and they have a greater scatter in the
abundances. From the dwarfs’ trends, we might conclude that
around [Ba/H] = −2 the s-process yields from asymptotic giant
branch stars are no longer negligible formation sites of Ba, and
that the larger scatter is evidence of multiple formation sources.
Comparing the giant abundances of Zr to Eu shows that like Pd
and Ag, Zr is not produced by the main r-process at higher metal-
licites (see Fig. 20), although we note that Zr and Pd follow a
weaker anti-correlation with Eu than Ag does.

In the solar system, Zr appears to have been partly produced
by the weak and main s-processes (as well as there being a minor
contribution from the weak/second r-process), owing to the cor-
relations (and only mild anti-correlation) of Zr with Sr, Pd, Ag,
and Ba. At low metallicities, the s-process contribution to Sr,
Y (and Zr) is substituted with a charged particle freeze-out cre-
ation. These statements are confirmed in Sect. 7. This means that

A31, page 13 of 28

Hansen et al. 2012

Electron capture supernovae→ weak
r-process?

2-D simulations produce n-rich
pockets with Ye,min ∼ 0.4

Wanajo et al. (2011)

- no r-process (not even Pd or Ag)
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Modelling Stars – the MESA code
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Transition evolution: super-AGB→ massive star

Convection is a 3D phenomenon!
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8.75 and 8.8 M� models - weak interactions

Both SAGB (8.75 Mo) and failed massive stars (8.8 Mo) may produce an
ECSN

URCA pairs: 27Al↔ 27Mg; 25Mg↔ 25Na; 23Na↔ 23Ne

URCA cooling

Ne+O shell flashes

Ne-burning

O-deflagration

A=25

A=23A=27

(Not modelled in this work)

Ne + e20 -
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Progenitor structures
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Convective Boundary Mixing (CBM) in super-AGB
stars - 3DUP efficiency

H, He, C burning→ ONe core growth→ e−-captures→ O delfagration→ Fe
core→ e−-captures→ collapse→ explosion

Miyaji et al. (1980), Nomoto (1984, 1987), Miyaji & Nomoto (1987), Ritossa et al. (1999),
Poelarends et al. (2008), Takahashi et al. (2013)
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Convective Boundary Mixing (CBM) in super-AGB
stars - 3DUP efficiency
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Boundary mixing and NeO flame propagation
Stronger mixing at interface: different behaviour, same fate of 8.8 M�
model (EC-SN)

8.4 8.6 8.8 9.0 9.2 9.4

log10(�c/g cm�3 )

8.60

8.65

8.70

8.75

8.80

8.85

8.90

8.95

9.00

lo
g
1
0
(T

c/
K
)

fflame=0.005

fflame=0.014

fflame=0.028

fflame=0.100

Jones, S. (Keele University) 8–12 M�stars Nov. 2013 22 / 35



No mixing at interface: conductive propagation – NO CONTRACTION
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Mixing at interface characterised by fCBM = 0.005: compressional
propagation (periodic contraction)
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(S-)AGB thermal pulse (‘TP’)

(S-)AGB hydrogen ingestion

12C(p, γ)13N(β+ν)13C(α, n)16O
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Weak rates - problems and solutions

log〈ft〉
Sufficient resolution to determine
threshold densities.

λ(24Mg(e−, ν̄)24Na) at T9 = 0.4
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Consistent e±-capture, β±-decay,
ν-loss rates.

Coulomb corrections.

Gutierrez et al. (1996) - only rate
corrections.
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8.75 and 8.8 M� models - weak interactions

Both SAGB (8.75 Mo) and failed massive stars (8.8 Mo) may produce an
ECSN

URCA pairs: 27Al↔ 27Mg; 25Mg↔ 25Na; 23Na↔ 23Ne

URCA cooling

Ne+O shell flashes

Ne-burning

O-deflagration

A=25

A=23A=27

(Not modelled in this work)

Ne + e20 -
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8.8 M�: Ye-driven contraction (Ye,min < 0.48)
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New SD-shell rates (URCA pairs)

Results for A=25 URCA pair (Toki et al., 2013), USDB
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New SD-shell rates (URCA pairs)
Results using A=23, 25, 27 pairs (Toki et al. 2013) in MESA
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Summary

ECSN progenitor models from 2 evolutionary paths. (well known SAGB
and new ’failed massive star’).
Mass loss still very uncertain for super-AGB phase.
3D simulations of stellar regimes are cruicial to constrain boundary
behaviour (e.g. Herwig et al. (2011), Mocák et al. (2011)).
Well resolved grids of weak rates, especially sd-shell nuclei. Coulomb
corrections to both the rate and the energy production/loss should be
included.
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Summary
Jones et al. (2013), ApJ 772, 150
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New 20Ne(e−, ν)20F rate
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